aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xconfigure18
-rw-r--r--configure.ac2
-rw-r--r--configure.ac.pamphlet2
-rw-r--r--src/ChangeLog4
-rw-r--r--src/algebra/Makefile.in4
-rw-r--r--src/algebra/Makefile.pamphlet4
-rw-r--r--src/algebra/catdef.spad.pamphlet31
-rw-r--r--src/algebra/exposed.lsp.pamphlet1
-rw-r--r--src/share/algebra/browse.daase3398
-rw-r--r--src/share/algebra/category.daase6392
-rw-r--r--src/share/algebra/compress.daase1336
-rw-r--r--src/share/algebra/interp.daase10631
-rw-r--r--src/share/algebra/operation.daase33035
13 files changed, 27460 insertions, 27398 deletions
diff --git a/configure b/configure
index 40481175..ee25695b 100755
--- a/configure
+++ b/configure
@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
-# Generated by GNU Autoconf 2.63 for OpenAxiom 1.4.0-2010-06-09.
+# Generated by GNU Autoconf 2.63 for OpenAxiom 1.4.0-2010-06-13.
#
# Report bugs to <open-axiom-bugs@lists.sf.net>.
#
@@ -745,8 +745,8 @@ SHELL=${CONFIG_SHELL-/bin/sh}
# Identity of this package.
PACKAGE_NAME='OpenAxiom'
PACKAGE_TARNAME='openaxiom'
-PACKAGE_VERSION='1.4.0-2010-06-09'
-PACKAGE_STRING='OpenAxiom 1.4.0-2010-06-09'
+PACKAGE_VERSION='1.4.0-2010-06-13'
+PACKAGE_STRING='OpenAxiom 1.4.0-2010-06-13'
PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net'
ac_unique_file="src/Makefile.pamphlet"
@@ -1513,7 +1513,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
-\`configure' configures OpenAxiom 1.4.0-2010-06-09 to adapt to many kinds of systems.
+\`configure' configures OpenAxiom 1.4.0-2010-06-13 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1583,7 +1583,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
- short | recursive ) echo "Configuration of OpenAxiom 1.4.0-2010-06-09:";;
+ short | recursive ) echo "Configuration of OpenAxiom 1.4.0-2010-06-13:";;
esac
cat <<\_ACEOF
@@ -1691,7 +1691,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
-OpenAxiom configure 1.4.0-2010-06-09
+OpenAxiom configure 1.4.0-2010-06-13
generated by GNU Autoconf 2.63
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
@@ -1705,7 +1705,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
-It was created by OpenAxiom $as_me 1.4.0-2010-06-09, which was
+It was created by OpenAxiom $as_me 1.4.0-2010-06-13, which was
generated by GNU Autoconf 2.63. Invocation command line was
$ $0 $@
@@ -21182,7 +21182,7 @@ exec 6>&1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
-This file was extended by OpenAxiom $as_me 1.4.0-2010-06-09, which was
+This file was extended by OpenAxiom $as_me 1.4.0-2010-06-13, which was
generated by GNU Autoconf 2.63. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -21245,7 +21245,7 @@ Report bugs to <bug-autoconf@gnu.org>."
_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
-OpenAxiom config.status 1.4.0-2010-06-09
+OpenAxiom config.status 1.4.0-2010-06-13
configured by $0, generated by GNU Autoconf 2.63,
with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"
diff --git a/configure.ac b/configure.ac
index 086cbf33..219b0020 100644
--- a/configure.ac
+++ b/configure.ac
@@ -1,6 +1,6 @@
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.4.0-2010-06-09],
+AC_INIT([OpenAxiom], [1.4.0-2010-06-13],
[open-axiom-bugs@lists.sf.net])
AC_CONFIG_AUX_DIR(config)
diff --git a/configure.ac.pamphlet b/configure.ac.pamphlet
index ee16c4e8..4647a4cc 100644
--- a/configure.ac.pamphlet
+++ b/configure.ac.pamphlet
@@ -1210,7 +1210,7 @@ information:
<<Autoconf init>>=
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
-AC_INIT([OpenAxiom], [1.4.0-2010-06-09],
+AC_INIT([OpenAxiom], [1.4.0-2010-06-13],
[open-axiom-bugs@lists.sf.net])
@
diff --git a/src/ChangeLog b/src/ChangeLog
index a4a22fad..4cb44680 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,5 +1,9 @@
2010-06-13 Gabriel Dos Reis <gdr@cs.tamu.edu>
+ * algebra/catdef.spad.pamphlet (DifferentialDomain): New.
+
+2010-06-13 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
* algebra/laurent.spad.pamphlet
(UnivariateLaurentSeriesConstructor) [termsToOutputForm]: Tidy.
* algebra/mts.spad.pamphlet (SparseMultivariateTaylorSeries)
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index 37f31c73..89983429 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -335,6 +335,8 @@ $(OUT)/SYSPTR.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT)
$(OUT)/VOID.$(FASLEXT): $(OUT)/KOERCE.$(FASLEXT)
$(OUT)/OUT.$(FASLEXT): $(OUT)/VOID.$(FASLEXT)
+$(OUT)/DIFFDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT)
+
axiom_algebra_layer_0 = \
AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \
KRCFROM KVTFROM IEVALAB IEVALAB- EVALAB EVALAB- \
@@ -358,7 +360,7 @@ axiom_algebra_layer_0 = \
RCAGG RCAGG- SETAGG SETAGG- HOAGG HOAGG- \
TBAGG TBAGG- KDAGG KDAGG- DIAGG DIAGG- \
DIOPS DIOPS- STRING STRICAT ISTRING ILIST \
- LIST \
+ LIST DIFFDOM \
LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \
RTVALUE SYSPTR
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index ec2c0682..9ed8ca3f 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -289,6 +289,8 @@ $(OUT)/SYSPTR.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT)
$(OUT)/VOID.$(FASLEXT): $(OUT)/KOERCE.$(FASLEXT)
$(OUT)/OUT.$(FASLEXT): $(OUT)/VOID.$(FASLEXT)
+$(OUT)/DIFFDOM.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT)
+
axiom_algebra_layer_0 = \
AHYP ATTREG CFCAT ELTAB KOERCE KONVERT \
KRCFROM KVTFROM IEVALAB IEVALAB- EVALAB EVALAB- \
@@ -312,7 +314,7 @@ axiom_algebra_layer_0 = \
RCAGG RCAGG- SETAGG SETAGG- HOAGG HOAGG- \
TBAGG TBAGG- KDAGG KDAGG- DIAGG DIAGG- \
DIOPS DIOPS- STRING STRICAT ISTRING ILIST \
- LIST \
+ LIST DIFFDOM \
LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \
RTVALUE SYSPTR
diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet
index f3963ea3..a7807009 100644
--- a/src/algebra/catdef.spad.pamphlet
+++ b/src/algebra/catdef.spad.pamphlet
@@ -353,6 +353,36 @@ CommutativeRing():Category == Join(Ring,BiModule(%,%)) with
@
+\section{Differential Domain}
+
+<<category DIFFDOM DifferentialDomain>>=
+)abbrev category DIFFDOM DifferentialDomain
+++ Author: Gabriel Dos Reis
+++ Date Created: June 13, 2010
+++ Date Last Modified: June 13, 2010
+++ Description:
+++ This category captures the interface of domains with a distinguished
+++ operation named \spad{differentiate}. Usually, additional properties
+++ are wanted. For example, that it obeys the usual Leibniz identity
+++ of differentiation of product, in case of differential rings. One
+++ could also want \spad{differentiate} to obey the chain rule when
+++ considering differential manifolds.
+++ The lack of specific requirement in this category is an implicit
+++ admission that currently \Language{} is not expressive enough to
+++ express the most general notion of differentiation in an adequate
+++ manner, suitable for computational purposes.
+DifferentialDomain(T: Type): Category == Type with
+ differentiate: % -> T
+ ++ \spad{differentiate x} compute the derivative of \spad{x}.
+ D: % -> T
+ ++ \spad{D x} is a shorthand for \spad{differentiate x}
+ add
+ D x ==
+ differentiate x
+
+@
+
+
\section{category DIFRING DifferentialRing}
<<category DIFRING DifferentialRing>>=
)abbrev category DIFRING DifferentialRing
@@ -1875,6 +1905,7 @@ VectorSpace(S:Field): Category == Module(S) with
<<category ORDRING OrderedRing>>
<<category OINTDOM OrderedIntegralDomain>>
<<category OAMONS OrderedAbelianMonoidSup>>
+<<category DIFFDOM DifferentialDomain>>
<<category DIFRING DifferentialRing>>
<<category PDRING PartialDifferentialRing>>
<<category DIFEXT DifferentialExtension>>
diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet
index b7df3dbd..2d584577 100644
--- a/src/algebra/exposed.lsp.pamphlet
+++ b/src/algebra/exposed.lsp.pamphlet
@@ -627,6 +627,7 @@
(|DequeueAggregate| . DQAGG)
(|Dictionary| . DIAGG)
(|DictionaryOperations| . DIOPS)
+ (|DifferentialDomain| . DIFFEXT)
(|DifferentialExtension| . DIFEXT)
(|DifferentialPolynomialCategory| . DPOLCAT)
(|DifferentialRing| . DIFRING)
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index c32617a5..447dc5ea 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2266184 . 3485439394)
+(2267858 . 3485461456)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4449 . T) (-4447 . T) (-4446 . T) ((-4454 "*") . T) (-4445 . T) (-4450 . T) (-4444 . T))
+((-4451 . T) (-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4447 . T) (-4452 . T) (-4446 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3014)
+(-32 R -3636)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))
+((|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4452)))
+((|HasAttribute| |#1| (QUOTE -4454)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3014 UP UPUP -2291)
+(-40 -3636 UP UPUP -2425)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4445 |has| (-413 |#2|) (-368)) (-4450 |has| (-413 |#2|) (-368)) (-4444 |has| (-413 |#2|) (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-3749 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-3749 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-3749 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-3749 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))))
-(-41 R -3014)
+((-4447 |has| (-415 |#2|) (-370)) (-4452 |has| (-415 |#2|) (-370)) (-4446 |has| (-415 |#2|) (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-415 |#2|) (QUOTE (-146))) (|HasCategory| (-415 |#2|) (QUOTE (-148))) (|HasCategory| (-415 |#2|) (QUOTE (-356))) (-3783 (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-375))) (-3783 (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (-3783 (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-356))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -647) (QUOTE (-572)))) (-3783 (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))))
+(-41 R -3636)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -436) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -438) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -103,34 +103,34 @@ NIL
(-43 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))))
+((|HasCategory| |#1| (QUOTE (-313))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4449 |has| |#1| (-562)) (-4447 . T) (-4446 . T))
-((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562))))
+((-4451 |has| |#1| (-564)) (-4449 . T) (-4448 . T))
+((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4452 . T) (-4453 . T))
-((-3749 (-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|))))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))))
+((-4454 . T) (-4455 . T))
+((-3783 (-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-858))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|))))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-858))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-858))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570)))))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4449 . T))
+((-4451 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3014)
+(-54 |Base| R -3636)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-61 -1770)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-61 -2402)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -1770)
+(-62 -2402)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -1770)
+(-63 -2402)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -1770)
+(-64 -2402)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -1770)
+(-65 -2402)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -1770)
+(-66 -2402)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -1770)
+(-67 -2402)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -1770)
+(-68 -2402)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -1770)
+(-69 -2402)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -1770)
+(-70 -2402)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -1770)
+(-71 -2402)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -1770)
+(-72 -2402)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -1770)
+(-73 -2402)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -1770)
+(-74 -2402)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,66 +236,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -1770)
+(-77 -2402)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -1770)
+(-78 -2402)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -1770)
+(-79 -2402)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -1770)
+(-80 -2402)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -1770)
+(-81 -2402)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -1770)
+(-82 -2402)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -1770)
+(-83 -2402)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -1770)
+(-84 -2402)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -1770)
+(-85 -2402)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -1770)
+(-86 -2402)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -1770)
+(-87 -2402)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -1770)
+(-88 -2402)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -1770)
+(-89 -2402)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-90 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-368))))
+((|HasCategory| |#1| (QUOTE (-370))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4452 . T))
+((-4454 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4452 . T) ((-4454 "*") . T) (-4453 . T) (-4449 . T) (-4447 . T) (-4446 . T) (-4445 . T) (-4450 . T) (-4444 . T) (-4443 . T) (-4442 . T) (-4441 . T) (-4440 . T) (-4448 . T) (-4451 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4439 . T))
+((-4454 . T) ((-4456 "*") . T) (-4455 . T) (-4451 . T) (-4449 . T) (-4448 . T) (-4447 . T) (-4452 . T) (-4446 . T) (-4445 . T) (-4444 . T) (-4443 . T) (-4442 . T) (-4450 . T) (-4453 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4441 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4449 . T))
+((-4451 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4454 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4456 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4452 . T))
+((-4454 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4453 . T))
+((-4455 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3749 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-3783 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -313) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-112) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -315) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-112) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -621) (QUOTE (-870)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -392,22 +392,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-116 -3014 UP)
+(-116 -3636 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-117 |#1|) (QUOTE (-916))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-117 |#1|) (QUOTE (-1031))) (|HasCategory| (-117 |#1|) (QUOTE (-826))) (-3749 (|HasCategory| (-117 |#1|) (QUOTE (-826))) (|HasCategory| (-117 |#1|) (QUOTE (-856)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-1161))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-235))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-311))) (|HasCategory| (-117 |#1|) (QUOTE (-551))) (|HasCategory| (-117 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-117 |#1|) (QUOTE (-918))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-117 |#1|) (QUOTE (-1033))) (|HasCategory| (-117 |#1|) (QUOTE (-828))) (-3783 (|HasCategory| (-117 |#1|) (QUOTE (-828))) (|HasCategory| (-117 |#1|) (QUOTE (-858)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-117 |#1|) (QUOTE (-1163))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -315) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -292) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-313))) (|HasCategory| (-117 |#1|) (QUOTE (-553))) (|HasCategory| (-117 |#1|) (QUOTE (-858))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-918)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
(-119 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4453)))
+((|HasAttribute| |#1| (QUOTE -4455)))
(-120 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -418,15 +418,15 @@ NIL
NIL
(-122 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
(-123 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-124)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
(-125 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -434,20 +434,20 @@ NIL
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
(-129)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130)))))) (-3749 (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-130) (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109)))) (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))))
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| (-130) (QUOTE (-858))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130)))))) (-3783 (-12 (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-130) (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| (-130) (QUOTE (-858))) (|HasCategory| (-130) (QUOTE (-1111)))) (|HasCategory| (-130) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-130) (QUOTE (-1111))) (|HasCategory| (-130) (LIST (QUOTE -315) (QUOTE (-130))))))
(-130)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -470,13 +470,13 @@ NIL
NIL
(-135)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4454 "*") . T))
+(((-4456 "*") . T))
NIL
-(-136 |minix| -2819 S T$)
+(-136 |minix| -3436 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -2819 R)
+(-137 |minix| -3436 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -498,8 +498,8 @@ NIL
NIL
(-142)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4452 . T) (-4442 . T) (-4453 . T))
-((-3749 (-12 (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
+((-4454 . T) (-4444 . T) (-4455 . T))
+((-3783 (-12 (|HasCategory| (-145) (QUOTE (-375))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-145) (QUOTE (-375))) (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))))
(-143 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4449 . T))
+((-4451 . T))
NIL
(-147 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -522,9 +522,9 @@ NIL
NIL
(-148)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-149 -3014 UP UPUP)
+(-149 -3636 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -535,14 +535,14 @@ NIL
(-151 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasAttribute| |#1| (QUOTE -4452)))
+((|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasAttribute| |#1| (QUOTE -4454)))
(-152 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-153 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4447 . T) (-4446 . T) (-4449 . T))
+((-4449 . T) (-4448 . T) (-4451 . T))
NIL
(-154)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -564,7 +564,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-159 R -3014)
+(-159 R -3636)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -595,10 +595,10 @@ NIL
(-166 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1212))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4448)) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-562))))
+((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1214))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasAttribute| |#2| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-564))))
(-167 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4445 -3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4448 |has| |#1| (-6 -4448)) (-4451 |has| |#1| (-6 -4451)) (-3486 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 -3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4450 |has| |#1| (-6 -4450)) (-4453 |has| |#1| (-6 -4453)) (-4100 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-168 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4445 -3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4448 |has| |#1| (-6 -4448)) (-4451 |has| |#1| (-6 -4451)) (-3486 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1212)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#1| (QUOTE -4451)) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-354)))))
+((-4447 -3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4450 |has| |#1| (-6 -4450)) (-4453 |has| |#1| (-6 -4453)) (-4100 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-356))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-237))) (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1214)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-918))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-918))))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1214)))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-1214)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-237))) (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasAttribute| |#1| (QUOTE -4453)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-356)))))
(-172 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -626,7 +626,7 @@ NIL
NIL
(-174)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-175)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -634,7 +634,7 @@ NIL
NIL
(-176 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4454 "*") . T) (-4445 . T) (-4450 . T) (-4444 . T) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") . T) (-4447 . T) (-4452 . T) (-4446 . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-177)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -651,7 +651,7 @@ NIL
(-180 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-959 |#2|) (LIST (QUOTE -893) (|devaluate| |#1|))))
+((|HasCategory| (-961 |#2|) (LIST (QUOTE -895) (|devaluate| |#1|))))
(-181 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -688,7 +688,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-190 R -3014)
+(-190 R -3636)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -796,23 +796,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-217 -3014 UP UPUP R)
+(-217 -3636 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-218 -3014 FP)
+(-218 -3636 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-219)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3749 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-3783 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
(-220)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-221 R -3014)
+(-221 R -3636)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -826,19 +826,19 @@ NIL
NIL
(-224 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
(-225 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-226 R -3014)
+(-226 R -3636)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-227)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3478 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4090 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
(-228)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -846,4315 +846,4323 @@ NIL
NIL
(-229 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))) (|HasAttribute| |#1| (QUOTE (-4456 "*"))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
(-230 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-231 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4453 . T))
+((-4455 . T))
NIL
(-232 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))))
+((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))))
(-233 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-234 S)
+(-234 S T$)
+((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
+NIL
+NIL
+(-235 T$)
+((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
+NIL
+NIL
+(-236 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
NIL
NIL
-(-235)
+(-237)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-236 A S)
+(-238 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4452)))
-(-237 S)
+((|HasAttribute| |#1| (QUOTE -4454)))
+(-239 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4453 . T))
+((-4455 . T))
NIL
-(-238)
+(-240)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-239 S -2819 R)
+(-241 S -3436 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasAttribute| |#3| (QUOTE -4449)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109))))
-(-240 -2819 R)
+((|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856))) (|HasAttribute| |#3| (QUOTE -4451)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-1111))))
+(-242 -3436 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
+((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
NIL
-(-241 -2819 A B)
+(-243 -3436 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-242 -2819 R)
+(-244 -3436 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-3749 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3749 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
-(-243)
+((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-3783 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-3783 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
+(-245)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-244 S)
+(-246 S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-245)
+(-247)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4445 . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-246 S)
+(-248 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
NIL
NIL
-(-247 S)
+(-249 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-248 M)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-250 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-249 |vl| R)
+(-251 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-250)
+(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-918))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-252)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
NIL
-(-251)
+(-253)
((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}.")))
NIL
NIL
-(-252)
+(-254)
((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}.")))
NIL
NIL
-(-253 |n| R M S)
+(-255 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4449 -3749 (-3212 (|has| |#4| (-1058)) (|has| |#4| (-235))) (-3212 (|has| |#4| (-1058)) (|has| |#4| (-907 (-1186)))) (|has| |#4| (-6 -4449)) (-3212 (|has| |#4| (-1058)) (|has| |#4| (-645 (-570))))) (-4446 |has| |#4| (-1058)) (-4447 |has| |#4| (-1058)) ((-4454 "*") |has| |#4| (-174)) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-368))) (-3749 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (QUOTE (-1058)))) (-3749 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368)))) (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-799))) (-3749 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (QUOTE (-854)))) (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (QUOTE (-732))) (-3749 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-235)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-373)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-799)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-854)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109))))) (-3749 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-3749 (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-732))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-3749 (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109)))) (-3749 (|HasAttribute| |#4| (QUOTE -4449)) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))))
-(-254 |n| R S)
+((-4451 -3783 (-3804 (|has| |#4| (-1060)) (|has| |#4| (-237))) (-3804 (|has| |#4| (-1060)) (|has| |#4| (-909 (-1188)))) (|has| |#4| (-6 -4451)) (-3804 (|has| |#4| (-1060)) (|has| |#4| (-647 (-572))))) (-4448 |has| |#4| (-1060)) (-4449 |has| |#4| (-1060)) ((-4456 "*") |has| |#4| (-174)) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-370))) (-3783 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (QUOTE (-1060)))) (-3783 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-370)))) (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-801))) (-3783 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (QUOTE (-856)))) (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (QUOTE (-734))) (-3783 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-237)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-734)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-801)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-856)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111))))) (-3783 (-12 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-734))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-801))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-856))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-3783 (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (|HasCategory| |#4| (QUOTE (-734))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572))))) (-3783 (|HasCategory| |#4| (QUOTE (-1060))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (QUOTE (-1111)))) (-3783 (|HasAttribute| |#4| (QUOTE -4451)) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1060)))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#4| (QUOTE (-1060))) (|HasCategory| |#4| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))))
+(-256 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4449 -3749 (-3212 (|has| |#3| (-1058)) (|has| |#3| (-235))) (-3212 (|has| |#3| (-1058)) (|has| |#3| (-907 (-1186)))) (|has| |#3| (-6 -4449)) (-3212 (|has| |#3| (-1058)) (|has| |#3| (-645 (-570))))) (-4446 |has| |#3| (-1058)) (-4447 |has| |#3| (-1058)) ((-4454 "*") |has| |#3| (-174)) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-368))) (-3749 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3749 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-3749 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-3749 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-3749 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3749 (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-732))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-3749 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-3749 (|HasAttribute| |#3| (QUOTE -4449)) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))))
-(-255 A R S V E)
+((-4451 -3783 (-3804 (|has| |#3| (-1060)) (|has| |#3| (-237))) (-3804 (|has| |#3| (-1060)) (|has| |#3| (-909 (-1188)))) (|has| |#3| (-6 -4451)) (-3804 (|has| |#3| (-1060)) (|has| |#3| (-647 (-572))))) (-4448 |has| |#3| (-1060)) (-4449 |has| |#3| (-1060)) ((-4456 "*") |has| |#3| (-174)) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-370))) (-3783 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-3783 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-3783 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-3783 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-3783 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-3783 (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-734))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-3783 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-3783 (|HasAttribute| |#3| (QUOTE -4451)) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
+(-257 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-((|HasCategory| |#2| (QUOTE (-235))))
-(-256 R S V E)
+((|HasCategory| |#2| (QUOTE (-237))))
+(-258 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
NIL
-(-257 S)
+(-259 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
-(-258)
+(-260)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-259 R |Ex|)
+(-261 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-260)
+(-262)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-261 R)
+(-263 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-262 |Ex|)
+(-264 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-263)
+(-265)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-264)
+(-266)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-265 S)
+(-267 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-266)
+(-268)
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-267 R S V)
+(-269 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-268 A S)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#3| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-270 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-269 S)
+(-271 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-270)
+(-272)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-271)
+(-273)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-272)
+(-274)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-273)
+(-275)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-274)
+(-276)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-275)
+(-277)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-276)
+(-278)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-277)
+(-279)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-278)
+(-280)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-279 R -3014)
+(-281 R -3636)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-280 R -3014)
+(-282 R -3636)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-281 |Coef| UTS ULS)
+(-283 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-368))))
-(-282 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-370))))
+(-284 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-368))))
-(-283)
+((|HasCategory| |#1| (QUOTE (-370))))
+(-285)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-284)
+(-286)
((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}.")))
NIL
NIL
-(-285 A S)
+(-287 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))))
-(-286 S)
+((|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))))
+(-288 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4453 . T))
+((-4455 . T))
NIL
-(-287 S)
+(-289 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-288)
+(-290)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-289 |Coef| UTS)
+(-291 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-290 S T$)
+(-292 S T$)
((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}.")))
NIL
NIL
-(-291 S |Dom| |Im|)
+(-293 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4453)))
-(-292 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4455)))
+(-294 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-293 S R |Mod| -2723 -4356 |exactQuo|)
+(-295 S R |Mod| -4149 -1377 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-294)
+(-296)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4445 . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-295)
+(-297)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-296 R)
+(-298 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-297 S R)
+(-299 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-298 S)
+(-300 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4449 -3749 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4446 |has| |#1| (-1058)) (-4447 |has| |#1| (-1058)))
-((|HasCategory| |#1| (QUOTE (-368))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732)))) (|HasCategory| |#1| (QUOTE (-479))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1109)))) (-3749 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-306))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479)))) (-3749 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732)))) (-3749 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-732))))
-(-299 |Key| |Entry|)
+((-4451 -3783 (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4448 |has| |#1| (-1060)) (-4449 |has| |#1| (-1060)))
+((|HasCategory| |#1| (QUOTE (-370))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-734)))) (|HasCategory| |#1| (QUOTE (-481))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-1111)))) (-3783 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1123)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-308))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-481)))) (-3783 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734)))) (-3783 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-734))))
+(-301 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-300)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-302)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-301 -3014 S)
+(-303 -3636 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-302 E -3014)
+(-304 E -3636)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
-(-303 A B)
+(-305 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-304)
+(-306)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-305 S)
+(-307 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-1058))))
-(-306)
+((|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-1060))))
+(-308)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-307 R1)
+(-309 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-308 R1 R2)
+(-310 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-309)
+(-311)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-310 S)
+(-312 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-311)
+(-313)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-312 S R)
+(-314 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-313 R)
+(-315 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-314 -3014)
+(-316 -3636)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-315)
+(-317)
((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
-(-316)
+(-318)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-317 R FE |var| |cen|)
+(-319 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-1031))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (-3749 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-856)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-1161))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-235))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -313) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -290) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-551))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-856))) (-12 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146)))) (-3749 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146))))))
-(-318 R S)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-918))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-1033))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-828))) (-3783 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-828))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-858)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-1163))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -315) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (LIST (QUOTE -292) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1265) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-313))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-553))) (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-858))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-918))) (|HasCategory| $ (QUOTE (-146)))) (-3783 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1265 |#1| |#2| |#3| |#4|) (QUOTE (-918))) (|HasCategory| $ (QUOTE (-146))))))
+(-320 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-319 R FE)
+(-321 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-320 R)
+(-322 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4449 -3749 (-3212 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-12 (|has| |#1| (-562)) (-3749 (-3212 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (|has| |#1| (-1058)) (|has| |#1| (-479)))) (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562)))
-((-3749 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (-3749 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-21))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3749 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-3749 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3749 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-3749 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-321 R -3014)
+((-4451 -3783 (-3804 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (-12 (|has| |#1| (-564)) (-3783 (-3804 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (|has| |#1| (-1060)) (|has| |#1| (-481)))) (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) ((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-564)) (-4446 |has| |#1| (-564)))
+((-3783 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (-3783 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (QUOTE (-21))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1123)))) (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1123)))) (-3783 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-3783 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1123)))) (-3783 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))))) (-3783 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#1| (QUOTE (-1060)))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
+(-323 R -3636)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
-(-322)
+(-324)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-323 FE |var| |cen|)
+(-325 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
-(-324 M)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+(-326 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-325 E OV R P)
+(-327 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-326 S)
+(-328 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4447 . T) (-4446 . T))
-((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-798))))
-(-327 S E)
+((-4449 . T) (-4448 . T))
+((|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-800))))
+(-329 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-328 S)
+(-330 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-777) (QUOTE (-798))))
-(-329 S R E)
+((|HasCategory| (-779) (QUOTE (-800))))
+(-331 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))))
-(-330 R E)
+((|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))))
+(-332 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-331 S)
+(-333 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-332 S -3014)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-334 S -3636)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))))
-(-333 -3014)
+((|HasCategory| |#2| (QUOTE (-375))))
+(-335 -3636)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-334)
+(-336)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
NIL
NIL
-(-335 E)
+(-337 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-336)
+(-338)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}")))
NIL
NIL
-(-337)
+(-339)
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-338 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-339 S -3014 UP UPUP R)
+(-341 S -3636 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-340 -3014 UP UPUP R)
+(-342 -3636 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-341 -3014 UP UPUP R)
+(-343 -3636 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-342 S R)
+(-344 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-343 R)
+((|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-345 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-344 |basicSymbols| |subscriptedSymbols| R)
+(-346 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-384)))) (|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-345 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-386)))) (|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
+(-347 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-346 S -3014 UP UPUP)
+(-348 S -3636 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-368))))
-(-347 -3014 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-370))))
+(-349 -3636 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4445 |has| (-413 |#2|) (-368)) (-4450 |has| (-413 |#2|) (-368)) (-4444 |has| (-413 |#2|) (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 |has| (-415 |#2|) (-370)) (-4452 |has| (-415 |#2|) (-370)) (-4446 |has| (-415 |#2|) (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-348 |p| |extdeg|)
+(-350 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
-(-349 GF |defpol|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| (-919 |#1|) (QUOTE (-146))) (|HasCategory| (-919 |#1|) (QUOTE (-375)))) (|HasCategory| (-919 |#1|) (QUOTE (-148))) (|HasCategory| (-919 |#1|) (QUOTE (-375))) (|HasCategory| (-919 |#1|) (QUOTE (-146))))
+(-351 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
-(-350 GF |extdeg|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
+(-352 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
-(-351 GF)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
+(-353 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-352 F1 GF F2)
+(-354 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-353 S)
+(-355 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-354)
+(-356)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-355 R UP -3014)
+(-357 R UP -3636)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-356 |p| |extdeg|)
+(-358 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
-(-357 GF |uni|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| (-919 |#1|) (QUOTE (-146))) (|HasCategory| (-919 |#1|) (QUOTE (-375)))) (|HasCategory| (-919 |#1|) (QUOTE (-148))) (|HasCategory| (-919 |#1|) (QUOTE (-375))) (|HasCategory| (-919 |#1|) (QUOTE (-146))))
+(-359 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
-(-358 GF |extdeg|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
+(-360 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
-(-359 |p| |n|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
+(-361 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
-(-360 GF |defpol|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| (-919 |#1|) (QUOTE (-146))) (|HasCategory| (-919 |#1|) (QUOTE (-375)))) (|HasCategory| (-919 |#1|) (QUOTE (-148))) (|HasCategory| (-919 |#1|) (QUOTE (-375))) (|HasCategory| (-919 |#1|) (QUOTE (-146))))
+(-362 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
-(-361 -3014 GF)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
+(-363 -3636 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-362 GF)
+(-364 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-363 -3014 FP FPP)
+(-365 -3636 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-364 GF |n|)
+(-366 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
-(-365 R |ls|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))))
+(-367 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-366 S)
+(-368 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-367 S)
+(-369 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-368)
+(-370)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-369 |Name| S)
+(-371 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-370 S)
+(-372 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-371 S R)
+(-373 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-562))))
-(-372 R)
+((|HasCategory| |#2| (QUOTE (-564))))
+(-374 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4449 |has| |#1| (-562)) (-4447 . T) (-4446 . T))
+((-4451 |has| |#1| (-564)) (-4449 . T) (-4448 . T))
NIL
-(-373)
+(-375)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-374 S R UP)
+(-376 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-368))))
-(-375 R UP)
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-370))))
+(-377 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-376 S A R B)
+(-378 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-377 A S)
+(-379 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))))
-(-378 S)
+((|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))))
+(-380 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4452 . T))
+((-4454 . T))
NIL
-(-379 |VarSet| R)
+(-381 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4447 . T) (-4446 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4449 . T) (-4448 . T))
NIL
-(-380 S V)
+(-382 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-381 S R)
+(-383 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))))
-(-382 R)
+((|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))))
+(-384 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-383 |Par|)
+(-385 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-384)
+(-386)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4435 . T) (-4443 . T) (-3478 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4437 . T) (-4445 . T) (-4090 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-385 |Par|)
+(-387 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-386 R S)
+(-388 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-387 R |Basis|)
+(-389 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
NIL
-(-388)
+(-390)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-389)
+(-391)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-390 R S)
+(-392 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-391 S)
+(-393 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-392 S)
+(-394 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))))
-(-393)
+((|HasCategory| |#1| (QUOTE (-858))))
+(-395)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-394)
+(-396)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-395)
+(-397)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-396 |n| |class| R)
+(-398 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
NIL
-(-397)
+(-399)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-398 -3014 UP UPUP R)
+(-400 -3636 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-399 S)
+(-401 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-400)
+(-402)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-401)
+(-403)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
-(-402)
+(-404)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-403)
+(-405)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-404 -1770 |returnType| -4198 |symbols|)
+(-406 -2402 |returnType| -1701 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-405 -3014 UP)
+(-407 -3636 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-406 R)
+(-408 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-407 S)
+(-409 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-408)
+(-410)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-409 S)
+(-411 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4435)) (|HasAttribute| |#1| (QUOTE -4443)))
-(-410)
+((|HasAttribute| |#1| (QUOTE -4437)) (|HasAttribute| |#1| (QUOTE -4445)))
+(-412)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3478 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4090 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-411 R S)
+(-413 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-412 A B)
+(-414 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-413 S)
+(-415 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4439 -12 (|has| |#1| (-6 -4450)) (|has| |#1| (-458)) (|has| |#1| (-6 -4439))) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-826))) (-3749 (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-856)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-551))) (-12 (|HasAttribute| |#1| (QUOTE -4450)) (|HasAttribute| |#1| (QUOTE -4439)) (|HasCategory| |#1| (QUOTE (-458)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-414 S R UP)
+((-4441 -12 (|has| |#1| (-6 -4452)) (|has| |#1| (-460)) (|has| |#1| (-6 -4441))) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-828))) (-3783 (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-858)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836))))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-553))) (-12 (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4441)) (|HasCategory| |#1| (QUOTE (-460)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-416 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-415 R UP)
+(-417 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-416 A S)
+(-418 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-417 S)
+((|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))
+(-419 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-418 R1 F1 U1 A1 R2 F2 U2 A2)
+(-420 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-419 R -3014 UP A)
+(-421 R -3636 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-420 R -3014 UP A |ibasis|)
+(-422 R -3636 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1047) (|devaluate| |#2|))))
-(-421 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -1049) (|devaluate| |#2|))))
+(-423 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-422 S R)
+(-424 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-368))))
-(-423 R)
+((|HasCategory| |#2| (QUOTE (-370))))
+(-425 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4449 |has| |#1| (-562)) (-4447 . T) (-4446 . T))
+((-4451 |has| |#1| (-564)) (-4449 . T) (-4448 . T))
NIL
-(-424 R)
+(-426 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -313) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1231))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-1231)))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-458))))
-(-425 R)
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -315) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -292) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1233))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-460))))
+(-427 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-426 R FE |x| |cen|)
+(-428 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-427 R A S B)
+(-429 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-428 R FE |Expon| UPS TRAN |x|)
+(-430 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-429 S A R B)
+(-431 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-430 A S)
+(-432 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-373))))
-(-431 S)
+((|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-375))))
+(-433 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4452 . T) (-4442 . T) (-4453 . T))
+((-4454 . T) (-4444 . T) (-4455 . T))
NIL
-(-432 R -3014)
+(-434 R -3636)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-433 R E)
+(-435 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4439 -12 (|has| |#1| (-6 -4439)) (|has| |#2| (-6 -4439))) (-4446 . T) (-4447 . T) (-4449 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4439)) (|HasAttribute| |#2| (QUOTE -4439))))
-(-434 R -3014)
+((-4441 -12 (|has| |#1| (-6 -4441)) (|has| |#2| (-6 -4441))) (-4448 . T) (-4449 . T) (-4451 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4441)) (|HasAttribute| |#2| (QUOTE -4441))))
+(-436 R -3636)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-435 S R)
+(-437 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))))
-(-436 R)
+((|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-1123))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))))
+(-438 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4449 -3749 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562)))
+((-4451 -3783 (|has| |#1| (-1060)) (|has| |#1| (-481))) (-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) ((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-564)) (-4446 |has| |#1| (-564)))
NIL
-(-437 R -3014)
+(-439 R -3636)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-438 R -3014)
+(-440 R -3636)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-439 R -3014)
+(-441 R -3636)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-440)
+(-442)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-441 R -3014 UP)
+(-443 R -3636 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-48)))))
-(-442)
+((|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-48)))))
+(-444)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-443)
+(-445)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-444 |f|)
+(-446 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-445)
+(-447)
((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}.")))
NIL
NIL
-(-446)
+(-448)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-447)
+(-449)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-448 UP)
+(-450 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-449 R UP -3014)
+(-451 R UP -3636)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-450 R UP)
+(-452 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-451 R)
+(-453 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-410))))
-(-452)
+((|HasCategory| |#1| (QUOTE (-412))))
+(-454)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-453 |Dom| |Expon| |VarSet| |Dpol|)
+(-455 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-454 |Dom| |Expon| |VarSet| |Dpol|)
+(-456 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-455 |Dom| |Expon| |VarSet| |Dpol|)
+(-457 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-456 |Dom| |Expon| |VarSet| |Dpol|)
+(-458 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-368))))
-(-457 S)
+((|HasCategory| |#1| (QUOTE (-370))))
+(-459 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-458)
+(-460)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-459 R |n| |ls| |gamma|)
+(-461 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4449 |has| (-413 (-959 |#1|)) (-562)) (-4447 . T) (-4446 . T))
-((|HasCategory| (-413 (-959 |#1|)) (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-413 (-959 |#1|)) (QUOTE (-562))))
-(-460 |vl| R E)
+((-4451 |has| (-415 (-961 |#1|)) (-564)) (-4449 . T) (-4448 . T))
+((|HasCategory| (-415 (-961 |#1|)) (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| (-415 (-961 |#1|)) (QUOTE (-564))))
+(-462 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-461 R BP)
+(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-918))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-463 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-462 OV E S R P)
+(-464 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-463 E OV R P)
+(-465 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-464 R)
+(-466 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-465 R FE)
+(-467 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")))
NIL
NIL
-(-466 RP TP)
+(-468 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-467 |vl| R IS E |ff| P)
+(-469 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
NIL
-(-468 E V R P Q)
+(-470 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-469 R E |VarSet| P)
+(-471 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-470 S R E)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-472 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-471 R E)
+(-473 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-472)
+(-474)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-473)
+(-475)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-474)
+(-476)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-475 S R E)
+(-477 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-476 R E)
+(-478 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-477 |lv| -3014 R)
+(-479 |lv| -3636 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-478 S)
+(-480 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-479)
+(-481)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-480 |Coef| |var| |cen|)
+(-482 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
-(-481 |Key| |Entry| |Tbl| |dent|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+(-483 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))))
-(-482 R E V P)
+((-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-858))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))))
+(-484 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-483)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-485)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-484)
+(-486)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-485 |Key| |Entry| |hashfn|)
+(-487 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-486)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-488)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-487 |vl| R)
+(-489 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-488 -2819 S)
+(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-918))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-490 -3436 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-3749 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3749 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
-(-489)
+((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-3783 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-3783 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
+(-491)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
-(-490 S)
+(-492 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-491 -3014 UP UPUP R)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-493 -3636 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-492 BP)
+(-494 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-493)
+(-495)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3749 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
-(-494 A S)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-3783 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
+(-496 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-495 S)
+((|HasAttribute| |#1| (QUOTE -4454)) (|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-497 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
NIL
-(-496 S)
+(-498 S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-497)
+(-499)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
NIL
NIL
-(-498 S)
+(-500 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-499)
+(-501)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-500 -3014 UP |AlExt| |AlPol|)
+(-502 -3636 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-501)
+(-503)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-502 S |mn|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| $ (QUOTE (-1060))) (|HasCategory| $ (LIST (QUOTE -1049) (QUOTE (-572)))))
+(-504 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-503 R |mnRow| |mnCol|)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-505 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-504 K R UP)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-506 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-505 R UP -3014)
+(-507 R UP -3636)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-506 |mn|)
+(-508 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -313) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-112) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-507 K R UP L)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -315) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-112) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-112) (QUOTE (-1111))) (|HasCategory| (-112) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-509 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-508)
+(-510)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-509 R Q A B)
+(-511 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-510 -3014 |Expon| |VarSet| |DPoly|)
+(-512 -3636 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-1186)))))
-(-511 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-1188)))))
+(-513 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-512)
+(-514)
((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-513 A S)
+(-515 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-514 A S)
+(-516 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-515 A S)
+(-517 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-516 A S)
+(-518 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-517 A S)
+(-519 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-518 A S)
+(-520 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-519 S A B)
+(-521 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-520 A B)
+(-522 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-521 S E |un|)
+(-523 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-798))))
-(-522 S |mn|)
+((|HasCategory| |#2| (QUOTE (-800))))
+(-524 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-523)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-525)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-524 |p| |n|)
+(-526 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| (-587 |#1|) (QUOTE (-146))) (|HasCategory| (-587 |#1|) (QUOTE (-373)))) (|HasCategory| (-587 |#1|) (QUOTE (-148))) (|HasCategory| (-587 |#1|) (QUOTE (-373))) (|HasCategory| (-587 |#1|) (QUOTE (-146))))
-(-525 R |mnRow| |mnCol| |Row| |Col|)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| (-589 |#1|) (QUOTE (-146))) (|HasCategory| (-589 |#1|) (QUOTE (-375)))) (|HasCategory| (-589 |#1|) (QUOTE (-148))) (|HasCategory| (-589 |#1|) (QUOTE (-375))) (|HasCategory| (-589 |#1|) (QUOTE (-146))))
+(-527 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-526 S |mn|)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-528 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-527 R |Row| |Col| M)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-529 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4453)))
-(-528 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4455)))
+(-530 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4453)))
-(-529 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4455)))
+(-531 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-530)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))) (|HasAttribute| |#1| (QUOTE (-4456 "*"))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-532)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-531)
+(-533)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-532 S)
+(-534 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-533)
+(-535)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-534 GF)
+(-536 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-535)
+(-537)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-536 R)
+(-538 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-537 |Varset|)
+(-539 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-538 K -3014 |Par|)
+(-540 K -3636 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-539)
+(-541)
NIL
NIL
NIL
-(-540)
+(-542)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-541 R)
+(-543 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-542)
+(-544)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-543 |Coef| UTS)
+(-545 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-544 K -3014 |Par|)
+(-546 K -3636 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-545 R BP |pMod| |nextMod|)
+(-547 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-546 OV E R P)
+(-548 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-547 K UP |Coef| UTS)
+(-549 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-548 |Coef| UTS)
+(-550 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-549 R UP)
+(-551 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-550 S)
+(-552 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-551)
+(-553)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4450 . T) (-4451 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-552)
+(-554)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-553)
+(-555)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-554)
+(-556)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-555)
+(-557)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-556 |Key| |Entry| |addDom|)
+(-558 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-557 R -3014)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-559 R -3636)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-558 R0 -3014 UP UPUP R)
+(-560 R0 -3636 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-559)
+(-561)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-560 R)
+(-562 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3478 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4090 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-561 S)
+(-563 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-562)
+(-564)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-563 R -3014)
+(-565 R -3636)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-564 I)
+(-566 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-565)
+(-567)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-566 R -3014 L)
+(-568 R -3636 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -662) (|devaluate| |#2|))))
-(-567)
+((|HasCategory| |#3| (LIST (QUOTE -664) (|devaluate| |#2|))))
+(-569)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-568 -3014 UP UPUP R)
+(-570 -3636 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-569 -3014 UP)
+(-571 -3636 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-570)
+(-572)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4434 . T) (-4440 . T) (-4444 . T) (-4439 . T) (-4450 . T) (-4451 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4436 . T) (-4442 . T) (-4446 . T) (-4441 . T) (-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-571)
+(-573)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-572 R -3014 L)
+(-574 R -3636 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -662) (|devaluate| |#2|))))
-(-573 R -3014)
+((|HasCategory| |#3| (LIST (QUOTE -664) (|devaluate| |#2|))))
+(-575 R -3636)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-635)))))
-(-574 -3014 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-637)))))
+(-576 -3636 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-575 S)
+(-577 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-576 -3014)
+(-578 -3636)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-577 R)
+(-579 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3478 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4090 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-578)
+(-580)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-579 R -3014)
+(-581 R -3636)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-635))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-288)))) (|HasCategory| |#1| (QUOTE (-562))))
-(-580 -3014 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-290))) (|HasCategory| |#2| (QUOTE (-637))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-290)))) (|HasCategory| |#1| (QUOTE (-564))))
+(-582 -3636 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-581 R -3014)
+(-583 R -3636)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-582)
+(-584)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-583)
+(-585)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-584)
+(-586)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-585)
+(-587)
((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-586 |p| |unBalanced?|)
+(-588 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-587 |p|)
+(-589 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-373))))
-(-588)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-375))))
+(-590)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-589 R -3014)
+(-591 R -3636)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-590 E -3014)
+(-592 E -3636)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-591)
+(-593)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-592 -3014)
+(-594 -3636)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4447 . T) (-4446 . T))
-((|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-1186)))))
-(-593 I)
+((-4449 . T) (-4448 . T))
+((|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-1188)))))
+(-595 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-594 GF)
+(-596 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-595 R)
+(-597 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-148))))
-(-596)
+(-598)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-597 R E V P TS)
+(-599 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-598)
+(-600)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-599 |mn|)
+(-601 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (-3749 (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
-(-600 E V R P)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (-3783 (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111)))) (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))))
+(-602 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-601 |Coef|)
+(-603 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))) (|HasCategory| (-570) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))))
-(-602 |Coef|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))) (|HasCategory| (-572) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))))
+(-604 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-562))))
-(-603)
+(((-4456 "*") |has| |#1| (-564)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-564))))
+(-605)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-604 A B)
+(-606 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-605 A B C)
+(-607 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-606 R -3014 FG)
+(-608 R -3636 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-607 S)
+(-609 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-608 R |mn|)
+(-610 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-609 S |Index| |Entry|)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-611 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-856))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#3| (QUOTE (-1109))))
-(-610 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-858))) (|HasAttribute| |#1| (QUOTE -4454)) (|HasCategory| |#3| (QUOTE (-1111))))
+(-612 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-611)
+(-613)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")))
NIL
NIL
-(-612)
+(-614)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-613 R A)
+(-615 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4449 -3749 (-3212 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T))
-((-3749 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))))
-(-614 |Entry|)
+((-4451 -3783 (-3804 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))) (-4449 . T) (-4448 . T))
+((-3783 (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))))
+(-616 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-615 S |Key| |Entry|)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| (-1170) (QUOTE (-858))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-617 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-616 |Key| |Entry|)
+(-618 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4453 . T))
+((-4455 . T))
NIL
-(-617 R S)
+(-619 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-618 S)
+(-620 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))))
-(-619 S)
+((|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))))
+(-621 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-620 S)
+(-622 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-621 -3014 UP)
+(-623 -3636 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-622 S)
+(-624 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-623)
+(-625)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-624 S)
+(-626 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-625 S R)
+(-627 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-626 R)
+(-628 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-627 A R S)
+(-629 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-854))))
-(-628 R -3014)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-856))))
+(-630 R -3636)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-629 R UP)
+(-631 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4447 . T) (-4446 . T) ((-4454 "*") . T) (-4445 . T) (-4449 . T))
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-630 R E V P TS ST)
+((-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4447 . T) (-4451 . T))
+((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))
+(-632 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-631 OV E Z P)
+(-633 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-632)
+(-634)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-633 |VarSet| R |Order|)
+(-635 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-634 R |ls|)
+(-636 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-635)
+(-637)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-636 R -3014)
+(-638 R -3636)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-637 |lv| -3014)
+(-639 |lv| -3636)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-638)
+(-640)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -3165) (QUOTE (-52))))))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-1168) (QUOTE (-856))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (QUOTE (-1109))))
-(-639 S R)
+((-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -3762) (QUOTE (-52))))))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-52) (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -315) (QUOTE (-52))))) (|HasCategory| (-1170) (QUOTE (-858))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (QUOTE (-1111))))
+(-641 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-368))))
-(-640 R)
+((|HasCategory| |#2| (QUOTE (-370))))
+(-642 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4447 . T) (-4446 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4449 . T) (-4448 . T))
NIL
-(-641 R A)
+(-643 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4449 -3749 (-3212 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T))
-((-3749 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))))
-(-642 R FE)
+((-4451 -3783 (-3804 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))) (-4449 . T) (-4448 . T))
+((-3783 (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -374) (|devaluate| |#1|))))
+(-644 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-643 R)
+(-645 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-644 S R)
+(-646 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3201 (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-368))))
-(-645 R)
+((-3795 (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-370))))
+(-647 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-646 R)
+(-648 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-647 A B)
+(-649 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-648 A B)
+(-650 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-649 A B C)
+(-651 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-650 S)
+(-652 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-651 T$)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-653 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-652 R)
+(-654 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-653 S)
+(-655 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-654 R)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-656 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-655 S E |un|)
+(-657 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-656 A S)
+(-658 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4453)))
-(-657 S)
+((|HasAttribute| |#1| (QUOTE -4455)))
+(-659 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-658 R -3014 L)
+(-660 R -3636 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-659 A)
+(-661 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368))))
-(-660 A M)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
+(-662 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368))))
-(-661 S A)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
+(-663 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-368))))
-(-662 A)
+((|HasCategory| |#2| (QUOTE (-370))))
+(-664 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-663 -3014 UP)
+(-665 -3636 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-664 A -4005)
+(-666 A -2160)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368))))
-(-665 A L)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
+(-667 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-666 S)
+(-668 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-667)
+(-669)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-668 M R S)
+(-670 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4447 . T) (-4446 . T))
-((|HasCategory| |#1| (QUOTE (-797))))
-(-669 R)
+((-4449 . T) (-4448 . T))
+((|HasCategory| |#1| (QUOTE (-799))))
+(-671 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-670 |VarSet| R)
+(-672 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4447 . T) (-4446 . T))
-((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-174))))
-(-671 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4449 . T) (-4448 . T))
+((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-174))))
+(-673 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-672 S)
+(-674 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-673 -3014)
+(-675 -3636)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-674 -3014 |Row| |Col| M)
+(-676 -3636 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-675 R E OV P)
+(-677 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-676 |n| R)
+(-678 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4449 . T) (-4452 . T) (-4446 . T) (-4447 . T))
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-562))) (-3749 (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-677)
+((-4451 . T) (-4454 . T) (-4448 . T) (-4449 . T))
+((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-564))) (-3783 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-679)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-678 |VarSet|)
+(-680 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-679 A S)
+(-681 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-680 S)
+(-682 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-681 R)
+(-683 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-682)
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-684)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-683 |VarSet|)
+(-685 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-684 A)
+(-686 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-685 A C)
+(-687 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-686 A B C)
+(-688 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-687)
+(-689)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-688 A)
+(-690 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-689 A C)
+(-691 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-690 A B C)
+(-692 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-691 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-693 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-692 S R |Row| |Col|)
+(-694 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-562))))
-(-693 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-564))))
+(-695 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
-(-694 R |Row| |Col| M)
+(-696 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))))
-(-695 R)
+((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))))
+(-697 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4452 . T) (-4453 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-696 R)
+((-4454 . T) (-4455 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-564))) (|HasAttribute| |#1| (QUOTE (-4456 "*"))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-698 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-697 T$)
+(-699 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-698 S -3014 FLAF FLAS)
+(-700 S -3636 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-699 R Q)
+(-701 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-700)
+(-702)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4445 . T) (-4450 |has| (-705) (-368)) (-4444 |has| (-705) (-368)) (-3486 . T) (-4451 |has| (-705) (-6 -4451)) (-4448 |has| (-705) (-6 -4448)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-705) (QUOTE (-148))) (|HasCategory| (-705) (QUOTE (-146))) (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-373))) (|HasCategory| (-705) (QUOTE (-368))) (-3749 (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-235))) (-3749 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (LIST (QUOTE -290) (QUOTE (-705)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -313) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-3749 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-705) (QUOTE (-1031))) (|HasCategory| (-705) (QUOTE (-1212))) (-12 (|HasCategory| (-705) (QUOTE (-1011))) (|HasCategory| (-705) (QUOTE (-1212)))) (-3749 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (-3749 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (|HasCategory| (-705) (QUOTE (-551))) (-12 (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-1212)))) (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916))) (-3749 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368)))) (-3749 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-562)))) (-12 (|HasCategory| (-705) (QUOTE (-235))) (|HasCategory| (-705) (QUOTE (-368)))) (-12 (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-562))) (|HasAttribute| (-705) (QUOTE -4451)) (|HasAttribute| (-705) (QUOTE -4448)) (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-146)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-354)))))
-(-701 S)
+((-4447 . T) (-4452 |has| (-707) (-370)) (-4446 |has| (-707) (-370)) (-4100 . T) (-4453 |has| (-707) (-6 -4453)) (-4450 |has| (-707) (-6 -4450)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-707) (QUOTE (-148))) (|HasCategory| (-707) (QUOTE (-146))) (|HasCategory| (-707) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-707) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-707) (QUOTE (-375))) (|HasCategory| (-707) (QUOTE (-370))) (-3783 (|HasCategory| (-707) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-707) (QUOTE (-370)))) (|HasCategory| (-707) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-707) (QUOTE (-237))) (-3783 (|HasCategory| (-707) (QUOTE (-370))) (|HasCategory| (-707) (QUOTE (-356)))) (|HasCategory| (-707) (QUOTE (-356))) (|HasCategory| (-707) (LIST (QUOTE -292) (QUOTE (-707)) (QUOTE (-707)))) (|HasCategory| (-707) (LIST (QUOTE -315) (QUOTE (-707)))) (|HasCategory| (-707) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-707)))) (|HasCategory| (-707) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-707) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-707) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-707) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (-3783 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-370))) (|HasCategory| (-707) (QUOTE (-356)))) (|HasCategory| (-707) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-707) (QUOTE (-1033))) (|HasCategory| (-707) (QUOTE (-1214))) (-12 (|HasCategory| (-707) (QUOTE (-1013))) (|HasCategory| (-707) (QUOTE (-1214)))) (-3783 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-370))) (-12 (|HasCategory| (-707) (QUOTE (-356))) (|HasCategory| (-707) (QUOTE (-918))))) (-3783 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (-12 (|HasCategory| (-707) (QUOTE (-370))) (|HasCategory| (-707) (QUOTE (-918)))) (-12 (|HasCategory| (-707) (QUOTE (-356))) (|HasCategory| (-707) (QUOTE (-918))))) (|HasCategory| (-707) (QUOTE (-553))) (-12 (|HasCategory| (-707) (QUOTE (-1071))) (|HasCategory| (-707) (QUOTE (-1214)))) (|HasCategory| (-707) (QUOTE (-1071))) (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918))) (-3783 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-370)))) (-3783 (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-564)))) (-12 (|HasCategory| (-707) (QUOTE (-237))) (|HasCategory| (-707) (QUOTE (-370)))) (-12 (|HasCategory| (-707) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-707) (QUOTE (-370)))) (|HasCategory| (-707) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-707) (QUOTE (-564))) (|HasAttribute| (-707) (QUOTE -4453)) (|HasAttribute| (-707) (QUOTE -4450)) (-12 (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-146)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-707) (QUOTE (-313))) (|HasCategory| (-707) (QUOTE (-918)))) (|HasCategory| (-707) (QUOTE (-356)))))
+(-703 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4453 . T))
+((-4455 . T))
NIL
-(-702 U)
+(-704 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-703)
+(-705)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-704 OV E -3014 PG)
+(-706 OV E -3636 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-705)
+(-707)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3478 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4090 . T) (-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-706 R)
+(-708 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-707)
+(-709)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4451 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4453 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-708 S D1 D2 I)
+(-710 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-709 S)
+(-711 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-710 S)
+(-712 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-711 S T$)
+(-713 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-712 S -3414 I)
+(-714 S -4019 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-713 E OV R P)
+(-715 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-714 R)
+(-716 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-715 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-717 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-716)
+(-718)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-717 R |Mod| -2723 -4356 |exactQuo|)
+(-719 R |Mod| -4149 -1377 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-718 R |Rep|)
+(-720 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4448 |has| |#1| (-368)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-719 IS E |ff|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-237))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-721 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-720 R M)
+(-722 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) (-4449 . T))
+((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-721 R |Mod| -2723 -4356 |exactQuo|)
+(-723 R |Mod| -4149 -1377 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-722 S R)
+(-724 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-723 R)
+(-725 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
NIL
-(-724 -3014)
+(-726 -3636)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-725 S)
+(-727 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-726)
+(-728)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-727 S)
+(-729 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-728)
+(-730)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-729 S R UP)
+(-731 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))))
-(-730 R UP)
+((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))))
+(-732 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4445 |has| |#1| (-368)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 |has| |#1| (-370)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-731 S)
+(-733 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-732)
+(-734)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-733 -3014 UP)
+(-735 -3636 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-734 |VarSet| E1 E2 R S PR PS)
+(-736 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-735 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-737 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-736 E OV R PPR)
+(-738 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-737 |vl| R)
+(-739 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-738 E OV R PRF)
+(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-918))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-872 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-740 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-739 E OV R P)
+(-741 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-740 R S M)
+(-742 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-741 R M)
+(-743 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) (-4449 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-856))))
-(-742 S)
+((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-858))))
+(-744 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4442 . T) (-4453 . T))
+((-4444 . T) (-4455 . T))
NIL
-(-743 S)
+(-745 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4452 . T) (-4442 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-744)
+((-4454 . T) (-4444 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-746)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-745 S)
+(-747 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-746 |Coef| |Var|)
+(-748 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4447 . T) (-4446 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4449 . T) (-4448 . T) (-4451 . T))
NIL
-(-747 OV E R P)
+(-749 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-748 E OV R P)
+(-750 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-749 S R)
+(-751 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-750 R)
+(-752 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
NIL
-(-751)
+(-753)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-752)
+(-754)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-753)
+(-755)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-754)
+(-756)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-755)
+(-757)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-756)
+(-758)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-757)
+(-759)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-758)
+(-760)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-759)
+(-761)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-760)
+(-762)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-761)
+(-763)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-762)
+(-764)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-763)
+(-765)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-764)
+(-766)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-765)
+(-767)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-766 S)
+(-768 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-767)
+(-769)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-768 S)
+(-770 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-769)
+(-771)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-770 |Par|)
+(-772 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-771 -3014)
+(-773 -3636)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-772 P -3014)
+(-774 P -3636)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-773 T$)
+(-775 T$)
NIL
NIL
NIL
-(-774 UP -3014)
+(-776 UP -3636)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-775)
+(-777)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-776 R)
+(-778 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-777)
+(-779)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4454 "*") . T))
+(((-4456 "*") . T))
NIL
-(-778 R -3014)
+(-780 R -3636)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-779 S)
+(-781 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-780)
+(-782)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-781 R |PolR| E |PolE|)
+(-783 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-782 R E V P TS)
+(-784 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-783 -3014 |ExtF| |SUEx| |ExtP| |n|)
+(-785 -3636 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-784 BP E OV R P)
+(-786 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-785 |Par|)
+(-787 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-786 R |VarSet|)
+(-788 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3201 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3201 (|HasCategory| |#1| (QUOTE (-551)))) (-3201 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3201 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570))))) (-3201 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3201 (|HasCategory| |#1| (LIST (QUOTE -1001) (QUOTE (-570))))))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-787 R S)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-3795 (|HasCategory| |#1| (QUOTE (-553)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-572))))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-1188)))) (-3795 (|HasCategory| |#1| (LIST (QUOTE -1003) (QUOTE (-572))))))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-789 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-788 R)
+(-790 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4448 |has| |#1| (-368)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-789 R)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-791 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))
-(-790 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
+(-792 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-791 S)
+(-793 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-174))))
-(-792)
+((-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-174))))
+(-794)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-793)
+(-795)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-794)
+(-796)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-795)
+(-797)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-796 |Curve|)
+(-798 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-797)
+(-799)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-798)
+(-800)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-799)
+(-801)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-800)
+(-802)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-801)
+(-803)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-802 S R)
+(-804 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-373))))
-(-803 R)
+((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-375))))
+(-805 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-804 -3749 R OS S)
+(-806 -3783 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-805 R)
+(-807 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-3749 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-806)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (-3783 (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1010 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))))
+(-808)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-807 R -3014 L)
+(-809 R -3636 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-808 R -3014)
+(-810 R -3636)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-809)
+(-811)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-810 R -3014)
+(-812 R -3636)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-811)
+(-813)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-812 -3014 UP UPUP R)
+(-814 -3636 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-813 -3014 UP L LQ)
+(-815 -3636 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-814)
+(-816)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-815 -3014 UP L LQ)
+(-817 -3636 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-816 -3014 UP)
+(-818 -3636 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-817 -3014 L UP A LO)
+(-819 -3636 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-818 -3014 UP)
+(-820 -3636 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-819 -3014 LO)
+(-821 -3636 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-820 -3014 LODO)
+(-822 -3636 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-821 -2819 S |f|)
+(-823 -3436 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-3749 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3749 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
-(-822 R)
+((-4448 |has| |#2| (-1060)) (-4449 |has| |#2| (-1060)) (-4451 |has| |#2| (-6 -4451)) ((-4456 "*") |has| |#2| (-174)) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-370))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-801))) (-3783 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-734))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1060)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (|HasCategory| |#2| (QUOTE (-237))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasCategory| |#2| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-237)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-801))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188))))) (-3783 (|HasCategory| |#2| (QUOTE (-1060))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-1111)))) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))))
+(-824 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-823 |Kernels| R |var|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-826 (-1188)) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-825 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4454 "*") |has| |#2| (-368)) (-4445 |has| |#2| (-368)) (-4450 |has| |#2| (-368)) (-4444 |has| |#2| (-368)) (-4449 . T) (-4447 . T) (-4446 . T))
-((|HasCategory| |#2| (QUOTE (-368))))
-(-824 S)
+(((-4456 "*") |has| |#2| (-370)) (-4447 |has| |#2| (-370)) (-4452 |has| |#2| (-370)) (-4446 |has| |#2| (-370)) (-4451 . T) (-4449 . T) (-4448 . T))
+((|HasCategory| |#2| (QUOTE (-370))))
+(-826 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-825 S)
+(-827 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))))
-(-826)
+((|HasCategory| |#1| (QUOTE (-858))))
+(-828)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-827)
+(-829)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-828)
+(-830)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-829)
+(-831)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-830)
+(-832)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-831)
+(-833)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-832 R)
+(-834 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-833 P R)
+(-835 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-235))))
-(-834)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-237))))
+(-836)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-835)
+(-837)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-836 S)
+(-838 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4452 . T) (-4442 . T) (-4453 . T))
+((-4454 . T) (-4444 . T) (-4455 . T))
NIL
-(-837)
+(-839)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-838 R S)
+(-840 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-839 R)
+(-841 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4449 |has| |#1| (-854)))
-((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-3749 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3749 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551))))
-(-840 A S)
+((-4451 |has| |#1| (-856)))
+((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-21))) (-3783 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-3783 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-553))))
+(-842 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-841 S)
+(-843 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-842 R)
+(-844 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) (-4449 . T))
+((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-843)
+(-845)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-844)
+(-846)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
NIL
NIL
-(-845)
+(-847)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-846)
+(-848)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-847)
+(-849)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-848 R S)
+(-850 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-849 R)
+(-851 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4449 |has| |#1| (-854)))
-((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-3749 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3749 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551))))
-(-850)
+((-4451 |has| |#1| (-856)))
+((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-21))) (-3783 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-3783 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-553))))
+(-852)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-851 -2819 S)
+(-853 -3436 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-852)
+(-854)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-853 S)
+(-855 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-854)
+(-856)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-855 S)
+(-857 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-856)
+(-858)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-857 S R)
+(-859 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))))
-(-858 R)
+((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))))
+(-860 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-859 R C)
+(-861 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562))))
-(-860 R |sigma| -3578)
+((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564))))
+(-862 R |sigma| -4198)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368))))
-(-861 |x| R |sigma| -3578)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-370))))
+(-863 |x| R |sigma| -4198)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-368))))
-(-862 R)
+((-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-370))))
+(-864 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))
-(-863)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
+(-865)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-864)
+(-866)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-865 S)
+(-867 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-866)
+(-868)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-867)
+(-869)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-868)
+(-870)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-869)
+(-871)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-870 |VariableList|)
+(-872 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-871)
+(-873)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-872 R |vl| |wl| |wtlevel|)
+(-874 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))))
-(-873 R PS UP)
+((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))))
+(-875 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-874 R |x| |pt|)
+(-876 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-875 |p|)
+(-877 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-876 |p|)
+(-878 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-877 |p|)
+(-879 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-876 |#1|) (QUOTE (-916))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-148))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-876 |#1|) (QUOTE (-1031))) (|HasCategory| (-876 |#1|) (QUOTE (-826))) (-3749 (|HasCategory| (-876 |#1|) (QUOTE (-826))) (|HasCategory| (-876 |#1|) (QUOTE (-856)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-1161))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-235))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -876) (|devaluate| |#1|)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (QUOTE (-311))) (|HasCategory| (-876 |#1|) (QUOTE (-551))) (|HasCategory| (-876 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (|HasCategory| (-876 |#1|) (QUOTE (-146)))))
-(-878 |p| PADIC)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-878 |#1|) (QUOTE (-918))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-878 |#1|) (QUOTE (-146))) (|HasCategory| (-878 |#1|) (QUOTE (-148))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-878 |#1|) (QUOTE (-1033))) (|HasCategory| (-878 |#1|) (QUOTE (-828))) (-3783 (|HasCategory| (-878 |#1|) (QUOTE (-828))) (|HasCategory| (-878 |#1|) (QUOTE (-858)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-878 |#1|) (QUOTE (-1163))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| (-878 |#1|) (QUOTE (-237))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -878) (|devaluate| |#1|)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -315) (LIST (QUOTE -878) (|devaluate| |#1|)))) (|HasCategory| (-878 |#1|) (LIST (QUOTE -292) (LIST (QUOTE -878) (|devaluate| |#1|)) (LIST (QUOTE -878) (|devaluate| |#1|)))) (|HasCategory| (-878 |#1|) (QUOTE (-313))) (|HasCategory| (-878 |#1|) (QUOTE (-553))) (|HasCategory| (-878 |#1|) (QUOTE (-858))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-878 |#1|) (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-878 |#1|) (QUOTE (-918)))) (|HasCategory| (-878 |#1|) (QUOTE (-146)))))
+(-880 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-826))) (-3749 (|HasCategory| |#2| (QUOTE (-826))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-879 S T$)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-828))) (-3783 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-1163))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-858))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-881 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))))
-(-880)
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))))
+(-882)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-881)
+(-883)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-882)
+(-884)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-883 CF1 CF2)
+(-885 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-884 |ComponentFunction|)
+(-886 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-885 CF1 CF2)
+(-887 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-886 |ComponentFunction|)
+(-888 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-887)
+(-889)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-888 CF1 CF2)
+(-890 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-889 |ComponentFunction|)
+(-891 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-890)
+(-892)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-891 R)
+(-893 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-892 R S L)
+(-894 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-893 S)
+(-895 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-894 |Base| |Subject| |Pat|)
+(-896 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3201 (|HasCategory| |#2| (QUOTE (-1058)))) (-3201 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (-3201 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))
-(-895 R A B)
+((-12 (-3795 (|HasCategory| |#2| (QUOTE (-1060)))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (-12 (|HasCategory| |#2| (QUOTE (-1060))) (-3795 (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))
+(-897 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-896 R S)
+(-898 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-897 R -3414)
+(-899 R -4019)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-898 R S)
+(-900 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-899 R)
+(-901 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-900 |VarSet|)
+(-902 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-901 UP R)
+(-903 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-902)
+(-904)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-903 UP -3014)
+(-905 UP -3636)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-904)
+(-906)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-905)
+(-907)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-906 A S)
+(-908 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-907 S)
+(-909 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-908 S)
+(-910 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-909 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-911 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-910 S)
+(-912 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-911 S)
+(-913 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-912 S)
+(-914 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4449 . T))
-((-3749 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856))))
-(-913 R E |VarSet| S)
+((-4451 . T))
+((-3783 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-858))))
+(-915 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-914 R S)
+(-916 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-915 S)
+(-917 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-146))))
-(-916)
+(-918)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-917 |p|)
+(-919 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-373))))
-(-918 R0 -3014 UP UPUP R)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-375))))
+(-920 R0 -3636 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-919 UP UPUP R)
+(-921 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-920 UP UPUP)
+(-922 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-921 R)
+(-923 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-922 R)
+(-924 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-923 E OV R P)
+(-925 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-924)
+(-926)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-925 -3014)
+(-927 -3636)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-926 R)
+(-928 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-927)
+(-929)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-928)
+(-930)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4454 "*") . T))
+(((-4456 "*") . T))
NIL
-(-929 -3014 P)
+(-931 -3636 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-930 |xx| -3014)
+(-932 |xx| -3636)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-931 R |Var| |Expon| GR)
+(-933 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-932 S)
+(-934 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-933)
+(-935)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-934)
+(-936)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-935)
+(-937)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-936 R -3014)
+(-938 R -3636)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-937)
+(-939)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-938 S A B)
+(-940 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-939 S R -3014)
+(-941 S R -3636)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-940 I)
+(-942 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-941 S E)
+(-943 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-942 S R L)
+(-944 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-943 S E V R P)
+(-945 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -893) (|devaluate| |#1|))))
-(-944 R -3014 -3414)
+((|HasCategory| |#3| (LIST (QUOTE -895) (|devaluate| |#1|))))
+(-946 R -3636 -4019)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-945 -3414)
+(-947 -4019)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-946 S R Q)
+(-948 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-947 S)
+(-949 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-948 S R P)
+(-950 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-949)
+(-951)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-950 R)
+(-952 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-951 |lv| R)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-953 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-952 |TheField| |ThePols|)
+(-954 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-854))))
-(-953 R S)
+((|HasCategory| |#1| (QUOTE (-856))))
+(-955 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-954 |x| R)
+(-956 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-955 S R E |VarSet|)
+(-957 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#4| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))))
-(-956 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-918))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#4| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#4| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#4| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))))
+(-958 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
NIL
-(-957 E V R P -3014)
+(-959 E V R P -3636)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-958 E |Vars| R P S)
+(-960 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-959 R)
+(-961 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-960 E V R P -3014)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1188) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-962 E V R P -3636)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-458))))
-(-961)
+((|HasCategory| |#3| (QUOTE (-460))))
+(-963)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-962)
+(-964)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-963 R L)
+(-965 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-964 A B)
+(-966 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-965 S)
+(-967 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-966)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-968)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-967 -3014)
+(-969 -3636)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-968 I)
+(-970 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-969)
+(-971)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-970 R E)
+(-972 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4450)))
-(-971 A B)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4452)))
+(-973 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4449 -12 (|has| |#2| (-479)) (|has| |#1| (-479))))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856))))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-373)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856)))))
-(-972)
+((-4451 -12 (|has| |#2| (-481)) (|has| |#1| (-481))))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801)))) (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-858))))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801))))) (-12 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-481)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-481)))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-375)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-481))) (|HasCategory| |#2| (QUOTE (-481)))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| |#2| (QUOTE (-801))))) (-12 (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-858)))))
+(-974)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-973 T$)
+(-975 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-974 T$)
+(-976 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-975 S T$)
+(-977 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-976)
+(-978)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-977 S)
+(-979 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
-(-978 R |polR|)
+(-980 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-458))))
-(-979)
+((|HasCategory| |#1| (QUOTE (-460))))
+(-981)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-980)
+(-982)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-981 S |Coef| |Expon| |Var|)
+(-983 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-982 |Coef| |Expon| |Var|)
+(-984 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-983)
+(-985)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-984 S R E |VarSet| P)
+(-986 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-562))))
-(-985 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-564))))
+(-987 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4452 . T))
+((-4454 . T))
NIL
-(-986 R E V P)
+(-988 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-458))))
-(-987 K)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-460))))
+(-989 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-988 |VarSet| E RC P)
+(-990 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-989 R)
+(-991 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-990 R1 R2)
+(-992 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-991 R)
+(-993 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-992 K)
+(-994 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-993 R E OV PPR)
+(-995 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-994 K R UP -3014)
+(-996 K R UP -3636)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-995 |vl| |nv|)
+(-997 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-996 R |Var| |Expon| |Dpoly|)
+(-998 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-311)))))
-(-997 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-313)))))
+(-999 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-998)
+(-1000)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-999 A B R S)
+(-1001 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-1000 A S)
+(-1002 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-826))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1161))))
-(-1001 S)
+((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-1163))))
+(-1003 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1002 |n| K)
+(-1004 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-1003)
+(-1005)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-1004 S)
+(-1006 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
-(-1005 S R)
+(-1007 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-294))))
-(-1006 R)
+((|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-296))))
+(-1008 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4445 |has| |#1| (-294)) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 |has| |#1| (-296)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1007 QR R QS S)
+(-1009 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-1008 R)
+(-1010 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4445 |has| |#1| (-294)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551))))
-(-1009 S)
+((-4447 |has| |#1| (-296)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-296))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -292) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-553))))
+(-1011 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1010 S)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1012 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1011)
+(-1013)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1012 -3014 UP UPUP |radicnd| |n|)
+(-1014 -3636 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4445 |has| (-413 |#2|) (-368)) (-4450 |has| (-413 |#2|) (-368)) (-4444 |has| (-413 |#2|) (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-3749 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-3749 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-3749 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-3749 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))))
-(-1013 |bb|)
+((-4447 |has| (-415 |#2|) (-370)) (-4452 |has| (-415 |#2|) (-370)) (-4446 |has| (-415 |#2|) (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-415 |#2|) (QUOTE (-146))) (|HasCategory| (-415 |#2|) (QUOTE (-148))) (|HasCategory| (-415 |#2|) (QUOTE (-356))) (-3783 (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (|HasCategory| (-415 |#2|) (QUOTE (-370))) (|HasCategory| (-415 |#2|) (QUOTE (-375))) (-3783 (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (QUOTE (-356)))) (-3783 (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-356))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -647) (QUOTE (-572)))) (-3783 (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 |#2|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-415 |#2|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))) (-12 (|HasCategory| (-415 |#2|) (QUOTE (-237))) (|HasCategory| (-415 |#2|) (QUOTE (-370)))))
+(-1015 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3749 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
-(-1014)
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-572) (QUOTE (-918))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| (-572) (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-148))) (|HasCategory| (-572) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-1033))) (|HasCategory| (-572) (QUOTE (-828))) (-3783 (|HasCategory| (-572) (QUOTE (-828))) (|HasCategory| (-572) (QUOTE (-858)))) (|HasCategory| (-572) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-1163))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| (-572) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| (-572) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| (-572) (QUOTE (-237))) (|HasCategory| (-572) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| (-572) (LIST (QUOTE -522) (QUOTE (-1188)) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -315) (QUOTE (-572)))) (|HasCategory| (-572) (LIST (QUOTE -292) (QUOTE (-572)) (QUOTE (-572)))) (|HasCategory| (-572) (QUOTE (-313))) (|HasCategory| (-572) (QUOTE (-553))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-572) (LIST (QUOTE -647) (QUOTE (-572)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-572) (QUOTE (-918)))) (|HasCategory| (-572) (QUOTE (-146)))))
+(-1016)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1015)
+(-1017)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1016 RP)
+(-1018 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1017 S)
+(-1019 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1018 A S)
+(-1020 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#2| (QUOTE (-1109))))
-(-1019 S)
+((|HasAttribute| |#1| (QUOTE -4455)) (|HasCategory| |#2| (QUOTE (-1111))))
+(-1021 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1020 S)
+(-1022 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1021)
+(-1023)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4445 . T) (-4450 . T) (-4444 . T) (-4447 . T) (-4446 . T) ((-4454 "*") . T) (-4449 . T))
+((-4447 . T) (-4452 . T) (-4446 . T) (-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4451 . T))
NIL
-(-1022 R -3014)
+(-1024 R -3636)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1023 R -3014)
+(-1025 R -3636)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1024 -3014 UP)
+(-1026 -3636 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1025 -3014 UP)
+(-1027 -3636 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1026 S)
+(-1028 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1027 F1 UP UPUP R F2)
+(-1029 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1028)
+(-1030)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1029 |Pol|)
+(-1031 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1030 |Pol|)
+(-1032 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1031)
+(-1033)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1032)
+(-1034)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1033 |TheField|)
+(-1035 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4445 . T) (-4450 . T) (-4444 . T) (-4447 . T) (-4446 . T) ((-4454 "*") . T) (-4449 . T))
-((-3749 (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-1034 -3014 L)
+((-4447 . T) (-4452 . T) (-4446 . T) (-4449 . T) (-4448 . T) ((-4456 "*") . T) (-4451 . T))
+((-3783 (|HasCategory| (-415 (-572)) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-415 (-572)) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-415 (-572)) (LIST (QUOTE -1049) (QUOTE (-572)))))
+(-1036 -3636 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1035 S)
+(-1037 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1109))))
-(-1036 R E V P)
+((|HasCategory| |#1| (QUOTE (-1111))))
+(-1038 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1037 R)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1039 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4454 "*"))))
-(-1038 R)
+((|HasAttribute| |#1| (QUOTE (-4456 "*"))))
+(-1040 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-311))))
-(-1039 S)
+((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-313))))
+(-1041 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1040)
+(-1042)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1041 S)
+(-1043 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1042 S)
+(-1044 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1043 -3014 |Expon| |VarSet| |FPol| |LFPol|)
+(-1045 -3636 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1044)
+(-1046)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -3165) (QUOTE (-52))))))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1045)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -3762) (QUOTE (-52))))))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-52) (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -315) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-1188) (QUOTE (-858))) (|HasCategory| (-52) (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1047)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1046 A S)
+(-1048 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1047 S)
+(-1049 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1048 Q R)
+(-1050 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1049)
+(-1051)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1050 UP)
+(-1052 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1051 R)
+(-1053 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1052 R)
+(-1054 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1053 T$)
+(-1055 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1054 T$)
+(-1056 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1055 R |ls|)
+(-1057 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| (-786 |#1| (-870 |#2|)) (QUOTE (-1109))) (|HasCategory| (-786 |#1| (-870 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -786) (|devaluate| |#1|) (LIST (QUOTE -870) (|devaluate| |#2|)))))) (|HasCategory| (-786 |#1| (-870 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-786 |#1| (-870 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-870 |#2|) (QUOTE (-373))) (|HasCategory| (-786 |#1| (-870 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1056)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| (-788 |#1| (-872 |#2|)) (QUOTE (-1111))) (|HasCategory| (-788 |#1| (-872 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -788) (|devaluate| |#1|) (LIST (QUOTE -872) (|devaluate| |#2|)))))) (|HasCategory| (-788 |#1| (-872 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-788 |#1| (-872 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| (-872 |#2|) (QUOTE (-375))) (|HasCategory| (-788 |#1| (-872 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1058)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1057 S)
+(-1059 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1058)
+(-1060)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4449 . T))
+((-4451 . T))
NIL
-(-1059 |xx| -3014)
+(-1061 |xx| -3636)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1060 R)
+(-1062 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-1061 S |m| |n| R |Row| |Col|)
+(-1063 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (QUOTE (-562))) (|HasCategory| |#4| (QUOTE (-174))))
-(-1062 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (QUOTE (-564))) (|HasCategory| |#4| (QUOTE (-174))))
+(-1064 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4452 . T) (-4447 . T) (-4446 . T))
+((-4454 . T) (-4449 . T) (-4448 . T))
NIL
-(-1063 |m| |n| R)
+(-1065 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4452 . T) (-4447 . T) (-4446 . T))
-((|HasCategory| |#3| (QUOTE (-174))) (-3749 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-562))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1064 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4454 . T) (-4449 . T) (-4448 . T))
+((|HasCategory| |#3| (QUOTE (-174))) (-3783 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-564))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1066 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1065 R)
+(-1067 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1066 S T$)
+(-1068 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1109))))
-(-1067)
+((|HasCategory| |#1| (QUOTE (-1111))))
+(-1069)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1068 S)
+(-1070 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1069)
+(-1071)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1070 |TheField| |ThePolDom|)
+(-1072 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1071)
+(-1073)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4440 . T) (-4444 . T) (-4439 . T) (-4450 . T) (-4451 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4442 . T) (-4446 . T) (-4441 . T) (-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1072)
+(-1074)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -3165) (QUOTE (-52))))))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1073 S R E V)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -3762) (QUOTE (-52))))))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-52) (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| (-52) (QUOTE (-1111))) (|HasCategory| (-52) (LIST (QUOTE -315) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (QUOTE (-1111))) (|HasCategory| (-1188) (QUOTE (-858))) (|HasCategory| (-52) (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-52) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1075 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1001) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-1186)))))
-(-1074 R E V)
+((|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-553))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1003) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-1188)))))
+(-1076 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
NIL
-(-1075)
+(-1077)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1076 S |TheField| |ThePols|)
+(-1078 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1077 |TheField| |ThePols|)
+(-1079 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1078 R E V P TS)
+(-1080 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1079 S R E V P)
+(-1081 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1080 R E V P)
+(-1082 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-1081 R E V P TS)
+(-1083 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1082)
+(-1084)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1083)
+(-1085)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1084 |f|)
+(-1086 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1085 |Base| R -3014)
+(-1087 |Base| R -3636)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1086 |Base| R -3014)
+(-1088 |Base| R -3636)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1087 R |ls|)
+(-1089 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1088 UP SAE UPA)
+(-1090 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1089 R UP M)
+(-1091 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4445 |has| |#1| (-368)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-354)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))))
-(-1090 UP SAE UPA)
+((-4447 |has| |#1| (-370)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-356))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-375))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-356)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))))
+(-1092 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1091)
+(-1093)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1092)
+(-1094)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1093 S)
+(-1095 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1094)
+(-1096)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1095 R)
+(-1097 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1096 R)
+(-1098 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1097 S)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1099 (-1188)) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1099 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1098 R S)
+(-1100 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-854))))
-(-1099)
+((|HasCategory| |#1| (QUOTE (-856))))
+(-1101)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1100 R S)
+(-1102 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1101 S)
+(-1103 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1103 |#1|) (QUOTE (-1109))))
-(-1102 S)
+((|HasCategory| (-1105 |#1|) (QUOTE (-1111))))
+(-1104 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1103 S)
+(-1105 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-1109))))
-(-1104 S L)
+((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1111))))
+(-1106 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1105)
+(-1107)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1106 A S)
+(-1108 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1107 S)
+(-1109 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4442 . T))
+((-4444 . T))
NIL
-(-1108 S)
+(-1110 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1109)
+(-1111)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1110 |m| |n|)
+(-1112 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1111 S)
+(-1113 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4452 . T) (-4442 . T) (-4453 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-1112 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4454 . T) (-4444 . T) (-4455 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-1114 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1113)
+(-1115)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1114 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1116 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1115 R FS)
+(-1117 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1116 R E V P TS)
+(-1118 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1117 R E V P TS)
+(-1119 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1118 R E V P)
+(-1120 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-1119)
+(-1121)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1120 S)
+(-1122 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1121)
+(-1123)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1122 |dimtot| |dim1| S)
+(-1124 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4446 |has| |#3| (-1058)) (-4447 |has| |#3| (-1058)) (-4449 |has| |#3| (-6 -4449)) ((-4454 "*") |has| |#3| (-174)) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3749 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#3| (QUOTE (-368))) (-3749 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3749 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-3749 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-3749 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3749 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3749 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3749 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3749 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (-3749 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasCategory| |#3| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-3749 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3749 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasAttribute| |#3| (QUOTE -4449)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))))
-(-1123 R |x|)
+((-4448 |has| |#3| (-1060)) (-4449 |has| |#3| (-1060)) (-4451 |has| |#3| (-6 -4451)) ((-4456 "*") |has| |#3| (-174)) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-3783 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#3| (QUOTE (-370))) (-3783 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-3783 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-370)))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-801))) (-3783 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856)))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-734))) (-3783 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (-3783 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-3783 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-3783 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-1060)))) (-3783 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (|HasCategory| |#3| (QUOTE (-237))) (-3783 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (QUOTE (-1111)))) (|HasCategory| |#3| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-237)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-734)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-801)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-856)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111))))) (-3783 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-734))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-801))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-856))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (|HasCategory| (-572) (QUOTE (-858))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1060)))) (-12 (|HasCategory| |#3| (QUOTE (-1060))) (|HasCategory| |#3| (LIST (QUOTE -909) (QUOTE (-1188))))) (-3783 (|HasCategory| |#3| (QUOTE (-1060))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572)))))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#3| (QUOTE (-1111)))) (|HasAttribute| |#3| (QUOTE -4451)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#3| (QUOTE (-1111))) (|HasCategory| |#3| (LIST (QUOTE -315) (|devaluate| |#3|)))))
+(-1125 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-458))))
-(-1124)
+((|HasCategory| |#1| (QUOTE (-460))))
+(-1126)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1125 R -3014)
+(-1127 R -3636)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1126 R)
+(-1128 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1127)
+(-1129)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1128)
+(-1130)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1129)
+(-1131)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4440 . T) (-4444 . T) (-4439 . T) (-4450 . T) (-4451 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4442 . T) (-4446 . T) (-4441 . T) (-4452 . T) (-4453 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1130 S)
+(-1132 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4452 . T) (-4453 . T))
+((-4454 . T) (-4455 . T))
NIL
-(-1131 S |ndim| R |Row| |Col|)
+(-1133 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-368))) (|HasAttribute| |#3| (QUOTE (-4454 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
-(-1132 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-370))) (|HasAttribute| |#3| (QUOTE (-4456 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
+(-1134 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4452 . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4454 . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1133 R |Row| |Col| M)
+(-1135 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1134 R |VarSet|)
+(-1136 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1135 |Coef| |Var| SMP)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1137 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))))
-(-1136 R E V P)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-370))))
+(-1138 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-1137 UP -3014)
+(-1139 UP -3636)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1138 R)
+(-1140 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1139 R)
+(-1141 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1140 R)
+(-1142 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1141 S A)
+(-1143 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))))
-(-1142 R)
+((|HasCategory| |#1| (QUOTE (-858))))
+(-1144 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1143 R)
+(-1145 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1144)
+(-1146)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1145)
+(-1147)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1146)
+(-1148)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1147)
+(-1149)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1148)
+(-1150)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1149 V C)
+(-1151 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1150 V C)
+(-1152 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))) (-3749 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))))) (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1151 |ndim| R)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -315) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1151 |#1| |#2|) (QUOTE (-1111)))) (|HasCategory| (-1151 |#1| |#2|) (QUOTE (-1111))) (-3783 (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -315) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1151 |#1| |#2|) (QUOTE (-1111))))) (|HasCategory| (-1151 |#1| |#2|) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1153 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4449 . T) (-4441 |has| |#2| (-6 (-4454 "*"))) (-4452 . T) (-4446 . T) (-4447 . T))
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (-3749 (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-1152 S)
+((-4451 . T) (-4443 |has| |#2| (-6 (-4456 "*"))) (-4454 . T) (-4448 . T) (-4449 . T))
+((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-370))) (-3783 (|HasAttribute| |#2| (QUOTE (-4456 "*"))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-1154 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1153)
+(-1155)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-1154 R E V P TS)
+(-1156 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1155 R E V P)
+(-1157 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1156 S)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1158 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1157 A S)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1159 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1158 S)
+(-1160 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1159 |Key| |Ent| |dent|)
+(-1161 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))))
-(-1160)
+((-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-858))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))))
+(-1162)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1161)
+(-1163)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1162 |Coef|)
+(-1164 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1163 S)
+(-1165 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1164 A B)
+(-1166 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1165 A B C)
+(-1167 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1166 S)
+(-1168 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1167)
+((-4455 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1169)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-1168)
+(-1170)
NIL
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
-(-1169 |Entry|)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| (-145) (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| (-145) (QUOTE (-1111))) (|HasCategory| (-145) (LIST (QUOTE -315) (QUOTE (-145))))))
+(-1171 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#1|)))))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1170 A)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#1|)))))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (QUOTE (-1111))) (|HasCategory| (-1170) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1172 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))
-(-1171 |Coef|)
+((|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
+(-1173 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1172 |Coef|)
+(-1174 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1173 R UP)
+(-1175 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))))
-(-1174 |n| R)
+((|HasCategory| |#1| (QUOTE (-313))))
+(-1176 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1175 S1 S2)
+(-1177 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1176)
+(-1178)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1177 |Coef| |var| |cen|)
+(-1179 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4454 "*") -3749 (-3212 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-3212 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4445 -3749 (-3212 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-3212 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1178 R -3014)
+(((-4456 "*") -3783 (-3804 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-828))) (|has| |#1| (-174)) (-3804 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-918)))) (-4447 -3783 (-3804 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-828))) (|has| |#1| (-564)) (-3804 (|has| |#1| (-370)) (|has| (-1186 |#1| |#2| |#3|) (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1186) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1186 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1180 R -3636)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1179 R)
+(-1181 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1180 R S)
+(-1182 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1181 E OV R P)
+(-1183 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1182 R)
+(-1184 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4448 |has| |#1| (-368)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1183 |Coef| |var| |cen|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#1| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1163))) (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasAttribute| |#1| (QUOTE -4452)) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1185 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
-(-1184 |Coef| |var| |cen|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+(-1186 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
-(-1185)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+(-1187)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1186)
+(-1188)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1187 R)
+(-1189 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1188 R)
+(-1190 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| (-980) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasAttribute| |#1| (QUOTE -4450)))
-(-1189)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-6 -4452)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-460))) (-12 (|HasCategory| (-982) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasAttribute| |#1| (QUOTE -4452)))
+(-1191)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1190)
+(-1192)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1191)
+(-1193)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1192 N)
+(-1194 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1193 N)
+(-1195 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1194)
+(-1196)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1195 R)
+(-1197 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1196)
+(-1198)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1197 S)
+(-1199 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1198 S)
+(-1200 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1199 |Key| |Entry|)
+(-1201 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4144) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3165) (|devaluate| |#2|)))))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3749 (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1200 S)
+((-4454 . T) (-4455 . T))
+((-12 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -315) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1640) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3762) (|devaluate| |#2|)))))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#2| (QUOTE (-1111)))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -622) (QUOTE (-544)))) (-12 (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#2| (QUOTE (-1111))) (-3783 (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-870)))) (|HasCategory| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1202 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1201 R)
+(-1203 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1202 S |Key| |Entry|)
+(-1204 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1203 |Key| |Entry|)
+(-1205 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4453 . T))
+((-4455 . T))
NIL
-(-1204 |Key| |Entry|)
+(-1206 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1205)
+(-1207)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1206 S)
+(-1208 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1207)
+(-1209)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1208)
+(-1210)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1209 R)
+(-1211 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1210)
+(-1212)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1211 S)
+(-1213 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1212)
+(-1214)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1213 S)
+(-1215 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1214 S)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1111))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1216 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1215)
+(-1217)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1216 R -3014)
+(-1218 R -3636)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1217 R |Row| |Col| M)
+(-1219 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1218 R -3014)
+(-1220 R -3636)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -893) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -893) (|devaluate| |#1|)))))
-(-1219 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -622) (LIST (QUOTE -901) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -895) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -895) (|devaluate| |#1|)))))
+(-1221 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-373))))
-(-1220 R E V P)
+((|HasCategory| |#4| (QUOTE (-375))))
+(-1222 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-1221 |Coef|)
+(-1223 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))))
-(-1222 |Curve|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-370))))
+(-1224 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1223)
+(-1225)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1224 S)
+(-1226 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1225 -3014)
+((|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1227 -3636)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1226)
+(-1228)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1227)
+(-1229)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1228 S)
+(-1230 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-856))))
-(-1229)
+((|HasCategory| |#1| (QUOTE (-858))))
+(-1231)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1230 S)
+(-1232 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1231)
+(-1233)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1232)
+(-1234)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1233)
+(-1235)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1234)
+(-1236)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1235)
+(-1237)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1236 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1238 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1237 |Coef|)
+(-1239 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1238 S |Coef| UTS)
+(-1240 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-368))))
-(-1239 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-370))))
+(-1241 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1240 |Coef| UTS)
+(-1242 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146))))) (-3749 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-148))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856))))) (-3749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-916))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146))))))
-(-1241 |Coef| |var| |cen|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))) (-3783 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-148))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858))))) (-3783 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1033)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-1188)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -292) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -315) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -522) (QUOTE (-1188)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-918))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-553)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-146))))))
+(-1243 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4454 "*") -3749 (-3212 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-3212 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-916)))) (-4445 -3749 (-3212 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-3212 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1242 ZP)
+(((-4456 "*") -3783 (-3804 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-828))) (|has| |#1| (-174)) (-3804 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-918)))) (-4447 -3783 (-3804 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-828))) (|has| |#1| (-564)) (-3804 (|has| |#1| (-370)) (|has| (-1271 |#1| |#2| |#3|) (-918)))) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|)))))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-572)) (|devaluate| |#1|))))) (|HasCategory| (-572) (QUOTE (-1123))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-370)))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-1163))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -292) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -315) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -522) (QUOTE (-1188)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-572))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-553))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1244 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1243 R S)
+(-1245 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-854))))
-(-1244 S)
+((|HasCategory| |#1| (QUOTE (-856))))
+(-1246 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-1109))))
-(-1245 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1111))))
+(-1247 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1246 R Q UP)
+(-1248 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1247 R UP)
+(-1249 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1248 R UP)
+(-1250 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1249 R U)
+(-1251 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1250 |x| R)
+(-1252 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4448 |has| |#2| (-368)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3749 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3749 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3749 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-1251 R PR S PS)
+(((-4456 "*") |has| |#2| (-174)) (-4447 |has| |#2| (-564)) (-4450 |has| |#2| (-370)) (-4452 |has| |#2| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-564)))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-386)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-386))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -895) (QUOTE (-572)))) (|HasCategory| |#2| (LIST (QUOTE -895) (QUOTE (-572))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-386)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -622) (LIST (QUOTE -901) (QUOTE (-572)))))) (-12 (|HasCategory| (-1093) (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#2| (LIST (QUOTE -622) (QUOTE (-544))))) (|HasCategory| |#2| (LIST (QUOTE -647) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (QUOTE (-572)))) (-3783 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| |#2| (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (-3783 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-1163))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE -4452)) (|HasCategory| |#2| (QUOTE (-460))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (-3783 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-918)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-1253 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1252 S R)
+(-1254 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1161))))
-(-1253 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-460))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1163))))
+(-1255 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4448 |has| |#1| (-368)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4450 |has| |#1| (-370)) (-4452 |has| |#1| (-6 -4452)) (-4449 . T) (-4448 . T) (-4451 . T))
NIL
-(-1254 S |Coef| |Expon|)
+(-1256 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2869) (LIST (|devaluate| |#2|) (QUOTE (-1186))))))
-(-1255 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1123))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3491) (LIST (|devaluate| |#2|) (QUOTE (-1188))))))
+(-1257 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1256 RC P)
+(-1258 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1257 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1259 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1258 |Coef|)
+(-1260 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1259 S |Coef| ULS)
+(-1261 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1260 |Coef| ULS)
+(-1262 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1261 |Coef| ULS)
+(-1263 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))
-(-1262 |Coef| |var| |cen|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))))
+(-1264 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3749 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
-(-1263 R FE |var| |cen|)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4452 |has| |#1| (-370)) (-4446 |has| |#1| (-370)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#1| (QUOTE (-174))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572))) (|devaluate| |#1|)))) (|HasCategory| (-415 (-572)) (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-3783 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-564)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -415) (QUOTE (-572)))))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+(-1265 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4454 "*") |has| (-1262 |#2| |#3| |#4|) (-174)) (-4445 |has| (-1262 |#2| |#3| |#4|) (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-174))) (-3749 (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-368))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-458))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-562))))
-(-1264 A S)
+(((-4456 "*") |has| (-1264 |#2| |#3| |#4|) (-174)) (-4447 |has| (-1264 |#2| |#3| |#4|) (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-174))) (-3783 (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572)))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -1049) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| (-1264 |#2| |#3| |#4|) (LIST (QUOTE -1049) (QUOTE (-572)))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-370))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-460))) (|HasCategory| (-1264 |#2| |#3| |#4|) (QUOTE (-564))))
+(-1266 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4453)))
-(-1265 S)
+((|HasAttribute| |#1| (QUOTE -4455)))
+(-1267 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1266 |Coef1| |Coef2| UTS1 UTS2)
+(-1268 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1267 S |Coef|)
+(-1269 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1212))) (|HasSignature| |#2| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1363) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))))
-(-1268 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-1214))) (|HasSignature| |#2| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4161) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1188))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#2| (QUOTE (-370))))
+(-1270 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1269 |Coef| |var| |cen|)
+(-1271 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3749 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -2869) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-3749 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1363) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1598) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
-(-1270 |Coef| UTS)
+(((-4456 "*") |has| |#1| (-174)) (-4447 |has| |#1| (-564)) (-4448 . T) (-4449 . T) (-4451 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasCategory| |#1| (QUOTE (-564))) (-3783 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-1188)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-779)) (|devaluate| |#1|)))) (|HasCategory| (-779) (QUOTE (-1123))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (QUOTE (-1188)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-779))))) (|HasCategory| |#1| (QUOTE (-370))) (-3783 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-572)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1214))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasSignature| |#1| (LIST (QUOTE -4161) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1188))))) (|HasSignature| |#1| (LIST (QUOTE -2220) (LIST (LIST (QUOTE -652) (QUOTE (-1188))) (|devaluate| |#1|)))))))
+(-1272 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1271 -3014 UP L UTS)
+(-1273 -3636 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-562))))
-(-1272)
+((|HasCategory| |#1| (QUOTE (-564))))
+(-1274)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1273 |sym|)
+(-1275 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1274 S R)
+(-1276 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1275 R)
+((|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1277 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4453 . T) (-4452 . T))
+((-4455 . T) (-4454 . T))
NIL
-(-1276 A B)
+(-1278 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1277 R)
+(-1279 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4453 . T) (-4452 . T))
-((-3749 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3749 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3749 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-1278)
+((-4455 . T) (-4454 . T))
+((-3783 (-12 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|))))) (-3783 (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870))))) (|HasCategory| |#1| (LIST (QUOTE -622) (QUOTE (-544)))) (-3783 (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-858))) (|HasCategory| (-572) (QUOTE (-858))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-1060))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1060)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -315) (|devaluate| |#1|)))))
+(-1280)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1279)
+(-1281)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1280)
+(-1282)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1281)
+(-1283)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1282)
+(-1284)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1283 A S)
+(-1285 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1284 S)
+(-1286 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4447 . T) (-4446 . T))
+((-4449 . T) (-4448 . T))
NIL
-(-1285 R)
+(-1287 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1286 K R UP -3014)
+(-1288 K R UP -3636)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1287)
+(-1289)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1288)
+(-1290)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1289 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1291 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))))
-(-1290 R E V P)
+((-4449 |has| |#1| (-174)) (-4448 |has| |#1| (-174)) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))))
+(-1292 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1291 R)
+((-4455 . T) (-4454 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#4| (LIST (QUOTE -315) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -622) (QUOTE (-544)))) (|HasCategory| |#4| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-564))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-870)))))
+(-1293 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4446 . T) (-4447 . T) (-4449 . T))
+((-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1292 |vl| R)
+(-1294 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4449 . T) (-4445 |has| |#2| (-6 -4445)) (-4447 . T) (-4446 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4445)))
-(-1293 R |VarSet| XPOLY)
+((-4451 . T) (-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4447)))
+(-1295 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1294 |vl| R)
+(-1296 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4445 |has| |#2| (-6 -4445)) (-4447 . T) (-4446 . T) (-4449 . T))
+((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
NIL
-(-1295 S -3014)
+(-1297 S -3636)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
-(-1296 -3014)
+((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
+(-1298 -3636)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4446 . T) (-4452 . T) (-4447 . T) ((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
-(-1297 |VarSet| R)
+(-1299 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4445 |has| |#2| (-6 -4445)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -723) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasAttribute| |#2| (QUOTE -4445)))
-(-1298 |vl| R)
+((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -725) (LIST (QUOTE -415) (QUOTE (-572))))) (|HasAttribute| |#2| (QUOTE -4447)))
+(-1300 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4445 |has| |#2| (-6 -4445)) (-4447 . T) (-4446 . T) (-4449 . T))
+((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
NIL
-(-1299 R)
+(-1301 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4445 |has| |#1| (-6 -4445)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4445)))
-(-1300 R E)
+((-4447 |has| |#1| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4447)))
+(-1302 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4449 . T) (-4450 |has| |#1| (-6 -4450)) (-4445 |has| |#1| (-6 -4445)) (-4447 . T) (-4446 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4449)) (|HasAttribute| |#1| (QUOTE -4450)) (|HasAttribute| |#1| (QUOTE -4445)))
-(-1301 |VarSet| R)
+((-4451 . T) (-4452 |has| |#1| (-6 -4452)) (-4447 |has| |#1| (-6 -4447)) (-4449 . T) (-4448 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-370))) (|HasAttribute| |#1| (QUOTE -4451)) (|HasAttribute| |#1| (QUOTE -4452)) (|HasAttribute| |#1| (QUOTE -4447)))
+(-1303 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4445 |has| |#2| (-6 -4445)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4445)))
-(-1302)
+((-4447 |has| |#2| (-6 -4447)) (-4449 . T) (-4448 . T) (-4451 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4447)))
+(-1304)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1303 A)
+(-1305 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1304 R |ls| |ls2|)
+(-1306 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1305 R)
+(-1307 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1306 |p|)
+(-1308 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+(((-4456 "*") . T) (-4448 . T) (-4449 . T) (-4451 . T))
NIL
NIL
NIL
@@ -5172,4 +5180,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2266164 2266169 2266174 2266179) (-2 NIL 2266144 2266149 2266154 2266159) (-1 NIL 2266124 2266129 2266134 2266139) (0 NIL 2266104 2266109 2266114 2266119) (-1306 "ZMOD.spad" 2265913 2265926 2266042 2266099) (-1305 "ZLINDEP.spad" 2264979 2264990 2265903 2265908) (-1304 "ZDSOLVE.spad" 2254924 2254946 2264969 2264974) (-1303 "YSTREAM.spad" 2254419 2254430 2254914 2254919) (-1302 "YDIAGRAM.spad" 2254053 2254062 2254409 2254414) (-1301 "XRPOLY.spad" 2253273 2253293 2253909 2253978) (-1300 "XPR.spad" 2251068 2251081 2252991 2253090) (-1299 "XPOLY.spad" 2250623 2250634 2250924 2250993) (-1298 "XPOLYC.spad" 2249942 2249958 2250549 2250618) (-1297 "XPBWPOLY.spad" 2248379 2248399 2249722 2249791) (-1296 "XF.spad" 2246842 2246857 2248281 2248374) (-1295 "XF.spad" 2245285 2245302 2246726 2246731) (-1294 "XFALG.spad" 2242333 2242349 2245211 2245280) (-1293 "XEXPPKG.spad" 2241584 2241610 2242323 2242328) (-1292 "XDPOLY.spad" 2241198 2241214 2241440 2241509) (-1291 "XALG.spad" 2240858 2240869 2241154 2241193) (-1290 "WUTSET.spad" 2236697 2236714 2240504 2240531) (-1289 "WP.spad" 2235896 2235940 2236555 2236622) (-1288 "WHILEAST.spad" 2235694 2235703 2235886 2235891) (-1287 "WHEREAST.spad" 2235365 2235374 2235684 2235689) (-1286 "WFFINTBS.spad" 2233028 2233050 2235355 2235360) (-1285 "WEIER.spad" 2231250 2231261 2233018 2233023) (-1284 "VSPACE.spad" 2230923 2230934 2231218 2231245) (-1283 "VSPACE.spad" 2230616 2230629 2230913 2230918) (-1282 "VOID.spad" 2230293 2230302 2230606 2230611) (-1281 "VIEW.spad" 2227973 2227982 2230283 2230288) (-1280 "VIEWDEF.spad" 2223174 2223183 2227963 2227968) (-1279 "VIEW3D.spad" 2207135 2207144 2223164 2223169) (-1278 "VIEW2D.spad" 2195026 2195035 2207125 2207130) (-1277 "VECTOR.spad" 2193700 2193711 2193951 2193978) (-1276 "VECTOR2.spad" 2192339 2192352 2193690 2193695) (-1275 "VECTCAT.spad" 2190243 2190254 2192307 2192334) (-1274 "VECTCAT.spad" 2187954 2187967 2190020 2190025) (-1273 "VARIABLE.spad" 2187734 2187749 2187944 2187949) (-1272 "UTYPE.spad" 2187378 2187387 2187724 2187729) (-1271 "UTSODETL.spad" 2186673 2186697 2187334 2187339) (-1270 "UTSODE.spad" 2184889 2184909 2186663 2186668) (-1269 "UTS.spad" 2179693 2179721 2183356 2183453) (-1268 "UTSCAT.spad" 2177172 2177188 2179591 2179688) (-1267 "UTSCAT.spad" 2174295 2174313 2176716 2176721) (-1266 "UTS2.spad" 2173890 2173925 2174285 2174290) (-1265 "URAGG.spad" 2168563 2168574 2173880 2173885) (-1264 "URAGG.spad" 2163200 2163213 2168519 2168524) (-1263 "UPXSSING.spad" 2160845 2160871 2162281 2162414) (-1262 "UPXS.spad" 2157999 2158027 2158977 2159126) (-1261 "UPXSCONS.spad" 2155758 2155778 2156131 2156280) (-1260 "UPXSCCA.spad" 2154329 2154349 2155604 2155753) (-1259 "UPXSCCA.spad" 2153042 2153064 2154319 2154324) (-1258 "UPXSCAT.spad" 2151631 2151647 2152888 2153037) (-1257 "UPXS2.spad" 2151174 2151227 2151621 2151626) (-1256 "UPSQFREE.spad" 2149588 2149602 2151164 2151169) (-1255 "UPSCAT.spad" 2147375 2147399 2149486 2149583) (-1254 "UPSCAT.spad" 2144868 2144894 2146981 2146986) (-1253 "UPOLYC.spad" 2139908 2139919 2144710 2144863) (-1252 "UPOLYC.spad" 2134840 2134853 2139644 2139649) (-1251 "UPOLYC2.spad" 2134311 2134330 2134830 2134835) (-1250 "UP.spad" 2131510 2131525 2131897 2132050) (-1249 "UPMP.spad" 2130410 2130423 2131500 2131505) (-1248 "UPDIVP.spad" 2129975 2129989 2130400 2130405) (-1247 "UPDECOMP.spad" 2128220 2128234 2129965 2129970) (-1246 "UPCDEN.spad" 2127429 2127445 2128210 2128215) (-1245 "UP2.spad" 2126793 2126814 2127419 2127424) (-1244 "UNISEG.spad" 2126146 2126157 2126712 2126717) (-1243 "UNISEG2.spad" 2125643 2125656 2126102 2126107) (-1242 "UNIFACT.spad" 2124746 2124758 2125633 2125638) (-1241 "ULS.spad" 2115304 2115332 2116391 2116820) (-1240 "ULSCONS.spad" 2107700 2107720 2108070 2108219) (-1239 "ULSCCAT.spad" 2105437 2105457 2107546 2107695) (-1238 "ULSCCAT.spad" 2103282 2103304 2105393 2105398) (-1237 "ULSCAT.spad" 2101514 2101530 2103128 2103277) (-1236 "ULS2.spad" 2101028 2101081 2101504 2101509) (-1235 "UINT8.spad" 2100905 2100914 2101018 2101023) (-1234 "UINT64.spad" 2100781 2100790 2100895 2100900) (-1233 "UINT32.spad" 2100657 2100666 2100771 2100776) (-1232 "UINT16.spad" 2100533 2100542 2100647 2100652) (-1231 "UFD.spad" 2099598 2099607 2100459 2100528) (-1230 "UFD.spad" 2098725 2098736 2099588 2099593) (-1229 "UDVO.spad" 2097606 2097615 2098715 2098720) (-1228 "UDPO.spad" 2095099 2095110 2097562 2097567) (-1227 "TYPE.spad" 2095031 2095040 2095089 2095094) (-1226 "TYPEAST.spad" 2094950 2094959 2095021 2095026) (-1225 "TWOFACT.spad" 2093602 2093617 2094940 2094945) (-1224 "TUPLE.spad" 2093088 2093099 2093501 2093506) (-1223 "TUBETOOL.spad" 2089955 2089964 2093078 2093083) (-1222 "TUBE.spad" 2088602 2088619 2089945 2089950) (-1221 "TS.spad" 2087201 2087217 2088167 2088264) (-1220 "TSETCAT.spad" 2074328 2074345 2087169 2087196) (-1219 "TSETCAT.spad" 2061441 2061460 2074284 2074289) (-1218 "TRMANIP.spad" 2055807 2055824 2061147 2061152) (-1217 "TRIMAT.spad" 2054770 2054795 2055797 2055802) (-1216 "TRIGMNIP.spad" 2053297 2053314 2054760 2054765) (-1215 "TRIGCAT.spad" 2052809 2052818 2053287 2053292) (-1214 "TRIGCAT.spad" 2052319 2052330 2052799 2052804) (-1213 "TREE.spad" 2050894 2050905 2051926 2051953) (-1212 "TRANFUN.spad" 2050733 2050742 2050884 2050889) (-1211 "TRANFUN.spad" 2050570 2050581 2050723 2050728) (-1210 "TOPSP.spad" 2050244 2050253 2050560 2050565) (-1209 "TOOLSIGN.spad" 2049907 2049918 2050234 2050239) (-1208 "TEXTFILE.spad" 2048468 2048477 2049897 2049902) (-1207 "TEX.spad" 2045614 2045623 2048458 2048463) (-1206 "TEX1.spad" 2045170 2045181 2045604 2045609) (-1205 "TEMUTL.spad" 2044725 2044734 2045160 2045165) (-1204 "TBCMPPK.spad" 2042818 2042841 2044715 2044720) (-1203 "TBAGG.spad" 2041868 2041891 2042798 2042813) (-1202 "TBAGG.spad" 2040926 2040951 2041858 2041863) (-1201 "TANEXP.spad" 2040334 2040345 2040916 2040921) (-1200 "TALGOP.spad" 2040058 2040069 2040324 2040329) (-1199 "TABLE.spad" 2038469 2038492 2038739 2038766) (-1198 "TABLEAU.spad" 2037950 2037961 2038459 2038464) (-1197 "TABLBUMP.spad" 2034753 2034764 2037940 2037945) (-1196 "SYSTEM.spad" 2033981 2033990 2034743 2034748) (-1195 "SYSSOLP.spad" 2031464 2031475 2033971 2033976) (-1194 "SYSPTR.spad" 2031363 2031372 2031454 2031459) (-1193 "SYSNNI.spad" 2030545 2030556 2031353 2031358) (-1192 "SYSINT.spad" 2029949 2029960 2030535 2030540) (-1191 "SYNTAX.spad" 2026155 2026164 2029939 2029944) (-1190 "SYMTAB.spad" 2024223 2024232 2026145 2026150) (-1189 "SYMS.spad" 2020246 2020255 2024213 2024218) (-1188 "SYMPOLY.spad" 2019253 2019264 2019335 2019462) (-1187 "SYMFUNC.spad" 2018754 2018765 2019243 2019248) (-1186 "SYMBOL.spad" 2016257 2016266 2018744 2018749) (-1185 "SWITCH.spad" 2013028 2013037 2016247 2016252) (-1184 "SUTS.spad" 2009933 2009961 2011495 2011592) (-1183 "SUPXS.spad" 2007074 2007102 2008065 2008214) (-1182 "SUP.spad" 2003887 2003898 2004660 2004813) (-1181 "SUPFRACF.spad" 2002992 2003010 2003877 2003882) (-1180 "SUP2.spad" 2002384 2002397 2002982 2002987) (-1179 "SUMRF.spad" 2001358 2001369 2002374 2002379) (-1178 "SUMFS.spad" 2000995 2001012 2001348 2001353) (-1177 "SULS.spad" 1991540 1991568 1992640 1993069) (-1176 "SUCHTAST.spad" 1991309 1991318 1991530 1991535) (-1175 "SUCH.spad" 1990991 1991006 1991299 1991304) (-1174 "SUBSPACE.spad" 1983106 1983121 1990981 1990986) (-1173 "SUBRESP.spad" 1982276 1982290 1983062 1983067) (-1172 "STTF.spad" 1978375 1978391 1982266 1982271) (-1171 "STTFNC.spad" 1974843 1974859 1978365 1978370) (-1170 "STTAYLOR.spad" 1967478 1967489 1974724 1974729) (-1169 "STRTBL.spad" 1965983 1966000 1966132 1966159) (-1168 "STRING.spad" 1965392 1965401 1965406 1965433) (-1167 "STRICAT.spad" 1965180 1965189 1965360 1965387) (-1166 "STREAM.spad" 1962098 1962109 1964705 1964720) (-1165 "STREAM3.spad" 1961671 1961686 1962088 1962093) (-1164 "STREAM2.spad" 1960799 1960812 1961661 1961666) (-1163 "STREAM1.spad" 1960505 1960516 1960789 1960794) (-1162 "STINPROD.spad" 1959441 1959457 1960495 1960500) (-1161 "STEP.spad" 1958642 1958651 1959431 1959436) (-1160 "STEPAST.spad" 1957876 1957885 1958632 1958637) (-1159 "STBL.spad" 1956402 1956430 1956569 1956584) (-1158 "STAGG.spad" 1955477 1955488 1956392 1956397) (-1157 "STAGG.spad" 1954550 1954563 1955467 1955472) (-1156 "STACK.spad" 1953907 1953918 1954157 1954184) (-1155 "SREGSET.spad" 1951611 1951628 1953553 1953580) (-1154 "SRDCMPK.spad" 1950172 1950192 1951601 1951606) (-1153 "SRAGG.spad" 1945315 1945324 1950140 1950167) (-1152 "SRAGG.spad" 1940478 1940489 1945305 1945310) (-1151 "SQMATRIX.spad" 1938094 1938112 1939010 1939097) (-1150 "SPLTREE.spad" 1932646 1932659 1937530 1937557) (-1149 "SPLNODE.spad" 1929234 1929247 1932636 1932641) (-1148 "SPFCAT.spad" 1928043 1928052 1929224 1929229) (-1147 "SPECOUT.spad" 1926595 1926604 1928033 1928038) (-1146 "SPADXPT.spad" 1918190 1918199 1926585 1926590) (-1145 "spad-parser.spad" 1917655 1917664 1918180 1918185) (-1144 "SPADAST.spad" 1917356 1917365 1917645 1917650) (-1143 "SPACEC.spad" 1901555 1901566 1917346 1917351) (-1142 "SPACE3.spad" 1901331 1901342 1901545 1901550) (-1141 "SORTPAK.spad" 1900880 1900893 1901287 1901292) (-1140 "SOLVETRA.spad" 1898643 1898654 1900870 1900875) (-1139 "SOLVESER.spad" 1897171 1897182 1898633 1898638) (-1138 "SOLVERAD.spad" 1893197 1893208 1897161 1897166) (-1137 "SOLVEFOR.spad" 1891659 1891677 1893187 1893192) (-1136 "SNTSCAT.spad" 1891259 1891276 1891627 1891654) (-1135 "SMTS.spad" 1889531 1889557 1890824 1890921) (-1134 "SMP.spad" 1887006 1887026 1887396 1887523) (-1133 "SMITH.spad" 1885851 1885876 1886996 1887001) (-1132 "SMATCAT.spad" 1883961 1883991 1885795 1885846) (-1131 "SMATCAT.spad" 1882003 1882035 1883839 1883844) (-1130 "SKAGG.spad" 1880966 1880977 1881971 1881998) (-1129 "SINT.spad" 1879906 1879915 1880832 1880961) (-1128 "SIMPAN.spad" 1879634 1879643 1879896 1879901) (-1127 "SIG.spad" 1878964 1878973 1879624 1879629) (-1126 "SIGNRF.spad" 1878082 1878093 1878954 1878959) (-1125 "SIGNEF.spad" 1877361 1877378 1878072 1878077) (-1124 "SIGAST.spad" 1876746 1876755 1877351 1877356) (-1123 "SHP.spad" 1874674 1874689 1876702 1876707) (-1122 "SHDP.spad" 1864385 1864412 1864894 1865025) (-1121 "SGROUP.spad" 1863993 1864002 1864375 1864380) (-1120 "SGROUP.spad" 1863599 1863610 1863983 1863988) (-1119 "SGCF.spad" 1856738 1856747 1863589 1863594) (-1118 "SFRTCAT.spad" 1855668 1855685 1856706 1856733) (-1117 "SFRGCD.spad" 1854731 1854751 1855658 1855663) (-1116 "SFQCMPK.spad" 1849368 1849388 1854721 1854726) (-1115 "SFORT.spad" 1848807 1848821 1849358 1849363) (-1114 "SEXOF.spad" 1848650 1848690 1848797 1848802) (-1113 "SEX.spad" 1848542 1848551 1848640 1848645) (-1112 "SEXCAT.spad" 1846323 1846363 1848532 1848537) (-1111 "SET.spad" 1844647 1844658 1845744 1845783) (-1110 "SETMN.spad" 1843097 1843114 1844637 1844642) (-1109 "SETCAT.spad" 1842419 1842428 1843087 1843092) (-1108 "SETCAT.spad" 1841739 1841750 1842409 1842414) (-1107 "SETAGG.spad" 1838288 1838299 1841719 1841734) (-1106 "SETAGG.spad" 1834845 1834858 1838278 1838283) (-1105 "SEQAST.spad" 1834548 1834557 1834835 1834840) (-1104 "SEGXCAT.spad" 1833704 1833717 1834538 1834543) (-1103 "SEG.spad" 1833517 1833528 1833623 1833628) (-1102 "SEGCAT.spad" 1832442 1832453 1833507 1833512) (-1101 "SEGBIND.spad" 1832200 1832211 1832389 1832394) (-1100 "SEGBIND2.spad" 1831898 1831911 1832190 1832195) (-1099 "SEGAST.spad" 1831612 1831621 1831888 1831893) (-1098 "SEG2.spad" 1831047 1831060 1831568 1831573) (-1097 "SDVAR.spad" 1830323 1830334 1831037 1831042) (-1096 "SDPOL.spad" 1827749 1827760 1828040 1828167) (-1095 "SCPKG.spad" 1825838 1825849 1827739 1827744) (-1094 "SCOPE.spad" 1824991 1825000 1825828 1825833) (-1093 "SCACHE.spad" 1823687 1823698 1824981 1824986) (-1092 "SASTCAT.spad" 1823596 1823605 1823677 1823682) (-1091 "SAOS.spad" 1823468 1823477 1823586 1823591) (-1090 "SAERFFC.spad" 1823181 1823201 1823458 1823463) (-1089 "SAE.spad" 1821356 1821372 1821967 1822102) (-1088 "SAEFACT.spad" 1821057 1821077 1821346 1821351) (-1087 "RURPK.spad" 1818716 1818732 1821047 1821052) (-1086 "RULESET.spad" 1818169 1818193 1818706 1818711) (-1085 "RULE.spad" 1816409 1816433 1818159 1818164) (-1084 "RULECOLD.spad" 1816261 1816274 1816399 1816404) (-1083 "RTVALUE.spad" 1815996 1816005 1816251 1816256) (-1082 "RSTRCAST.spad" 1815713 1815722 1815986 1815991) (-1081 "RSETGCD.spad" 1812091 1812111 1815703 1815708) (-1080 "RSETCAT.spad" 1802027 1802044 1812059 1812086) (-1079 "RSETCAT.spad" 1791983 1792002 1802017 1802022) (-1078 "RSDCMPK.spad" 1790435 1790455 1791973 1791978) (-1077 "RRCC.spad" 1788819 1788849 1790425 1790430) (-1076 "RRCC.spad" 1787201 1787233 1788809 1788814) (-1075 "RPTAST.spad" 1786903 1786912 1787191 1787196) (-1074 "RPOLCAT.spad" 1766263 1766278 1786771 1786898) (-1073 "RPOLCAT.spad" 1745336 1745353 1765846 1765851) (-1072 "ROUTINE.spad" 1741219 1741228 1743983 1744010) (-1071 "ROMAN.spad" 1740547 1740556 1741085 1741214) (-1070 "ROIRC.spad" 1739627 1739659 1740537 1740542) (-1069 "RNS.spad" 1738530 1738539 1739529 1739622) (-1068 "RNS.spad" 1737519 1737530 1738520 1738525) (-1067 "RNG.spad" 1737254 1737263 1737509 1737514) (-1066 "RNGBIND.spad" 1736414 1736428 1737209 1737214) (-1065 "RMODULE.spad" 1736179 1736190 1736404 1736409) (-1064 "RMCAT2.spad" 1735599 1735656 1736169 1736174) (-1063 "RMATRIX.spad" 1734423 1734442 1734766 1734805) (-1062 "RMATCAT.spad" 1730002 1730033 1734379 1734418) (-1061 "RMATCAT.spad" 1725471 1725504 1729850 1729855) (-1060 "RLINSET.spad" 1724865 1724876 1725461 1725466) (-1059 "RINTERP.spad" 1724753 1724773 1724855 1724860) (-1058 "RING.spad" 1724223 1724232 1724733 1724748) (-1057 "RING.spad" 1723701 1723712 1724213 1724218) (-1056 "RIDIST.spad" 1723093 1723102 1723691 1723696) (-1055 "RGCHAIN.spad" 1721676 1721692 1722578 1722605) (-1054 "RGBCSPC.spad" 1721457 1721469 1721666 1721671) (-1053 "RGBCMDL.spad" 1720987 1720999 1721447 1721452) (-1052 "RF.spad" 1718629 1718640 1720977 1720982) (-1051 "RFFACTOR.spad" 1718091 1718102 1718619 1718624) (-1050 "RFFACT.spad" 1717826 1717838 1718081 1718086) (-1049 "RFDIST.spad" 1716822 1716831 1717816 1717821) (-1048 "RETSOL.spad" 1716241 1716254 1716812 1716817) (-1047 "RETRACT.spad" 1715669 1715680 1716231 1716236) (-1046 "RETRACT.spad" 1715095 1715108 1715659 1715664) (-1045 "RETAST.spad" 1714907 1714916 1715085 1715090) (-1044 "RESULT.spad" 1712967 1712976 1713554 1713581) (-1043 "RESRING.spad" 1712314 1712361 1712905 1712962) (-1042 "RESLATC.spad" 1711638 1711649 1712304 1712309) (-1041 "REPSQ.spad" 1711369 1711380 1711628 1711633) (-1040 "REP.spad" 1708923 1708932 1711359 1711364) (-1039 "REPDB.spad" 1708630 1708641 1708913 1708918) (-1038 "REP2.spad" 1698288 1698299 1708472 1708477) (-1037 "REP1.spad" 1692484 1692495 1698238 1698243) (-1036 "REGSET.spad" 1690281 1690298 1692130 1692157) (-1035 "REF.spad" 1689616 1689627 1690236 1690241) (-1034 "REDORDER.spad" 1688822 1688839 1689606 1689611) (-1033 "RECLOS.spad" 1687605 1687625 1688309 1688402) (-1032 "REALSOLV.spad" 1686745 1686754 1687595 1687600) (-1031 "REAL.spad" 1686617 1686626 1686735 1686740) (-1030 "REAL0Q.spad" 1683915 1683930 1686607 1686612) (-1029 "REAL0.spad" 1680759 1680774 1683905 1683910) (-1028 "RDUCEAST.spad" 1680480 1680489 1680749 1680754) (-1027 "RDIV.spad" 1680135 1680160 1680470 1680475) (-1026 "RDIST.spad" 1679702 1679713 1680125 1680130) (-1025 "RDETRS.spad" 1678566 1678584 1679692 1679697) (-1024 "RDETR.spad" 1676705 1676723 1678556 1678561) (-1023 "RDEEFS.spad" 1675804 1675821 1676695 1676700) (-1022 "RDEEF.spad" 1674814 1674831 1675794 1675799) (-1021 "RCFIELD.spad" 1672000 1672009 1674716 1674809) (-1020 "RCFIELD.spad" 1669272 1669283 1671990 1671995) (-1019 "RCAGG.spad" 1667200 1667211 1669262 1669267) (-1018 "RCAGG.spad" 1665055 1665068 1667119 1667124) (-1017 "RATRET.spad" 1664415 1664426 1665045 1665050) (-1016 "RATFACT.spad" 1664107 1664119 1664405 1664410) (-1015 "RANDSRC.spad" 1663426 1663435 1664097 1664102) (-1014 "RADUTIL.spad" 1663182 1663191 1663416 1663421) (-1013 "RADIX.spad" 1660103 1660117 1661649 1661742) (-1012 "RADFF.spad" 1658516 1658553 1658635 1658791) (-1011 "RADCAT.spad" 1658111 1658120 1658506 1658511) (-1010 "RADCAT.spad" 1657704 1657715 1658101 1658106) (-1009 "QUEUE.spad" 1657052 1657063 1657311 1657338) (-1008 "QUAT.spad" 1655633 1655644 1655976 1656041) (-1007 "QUATCT2.spad" 1655253 1655272 1655623 1655628) (-1006 "QUATCAT.spad" 1653423 1653434 1655183 1655248) (-1005 "QUATCAT.spad" 1651344 1651357 1653106 1653111) (-1004 "QUAGG.spad" 1650171 1650182 1651312 1651339) (-1003 "QQUTAST.spad" 1649939 1649948 1650161 1650166) (-1002 "QFORM.spad" 1649557 1649572 1649929 1649934) (-1001 "QFCAT.spad" 1648259 1648270 1649459 1649552) (-1000 "QFCAT.spad" 1646552 1646565 1647754 1647759) (-999 "QFCAT2.spad" 1646245 1646261 1646542 1646547) (-998 "QEQUAT.spad" 1645804 1645812 1646235 1646240) (-997 "QCMPACK.spad" 1640551 1640570 1645794 1645799) (-996 "QALGSET.spad" 1636630 1636662 1640465 1640470) (-995 "QALGSET2.spad" 1634626 1634644 1636620 1636625) (-994 "PWFFINTB.spad" 1632042 1632063 1634616 1634621) (-993 "PUSHVAR.spad" 1631381 1631400 1632032 1632037) (-992 "PTRANFN.spad" 1627509 1627519 1631371 1631376) (-991 "PTPACK.spad" 1624597 1624607 1627499 1627504) (-990 "PTFUNC2.spad" 1624420 1624434 1624587 1624592) (-989 "PTCAT.spad" 1623675 1623685 1624388 1624415) (-988 "PSQFR.spad" 1622982 1623006 1623665 1623670) (-987 "PSEUDLIN.spad" 1621868 1621878 1622972 1622977) (-986 "PSETPK.spad" 1607301 1607317 1621746 1621751) (-985 "PSETCAT.spad" 1601221 1601244 1607281 1607296) (-984 "PSETCAT.spad" 1595115 1595140 1601177 1601182) (-983 "PSCURVE.spad" 1594098 1594106 1595105 1595110) (-982 "PSCAT.spad" 1592881 1592910 1593996 1594093) (-981 "PSCAT.spad" 1591754 1591785 1592871 1592876) (-980 "PRTITION.spad" 1590452 1590460 1591744 1591749) (-979 "PRTDAST.spad" 1590171 1590179 1590442 1590447) (-978 "PRS.spad" 1579733 1579750 1590127 1590132) (-977 "PRQAGG.spad" 1579168 1579178 1579701 1579728) (-976 "PROPLOG.spad" 1578740 1578748 1579158 1579163) (-975 "PROPFUN2.spad" 1578363 1578376 1578730 1578735) (-974 "PROPFUN1.spad" 1577761 1577772 1578353 1578358) (-973 "PROPFRML.spad" 1576329 1576340 1577751 1577756) (-972 "PROPERTY.spad" 1575817 1575825 1576319 1576324) (-971 "PRODUCT.spad" 1573499 1573511 1573783 1573838) (-970 "PR.spad" 1571891 1571903 1572590 1572717) (-969 "PRINT.spad" 1571643 1571651 1571881 1571886) (-968 "PRIMES.spad" 1569896 1569906 1571633 1571638) (-967 "PRIMELT.spad" 1567977 1567991 1569886 1569891) (-966 "PRIMCAT.spad" 1567604 1567612 1567967 1567972) (-965 "PRIMARR.spad" 1566609 1566619 1566787 1566814) (-964 "PRIMARR2.spad" 1565376 1565388 1566599 1566604) (-963 "PREASSOC.spad" 1564758 1564770 1565366 1565371) (-962 "PPCURVE.spad" 1563895 1563903 1564748 1564753) (-961 "PORTNUM.spad" 1563670 1563678 1563885 1563890) (-960 "POLYROOT.spad" 1562519 1562541 1563626 1563631) (-959 "POLY.spad" 1559854 1559864 1560369 1560496) (-958 "POLYLIFT.spad" 1559119 1559142 1559844 1559849) (-957 "POLYCATQ.spad" 1557237 1557259 1559109 1559114) (-956 "POLYCAT.spad" 1550707 1550728 1557105 1557232) (-955 "POLYCAT.spad" 1543515 1543538 1549915 1549920) (-954 "POLY2UP.spad" 1542967 1542981 1543505 1543510) (-953 "POLY2.spad" 1542564 1542576 1542957 1542962) (-952 "POLUTIL.spad" 1541505 1541534 1542520 1542525) (-951 "POLTOPOL.spad" 1540253 1540268 1541495 1541500) (-950 "POINT.spad" 1539091 1539101 1539178 1539205) (-949 "PNTHEORY.spad" 1535793 1535801 1539081 1539086) (-948 "PMTOOLS.spad" 1534568 1534582 1535783 1535788) (-947 "PMSYM.spad" 1534117 1534127 1534558 1534563) (-946 "PMQFCAT.spad" 1533708 1533722 1534107 1534112) (-945 "PMPRED.spad" 1533187 1533201 1533698 1533703) (-944 "PMPREDFS.spad" 1532641 1532663 1533177 1533182) (-943 "PMPLCAT.spad" 1531721 1531739 1532573 1532578) (-942 "PMLSAGG.spad" 1531306 1531320 1531711 1531716) (-941 "PMKERNEL.spad" 1530885 1530897 1531296 1531301) (-940 "PMINS.spad" 1530465 1530475 1530875 1530880) (-939 "PMFS.spad" 1530042 1530060 1530455 1530460) (-938 "PMDOWN.spad" 1529332 1529346 1530032 1530037) (-937 "PMASS.spad" 1528342 1528350 1529322 1529327) (-936 "PMASSFS.spad" 1527309 1527325 1528332 1528337) (-935 "PLOTTOOL.spad" 1527089 1527097 1527299 1527304) (-934 "PLOT.spad" 1522012 1522020 1527079 1527084) (-933 "PLOT3D.spad" 1518476 1518484 1522002 1522007) (-932 "PLOT1.spad" 1517633 1517643 1518466 1518471) (-931 "PLEQN.spad" 1504923 1504950 1517623 1517628) (-930 "PINTERP.spad" 1504545 1504564 1504913 1504918) (-929 "PINTERPA.spad" 1504329 1504345 1504535 1504540) (-928 "PI.spad" 1503938 1503946 1504303 1504324) (-927 "PID.spad" 1502908 1502916 1503864 1503933) (-926 "PICOERCE.spad" 1502565 1502575 1502898 1502903) (-925 "PGROEB.spad" 1501166 1501180 1502555 1502560) (-924 "PGE.spad" 1492783 1492791 1501156 1501161) (-923 "PGCD.spad" 1491673 1491690 1492773 1492778) (-922 "PFRPAC.spad" 1490822 1490832 1491663 1491668) (-921 "PFR.spad" 1487485 1487495 1490724 1490817) (-920 "PFOTOOLS.spad" 1486743 1486759 1487475 1487480) (-919 "PFOQ.spad" 1486113 1486131 1486733 1486738) (-918 "PFO.spad" 1485532 1485559 1486103 1486108) (-917 "PF.spad" 1485106 1485118 1485337 1485430) (-916 "PFECAT.spad" 1482788 1482796 1485032 1485101) (-915 "PFECAT.spad" 1480498 1480508 1482744 1482749) (-914 "PFBRU.spad" 1478386 1478398 1480488 1480493) (-913 "PFBR.spad" 1475946 1475969 1478376 1478381) (-912 "PERM.spad" 1471753 1471763 1475776 1475791) (-911 "PERMGRP.spad" 1466523 1466533 1471743 1471748) (-910 "PERMCAT.spad" 1465184 1465194 1466503 1466518) (-909 "PERMAN.spad" 1463716 1463730 1465174 1465179) (-908 "PENDTREE.spad" 1463057 1463067 1463345 1463350) (-907 "PDRING.spad" 1461608 1461618 1463037 1463052) (-906 "PDRING.spad" 1460167 1460179 1461598 1461603) (-905 "PDEPROB.spad" 1459182 1459190 1460157 1460162) (-904 "PDEPACK.spad" 1453222 1453230 1459172 1459177) (-903 "PDECOMP.spad" 1452692 1452709 1453212 1453217) (-902 "PDECAT.spad" 1451048 1451056 1452682 1452687) (-901 "PCOMP.spad" 1450901 1450914 1451038 1451043) (-900 "PBWLB.spad" 1449489 1449506 1450891 1450896) (-899 "PATTERN.spad" 1444028 1444038 1449479 1449484) (-898 "PATTERN2.spad" 1443766 1443778 1444018 1444023) (-897 "PATTERN1.spad" 1442102 1442118 1443756 1443761) (-896 "PATRES.spad" 1439677 1439689 1442092 1442097) (-895 "PATRES2.spad" 1439349 1439363 1439667 1439672) (-894 "PATMATCH.spad" 1437546 1437577 1439057 1439062) (-893 "PATMAB.spad" 1436975 1436985 1437536 1437541) (-892 "PATLRES.spad" 1436061 1436075 1436965 1436970) (-891 "PATAB.spad" 1435825 1435835 1436051 1436056) (-890 "PARTPERM.spad" 1433833 1433841 1435815 1435820) (-889 "PARSURF.spad" 1433267 1433295 1433823 1433828) (-888 "PARSU2.spad" 1433064 1433080 1433257 1433262) (-887 "script-parser.spad" 1432584 1432592 1433054 1433059) (-886 "PARSCURV.spad" 1432018 1432046 1432574 1432579) (-885 "PARSC2.spad" 1431809 1431825 1432008 1432013) (-884 "PARPCURV.spad" 1431271 1431299 1431799 1431804) (-883 "PARPC2.spad" 1431062 1431078 1431261 1431266) (-882 "PARAMAST.spad" 1430190 1430198 1431052 1431057) (-881 "PAN2EXPR.spad" 1429602 1429610 1430180 1430185) (-880 "PALETTE.spad" 1428572 1428580 1429592 1429597) (-879 "PAIR.spad" 1427559 1427572 1428160 1428165) (-878 "PADICRC.spad" 1424893 1424911 1426064 1426157) (-877 "PADICRAT.spad" 1422908 1422920 1423129 1423222) (-876 "PADIC.spad" 1422603 1422615 1422834 1422903) (-875 "PADICCT.spad" 1421152 1421164 1422529 1422598) (-874 "PADEPAC.spad" 1419841 1419860 1421142 1421147) (-873 "PADE.spad" 1418593 1418609 1419831 1419836) (-872 "OWP.spad" 1417833 1417863 1418451 1418518) (-871 "OVERSET.spad" 1417406 1417414 1417823 1417828) (-870 "OVAR.spad" 1417187 1417210 1417396 1417401) (-869 "OUT.spad" 1416273 1416281 1417177 1417182) (-868 "OUTFORM.spad" 1405665 1405673 1416263 1416268) (-867 "OUTBFILE.spad" 1405083 1405091 1405655 1405660) (-866 "OUTBCON.spad" 1404089 1404097 1405073 1405078) (-865 "OUTBCON.spad" 1403093 1403103 1404079 1404084) (-864 "OSI.spad" 1402568 1402576 1403083 1403088) (-863 "OSGROUP.spad" 1402486 1402494 1402558 1402563) (-862 "ORTHPOL.spad" 1400971 1400981 1402403 1402408) (-861 "OREUP.spad" 1400424 1400452 1400651 1400690) (-860 "ORESUP.spad" 1399725 1399749 1400104 1400143) (-859 "OREPCTO.spad" 1397582 1397594 1399645 1399650) (-858 "OREPCAT.spad" 1391729 1391739 1397538 1397577) (-857 "OREPCAT.spad" 1385766 1385778 1391577 1391582) (-856 "ORDSET.spad" 1384938 1384946 1385756 1385761) (-855 "ORDSET.spad" 1384108 1384118 1384928 1384933) (-854 "ORDRING.spad" 1383498 1383506 1384088 1384103) (-853 "ORDRING.spad" 1382896 1382906 1383488 1383493) (-852 "ORDMON.spad" 1382751 1382759 1382886 1382891) (-851 "ORDFUNS.spad" 1381883 1381899 1382741 1382746) (-850 "ORDFIN.spad" 1381703 1381711 1381873 1381878) (-849 "ORDCOMP.spad" 1380168 1380178 1381250 1381279) (-848 "ORDCOMP2.spad" 1379461 1379473 1380158 1380163) (-847 "OPTPROB.spad" 1378099 1378107 1379451 1379456) (-846 "OPTPACK.spad" 1370508 1370516 1378089 1378094) (-845 "OPTCAT.spad" 1368187 1368195 1370498 1370503) (-844 "OPSIG.spad" 1367841 1367849 1368177 1368182) (-843 "OPQUERY.spad" 1367390 1367398 1367831 1367836) (-842 "OP.spad" 1367132 1367142 1367212 1367279) (-841 "OPERCAT.spad" 1366598 1366608 1367122 1367127) (-840 "OPERCAT.spad" 1366062 1366074 1366588 1366593) (-839 "ONECOMP.spad" 1364807 1364817 1365609 1365638) (-838 "ONECOMP2.spad" 1364231 1364243 1364797 1364802) (-837 "OMSERVER.spad" 1363237 1363245 1364221 1364226) (-836 "OMSAGG.spad" 1363025 1363035 1363193 1363232) (-835 "OMPKG.spad" 1361641 1361649 1363015 1363020) (-834 "OM.spad" 1360614 1360622 1361631 1361636) (-833 "OMLO.spad" 1360039 1360051 1360500 1360539) (-832 "OMEXPR.spad" 1359873 1359883 1360029 1360034) (-831 "OMERR.spad" 1359418 1359426 1359863 1359868) (-830 "OMERRK.spad" 1358452 1358460 1359408 1359413) (-829 "OMENC.spad" 1357796 1357804 1358442 1358447) (-828 "OMDEV.spad" 1352105 1352113 1357786 1357791) (-827 "OMCONN.spad" 1351514 1351522 1352095 1352100) (-826 "OINTDOM.spad" 1351277 1351285 1351440 1351509) (-825 "OFMONOID.spad" 1349400 1349410 1351233 1351238) (-824 "ODVAR.spad" 1348661 1348671 1349390 1349395) (-823 "ODR.spad" 1348305 1348331 1348473 1348622) (-822 "ODPOL.spad" 1345687 1345697 1346027 1346154) (-821 "ODP.spad" 1335534 1335554 1335907 1336038) (-820 "ODETOOLS.spad" 1334183 1334202 1335524 1335529) (-819 "ODESYS.spad" 1331877 1331894 1334173 1334178) (-818 "ODERTRIC.spad" 1327886 1327903 1331834 1331839) (-817 "ODERED.spad" 1327285 1327309 1327876 1327881) (-816 "ODERAT.spad" 1324900 1324917 1327275 1327280) (-815 "ODEPRRIC.spad" 1321937 1321959 1324890 1324895) (-814 "ODEPROB.spad" 1321194 1321202 1321927 1321932) (-813 "ODEPRIM.spad" 1318528 1318550 1321184 1321189) (-812 "ODEPAL.spad" 1317914 1317938 1318518 1318523) (-811 "ODEPACK.spad" 1304580 1304588 1317904 1317909) (-810 "ODEINT.spad" 1304015 1304031 1304570 1304575) (-809 "ODEIFTBL.spad" 1301410 1301418 1304005 1304010) (-808 "ODEEF.spad" 1296901 1296917 1301400 1301405) (-807 "ODECONST.spad" 1296438 1296456 1296891 1296896) (-806 "ODECAT.spad" 1295036 1295044 1296428 1296433) (-805 "OCT.spad" 1293172 1293182 1293886 1293925) (-804 "OCTCT2.spad" 1292818 1292839 1293162 1293167) (-803 "OC.spad" 1290614 1290624 1292774 1292813) (-802 "OC.spad" 1288135 1288147 1290297 1290302) (-801 "OCAMON.spad" 1287983 1287991 1288125 1288130) (-800 "OASGP.spad" 1287798 1287806 1287973 1287978) (-799 "OAMONS.spad" 1287320 1287328 1287788 1287793) (-798 "OAMON.spad" 1287181 1287189 1287310 1287315) (-797 "OAGROUP.spad" 1287043 1287051 1287171 1287176) (-796 "NUMTUBE.spad" 1286634 1286650 1287033 1287038) (-795 "NUMQUAD.spad" 1274610 1274618 1286624 1286629) (-794 "NUMODE.spad" 1265964 1265972 1274600 1274605) (-793 "NUMINT.spad" 1263530 1263538 1265954 1265959) (-792 "NUMFMT.spad" 1262370 1262378 1263520 1263525) (-791 "NUMERIC.spad" 1254484 1254494 1262175 1262180) (-790 "NTSCAT.spad" 1252992 1253008 1254452 1254479) (-789 "NTPOLFN.spad" 1252543 1252553 1252909 1252914) (-788 "NSUP.spad" 1245589 1245599 1250129 1250282) (-787 "NSUP2.spad" 1244981 1244993 1245579 1245584) (-786 "NSMP.spad" 1241211 1241230 1241519 1241646) (-785 "NREP.spad" 1239589 1239603 1241201 1241206) (-784 "NPCOEF.spad" 1238835 1238855 1239579 1239584) (-783 "NORMRETR.spad" 1238433 1238472 1238825 1238830) (-782 "NORMPK.spad" 1236335 1236354 1238423 1238428) (-781 "NORMMA.spad" 1236023 1236049 1236325 1236330) (-780 "NONE.spad" 1235764 1235772 1236013 1236018) (-779 "NONE1.spad" 1235440 1235450 1235754 1235759) (-778 "NODE1.spad" 1234927 1234943 1235430 1235435) (-777 "NNI.spad" 1233822 1233830 1234901 1234922) (-776 "NLINSOL.spad" 1232448 1232458 1233812 1233817) (-775 "NIPROB.spad" 1230989 1230997 1232438 1232443) (-774 "NFINTBAS.spad" 1228549 1228566 1230979 1230984) (-773 "NETCLT.spad" 1228523 1228534 1228539 1228544) (-772 "NCODIV.spad" 1226739 1226755 1228513 1228518) (-771 "NCNTFRAC.spad" 1226381 1226395 1226729 1226734) (-770 "NCEP.spad" 1224547 1224561 1226371 1226376) (-769 "NASRING.spad" 1224143 1224151 1224537 1224542) (-768 "NASRING.spad" 1223737 1223747 1224133 1224138) (-767 "NARNG.spad" 1223089 1223097 1223727 1223732) (-766 "NARNG.spad" 1222439 1222449 1223079 1223084) (-765 "NAGSP.spad" 1221516 1221524 1222429 1222434) (-764 "NAGS.spad" 1211177 1211185 1221506 1221511) (-763 "NAGF07.spad" 1209608 1209616 1211167 1211172) (-762 "NAGF04.spad" 1204010 1204018 1209598 1209603) (-761 "NAGF02.spad" 1198079 1198087 1204000 1204005) (-760 "NAGF01.spad" 1193840 1193848 1198069 1198074) (-759 "NAGE04.spad" 1187540 1187548 1193830 1193835) (-758 "NAGE02.spad" 1178200 1178208 1187530 1187535) (-757 "NAGE01.spad" 1174202 1174210 1178190 1178195) (-756 "NAGD03.spad" 1172206 1172214 1174192 1174197) (-755 "NAGD02.spad" 1164953 1164961 1172196 1172201) (-754 "NAGD01.spad" 1159246 1159254 1164943 1164948) (-753 "NAGC06.spad" 1155121 1155129 1159236 1159241) (-752 "NAGC05.spad" 1153622 1153630 1155111 1155116) (-751 "NAGC02.spad" 1152889 1152897 1153612 1153617) (-750 "NAALG.spad" 1152430 1152440 1152857 1152884) (-749 "NAALG.spad" 1151991 1152003 1152420 1152425) (-748 "MULTSQFR.spad" 1148949 1148966 1151981 1151986) (-747 "MULTFACT.spad" 1148332 1148349 1148939 1148944) (-746 "MTSCAT.spad" 1146426 1146447 1148230 1148327) (-745 "MTHING.spad" 1146085 1146095 1146416 1146421) (-744 "MSYSCMD.spad" 1145519 1145527 1146075 1146080) (-743 "MSET.spad" 1143477 1143487 1145225 1145264) (-742 "MSETAGG.spad" 1143322 1143332 1143445 1143472) (-741 "MRING.spad" 1140299 1140311 1143030 1143097) (-740 "MRF2.spad" 1139869 1139883 1140289 1140294) (-739 "MRATFAC.spad" 1139415 1139432 1139859 1139864) (-738 "MPRFF.spad" 1137455 1137474 1139405 1139410) (-737 "MPOLY.spad" 1134926 1134941 1135285 1135412) (-736 "MPCPF.spad" 1134190 1134209 1134916 1134921) (-735 "MPC3.spad" 1134007 1134047 1134180 1134185) (-734 "MPC2.spad" 1133653 1133686 1133997 1134002) (-733 "MONOTOOL.spad" 1132004 1132021 1133643 1133648) (-732 "MONOID.spad" 1131323 1131331 1131994 1131999) (-731 "MONOID.spad" 1130640 1130650 1131313 1131318) (-730 "MONOGEN.spad" 1129388 1129401 1130500 1130635) (-729 "MONOGEN.spad" 1128158 1128173 1129272 1129277) (-728 "MONADWU.spad" 1126188 1126196 1128148 1128153) (-727 "MONADWU.spad" 1124216 1124226 1126178 1126183) (-726 "MONAD.spad" 1123376 1123384 1124206 1124211) (-725 "MONAD.spad" 1122534 1122544 1123366 1123371) (-724 "MOEBIUS.spad" 1121270 1121284 1122514 1122529) (-723 "MODULE.spad" 1121140 1121150 1121238 1121265) (-722 "MODULE.spad" 1121030 1121042 1121130 1121135) (-721 "MODRING.spad" 1120365 1120404 1121010 1121025) (-720 "MODOP.spad" 1119030 1119042 1120187 1120254) (-719 "MODMONOM.spad" 1118761 1118779 1119020 1119025) (-718 "MODMON.spad" 1115556 1115572 1116275 1116428) (-717 "MODFIELD.spad" 1114918 1114957 1115458 1115551) (-716 "MMLFORM.spad" 1113778 1113786 1114908 1114913) (-715 "MMAP.spad" 1113520 1113554 1113768 1113773) (-714 "MLO.spad" 1111979 1111989 1113476 1113515) (-713 "MLIFT.spad" 1110591 1110608 1111969 1111974) (-712 "MKUCFUNC.spad" 1110126 1110144 1110581 1110586) (-711 "MKRECORD.spad" 1109730 1109743 1110116 1110121) (-710 "MKFUNC.spad" 1109137 1109147 1109720 1109725) (-709 "MKFLCFN.spad" 1108105 1108115 1109127 1109132) (-708 "MKBCFUNC.spad" 1107600 1107618 1108095 1108100) (-707 "MINT.spad" 1107039 1107047 1107502 1107595) (-706 "MHROWRED.spad" 1105550 1105560 1107029 1107034) (-705 "MFLOAT.spad" 1104070 1104078 1105440 1105545) (-704 "MFINFACT.spad" 1103470 1103492 1104060 1104065) (-703 "MESH.spad" 1101252 1101260 1103460 1103465) (-702 "MDDFACT.spad" 1099463 1099473 1101242 1101247) (-701 "MDAGG.spad" 1098754 1098764 1099443 1099458) (-700 "MCMPLX.spad" 1094765 1094773 1095379 1095580) (-699 "MCDEN.spad" 1093975 1093987 1094755 1094760) (-698 "MCALCFN.spad" 1091097 1091123 1093965 1093970) (-697 "MAYBE.spad" 1090381 1090392 1091087 1091092) (-696 "MATSTOR.spad" 1087689 1087699 1090371 1090376) (-695 "MATRIX.spad" 1086393 1086403 1086877 1086904) (-694 "MATLIN.spad" 1083737 1083761 1086277 1086282) (-693 "MATCAT.spad" 1075466 1075488 1083705 1083732) (-692 "MATCAT.spad" 1067067 1067091 1075308 1075313) (-691 "MATCAT2.spad" 1066349 1066397 1067057 1067062) (-690 "MAPPKG3.spad" 1065264 1065278 1066339 1066344) (-689 "MAPPKG2.spad" 1064602 1064614 1065254 1065259) (-688 "MAPPKG1.spad" 1063430 1063440 1064592 1064597) (-687 "MAPPAST.spad" 1062745 1062753 1063420 1063425) (-686 "MAPHACK3.spad" 1062557 1062571 1062735 1062740) (-685 "MAPHACK2.spad" 1062326 1062338 1062547 1062552) (-684 "MAPHACK1.spad" 1061970 1061980 1062316 1062321) (-683 "MAGMA.spad" 1059760 1059777 1061960 1061965) (-682 "MACROAST.spad" 1059339 1059347 1059750 1059755) (-681 "M3D.spad" 1057059 1057069 1058717 1058722) (-680 "LZSTAGG.spad" 1054297 1054307 1057049 1057054) (-679 "LZSTAGG.spad" 1051533 1051545 1054287 1054292) (-678 "LWORD.spad" 1048238 1048255 1051523 1051528) (-677 "LSTAST.spad" 1048022 1048030 1048228 1048233) (-676 "LSQM.spad" 1046252 1046266 1046646 1046697) (-675 "LSPP.spad" 1045787 1045804 1046242 1046247) (-674 "LSMP.spad" 1044637 1044665 1045777 1045782) (-673 "LSMP1.spad" 1042455 1042469 1044627 1044632) (-672 "LSAGG.spad" 1042124 1042134 1042423 1042450) (-671 "LSAGG.spad" 1041813 1041825 1042114 1042119) (-670 "LPOLY.spad" 1040767 1040786 1041669 1041738) (-669 "LPEFRAC.spad" 1040038 1040048 1040757 1040762) (-668 "LO.spad" 1039439 1039453 1039972 1039999) (-667 "LOGIC.spad" 1039041 1039049 1039429 1039434) (-666 "LOGIC.spad" 1038641 1038651 1039031 1039036) (-665 "LODOOPS.spad" 1037571 1037583 1038631 1038636) (-664 "LODO.spad" 1036955 1036971 1037251 1037290) (-663 "LODOF.spad" 1036001 1036018 1036912 1036917) (-662 "LODOCAT.spad" 1034667 1034677 1035957 1035996) (-661 "LODOCAT.spad" 1033331 1033343 1034623 1034628) (-660 "LODO2.spad" 1032604 1032616 1033011 1033050) (-659 "LODO1.spad" 1032004 1032014 1032284 1032323) (-658 "LODEEF.spad" 1030806 1030824 1031994 1031999) (-657 "LNAGG.spad" 1026953 1026963 1030796 1030801) (-656 "LNAGG.spad" 1023064 1023076 1026909 1026914) (-655 "LMOPS.spad" 1019832 1019849 1023054 1023059) (-654 "LMODULE.spad" 1019600 1019610 1019822 1019827) (-653 "LMDICT.spad" 1018887 1018897 1019151 1019178) (-652 "LLINSET.spad" 1018284 1018294 1018877 1018882) (-651 "LITERAL.spad" 1018190 1018201 1018274 1018279) (-650 "LIST.spad" 1015925 1015935 1017337 1017364) (-649 "LIST3.spad" 1015236 1015250 1015915 1015920) (-648 "LIST2.spad" 1013938 1013950 1015226 1015231) (-647 "LIST2MAP.spad" 1010841 1010853 1013928 1013933) (-646 "LINSET.spad" 1010463 1010473 1010831 1010836) (-645 "LINEXP.spad" 1009897 1009907 1010443 1010458) (-644 "LINDEP.spad" 1008706 1008718 1009809 1009814) (-643 "LIMITRF.spad" 1006634 1006644 1008696 1008701) (-642 "LIMITPS.spad" 1005537 1005550 1006624 1006629) (-641 "LIE.spad" 1003553 1003565 1004827 1004972) (-640 "LIECAT.spad" 1003029 1003039 1003479 1003548) (-639 "LIECAT.spad" 1002533 1002545 1002985 1002990) (-638 "LIB.spad" 1000746 1000754 1001192 1001207) (-637 "LGROBP.spad" 998099 998118 1000736 1000741) (-636 "LF.spad" 997054 997070 998089 998094) (-635 "LFCAT.spad" 996113 996121 997044 997049) (-634 "LEXTRIPK.spad" 991616 991631 996103 996108) (-633 "LEXP.spad" 989619 989646 991596 991611) (-632 "LETAST.spad" 989318 989326 989609 989614) (-631 "LEADCDET.spad" 987716 987733 989308 989313) (-630 "LAZM3PK.spad" 986420 986442 987706 987711) (-629 "LAUPOL.spad" 985113 985126 986013 986082) (-628 "LAPLACE.spad" 984696 984712 985103 985108) (-627 "LA.spad" 984136 984150 984618 984657) (-626 "LALG.spad" 983912 983922 984116 984131) (-625 "LALG.spad" 983696 983708 983902 983907) (-624 "KVTFROM.spad" 983431 983441 983686 983691) (-623 "KTVLOGIC.spad" 982943 982951 983421 983426) (-622 "KRCFROM.spad" 982681 982691 982933 982938) (-621 "KOVACIC.spad" 981404 981421 982671 982676) (-620 "KONVERT.spad" 981126 981136 981394 981399) (-619 "KOERCE.spad" 980863 980873 981116 981121) (-618 "KERNEL.spad" 979518 979528 980647 980652) (-617 "KERNEL2.spad" 979221 979233 979508 979513) (-616 "KDAGG.spad" 978330 978352 979201 979216) (-615 "KDAGG.spad" 977447 977471 978320 978325) (-614 "KAFILE.spad" 976410 976426 976645 976672) (-613 "JORDAN.spad" 974239 974251 975700 975845) (-612 "JOINAST.spad" 973933 973941 974229 974234) (-611 "JAVACODE.spad" 973799 973807 973923 973928) (-610 "IXAGG.spad" 971932 971956 973789 973794) (-609 "IXAGG.spad" 969920 969946 971779 971784) (-608 "IVECTOR.spad" 968690 968705 968845 968872) (-607 "ITUPLE.spad" 967851 967861 968680 968685) (-606 "ITRIGMNP.spad" 966690 966709 967841 967846) (-605 "ITFUN3.spad" 966196 966210 966680 966685) (-604 "ITFUN2.spad" 965940 965952 966186 966191) (-603 "ITFORM.spad" 965295 965303 965930 965935) (-602 "ITAYLOR.spad" 963289 963304 965159 965256) (-601 "ISUPS.spad" 955726 955741 962263 962360) (-600 "ISUMP.spad" 955227 955243 955716 955721) (-599 "ISTRING.spad" 954315 954328 954396 954423) (-598 "ISAST.spad" 954034 954042 954305 954310) (-597 "IRURPK.spad" 952751 952770 954024 954029) (-596 "IRSN.spad" 950723 950731 952741 952746) (-595 "IRRF2F.spad" 949208 949218 950679 950684) (-594 "IRREDFFX.spad" 948809 948820 949198 949203) (-593 "IROOT.spad" 947148 947158 948799 948804) (-592 "IR.spad" 944949 944963 947003 947030) (-591 "IRFORM.spad" 944273 944281 944939 944944) (-590 "IR2.spad" 943301 943317 944263 944268) (-589 "IR2F.spad" 942507 942523 943291 943296) (-588 "IPRNTPK.spad" 942267 942275 942497 942502) (-587 "IPF.spad" 941832 941844 942072 942165) (-586 "IPADIC.spad" 941593 941619 941758 941827) (-585 "IP4ADDR.spad" 941150 941158 941583 941588) (-584 "IOMODE.spad" 940672 940680 941140 941145) (-583 "IOBFILE.spad" 940033 940041 940662 940667) (-582 "IOBCON.spad" 939898 939906 940023 940028) (-581 "INVLAPLA.spad" 939547 939563 939888 939893) (-580 "INTTR.spad" 932929 932946 939537 939542) (-579 "INTTOOLS.spad" 930684 930700 932503 932508) (-578 "INTSLPE.spad" 930004 930012 930674 930679) (-577 "INTRVL.spad" 929570 929580 929918 929999) (-576 "INTRF.spad" 927994 928008 929560 929565) (-575 "INTRET.spad" 927426 927436 927984 927989) (-574 "INTRAT.spad" 926153 926170 927416 927421) (-573 "INTPM.spad" 924538 924554 925796 925801) (-572 "INTPAF.spad" 922402 922420 924470 924475) (-571 "INTPACK.spad" 912776 912784 922392 922397) (-570 "INT.spad" 912224 912232 912630 912771) (-569 "INTHERTR.spad" 911498 911515 912214 912219) (-568 "INTHERAL.spad" 911168 911192 911488 911493) (-567 "INTHEORY.spad" 907607 907615 911158 911163) (-566 "INTG0.spad" 901340 901358 907539 907544) (-565 "INTFTBL.spad" 895369 895377 901330 901335) (-564 "INTFACT.spad" 894428 894438 895359 895364) (-563 "INTEF.spad" 892813 892829 894418 894423) (-562 "INTDOM.spad" 891436 891444 892739 892808) (-561 "INTDOM.spad" 890121 890131 891426 891431) (-560 "INTCAT.spad" 888380 888390 890035 890116) (-559 "INTBIT.spad" 887887 887895 888370 888375) (-558 "INTALG.spad" 887075 887102 887877 887882) (-557 "INTAF.spad" 886575 886591 887065 887070) (-556 "INTABL.spad" 885093 885124 885256 885283) (-555 "INT8.spad" 884973 884981 885083 885088) (-554 "INT64.spad" 884852 884860 884963 884968) (-553 "INT32.spad" 884731 884739 884842 884847) (-552 "INT16.spad" 884610 884618 884721 884726) (-551 "INS.spad" 882113 882121 884512 884605) (-550 "INS.spad" 879702 879712 882103 882108) (-549 "INPSIGN.spad" 879150 879163 879692 879697) (-548 "INPRODPF.spad" 878246 878265 879140 879145) (-547 "INPRODFF.spad" 877334 877358 878236 878241) (-546 "INNMFACT.spad" 876309 876326 877324 877329) (-545 "INMODGCD.spad" 875797 875827 876299 876304) (-544 "INFSP.spad" 874094 874116 875787 875792) (-543 "INFPROD0.spad" 873174 873193 874084 874089) (-542 "INFORM.spad" 870373 870381 873164 873169) (-541 "INFORM1.spad" 869998 870008 870363 870368) (-540 "INFINITY.spad" 869550 869558 869988 869993) (-539 "INETCLTS.spad" 869527 869535 869540 869545) (-538 "INEP.spad" 868065 868087 869517 869522) (-537 "INDE.spad" 867794 867811 868055 868060) (-536 "INCRMAPS.spad" 867215 867225 867784 867789) (-535 "INBFILE.spad" 866287 866295 867205 867210) (-534 "INBFF.spad" 862081 862092 866277 866282) (-533 "INBCON.spad" 860371 860379 862071 862076) (-532 "INBCON.spad" 858659 858669 860361 860366) (-531 "INAST.spad" 858320 858328 858649 858654) (-530 "IMPTAST.spad" 858028 858036 858310 858315) (-529 "IMATRIX.spad" 856973 856999 857485 857512) (-528 "IMATQF.spad" 856067 856111 856929 856934) (-527 "IMATLIN.spad" 854672 854696 856023 856028) (-526 "ILIST.spad" 853330 853345 853855 853882) (-525 "IIARRAY2.spad" 852718 852756 852937 852964) (-524 "IFF.spad" 852128 852144 852399 852492) (-523 "IFAST.spad" 851742 851750 852118 852123) (-522 "IFARRAY.spad" 849235 849250 850925 850952) (-521 "IFAMON.spad" 849097 849114 849191 849196) (-520 "IEVALAB.spad" 848502 848514 849087 849092) (-519 "IEVALAB.spad" 847905 847919 848492 848497) (-518 "IDPO.spad" 847703 847715 847895 847900) (-517 "IDPOAMS.spad" 847459 847471 847693 847698) (-516 "IDPOAM.spad" 847179 847191 847449 847454) (-515 "IDPC.spad" 846117 846129 847169 847174) (-514 "IDPAM.spad" 845862 845874 846107 846112) (-513 "IDPAG.spad" 845609 845621 845852 845857) (-512 "IDENT.spad" 845259 845267 845599 845604) (-511 "IDECOMP.spad" 842498 842516 845249 845254) (-510 "IDEAL.spad" 837447 837486 842433 842438) (-509 "ICDEN.spad" 836636 836652 837437 837442) (-508 "ICARD.spad" 835827 835835 836626 836631) (-507 "IBPTOOLS.spad" 834434 834451 835817 835822) (-506 "IBITS.spad" 833637 833650 834070 834097) (-505 "IBATOOL.spad" 830614 830633 833627 833632) (-504 "IBACHIN.spad" 829121 829136 830604 830609) (-503 "IARRAY2.spad" 828109 828135 828728 828755) (-502 "IARRAY1.spad" 827154 827169 827292 827319) (-501 "IAN.spad" 825377 825385 826970 827063) (-500 "IALGFACT.spad" 824980 825013 825367 825372) (-499 "HYPCAT.spad" 824404 824412 824970 824975) (-498 "HYPCAT.spad" 823826 823836 824394 824399) (-497 "HOSTNAME.spad" 823634 823642 823816 823821) (-496 "HOMOTOP.spad" 823377 823387 823624 823629) (-495 "HOAGG.spad" 820659 820669 823367 823372) (-494 "HOAGG.spad" 817716 817728 820426 820431) (-493 "HEXADEC.spad" 815818 815826 816183 816276) (-492 "HEUGCD.spad" 814853 814864 815808 815813) (-491 "HELLFDIV.spad" 814443 814467 814843 814848) (-490 "HEAP.spad" 813835 813845 814050 814077) (-489 "HEADAST.spad" 813368 813376 813825 813830) (-488 "HDP.spad" 803211 803227 803588 803719) (-487 "HDMP.spad" 800425 800440 801041 801168) (-486 "HB.spad" 798676 798684 800415 800420) (-485 "HASHTBL.spad" 797146 797177 797357 797384) (-484 "HASAST.spad" 796862 796870 797136 797141) (-483 "HACKPI.spad" 796353 796361 796764 796857) (-482 "GTSET.spad" 795292 795308 795999 796026) (-481 "GSTBL.spad" 793811 793846 793985 794000) (-480 "GSERIES.spad" 790982 791009 791943 792092) (-479 "GROUP.spad" 790255 790263 790962 790977) (-478 "GROUP.spad" 789536 789546 790245 790250) (-477 "GROEBSOL.spad" 788030 788051 789526 789531) (-476 "GRMOD.spad" 786601 786613 788020 788025) (-475 "GRMOD.spad" 785170 785184 786591 786596) (-474 "GRIMAGE.spad" 778059 778067 785160 785165) (-473 "GRDEF.spad" 776438 776446 778049 778054) (-472 "GRAY.spad" 774901 774909 776428 776433) (-471 "GRALG.spad" 773978 773990 774891 774896) (-470 "GRALG.spad" 773053 773067 773968 773973) (-469 "GPOLSET.spad" 772507 772530 772735 772762) (-468 "GOSPER.spad" 771776 771794 772497 772502) (-467 "GMODPOL.spad" 770924 770951 771744 771771) (-466 "GHENSEL.spad" 770007 770021 770914 770919) (-465 "GENUPS.spad" 766300 766313 769997 770002) (-464 "GENUFACT.spad" 765877 765887 766290 766295) (-463 "GENPGCD.spad" 765463 765480 765867 765872) (-462 "GENMFACT.spad" 764915 764934 765453 765458) (-461 "GENEEZ.spad" 762866 762879 764905 764910) (-460 "GDMP.spad" 759922 759939 760696 760823) (-459 "GCNAALG.spad" 753845 753872 759716 759783) (-458 "GCDDOM.spad" 753021 753029 753771 753840) (-457 "GCDDOM.spad" 752259 752269 753011 753016) (-456 "GB.spad" 749785 749823 752215 752220) (-455 "GBINTERN.spad" 745805 745843 749775 749780) (-454 "GBF.spad" 741572 741610 745795 745800) (-453 "GBEUCLID.spad" 739454 739492 741562 741567) (-452 "GAUSSFAC.spad" 738767 738775 739444 739449) (-451 "GALUTIL.spad" 737093 737103 738723 738728) (-450 "GALPOLYU.spad" 735547 735560 737083 737088) (-449 "GALFACTU.spad" 733720 733739 735537 735542) (-448 "GALFACT.spad" 723909 723920 733710 733715) (-447 "FVFUN.spad" 720932 720940 723899 723904) (-446 "FVC.spad" 719984 719992 720922 720927) (-445 "FUNDESC.spad" 719662 719670 719974 719979) (-444 "FUNCTION.spad" 719511 719523 719652 719657) (-443 "FT.spad" 717808 717816 719501 719506) (-442 "FTEM.spad" 716973 716981 717798 717803) (-441 "FSUPFACT.spad" 715873 715892 716909 716914) (-440 "FST.spad" 713959 713967 715863 715868) (-439 "FSRED.spad" 713439 713455 713949 713954) (-438 "FSPRMELT.spad" 712321 712337 713396 713401) (-437 "FSPECF.spad" 710412 710428 712311 712316) (-436 "FS.spad" 704680 704690 710187 710407) (-435 "FS.spad" 698726 698738 704235 704240) (-434 "FSINT.spad" 698386 698402 698716 698721) (-433 "FSERIES.spad" 697577 697589 698206 698305) (-432 "FSCINT.spad" 696894 696910 697567 697572) (-431 "FSAGG.spad" 696011 696021 696850 696889) (-430 "FSAGG.spad" 695090 695102 695931 695936) (-429 "FSAGG2.spad" 693833 693849 695080 695085) (-428 "FS2UPS.spad" 688324 688358 693823 693828) (-427 "FS2.spad" 687971 687987 688314 688319) (-426 "FS2EXPXP.spad" 687096 687119 687961 687966) (-425 "FRUTIL.spad" 686050 686060 687086 687091) (-424 "FR.spad" 679618 679628 684926 684995) (-423 "FRNAALG.spad" 674887 674897 679560 679613) (-422 "FRNAALG.spad" 670168 670180 674843 674848) (-421 "FRNAAF2.spad" 669624 669642 670158 670163) (-420 "FRMOD.spad" 669034 669064 669555 669560) (-419 "FRIDEAL.spad" 668259 668280 669014 669029) (-418 "FRIDEAL2.spad" 667863 667895 668249 668254) (-417 "FRETRCT.spad" 667374 667384 667853 667858) (-416 "FRETRCT.spad" 666751 666763 667232 667237) (-415 "FRAMALG.spad" 665099 665112 666707 666746) (-414 "FRAMALG.spad" 663479 663494 665089 665094) (-413 "FRAC.spad" 660578 660588 660981 661154) (-412 "FRAC2.spad" 660183 660195 660568 660573) (-411 "FR2.spad" 659519 659531 660173 660178) (-410 "FPS.spad" 656334 656342 659409 659514) (-409 "FPS.spad" 653177 653187 656254 656259) (-408 "FPC.spad" 652223 652231 653079 653172) (-407 "FPC.spad" 651355 651365 652213 652218) (-406 "FPATMAB.spad" 651117 651127 651345 651350) (-405 "FPARFRAC.spad" 649604 649621 651107 651112) (-404 "FORTRAN.spad" 648110 648153 649594 649599) (-403 "FORT.spad" 647059 647067 648100 648105) (-402 "FORTFN.spad" 644229 644237 647049 647054) (-401 "FORTCAT.spad" 643913 643921 644219 644224) (-400 "FORMULA.spad" 641387 641395 643903 643908) (-399 "FORMULA1.spad" 640866 640876 641377 641382) (-398 "FORDER.spad" 640557 640581 640856 640861) (-397 "FOP.spad" 639758 639766 640547 640552) (-396 "FNLA.spad" 639182 639204 639726 639753) (-395 "FNCAT.spad" 637777 637785 639172 639177) (-394 "FNAME.spad" 637669 637677 637767 637772) (-393 "FMTC.spad" 637467 637475 637595 637664) (-392 "FMONOID.spad" 637132 637142 637423 637428) (-391 "FMONCAT.spad" 634285 634295 637122 637127) (-390 "FM.spad" 633980 633992 634219 634246) (-389 "FMFUN.spad" 631010 631018 633970 633975) (-388 "FMC.spad" 630062 630070 631000 631005) (-387 "FMCAT.spad" 627730 627748 630030 630057) (-386 "FM1.spad" 627087 627099 627664 627691) (-385 "FLOATRP.spad" 624822 624836 627077 627082) (-384 "FLOAT.spad" 618136 618144 624688 624817) (-383 "FLOATCP.spad" 615567 615581 618126 618131) (-382 "FLINEXP.spad" 615279 615289 615547 615562) (-381 "FLINEXP.spad" 614945 614957 615215 615220) (-380 "FLASORT.spad" 614271 614283 614935 614940) (-379 "FLALG.spad" 611917 611936 614197 614266) (-378 "FLAGG.spad" 608959 608969 611897 611912) (-377 "FLAGG.spad" 605902 605914 608842 608847) (-376 "FLAGG2.spad" 604627 604643 605892 605897) (-375 "FINRALG.spad" 602688 602701 604583 604622) (-374 "FINRALG.spad" 600675 600690 602572 602577) (-373 "FINITE.spad" 599827 599835 600665 600670) (-372 "FINAALG.spad" 588948 588958 599769 599822) (-371 "FINAALG.spad" 578081 578093 588904 588909) (-370 "FILE.spad" 577664 577674 578071 578076) (-369 "FILECAT.spad" 576190 576207 577654 577659) (-368 "FIELD.spad" 575596 575604 576092 576185) (-367 "FIELD.spad" 575088 575098 575586 575591) (-366 "FGROUP.spad" 573735 573745 575068 575083) (-365 "FGLMICPK.spad" 572522 572537 573725 573730) (-364 "FFX.spad" 571897 571912 572238 572331) (-363 "FFSLPE.spad" 571400 571421 571887 571892) (-362 "FFPOLY.spad" 562662 562673 571390 571395) (-361 "FFPOLY2.spad" 561722 561739 562652 562657) (-360 "FFP.spad" 561119 561139 561438 561531) (-359 "FF.spad" 560567 560583 560800 560893) (-358 "FFNBX.spad" 559079 559099 560283 560376) (-357 "FFNBP.spad" 557592 557609 558795 558888) (-356 "FFNB.spad" 556057 556078 557273 557366) (-355 "FFINTBAS.spad" 553571 553590 556047 556052) (-354 "FFIELDC.spad" 551148 551156 553473 553566) (-353 "FFIELDC.spad" 548811 548821 551138 551143) (-352 "FFHOM.spad" 547559 547576 548801 548806) (-351 "FFF.spad" 544994 545005 547549 547554) (-350 "FFCGX.spad" 543841 543861 544710 544803) (-349 "FFCGP.spad" 542730 542750 543557 543650) (-348 "FFCG.spad" 541522 541543 542411 542504) (-347 "FFCAT.spad" 534695 534717 541361 541517) (-346 "FFCAT.spad" 527947 527971 534615 534620) (-345 "FFCAT2.spad" 527694 527734 527937 527942) (-344 "FEXPR.spad" 519411 519457 527450 527489) (-343 "FEVALAB.spad" 519119 519129 519401 519406) (-342 "FEVALAB.spad" 518612 518624 518896 518901) (-341 "FDIV.spad" 518054 518078 518602 518607) (-340 "FDIVCAT.spad" 516118 516142 518044 518049) (-339 "FDIVCAT.spad" 514180 514206 516108 516113) (-338 "FDIV2.spad" 513836 513876 514170 514175) (-337 "FCTRDATA.spad" 512844 512852 513826 513831) (-336 "FCPAK1.spad" 511411 511419 512834 512839) (-335 "FCOMP.spad" 510790 510800 511401 511406) (-334 "FC.spad" 500797 500805 510780 510785) (-333 "FAXF.spad" 493768 493782 500699 500792) (-332 "FAXF.spad" 486791 486807 493724 493729) (-331 "FARRAY.spad" 484941 484951 485974 486001) (-330 "FAMR.spad" 483077 483089 484839 484936) (-329 "FAMR.spad" 481197 481211 482961 482966) (-328 "FAMONOID.spad" 480865 480875 481151 481156) (-327 "FAMONC.spad" 479161 479173 480855 480860) (-326 "FAGROUP.spad" 478785 478795 479057 479084) (-325 "FACUTIL.spad" 476989 477006 478775 478780) (-324 "FACTFUNC.spad" 476183 476193 476979 476984) (-323 "EXPUPXS.spad" 473016 473039 474315 474464) (-322 "EXPRTUBE.spad" 470304 470312 473006 473011) (-321 "EXPRODE.spad" 467464 467480 470294 470299) (-320 "EXPR.spad" 462739 462749 463453 463860) (-319 "EXPR2UPS.spad" 458861 458874 462729 462734) (-318 "EXPR2.spad" 458566 458578 458851 458856) (-317 "EXPEXPAN.spad" 455506 455531 456138 456231) (-316 "EXIT.spad" 455177 455185 455496 455501) (-315 "EXITAST.spad" 454913 454921 455167 455172) (-314 "EVALCYC.spad" 454373 454387 454903 454908) (-313 "EVALAB.spad" 453945 453955 454363 454368) (-312 "EVALAB.spad" 453515 453527 453935 453940) (-311 "EUCDOM.spad" 451089 451097 453441 453510) (-310 "EUCDOM.spad" 448725 448735 451079 451084) (-309 "ESTOOLS.spad" 440571 440579 448715 448720) (-308 "ESTOOLS2.spad" 440174 440188 440561 440566) (-307 "ESTOOLS1.spad" 439859 439870 440164 440169) (-306 "ES.spad" 432674 432682 439849 439854) (-305 "ES.spad" 425395 425405 432572 432577) (-304 "ESCONT.spad" 422188 422196 425385 425390) (-303 "ESCONT1.spad" 421937 421949 422178 422183) (-302 "ES2.spad" 421442 421458 421927 421932) (-301 "ES1.spad" 421012 421028 421432 421437) (-300 "ERROR.spad" 418339 418347 421002 421007) (-299 "EQTBL.spad" 416811 416833 417020 417047) (-298 "EQ.spad" 411616 411626 414403 414515) (-297 "EQ2.spad" 411334 411346 411606 411611) (-296 "EP.spad" 407660 407670 411324 411329) (-295 "ENV.spad" 406338 406346 407650 407655) (-294 "ENTIRER.spad" 406006 406014 406282 406333) (-293 "EMR.spad" 405294 405335 405932 406001) (-292 "ELTAGG.spad" 403548 403567 405284 405289) (-291 "ELTAGG.spad" 401766 401787 403504 403509) (-290 "ELTAB.spad" 401241 401254 401756 401761) (-289 "ELFUTS.spad" 400628 400647 401231 401236) (-288 "ELEMFUN.spad" 400317 400325 400618 400623) (-287 "ELEMFUN.spad" 400004 400014 400307 400312) (-286 "ELAGG.spad" 397975 397985 399984 399999) (-285 "ELAGG.spad" 395883 395895 397894 397899) (-284 "ELABOR.spad" 395229 395237 395873 395878) (-283 "ELABEXPR.spad" 394161 394169 395219 395224) (-282 "EFUPXS.spad" 390937 390967 394117 394122) (-281 "EFULS.spad" 387773 387796 390893 390898) (-280 "EFSTRUC.spad" 385788 385804 387763 387768) (-279 "EF.spad" 380564 380580 385778 385783) (-278 "EAB.spad" 378840 378848 380554 380559) (-277 "E04UCFA.spad" 378376 378384 378830 378835) (-276 "E04NAFA.spad" 377953 377961 378366 378371) (-275 "E04MBFA.spad" 377533 377541 377943 377948) (-274 "E04JAFA.spad" 377069 377077 377523 377528) (-273 "E04GCFA.spad" 376605 376613 377059 377064) (-272 "E04FDFA.spad" 376141 376149 376595 376600) (-271 "E04DGFA.spad" 375677 375685 376131 376136) (-270 "E04AGNT.spad" 371527 371535 375667 375672) (-269 "DVARCAT.spad" 368216 368226 371517 371522) (-268 "DVARCAT.spad" 364903 364915 368206 368211) (-267 "DSMP.spad" 362370 362384 362675 362802) (-266 "DROPT.spad" 356329 356337 362360 362365) (-265 "DROPT1.spad" 355994 356004 356319 356324) (-264 "DROPT0.spad" 350851 350859 355984 355989) (-263 "DRAWPT.spad" 349024 349032 350841 350846) (-262 "DRAW.spad" 341900 341913 349014 349019) (-261 "DRAWHACK.spad" 341208 341218 341890 341895) (-260 "DRAWCX.spad" 338678 338686 341198 341203) (-259 "DRAWCURV.spad" 338225 338240 338668 338673) (-258 "DRAWCFUN.spad" 327757 327765 338215 338220) (-257 "DQAGG.spad" 325935 325945 327725 327752) (-256 "DPOLCAT.spad" 321284 321300 325803 325930) (-255 "DPOLCAT.spad" 316719 316737 321240 321245) (-254 "DPMO.spad" 308945 308961 309083 309384) (-253 "DPMM.spad" 301184 301202 301309 301610) (-252 "DOMTMPLT.spad" 300955 300963 301174 301179) (-251 "DOMCTOR.spad" 300710 300718 300945 300950) (-250 "DOMAIN.spad" 299797 299805 300700 300705) (-249 "DMP.spad" 297057 297072 297627 297754) (-248 "DLP.spad" 296409 296419 297047 297052) (-247 "DLIST.spad" 294988 294998 295592 295619) (-246 "DLAGG.spad" 293405 293415 294978 294983) (-245 "DIVRING.spad" 292947 292955 293349 293400) (-244 "DIVRING.spad" 292533 292543 292937 292942) (-243 "DISPLAY.spad" 290723 290731 292523 292528) (-242 "DIRPROD.spad" 280303 280319 280943 281074) (-241 "DIRPROD2.spad" 279121 279139 280293 280298) (-240 "DIRPCAT.spad" 278065 278081 278985 279116) (-239 "DIRPCAT.spad" 276738 276756 277660 277665) (-238 "DIOSP.spad" 275563 275571 276728 276733) (-237 "DIOPS.spad" 274559 274569 275543 275558) (-236 "DIOPS.spad" 273529 273541 274515 274520) (-235 "DIFRING.spad" 272825 272833 273509 273524) (-234 "DIFRING.spad" 272129 272139 272815 272820) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2267838 2267843 2267848 2267853) (-2 NIL 2267818 2267823 2267828 2267833) (-1 NIL 2267798 2267803 2267808 2267813) (0 NIL 2267778 2267783 2267788 2267793) (-1308 "ZMOD.spad" 2267587 2267600 2267716 2267773) (-1307 "ZLINDEP.spad" 2266653 2266664 2267577 2267582) (-1306 "ZDSOLVE.spad" 2256598 2256620 2266643 2266648) (-1305 "YSTREAM.spad" 2256093 2256104 2256588 2256593) (-1304 "YDIAGRAM.spad" 2255727 2255736 2256083 2256088) (-1303 "XRPOLY.spad" 2254947 2254967 2255583 2255652) (-1302 "XPR.spad" 2252742 2252755 2254665 2254764) (-1301 "XPOLY.spad" 2252297 2252308 2252598 2252667) (-1300 "XPOLYC.spad" 2251616 2251632 2252223 2252292) (-1299 "XPBWPOLY.spad" 2250053 2250073 2251396 2251465) (-1298 "XF.spad" 2248516 2248531 2249955 2250048) (-1297 "XF.spad" 2246959 2246976 2248400 2248405) (-1296 "XFALG.spad" 2244007 2244023 2246885 2246954) (-1295 "XEXPPKG.spad" 2243258 2243284 2243997 2244002) (-1294 "XDPOLY.spad" 2242872 2242888 2243114 2243183) (-1293 "XALG.spad" 2242532 2242543 2242828 2242867) (-1292 "WUTSET.spad" 2238371 2238388 2242178 2242205) (-1291 "WP.spad" 2237570 2237614 2238229 2238296) (-1290 "WHILEAST.spad" 2237368 2237377 2237560 2237565) (-1289 "WHEREAST.spad" 2237039 2237048 2237358 2237363) (-1288 "WFFINTBS.spad" 2234702 2234724 2237029 2237034) (-1287 "WEIER.spad" 2232924 2232935 2234692 2234697) (-1286 "VSPACE.spad" 2232597 2232608 2232892 2232919) (-1285 "VSPACE.spad" 2232290 2232303 2232587 2232592) (-1284 "VOID.spad" 2231967 2231976 2232280 2232285) (-1283 "VIEW.spad" 2229647 2229656 2231957 2231962) (-1282 "VIEWDEF.spad" 2224848 2224857 2229637 2229642) (-1281 "VIEW3D.spad" 2208809 2208818 2224838 2224843) (-1280 "VIEW2D.spad" 2196700 2196709 2208799 2208804) (-1279 "VECTOR.spad" 2195374 2195385 2195625 2195652) (-1278 "VECTOR2.spad" 2194013 2194026 2195364 2195369) (-1277 "VECTCAT.spad" 2191917 2191928 2193981 2194008) (-1276 "VECTCAT.spad" 2189628 2189641 2191694 2191699) (-1275 "VARIABLE.spad" 2189408 2189423 2189618 2189623) (-1274 "UTYPE.spad" 2189052 2189061 2189398 2189403) (-1273 "UTSODETL.spad" 2188347 2188371 2189008 2189013) (-1272 "UTSODE.spad" 2186563 2186583 2188337 2188342) (-1271 "UTS.spad" 2181367 2181395 2185030 2185127) (-1270 "UTSCAT.spad" 2178846 2178862 2181265 2181362) (-1269 "UTSCAT.spad" 2175969 2175987 2178390 2178395) (-1268 "UTS2.spad" 2175564 2175599 2175959 2175964) (-1267 "URAGG.spad" 2170237 2170248 2175554 2175559) (-1266 "URAGG.spad" 2164874 2164887 2170193 2170198) (-1265 "UPXSSING.spad" 2162519 2162545 2163955 2164088) (-1264 "UPXS.spad" 2159673 2159701 2160651 2160800) (-1263 "UPXSCONS.spad" 2157432 2157452 2157805 2157954) (-1262 "UPXSCCA.spad" 2156003 2156023 2157278 2157427) (-1261 "UPXSCCA.spad" 2154716 2154738 2155993 2155998) (-1260 "UPXSCAT.spad" 2153305 2153321 2154562 2154711) (-1259 "UPXS2.spad" 2152848 2152901 2153295 2153300) (-1258 "UPSQFREE.spad" 2151262 2151276 2152838 2152843) (-1257 "UPSCAT.spad" 2149049 2149073 2151160 2151257) (-1256 "UPSCAT.spad" 2146542 2146568 2148655 2148660) (-1255 "UPOLYC.spad" 2141582 2141593 2146384 2146537) (-1254 "UPOLYC.spad" 2136514 2136527 2141318 2141323) (-1253 "UPOLYC2.spad" 2135985 2136004 2136504 2136509) (-1252 "UP.spad" 2133184 2133199 2133571 2133724) (-1251 "UPMP.spad" 2132084 2132097 2133174 2133179) (-1250 "UPDIVP.spad" 2131649 2131663 2132074 2132079) (-1249 "UPDECOMP.spad" 2129894 2129908 2131639 2131644) (-1248 "UPCDEN.spad" 2129103 2129119 2129884 2129889) (-1247 "UP2.spad" 2128467 2128488 2129093 2129098) (-1246 "UNISEG.spad" 2127820 2127831 2128386 2128391) (-1245 "UNISEG2.spad" 2127317 2127330 2127776 2127781) (-1244 "UNIFACT.spad" 2126420 2126432 2127307 2127312) (-1243 "ULS.spad" 2116978 2117006 2118065 2118494) (-1242 "ULSCONS.spad" 2109374 2109394 2109744 2109893) (-1241 "ULSCCAT.spad" 2107111 2107131 2109220 2109369) (-1240 "ULSCCAT.spad" 2104956 2104978 2107067 2107072) (-1239 "ULSCAT.spad" 2103188 2103204 2104802 2104951) (-1238 "ULS2.spad" 2102702 2102755 2103178 2103183) (-1237 "UINT8.spad" 2102579 2102588 2102692 2102697) (-1236 "UINT64.spad" 2102455 2102464 2102569 2102574) (-1235 "UINT32.spad" 2102331 2102340 2102445 2102450) (-1234 "UINT16.spad" 2102207 2102216 2102321 2102326) (-1233 "UFD.spad" 2101272 2101281 2102133 2102202) (-1232 "UFD.spad" 2100399 2100410 2101262 2101267) (-1231 "UDVO.spad" 2099280 2099289 2100389 2100394) (-1230 "UDPO.spad" 2096773 2096784 2099236 2099241) (-1229 "TYPE.spad" 2096705 2096714 2096763 2096768) (-1228 "TYPEAST.spad" 2096624 2096633 2096695 2096700) (-1227 "TWOFACT.spad" 2095276 2095291 2096614 2096619) (-1226 "TUPLE.spad" 2094762 2094773 2095175 2095180) (-1225 "TUBETOOL.spad" 2091629 2091638 2094752 2094757) (-1224 "TUBE.spad" 2090276 2090293 2091619 2091624) (-1223 "TS.spad" 2088875 2088891 2089841 2089938) (-1222 "TSETCAT.spad" 2076002 2076019 2088843 2088870) (-1221 "TSETCAT.spad" 2063115 2063134 2075958 2075963) (-1220 "TRMANIP.spad" 2057481 2057498 2062821 2062826) (-1219 "TRIMAT.spad" 2056444 2056469 2057471 2057476) (-1218 "TRIGMNIP.spad" 2054971 2054988 2056434 2056439) (-1217 "TRIGCAT.spad" 2054483 2054492 2054961 2054966) (-1216 "TRIGCAT.spad" 2053993 2054004 2054473 2054478) (-1215 "TREE.spad" 2052568 2052579 2053600 2053627) (-1214 "TRANFUN.spad" 2052407 2052416 2052558 2052563) (-1213 "TRANFUN.spad" 2052244 2052255 2052397 2052402) (-1212 "TOPSP.spad" 2051918 2051927 2052234 2052239) (-1211 "TOOLSIGN.spad" 2051581 2051592 2051908 2051913) (-1210 "TEXTFILE.spad" 2050142 2050151 2051571 2051576) (-1209 "TEX.spad" 2047288 2047297 2050132 2050137) (-1208 "TEX1.spad" 2046844 2046855 2047278 2047283) (-1207 "TEMUTL.spad" 2046399 2046408 2046834 2046839) (-1206 "TBCMPPK.spad" 2044492 2044515 2046389 2046394) (-1205 "TBAGG.spad" 2043542 2043565 2044472 2044487) (-1204 "TBAGG.spad" 2042600 2042625 2043532 2043537) (-1203 "TANEXP.spad" 2042008 2042019 2042590 2042595) (-1202 "TALGOP.spad" 2041732 2041743 2041998 2042003) (-1201 "TABLE.spad" 2040143 2040166 2040413 2040440) (-1200 "TABLEAU.spad" 2039624 2039635 2040133 2040138) (-1199 "TABLBUMP.spad" 2036427 2036438 2039614 2039619) (-1198 "SYSTEM.spad" 2035655 2035664 2036417 2036422) (-1197 "SYSSOLP.spad" 2033138 2033149 2035645 2035650) (-1196 "SYSPTR.spad" 2033037 2033046 2033128 2033133) (-1195 "SYSNNI.spad" 2032219 2032230 2033027 2033032) (-1194 "SYSINT.spad" 2031623 2031634 2032209 2032214) (-1193 "SYNTAX.spad" 2027829 2027838 2031613 2031618) (-1192 "SYMTAB.spad" 2025897 2025906 2027819 2027824) (-1191 "SYMS.spad" 2021920 2021929 2025887 2025892) (-1190 "SYMPOLY.spad" 2020927 2020938 2021009 2021136) (-1189 "SYMFUNC.spad" 2020428 2020439 2020917 2020922) (-1188 "SYMBOL.spad" 2017931 2017940 2020418 2020423) (-1187 "SWITCH.spad" 2014702 2014711 2017921 2017926) (-1186 "SUTS.spad" 2011607 2011635 2013169 2013266) (-1185 "SUPXS.spad" 2008748 2008776 2009739 2009888) (-1184 "SUP.spad" 2005561 2005572 2006334 2006487) (-1183 "SUPFRACF.spad" 2004666 2004684 2005551 2005556) (-1182 "SUP2.spad" 2004058 2004071 2004656 2004661) (-1181 "SUMRF.spad" 2003032 2003043 2004048 2004053) (-1180 "SUMFS.spad" 2002669 2002686 2003022 2003027) (-1179 "SULS.spad" 1993214 1993242 1994314 1994743) (-1178 "SUCHTAST.spad" 1992983 1992992 1993204 1993209) (-1177 "SUCH.spad" 1992665 1992680 1992973 1992978) (-1176 "SUBSPACE.spad" 1984780 1984795 1992655 1992660) (-1175 "SUBRESP.spad" 1983950 1983964 1984736 1984741) (-1174 "STTF.spad" 1980049 1980065 1983940 1983945) (-1173 "STTFNC.spad" 1976517 1976533 1980039 1980044) (-1172 "STTAYLOR.spad" 1969152 1969163 1976398 1976403) (-1171 "STRTBL.spad" 1967657 1967674 1967806 1967833) (-1170 "STRING.spad" 1967066 1967075 1967080 1967107) (-1169 "STRICAT.spad" 1966854 1966863 1967034 1967061) (-1168 "STREAM.spad" 1963772 1963783 1966379 1966394) (-1167 "STREAM3.spad" 1963345 1963360 1963762 1963767) (-1166 "STREAM2.spad" 1962473 1962486 1963335 1963340) (-1165 "STREAM1.spad" 1962179 1962190 1962463 1962468) (-1164 "STINPROD.spad" 1961115 1961131 1962169 1962174) (-1163 "STEP.spad" 1960316 1960325 1961105 1961110) (-1162 "STEPAST.spad" 1959550 1959559 1960306 1960311) (-1161 "STBL.spad" 1958076 1958104 1958243 1958258) (-1160 "STAGG.spad" 1957151 1957162 1958066 1958071) (-1159 "STAGG.spad" 1956224 1956237 1957141 1957146) (-1158 "STACK.spad" 1955581 1955592 1955831 1955858) (-1157 "SREGSET.spad" 1953285 1953302 1955227 1955254) (-1156 "SRDCMPK.spad" 1951846 1951866 1953275 1953280) (-1155 "SRAGG.spad" 1946989 1946998 1951814 1951841) (-1154 "SRAGG.spad" 1942152 1942163 1946979 1946984) (-1153 "SQMATRIX.spad" 1939768 1939786 1940684 1940771) (-1152 "SPLTREE.spad" 1934320 1934333 1939204 1939231) (-1151 "SPLNODE.spad" 1930908 1930921 1934310 1934315) (-1150 "SPFCAT.spad" 1929717 1929726 1930898 1930903) (-1149 "SPECOUT.spad" 1928269 1928278 1929707 1929712) (-1148 "SPADXPT.spad" 1919864 1919873 1928259 1928264) (-1147 "spad-parser.spad" 1919329 1919338 1919854 1919859) (-1146 "SPADAST.spad" 1919030 1919039 1919319 1919324) (-1145 "SPACEC.spad" 1903229 1903240 1919020 1919025) (-1144 "SPACE3.spad" 1903005 1903016 1903219 1903224) (-1143 "SORTPAK.spad" 1902554 1902567 1902961 1902966) (-1142 "SOLVETRA.spad" 1900317 1900328 1902544 1902549) (-1141 "SOLVESER.spad" 1898845 1898856 1900307 1900312) (-1140 "SOLVERAD.spad" 1894871 1894882 1898835 1898840) (-1139 "SOLVEFOR.spad" 1893333 1893351 1894861 1894866) (-1138 "SNTSCAT.spad" 1892933 1892950 1893301 1893328) (-1137 "SMTS.spad" 1891205 1891231 1892498 1892595) (-1136 "SMP.spad" 1888680 1888700 1889070 1889197) (-1135 "SMITH.spad" 1887525 1887550 1888670 1888675) (-1134 "SMATCAT.spad" 1885635 1885665 1887469 1887520) (-1133 "SMATCAT.spad" 1883677 1883709 1885513 1885518) (-1132 "SKAGG.spad" 1882640 1882651 1883645 1883672) (-1131 "SINT.spad" 1881580 1881589 1882506 1882635) (-1130 "SIMPAN.spad" 1881308 1881317 1881570 1881575) (-1129 "SIG.spad" 1880638 1880647 1881298 1881303) (-1128 "SIGNRF.spad" 1879756 1879767 1880628 1880633) (-1127 "SIGNEF.spad" 1879035 1879052 1879746 1879751) (-1126 "SIGAST.spad" 1878420 1878429 1879025 1879030) (-1125 "SHP.spad" 1876348 1876363 1878376 1878381) (-1124 "SHDP.spad" 1866059 1866086 1866568 1866699) (-1123 "SGROUP.spad" 1865667 1865676 1866049 1866054) (-1122 "SGROUP.spad" 1865273 1865284 1865657 1865662) (-1121 "SGCF.spad" 1858412 1858421 1865263 1865268) (-1120 "SFRTCAT.spad" 1857342 1857359 1858380 1858407) (-1119 "SFRGCD.spad" 1856405 1856425 1857332 1857337) (-1118 "SFQCMPK.spad" 1851042 1851062 1856395 1856400) (-1117 "SFORT.spad" 1850481 1850495 1851032 1851037) (-1116 "SEXOF.spad" 1850324 1850364 1850471 1850476) (-1115 "SEX.spad" 1850216 1850225 1850314 1850319) (-1114 "SEXCAT.spad" 1847997 1848037 1850206 1850211) (-1113 "SET.spad" 1846321 1846332 1847418 1847457) (-1112 "SETMN.spad" 1844771 1844788 1846311 1846316) (-1111 "SETCAT.spad" 1844093 1844102 1844761 1844766) (-1110 "SETCAT.spad" 1843413 1843424 1844083 1844088) (-1109 "SETAGG.spad" 1839962 1839973 1843393 1843408) (-1108 "SETAGG.spad" 1836519 1836532 1839952 1839957) (-1107 "SEQAST.spad" 1836222 1836231 1836509 1836514) (-1106 "SEGXCAT.spad" 1835378 1835391 1836212 1836217) (-1105 "SEG.spad" 1835191 1835202 1835297 1835302) (-1104 "SEGCAT.spad" 1834116 1834127 1835181 1835186) (-1103 "SEGBIND.spad" 1833874 1833885 1834063 1834068) (-1102 "SEGBIND2.spad" 1833572 1833585 1833864 1833869) (-1101 "SEGAST.spad" 1833286 1833295 1833562 1833567) (-1100 "SEG2.spad" 1832721 1832734 1833242 1833247) (-1099 "SDVAR.spad" 1831997 1832008 1832711 1832716) (-1098 "SDPOL.spad" 1829423 1829434 1829714 1829841) (-1097 "SCPKG.spad" 1827512 1827523 1829413 1829418) (-1096 "SCOPE.spad" 1826665 1826674 1827502 1827507) (-1095 "SCACHE.spad" 1825361 1825372 1826655 1826660) (-1094 "SASTCAT.spad" 1825270 1825279 1825351 1825356) (-1093 "SAOS.spad" 1825142 1825151 1825260 1825265) (-1092 "SAERFFC.spad" 1824855 1824875 1825132 1825137) (-1091 "SAE.spad" 1823030 1823046 1823641 1823776) (-1090 "SAEFACT.spad" 1822731 1822751 1823020 1823025) (-1089 "RURPK.spad" 1820390 1820406 1822721 1822726) (-1088 "RULESET.spad" 1819843 1819867 1820380 1820385) (-1087 "RULE.spad" 1818083 1818107 1819833 1819838) (-1086 "RULECOLD.spad" 1817935 1817948 1818073 1818078) (-1085 "RTVALUE.spad" 1817670 1817679 1817925 1817930) (-1084 "RSTRCAST.spad" 1817387 1817396 1817660 1817665) (-1083 "RSETGCD.spad" 1813765 1813785 1817377 1817382) (-1082 "RSETCAT.spad" 1803701 1803718 1813733 1813760) (-1081 "RSETCAT.spad" 1793657 1793676 1803691 1803696) (-1080 "RSDCMPK.spad" 1792109 1792129 1793647 1793652) (-1079 "RRCC.spad" 1790493 1790523 1792099 1792104) (-1078 "RRCC.spad" 1788875 1788907 1790483 1790488) (-1077 "RPTAST.spad" 1788577 1788586 1788865 1788870) (-1076 "RPOLCAT.spad" 1767937 1767952 1788445 1788572) (-1075 "RPOLCAT.spad" 1747010 1747027 1767520 1767525) (-1074 "ROUTINE.spad" 1742893 1742902 1745657 1745684) (-1073 "ROMAN.spad" 1742221 1742230 1742759 1742888) (-1072 "ROIRC.spad" 1741301 1741333 1742211 1742216) (-1071 "RNS.spad" 1740204 1740213 1741203 1741296) (-1070 "RNS.spad" 1739193 1739204 1740194 1740199) (-1069 "RNG.spad" 1738928 1738937 1739183 1739188) (-1068 "RNGBIND.spad" 1738088 1738102 1738883 1738888) (-1067 "RMODULE.spad" 1737853 1737864 1738078 1738083) (-1066 "RMCAT2.spad" 1737273 1737330 1737843 1737848) (-1065 "RMATRIX.spad" 1736097 1736116 1736440 1736479) (-1064 "RMATCAT.spad" 1731676 1731707 1736053 1736092) (-1063 "RMATCAT.spad" 1727145 1727178 1731524 1731529) (-1062 "RLINSET.spad" 1726539 1726550 1727135 1727140) (-1061 "RINTERP.spad" 1726427 1726447 1726529 1726534) (-1060 "RING.spad" 1725897 1725906 1726407 1726422) (-1059 "RING.spad" 1725375 1725386 1725887 1725892) (-1058 "RIDIST.spad" 1724767 1724776 1725365 1725370) (-1057 "RGCHAIN.spad" 1723350 1723366 1724252 1724279) (-1056 "RGBCSPC.spad" 1723131 1723143 1723340 1723345) (-1055 "RGBCMDL.spad" 1722661 1722673 1723121 1723126) (-1054 "RF.spad" 1720303 1720314 1722651 1722656) (-1053 "RFFACTOR.spad" 1719765 1719776 1720293 1720298) (-1052 "RFFACT.spad" 1719500 1719512 1719755 1719760) (-1051 "RFDIST.spad" 1718496 1718505 1719490 1719495) (-1050 "RETSOL.spad" 1717915 1717928 1718486 1718491) (-1049 "RETRACT.spad" 1717343 1717354 1717905 1717910) (-1048 "RETRACT.spad" 1716769 1716782 1717333 1717338) (-1047 "RETAST.spad" 1716581 1716590 1716759 1716764) (-1046 "RESULT.spad" 1714641 1714650 1715228 1715255) (-1045 "RESRING.spad" 1713988 1714035 1714579 1714636) (-1044 "RESLATC.spad" 1713312 1713323 1713978 1713983) (-1043 "REPSQ.spad" 1713043 1713054 1713302 1713307) (-1042 "REP.spad" 1710597 1710606 1713033 1713038) (-1041 "REPDB.spad" 1710304 1710315 1710587 1710592) (-1040 "REP2.spad" 1699962 1699973 1710146 1710151) (-1039 "REP1.spad" 1694158 1694169 1699912 1699917) (-1038 "REGSET.spad" 1691955 1691972 1693804 1693831) (-1037 "REF.spad" 1691290 1691301 1691910 1691915) (-1036 "REDORDER.spad" 1690496 1690513 1691280 1691285) (-1035 "RECLOS.spad" 1689279 1689299 1689983 1690076) (-1034 "REALSOLV.spad" 1688419 1688428 1689269 1689274) (-1033 "REAL.spad" 1688291 1688300 1688409 1688414) (-1032 "REAL0Q.spad" 1685589 1685604 1688281 1688286) (-1031 "REAL0.spad" 1682433 1682448 1685579 1685584) (-1030 "RDUCEAST.spad" 1682154 1682163 1682423 1682428) (-1029 "RDIV.spad" 1681809 1681834 1682144 1682149) (-1028 "RDIST.spad" 1681376 1681387 1681799 1681804) (-1027 "RDETRS.spad" 1680240 1680258 1681366 1681371) (-1026 "RDETR.spad" 1678379 1678397 1680230 1680235) (-1025 "RDEEFS.spad" 1677478 1677495 1678369 1678374) (-1024 "RDEEF.spad" 1676488 1676505 1677468 1677473) (-1023 "RCFIELD.spad" 1673674 1673683 1676390 1676483) (-1022 "RCFIELD.spad" 1670946 1670957 1673664 1673669) (-1021 "RCAGG.spad" 1668874 1668885 1670936 1670941) (-1020 "RCAGG.spad" 1666729 1666742 1668793 1668798) (-1019 "RATRET.spad" 1666089 1666100 1666719 1666724) (-1018 "RATFACT.spad" 1665781 1665793 1666079 1666084) (-1017 "RANDSRC.spad" 1665100 1665109 1665771 1665776) (-1016 "RADUTIL.spad" 1664856 1664865 1665090 1665095) (-1015 "RADIX.spad" 1661777 1661791 1663323 1663416) (-1014 "RADFF.spad" 1660190 1660227 1660309 1660465) (-1013 "RADCAT.spad" 1659785 1659794 1660180 1660185) (-1012 "RADCAT.spad" 1659378 1659389 1659775 1659780) (-1011 "QUEUE.spad" 1658726 1658737 1658985 1659012) (-1010 "QUAT.spad" 1657307 1657318 1657650 1657715) (-1009 "QUATCT2.spad" 1656927 1656946 1657297 1657302) (-1008 "QUATCAT.spad" 1655097 1655108 1656857 1656922) (-1007 "QUATCAT.spad" 1653018 1653031 1654780 1654785) (-1006 "QUAGG.spad" 1651845 1651856 1652986 1653013) (-1005 "QQUTAST.spad" 1651613 1651622 1651835 1651840) (-1004 "QFORM.spad" 1651231 1651246 1651603 1651608) (-1003 "QFCAT.spad" 1649933 1649944 1651133 1651226) (-1002 "QFCAT.spad" 1648226 1648239 1649428 1649433) (-1001 "QFCAT2.spad" 1647918 1647935 1648216 1648221) (-1000 "QEQUAT.spad" 1647476 1647485 1647908 1647913) (-999 "QCMPACK.spad" 1642223 1642242 1647466 1647471) (-998 "QALGSET.spad" 1638302 1638334 1642137 1642142) (-997 "QALGSET2.spad" 1636298 1636316 1638292 1638297) (-996 "PWFFINTB.spad" 1633714 1633735 1636288 1636293) (-995 "PUSHVAR.spad" 1633053 1633072 1633704 1633709) (-994 "PTRANFN.spad" 1629181 1629191 1633043 1633048) (-993 "PTPACK.spad" 1626269 1626279 1629171 1629176) (-992 "PTFUNC2.spad" 1626092 1626106 1626259 1626264) (-991 "PTCAT.spad" 1625347 1625357 1626060 1626087) (-990 "PSQFR.spad" 1624654 1624678 1625337 1625342) (-989 "PSEUDLIN.spad" 1623540 1623550 1624644 1624649) (-988 "PSETPK.spad" 1608973 1608989 1623418 1623423) (-987 "PSETCAT.spad" 1602893 1602916 1608953 1608968) (-986 "PSETCAT.spad" 1596787 1596812 1602849 1602854) (-985 "PSCURVE.spad" 1595770 1595778 1596777 1596782) (-984 "PSCAT.spad" 1594553 1594582 1595668 1595765) (-983 "PSCAT.spad" 1593426 1593457 1594543 1594548) (-982 "PRTITION.spad" 1592124 1592132 1593416 1593421) (-981 "PRTDAST.spad" 1591843 1591851 1592114 1592119) (-980 "PRS.spad" 1581405 1581422 1591799 1591804) (-979 "PRQAGG.spad" 1580840 1580850 1581373 1581400) (-978 "PROPLOG.spad" 1580412 1580420 1580830 1580835) (-977 "PROPFUN2.spad" 1580035 1580048 1580402 1580407) (-976 "PROPFUN1.spad" 1579433 1579444 1580025 1580030) (-975 "PROPFRML.spad" 1578001 1578012 1579423 1579428) (-974 "PROPERTY.spad" 1577489 1577497 1577991 1577996) (-973 "PRODUCT.spad" 1575171 1575183 1575455 1575510) (-972 "PR.spad" 1573563 1573575 1574262 1574389) (-971 "PRINT.spad" 1573315 1573323 1573553 1573558) (-970 "PRIMES.spad" 1571568 1571578 1573305 1573310) (-969 "PRIMELT.spad" 1569649 1569663 1571558 1571563) (-968 "PRIMCAT.spad" 1569276 1569284 1569639 1569644) (-967 "PRIMARR.spad" 1568281 1568291 1568459 1568486) (-966 "PRIMARR2.spad" 1567048 1567060 1568271 1568276) (-965 "PREASSOC.spad" 1566430 1566442 1567038 1567043) (-964 "PPCURVE.spad" 1565567 1565575 1566420 1566425) (-963 "PORTNUM.spad" 1565342 1565350 1565557 1565562) (-962 "POLYROOT.spad" 1564191 1564213 1565298 1565303) (-961 "POLY.spad" 1561526 1561536 1562041 1562168) (-960 "POLYLIFT.spad" 1560791 1560814 1561516 1561521) (-959 "POLYCATQ.spad" 1558909 1558931 1560781 1560786) (-958 "POLYCAT.spad" 1552379 1552400 1558777 1558904) (-957 "POLYCAT.spad" 1545187 1545210 1551587 1551592) (-956 "POLY2UP.spad" 1544639 1544653 1545177 1545182) (-955 "POLY2.spad" 1544236 1544248 1544629 1544634) (-954 "POLUTIL.spad" 1543177 1543206 1544192 1544197) (-953 "POLTOPOL.spad" 1541925 1541940 1543167 1543172) (-952 "POINT.spad" 1540763 1540773 1540850 1540877) (-951 "PNTHEORY.spad" 1537465 1537473 1540753 1540758) (-950 "PMTOOLS.spad" 1536240 1536254 1537455 1537460) (-949 "PMSYM.spad" 1535789 1535799 1536230 1536235) (-948 "PMQFCAT.spad" 1535380 1535394 1535779 1535784) (-947 "PMPRED.spad" 1534859 1534873 1535370 1535375) (-946 "PMPREDFS.spad" 1534313 1534335 1534849 1534854) (-945 "PMPLCAT.spad" 1533393 1533411 1534245 1534250) (-944 "PMLSAGG.spad" 1532978 1532992 1533383 1533388) (-943 "PMKERNEL.spad" 1532557 1532569 1532968 1532973) (-942 "PMINS.spad" 1532137 1532147 1532547 1532552) (-941 "PMFS.spad" 1531714 1531732 1532127 1532132) (-940 "PMDOWN.spad" 1531004 1531018 1531704 1531709) (-939 "PMASS.spad" 1530014 1530022 1530994 1530999) (-938 "PMASSFS.spad" 1528981 1528997 1530004 1530009) (-937 "PLOTTOOL.spad" 1528761 1528769 1528971 1528976) (-936 "PLOT.spad" 1523684 1523692 1528751 1528756) (-935 "PLOT3D.spad" 1520148 1520156 1523674 1523679) (-934 "PLOT1.spad" 1519305 1519315 1520138 1520143) (-933 "PLEQN.spad" 1506595 1506622 1519295 1519300) (-932 "PINTERP.spad" 1506217 1506236 1506585 1506590) (-931 "PINTERPA.spad" 1506001 1506017 1506207 1506212) (-930 "PI.spad" 1505610 1505618 1505975 1505996) (-929 "PID.spad" 1504580 1504588 1505536 1505605) (-928 "PICOERCE.spad" 1504237 1504247 1504570 1504575) (-927 "PGROEB.spad" 1502838 1502852 1504227 1504232) (-926 "PGE.spad" 1494455 1494463 1502828 1502833) (-925 "PGCD.spad" 1493345 1493362 1494445 1494450) (-924 "PFRPAC.spad" 1492494 1492504 1493335 1493340) (-923 "PFR.spad" 1489157 1489167 1492396 1492489) (-922 "PFOTOOLS.spad" 1488415 1488431 1489147 1489152) (-921 "PFOQ.spad" 1487785 1487803 1488405 1488410) (-920 "PFO.spad" 1487204 1487231 1487775 1487780) (-919 "PF.spad" 1486778 1486790 1487009 1487102) (-918 "PFECAT.spad" 1484460 1484468 1486704 1486773) (-917 "PFECAT.spad" 1482170 1482180 1484416 1484421) (-916 "PFBRU.spad" 1480058 1480070 1482160 1482165) (-915 "PFBR.spad" 1477618 1477641 1480048 1480053) (-914 "PERM.spad" 1473425 1473435 1477448 1477463) (-913 "PERMGRP.spad" 1468195 1468205 1473415 1473420) (-912 "PERMCAT.spad" 1466856 1466866 1468175 1468190) (-911 "PERMAN.spad" 1465388 1465402 1466846 1466851) (-910 "PENDTREE.spad" 1464729 1464739 1465017 1465022) (-909 "PDRING.spad" 1463280 1463290 1464709 1464724) (-908 "PDRING.spad" 1461839 1461851 1463270 1463275) (-907 "PDEPROB.spad" 1460854 1460862 1461829 1461834) (-906 "PDEPACK.spad" 1454894 1454902 1460844 1460849) (-905 "PDECOMP.spad" 1454364 1454381 1454884 1454889) (-904 "PDECAT.spad" 1452720 1452728 1454354 1454359) (-903 "PCOMP.spad" 1452573 1452586 1452710 1452715) (-902 "PBWLB.spad" 1451161 1451178 1452563 1452568) (-901 "PATTERN.spad" 1445700 1445710 1451151 1451156) (-900 "PATTERN2.spad" 1445438 1445450 1445690 1445695) (-899 "PATTERN1.spad" 1443774 1443790 1445428 1445433) (-898 "PATRES.spad" 1441349 1441361 1443764 1443769) (-897 "PATRES2.spad" 1441021 1441035 1441339 1441344) (-896 "PATMATCH.spad" 1439218 1439249 1440729 1440734) (-895 "PATMAB.spad" 1438647 1438657 1439208 1439213) (-894 "PATLRES.spad" 1437733 1437747 1438637 1438642) (-893 "PATAB.spad" 1437497 1437507 1437723 1437728) (-892 "PARTPERM.spad" 1435505 1435513 1437487 1437492) (-891 "PARSURF.spad" 1434939 1434967 1435495 1435500) (-890 "PARSU2.spad" 1434736 1434752 1434929 1434934) (-889 "script-parser.spad" 1434256 1434264 1434726 1434731) (-888 "PARSCURV.spad" 1433690 1433718 1434246 1434251) (-887 "PARSC2.spad" 1433481 1433497 1433680 1433685) (-886 "PARPCURV.spad" 1432943 1432971 1433471 1433476) (-885 "PARPC2.spad" 1432734 1432750 1432933 1432938) (-884 "PARAMAST.spad" 1431862 1431870 1432724 1432729) (-883 "PAN2EXPR.spad" 1431274 1431282 1431852 1431857) (-882 "PALETTE.spad" 1430244 1430252 1431264 1431269) (-881 "PAIR.spad" 1429231 1429244 1429832 1429837) (-880 "PADICRC.spad" 1426565 1426583 1427736 1427829) (-879 "PADICRAT.spad" 1424580 1424592 1424801 1424894) (-878 "PADIC.spad" 1424275 1424287 1424506 1424575) (-877 "PADICCT.spad" 1422824 1422836 1424201 1424270) (-876 "PADEPAC.spad" 1421513 1421532 1422814 1422819) (-875 "PADE.spad" 1420265 1420281 1421503 1421508) (-874 "OWP.spad" 1419505 1419535 1420123 1420190) (-873 "OVERSET.spad" 1419078 1419086 1419495 1419500) (-872 "OVAR.spad" 1418859 1418882 1419068 1419073) (-871 "OUT.spad" 1417945 1417953 1418849 1418854) (-870 "OUTFORM.spad" 1407337 1407345 1417935 1417940) (-869 "OUTBFILE.spad" 1406755 1406763 1407327 1407332) (-868 "OUTBCON.spad" 1405761 1405769 1406745 1406750) (-867 "OUTBCON.spad" 1404765 1404775 1405751 1405756) (-866 "OSI.spad" 1404240 1404248 1404755 1404760) (-865 "OSGROUP.spad" 1404158 1404166 1404230 1404235) (-864 "ORTHPOL.spad" 1402643 1402653 1404075 1404080) (-863 "OREUP.spad" 1402096 1402124 1402323 1402362) (-862 "ORESUP.spad" 1401397 1401421 1401776 1401815) (-861 "OREPCTO.spad" 1399254 1399266 1401317 1401322) (-860 "OREPCAT.spad" 1393401 1393411 1399210 1399249) (-859 "OREPCAT.spad" 1387438 1387450 1393249 1393254) (-858 "ORDSET.spad" 1386610 1386618 1387428 1387433) (-857 "ORDSET.spad" 1385780 1385790 1386600 1386605) (-856 "ORDRING.spad" 1385170 1385178 1385760 1385775) (-855 "ORDRING.spad" 1384568 1384578 1385160 1385165) (-854 "ORDMON.spad" 1384423 1384431 1384558 1384563) (-853 "ORDFUNS.spad" 1383555 1383571 1384413 1384418) (-852 "ORDFIN.spad" 1383375 1383383 1383545 1383550) (-851 "ORDCOMP.spad" 1381840 1381850 1382922 1382951) (-850 "ORDCOMP2.spad" 1381133 1381145 1381830 1381835) (-849 "OPTPROB.spad" 1379771 1379779 1381123 1381128) (-848 "OPTPACK.spad" 1372180 1372188 1379761 1379766) (-847 "OPTCAT.spad" 1369859 1369867 1372170 1372175) (-846 "OPSIG.spad" 1369513 1369521 1369849 1369854) (-845 "OPQUERY.spad" 1369062 1369070 1369503 1369508) (-844 "OP.spad" 1368804 1368814 1368884 1368951) (-843 "OPERCAT.spad" 1368270 1368280 1368794 1368799) (-842 "OPERCAT.spad" 1367734 1367746 1368260 1368265) (-841 "ONECOMP.spad" 1366479 1366489 1367281 1367310) (-840 "ONECOMP2.spad" 1365903 1365915 1366469 1366474) (-839 "OMSERVER.spad" 1364909 1364917 1365893 1365898) (-838 "OMSAGG.spad" 1364697 1364707 1364865 1364904) (-837 "OMPKG.spad" 1363313 1363321 1364687 1364692) (-836 "OM.spad" 1362286 1362294 1363303 1363308) (-835 "OMLO.spad" 1361711 1361723 1362172 1362211) (-834 "OMEXPR.spad" 1361545 1361555 1361701 1361706) (-833 "OMERR.spad" 1361090 1361098 1361535 1361540) (-832 "OMERRK.spad" 1360124 1360132 1361080 1361085) (-831 "OMENC.spad" 1359468 1359476 1360114 1360119) (-830 "OMDEV.spad" 1353777 1353785 1359458 1359463) (-829 "OMCONN.spad" 1353186 1353194 1353767 1353772) (-828 "OINTDOM.spad" 1352949 1352957 1353112 1353181) (-827 "OFMONOID.spad" 1351072 1351082 1352905 1352910) (-826 "ODVAR.spad" 1350333 1350343 1351062 1351067) (-825 "ODR.spad" 1349977 1350003 1350145 1350294) (-824 "ODPOL.spad" 1347359 1347369 1347699 1347826) (-823 "ODP.spad" 1337206 1337226 1337579 1337710) (-822 "ODETOOLS.spad" 1335855 1335874 1337196 1337201) (-821 "ODESYS.spad" 1333549 1333566 1335845 1335850) (-820 "ODERTRIC.spad" 1329558 1329575 1333506 1333511) (-819 "ODERED.spad" 1328957 1328981 1329548 1329553) (-818 "ODERAT.spad" 1326572 1326589 1328947 1328952) (-817 "ODEPRRIC.spad" 1323609 1323631 1326562 1326567) (-816 "ODEPROB.spad" 1322866 1322874 1323599 1323604) (-815 "ODEPRIM.spad" 1320200 1320222 1322856 1322861) (-814 "ODEPAL.spad" 1319586 1319610 1320190 1320195) (-813 "ODEPACK.spad" 1306252 1306260 1319576 1319581) (-812 "ODEINT.spad" 1305687 1305703 1306242 1306247) (-811 "ODEIFTBL.spad" 1303082 1303090 1305677 1305682) (-810 "ODEEF.spad" 1298573 1298589 1303072 1303077) (-809 "ODECONST.spad" 1298110 1298128 1298563 1298568) (-808 "ODECAT.spad" 1296708 1296716 1298100 1298105) (-807 "OCT.spad" 1294844 1294854 1295558 1295597) (-806 "OCTCT2.spad" 1294490 1294511 1294834 1294839) (-805 "OC.spad" 1292286 1292296 1294446 1294485) (-804 "OC.spad" 1289807 1289819 1291969 1291974) (-803 "OCAMON.spad" 1289655 1289663 1289797 1289802) (-802 "OASGP.spad" 1289470 1289478 1289645 1289650) (-801 "OAMONS.spad" 1288992 1289000 1289460 1289465) (-800 "OAMON.spad" 1288853 1288861 1288982 1288987) (-799 "OAGROUP.spad" 1288715 1288723 1288843 1288848) (-798 "NUMTUBE.spad" 1288306 1288322 1288705 1288710) (-797 "NUMQUAD.spad" 1276282 1276290 1288296 1288301) (-796 "NUMODE.spad" 1267636 1267644 1276272 1276277) (-795 "NUMINT.spad" 1265202 1265210 1267626 1267631) (-794 "NUMFMT.spad" 1264042 1264050 1265192 1265197) (-793 "NUMERIC.spad" 1256156 1256166 1263847 1263852) (-792 "NTSCAT.spad" 1254664 1254680 1256124 1256151) (-791 "NTPOLFN.spad" 1254215 1254225 1254581 1254586) (-790 "NSUP.spad" 1247261 1247271 1251801 1251954) (-789 "NSUP2.spad" 1246653 1246665 1247251 1247256) (-788 "NSMP.spad" 1242883 1242902 1243191 1243318) (-787 "NREP.spad" 1241261 1241275 1242873 1242878) (-786 "NPCOEF.spad" 1240507 1240527 1241251 1241256) (-785 "NORMRETR.spad" 1240105 1240144 1240497 1240502) (-784 "NORMPK.spad" 1238007 1238026 1240095 1240100) (-783 "NORMMA.spad" 1237695 1237721 1237997 1238002) (-782 "NONE.spad" 1237436 1237444 1237685 1237690) (-781 "NONE1.spad" 1237112 1237122 1237426 1237431) (-780 "NODE1.spad" 1236599 1236615 1237102 1237107) (-779 "NNI.spad" 1235494 1235502 1236573 1236594) (-778 "NLINSOL.spad" 1234120 1234130 1235484 1235489) (-777 "NIPROB.spad" 1232661 1232669 1234110 1234115) (-776 "NFINTBAS.spad" 1230221 1230238 1232651 1232656) (-775 "NETCLT.spad" 1230195 1230206 1230211 1230216) (-774 "NCODIV.spad" 1228411 1228427 1230185 1230190) (-773 "NCNTFRAC.spad" 1228053 1228067 1228401 1228406) (-772 "NCEP.spad" 1226219 1226233 1228043 1228048) (-771 "NASRING.spad" 1225815 1225823 1226209 1226214) (-770 "NASRING.spad" 1225409 1225419 1225805 1225810) (-769 "NARNG.spad" 1224761 1224769 1225399 1225404) (-768 "NARNG.spad" 1224111 1224121 1224751 1224756) (-767 "NAGSP.spad" 1223188 1223196 1224101 1224106) (-766 "NAGS.spad" 1212849 1212857 1223178 1223183) (-765 "NAGF07.spad" 1211280 1211288 1212839 1212844) (-764 "NAGF04.spad" 1205682 1205690 1211270 1211275) (-763 "NAGF02.spad" 1199751 1199759 1205672 1205677) (-762 "NAGF01.spad" 1195512 1195520 1199741 1199746) (-761 "NAGE04.spad" 1189212 1189220 1195502 1195507) (-760 "NAGE02.spad" 1179872 1179880 1189202 1189207) (-759 "NAGE01.spad" 1175874 1175882 1179862 1179867) (-758 "NAGD03.spad" 1173878 1173886 1175864 1175869) (-757 "NAGD02.spad" 1166625 1166633 1173868 1173873) (-756 "NAGD01.spad" 1160918 1160926 1166615 1166620) (-755 "NAGC06.spad" 1156793 1156801 1160908 1160913) (-754 "NAGC05.spad" 1155294 1155302 1156783 1156788) (-753 "NAGC02.spad" 1154561 1154569 1155284 1155289) (-752 "NAALG.spad" 1154102 1154112 1154529 1154556) (-751 "NAALG.spad" 1153663 1153675 1154092 1154097) (-750 "MULTSQFR.spad" 1150621 1150638 1153653 1153658) (-749 "MULTFACT.spad" 1150004 1150021 1150611 1150616) (-748 "MTSCAT.spad" 1148098 1148119 1149902 1149999) (-747 "MTHING.spad" 1147757 1147767 1148088 1148093) (-746 "MSYSCMD.spad" 1147191 1147199 1147747 1147752) (-745 "MSET.spad" 1145149 1145159 1146897 1146936) (-744 "MSETAGG.spad" 1144994 1145004 1145117 1145144) (-743 "MRING.spad" 1141971 1141983 1144702 1144769) (-742 "MRF2.spad" 1141541 1141555 1141961 1141966) (-741 "MRATFAC.spad" 1141087 1141104 1141531 1141536) (-740 "MPRFF.spad" 1139127 1139146 1141077 1141082) (-739 "MPOLY.spad" 1136598 1136613 1136957 1137084) (-738 "MPCPF.spad" 1135862 1135881 1136588 1136593) (-737 "MPC3.spad" 1135679 1135719 1135852 1135857) (-736 "MPC2.spad" 1135325 1135358 1135669 1135674) (-735 "MONOTOOL.spad" 1133676 1133693 1135315 1135320) (-734 "MONOID.spad" 1132995 1133003 1133666 1133671) (-733 "MONOID.spad" 1132312 1132322 1132985 1132990) (-732 "MONOGEN.spad" 1131060 1131073 1132172 1132307) (-731 "MONOGEN.spad" 1129830 1129845 1130944 1130949) (-730 "MONADWU.spad" 1127860 1127868 1129820 1129825) (-729 "MONADWU.spad" 1125888 1125898 1127850 1127855) (-728 "MONAD.spad" 1125048 1125056 1125878 1125883) (-727 "MONAD.spad" 1124206 1124216 1125038 1125043) (-726 "MOEBIUS.spad" 1122942 1122956 1124186 1124201) (-725 "MODULE.spad" 1122812 1122822 1122910 1122937) (-724 "MODULE.spad" 1122702 1122714 1122802 1122807) (-723 "MODRING.spad" 1122037 1122076 1122682 1122697) (-722 "MODOP.spad" 1120702 1120714 1121859 1121926) (-721 "MODMONOM.spad" 1120433 1120451 1120692 1120697) (-720 "MODMON.spad" 1117228 1117244 1117947 1118100) (-719 "MODFIELD.spad" 1116590 1116629 1117130 1117223) (-718 "MMLFORM.spad" 1115450 1115458 1116580 1116585) (-717 "MMAP.spad" 1115192 1115226 1115440 1115445) (-716 "MLO.spad" 1113651 1113661 1115148 1115187) (-715 "MLIFT.spad" 1112263 1112280 1113641 1113646) (-714 "MKUCFUNC.spad" 1111798 1111816 1112253 1112258) (-713 "MKRECORD.spad" 1111402 1111415 1111788 1111793) (-712 "MKFUNC.spad" 1110809 1110819 1111392 1111397) (-711 "MKFLCFN.spad" 1109777 1109787 1110799 1110804) (-710 "MKBCFUNC.spad" 1109272 1109290 1109767 1109772) (-709 "MINT.spad" 1108711 1108719 1109174 1109267) (-708 "MHROWRED.spad" 1107222 1107232 1108701 1108706) (-707 "MFLOAT.spad" 1105742 1105750 1107112 1107217) (-706 "MFINFACT.spad" 1105142 1105164 1105732 1105737) (-705 "MESH.spad" 1102924 1102932 1105132 1105137) (-704 "MDDFACT.spad" 1101135 1101145 1102914 1102919) (-703 "MDAGG.spad" 1100426 1100436 1101115 1101130) (-702 "MCMPLX.spad" 1096437 1096445 1097051 1097252) (-701 "MCDEN.spad" 1095647 1095659 1096427 1096432) (-700 "MCALCFN.spad" 1092769 1092795 1095637 1095642) (-699 "MAYBE.spad" 1092053 1092064 1092759 1092764) (-698 "MATSTOR.spad" 1089361 1089371 1092043 1092048) (-697 "MATRIX.spad" 1088065 1088075 1088549 1088576) (-696 "MATLIN.spad" 1085409 1085433 1087949 1087954) (-695 "MATCAT.spad" 1077138 1077160 1085377 1085404) (-694 "MATCAT.spad" 1068739 1068763 1076980 1076985) (-693 "MATCAT2.spad" 1068021 1068069 1068729 1068734) (-692 "MAPPKG3.spad" 1066936 1066950 1068011 1068016) (-691 "MAPPKG2.spad" 1066274 1066286 1066926 1066931) (-690 "MAPPKG1.spad" 1065102 1065112 1066264 1066269) (-689 "MAPPAST.spad" 1064417 1064425 1065092 1065097) (-688 "MAPHACK3.spad" 1064229 1064243 1064407 1064412) (-687 "MAPHACK2.spad" 1063998 1064010 1064219 1064224) (-686 "MAPHACK1.spad" 1063642 1063652 1063988 1063993) (-685 "MAGMA.spad" 1061432 1061449 1063632 1063637) (-684 "MACROAST.spad" 1061011 1061019 1061422 1061427) (-683 "M3D.spad" 1058731 1058741 1060389 1060394) (-682 "LZSTAGG.spad" 1055969 1055979 1058721 1058726) (-681 "LZSTAGG.spad" 1053205 1053217 1055959 1055964) (-680 "LWORD.spad" 1049910 1049927 1053195 1053200) (-679 "LSTAST.spad" 1049694 1049702 1049900 1049905) (-678 "LSQM.spad" 1047924 1047938 1048318 1048369) (-677 "LSPP.spad" 1047459 1047476 1047914 1047919) (-676 "LSMP.spad" 1046309 1046337 1047449 1047454) (-675 "LSMP1.spad" 1044127 1044141 1046299 1046304) (-674 "LSAGG.spad" 1043796 1043806 1044095 1044122) (-673 "LSAGG.spad" 1043485 1043497 1043786 1043791) (-672 "LPOLY.spad" 1042439 1042458 1043341 1043410) (-671 "LPEFRAC.spad" 1041710 1041720 1042429 1042434) (-670 "LO.spad" 1041111 1041125 1041644 1041671) (-669 "LOGIC.spad" 1040713 1040721 1041101 1041106) (-668 "LOGIC.spad" 1040313 1040323 1040703 1040708) (-667 "LODOOPS.spad" 1039243 1039255 1040303 1040308) (-666 "LODO.spad" 1038627 1038643 1038923 1038962) (-665 "LODOF.spad" 1037673 1037690 1038584 1038589) (-664 "LODOCAT.spad" 1036339 1036349 1037629 1037668) (-663 "LODOCAT.spad" 1035003 1035015 1036295 1036300) (-662 "LODO2.spad" 1034276 1034288 1034683 1034722) (-661 "LODO1.spad" 1033676 1033686 1033956 1033995) (-660 "LODEEF.spad" 1032478 1032496 1033666 1033671) (-659 "LNAGG.spad" 1028625 1028635 1032468 1032473) (-658 "LNAGG.spad" 1024736 1024748 1028581 1028586) (-657 "LMOPS.spad" 1021504 1021521 1024726 1024731) (-656 "LMODULE.spad" 1021272 1021282 1021494 1021499) (-655 "LMDICT.spad" 1020559 1020569 1020823 1020850) (-654 "LLINSET.spad" 1019956 1019966 1020549 1020554) (-653 "LITERAL.spad" 1019862 1019873 1019946 1019951) (-652 "LIST.spad" 1017597 1017607 1019009 1019036) (-651 "LIST3.spad" 1016908 1016922 1017587 1017592) (-650 "LIST2.spad" 1015610 1015622 1016898 1016903) (-649 "LIST2MAP.spad" 1012513 1012525 1015600 1015605) (-648 "LINSET.spad" 1012135 1012145 1012503 1012508) (-647 "LINEXP.spad" 1011569 1011579 1012115 1012130) (-646 "LINDEP.spad" 1010378 1010390 1011481 1011486) (-645 "LIMITRF.spad" 1008306 1008316 1010368 1010373) (-644 "LIMITPS.spad" 1007209 1007222 1008296 1008301) (-643 "LIE.spad" 1005225 1005237 1006499 1006644) (-642 "LIECAT.spad" 1004701 1004711 1005151 1005220) (-641 "LIECAT.spad" 1004205 1004217 1004657 1004662) (-640 "LIB.spad" 1002418 1002426 1002864 1002879) (-639 "LGROBP.spad" 999771 999790 1002408 1002413) (-638 "LF.spad" 998726 998742 999761 999766) (-637 "LFCAT.spad" 997785 997793 998716 998721) (-636 "LEXTRIPK.spad" 993288 993303 997775 997780) (-635 "LEXP.spad" 991291 991318 993268 993283) (-634 "LETAST.spad" 990990 990998 991281 991286) (-633 "LEADCDET.spad" 989388 989405 990980 990985) (-632 "LAZM3PK.spad" 988092 988114 989378 989383) (-631 "LAUPOL.spad" 986785 986798 987685 987754) (-630 "LAPLACE.spad" 986368 986384 986775 986780) (-629 "LA.spad" 985808 985822 986290 986329) (-628 "LALG.spad" 985584 985594 985788 985803) (-627 "LALG.spad" 985368 985380 985574 985579) (-626 "KVTFROM.spad" 985103 985113 985358 985363) (-625 "KTVLOGIC.spad" 984615 984623 985093 985098) (-624 "KRCFROM.spad" 984353 984363 984605 984610) (-623 "KOVACIC.spad" 983076 983093 984343 984348) (-622 "KONVERT.spad" 982798 982808 983066 983071) (-621 "KOERCE.spad" 982535 982545 982788 982793) (-620 "KERNEL.spad" 981190 981200 982319 982324) (-619 "KERNEL2.spad" 980893 980905 981180 981185) (-618 "KDAGG.spad" 980002 980024 980873 980888) (-617 "KDAGG.spad" 979119 979143 979992 979997) (-616 "KAFILE.spad" 978082 978098 978317 978344) (-615 "JORDAN.spad" 975911 975923 977372 977517) (-614 "JOINAST.spad" 975605 975613 975901 975906) (-613 "JAVACODE.spad" 975471 975479 975595 975600) (-612 "IXAGG.spad" 973604 973628 975461 975466) (-611 "IXAGG.spad" 971592 971618 973451 973456) (-610 "IVECTOR.spad" 970362 970377 970517 970544) (-609 "ITUPLE.spad" 969523 969533 970352 970357) (-608 "ITRIGMNP.spad" 968362 968381 969513 969518) (-607 "ITFUN3.spad" 967868 967882 968352 968357) (-606 "ITFUN2.spad" 967612 967624 967858 967863) (-605 "ITFORM.spad" 966967 966975 967602 967607) (-604 "ITAYLOR.spad" 964961 964976 966831 966928) (-603 "ISUPS.spad" 957398 957413 963935 964032) (-602 "ISUMP.spad" 956899 956915 957388 957393) (-601 "ISTRING.spad" 955987 956000 956068 956095) (-600 "ISAST.spad" 955706 955714 955977 955982) (-599 "IRURPK.spad" 954423 954442 955696 955701) (-598 "IRSN.spad" 952395 952403 954413 954418) (-597 "IRRF2F.spad" 950880 950890 952351 952356) (-596 "IRREDFFX.spad" 950481 950492 950870 950875) (-595 "IROOT.spad" 948820 948830 950471 950476) (-594 "IR.spad" 946621 946635 948675 948702) (-593 "IRFORM.spad" 945945 945953 946611 946616) (-592 "IR2.spad" 944973 944989 945935 945940) (-591 "IR2F.spad" 944179 944195 944963 944968) (-590 "IPRNTPK.spad" 943939 943947 944169 944174) (-589 "IPF.spad" 943504 943516 943744 943837) (-588 "IPADIC.spad" 943265 943291 943430 943499) (-587 "IP4ADDR.spad" 942822 942830 943255 943260) (-586 "IOMODE.spad" 942344 942352 942812 942817) (-585 "IOBFILE.spad" 941705 941713 942334 942339) (-584 "IOBCON.spad" 941570 941578 941695 941700) (-583 "INVLAPLA.spad" 941219 941235 941560 941565) (-582 "INTTR.spad" 934601 934618 941209 941214) (-581 "INTTOOLS.spad" 932356 932372 934175 934180) (-580 "INTSLPE.spad" 931676 931684 932346 932351) (-579 "INTRVL.spad" 931242 931252 931590 931671) (-578 "INTRF.spad" 929666 929680 931232 931237) (-577 "INTRET.spad" 929098 929108 929656 929661) (-576 "INTRAT.spad" 927825 927842 929088 929093) (-575 "INTPM.spad" 926210 926226 927468 927473) (-574 "INTPAF.spad" 924074 924092 926142 926147) (-573 "INTPACK.spad" 914448 914456 924064 924069) (-572 "INT.spad" 913896 913904 914302 914443) (-571 "INTHERTR.spad" 913170 913187 913886 913891) (-570 "INTHERAL.spad" 912840 912864 913160 913165) (-569 "INTHEORY.spad" 909279 909287 912830 912835) (-568 "INTG0.spad" 903012 903030 909211 909216) (-567 "INTFTBL.spad" 897041 897049 903002 903007) (-566 "INTFACT.spad" 896100 896110 897031 897036) (-565 "INTEF.spad" 894485 894501 896090 896095) (-564 "INTDOM.spad" 893108 893116 894411 894480) (-563 "INTDOM.spad" 891793 891803 893098 893103) (-562 "INTCAT.spad" 890052 890062 891707 891788) (-561 "INTBIT.spad" 889559 889567 890042 890047) (-560 "INTALG.spad" 888747 888774 889549 889554) (-559 "INTAF.spad" 888247 888263 888737 888742) (-558 "INTABL.spad" 886765 886796 886928 886955) (-557 "INT8.spad" 886645 886653 886755 886760) (-556 "INT64.spad" 886524 886532 886635 886640) (-555 "INT32.spad" 886403 886411 886514 886519) (-554 "INT16.spad" 886282 886290 886393 886398) (-553 "INS.spad" 883785 883793 886184 886277) (-552 "INS.spad" 881374 881384 883775 883780) (-551 "INPSIGN.spad" 880822 880835 881364 881369) (-550 "INPRODPF.spad" 879918 879937 880812 880817) (-549 "INPRODFF.spad" 879006 879030 879908 879913) (-548 "INNMFACT.spad" 877981 877998 878996 879001) (-547 "INMODGCD.spad" 877469 877499 877971 877976) (-546 "INFSP.spad" 875766 875788 877459 877464) (-545 "INFPROD0.spad" 874846 874865 875756 875761) (-544 "INFORM.spad" 872045 872053 874836 874841) (-543 "INFORM1.spad" 871670 871680 872035 872040) (-542 "INFINITY.spad" 871222 871230 871660 871665) (-541 "INETCLTS.spad" 871199 871207 871212 871217) (-540 "INEP.spad" 869737 869759 871189 871194) (-539 "INDE.spad" 869466 869483 869727 869732) (-538 "INCRMAPS.spad" 868887 868897 869456 869461) (-537 "INBFILE.spad" 867959 867967 868877 868882) (-536 "INBFF.spad" 863753 863764 867949 867954) (-535 "INBCON.spad" 862043 862051 863743 863748) (-534 "INBCON.spad" 860331 860341 862033 862038) (-533 "INAST.spad" 859992 860000 860321 860326) (-532 "IMPTAST.spad" 859700 859708 859982 859987) (-531 "IMATRIX.spad" 858645 858671 859157 859184) (-530 "IMATQF.spad" 857739 857783 858601 858606) (-529 "IMATLIN.spad" 856344 856368 857695 857700) (-528 "ILIST.spad" 855002 855017 855527 855554) (-527 "IIARRAY2.spad" 854390 854428 854609 854636) (-526 "IFF.spad" 853800 853816 854071 854164) (-525 "IFAST.spad" 853414 853422 853790 853795) (-524 "IFARRAY.spad" 850907 850922 852597 852624) (-523 "IFAMON.spad" 850769 850786 850863 850868) (-522 "IEVALAB.spad" 850174 850186 850759 850764) (-521 "IEVALAB.spad" 849577 849591 850164 850169) (-520 "IDPO.spad" 849375 849387 849567 849572) (-519 "IDPOAMS.spad" 849131 849143 849365 849370) (-518 "IDPOAM.spad" 848851 848863 849121 849126) (-517 "IDPC.spad" 847789 847801 848841 848846) (-516 "IDPAM.spad" 847534 847546 847779 847784) (-515 "IDPAG.spad" 847281 847293 847524 847529) (-514 "IDENT.spad" 846931 846939 847271 847276) (-513 "IDECOMP.spad" 844170 844188 846921 846926) (-512 "IDEAL.spad" 839119 839158 844105 844110) (-511 "ICDEN.spad" 838308 838324 839109 839114) (-510 "ICARD.spad" 837499 837507 838298 838303) (-509 "IBPTOOLS.spad" 836106 836123 837489 837494) (-508 "IBITS.spad" 835309 835322 835742 835769) (-507 "IBATOOL.spad" 832286 832305 835299 835304) (-506 "IBACHIN.spad" 830793 830808 832276 832281) (-505 "IARRAY2.spad" 829781 829807 830400 830427) (-504 "IARRAY1.spad" 828826 828841 828964 828991) (-503 "IAN.spad" 827049 827057 828642 828735) (-502 "IALGFACT.spad" 826652 826685 827039 827044) (-501 "HYPCAT.spad" 826076 826084 826642 826647) (-500 "HYPCAT.spad" 825498 825508 826066 826071) (-499 "HOSTNAME.spad" 825306 825314 825488 825493) (-498 "HOMOTOP.spad" 825049 825059 825296 825301) (-497 "HOAGG.spad" 822331 822341 825039 825044) (-496 "HOAGG.spad" 819388 819400 822098 822103) (-495 "HEXADEC.spad" 817490 817498 817855 817948) (-494 "HEUGCD.spad" 816525 816536 817480 817485) (-493 "HELLFDIV.spad" 816115 816139 816515 816520) (-492 "HEAP.spad" 815507 815517 815722 815749) (-491 "HEADAST.spad" 815040 815048 815497 815502) (-490 "HDP.spad" 804883 804899 805260 805391) (-489 "HDMP.spad" 802097 802112 802713 802840) (-488 "HB.spad" 800348 800356 802087 802092) (-487 "HASHTBL.spad" 798818 798849 799029 799056) (-486 "HASAST.spad" 798534 798542 798808 798813) (-485 "HACKPI.spad" 798025 798033 798436 798529) (-484 "GTSET.spad" 796964 796980 797671 797698) (-483 "GSTBL.spad" 795483 795518 795657 795672) (-482 "GSERIES.spad" 792654 792681 793615 793764) (-481 "GROUP.spad" 791927 791935 792634 792649) (-480 "GROUP.spad" 791208 791218 791917 791922) (-479 "GROEBSOL.spad" 789702 789723 791198 791203) (-478 "GRMOD.spad" 788273 788285 789692 789697) (-477 "GRMOD.spad" 786842 786856 788263 788268) (-476 "GRIMAGE.spad" 779731 779739 786832 786837) (-475 "GRDEF.spad" 778110 778118 779721 779726) (-474 "GRAY.spad" 776573 776581 778100 778105) (-473 "GRALG.spad" 775650 775662 776563 776568) (-472 "GRALG.spad" 774725 774739 775640 775645) (-471 "GPOLSET.spad" 774179 774202 774407 774434) (-470 "GOSPER.spad" 773448 773466 774169 774174) (-469 "GMODPOL.spad" 772596 772623 773416 773443) (-468 "GHENSEL.spad" 771679 771693 772586 772591) (-467 "GENUPS.spad" 767972 767985 771669 771674) (-466 "GENUFACT.spad" 767549 767559 767962 767967) (-465 "GENPGCD.spad" 767135 767152 767539 767544) (-464 "GENMFACT.spad" 766587 766606 767125 767130) (-463 "GENEEZ.spad" 764538 764551 766577 766582) (-462 "GDMP.spad" 761594 761611 762368 762495) (-461 "GCNAALG.spad" 755517 755544 761388 761455) (-460 "GCDDOM.spad" 754693 754701 755443 755512) (-459 "GCDDOM.spad" 753931 753941 754683 754688) (-458 "GB.spad" 751457 751495 753887 753892) (-457 "GBINTERN.spad" 747477 747515 751447 751452) (-456 "GBF.spad" 743244 743282 747467 747472) (-455 "GBEUCLID.spad" 741126 741164 743234 743239) (-454 "GAUSSFAC.spad" 740439 740447 741116 741121) (-453 "GALUTIL.spad" 738765 738775 740395 740400) (-452 "GALPOLYU.spad" 737219 737232 738755 738760) (-451 "GALFACTU.spad" 735392 735411 737209 737214) (-450 "GALFACT.spad" 725581 725592 735382 735387) (-449 "FVFUN.spad" 722604 722612 725571 725576) (-448 "FVC.spad" 721656 721664 722594 722599) (-447 "FUNDESC.spad" 721334 721342 721646 721651) (-446 "FUNCTION.spad" 721183 721195 721324 721329) (-445 "FT.spad" 719480 719488 721173 721178) (-444 "FTEM.spad" 718645 718653 719470 719475) (-443 "FSUPFACT.spad" 717545 717564 718581 718586) (-442 "FST.spad" 715631 715639 717535 717540) (-441 "FSRED.spad" 715111 715127 715621 715626) (-440 "FSPRMELT.spad" 713993 714009 715068 715073) (-439 "FSPECF.spad" 712084 712100 713983 713988) (-438 "FS.spad" 706352 706362 711859 712079) (-437 "FS.spad" 700398 700410 705907 705912) (-436 "FSINT.spad" 700058 700074 700388 700393) (-435 "FSERIES.spad" 699249 699261 699878 699977) (-434 "FSCINT.spad" 698566 698582 699239 699244) (-433 "FSAGG.spad" 697683 697693 698522 698561) (-432 "FSAGG.spad" 696762 696774 697603 697608) (-431 "FSAGG2.spad" 695505 695521 696752 696757) (-430 "FS2UPS.spad" 689996 690030 695495 695500) (-429 "FS2.spad" 689643 689659 689986 689991) (-428 "FS2EXPXP.spad" 688768 688791 689633 689638) (-427 "FRUTIL.spad" 687722 687732 688758 688763) (-426 "FR.spad" 681290 681300 686598 686667) (-425 "FRNAALG.spad" 676559 676569 681232 681285) (-424 "FRNAALG.spad" 671840 671852 676515 676520) (-423 "FRNAAF2.spad" 671296 671314 671830 671835) (-422 "FRMOD.spad" 670706 670736 671227 671232) (-421 "FRIDEAL.spad" 669931 669952 670686 670701) (-420 "FRIDEAL2.spad" 669535 669567 669921 669926) (-419 "FRETRCT.spad" 669046 669056 669525 669530) (-418 "FRETRCT.spad" 668423 668435 668904 668909) (-417 "FRAMALG.spad" 666771 666784 668379 668418) (-416 "FRAMALG.spad" 665151 665166 666761 666766) (-415 "FRAC.spad" 662250 662260 662653 662826) (-414 "FRAC2.spad" 661855 661867 662240 662245) (-413 "FR2.spad" 661191 661203 661845 661850) (-412 "FPS.spad" 658006 658014 661081 661186) (-411 "FPS.spad" 654849 654859 657926 657931) (-410 "FPC.spad" 653895 653903 654751 654844) (-409 "FPC.spad" 653027 653037 653885 653890) (-408 "FPATMAB.spad" 652789 652799 653017 653022) (-407 "FPARFRAC.spad" 651276 651293 652779 652784) (-406 "FORTRAN.spad" 649782 649825 651266 651271) (-405 "FORT.spad" 648731 648739 649772 649777) (-404 "FORTFN.spad" 645901 645909 648721 648726) (-403 "FORTCAT.spad" 645585 645593 645891 645896) (-402 "FORMULA.spad" 643059 643067 645575 645580) (-401 "FORMULA1.spad" 642538 642548 643049 643054) (-400 "FORDER.spad" 642229 642253 642528 642533) (-399 "FOP.spad" 641430 641438 642219 642224) (-398 "FNLA.spad" 640854 640876 641398 641425) (-397 "FNCAT.spad" 639449 639457 640844 640849) (-396 "FNAME.spad" 639341 639349 639439 639444) (-395 "FMTC.spad" 639139 639147 639267 639336) (-394 "FMONOID.spad" 638804 638814 639095 639100) (-393 "FMONCAT.spad" 635957 635967 638794 638799) (-392 "FM.spad" 635652 635664 635891 635918) (-391 "FMFUN.spad" 632682 632690 635642 635647) (-390 "FMC.spad" 631734 631742 632672 632677) (-389 "FMCAT.spad" 629402 629420 631702 631729) (-388 "FM1.spad" 628759 628771 629336 629363) (-387 "FLOATRP.spad" 626494 626508 628749 628754) (-386 "FLOAT.spad" 619808 619816 626360 626489) (-385 "FLOATCP.spad" 617239 617253 619798 619803) (-384 "FLINEXP.spad" 616951 616961 617219 617234) (-383 "FLINEXP.spad" 616617 616629 616887 616892) (-382 "FLASORT.spad" 615943 615955 616607 616612) (-381 "FLALG.spad" 613589 613608 615869 615938) (-380 "FLAGG.spad" 610631 610641 613569 613584) (-379 "FLAGG.spad" 607574 607586 610514 610519) (-378 "FLAGG2.spad" 606299 606315 607564 607569) (-377 "FINRALG.spad" 604360 604373 606255 606294) (-376 "FINRALG.spad" 602347 602362 604244 604249) (-375 "FINITE.spad" 601499 601507 602337 602342) (-374 "FINAALG.spad" 590620 590630 601441 601494) (-373 "FINAALG.spad" 579753 579765 590576 590581) (-372 "FILE.spad" 579336 579346 579743 579748) (-371 "FILECAT.spad" 577862 577879 579326 579331) (-370 "FIELD.spad" 577268 577276 577764 577857) (-369 "FIELD.spad" 576760 576770 577258 577263) (-368 "FGROUP.spad" 575407 575417 576740 576755) (-367 "FGLMICPK.spad" 574194 574209 575397 575402) (-366 "FFX.spad" 573569 573584 573910 574003) (-365 "FFSLPE.spad" 573072 573093 573559 573564) (-364 "FFPOLY.spad" 564334 564345 573062 573067) (-363 "FFPOLY2.spad" 563394 563411 564324 564329) (-362 "FFP.spad" 562791 562811 563110 563203) (-361 "FF.spad" 562239 562255 562472 562565) (-360 "FFNBX.spad" 560751 560771 561955 562048) (-359 "FFNBP.spad" 559264 559281 560467 560560) (-358 "FFNB.spad" 557729 557750 558945 559038) (-357 "FFINTBAS.spad" 555243 555262 557719 557724) (-356 "FFIELDC.spad" 552820 552828 555145 555238) (-355 "FFIELDC.spad" 550483 550493 552810 552815) (-354 "FFHOM.spad" 549231 549248 550473 550478) (-353 "FFF.spad" 546666 546677 549221 549226) (-352 "FFCGX.spad" 545513 545533 546382 546475) (-351 "FFCGP.spad" 544402 544422 545229 545322) (-350 "FFCG.spad" 543194 543215 544083 544176) (-349 "FFCAT.spad" 536367 536389 543033 543189) (-348 "FFCAT.spad" 529619 529643 536287 536292) (-347 "FFCAT2.spad" 529366 529406 529609 529614) (-346 "FEXPR.spad" 521083 521129 529122 529161) (-345 "FEVALAB.spad" 520791 520801 521073 521078) (-344 "FEVALAB.spad" 520284 520296 520568 520573) (-343 "FDIV.spad" 519726 519750 520274 520279) (-342 "FDIVCAT.spad" 517790 517814 519716 519721) (-341 "FDIVCAT.spad" 515852 515878 517780 517785) (-340 "FDIV2.spad" 515508 515548 515842 515847) (-339 "FCTRDATA.spad" 514516 514524 515498 515503) (-338 "FCPAK1.spad" 513083 513091 514506 514511) (-337 "FCOMP.spad" 512462 512472 513073 513078) (-336 "FC.spad" 502469 502477 512452 512457) (-335 "FAXF.spad" 495440 495454 502371 502464) (-334 "FAXF.spad" 488463 488479 495396 495401) (-333 "FARRAY.spad" 486613 486623 487646 487673) (-332 "FAMR.spad" 484749 484761 486511 486608) (-331 "FAMR.spad" 482869 482883 484633 484638) (-330 "FAMONOID.spad" 482537 482547 482823 482828) (-329 "FAMONC.spad" 480833 480845 482527 482532) (-328 "FAGROUP.spad" 480457 480467 480729 480756) (-327 "FACUTIL.spad" 478661 478678 480447 480452) (-326 "FACTFUNC.spad" 477855 477865 478651 478656) (-325 "EXPUPXS.spad" 474688 474711 475987 476136) (-324 "EXPRTUBE.spad" 471976 471984 474678 474683) (-323 "EXPRODE.spad" 469136 469152 471966 471971) (-322 "EXPR.spad" 464411 464421 465125 465532) (-321 "EXPR2UPS.spad" 460533 460546 464401 464406) (-320 "EXPR2.spad" 460238 460250 460523 460528) (-319 "EXPEXPAN.spad" 457178 457203 457810 457903) (-318 "EXIT.spad" 456849 456857 457168 457173) (-317 "EXITAST.spad" 456585 456593 456839 456844) (-316 "EVALCYC.spad" 456045 456059 456575 456580) (-315 "EVALAB.spad" 455617 455627 456035 456040) (-314 "EVALAB.spad" 455187 455199 455607 455612) (-313 "EUCDOM.spad" 452761 452769 455113 455182) (-312 "EUCDOM.spad" 450397 450407 452751 452756) (-311 "ESTOOLS.spad" 442243 442251 450387 450392) (-310 "ESTOOLS2.spad" 441846 441860 442233 442238) (-309 "ESTOOLS1.spad" 441531 441542 441836 441841) (-308 "ES.spad" 434346 434354 441521 441526) (-307 "ES.spad" 427067 427077 434244 434249) (-306 "ESCONT.spad" 423860 423868 427057 427062) (-305 "ESCONT1.spad" 423609 423621 423850 423855) (-304 "ES2.spad" 423114 423130 423599 423604) (-303 "ES1.spad" 422684 422700 423104 423109) (-302 "ERROR.spad" 420011 420019 422674 422679) (-301 "EQTBL.spad" 418483 418505 418692 418719) (-300 "EQ.spad" 413288 413298 416075 416187) (-299 "EQ2.spad" 413006 413018 413278 413283) (-298 "EP.spad" 409332 409342 412996 413001) (-297 "ENV.spad" 408010 408018 409322 409327) (-296 "ENTIRER.spad" 407678 407686 407954 408005) (-295 "EMR.spad" 406966 407007 407604 407673) (-294 "ELTAGG.spad" 405220 405239 406956 406961) (-293 "ELTAGG.spad" 403438 403459 405176 405181) (-292 "ELTAB.spad" 402913 402926 403428 403433) (-291 "ELFUTS.spad" 402300 402319 402903 402908) (-290 "ELEMFUN.spad" 401989 401997 402290 402295) (-289 "ELEMFUN.spad" 401676 401686 401979 401984) (-288 "ELAGG.spad" 399647 399657 401656 401671) (-287 "ELAGG.spad" 397555 397567 399566 399571) (-286 "ELABOR.spad" 396901 396909 397545 397550) (-285 "ELABEXPR.spad" 395833 395841 396891 396896) (-284 "EFUPXS.spad" 392609 392639 395789 395794) (-283 "EFULS.spad" 389445 389468 392565 392570) (-282 "EFSTRUC.spad" 387460 387476 389435 389440) (-281 "EF.spad" 382236 382252 387450 387455) (-280 "EAB.spad" 380512 380520 382226 382231) (-279 "E04UCFA.spad" 380048 380056 380502 380507) (-278 "E04NAFA.spad" 379625 379633 380038 380043) (-277 "E04MBFA.spad" 379205 379213 379615 379620) (-276 "E04JAFA.spad" 378741 378749 379195 379200) (-275 "E04GCFA.spad" 378277 378285 378731 378736) (-274 "E04FDFA.spad" 377813 377821 378267 378272) (-273 "E04DGFA.spad" 377349 377357 377803 377808) (-272 "E04AGNT.spad" 373199 373207 377339 377344) (-271 "DVARCAT.spad" 369888 369898 373189 373194) (-270 "DVARCAT.spad" 366575 366587 369878 369883) (-269 "DSMP.spad" 364042 364056 364347 364474) (-268 "DROPT.spad" 358001 358009 364032 364037) (-267 "DROPT1.spad" 357666 357676 357991 357996) (-266 "DROPT0.spad" 352523 352531 357656 357661) (-265 "DRAWPT.spad" 350696 350704 352513 352518) (-264 "DRAW.spad" 343572 343585 350686 350691) (-263 "DRAWHACK.spad" 342880 342890 343562 343567) (-262 "DRAWCX.spad" 340350 340358 342870 342875) (-261 "DRAWCURV.spad" 339897 339912 340340 340345) (-260 "DRAWCFUN.spad" 329429 329437 339887 339892) (-259 "DQAGG.spad" 327607 327617 329397 329424) (-258 "DPOLCAT.spad" 322956 322972 327475 327602) (-257 "DPOLCAT.spad" 318391 318409 322912 322917) (-256 "DPMO.spad" 310617 310633 310755 311056) (-255 "DPMM.spad" 302856 302874 302981 303282) (-254 "DOMTMPLT.spad" 302627 302635 302846 302851) (-253 "DOMCTOR.spad" 302382 302390 302617 302622) (-252 "DOMAIN.spad" 301469 301477 302372 302377) (-251 "DMP.spad" 298729 298744 299299 299426) (-250 "DLP.spad" 298081 298091 298719 298724) (-249 "DLIST.spad" 296660 296670 297264 297291) (-248 "DLAGG.spad" 295077 295087 296650 296655) (-247 "DIVRING.spad" 294619 294627 295021 295072) (-246 "DIVRING.spad" 294205 294215 294609 294614) (-245 "DISPLAY.spad" 292395 292403 294195 294200) (-244 "DIRPROD.spad" 281975 281991 282615 282746) (-243 "DIRPROD2.spad" 280793 280811 281965 281970) (-242 "DIRPCAT.spad" 279737 279753 280657 280788) (-241 "DIRPCAT.spad" 278410 278428 279332 279337) (-240 "DIOSP.spad" 277235 277243 278400 278405) (-239 "DIOPS.spad" 276231 276241 277215 277230) (-238 "DIOPS.spad" 275201 275213 276187 276192) (-237 "DIFRING.spad" 274497 274505 275181 275196) (-236 "DIFRING.spad" 273801 273811 274487 274492) (-235 "DIFFDOM.spad" 272966 272977 273791 273796) (-234 "DIFFDOM.spad" 272129 272142 272956 272961) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index adffd603..9bb702a7 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1112 +1,1112 @@
-(189904 . 3485439400)
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) #0#) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-((((-570)) . T) (($) -3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T))
+(189904 . 3485461462)
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) #0#) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+((((-572)) . T) (($) -3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T))
(((|#2| |#2|) . T))
-((((-570)) . T))
-((($ $) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2| |#2|) . T) ((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))))
+((((-572)) . T))
+((($ $) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2| |#2|) . T) ((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#2|) . T))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))))
-(|has| |#1| (-916))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((($) . T) (((-413 (-570))) . T))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
+(|has| |#1| (-918))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((($) . T) (((-415 (-572))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-145)) . T))
-((((-542)) . T) (((-1168)) . T) (((-227)) . T) (((-384)) . T) (((-899 (-384))) . T))
-(((|#1|) . T))
-((((-227)) . T) (((-868)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
-((($ $) . T) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1| |#1|) . T))
-(-3749 (|has| |#1| (-826)) (|has| |#1| (-856)))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(|has| |#1| (-854))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-320 |#1|)) . T) (((-570)) . T) (($) . T))
+((((-544)) . T) (((-1170)) . T) (((-227)) . T) (((-386)) . T) (((-901 (-386))) . T))
+(((|#1|) . T))
+((((-227)) . T) (((-870)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
+((($ $) . T) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1| |#1|) . T))
+(-3783 (|has| |#1| (-828)) (|has| |#1| (-858)))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
+((((-870)) . T))
+((((-870)) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(|has| |#1| (-856))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-322 |#1|)) . T) (((-572)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-((((-570)) . T) (((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T))
-((((-868)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
+((((-572)) . T) (((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T))
+((((-870)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
(((|#4|) . T))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T))
-((((-868)) . T))
-((((-868)) |has| (-1103 |#1|) (-1109)))
-(-3749 (|has| |#1| (-290 $ $)) (|has| |#1| (-290 |#1| |#1|)))
-((((-868)) . T) (((-1191)) . T))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T))
+((((-870)) . T))
+((((-870)) |has| (-1105 |#1|) (-1111)))
+(-3783 (|has| |#1| (-292 $ $)) (|has| |#1| (-292 |#1| |#1|)))
+((((-870)) . T) (((-1193)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1191)) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(((|#2| (-488 (-2857 |#1|) (-777))) . T))
-(((|#1| (-537 (-1186))) . T))
-(((#0=(-876 |#1|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-((((-1168)) . T) (((-965 (-130))) . T) (((-868)) . T))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(|has| |#4| (-373))
-(|has| |#3| (-373))
-(((|#1|) . T))
-((((-1186)) . T))
-((((-512)) . T))
-((((-876 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-1193)) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(((|#2| (-490 (-3475 |#1|) (-779))) . T))
+(((|#1| (-539 (-1188))) . T))
+(((#0=(-878 |#1|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+((((-1170)) . T) (((-967 (-130))) . T) (((-870)) . T))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(|has| |#4| (-375))
+(|has| |#3| (-375))
+(((|#1|) . T))
+((((-1188)) . T))
+((((-514)) . T))
+((((-878 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-562))
-((((-570)) . T) (((-413 (-570))) -3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-((((-2 (|:| -4298 |#1|) (|:| -2940 |#2|))) . T))
-((($) . T))
-((((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1186)) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-1186)) . T))
-((((-570)) . T) (($) . T))
-((((-587 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
+(|has| |#1| (-564))
+((((-572)) . T) (((-415 (-572))) -3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+((((-2 (|:| -1795 |#1|) (|:| -2477 |#2|))) . T))
+((($) . T))
+((((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1188)) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-1188)) . T))
+((((-572)) . T) (($) . T))
+((((-589 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) . T) (((-570)) . T) (($) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-868)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) . T) (((-572)) . T) (($) . T))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1|) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
+((((-870)) . T))
(((|#1|) . T))
-(|has| |#1| (-1109))
-(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+(|has| |#1| (-1111))
+(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
(((|#1|) . T))
-((((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((((-117 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T) (((-570)) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-(((|#2|) . T) (((-570)) . T) ((|#6|) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+((((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((((-117 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+(((|#2|) . T) (((-572)) . T) ((|#6|) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
((($) . T))
(((|#2|) . T))
((($) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T))
-((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
+((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
((($ $) . T))
((($) . T))
-((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
+((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-373))
+(|has| |#1| (-375))
(((|#1|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
(((|#1|) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-570)) . T))
-((((-868)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-572)) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) . T) (((-570)) . T) (($) . T))
-(|has| |#1| (-562))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) . T) (((-572)) . T) (($) . T))
+(|has| |#1| (-564))
(((|#1| |#1|) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(|has| |#1| (-1109))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(|has| |#1| (-1109))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(|has| |#1| (-854))
-((($) . T) (((-413 (-570))) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-570) (-130)) . T))
-((($) . T) (((-413 (-570))) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(|has| |#1| (-1111))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(|has| |#1| (-1111))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(|has| |#1| (-856))
+((($) . T) (((-415 (-572))) . T))
+((((-870)) . T))
+(((|#1|) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-572) (-130)) . T))
+((($) . T) (((-415 (-572))) . T))
((((-130)) . T))
-(-3749 (|has| |#4| (-799)) (|has| |#4| (-854)))
-(-3749 (|has| |#4| (-799)) (|has| |#4| (-854)))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
+(-3783 (|has| |#4| (-801)) (|has| |#4| (-856)))
+(-3783 (|has| |#4| (-801)) (|has| |#4| (-856)))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
(((|#1| |#2|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-((((-1191)) . T))
-(((|#2| |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|))) (((-1186) |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-520 (-1186) |#2|))))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+((((-1193)) . T))
+(((|#2| |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))) (((-1188) |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-522 (-1188) |#2|))))
(((|#1| |#2|) . T))
-(|has| |#1| (-1109))
-(|has| |#1| (-1109))
-((((-570)) . T) (((-413 (-570))) . T))
-(((|#1| (-1186) (-1097 (-1186)) (-537 (-1097 (-1186)))) . T))
-((((-570) |#1|) . T))
-((((-570)) . T))
-((((-570)) . T))
-((((-917 |#1|)) . T))
-(((|#1| (-537 |#2|)) . T))
-((((-570)) . T))
-((((-570)) . T))
-(((|#1|) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(((|#1| (-777)) . T))
-(|has| |#2| (-799))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(|has| |#2| (-854))
+(|has| |#1| (-1111))
+(|has| |#1| (-1111))
+((((-572)) . T) (((-415 (-572))) . T))
+(((|#1| (-1188) (-1099 (-1188)) (-539 (-1099 (-1188)))) . T))
+((((-572) |#1|) . T))
+((((-572)) . T))
+((((-572)) . T))
+((((-919 |#1|)) . T))
+(((|#1| (-539 |#2|)) . T))
+((((-572)) . T))
+((((-572)) . T))
+(((|#1|) . T))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(((|#1| (-779)) . T))
+(|has| |#2| (-801))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(|has| |#2| (-856))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1168) |#1|) . T))
-((((-1244 (-570)) $) . T) (((-570) (-130)) . T))
+((((-1170) |#1|) . T))
+((((-1246 (-572)) $) . T) (((-572) (-130)) . T))
(((|#1|) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-(((|#3| (-777)) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+(((|#3| (-779)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) (((-413 (-570))) . T))
+((($) . T) (((-415 (-572))) . T))
((($) . T))
((($) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-((((-413 (-570))) . T) (($) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+((((-415 (-572))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-1109))
-((((-413 (-570))) . T) (((-570)) . T))
-((((-570)) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#2|) . T))
-((((-1186) |#2|) |has| |#2| (-520 (-1186) |#2|)) ((|#2| |#2|) |has| |#2| (-313 |#2|)))
-((((-413 (-570))) . T) (((-570)) . T))
-((((-570)) . T) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1091)) . T) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))
+(|has| |#1| (-1111))
+((((-415 (-572))) . T) (((-572)) . T))
+((((-572)) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#2|) . T))
+((((-1188) |#2|) |has| |#2| (-522 (-1188) |#2|)) ((|#2| |#2|) |has| |#2| (-315 |#2|)))
+((((-415 (-572))) . T) (((-572)) . T))
+((((-572)) . T) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1093)) . T) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
(((|#1|) . T) (($) . T))
-((((-570)) . T))
-((((-570)) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
-((((-570)) . T))
-((((-570)) . T))
-((((-413 (-570))) . T) (($) . T))
-(((#0=(-705) (-1182 #0#)) . T))
-((((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T))
-(|has| |#2| (-368))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-(((|#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
+((((-572)) . T))
+((((-572)) . T))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+((((-572)) . T))
+((((-572)) . T))
+((((-415 (-572))) . T) (($) . T))
+(((#0=(-707) (-1184 #0#)) . T))
+((((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T))
+(|has| |#2| (-370))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+(((|#1|) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-1168) |#1|) . T))
+((((-870)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-1170) |#1|) . T))
(((|#3| |#3|) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-870)) . T))
+((((-870)) . T))
(((|#1| |#1|) . T))
-(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-570) |#1|) . T))
-((((-868)) . T))
-((((-171 (-227))) |has| |#1| (-1031)) (((-171 (-384))) |has| |#1| (-1031)) (((-542)) |has| |#1| (-620 (-542))) (((-1182 |#1|)) . T) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-(|has| |#1| (-368))
-((((-868)) . T))
+(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-572) |#1|) . T))
+((((-870)) . T))
+((((-171 (-227))) |has| |#1| (-1033)) (((-171 (-386))) |has| |#1| (-1033)) (((-544)) |has| |#1| (-622 (-544))) (((-1184 |#1|)) . T) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#2|) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+(|has| |#1| (-370))
+((((-870)) . T))
((($) . T))
((($) . T))
((((-130)) . T))
-(-12 (|has| |#4| (-235)) (|has| |#4| (-1058)))
-(-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))
-(-3749 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058)))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-((((-868)) . T) (((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570))))
-(((|#2|) . T) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-(|has| |#1| (-562))
-((((-570)) -3749 (|has| |#4| (-174)) (|has| |#4| (-854)) (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109))) (|has| |#4| (-1058))) ((|#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-1109))) (((-413 (-570))) -12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))
-((((-570)) -3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058))) ((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(|has| |#1| (-562))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(((|#1|) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-((((-705)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-1011)) (|has| |#1| (-1212)))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-413 (-570))) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-(-12 (|has| |#1| (-1109)) (|has| |#2| (-1109)))
-((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T))
-(((|#4| |#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))) (($ $) |has| |#4| (-174)))
-(((|#3| |#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($ $) |has| |#3| (-174)))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570)))))
-((((-868)) . T))
+(-12 (|has| |#4| (-237)) (|has| |#4| (-1060)))
+(-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))
+(-3783 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-870)) . T) (((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T))
+(((|#1|) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
+(((|#2|) . T) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+(|has| |#1| (-564))
+((((-572)) -3783 (|has| |#4| (-174)) (|has| |#4| (-856)) (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111))) (|has| |#4| (-1060))) ((|#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-1111))) (((-415 (-572))) -12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))
+((((-572)) -3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060))) ((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(|has| |#1| (-564))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(((|#1|) . T))
+(|has| |#1| (-564))
+(|has| |#1| (-564))
+(|has| |#1| (-564))
+((((-707)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-1013)) (|has| |#1| (-1214)))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-415 (-572))) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+(-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))
+((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
+(((|#4| |#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))) (($ $) |has| |#4| (-174)))
+(((|#3| |#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($ $) |has| |#3| (-174)))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
+((((-870)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -4298 |#1|) (|:| -2940 |#2|))) . T) (((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))))
-(((|#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))) (($) |has| |#4| (-174)))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174)))
-((((-2 (|:| -4298 |#1|) (|:| -2940 |#2|))) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
-((((-650 |#1|)) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-((((-413 $) (-413 $)) |has| |#2| (-562)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-916))
-((((-1168) (-52)) . T))
-((((-570)) |has| #0=(-413 |#2|) (-645 (-570))) ((#0#) . T))
-((((-542)) . T) (((-227)) . T) (((-384)) . T) (((-899 (-384))) . T))
-((((-868)) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))
+((((-2 (|:| -1795 |#1|) (|:| -2477 |#2|))) . T) (((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))))
+(((|#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))) (($) |has| |#4| (-174)))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
+((((-2 (|:| -1795 |#1|) (|:| -2477 |#2|))) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+((((-652 |#1|)) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+((((-415 $) (-415 $)) |has| |#2| (-564)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-918))
+((((-1170) (-52)) . T))
+((((-572)) |has| #0=(-415 |#2|) (-647 (-572))) ((#0#) . T))
+((((-544)) . T) (((-227)) . T) (((-386)) . T) (((-901 (-386))) . T))
+((((-870)) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
(((|#1|) |has| |#1| (-174)))
-(((|#1| $) |has| |#1| (-290 |#1| |#1|)))
-((((-868)) . T))
-((((-868)) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-(|has| |#1| (-856))
-(((|#2|) . T) (((-570)) . T) (((-825 |#1|)) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-1109))
-((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) . T) (((-1191)) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-1191)) . T))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(|has| |#1| (-235))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1| (-537 (-824 (-1186)))) . T))
-(((|#1| (-980)) . T))
-((((-570)) . T) ((|#2|) . T))
-(((#0=(-876 |#1|) $) |has| #0# (-290 #0# #0#)))
-((((-570) |#4|) . T))
-((((-570) |#3|) . T))
+(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
+((((-870)) . T))
+((((-870)) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+(|has| |#1| (-858))
+(((|#2|) . T) (((-572)) . T) (((-827 |#1|)) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-1111))
+((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) . T) (((-1193)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-1193)) . T))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(|has| |#1| (-237))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1| (-539 (-826 (-1188)))) . T))
+(((|#1| (-982)) . T))
+((((-572)) . T) ((|#2|) . T))
+(((#0=(-878 |#1|) $) |has| #0# (-292 #0# #0#)))
+((((-572) |#4|) . T))
+((((-572) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1161))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-(|has| (-1263 |#1| |#2| |#3| |#4|) (-146))
-(|has| (-1263 |#1| |#2| |#3| |#4|) (-148))
+(|has| |#1| (-1163))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+(|has| (-1265 |#1| |#2| |#3| |#4|) (-146))
+(|has| (-1265 |#1| |#2| |#3| |#4|) (-148))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058))))
+((((-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1109))
-((((-1168) |#1|) . T))
+(|has| |#1| (-1111))
+((((-1170) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570))))
-((((-1134 |#1| (-1186))) . T) (((-570)) . T) (((-824 (-1186))) . T) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-1186)) . T))
-(|has| |#2| (-373))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
+((((-1136 |#1| (-1188))) . T) (((-572)) . T) (((-826 (-1188))) . T) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-1188)) . T))
+(|has| |#2| (-375))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1058)))
-((((-868)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) #0#) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
+(((|#2|) |has| |#2| (-1060)))
+((((-870)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) #0#) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
(((|#1|) . T))
-((((-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((#0=(-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) #0#) |has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))))
-((((-868)) . T))
-((((-570) |#1|) . T))
-((((-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542)))) (((-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384))))) (((-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570))))))
+((((-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((#0=(-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) #0#) |has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))))
+((((-870)) . T))
+((((-572) |#1|) . T))
+((((-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544)))) (((-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386))))) (((-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572))))))
((($) . T))
-((((-868)) . T))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
+((((-870)) . T))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
-((((-868)) . T))
-(|has| (-1262 |#2| |#3| |#4|) (-148))
-(|has| (-1262 |#2| |#3| |#4|) (-146))
-(((|#2|) |has| |#2| (-1109)) (((-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
+((((-870)) . T))
+(|has| (-1264 |#2| |#3| |#4|) (-148))
+(|has| (-1264 |#2| |#3| |#4|) (-146))
+(((|#2|) |has| |#2| (-1111)) (((-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
(((|#1|) . T))
-(|has| |#1| (-1109))
-((((-868)) . T))
+(|has| |#1| (-1111))
+((((-870)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
(((|#1|) . T))
-((((-570) |#1|) . T))
+((((-572) |#1|) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
-((((-868)) |has| |#1| (-1109)))
-(-3749 (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-((((-917 |#1|)) . T))
-((((-413 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-570) |#1|)))
-((((-413 (-570))) . T) (($) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
+((((-870)) |has| |#1| (-1111)))
+(-3783 (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+((((-919 |#1|)) . T))
+((((-415 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-572) |#1|)))
+((((-415 (-572))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-(|has| |#1| (-368))
-(-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))
-(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))
-(|has| |#1| (-368))
-(|has| |#1| (-15 * (|#1| (-777) |#1|)))
-((((-570)) . T))
-((((-570)) . T))
-((((-1151 |#2| (-413 (-959 |#1|)))) . T) (((-413 (-959 |#1|))) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+(|has| |#1| (-370))
+(-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))
+(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
+(|has| |#1| (-370))
+(|has| |#1| (-15 * (|#1| (-779) |#1|)))
+((((-572)) . T))
+((((-572)) . T))
+((((-1153 |#2| (-415 (-961 |#1|)))) . T) (((-415 (-961 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T))
-(((|#1|) . T))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-((((-868)) . T))
-(((|#2|) . T))
-(-3749 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-((($) |has| |#1| (-562)) (((-570)) . T))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-((((-1269 |#1| |#2| |#3|)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1273 |#2|)) . T) (((-1269 |#1| |#2| |#3|)) . T) (((-1241 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T))
-(((|#1|) . T))
-((((-1186)) -12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058))))
-(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-826)))
-(-3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562)))
-(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((($ $) |has| |#1| (-562)) ((|#1| |#1|) . T))
-(((#0=(-705) (-1182 #0#)) . T))
-((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-868)) . T) (((-1277 |#4|)) . T))
-((((-868)) . T) (((-1277 |#3|)) . T))
-((((-587 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((($) . T) (((-413 (-570))) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) . T))
-((((-868)) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-((($) . T))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((#1=(-1269 |#1| |#2| |#3|) #1#) |has| |#1| (-368)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-(((|#3|) |has| |#3| (-1058)))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-(|has| (-1103 |#1|) (-1109))
-(((|#2| (-825 |#1|)) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
+(((|#1|) . T))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+((((-870)) . T))
+(((|#2|) . T))
+(-3783 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+((((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((($) |has| |#1| (-564)) (((-572)) . T))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+((((-1271 |#1| |#2| |#3|)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1275 |#2|)) . T) (((-1271 |#1| |#2| |#3|)) . T) (((-1243 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T))
+(((|#1|) . T))
+((((-1188)) -12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060))))
+(((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
+(-3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564)))
+(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((($ $) |has| |#1| (-564)) ((|#1| |#1|) . T))
+(((#0=(-707) (-1184 #0#)) . T))
+((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-870)) . T) (((-1279 |#4|)) . T))
+((((-870)) . T) (((-1279 |#3|)) . T))
+((((-589 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((($) . T) (((-415 (-572))) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) . T))
+((((-870)) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((($) . T))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((#1=(-1271 |#1| |#2| |#3|) #1#) |has| |#1| (-370)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+(((|#3|) |has| |#3| (-1060)))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+(|has| (-1105 |#1|) (-1111))
+(((|#2| (-827 |#1|)) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
(((|#2|) . T) ((|#6|) . T))
-(|has| |#1| (-368))
-((((-570)) . T) ((|#2|) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+(|has| |#1| (-370))
+((((-572)) . T) ((|#2|) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
(((|#2|) . T) ((|#6|) . T))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-413 $) (-413 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((#0=(-1091) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-868)) . T))
-((((-917 |#1|)) . T))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-415 $) (-415 $)) |has| |#1| (-564)) (($ $) . T) ((|#1| |#1|) . T))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((#0=(-1093) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-870)) . T))
+((((-919 |#1|)) . T))
((((-145)) . T))
((((-145)) . T))
-((((-242 |#1| |#2|) |#2|) . T))
-((((-868)) . T))
-(((|#3|) |has| |#3| (-1109)) (((-570)) -12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-244 |#1| |#2|) |#2|) . T))
+((((-870)) . T))
+(((|#3|) |has| |#3| (-1111)) (((-572)) -12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#1|) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-(|has| |#1| (-368))
-((((-1191)) . T))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
-((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|)))
-(|has| |#2| (-826))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-854))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-542)) |has| |#1| (-620 (-542))))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+(|has| |#1| (-370))
+((((-1193)) . T))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
+((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
+(|has| |#2| (-828))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-856))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-544)) |has| |#1| (-622 (-544))))
(((|#1| |#2|) . T))
-((((-1186)) -12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186)))))
-((((-1168) |#1|) . T))
-(((|#1| |#2| |#3| (-537 |#3|)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((((-868)) . T))
-((((-413 (-570))) . T))
-(((|#1|) . T))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-413 (-570))) . T))
-(|has| |#1| (-373))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-570)) . T))
-((((-570)) . T))
-(((|#1|) . T) (((-570)) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-(-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))
-((((-1186) #0=(-876 |#1|)) |has| #0# (-520 (-1186) #0#)) ((#0# #0#) |has| #0# (-313 #0#)))
-(((|#1|) . T))
-((((-570) |#4|) . T))
-((((-570) |#3|) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570))))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((((-1263 |#1| |#2| |#3| |#4|)) . T))
-((((-413 (-570))) . T) (((-570)) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
+((((-1188)) -12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188)))))
+((((-1170) |#1|) . T))
+(((|#1| |#2| |#3| (-539 |#3|)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+((((-870)) . T))
+((((-415 (-572))) . T))
+(((|#1|) . T))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+((((-415 (-572))) . T))
+(|has| |#1| (-375))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((((-572)) . T))
+((((-572)) . T))
+(((|#1|) . T) (((-572)) . T))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+(-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))
+((((-1188) #0=(-878 |#1|)) |has| #0# (-522 (-1188) #0#)) ((#0# #0#) |has| #0# (-315 #0#)))
+(((|#1|) . T))
+((((-572) |#4|) . T))
+((((-572) |#3|) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-1265 |#1| |#2| |#3| |#4|)) . T))
+((((-415 (-572))) . T) (((-572)) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-((((-570)) . T))
-((((-570)) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-((((-570)) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((((-572)) . T))
+((((-572)) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((((-572)) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
(((|#1|) . T))
(((|#1|) . T))
-((((-413 (-570))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-((($) . T) (((-413 (-570))) . T))
-(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-(((|#1|) |has| |#1| (-562)))
-((((-570) |#4|) . T))
-((((-570) |#3|) . T))
-((((-868)) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((((-868)) . T))
-((((-570) |#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+((($) . T) (((-415 (-572))) . T))
+(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+(((|#1|) |has| |#1| (-564)))
+((((-572) |#4|) . T))
+((((-572) |#3|) . T))
+((((-870)) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((((-870)) . T))
+((((-572) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1186) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1188) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -3749 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-174)) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))))
-(((|#2| |#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($ $) |has| |#2| (-174)))
+((($) -3783 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) |has| |#2| (-174)) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
+(((|#2| |#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($ $) |has| |#2| (-174)))
((((-145)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-373)))
-((((-868)) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174)))
+(-12 (|has| |#1| (-375)) (|has| |#2| (-375)))
+((((-870)) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
(((|#1|) . T))
-((((-868)) . T))
-(|has| |#1| (-1109))
+((((-870)) . T))
+(|has| |#1| (-1111))
(|has| $ (-148))
-((((-1191)) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) (((-570)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) . T))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-((($) -3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))))
-(|has| |#1| (-368))
-(-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))
-(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))
-(|has| |#1| (-368))
-(|has| |#1| (-15 * (|#1| (-777) |#1|)))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-((((-868)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(((|#2| (-537 (-870 |#1|))) . T))
-((((-868)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-587 |#1|)) . T))
-((($) . T))
-((((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
+((((-1193)) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) (((-572)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) . T))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+((($) -3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
+(|has| |#1| (-370))
+(-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))
+(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
+(|has| |#1| (-370))
+(|has| |#1| (-15 * (|#1| (-779) |#1|)))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+((((-870)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(((|#2| (-539 (-872 |#1|))) . T))
+((((-870)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((((-589 |#1|)) . T))
+((($) . T))
+((((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
(((|#1|) . T) (($) . T))
-((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T))
-((((-1184 |#1| |#2| |#3|)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1273 |#2|)) . T) (((-1184 |#1| |#2| |#3|)) . T) (((-1177 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
+((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
+((((-1186 |#1| |#2| |#3|)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1275 |#2|)) . T) (((-1186 |#1| |#2| |#3|)) . T) (((-1179 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
(((|#4|) . T))
(((|#3|) . T))
-((((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T))
-((((-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058))))
-(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-570)) . T) (((-413 (-570))) -3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T))
-((((-570) |#2|) . T))
-((((-868)) . T))
-((($) . T) (((-570)) . T) ((|#2|) . T) (((-413 (-570))) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T))
+((((-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))))
+(((|#1|) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-572)) . T) (((-415 (-572))) -3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
+((((-572) |#2|) . T))
+((((-870)) . T))
+((($) . T) (((-572)) . T) ((|#2|) . T) (((-415 (-572))) . T))
+((((-870)) . T))
+((((-870)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((#1=(-1184 |#1| |#2| |#3|) #1#) |has| |#1| (-368)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
-(((|#2|) |has| |#2| (-1058)))
-(|has| |#1| (-1109))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((#1=(-1186 |#1| |#2| |#3|) #1#) |has| |#1| (-370)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
+(((|#2|) |has| |#2| (-1060)))
+(|has| |#1| (-1111))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#1|) |has| |#1| (-174)) (($) . T))
(((|#1|) . T))
-(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-868)) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-870)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(((#0=(-1091) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1109)) (((-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))))
-(((|#2|) |has| |#1| (-368)))
-((((-570) |#1|) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T))
-((((-1191)) . T))
-((((-868)) . T))
-((((-413 |#2|) |#3|) . T))
-(((|#1| (-413 (-570))) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-868)) . T) (((-1191)) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+(((#0=(-1093) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-1111)) (((-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
+(((|#2|) |has| |#1| (-370)))
+((((-572) |#1|) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
+((((-1193)) . T))
+((((-870)) . T))
+((((-415 |#2|) |#3|) . T))
+(((|#1| (-415 (-572))) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-870)) . T) (((-1193)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1191)) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-(((|#2| |#3| (-870 |#1|)) . T))
-((((-1186)) |has| |#2| (-907 (-1186))))
-(((|#1|) . T))
-(((|#1| (-537 |#2|) |#2|) . T))
-(((|#1| (-777) (-1091)) . T))
-((((-413 (-570))) |has| |#2| (-368)) (($) . T))
-(((|#1| (-537 (-1097 (-1186))) (-1097 (-1186))) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1008 |#1|)) . T) (((-570)) . T) ((|#1|) . T) (((-413 (-570))) -3749 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(|has| |#2| (-799))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#2| (-854))
-((((-900 |#1|)) . T) (((-825 |#1|)) . T))
-((((-825 (-1186))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-650 (-928))) . T) (((-868)) . T))
-((((-413 (-570))) . T) (((-868)) . T))
-((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
-(|has| |#1| (-235))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((($ $) . T) (((-570) |#1|) . T))
+((((-1193)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
+(((|#2| |#3| (-872 |#1|)) . T))
+((((-1188)) |has| |#2| (-909 (-1188))))
+(((|#1|) . T))
+(((|#1| (-539 |#2|) |#2|) . T))
+(((|#1| (-779) (-1093)) . T))
+((((-415 (-572))) |has| |#2| (-370)) (($) . T))
+(((|#1| (-539 (-1099 (-1188))) (-1099 (-1188))) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1010 |#1|)) . T) (((-572)) . T) ((|#1|) . T) (((-415 (-572))) -3783 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(|has| |#2| (-801))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#2| (-856))
+((((-902 |#1|)) . T) (((-827 |#1|)) . T))
+((((-827 (-1188))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-652 (-930))) . T) (((-870)) . T))
+((((-415 (-572))) . T) (((-870)) . T))
+((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+(|has| |#1| (-237))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((($ $) . T) (((-572) |#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-1269 |#1| |#2| |#3|) $) -12 (|has| (-1269 |#1| |#2| |#3|) (-290 (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368))) (($ $) . T) (((-570) |#1|) . T))
-((($ $) . T) (((-413 (-570)) |#1|) . T))
-((((-777) |#1|) . T) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-1271 |#1| |#2| |#3|) $) -12 (|has| (-1271 |#1| |#2| |#3|) (-292 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))) (($ $) . T) (((-572) |#1|) . T))
+((($ $) . T) (((-415 (-572)) |#1|) . T))
+((((-779) |#1|) . T) (($ $) . T))
(((|#1|) . T))
-((((-1149 |#1| |#2|)) |has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-(((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))))
+((((-1151 |#1| |#2|)) |has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+(((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
(((|#2|) . T))
-((((-868)) -3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-619 (-868))) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) (((-1277 |#2|)) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T) (($) . T))
+((((-870)) -3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-621 (-870))) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111))) (((-1279 |#2|)) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-570)) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-(|has| |#1| (-1109))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-570) (-145)) . T))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))))
-((((-570)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-570)) . T))
-((($) |has| |#1| (-562)) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-570)) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058)))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058)))
-((($) . T) (((-570)) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T))
-(((|#2|) |has| |#1| (-368)))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+((((-572)) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+(|has| |#1| (-1111))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-572) (-145)) . T))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
+((((-572)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-572)) . T))
+((($) |has| |#1| (-564)) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-572)) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
+((($) . T) (((-572)) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
+(((|#2|) |has| |#1| (-370)))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-1191)) . T))
-((((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1| (-537 #0=(-1186)) #0#) . T))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-1193)) . T))
+((((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1| (-539 #0=(-1188)) #0#) . T))
(((|#1|) . T) (($) . T))
-((((-570)) . T))
+((((-572)) . T))
(|has| |#4| (-174))
(|has| |#3| (-174))
-(((#0=(-413 (-959 |#1|)) #0#) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(|has| |#1| (-1109))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(|has| |#1| (-1109))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
+(((#0=(-415 (-961 |#1|)) #0#) . T))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(|has| |#1| (-1111))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(|has| |#1| (-1111))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#1|) . T))
-((((-413 (-959 |#1|))) . T))
-(((|#1|) . T) (((-570)) . T) (($) . T))
+((((-415 (-961 |#1|))) . T))
+(((|#1|) . T) (((-572)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-868)) . T))
-((((-868)) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1058)) (((-570)) -12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((((-870)) . T))
+((((-870)) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1060)) (((-572)) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))
(((|#1| |#2|) . T))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-(|has| |#3| (-799))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
-(|has| |#3| (-854))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-(((|#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1| (-1166 |#1|)) |has| |#1| (-854)))
-((((-570) |#2|) . T))
-(|has| |#1| (-1109))
-(((|#1|) . T))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-1161)))
-((((-413 (-570))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((($) . T) (((-413 (-570))) . T))
-(|has| |#1| (-1109))
-(((|#2|) . T))
-((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570)))))
-(((|#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-368))))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368))))
-((((-868)) . T))
-(((|#1|) . T))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-916)))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-916)))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#2|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-916)))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-1186) $) |has| |#1| (-235)) ((#0# |#1|) |has| |#1| (-235)) ((#1=(-824 (-1186)) |#1|) . T) ((#1# $) . T))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-916)))
-((((-570) |#2|) . T))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((($) -3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) ((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))))
-((((-570) |#1|) . T))
-(|has| (-413 |#2|) (-148))
-(|has| (-413 |#2|) (-146))
-(((|#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|))))
-(|has| |#1| (-38 (-413 (-570))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-413 (-570))) . T))
-((((-868)) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-868)) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-(|has| |#1| (-38 (-413 (-570))))
-((((-394) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#2| (-1161))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-((((-868)) . T) (((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-1226)) . T) (((-868)) . T) (((-1191)) . T))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+(|has| |#3| (-801))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
+(|has| |#3| (-856))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#2|) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+(((|#2|) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1| (-1168 |#1|)) |has| |#1| (-856)))
+((((-572) |#2|) . T))
+(|has| |#1| (-1111))
+(((|#1|) . T))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-1163)))
+((((-415 (-572))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-1111))
+(((|#2|) . T))
+((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
+(((|#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-370))))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370))))
+((((-870)) . T))
+(((|#1|) . T))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-918)))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-918)))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#2|) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-918)))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-1188) $) |has| |#1| (-237)) ((#0# |#1|) |has| |#1| (-237)) ((#1=(-826 (-1188)) |#1|) . T) ((#1# $) . T))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-918)))
+((((-572) |#2|) . T))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((($) -3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) ((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))))
+((((-572) |#1|) . T))
+(|has| (-415 |#2|) (-148))
+(|has| (-415 |#2|) (-146))
+(((|#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))))
+(|has| |#1| (-38 (-415 (-572))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-415 (-572))) . T))
+((((-870)) . T))
+(|has| |#1| (-564))
+(|has| |#1| (-564))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-870)) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+(|has| |#1| (-38 (-415 (-572))))
+((((-396) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#2| (-1163))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+((((-870)) . T) (((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-1228)) . T) (((-870)) . T) (((-1193)) . T))
((((-117 |#1|)) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-(((|#1|) . T))
-((((-394) (-1168)) . T))
-(|has| |#1| (-562))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#2|) . T))
-((((-777) (-1191)) . T))
-((((-868)) . T))
-((((-825 |#1|)) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+(((|#1|) . T))
+((((-396) (-1170)) . T))
+(|has| |#1| (-564))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#2|) . T))
+((((-779) (-1193)) . T))
+((((-870)) . T))
+((((-827 |#1|)) . T))
(((|#2|) |has| |#2| (-174)))
-((((-1186) (-52)) . T))
+((((-1188) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-562))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-564))
(((|#1|) |has| |#1| (-174)))
-((((-650 |#1|)) . T))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(((|#2|) |has| |#2| (-313 |#2|)))
-(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1| (-1182 |#1|)) . T))
+((((-652 |#1|)) . T))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(((|#2|) |has| |#2| (-315 |#2|)))
+(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1| (-1184 |#1|)) . T))
(|has| $ (-148))
(((|#2|) . T))
-(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-(|has| |#2| (-373))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
+(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+(|has| |#2| (-375))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
(((|#1| |#2|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-868)) . T))
-((((-1184 |#1| |#2| |#3|) $) -12 (|has| (-1184 |#1| |#2| |#3|) (-290 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))) (($ $) . T) (((-570) |#1|) . T))
-((($ $) . T) (((-413 (-570)) |#1|) . T))
-((((-777) |#1|) . T) (($ $) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((#0=(-1269 |#1| |#2| |#3|) #0#) -12 (|has| (-1269 |#1| |#2| |#3|) (-313 (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368))) (((-1186) #0#) -12 (|has| (-1269 |#1| |#2| |#3|) (-520 (-1186) (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368))))
-(-12 (|has| |#1| (-1109)) (|has| |#2| (-1109)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-570)) . T) (($) . T))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) . T) (((-570)) . T) ((|#2|) . T))
-((((-570)) . T) (($) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))))
-((((-413 (-570))) . T) (((-570)) . T))
-((((-570) (-145)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-870)) . T))
+((((-1186 |#1| |#2| |#3|) $) -12 (|has| (-1186 |#1| |#2| |#3|) (-292 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))) (($ $) . T) (((-572) |#1|) . T))
+((($ $) . T) (((-415 (-572)) |#1|) . T))
+((((-779) |#1|) . T) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((#0=(-1271 |#1| |#2| |#3|) #0#) -12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))) (((-1188) #0#) -12 (|has| (-1271 |#1| |#2| |#3|) (-522 (-1188) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))
+(-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-572)) . T) (($) . T))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) . T) (((-572)) . T) ((|#2|) . T))
+((((-572)) . T) (($) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
+((((-415 (-572))) . T) (((-572)) . T))
+((((-572) (-145)) . T))
((((-145)) . T))
(((|#1|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058)))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
((((-112)) . T))
(((|#1|) . T))
-((((-542)) |has| |#1| (-620 (-542))) (((-227)) . #0=(|has| |#1| (-1031))) (((-384)) . #0#))
-((((-868)) . T))
-((((-1191)) . T))
-(|has| |#1| (-826))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) ((|#1|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-562)))
-(|has| |#1| (-562))
-(|has| |#1| (-856))
-((($) . T) (((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T))
-(|has| |#1| (-916))
-(((|#1|) . T))
-(|has| |#1| (-1109))
-((((-868)) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-562)))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1| (-1277 |#1|) (-1277 |#1|)) . T))
-((((-570) (-145)) . T) (((-1244 (-570)) $) . T))
-((($) . T))
-(-3749 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058)))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-((((-1191)) . T) (((-868)) . T))
-((((-1191)) . T))
-((((-868)) . T))
-(|has| |#1| (-1109))
-(((|#1| (-980)) . T))
+((((-544)) |has| |#1| (-622 (-544))) (((-227)) . #0=(|has| |#1| (-1033))) (((-386)) . #0#))
+((((-870)) . T))
+((((-1193)) . T))
+(|has| |#1| (-828))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) ((|#1|) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#2|) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-564)))
+(|has| |#1| (-564))
+(|has| |#1| (-858))
+((($) . T) (((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T))
+(|has| |#1| (-918))
+(((|#1|) . T))
+(|has| |#1| (-1111))
+((((-870)) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-564)))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
+((((-572) (-145)) . T) (((-1246 (-572)) $) . T))
+((($) . T))
+(-3783 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-1193)) . T) (((-870)) . T))
+((((-1193)) . T))
+((((-870)) . T))
+(|has| |#1| (-1111))
+(((|#1| (-982)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(-12 (|has| |#1| (-479)) (|has| |#2| (-479)))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((($) . T) (((-570)) . T) (((-876 |#1|)) . T) (((-413 (-570))) . T))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(-12 (|has| |#1| (-481)) (|has| |#2| (-481)))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((($) . T) (((-572)) . T) (((-878 |#1|)) . T) (((-415 (-572))) . T))
(((|#1|) . T))
-(|has| |#2| (-799))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
+(|has| |#2| (-801))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(|has| |#2| (-854))
-(-12 (|has| |#1| (-799)) (|has| |#2| (-799)))
-(-12 (|has| |#1| (-799)) (|has| |#2| (-799)))
-(-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(|has| |#2| (-856))
+(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
+(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
+(-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-570)) . T))
+(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-572)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-868)) . T))
-(|has| |#1| (-354))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-413 (-570))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-413 (-570))) . T))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T))
-(|has| |#1| (-834))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T))
-(|has| |#1| (-1109))
-(((|#1| $) |has| |#1| (-290 |#1| |#1|)))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-((($) |has| |#1| (-562)))
-(((|#2|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1109)))
-(((|#3|) |has| |#3| (-1109)))
-(|has| |#3| (-373))
-((($) |has| |#1| (-562)) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-570)) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-((((-868)) . T))
-((((-868)) . T))
+((((-870)) . T))
+(|has| |#1| (-356))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-415 (-572))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-415 (-572))) . T))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
+(|has| |#1| (-836))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
+(|has| |#1| (-1111))
+(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((($) |has| |#1| (-564)))
+(((|#2|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1111)))
+(((|#3|) |has| |#3| (-1111)))
+(|has| |#3| (-375))
+((($) |has| |#1| (-564)) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-572)) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+((((-870)) . T))
+((((-870)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#1| |#1|) |has| |#1| (-174)))
-(|has| |#2| (-368))
+(|has| |#2| (-370))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((((-413 (-570))) . T) (((-570)) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((($) . T) (((-570)) . T))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
+((((-415 (-572))) . T) (((-572)) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((($) . T) (((-572)) . T))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
((((-145)) . T))
(((|#1|) . T))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
((((-145)) . T))
((((-145)) . T))
-((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#) ((|#2|) . T) (((-570)) . T))
+((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#) ((|#2|) . T) (((-572)) . T))
(((|#1| |#2| |#3|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058)))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
(((|#1|) |has| |#1| (-174)))
(|has| $ (-148))
(|has| $ (-148))
-((((-1191)) . T))
+((((-1193)) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1109))
-((((-868)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-479)) (|has| |#1| (-562)) (|has| |#1| (-1058)) (|has| |#1| (-1121)))
-((($ $) |has| |#1| (-290 $ $)) ((|#1| $) |has| |#1| (-290 |#1| |#1|)))
-(((|#1| (-413 (-570))) . T))
-(((|#1|) . T))
-((((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-1186)) . T))
-(|has| |#1| (-562))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(|has| |#1| (-562))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-868)) . T))
+(|has| |#1| (-1111))
+((((-870)) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-481)) (|has| |#1| (-564)) (|has| |#1| (-1060)) (|has| |#1| (-1123)))
+((($ $) |has| |#1| (-292 $ $)) ((|#1| $) |has| |#1| (-292 |#1| |#1|)))
+(((|#1| (-415 (-572))) . T))
+(((|#1|) . T))
+((((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-1188)) . T))
+(|has| |#1| (-564))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(|has| |#1| (-564))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-870)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-570) (-413 (-959 |#1|))) . T))
+((((-572) (-415 (-961 |#1|))) . T))
(((|#2|) . T) (($) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(|has| |#4| (-854))
-(((|#2| (-242 (-2857 |#1|) (-777)) (-870 |#1|)) . T))
-(|has| |#3| (-854))
-(((|#1| (-537 |#3|) |#3|) . T))
+(|has| |#4| (-856))
+(((|#2| (-244 (-3475 |#1|) (-779)) (-872 |#1|)) . T))
+(|has| |#3| (-856))
+(((|#1| (-539 |#3|) |#3|) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(((#0=(-413 (-570)) #0#) |has| |#2| (-368)) (($ $) . T))
-((((-876 |#1|)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((((-868)) . T))
+(((#0=(-415 (-572)) #0#) |has| |#2| (-370)) (($ $) . T))
+((((-878 |#1|)) . T))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+((((-870)) . T))
(|has| |#1| (-148))
-((((-413 (-570))) |has| |#2| (-368)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
+((((-415 (-572))) |has| |#2| (-370)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
(|has| |#1| (-146))
-(-3749 (|has| |#1| (-354)) (|has| |#1| (-373)))
-((((-1151 |#2| |#1|)) . T) ((|#1|) . T))
+(-3783 (|has| |#1| (-356)) (|has| |#1| (-375)))
+((((-1153 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-174))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))
-(((|#2|) . T) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
-((((-868)) . T))
+(-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))
+(((|#2|) . T) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
+((((-870)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-705)) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(|has| |#1| (-562))
+((((-707)) . T))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(|has| |#1| (-564))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -1114,377 +1114,377 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1186) (-52)) . T))
+((((-1188) (-52)) . T))
(((|#1|) . T) (($) . T))
-((((-1013 10)) . T) (((-413 (-570))) . T) (((-868)) . T))
-((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
-(((|#1|) . T))
-((((-1013 16)) . T) (((-413 (-570))) . T) (((-868)) . T))
-((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
-(((|#1| (-570)) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-1015 10)) . T) (((-415 (-572))) . T) (((-870)) . T))
+((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+(((|#1|) . T))
+((((-1015 16)) . T) (((-415 (-572))) . T) (((-870)) . T))
+((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+(((|#1| (-572)) . T))
+((((-870)) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-413 (-570))) . T))
-(((|#3|) . T) (((-618 $)) . T))
+(((|#1| (-415 (-572))) . T))
+(((|#3|) . T) (((-620 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-570)) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-572)) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-(((#0=(-1184 |#1| |#2| |#3|) #0#) -12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))) (((-1186) #0#) -12 (|has| (-1184 |#1| |#2| |#3|) (-520 (-1186) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))))
-((((-868)) . T))
-((((-868)) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+(((#0=(-1186 |#1| |#2| |#3|) #0#) -12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))) (((-1188) #0#) -12 (|has| (-1186 |#1| |#2| |#3|) (-522 (-1188) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))
+((((-870)) . T))
+((((-870)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) |has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))))
-((((-868)) . T))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) |has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))))
+((((-870)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1186) (-52)) . T))
+((((-1188) (-52)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-834))
-((($) . T) (((-570)) . T) ((|#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(|has| (-1103 |#1|) (-1109))
-(((|#2| |#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($ $) |has| |#2| (-174)))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368))))
-((((-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174)))
-((((-570)) . T))
-((((-1191)) . T))
-((((-777)) . T))
+((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-836))
+((($) . T) (((-572)) . T) ((|#1|) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(|has| (-1105 |#1|) (-1111))
+(((|#2| |#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($ $) |has| |#2| (-174)))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370))))
+((((-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
+((((-572)) . T))
+((((-1193)) . T))
+((((-779)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-562))
-((((-570)) . T))
+(|has| |#1| (-564))
+((((-572)) . T))
(((|#2|) . T))
-((((-868)) . T))
-(((|#1| (-413 (-570)) (-1091)) . T))
+((((-870)) . T))
+(((|#1| (-415 (-572)) (-1093)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#1| (-562))
-((((-570)) . T))
+(|has| |#1| (-564))
+((((-572)) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
-((((-413 (-570))) . T) (($) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-562)))
-((((-1191)) . T))
-((($) . T) (((-413 (-570))) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-562)))
+((((-415 (-572))) . T) (($) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-564)))
+((((-1193)) . T))
+((($) . T) (((-415 (-572))) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-564)))
(|has| |#1| (-146))
-((((-570)) . T))
+((((-572)) . T))
(|has| |#1| (-148))
-((((-570)) . T))
-((((-899 (-570))) . T) (((-899 (-384))) . T) (((-542)) . T) (((-1186)) . T))
-((((-868)) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
+((((-572)) . T))
+((((-901 (-572))) . T) (((-901 (-386))) . T) (((-544)) . T) (((-1188)) . T))
+((((-870)) . T))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
((($) . T))
(((|#1|) . T))
-((((-868)) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
+((((-870)) . T))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -3749 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-174)) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))))
-((((-876 |#1|)) . T))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109)))
-(-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))
-(|has| |#2| (-1161))
-(((#0=(-52)) . T) (((-2 (|:| -4144 (-1186)) (|:| -3165 #0#))) . T))
+((($) -3783 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) |has| |#2| (-174)) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
+((((-878 |#1|)) . T))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
+(-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))
+(|has| |#2| (-1163))
+(((#0=(-52)) . T) (((-2 (|:| -1640 (-1188)) (|:| -3762 #0#))) . T))
(((|#1| |#2|) . T))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-(((|#1| (-570) (-1091)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1| (-413 (-570)) (-1091)) . T))
-((($) -3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-570) |#2|) . T))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+(((|#1| (-572) (-1093)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| (-415 (-572)) (-1093)) . T))
+((($) -3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-572) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-373))
+(|has| |#2| (-375))
(((|#1| |#1|) . T))
-((((-868)) . T))
-((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|)))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-373)))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-(((|#1|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-(|has| |#1| (-354))
-((((-570)) -3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058))) ((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))
-(((|#1|) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+((((-870)) . T))
+((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
+(-12 (|has| |#1| (-375)) (|has| |#2| (-375)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+(((|#1|) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+(|has| |#1| (-356))
+((((-572)) -3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060))) ((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
+(((|#1|) . T))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#4|) . T))
-(((|#4|) . T) (((-868)) . T))
-(((|#3|) . T) ((|#2|) . T) (($) -3749 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058))) (((-570)) . T) ((|#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))))
-(((|#2|) . T) (($) -3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) (((-570)) . T) ((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) #0#) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-(|has| |#1| (-562))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) . T))
+(((|#4|) . T) (((-870)) . T))
+(((|#3|) . T) ((|#2|) . T) (($) -3783 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060))) (((-572)) . T) ((|#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))))
+(((|#2|) . T) (($) -3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) (((-572)) . T) ((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) #0#) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+(|has| |#1| (-564))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) . T))
(((|#1| |#2|) . T))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-916)))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-916)))
-((((-413 (-570))) . T) (((-570)) . T))
-((((-570)) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((((-868)) . T))
-(((|#3| |#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($ $) |has| |#3| (-174)))
-(|has| |#1| (-1031))
-((((-868)) . T))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174)))
-((((-570) (-112)) . T))
-((((-1191)) . T))
-(((|#1|) |has| |#1| (-313 |#1|)))
-((((-1191)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((((-1186) $) |has| |#1| (-520 (-1186) $)) (($ $) |has| |#1| (-313 $)) ((|#1| |#1|) |has| |#1| (-313 |#1|)) (((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)))
-((((-1186)) |has| |#1| (-907 (-1186))))
-(-3749 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-918)))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-918)))
+((((-415 (-572))) . T) (((-572)) . T))
+((((-572)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) . T))
+((((-870)) . T))
+(((|#1|) . T))
+((((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((((-870)) . T))
+(((|#3| |#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($ $) |has| |#3| (-174)))
+(|has| |#1| (-1033))
+((((-870)) . T))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
+((((-572) (-112)) . T))
+((((-1193)) . T))
+(((|#1|) |has| |#1| (-315 |#1|)))
+((((-1193)) . T))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+((((-1188) $) |has| |#1| (-522 (-1188) $)) (($ $) |has| |#1| (-315 $)) ((|#1| |#1|) |has| |#1| (-315 |#1|)) (((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)))
+((((-1188)) |has| |#1| (-909 (-1188))))
+(-3783 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
-((((-394) |#1|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-(|has| |#1| (-1109))
-(((|#2|) . T) (((-868)) . T))
-((((-868)) . T))
-(((|#2|) . T))
-((((-917 |#1|)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
+((((-396) |#1|) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+(|has| |#1| (-1111))
+(((|#2|) . T) (((-870)) . T))
+((((-870)) . T))
+(((|#2|) . T))
+((((-919 |#1|)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
(((|#1| |#2|) . T))
((($) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
(((|#1| |#1|) . T))
-(((#0=(-876 |#1|)) |has| #0# (-313 #0#)))
-((((-570)) . T) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T))
+(((#0=(-878 |#1|)) |has| #0# (-315 #0#)))
+((((-572)) . T) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-1049 (-415 (-572))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(((|#1|) . T))
-(-12 (|has| |#1| (-799)) (|has| |#2| (-799)))
-(-12 (|has| |#1| (-799)) (|has| |#2| (-799)))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((($) . T) (((-570)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(((|#1|) . T))
+(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
+(-12 (|has| |#1| (-801)) (|has| |#2| (-801)))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((($) . T) (((-572)) . T) ((|#2|) . T))
+(((|#2|) . T) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-1212))
-(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-((((-413 (-570))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1058)))
-(((|#3|) |has| |#3| (-1058)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-(|has| |#1| (-368))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-((($ $) . T) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1| |#1|) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-570) |#3|) . T))
-((((-868)) . T))
-((((-542)) |has| |#3| (-620 (-542))))
-((((-695 |#3|)) . T) (((-868)) . T))
+(|has| |#1| (-1214))
+(((#0=(-572) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+((((-415 (-572))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1060)))
+(((|#3|) |has| |#3| (-1060)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(|has| |#1| (-370))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((($ $) . T) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1| |#1|) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-572) |#3|) . T))
+((((-870)) . T))
+((((-544)) |has| |#3| (-622 (-544))))
+((((-697 |#3|)) . T) (((-870)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-854))
-(|has| |#1| (-854))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-562)))
+(|has| |#1| (-856))
+(|has| |#1| (-856))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-564)))
((($) . T))
-(((#0=(-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) #0#) |has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))))
+(((#0=(-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) #0#) |has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))))
((($) . T))
((($) . T))
-(((|#2|) |has| |#2| (-1109)))
-((((-868)) -3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-619 (-868))) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) (((-1277 |#2|)) . T))
+(((|#2|) |has| |#2| (-1111)))
+((((-870)) -3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-621 (-870))) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111))) (((-1279 |#2|)) . T))
((($) . T))
-((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-1168) (-52)) . T))
+((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-1170) (-52)) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -3749 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-174)) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))))
-((((-868)) . T))
-(((|#2|) . T))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))))
-((((-570)) |has| #0=(-413 |#2|) (-645 (-570))) ((#0#) . T))
-((($) . T) (((-570)) . T))
-((((-570) (-145)) . T))
-((((-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) ((|#1| |#2|) . T))
-((((-413 (-570))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-868)) . T))
-((((-917 |#1|)) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))
-(|has| |#1| (-854))
-((($) -3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-(|has| |#1| (-368))
+((($) -3783 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) |has| |#2| (-174)) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
+((((-870)) . T))
+(((|#2|) . T))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
+((((-572)) |has| #0=(-415 |#2|) (-647 (-572))) ((#0#) . T))
+((($) . T) (((-572)) . T))
+((((-572) (-145)) . T))
+((((-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) ((|#1| |#2|) . T))
+((((-415 (-572))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-870)) . T))
+((((-919 |#1|)) . T))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
+(|has| |#1| (-856))
+((($) -3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+(|has| |#1| (-370))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-854))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-1186)) |has| |#1| (-907 (-1186))))
-(|has| |#1| (-854))
-((((-512)) . T))
-(((|#1| (-1186)) . T))
-(((|#1| (-1277 |#1|) (-1277 |#1|)) . T))
-((((-868)) . T) (((-1191)) . T))
+(|has| |#1| (-856))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-1188)) |has| |#1| (-909 (-1188))))
+(|has| |#1| (-856))
+((((-514)) . T))
+(((|#1| (-1188)) . T))
+(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
+((((-870)) . T) (((-1193)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1191)) . T))
-(|has| |#1| (-1109))
-(((|#1| (-1186) (-824 (-1186)) (-537 (-824 (-1186)))) . T))
-((((-413 (-959 |#1|))) . T))
-((((-542)) . T))
-((((-868)) . T))
+((((-1193)) . T))
+(|has| |#1| (-1111))
+(((|#1| (-1188) (-826 (-1188)) (-539 (-826 (-1188)))) . T))
+((((-415 (-961 |#1|))) . T))
+((((-544)) . T))
+((((-870)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) (((-1244 (-570)) $) . T) ((|#1| |#2|) . T))
+((((-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) (((-1246 (-572)) $) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#2| (-423 |#1|))
-(|has| |#2| (-423 |#1|))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-542)) |has| |#1| (-620 (-542))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))))
-((((-868)) . T))
-((((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#2|) . T) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-512)) . T))
-(|has| |#2| (-854))
-((((-512)) . T))
-(-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))
-(|has| |#1| (-562))
-((((-876 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-1168) |#1|) . T))
-(|has| |#1| (-1161))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((((-965 |#1|)) . T))
-(((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1| |#1|) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-570))) (((-570)) |has| |#1| (-1047 (-570))) (((-1186)) |has| |#1| (-1047 (-1186))) ((|#1|) . T))
-((((-570) |#2|) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((((-570)) |has| |#1| (-893 (-570))) (((-384)) |has| |#1| (-893 (-384))))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-570)) . T))
-((((-650 |#4|)) . T) (((-868)) . T))
-((((-542)) |has| |#4| (-620 (-542))))
-((((-542)) |has| |#4| (-620 (-542))))
-((((-868)) . T) (((-650 |#4|)) . T))
-((($) |has| |#1| (-854)))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)) (((-570)) . T) (($) . T) ((|#1|) . T))
-((((-570)) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))))
-(((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) . T))
-((((-650 |#4|)) . T) (((-868)) . T))
-((((-542)) |has| |#4| (-620 (-542))))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T))
-(((|#1|) . T))
-((((-1186)) |has| (-413 |#2|) (-907 (-1186))))
-(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) #0#) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((($) . T))
-((($) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-868)) -3749 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-619 (-868))) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-373)) (|has| |#3| (-732)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)) (|has| |#3| (-1109))) (((-1277 |#3|)) . T))
-((((-570) |#2|) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(((|#2| |#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($ $) |has| |#2| (-174)))
-(((|#2|) . T) (((-570)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) ((|#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1168) (-1186) (-570) (-227) (-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-868)) . T))
-((((-570) (-112)) . T))
-(((|#1|) . T))
-((((-868)) . T))
+(|has| |#2| (-425 |#1|))
+(|has| |#2| (-425 |#1|))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-544)) |has| |#1| (-622 (-544))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))))
+((((-870)) . T))
+((((-878 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#2|) . T) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-514)) . T))
+(|has| |#2| (-856))
+((((-514)) . T))
+(-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))
+(|has| |#1| (-564))
+((((-878 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-1170) |#1|) . T))
+(|has| |#1| (-1163))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-967 |#1|)) . T))
+(((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1| |#1|) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-572))) (((-572)) |has| |#1| (-1049 (-572))) (((-1188)) |has| |#1| (-1049 (-1188))) ((|#1|) . T))
+((((-572) |#2|) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((((-572)) |has| |#1| (-895 (-572))) (((-386)) |has| |#1| (-895 (-386))))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-572)) . T))
+((((-652 |#4|)) . T) (((-870)) . T))
+((((-544)) |has| |#4| (-622 (-544))))
+((((-544)) |has| |#4| (-622 (-544))))
+((((-870)) . T) (((-652 |#4|)) . T))
+((($) |has| |#1| (-856)))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) (((-572)) . T) (($) . T) ((|#1|) . T))
+((((-572)) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
+(((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) . T))
+((((-652 |#4|)) . T) (((-870)) . T))
+((((-544)) |has| |#4| (-622 (-544))))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
+(((|#1|) . T))
+((((-1188)) |has| (-415 |#2|) (-909 (-1188))))
+(((|#2|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) #0#) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((($) . T))
+((($) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-870)) -3783 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-621 (-870))) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-375)) (|has| |#3| (-734)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)) (|has| |#3| (-1111))) (((-1279 |#3|)) . T))
+((((-572) |#2|) . T))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(((|#2| |#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($ $) |has| |#2| (-174)))
+(((|#2|) . T) (((-572)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) ((|#2|) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-1170) (-1188) (-572) (-227) (-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-870)) . T))
+((((-572) (-112)) . T))
+(((|#1|) . T))
+((((-870)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-870)) . T))
+((((-870)) . T))
((((-112)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((($) . T) (((-413 (-570))) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174)))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((($) . T) (((-415 (-572))) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
(|has| $ (-148))
-((((-413 |#2|)) . T))
-((((-413 (-570))) |has| #0=(-413 |#2|) (-1047 (-413 (-570)))) (((-570)) |has| #0# (-1047 (-570))) ((#0#) . T))
+((((-415 |#2|)) . T))
+((((-415 (-572))) |has| #0=(-415 |#2|) (-1049 (-415 (-572)))) (((-572)) |has| #0# (-1049 (-572))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-174)))
(|has| |#2| (-146))
@@ -1492,207 +1492,207 @@
(((|#3|) |has| |#3| (-174)))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
(|has| |#1| (-148))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
(|has| |#1| (-148))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
(|has| |#1| (-148))
(((|#1|) . T))
-(|has| |#2| (-235))
+(|has| |#2| (-237))
(((|#2|) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-1186) (-52)) . T))
-((((-868)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-1188) (-52)) . T))
+((((-870)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
(((|#1| |#1|) . T))
-((((-1186)) |has| |#2| (-907 (-1186))))
+((((-1188)) |has| |#2| (-909 (-1188))))
((((-130)) . T))
-((((-900 |#1|)) . T) ((|#2|) . T) (((-570)) . T) (((-825 |#1|)) . T))
-((((-570) (-112)) . T) (((-1244 (-570)) $) . T))
-(|has| |#1| (-562))
+((((-902 |#1|)) . T) ((|#2|) . T) (((-572)) . T) (((-827 |#1|)) . T))
+((((-572) (-112)) . T) (((-1246 (-572)) $) . T))
+(|has| |#1| (-564))
(((|#2|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-570)) . T) (((-825 (-1186))) . T))
+(((|#1|) . T) (((-572)) . T) (((-827 (-1188))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
(((|#3|) . T))
-(|has| |#1| (-38 (-413 (-570))))
-((((-570)) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))))
-(((|#1|) . T))
-((((-1013 2)) . T) (((-413 (-570))) . T) (((-868)) . T))
-((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1008 |#1|)) . T) ((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1182 |#1|)) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
+(|has| |#1| (-38 (-415 (-572))))
+((((-572)) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
+(((|#1|) . T))
+((((-1015 2)) . T) (((-415 (-572))) . T) (((-870)) . T))
+((((-544)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-1010 |#1|)) . T) ((|#1|) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1184 |#1|)) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-856))
-(((|#1|) . T) (((-570)) . T) (($) . T))
-(((|#2|) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-570) |#2|) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-(((|#2|) . T))
-((((-570) |#3|) . T))
-(((|#2|) . T))
-((((-868)) . T))
-(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) #0#) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
+(|has| |#1| (-858))
+(((|#1|) . T) (((-572)) . T) (($) . T))
+(((|#2|) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-572) |#2|) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+(((|#2|) . T))
+((((-572) |#3|) . T))
+(((|#2|) . T))
+((((-870)) . T))
+(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) #0#) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#1| (-1109))
-(|has| |#2| (-368))
-(((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))))
-(|has| |#1| (-38 (-413 (-570))))
+(|has| |#1| (-1111))
+(|has| |#2| (-370))
+(((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
+(|has| |#1| (-38 (-415 (-572))))
(((|#2|) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
(((|#1|) |has| |#1| (-174)))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#2|) . T))
(((|#1|) . T))
-((((-1168) (-52)) . T))
+((((-1170) (-52)) . T))
(((|#1|) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#2|) |has| |#2| (-174)))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (((-570)) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))))
-((((-570) |#3|) . T))
-((((-570) (-145)) . T))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) (((-572)) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
+((((-572) |#3|) . T))
+((((-572) (-145)) . T))
((((-145)) . T))
-((((-868)) . T))
-((((-1191)) . T))
+((((-870)) . T))
+((((-1193)) . T))
((((-112)) . T))
(|has| |#1| (-148))
(((|#1|) . T))
(|has| |#1| (-146))
((($) . T))
-(|has| |#1| (-562))
+(|has| |#1| (-564))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#1|) . T))
-(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570))))
+(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
((((-145)) . T))
-((((-868)) . T))
-((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T))
-((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T))
-((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T))
-((((-1186) (-52)) . T) (((-1168) (-52)) . T))
+((((-870)) . T))
+((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
+((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
+((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
+((((-1188) (-52)) . T) (((-1170) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#1| |#2|) . T))
-((((-1244 (-570)) $) . T) (((-570) (-145)) . T))
-(((#0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) #0#) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(|has| |#1| (-856))
-(((|#2| (-777) (-1091)) . T))
+((((-1246 (-572)) $) . T) (((-572) (-145)) . T))
+(((#0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) #0#) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(|has| |#1| (-858))
+(((|#2| (-779) (-1093)) . T))
(((|#1| |#2|) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-562)))
-(|has| |#1| (-797))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-564)))
+(|has| |#1| (-799))
(((|#1|) |has| |#1| (-174)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3749 (|has| |#1| (-148)) (-12 (|has| |#1| (-368)) (|has| |#2| (-148))))
-(-3749 (|has| |#1| (-146)) (-12 (|has| |#1| (-368)) (|has| |#2| (-146))))
+(-3783 (|has| |#1| (-148)) (-12 (|has| |#1| (-370)) (|has| |#2| (-148))))
+(-3783 (|has| |#1| (-146)) (-12 (|has| |#1| (-370)) (|has| |#2| (-146))))
(((|#4|) . T))
(|has| |#1| (-146))
-((((-1168) |#1|) . T))
+((((-1170) |#1|) . T))
(|has| |#1| (-148))
(((|#1|) . T))
-((((-570)) . T))
-((((-868)) . T))
+((((-572)) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+((((-870)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#3|) . T))
-((((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) (((-570)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) . T))
-((((-868)) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-(((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))) (((-965 |#1|)) . T))
-(|has| |#1| (-854))
-(|has| |#1| (-854))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-965 |#1|)) . T))
-(((|#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-368))))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368))))
-(|has| |#2| (-368))
+((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) (((-572)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) . T))
+((((-870)) . T))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+(((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))) (((-967 |#1|)) . T))
+(|has| |#1| (-856))
+(|has| |#1| (-856))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-967 |#1|)) . T))
+(((|#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-370))))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370))))
+(|has| |#2| (-370))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))) (($) |has| |#4| (-174)))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174)))
-(((|#2|) |has| |#2| (-1058)))
-((((-1168) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))
-(((|#2| (-900 |#1|)) . T))
-((($) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-((((-394) (-1168)) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) -3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-619 (-868))) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) (((-1277 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -4144 (-1168)) (|:| -3165 #0#))) . T))
-(((|#1|) . T))
-((((-868)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
+(((|#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))) (($) |has| |#4| (-174)))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
+(((|#2|) |has| |#2| (-1060)))
+((((-1170) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
+(((|#2| (-902 |#1|)) . T))
+((($) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+((((-396) (-1170)) . T))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) -3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-621 (-870))) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111))) (((-1279 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1640 (-1170)) (|:| -3762 #0#))) . T))
+(((|#1|) . T))
+((((-870)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
((((-145)) . T))
(|has| |#2| (-146))
-((((-570)) . T))
+((((-572)) . T))
(|has| |#2| (-148))
-(|has| |#1| (-479))
-(-3749 (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))
-(|has| |#1| (-368))
-((((-868)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-((($) |has| |#1| (-562)))
-((((-1191)) . T))
-(|has| |#1| (-854))
-(|has| |#1| (-854))
-((((-868)) . T))
-(((|#2|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#2|) . T) (((-570)) . T) (((-825 |#1|)) . T))
+(|has| |#1| (-481))
+(-3783 (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
+(|has| |#1| (-370))
+((((-870)) . T))
+(|has| |#1| (-38 (-415 (-572))))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((($) |has| |#1| (-564)))
+((((-1193)) . T))
+(|has| |#1| (-856))
+(|has| |#1| (-856))
+((((-870)) . T))
+(((|#2|) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#2|) . T) (((-572)) . T) (((-827 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1186)) |has| |#1| (-907 (-1186))))
+((((-1188)) |has| |#1| (-909 (-1188))))
(((|#2| |#2|) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-868)) . T))
-(|has| |#1| (-1109))
-(((|#2| (-488 (-2857 |#1|) (-777)) (-870 |#1|)) . T))
-((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#))
-(((|#1| (-537 (-1186)) (-1186)) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-870)) . T))
+(|has| |#1| (-1111))
+(((|#2| (-490 (-3475 |#1|) (-779)) (-872 |#1|)) . T))
+((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#))
+(((|#1| (-539 (-1188)) (-1188)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-870)) . T))
+((((-870)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1707,2250 +1707,2250 @@
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-1186) (-52)) . T))
-((((-413 (-570)) |#1|) . T) (($ $) . T))
-(((|#1| (-570)) . T))
-((((-917 |#1|)) . T))
-(((|#1|) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058))) (($) -3749 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))))
-(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
+(((|#1|) . T) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-1188) (-52)) . T))
+((((-415 (-572)) |#1|) . T) (($ $) . T))
+(((|#1| (-572)) . T))
+((((-919 |#1|)) . T))
+(((|#1|) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))) (($) -3783 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))))
+(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+(|has| |#1| (-858))
+(|has| |#1| (-858))
+((((-572) |#2|) . T))
+((($) . T) (((-572)) . T) ((|#1|) . T))
+((((-870)) . T))
+((((-572)) . T))
+(|has| |#1| (-858))
+((((-697 |#2|)) . T) (((-870)) . T))
+((((-1271 |#1| |#2| |#3|)) -12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))
+((((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1| |#2|) . T))
+((((-415 (-961 |#1|))) . T))
+((((-982)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#1|) |has| |#1| (-174)))
+(|has| |#1| (-292 |#1| |#1|))
+(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370))))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(-3783 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-918)))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+((((-572) |#2|) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370))))
+(|has| |#1| (-356))
+(((|#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
+(((|#2|) . T) (((-572)) . T))
+((($) . T) (((-415 (-572))) . T))
+((((-572) (-112)) . T))
+(|has| |#1| (-828))
+(|has| |#1| (-828))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)))
(|has| |#1| (-856))
(|has| |#1| (-856))
-((((-570) |#2|) . T))
-((($) . T) (((-570)) . T) ((|#1|) . T))
-((((-868)) . T))
-((((-570)) . T))
(|has| |#1| (-856))
-((((-695 |#2|)) . T) (((-868)) . T))
-((((-1269 |#1| |#2| |#3|)) -12 (|has| (-1269 |#1| |#2| |#3|) (-313 (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368))))
-((((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1| |#2|) . T))
-((((-413 (-959 |#1|))) . T))
-((((-980)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-290 |#1| |#1|))
-(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368))))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(-3749 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-916)))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-((((-570) |#2|) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368))))
-(|has| |#1| (-354))
-(((|#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))
-(((|#2|) . T) (((-570)) . T))
-((($) . T) (((-413 (-570))) . T))
-((((-570) (-112)) . T))
-(|has| |#1| (-826))
-(|has| |#1| (-826))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)))
-(|has| |#1| (-854))
-(|has| |#1| (-854))
-(|has| |#1| (-854))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-570)) . T) (($) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-1186)) |has| |#1| (-907 (-1186))) (((-1091)) . T))
-(((|#1|) . T))
-(|has| |#1| (-854))
-(((#0=(-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) #0#) |has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(|has| |#1| (-1109))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-572)) . T) (($) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-1188)) |has| |#1| (-909 (-1188))) (((-1093)) . T))
+(((|#1|) . T))
+(|has| |#1| (-856))
+(((#0=(-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) #0#) |has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(|has| |#1| (-1111))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-((((-1151 |#2| (-413 (-959 |#1|)))) . T) (((-413 (-959 |#1|))) . T) (((-570)) . T))
-(((|#1| |#2| |#3| (-242 |#2| |#3|) (-242 |#1| |#3|)) . T))
+((((-1153 |#2| (-415 (-961 |#1|)))) . T) (((-415 (-961 |#1|))) . T) (((-572)) . T))
+(((|#1| |#2| |#3| (-244 |#2| |#3|) (-244 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
-((($) . T) (((-570)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T))
+((($) . T) (((-572)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-537 |#2|) |#2|) . T))
-((((-868)) . T))
-((((-145)) . T) (((-868)) . T))
-((((-570) |#1|) . T))
-(((|#1| (-777) (-1091)) . T))
+(((|#1| (-539 |#2|) |#2|) . T))
+((((-870)) . T))
+((((-145)) . T) (((-870)) . T))
+((((-572) |#1|) . T))
+(((|#1| (-779) (-1093)) . T))
(((|#3|) . T))
((((-145)) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) -3749 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))) ((|#1|) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) -3783 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))) ((|#1|) . T))
(((|#1|) . T))
((((-145)) . T))
(((|#2|) |has| |#2| (-174)))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109)))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#3| (-174))
-(((|#4|) |has| |#4| (-368)))
-(((|#3|) |has| |#3| (-368)))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-368)))
-((((-868)) . T))
-((((-868)) . T))
-(((|#2|) . T))
-(((|#1| (-1182 |#1|)) . T))
-((((-1091)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((($) . T) ((|#1|) . T) (((-413 (-570))) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-((($) |has| |#1| (-562)))
-(((|#2|) . T))
-((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) . T))
-((($) |has| |#1| (-854)))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-916))
-((((-1186)) . T))
-((((-868)) . T))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-570) |#2|) . T))
+(((|#4|) |has| |#4| (-370)))
+(((|#3|) |has| |#3| (-370)))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-370)))
+((((-870)) . T))
+((((-870)) . T))
+(((|#2|) . T))
+(((|#1| (-1184 |#1|)) . T))
+((((-1093)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((($) . T) ((|#1|) . T) (((-415 (-572))) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((($) |has| |#1| (-564)))
+(((|#2|) . T))
+((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) . T))
+((($) |has| |#1| (-856)))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(|has| |#1| (-918))
+((((-1188)) . T))
+((((-870)) . T))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-572) |#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((#0=(-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) #0#) |has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-916)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-916)))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((#0=(-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) #0#) |has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-918)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-918)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368))))
-(|has| |#1| (-856))
-(|has| |#1| (-562))
-((((-587 |#1|)) . T))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370))))
+(|has| |#1| (-858))
+(|has| |#1| (-564))
+((((-589 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3749 (-12 (|has| |#1| (-368)) (|has| |#2| (-826))) (-12 (|has| |#1| (-368)) (|has| |#2| (-856))))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-((((-917 |#1|)) . T))
-(((|#1| (-502 |#1| |#3|) (-502 |#1| |#2|)) . T))
+(-3783 (-12 (|has| |#1| (-370)) (|has| |#2| (-828))) (-12 (|has| |#1| (-370)) (|has| |#2| (-858))))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+((((-919 |#1|)) . T))
+(((|#1| (-504 |#1| |#3|) (-504 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-777)) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-678 |#1|)) . T))
+(((|#1| (-779)) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-680 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-542)) . T))
-((((-868)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-1191)) . T))
-((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T) (((-570)) . T))
-(((|#3|) . T) (((-570)) . T) (((-618 $)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#2|) . T))
-(-3749 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-373)) (|has| |#3| (-732)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)) (|has| |#3| (-1109)))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T))
-(|has| |#1| (-1212))
-(|has| |#1| (-1212))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109)))
-(|has| |#1| (-1212))
-(|has| |#1| (-1212))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T) ((#1=(-413 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((($) . T) (((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-544)) . T))
+((((-870)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-1193)) . T))
+((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T) (((-572)) . T))
+(((|#3|) . T) (((-572)) . T) (((-620 $)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+(((|#2|) . T))
+(-3783 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-375)) (|has| |#3| (-734)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)) (|has| |#3| (-1111)))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
+(|has| |#1| (-1214))
+(|has| |#1| (-1214))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
+(|has| |#1| (-1214))
+(|has| |#1| (-1214))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T) ((#1=(-415 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
(((|#3| |#3|) . T))
(((|#3|) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-((((-1168) (-52)) . T))
-(|has| |#1| (-1109))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((((-1170) (-52)) . T))
+(|has| |#1| (-1111))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(-3749 (|has| |#2| (-826)) (|has| |#2| (-856)))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-((((-570)) . T) (($) . T))
-((((-777)) . T))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) . T))
-((($) . T) (((-570)) . T))
-((($) . T))
-(|has| |#2| (-916))
-(|has| |#1| (-368))
-(((|#2|) |has| |#2| (-1109)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-542)) . T) (((-413 (-1182 (-570)))) . T) (((-227)) . T) (((-384)) . T))
-((((-384)) . T) (((-227)) . T) (((-868)) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
+(-3783 (|has| |#2| (-828)) (|has| |#2| (-858)))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((((-572)) . T) (($) . T))
+((((-779)) . T))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) . T))
+((($) . T) (((-572)) . T))
+((($) . T))
+(|has| |#2| (-918))
+(|has| |#1| (-370))
+(((|#2|) |has| |#2| (-1111)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-544)) . T) (((-415 (-1184 (-572)))) . T) (((-227)) . T) (((-386)) . T))
+((((-386)) . T) (((-227)) . T) (((-870)) . T))
+(|has| |#1| (-918))
+(|has| |#1| (-918))
+(|has| |#1| (-918))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
((($) . T))
((($) . T) ((|#2|) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368))))
-((((-1184 |#1| |#2| |#3|)) -12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-916)))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174)))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
-((((-868)) . T))
-((((-868)) . T))
-((((-980)) . T))
-((((-980)) . T) (((-868)) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370))))
+((((-1186 |#1| |#2| |#3|)) -12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-918)))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+((((-870)) . T))
+((((-870)) . T))
+((((-982)) . T))
+((((-982)) . T) (((-870)) . T))
((($ $) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
((($ $) . T))
-((((-570) (-112)) . T))
+((((-572) (-112)) . T))
((($) . T))
(((|#1|) . T))
-((((-570)) . T))
+((((-572)) . T))
((((-112)) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562)))
-(|has| |#1| (-38 (-413 (-570))))
-(((|#1| (-570)) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564)))
+(|has| |#1| (-38 (-415 (-572))))
+(((|#1| (-572)) . T))
((($) . T))
-(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570))))
-((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T))
+(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
+((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
(((|#1|) . T))
-((((-570)) . T))
+((((-572)) . T))
(((|#1| |#2|) . T))
-((((-1186)) |has| |#1| (-1058)))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
+((((-1188)) |has| |#1| (-1060)))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
(((|#1|) . T))
-((((-868)) . T))
-(((|#1| (-570)) . T))
-(((|#1| (-1269 |#1| |#2| |#3|)) . T))
+((((-870)) . T))
+(((|#1| (-572)) . T))
+(((|#1| (-1271 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-413 (-570))) . T))
-(((|#1| (-1241 |#1| |#2| |#3|)) . T))
-(((|#1| (-777)) . T))
+(((|#1| (-415 (-572))) . T))
+(((|#1| (-1243 |#1| |#2| |#3|)) . T))
+(((|#1| (-779)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(|has| |#1| (-1109))
-((((-1168) |#1|) . T))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(|has| |#1| (-1111))
+((((-1170) |#1|) . T))
((($) . T))
(|has| |#2| (-148))
(|has| |#2| (-146))
-(((|#1| (-537 (-824 (-1186))) (-824 (-1186))) . T))
-((((-868)) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1058)))
-((((-570) (-112)) . T) (((-1244 (-570)) $) . T))
-((((-868)) |has| |#1| (-1109)))
-(((|#1|) . T) (((-570)) . T) (($) . T))
+(((|#1| (-539 (-826 (-1188))) (-826 (-1188))) . T))
+((((-870)) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1060)))
+((((-572) (-112)) . T) (((-1246 (-572)) $) . T))
+((((-870)) |has| |#1| (-1111)))
+(((|#1|) . T) (((-572)) . T) (($) . T))
(|has| |#2| (-174))
-((((-570)) . T))
-(|has| |#2| (-854))
+((((-572)) . T))
+(|has| |#2| (-856))
(((|#1|) . T))
-((((-570)) . T))
-((((-868)) . T))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-354)))
-((((-868)) . T))
+((((-572)) . T))
+((((-870)) . T))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-356)))
+((((-870)) . T))
(|has| |#1| (-148))
(((|#3|) . T))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-((((-868)) . T))
-((((-1262 |#2| |#3| |#4|)) . T) (((-1263 |#1| |#2| |#3| |#4|)) . T))
-((((-868)) . T))
-((((-48)) -12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (((-618 $)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) -3749 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-413 (-959 |#1|))) |has| |#1| (-562)) (((-959 |#1|)) |has| |#1| (-1058)) (((-1186)) . T))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-870)) . T))
+((((-1264 |#2| |#3| |#4|)) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T))
+((((-870)) . T))
+((((-48)) -12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (((-620 $)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) -3783 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-415 (-961 |#1|))) |has| |#1| (-564)) (((-961 |#1|)) |has| |#1| (-1060)) (((-1188)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-777)) . T))
+(((|#1| (-779)) . T))
(((|#1|) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-313 |#1|)))
-((((-1263 |#1| |#2| |#3| |#4|)) . T))
-((((-570)) |has| |#1| (-893 (-570))) (((-384)) |has| |#1| (-893 (-384))))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-315 |#1|)))
+((((-1265 |#1| |#2| |#3| |#4|)) . T))
+((((-572)) |has| |#1| (-895 (-572))) (((-386)) |has| |#1| (-895 (-386))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-562))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
+(|has| |#1| (-564))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
(((|#1|) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)) ((|#1|) . T))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
(((|#1|) |has| |#1| (-174)))
-((((-868)) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
-(((|#1|) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T))
-(((|#3|) |has| |#3| (-1109)))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368))))
-((((-1262 |#2| |#3| |#4|)) . T))
+((((-870)) . T))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+(((|#1|) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
+(((|#3|) |has| |#3| (-1111)))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370))))
+((((-1264 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-826))
-(|has| |#1| (-826))
-(((|#1| (-570) (-1091)) . T))
-((($) |has| |#1| (-313 $)) ((|#1|) |has| |#1| (-313 |#1|)))
-(|has| |#1| (-854))
-(|has| |#1| (-854))
-(((|#1| (-570) (-1091)) . T))
-(-3749 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(((|#1| (-413 (-570)) (-1091)) . T))
-(((|#1| (-777) (-1091)) . T))
+(|has| |#1| (-828))
+(|has| |#1| (-828))
+(((|#1| (-572) (-1093)) . T))
+((($) |has| |#1| (-315 $)) ((|#1|) |has| |#1| (-315 |#1|)))
(|has| |#1| (-856))
-(((#0=(-917 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T))
+(|has| |#1| (-856))
+(((|#1| (-572) (-1093)) . T))
+(-3783 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(((|#1| (-415 (-572)) (-1093)) . T))
+(((|#1| (-779) (-1093)) . T))
+(|has| |#1| (-858))
+(((#0=(-919 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
(((|#2|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-1109))
-((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-(|has| |#1| (-1109))
-((((-413 (-570))) |has| |#2| (-368)) (($) . T) (((-570)) . T))
-((((-570)) -3749 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))))
-(((|#1|) . T))
-(|has| |#1| (-1109))
-((((-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-645 (-570)))) ((|#2|) |has| |#1| (-368)))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109)))
-((((-695 (-344 (-2881) (-2881 (QUOTE X) (QUOTE HESS)) (-705)))) . T))
+(|has| |#1| (-1111))
+((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-1111))
+((((-415 (-572))) |has| |#2| (-370)) (($) . T) (((-572)) . T))
+((((-572)) -3783 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))))
+(((|#1|) . T))
+(|has| |#1| (-1111))
+((((-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-647 (-572)))) ((|#2|) |has| |#1| (-370)))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
+((((-697 (-346 (-3503) (-3503 (QUOTE X) (QUOTE HESS)) (-707)))) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-((((-868)) . T))
-(|has| |#3| (-854))
-((((-868)) . T))
-((((-1262 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) . T))
-((((-868)) . T))
-(((|#1| |#1|) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058))))
-(((|#1|) . T))
-((((-570)) . T))
-((((-570)) . T))
-(((|#1|) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058))))
-(((|#2|) |has| |#2| (-368)))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-368)))
-(|has| |#1| (-856))
-(((|#1|) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(((|#1|) . T) (((-570)) . T))
-(((|#2|) . T))
-((((-570)) . T) ((|#3|) . T))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) |has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-916)))
-(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570))))
-((((-868)) . T))
-((((-868)) . T))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (((-570)) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))))
-((((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
-((((-868)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-(|has| |#1| (-235))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+((((-870)) . T))
+(|has| |#3| (-856))
+((((-870)) . T))
+((((-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) . T))
+((((-870)) . T))
+(((|#1| |#1|) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))))
+(((|#1|) . T))
+((((-572)) . T))
+((((-572)) . T))
+(((|#1|) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))))
+(((|#2|) |has| |#2| (-370)))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
+(|has| |#1| (-858))
+(((|#1|) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(((|#1|) . T) (((-572)) . T))
+(((|#2|) . T))
+((((-572)) . T) ((|#3|) . T))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) |has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-918)))
+(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
+((((-870)) . T))
+((((-870)) . T))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) (((-572)) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
+((((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+((((-870)) . T))
+(|has| |#1| (-38 (-415 (-572))))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-237))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-854))
-(((|#1| (-570)) . T))
+(|has| |#1| (-856))
+(((|#1| (-572)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| (-1184 |#1| |#2| |#3|)) . T))
+(((|#1| (-1186 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-413 (-570))) . T))
-(((|#1| |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T))
-(((|#1| (-1177 |#1| |#2| |#3|)) . T))
-(((|#1| (-777)) . T))
+(((|#1| (-415 (-572))) . T))
+(((|#1| |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
+(((|#1| (-1179 |#1| |#2| |#3|)) . T))
+(((|#1| (-779)) . T))
(((|#1|) . T))
-((((-413 (-959 |#1|))) . T))
+((((-415 (-961 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
-((((-413 (-959 |#1|))) . T))
+((((-415 (-961 |#1|))) . T))
(((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#1|) |has| |#1| (-174)))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-570)) . T) ((|#1|) . T) (($) . T) (((-413 (-570))) . T) (((-1186)) |has| |#1| (-1047 (-1186))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-572)) . T) ((|#1|) . T) (($) . T) (((-415 (-572))) . T) (((-1188)) |has| |#1| (-1049 (-1188))))
(((|#1| |#2|) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) -3749 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))) ((|#1|) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) -3783 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))) ((|#1|) . T))
((((-145)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(((|#1|) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-570)) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| (-413 |#2|) (-235))
-((((-650 |#1|)) . T))
-(|has| |#1| (-916))
-(((|#2|) |has| |#2| (-1058)))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-(|has| |#1| (-368))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(((|#1|) . T))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-572)) . T))
+((((-870)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+(|has| (-415 |#2|) (-237))
+((((-652 |#1|)) . T))
+(|has| |#1| (-918))
+(((|#2|) |has| |#2| (-1060)))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+(|has| |#1| (-370))
(((|#1|) |has| |#1| (-174)))
(((|#1| |#1|) . T))
-((((-876 |#1|)) . T))
-((((-868)) . T))
+((((-878 |#1|)) . T))
+((((-870)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1109)))
+(((|#2|) |has| |#2| (-1111)))
(((|#1|) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-((((-650 $)) . T) (((-1168)) . T) (((-1186)) . T) (((-570)) . T) (((-227)) . T) (((-868)) . T))
-((($) -3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) (((-570)) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-854)) (|has| |#3| (-1058))) ((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))))
-((((-413 (-570))) . T) (((-570)) . T) (((-618 $)) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((((-652 $)) . T) (((-1170)) . T) (((-1188)) . T) (((-572)) . T) (((-227)) . T) (((-870)) . T))
+((($) -3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) (((-572)) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-856)) (|has| |#3| (-1060))) ((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))))
+((((-415 (-572))) . T) (((-572)) . T) (((-620 $)) . T))
(((|#1|) . T))
-((((-868)) . T))
+((((-870)) . T))
((($) . T))
-(((|#1| (-537 |#2|) |#2|) . T))
-((((-868)) . T))
-(((|#1| (-570) (-1091)) . T))
-(((|#1| (-413 (-570)) (-1091)) . T))
-((((-917 |#1|)) . T))
-((((-868)) . T))
+(((|#1| (-539 |#2|) |#2|) . T))
+((((-870)) . T))
+(((|#1| (-572) (-1093)) . T))
+(((|#1| (-415 (-572)) (-1093)) . T))
+((((-919 |#1|)) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-777) (-1091)) . T))
-(((#0=(-413 |#2|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-570)) -3749 (|has| (-413 (-570)) (-1047 (-570))) (|has| |#1| (-1047 (-570)))) (((-413 (-570))) . T))
-(((|#1| (-608 |#1| |#3|) (-608 |#1| |#2|)) . T))
+(((|#1| (-779) (-1093)) . T))
+(((#0=(-415 |#2|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-572)) -3783 (|has| (-415 (-572)) (-1049 (-572))) (|has| |#1| (-1049 (-572)))) (((-415 (-572))) . T))
+(((|#1| (-610 |#1| |#3|) (-610 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-(|has| |#2| (-235))
-(((|#2| (-537 (-870 |#1|)) (-870 |#1|)) . T))
-((((-868)) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+(|has| |#2| (-237))
+(((|#2| (-539 (-872 |#1|)) (-872 |#1|)) . T))
+((((-870)) . T))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
(((|#1| |#3|) . T))
-((((-868)) . T))
-(((|#1|) |has| |#1| (-174)) (((-959 |#1|)) . T) (((-570)) . T))
+((((-870)) . T))
+(((|#1|) |has| |#1| (-174)) (((-961 |#1|)) . T) (((-572)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-705)) . T))
-((((-705)) . T))
+((((-707)) . T))
+((((-707)) . T))
(((|#2|) |has| |#2| (-174)))
-(|has| |#2| (-854))
-((((-570)) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))))
-((((-112)) |has| |#1| (-1109)) (((-868)) -3749 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121)) (|has| |#1| (-1109))))
+(|has| |#2| (-856))
+((((-572)) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
+((((-112)) |has| |#1| (-1111)) (((-870)) -3783 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)) (|has| |#1| (-1111))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-705)) . T) (((-413 (-570))) . T) (((-570)) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-707)) . T) (((-415 (-572))) . T) (((-572)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-570) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-((((-384)) . T))
-((((-705)) . T))
-((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#))
+((($) . T) (((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-572) |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+((((-386)) . T))
+((((-707)) . T))
+((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#))
(((|#1|) |has| |#1| (-174)))
-((((-413 (-959 |#1|))) . T))
+((((-415 (-961 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#3|) |has| |#3| (-1058)))
-(|has| |#2| (-916))
-(|has| |#1| (-916))
-(|has| |#1| (-368))
-((((-1186)) |has| |#2| (-907 (-1186))))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-479))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-368))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-479)) (|has| |#1| (-562)) (|has| |#1| (-1058)) (|has| |#1| (-1121)))
-(|has| |#1| (-38 (-413 (-570))))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#3|) |has| |#3| (-1060)))
+(|has| |#2| (-918))
+(|has| |#1| (-918))
+(|has| |#1| (-370))
+((((-1188)) |has| |#2| (-909 (-1188))))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-481))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-370))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-481)) (|has| |#1| (-564)) (|has| |#1| (-1060)) (|has| |#1| (-1123)))
+(|has| |#1| (-38 (-415 (-572))))
((((-117 |#1|)) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-354))
+(|has| |#1| (-356))
((((-145)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-((($) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(((|#2|) . T) (((-868)) . T))
-(((|#2|) . T) (((-868)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-856))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
+(|has| |#1| (-38 (-415 (-572))))
+((($) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(((|#2|) . T) (((-870)) . T))
+(((|#2|) . T) (((-870)) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-858))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-570)) . T))
+((($) . T) (((-572)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) ((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) ((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
(((|#2|) . T))
(((|#3|) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-856))
-(((|#2|) . T) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T))
+(|has| |#1| (-375))
+(|has| |#1| (-858))
+(((|#2|) . T) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-570)) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-((((-868)) . T))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))) (((-384)) . #0=(|has| |#1| (-1031))) (((-227)) . #0#))
-(((|#1|) |has| |#1| (-368)))
-((((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((($ $) . T) (((-618 $) $) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-((($) . T) (((-1263 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T))
-((($) -3749 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562)))
-((($) . T) (((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-((((-384)) . T) (((-570)) . T) (((-413 (-570))) . T))
-((((-650 (-786 |#1| (-870 |#2|)))) . T) (((-868)) . T))
-((((-542)) |has| (-786 |#1| (-870 |#2|)) (-620 (-542))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-384)) . T))
+((((-572)) . T))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+((((-870)) . T))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))) (((-386)) . #0=(|has| |#1| (-1033))) (((-227)) . #0#))
+(((|#1|) |has| |#1| (-370)))
+((((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((($ $) . T) (((-620 $) $) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+((($) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T))
+((($) -3783 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-564)))
+((($) . T) (((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+((((-386)) . T) (((-572)) . T) (((-415 (-572))) . T))
+((((-652 (-788 |#1| (-872 |#2|)))) . T) (((-870)) . T))
+((((-544)) |has| (-788 |#1| (-872 |#2|)) (-622 (-544))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-386)) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))
+(((|#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
(((|#1|) |has| |#1| (-174)))
-((((-868)) . T))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-916)))
-(((|#1|) . T))
-((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
-((((-777)) . T))
-(|has| |#1| (-1109))
-((($) -3749 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (((-570)) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))))
-((((-868)) . T))
-((((-1186)) . T) (((-868)) . T))
-((((-570)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
-((((-413 (-570))) . T) (((-570)) . T) (((-618 $)) . T))
+((((-870)) . T))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-918)))
+(((|#1|) . T))
+((($) |has| |#1| (-564)) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+((((-779)) . T))
+(|has| |#1| (-1111))
+((($) -3783 (|has| |#2| (-174)) (|has| |#2| (-856)) (|has| |#2| (-1060))) (((-572)) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060))) ((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))))
+((((-870)) . T))
+((((-1188)) . T) (((-870)) . T))
+((((-572)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+((((-415 (-572))) . T) (((-572)) . T) (((-620 $)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-570)) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(((#0=(-1262 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))) (($) . T))
-((((-570)) . T))
-(|has| |#1| (-368))
-(-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-148)) (|has| |#1| (-368))) (|has| |#1| (-148)))
-(-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146)))
-(|has| |#1| (-368))
+((((-572)) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))) (($) . T))
+((((-572)) . T))
+(|has| |#1| (-370))
+(-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-148)) (|has| |#1| (-370))) (|has| |#1| (-148)))
+(-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146)))
+(|has| |#1| (-370))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(|has| |#1| (-235))
-(|has| |#1| (-368))
+(|has| |#1| (-237))
+(|has| |#1| (-370))
(((|#3|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-570)) |has| |#2| (-645 (-570))) ((|#2|) . T))
-((((-570) |#1|) |has| |#2| (-423 |#1|)))
-((((-570) |#1|) |has| |#2| (-423 |#1|)))
-(((|#2|) . T) (($) . T) (((-570)) . T))
-(((|#2|) . T))
-((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#))
-((((-413 (-570))) |has| |#2| (-368)) (($) . T))
-(|has| |#1| (-1109))
-((((-1151 |#2| |#1|)) . T) ((|#1|) . T) (((-570)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-572)) |has| |#2| (-647 (-572))) ((|#2|) . T))
+((((-572) |#1|) |has| |#2| (-425 |#1|)))
+((((-572) |#1|) |has| |#2| (-425 |#1|)))
+(((|#2|) . T) (($) . T) (((-572)) . T))
+(((|#2|) . T))
+((((-415 (-572))) . #0=(|has| |#2| (-370))) (($) . #0#))
+((((-415 (-572))) |has| |#2| (-370)) (($) . T))
+(|has| |#1| (-1111))
+((((-1153 |#2| |#1|)) . T) ((|#1|) . T) (((-572)) . T))
(((|#1| |#2|) . T))
-((((-570)) . T) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))
-(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570))))
+((((-572)) . T) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))
+(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
(((|#3|) |has| |#3| (-174)))
-(((|#2|) . T) (($) . T) (((-570)) . T))
-(((|#1|) . T) (($) . T) (((-570)) . T))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109)))
-((((-868)) . T))
-((((-570)) . T))
-(((|#1| $) |has| |#1| (-290 |#1| |#1|)))
-((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T))
-((((-959 |#1|)) . T) (((-868)) . T))
+(((|#2|) . T) (($) . T) (((-572)) . T))
+(((|#1|) . T) (($) . T) (((-572)) . T))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
+((((-870)) . T))
+((((-572)) . T))
+(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
+((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T))
+((((-961 |#1|)) . T) (((-870)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-294)) (|has| |#1| (-368))) ((#0=(-413 (-570)) #0#) |has| |#1| (-368)))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-((((-959 |#1|)) . T))
-((($) . T))
-((((-570) |#1|) . T))
-((((-1186)) |has| (-413 |#2|) (-907 (-1186))))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-294)) (|has| |#1| (-368))) (((-413 (-570))) |has| |#1| (-368)))
-((((-542)) |has| |#2| (-620 (-542))))
-((((-695 |#2|)) . T) (((-868)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-((((-876 |#1|)) . T))
+(((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-296)) (|has| |#1| (-370))) ((#0=(-415 (-572)) #0#) |has| |#1| (-370)))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+((((-961 |#1|)) . T))
+((($) . T))
+((((-572) |#1|) . T))
+((((-1188)) |has| (-415 |#2|) (-909 (-1188))))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-296)) (|has| |#1| (-370))) (((-415 (-572))) |has| |#1| (-370)))
+((((-544)) |has| |#2| (-622 (-544))))
+((((-697 |#2|)) . T) (((-870)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+((((-878 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
-(-3749 (|has| |#4| (-799)) (|has| |#4| (-854)))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((($) . T) (((-570)) . T) ((|#2|) . T))
-(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368))))
-(((|#2|) |has| |#2| (-1058)))
+(-3783 (|has| |#4| (-801)) (|has| |#4| (-856)))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1|) . T))
+((($) . T) (((-572)) . T) ((|#2|) . T))
+(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370))))
+(((|#2|) |has| |#2| (-1060)))
(((|#3|) . T))
(((|#1|) . T))
-((((-413 |#2|)) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368))))
-(((|#1|) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174)))
-(((|#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) . T) (($) . T))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-1231)))
-((($) . T))
-((((-413 (-570))) |has| #0=(-413 |#2|) (-1047 (-413 (-570)))) (((-570)) |has| #0# (-1047 (-570))) ((#0#) . T))
-(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570))))
-(((|#1| (-777)) . T))
+((((-415 |#2|)) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370))))
+(((|#1|) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
+(((|#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) . T) (($) . T))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-1233)))
+((($) . T))
+((((-415 (-572))) |has| #0=(-415 |#2|) (-1049 (-415 (-572)))) (((-572)) |has| #0# (-1049 (-572))) ((#0#) . T))
+(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
+(((|#1| (-779)) . T))
+(|has| |#1| (-858))
+(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-572)) . T))
+(|has| |#1| (-38 (-415 (-572))))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) |has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(|has| |#1| (-856))
-(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570))))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-570)) . T))
-(|has| |#1| (-38 (-413 (-570))))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) |has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(|has| |#1| (-854))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-570) $) . T) (((-650 (-570)) $) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-354))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-1168)) . T) (((-512)) . T) (((-227)) . T) (((-570)) . T))
-((((-868)) . T))
-(((|#2|) . T) (((-570)) . T) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1091)) . T) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-572) $) . T) (((-652 (-572)) $) . T))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-356))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-1170)) . T) (((-514)) . T) (((-227)) . T) (((-572)) . T))
+((((-870)) . T))
+(((|#2|) . T) (((-572)) . T) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1093)) . T) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
(((|#1| |#2|) . T))
((((-145)) . T))
-((((-786 |#1| (-870 |#2|))) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-(|has| |#1| (-1212))
-((((-868)) . T))
+((((-788 |#1| (-872 |#2|))) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+(|has| |#1| (-1214))
+((((-870)) . T))
(((|#1|) . T))
-(-3749 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-373)) (|has| |#3| (-732)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)) (|has| |#3| (-1109)))
-((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)))
+(-3783 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-375)) (|has| |#3| (-734)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)) (|has| |#3| (-1111)))
+((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)))
(((|#2|) . T))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-((((-917 |#1|)) . T))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+((((-919 |#1|)) . T))
((($) . T))
-((((-413 (-959 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-542)) |has| |#4| (-620 (-542))))
-((((-868)) . T) (((-650 |#4|)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-415 (-961 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-544)) |has| |#4| (-622 (-544))))
+((((-870)) . T) (((-652 |#4|)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#1|) . T))
-(|has| |#1| (-854))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) |has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))))
-(|has| |#1| (-1109))
-(|has| |#1| (-368))
+(|has| |#1| (-856))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) |has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))))
+(|has| |#1| (-1111))
+(|has| |#1| (-370))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368))))
-((((-678 |#1|)) . T))
-(((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174)))
-((($) . T) (((-413 (-570))) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370))))
+((((-680 |#1|)) . T))
+(((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))) (($) |has| |#3| (-174)))
+((($) . T) (((-415 (-572))) . T))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-148)) (|has| |#1| (-368))) (|has| |#1| (-148)))
-(-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146)))
+(-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-148)) (|has| |#1| (-370))) (|has| |#1| (-148)))
+(-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146)))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)))
-(|has| |#1| (-854))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
+(|has| |#1| (-856))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570))))
-((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-1109))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T) (((-570)) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
+((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-1111))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T) (((-572)) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-1109))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-1111))
(((|#2|) |has| |#2| (-174)))
-((((-570)) . T) ((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-570)) . T))
+((((-572)) . T) ((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-572)) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-368)))
-((((-413 |#2|)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-570)) . T) (($) . T) (((-413 (-570))) . T))
-((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|)))
-(((|#1|) -3749 (|has| |#1| (-174)) (|has| |#1| (-368))))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((((-320 |#1|)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#2|) |has| |#2| (-368)))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-(((|#2|) . T))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((#0=(-786 |#1| (-870 |#2|)) #0#) |has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))))
-((((-570)) . T) (($) . T))
-((((-870 |#1|)) . T))
+(((|#3|) |has| |#3| (-370)))
+((((-415 |#2|)) . T))
+((((-870)) . T))
+(((|#1|) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-572)) . T) (($) . T) (((-415 (-572))) . T))
+((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
+(((|#1|) -3783 (|has| |#1| (-174)) (|has| |#1| (-370))))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((((-322 |#1|)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#2|) |has| |#2| (-370)))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+(((|#2|) . T))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((#0=(-788 |#1| (-872 |#2|)) #0#) |has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))))
+((((-572)) . T) (($) . T))
+((((-872 |#1|)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((((-1186)) |has| |#1| (-907 (-1186))) (((-1091)) . T))
-((((-1186)) |has| |#1| (-907 (-1186))) (((-1097 (-1186))) . T))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
-((((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(|has| |#1| (-38 (-413 (-570))))
-(((|#4|) |has| |#4| (-1058)) (((-570)) -12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))))
-(((|#3|) |has| |#3| (-1058)) (((-570)) -12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))))
+((((-1188)) |has| |#1| (-909 (-1188))) (((-1093)) . T))
+((((-1188)) |has| |#1| (-909 (-1188))) (((-1099 (-1188))) . T))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+((((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(|has| |#1| (-38 (-415 (-572))))
+(((|#4|) |has| |#4| (-1060)) (((-572)) -12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))))
+(((|#3|) |has| |#3| (-1060)) (((-572)) -12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))
(|has| |#1| (-146))
(|has| |#1| (-148))
((($ $) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121)) (|has| |#1| (-1109)))
-(|has| |#1| (-562))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)) (|has| |#1| (-1111)))
+(|has| |#1| (-564))
(((|#2|) . T))
-((((-570)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-572)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#1|) . T))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
-((((-587 |#1|)) . T))
+((((-589 |#1|)) . T))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-868)) . T))
-(((|#2|) |has| |#2| (-6 (-4454 "*"))))
+((((-870)) . T))
+(((|#2|) |has| |#2| (-6 (-4456 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#3|) . T))
((($) . T))
-(((|#2|) . T) (((-570)) . T) (($) . T))
+(((|#2|) . T) (((-572)) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) . T) (((-570)) . T))
-((((-1262 |#2| |#3| |#4|)) . T) (((-570)) . T) (((-1263 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T))
-((((-48)) -12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (((-570)) -3749 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))) (|has| |#1| (-1058))) ((|#1|) . T) (((-618 $)) . T) (($) |has| |#1| (-562)) (((-413 (-570))) -3749 (|has| |#1| (-562)) (|has| |#1| (-1047 (-413 (-570))))) (((-413 (-959 |#1|))) |has| |#1| (-562)) (((-959 |#1|)) |has| |#1| (-1058)) (((-1186)) . T))
-((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T))
-((($) . T) (((-117 |#1|)) . T) (((-413 (-570))) . T))
-((((-1134 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((((-1182 |#1|)) . T) (((-1091)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((((-1134 |#1| (-1186))) . T) (((-1097 (-1186))) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-1186)) . T))
-(|has| |#1| (-1109))
+(((|#3|) . T) (((-572)) . T))
+((((-1264 |#2| |#3| |#4|)) . T) (((-572)) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
+((((-48)) -12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (((-572)) -3783 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))) (|has| |#1| (-1060))) ((|#1|) . T) (((-620 $)) . T) (($) |has| |#1| (-564)) (((-415 (-572))) -3783 (|has| |#1| (-564)) (|has| |#1| (-1049 (-415 (-572))))) (((-415 (-961 |#1|))) |has| |#1| (-564)) (((-961 |#1|)) |has| |#1| (-1060)) (((-1188)) . T))
+((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
+((($) . T) (((-117 |#1|)) . T) (((-415 (-572))) . T))
+((((-1136 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((((-1184 |#1|)) . T) (((-1093)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((((-1136 |#1| (-1188))) . T) (((-1099 (-1188))) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-1188)) . T))
+(|has| |#1| (-1111))
((($) . T))
-(|has| |#1| (-1109))
-((((-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570)))) (((-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384)))))
+(|has| |#1| (-1111))
+((((-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))) (((-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386)))))
(((|#1| |#2|) . T))
-((((-1186) |#1|) . T))
+((((-1188) |#1|) . T))
(((|#4|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-((((-1186) (-52)) . T))
-((((-1262 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T))
-((((-868)) . T))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109)))
-(((#0=(-1263 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-413 (-570)) #0#) |has| |#1| (-562)) (($ $) |has| |#1| (-562)))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1| $) |has| |#1| (-290 |#1| |#1|)))
-((((-1263 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562)) (($) |has| |#1| (-562)))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T))
-(|has| |#1| (-368))
-((($) |has| |#1| (-854)) (((-570)) -3749 (|has| |#1| (-21)) (|has| |#1| (-854))))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+((((-1188) (-52)) . T))
+((((-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T))
+((((-870)) . T))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-375)) (|has| |#2| (-734)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)) (|has| |#2| (-1111)))
+(((#0=(-1265 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-415 (-572)) #0#) |has| |#1| (-564)) (($ $) |has| |#1| (-564)))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1| $) |has| |#1| (-292 |#1| |#1|)))
+((((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-564)) (($) |has| |#1| (-564)))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
+(|has| |#1| (-370))
+((($) |has| |#1| (-856)) (((-572)) -3783 (|has| |#1| (-21)) (|has| |#1| (-856))))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-413 (-570))) . T) (($) . T))
-(((|#3|) |has| |#3| (-368)))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
-((((-1186)) . T))
-((($) . T) (((-1262 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| (-1262 |#2| |#3| |#4|) (-38 (-413 (-570)))) (((-570)) . T))
+((((-415 (-572))) . T) (($) . T))
+(((|#3|) |has| |#3| (-370)))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+((((-1188)) . T))
+((($) . T) (((-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572)))) (((-572)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
(((|#2| |#3|) . T))
-(-3749 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(((|#1| (-537 |#2|)) . T))
-(((|#1| (-777)) . T))
-(((|#1| (-537 (-1097 (-1186)))) . T))
+(-3783 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(((|#1| (-539 |#2|)) . T))
+(((|#1| (-779)) . T))
+(((|#1| (-539 (-1099 (-1188)))) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#2| (-916))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-((((-868)) . T))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368))))
-(((|#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174)))
-((($ $) . T) ((#0=(-1262 |#2| |#3| |#4|) #0#) . T) ((#1=(-413 (-570)) #1#) |has| #0# (-38 (-413 (-570)))))
-((((-917 |#1|)) . T))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-826)))
-((($) . T) (((-413 (-570))) . T))
-((((-868)) . T))
-((($) . T))
-((($) . T))
-(-3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562)))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
+(|has| |#2| (-918))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+((((-870)) . T))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370))))
+(((|#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-1060))) (($) |has| |#2| (-174)))
+((($ $) . T) ((#0=(-1264 |#2| |#3| |#4|) #0#) . T) ((#1=(-415 (-572)) #1#) |has| #0# (-38 (-415 (-572)))))
+((((-919 |#1|)) . T))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
+((($) . T) (((-415 (-572))) . T))
+((((-870)) . T))
+((($) . T))
+((($) . T))
+(-3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)) (|has| |#1| (-564)))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1262 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))))
-((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)))
-(-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368)) (|has| |#1| (-354)))
-(-3749 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))
-((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T))
+((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
+((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
+(-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370)) (|has| |#1| (-356)))
+(-3783 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)))
+((((-572)) |has| |#1| (-647 (-572))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-870)) . T))
+((((-870)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) . T))
+(((|#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) . T))
(((|#2|) . T))
-(|has| |#2| (-368))
-(|has| |#1| (-856))
+(|has| |#2| (-370))
+(|has| |#1| (-858))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-570)) . T))
+((((-572)) . T))
(((|#1|) . T))
-((((-868)) . T))
+((((-870)) . T))
(((|#2|) |has| |#2| (-174)))
-(|has| |#1| (-1109))
+(|has| |#1| (-1111))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
(((|#1|) . T))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T) (((-570)) . T) (($) . T))
-(((|#3|) . T) (((-570)) . T) (($) . T))
-((((-413 $) (-413 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-826))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T) (((-572)) . T) (($) . T))
+(((|#3|) . T) (((-572)) . T) (($) . T))
+((((-415 $) (-415 $)) |has| |#1| (-564)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-828))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-868)) . T))
-(((|#1| (-537 (-1186))) . T))
+((((-870)) . T))
+(((|#1| (-539 (-1188))) . T))
(((|#1|) |has| |#1| (-174)))
-((((-868)) . T))
+((((-870)) . T))
(((|#2|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
+(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
(((|#2|) . T))
-(((|#2|) -3749 (|has| |#2| (-6 (-4454 "*"))) (|has| |#2| (-174))))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(|has| |#2| (-916))
-(|has| |#1| (-916))
+(((|#2|) -3783 (|has| |#2| (-6 (-4456 "*"))) (|has| |#2| (-174))))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(|has| |#2| (-918))
+(|has| |#1| (-918))
(((|#2|) |has| |#2| (-174)))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)))
-((((-868)) . T))
-((((-868)) . T))
-((((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((((-870)) . T))
+((((-870)) . T))
+((((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-570)) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) . T))
+((($) . T) (((-572)) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) . T))
(((|#1|) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-868)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-570)) . T))
-(((|#1| (-413 (-570))) . T))
+((($) . T) (((-572)) . T))
+(((|#1| (-415 (-572))) . T))
(((|#1|) . T))
-(-3749 (|has| |#1| (-294)) (|has| |#1| (-368)))
+(-3783 (|has| |#1| (-296)) (|has| |#1| (-370)))
((((-145)) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-854))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1| |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-856))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-189)) . T) (((-868)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-189)) . T) (((-870)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))))
-((((-1186) (-52)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-650 (-145))) . T) (((-1168)) . T))
-((((-868)) . T))
-((((-1168)) . T))
-((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|)))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))) (((-901 (-572))) |has| |#1| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#1| (-622 (-901 (-386)))))
+((((-1188) (-52)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-652 (-145))) . T) (((-1170)) . T))
+((((-870)) . T))
+((((-1170)) . T))
+((((-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((|#1| |#1|) |has| |#1| (-315 |#1|)))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+(|has| |#1| (-858))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) . T))
+(((|#2|) |has| |#2| (-370)))
+((((-870)) . T))
+((((-544)) |has| |#4| (-622 (-544))))
+((((-870)) . T) (((-652 |#4|)) . T))
+(((|#2|) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T) (((-620 $)) . T))
+(-3783 (|has| |#4| (-174)) (|has| |#4| (-734)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-1188) (-52)) . T))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(|has| |#1| (-918))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+(|has| |#1| (-918))
+(((|#1|) . T) (((-572)) . T) (((-415 (-572))) . T) (($) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-870)) . T))
+((((-572)) . T))
+(((#0=(-415 (-572)) #0#) . T) (($ $) . T))
+((((-415 (-572))) . T) (($) . T))
+(((|#1| (-415 (-572)) (-1093)) . T))
+(|has| |#1| (-1111))
+(|has| |#1| (-564))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(|has| |#1| (-828))
+(((#0=(-919 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
+((((-415 |#2|)) . T))
(|has| |#1| (-856))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) . T))
-(((|#2|) |has| |#2| (-368)))
-((((-868)) . T))
-((((-542)) |has| |#4| (-620 (-542))))
-((((-868)) . T) (((-650 |#4|)) . T))
-(((|#2|) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T) (((-618 $)) . T))
-(-3749 (|has| |#4| (-174)) (|has| |#4| (-732)) (|has| |#4| (-854)) (|has| |#4| (-1058)))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-((((-1186) (-52)) . T))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(|has| |#1| (-916))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-(|has| |#1| (-916))
-(((|#1|) . T) (((-570)) . T) (((-413 (-570))) . T) (($) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-868)) . T))
-((((-570)) . T))
-(((#0=(-413 (-570)) #0#) . T) (($ $) . T))
-((((-413 (-570))) . T) (($) . T))
-(((|#1| (-413 (-570)) (-1091)) . T))
-(|has| |#1| (-1109))
-(|has| |#1| (-562))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(|has| |#1| (-826))
-(((#0=(-917 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T))
-((((-413 |#2|)) . T))
-(|has| |#1| (-854))
-((((-1213 |#1|)) . T) (((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-(((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) . T) ((#1=(-570) #1#) . T) (($ $) . T))
-((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#2|) |has| |#2| (-1058)) (((-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058))))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
+((((-1215 |#1|)) . T) (((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+(((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) . T) ((#1=(-572) #1#) . T) (($ $) . T))
+((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#2|) |has| |#2| (-1060)) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
(((|#2|) . T))
-((((-868)) . T))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T) (((-570)) . T))
+((((-870)) . T))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T) (((-572)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-((((-570) |#3|) . T))
-(((#0=(-52)) . T) (((-2 (|:| -4144 (-1186)) (|:| -3165 #0#))) . T))
-(|has| |#1| (-354))
-((((-570)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-(((#0=(-1263 |#1| |#2| |#3| |#4|) $) |has| #0# (-290 #0# #0#)))
-(|has| |#1| (-368))
-(((|#1|) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058))) (($) -3749 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) (((-570)) -3749 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))))
-(((#0=(-1091) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-(((#0=(-413 (-570)) #0#) . T) ((#1=(-705) #1#) . T) (($ $) . T))
-((((-320 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-368)))
-((((-868)) . T))
-(|has| |#1| (-1109))
-(((|#1|) . T))
-(((|#1|) -3749 (|has| |#2| (-372 |#1|)) (|has| |#2| (-423 |#1|))))
-(((|#1|) -3749 (|has| |#2| (-372 |#1|)) (|has| |#2| (-423 |#1|))))
-(((|#2|) . T))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T))
-((((-585)) . T))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+((((-572) |#3|) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1640 (-1188)) (|:| -3762 #0#))) . T))
+(|has| |#1| (-356))
+((((-572)) . T))
+((((-870)) . T))
+(((|#1|) . T))
+(((#0=(-1265 |#1| |#2| |#3| |#4|) $) |has| #0# (-292 #0# #0#)))
+(|has| |#1| (-370))
+(((|#1|) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))) (($) -3783 (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))) (((-572)) -3783 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060))))
+(((#0=(-1093) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+(((#0=(-415 (-572)) #0#) . T) ((#1=(-707) #1#) . T) (($ $) . T))
+((((-322 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
+((((-870)) . T))
+(|has| |#1| (-1111))
+(((|#1|) . T))
+(((|#1|) -3783 (|has| |#2| (-374 |#1|)) (|has| |#2| (-425 |#1|))))
+(((|#1|) -3783 (|has| |#2| (-374 |#1|)) (|has| |#2| (-425 |#1|))))
+(((|#2|) . T))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T))
+((((-587)) . T))
(((|#3| |#3|) . T))
-(|has| |#2| (-235))
-((((-870 |#1|)) . T))
-((((-1186)) |has| |#1| (-907 (-1186))) ((|#3|) . T))
-((((-650 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-1031)))
-((((-413 (-570))) . T) (($) . T))
-((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)))
-((($) . T) (((-413 (-570))) . T))
-((((-868)) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T))
-((((-570)) . T) (((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((((-570)) . T))
+(|has| |#2| (-237))
+((((-872 |#1|)) . T))
+((((-1188)) |has| |#1| (-909 (-1188))) ((|#3|) . T))
+((((-652 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-1033)))
+((((-415 (-572))) . T) (($) . T))
+((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((($) . T) (((-415 (-572))) . T))
+((((-870)) . T))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T))
+((((-572)) . T) (((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((((-572)) . T))
(((|#3|) . T))
-(|has| |#1| (-1109))
+(|has| |#1| (-1111))
(((|#2|) . T))
(((|#1|) . T))
-((((-570)) . T))
-(((|#2|) . T) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (($) . T) (((-570)) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570))))
+((((-572)) . T))
+(((|#2|) . T) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (($) . T) (((-572)) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
(((|#1| |#2|) . T))
((($) . T))
-((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((($) . T) (((-413 (-570))) . T))
+((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((($) . T) (((-415 (-572))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-570)) . T))
-(((|#1|) . T) (((-570)) . T))
-(((|#1| (-1277 |#1|) (-1277 |#1|)) . T))
+(((|#1|) . T) (((-572)) . T))
+(((|#1|) . T) (((-572)) . T))
+(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-868)) . T))
-((((-868)) . T))
+((((-870)) . T))
+((((-870)) . T))
(((|#2|) . T))
(((|#3|) . T))
-(((#0=(-117 |#1|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
-((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T))
-((((-1134 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#2|) . T))
+(((#0=(-117 |#1|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
+((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
+((((-1136 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
((($ $) . T))
-((((-678 |#1|)) . T))
-((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-((((-117 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) (((-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384)))))
+((((-680 |#1|)) . T))
+((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+((((-117 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) (((-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) (($) . T))
((((-145)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-384)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
+((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-386)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
(((|#1|) . T))
-(|has| |#2| (-916))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
+(|has| |#2| (-918))
+(|has| |#1| (-918))
+(|has| |#1| (-918))
(((|#4|) . T))
-(|has| |#2| (-1031))
+(|has| |#2| (-1033))
((($) . T))
-(|has| |#1| (-916))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+(|has| |#1| (-918))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-368))
-((((-917 |#1|)) . T))
-((($) . T) (((-570)) . T) ((|#1|) . T) (((-413 (-570))) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) |has| |#1| (-854)) (((-570)) -3749 (|has| |#1| (-21)) (|has| |#1| (-854))))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-(-3749 (|has| |#1| (-373)) (|has| |#1| (-856)))
-(((|#1|) . T))
-((((-777)) . T))
-((((-868)) . T))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))))
-((((-413 |#2|) |#3|) . T))
-((($) . T) (((-413 (-570))) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T) (((-618 $)) . T))
-((((-570)) . T) (($) . T))
-((((-570)) . T) (($) . T))
-((((-777) |#1|) . T))
-(((|#2| (-242 (-2857 |#1|) (-777))) . T))
-(((|#1| (-537 |#3|)) . T))
-((((-413 (-570))) . T))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-1168)) . T) (((-868)) . T))
-(((#0=(-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) #0#) |has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))))
-((((-1168)) . T))
-(|has| |#1| (-916))
-(|has| |#2| (-368))
-(((|#1|) . T) (($) . T) (((-570)) . T))
-(-3749 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((((-171 (-384))) . T) (((-227)) . T) (((-384)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-((((-384)) . T) (((-570)) . T))
-(((#0=(-413 (-570)) #0#) . T) (($ $) . T))
+(|has| |#1| (-370))
+((((-919 |#1|)) . T))
+((($) . T) (((-572)) . T) ((|#1|) . T) (((-415 (-572))) . T))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) |has| |#1| (-856)) (((-572)) -3783 (|has| |#1| (-21)) (|has| |#1| (-856))))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(-3783 (|has| |#1| (-375)) (|has| |#1| (-858)))
+(((|#1|) . T))
+((((-779)) . T))
+((((-870)) . T))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
+((((-415 |#2|) |#3|) . T))
+((($) . T) (((-415 (-572))) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T) (((-620 $)) . T))
+((((-572)) . T) (($) . T))
+((((-572)) . T) (($) . T))
+((((-779) |#1|) . T))
+(((|#2| (-244 (-3475 |#1|) (-779))) . T))
+(((|#1| (-539 |#3|)) . T))
+((((-415 (-572))) . T))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((((-1170)) . T) (((-870)) . T))
+(((#0=(-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) #0#) |has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))))
+((((-1170)) . T))
+(|has| |#1| (-918))
+(|has| |#2| (-370))
+(((|#1|) . T) (($) . T) (((-572)) . T))
+(-3783 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-171 (-386))) . T) (((-227)) . T) (((-386)) . T))
+((((-870)) . T))
+(((|#1|) . T))
+((((-386)) . T) (((-572)) . T))
+(((#0=(-415 (-572)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-868)) . T))
-(|has| |#1| (-562))
-((((-413 (-570))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-(-3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)))
-(|has| |#1| (-38 (-413 (-570))))
-(-12 (|has| |#1| (-551)) (|has| |#1| (-834)))
-((((-868)) . T))
-((((-1186)) -3749 (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))) (-12 (|has| |#1| (-368)) (|has| |#2| (-907 (-1186))))))
-(|has| |#1| (-368))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))))
-(|has| |#1| (-368))
-((((-413 (-570))) . T) (($) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((((-570) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-368)))
-(((|#2|) |has| |#1| (-368)))
-((((-570)) . T) (($) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-870)) . T))
+(|has| |#1| (-564))
+((((-415 (-572))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+(-3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)))
+(|has| |#1| (-38 (-415 (-572))))
+(-12 (|has| |#1| (-553)) (|has| |#1| (-836)))
+((((-870)) . T))
+((((-1188)) -3783 (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))) (-12 (|has| |#1| (-370)) (|has| |#2| (-909 (-1188))))))
+(|has| |#1| (-370))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
+(|has| |#1| (-370))
+((((-415 (-572))) . T) (($) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((((-572) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-370)))
+(((|#2|) |has| |#1| (-370)))
+((((-572)) . T) (($) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(((|#2|) . T) (((-1186)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) (((-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570)))) (((-413 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570)))))
+(((|#2|) . T) (((-1188)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) (((-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))) (((-415 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))))
(((|#2|) . T))
-((((-1186) #0=(-1263 |#1| |#2| |#3| |#4|)) |has| #0# (-520 (-1186) #0#)) ((#0# #0#) |has| #0# (-313 #0#)))
-((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T))
-((((-618 $) $) . T) (($ $) . T))
-((((-171 (-227))) . T) (((-171 (-384))) . T) (((-1182 (-705))) . T) (((-899 (-384))) . T))
+((((-1188) #0=(-1265 |#1| |#2| |#3| |#4|)) |has| #0# (-522 (-1188) #0#)) ((#0# #0#) |has| #0# (-315 #0#)))
+((((-415 (-572))) . T) (($) . T) (((-415 |#1|)) . T) ((|#1|) . T))
+((((-620 $) $) . T) (($ $) . T))
+((((-171 (-227))) . T) (((-171 (-386))) . T) (((-1184 (-707))) . T) (((-901 (-386))) . T))
(((|#3|) . T))
-(|has| |#1| (-562))
-(|has| (-413 |#2|) (-235))
-(((|#1| (-413 (-570))) . T))
-((($) . T) (((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T))
+(|has| |#1| (-564))
+(|has| (-415 |#2|) (-237))
+(((|#1| (-415 (-572))) . T))
+((($) . T) (((-415 (-572))) . T) (((-415 |#1|)) . T) ((|#1|) . T))
(((|#3|) . T))
-(|has| |#1| (-562))
-((((-868)) . T))
+(|has| |#1| (-564))
+((((-870)) . T))
((($ $) . T))
((($) . T))
-((((-868)) . T))
-((((-1186)) |has| |#2| (-907 (-1186))))
-((((-413 (-570))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#2|) |has| |#1| (-368)))
-((((-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-384)))) (((-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-570)))))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(|has| |#1| (-368))
-(((|#1|) . T))
-((($) . T) (((-570)) . T) ((|#2|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
+((((-870)) . T))
+((((-1188)) |has| |#2| (-909 (-1188))))
+((((-415 (-572))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-572)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#2|) |has| |#1| (-370)))
+((((-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-386)))) (((-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-572)))))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(|has| |#1| (-370))
+(((|#1|) . T))
+((($) . T) (((-572)) . T) ((|#2|) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
(((|#3|) . T))
-((((-1168)) . T) (((-512)) . T) (((-227)) . T) (((-570)) . T))
+((((-1170)) . T) (((-514)) . T) (((-227)) . T) (((-572)) . T))
(((|#1|) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-562))
-(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-(-3749 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
+(|has| |#1| (-370))
+(|has| |#1| (-564))
+(((|#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+(-3783 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
(((|#2|) . T))
(((|#2|) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(|has| |#1| (-38 (-413 (-570))))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(|has| |#1| (-38 (-415 (-572))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
+(|has| |#1| (-38 (-415 (-572))))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
((($) . T))
-((((-1168) |#1|) . T))
+((((-1170) |#1|) . T))
(|has| |#1| (-148))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
(|has| |#1| (-148))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))
((($) . T))
(|has| |#1| (-148))
-((((-587 |#1|)) . T))
+((((-589 |#1|)) . T))
((($) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
+(|has| |#1| (-564))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
((($) . T))
((($) . T))
-((((-413 |#2|)) . T))
-((((-413 (-570))) |has| |#2| (-1047 (-570))) (((-570)) |has| |#2| (-1047 (-570))) (((-1186)) |has| |#2| (-1047 (-1186))) ((|#2|) . T))
-(((#0=(-413 |#2|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T))
+((((-415 |#2|)) . T))
+((((-415 (-572))) |has| |#2| (-1049 (-572))) (((-572)) |has| |#2| (-1049 (-572))) (((-1188)) |has| |#2| (-1049 (-1188))) ((|#2|) . T))
+(((#0=(-415 |#2|) #0#) . T) ((#1=(-415 (-572)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-354)))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-356)))
(|has| |#1| (-148))
-((((-868)) . T))
+((((-870)) . T))
((($) . T))
-((((-1149 |#1| |#2|)) . T))
-(((|#1| (-570)) . T))
-(((|#1| (-413 (-570))) . T))
-((((-570)) |has| |#2| (-893 (-570))) (((-384)) |has| |#2| (-893 (-384))))
+((((-1151 |#1| |#2|)) . T))
+(((|#1| (-572)) . T))
+(((|#1| (-415 (-572))) . T))
+((((-572)) |has| |#2| (-895 (-572))) (((-386)) |has| |#2| (-895 (-386))))
(((|#2|) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
((((-112)) . T))
-(((|#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T))
-(((|#2|) . T))
-((((-868)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-1186) (-52)) . T))
-((((-413 |#2|)) . T))
-((((-868)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1109))
-(|has| |#1| (-797))
-(|has| |#1| (-797))
-((((-868)) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-((((-868)) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
+(((|#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
+(((|#2|) . T))
+((((-870)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-1188) (-52)) . T))
+((((-415 |#2|)) . T))
+((((-870)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1111))
+(|has| |#1| (-799))
+(|has| |#1| (-799))
+((((-870)) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((((-870)) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
((((-115)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-227)) . T) (((-384)) . T) (((-899 (-384))) . T))
-((((-868)) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)) (((-413 (-570))) |has| |#1| (-562)))
-((((-868)) . T))
-((((-868)) . T))
+((((-227)) . T) (((-386)) . T) (((-901 (-386))) . T))
+((((-870)) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)) (((-415 (-572))) |has| |#1| (-564)))
+((((-870)) . T))
+((((-870)) . T))
(((|#2|) . T))
-((((-868)) . T))
-(((#0=(-917 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T))
+((((-870)) . T))
+(((#0=(-919 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-(|has| |#1| (-368))
-((((-868)) . T))
+((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-370))
+((((-870)) . T))
(((|#2|) . T))
-((((-570)) . T))
-((((-868)) . T))
-((((-570)) . T))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-((((-171 (-384))) . T) (((-227)) . T) (((-384)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-1168)) . T) (((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T))
-((((-868)) . T))
+((((-572)) . T))
+((((-870)) . T))
+((((-572)) . T))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+((((-171 (-386))) . T) (((-227)) . T) (((-386)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-1170)) . T) (((-544)) . T) (((-572)) . T) (((-901 (-572))) . T) (((-386)) . T) (((-227)) . T))
+((((-870)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) ((#0=(-1262 |#2| |#3| |#4|)) |has| #0# (-174)) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-570) $) . T) (((-650 (-570)) $) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121)) (|has| |#1| (-1109)))
-(|has| |#1| (-1161))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((((-570) |#1|) . T))
-(((|#1|) . T))
-(((#0=(-117 |#1|) $) |has| #0# (-290 #0# #0#)))
+((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) |has| #0# (-174)) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-572) $) . T) (((-652 (-572)) $) . T))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-481)) (|has| |#1| (-734)) (|has| |#1| (-909 (-1188))) (|has| |#1| (-1060)) (|has| |#1| (-1123)) (|has| |#1| (-1111)))
+(|has| |#1| (-1163))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((((-572) |#1|) . T))
+(((|#1|) . T))
+(((#0=(-117 |#1|) $) |has| #0# (-292 #0# #0#)))
(((|#1|) |has| |#1| (-174)))
-((((-320 |#1|)) . T) (((-570)) . T))
+((((-322 |#1|)) . T) (((-572)) . T))
(((|#1|) . T))
-((((-868)) . T))
+((((-870)) . T))
((((-115)) . T) ((|#1|) . T))
-((((-868)) . T))
+((((-870)) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-313 |#1|)))
-((((-570) |#1|) . T) (((-1244 (-570)) $) . T))
-((((-1186) |#1|) . T))
-(((|#1|) -3749 (|has| |#1| (-174)) (|has| |#1| (-368))))
+(((|#1|) |has| |#1| (-315 |#1|)))
+((((-572) |#1|) . T) (((-1246 (-572)) $) . T))
+((((-1188) |#1|) . T))
+(((|#1|) -3783 (|has| |#1| (-174)) (|has| |#1| (-370))))
(((|#1|) . T))
-(((|#1|) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058))))
-((((-570)) . T) (((-413 (-570))) . T))
+(((|#1|) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-1060))))
+((((-572)) . T) (((-415 (-572))) . T))
(((|#1|) . T))
-(|has| |#1| (-562))
-((($) . T) (((-570)) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-368)))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-384)) . T))
+(|has| |#1| (-564))
+((($) . T) (((-572)) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-386)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(|has| |#1| (-368))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(|has| |#1| (-368))
-(|has| |#1| (-562))
-(|has| |#1| (-1109))
-((((-786 |#1| (-870 |#2|))) |has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(|has| |#1| (-370))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(|has| |#1| (-370))
+(|has| |#1| (-564))
+(|has| |#1| (-1111))
+((((-788 |#1| (-872 |#2|))) |has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-916))
-(((|#1| (-537 |#2|)) . T))
-(((|#1| (-777)) . T))
-(|has| |#1| (-235))
-(((|#1| (-537 (-1097 (-1186)))) . T))
-(|has| |#2| (-368))
-((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-570)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) . T))
-((((-868)) . T))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
-((((-868)) . T))
-((((-1129)) . T) (((-868)) . T))
-((((-542)) . T) (((-868)) . T))
-(((|#1|) . T))
-((($ $) . T) (((-618 $) $) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-570)) . T))
+(|has| |#2| (-918))
+(((|#1| (-539 |#2|)) . T))
+(((|#1| (-779)) . T))
+(|has| |#1| (-237))
+(((|#1| (-539 (-1099 (-1188)))) . T))
+(|has| |#2| (-370))
+((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-572)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) . T))
+((((-870)) . T))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
+((((-870)) . T))
+((((-1131)) . T) (((-870)) . T))
+((((-544)) . T) (((-870)) . T))
+(((|#1|) . T))
+((($ $) . T) (((-620 $) $) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-572)) . T))
(((|#3|) . T))
-((((-868)) . T))
-(-3749 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)))
-((((-570)) . T) (((-413 (-570))) -3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T))
-((((-1134 |#1| |#2|)) . T) ((|#2|) . T) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-570)) . T))
-((((-1182 |#1|)) . T) (((-570)) . T) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1091)) . T) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))
-(-3749 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058)))
-((((-1134 |#1| (-1186))) . T) (((-570)) . T) (((-1097 (-1186))) . T) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-1186)) . T))
-(((#0=(-587 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T))
+((((-870)) . T))
+(-3783 (|has| |#1| (-313)) (|has| |#1| (-370)) (|has| |#1| (-356)))
+((((-572)) . T) (((-415 (-572))) -3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
+((((-1136 |#1| |#2|)) . T) ((|#2|) . T) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-572)) . T))
+((((-1184 |#1|)) . T) (((-572)) . T) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) (((-1093)) . T) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
+(-3783 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060)))
+((((-1136 |#1| (-1188))) . T) (((-572)) . T) (((-1099 (-1188))) . T) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) (((-1188)) . T))
+(((#0=(-589 |#1|) #0#) . T) (($ $) . T) ((#1=(-415 (-572)) #1#) . T))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#1| (-1277 |#1|) (-1277 |#1|)) . T))
-((((-587 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((($) . T) (((-413 (-570))) . T))
+(((|#1| (-1279 |#1|) (-1279 |#1|)) . T))
+((((-589 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((($) . T) (((-415 (-572))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-413 (-570))) . T))
-(((|#2|) |has| |#2| (-6 (-4454 "*"))))
+((($) . T) (((-415 (-572))) . T))
+(((|#2|) |has| |#2| (-6 (-4456 "*"))))
(((|#1|) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((|#1|) . T) (((-572)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-298 |#3|)) . T))
-(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+((((-870)) . T))
+((((-300 |#3|)) . T))
+(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
+((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
(((|#2|) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(|has| |#2| (-916))
-(|has| |#1| (-916))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(|has| |#2| (-918))
+(|has| |#1| (-918))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
(((|#1|) . T))
-((((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) . T))
+((((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1109))
+(|has| |#1| (-1111))
(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-((((-1186)) . T) ((|#1|) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))
-(((#0=(-413 (-570)) #0#) . T))
-((((-413 (-570))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+((((-1188)) . T) ((|#1|) . T))
+((((-870)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-572)) . T) (($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))
+(((#0=(-415 (-572)) #0#) . T))
+((((-415 (-572))) . T))
(((|#1|) |has| |#1| (-174)))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(((|#1|) . T))
-((((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-542)) . T))
-((((-868)) . T))
-((((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-((((-1186)) |has| |#2| (-907 (-1186))) (((-1091)) . T))
-((((-868)) . T))
-((((-1262 |#2| |#3| |#4|)) . T))
-((((-917 |#1|)) . T))
-((($) . T) (((-413 (-570))) . T))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-826)))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-826)))
-((((-868)) . T))
-(|has| |#1| (-1231))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-((((-1186)) |has| |#1| (-907 (-1186))))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T))
-(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-((($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1058)) (((-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058))))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-562))))
-(|has| |#1| (-562))
-(((|#1|) |has| |#1| (-368)))
-((((-570)) . T))
-((((-1186) #0=(-117 |#1|)) |has| #0# (-520 (-1186) #0#)) ((#0# #0#) |has| #0# (-313 #0#)))
-(|has| |#1| (-797))
-(|has| |#1| (-797))
-(((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))))
-((((-1091)) . T) ((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-570)) . T) (($) . T))
-((((-570) (-777)) . T) ((|#3| (-777)) . T))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(((|#1|) . T))
+((((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-544)) . T))
+((((-870)) . T))
+((((-572)) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((((-1188)) |has| |#2| (-909 (-1188))) (((-1093)) . T))
+((((-870)) . T))
+((((-1264 |#2| |#3| |#4|)) . T))
+((((-919 |#1|)) . T))
+((($) . T) (((-415 (-572))) . T))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
+((((-870)) . T))
+(|has| |#1| (-1233))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+((((-1188)) |has| |#1| (-909 (-1188))))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) . T))
+(((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))) ((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+((($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1060)) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-564))))
+(|has| |#1| (-564))
+(((|#1|) |has| |#1| (-370)))
+((((-572)) . T))
+((((-1188) #0=(-117 |#1|)) |has| #0# (-522 (-1188) #0#)) ((#0# #0#) |has| #0# (-315 #0#)))
+(|has| |#1| (-799))
+(|has| |#1| (-799))
+(((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
+((((-1093)) . T) ((|#2|) . T) (((-572)) |has| |#2| (-1049 (-572))) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-572)) . T) (($) . T))
+((((-572) (-779)) . T) ((|#3| (-779)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) . T))
-(|has| |#2| (-826))
-(|has| |#2| (-826))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((((-570)) |has| |#1| (-893 (-570))) (((-384)) |has| |#1| (-893 (-384))))
-(((|#1|) . T))
-((((-876 |#1|)) . T))
-((((-876 |#1|)) . T))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-916)))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) . T))
+(|has| |#2| (-828))
+(|has| |#2| (-828))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((((-572)) |has| |#1| (-895 (-572))) (((-386)) |has| |#1| (-895 (-386))))
+(((|#1|) . T))
+((((-878 |#1|)) . T))
+((((-878 |#1|)) . T))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-918)))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#2|) -3749 (|has| |#2| (-6 (-4454 "*"))) (|has| |#2| (-174))))
+(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#2|) -3783 (|has| |#2| (-6 (-4456 "*"))) (|has| |#2| (-174))))
(((|#2|) . T))
-(|has| |#1| (-368))
+(|has| |#1| (-370))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-870 |#1|)) . T))
+((((-872 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-777)) . T))
-((((-1186)) . T))
-((((-876 |#1|)) . T))
-(-3749 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-((((-868)) . T))
+(((|#2| (-779)) . T))
+((((-1188)) . T))
+((((-878 |#1|)) . T))
+(-3783 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-870)) . T))
(((|#1|) . T))
-(-3749 (|has| |#2| (-799)) (|has| |#2| (-854)))
-(-3749 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856))))
-((((-876 |#1|)) . T))
+(-3783 (|has| |#2| (-801)) (|has| |#2| (-856)))
+(-3783 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858))))
+((((-878 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((($ $) . T) (((-618 $) $) . T))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+((($ $) . T) (((-620 $) $) . T))
((($) . T))
-((((-868)) . T))
-((((-570)) . T))
+((((-870)) . T))
+((((-572)) . T))
(((|#2|) . T))
-((((-868)) . T))
-((($) . T) (((-570)) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-368)))
-((((-868)) . T))
+((((-870)) . T))
+((($) . T) (((-572)) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
+((((-870)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((($) . T) ((|#2|) . T) (((-413 (-570))) . T))
-(|has| |#1| (-1109))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+((((-870)) . T))
+((($) . T) ((|#2|) . T) (((-415 (-572))) . T))
+(|has| |#1| (-1111))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
-(|has| |#2| (-916))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570)))))
-((((-868)) . T))
-((((-868)) . T))
-(((|#3|) |has| |#3| (-1058)) (((-570)) -12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))))
-((((-1134 |#1| |#2|)) . T) (((-959 |#1|)) |has| |#2| (-620 (-1186))) (((-868)) . T))
-((((-959 |#1|)) |has| |#2| (-620 (-1186))) (((-1168)) -12 (|has| |#1| (-1047 (-570))) (|has| |#2| (-620 (-1186)))) (((-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570))))) (((-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384))))) (((-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542)))))
-((((-1182 |#1|)) . T) (((-868)) . T))
-((((-868)) . T))
-((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T) (((-1186)) . T))
-((((-868)) . T))
-((((-570)) . T))
+((((-870)) . T))
+(|has| |#2| (-918))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
+((((-870)) . T))
+((((-870)) . T))
+(((|#3|) |has| |#3| (-1060)) (((-572)) -12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))
+((((-1136 |#1| |#2|)) . T) (((-961 |#1|)) |has| |#2| (-622 (-1188))) (((-870)) . T))
+((((-961 |#1|)) |has| |#2| (-622 (-1188))) (((-1170)) -12 (|has| |#1| (-1049 (-572))) (|has| |#2| (-622 (-1188)))) (((-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572))))) (((-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386))))) (((-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544)))))
+((((-1184 |#1|)) . T) (((-870)) . T))
+((((-870)) . T))
+((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T) (((-1188)) . T))
+((((-870)) . T))
+((((-572)) . T))
(((|#1|) . T))
((($) . T))
-((((-384)) |has| |#1| (-893 (-384))) (((-570)) |has| |#1| (-893 (-570))))
-((((-570)) . T))
+((((-386)) |has| |#1| (-895 (-386))) (((-572)) |has| |#1| (-895 (-572))))
+((((-572)) . T))
(((|#1|) . T))
-((((-868)) . T))
+((((-870)) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-650 |#1|)) . T))
-((($) . T) (((-570)) . T) (((-1263 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T))
-((((-570)) -3749 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) (($) -3749 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562)))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-570)) . T) (((-413 (-570))) . T))
-((((-1191)) . T))
+((((-870)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-652 |#1|)) . T))
+((($) . T) (((-572)) . T) (((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T))
+((((-572)) -3783 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060))) (($) -3783 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-564)) (|has| |#1| (-1060))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-564)))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-572)) . T) (((-415 (-572))) . T))
+((((-1193)) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-((((-1191)) . T))
-(((|#1|) |has| |#1| (-313 |#1|)))
-((((-384)) . T))
-((((-868)) . T))
+((((-1193)) . T))
+(((|#1|) |has| |#1| (-315 |#1|)))
+((((-386)) . T))
+((((-870)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-413 |#2|) |#3|) . T))
+((((-870)) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-415 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1109))
-(((|#2| (-488 (-2857 |#1|) (-777))) . T))
-((((-570) |#1|) . T))
-((((-1168)) . T) (((-868)) . T))
+(|has| |#1| (-1111))
+(((|#2| (-490 (-3475 |#1|) (-779))) . T))
+((((-572) |#1|) . T))
+((((-1170)) . T) (((-870)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-537 (-1186))) . T))
-(-3749 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((((-570)) . T))
+(((|#1| (-539 (-1188))) . T))
+(-3783 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-572)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1186)) |has| |#1| (-907 (-1186))) (((-1091)) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570))))
-(|has| |#1| (-562))
-(((#0=(-1262 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))) (((-570)) . T) (($) . T))
-((($) . T) (((-413 (-570))) . T))
+((((-1188)) |has| |#1| (-909 (-1188))) (((-1093)) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-647 (-572))))
+(|has| |#1| (-564))
+(((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))) (((-572)) . T) (($) . T))
+((($) . T) (((-415 (-572))) . T))
((($) . T))
((($) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
(((|#1|) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-868)) . T))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-870)) . T))
((((-145)) . T))
-(((|#1|) . T) (((-413 (-570))) . T))
+(((|#1|) . T) (((-415 (-572))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) . T))
+((((-870)) . T))
(((|#1|) . T))
-(|has| |#1| (-1161))
-(((|#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) . T))
+(|has| |#1| (-1163))
+(((|#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) . T))
(((|#1|) . T))
-((((-413 $) (-413 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((((-868)) . T))
-((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T) ((|#2|) . T))
-((((-1091)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))))
-((((-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384)))) (((-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570)))))
-((((-1263 |#1| |#2| |#3| |#4|)) . T))
-((((-570) |#1|) . T))
+((((-415 $) (-415 $)) |has| |#1| (-564)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((((-870)) . T))
+((((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-572)) |has| |#1| (-1049 (-572))) ((|#1|) . T) ((|#2|) . T))
+((((-1093)) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))))
+((((-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386)))) (((-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))))
+((((-1265 |#1| |#2| |#3| |#4|)) . T))
+((((-572) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
((($) . T))
-((((-705)) . T))
-((((-786 |#1| (-870 |#2|))) . T))
-((((-570)) . T) (($) . T))
-((($) . T))
-(((|#1|) . T) (((-413 (-570))) |has| |#1| (-368)))
-((((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-1109))
-(|has| |#1| (-1109))
-(|has| |#2| (-368))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-294)) (|has| |#1| (-368))) (((-413 (-570))) |has| |#1| (-368)))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-38 (-413 (-570))))
-((((-570)) . T))
-((((-1186)) -12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058))))
-((((-1186)) -12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058))))
-(((|#1|) . T))
-(|has| |#1| (-235))
-(((|#2| (-242 (-2857 |#1|) (-777))) . T))
-(((|#1| (-537 |#3|)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
+((((-707)) . T))
+((((-788 |#1| (-872 |#2|))) . T))
+((((-572)) . T) (($) . T))
+((($) . T))
+(((|#1|) . T) (((-415 (-572))) |has| |#1| (-370)))
+((((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-1111))
+(|has| |#1| (-1111))
+(|has| |#2| (-370))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-296)) (|has| |#1| (-370))) (((-415 (-572))) |has| |#1| (-370)))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+(|has| |#1| (-38 (-415 (-572))))
+((((-572)) . T))
+((((-1188)) -12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060))))
+((((-1188)) -12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060))))
+(((|#1|) . T))
+(|has| |#1| (-237))
+(((|#2| (-244 (-3475 |#1|) (-779))) . T))
+(((|#1| (-539 |#3|)) . T))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
+(|has| |#1| (-375))
(((|#1|) . T) (($) . T))
-(((|#1| (-537 |#2|)) . T))
-(-3749 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(((|#1| (-777)) . T))
-(|has| |#1| (-562))
-(-3749 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
+(((|#1| (-539 |#2|)) . T))
+(-3783 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(((|#1| (-779)) . T))
+(|has| |#1| (-564))
+(-3783 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-868)) . T))
-((((-570)) . T) (((-413 (-570))) . T) (($) . T))
-(-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))
-(-3749 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
+((((-870)) . T))
+((((-572)) . T) (((-415 (-572))) . T) (($) . T))
+(-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))
+(-3783 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) |has| |#4| (-1058)))
-(((|#3|) |has| |#3| (-1058)))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-826)))
-(-12 (|has| |#1| (-368)) (|has| |#2| (-826)))
-((((-570)) . T) (((-413 (-570))) -3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T))
-((((-1134 |#1| |#2|)) . T) (((-570)) . T) ((|#3|) . T) (($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) ((|#2|) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T))
-((((-1191)) . T))
-((((-678 |#1|)) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-((((-868)) . T))
-((((-650 $)) . T) (((-1168)) . T) (((-1186)) . T) (((-570)) . T) (((-227)) . T) (((-868)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((($) . T) (((-413 (-570))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1109)) (((-570)) -12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109))) (((-413 (-570))) -12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))
-(((|#3|) |has| |#3| (-1109)) (((-570)) -12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))
-(|has| |#2| (-368))
-(((|#2|) |has| |#2| (-1058)) (((-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058))))
-(((|#1|) . T))
-(|has| |#2| (-368))
-(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T))
+(((|#4|) |has| |#4| (-1060)))
+(((|#3|) |has| |#3| (-1060)))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
+(-12 (|has| |#1| (-370)) (|has| |#2| (-828)))
+((((-572)) . T) (((-415 (-572))) -3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))) ((|#2|) . T) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-872 |#1|)) . T))
+((((-1136 |#1| |#2|)) . T) (((-572)) . T) ((|#3|) . T) (($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))) ((|#2|) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((((-1193)) . T))
+((((-680 |#1|)) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (($) . T))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+((((-870)) . T))
+((((-652 $)) . T) (((-1170)) . T) (((-1188)) . T) (((-572)) . T) (((-227)) . T) (((-870)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((($) . T) (((-415 (-572))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1111)) (((-572)) -12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111))) (((-415 (-572))) -12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))
+(((|#3|) |has| |#3| (-1111)) (((-572)) -12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (((-415 (-572))) -12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))
+(|has| |#2| (-370))
+(((|#2|) |has| |#2| (-1060)) (((-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))))
+(((|#1|) . T))
+(|has| |#2| (-370))
+(((#0=(-415 (-572)) #0#) |has| |#2| (-38 (-415 (-572)))) ((|#2| |#2|) . T) (($ $) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1| |#1|) . T) ((#0=(-415 (-572)) #0#) |has| |#1| (-38 (-415 (-572)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-415 (-572)) #0#) . T))
(((|#2| |#2|) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) . T) (($) . T) (((-413 (-570))) . T))
-(((|#2|) . T))
-((((-868)) |has| |#1| (-1109)))
-((($) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-826))
-(|has| |#2| (-826))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))
-(|has| |#1| (-368))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#1|) |has| |#2| (-423 |#1|)))
-(((|#1|) |has| |#2| (-423 |#1|)))
-((((-1168)) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-650 |#1|)) . T) (((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-650 |#1|)) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1226)) . T) (((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) |has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-((((-570) |#1|) . T))
-((((-570) |#1|) . T))
-((((-570) |#1|) . T))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-570) |#1|) . T))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174)))
-((((-1186)) |has| |#1| (-907 (-1186))) (((-824 (-1186))) . T))
-(-3749 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-((((-825 |#1|)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T) (($) -3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) . T) (($) . T) (((-415 (-572))) . T))
+(((|#2|) . T))
+((((-870)) |has| |#1| (-1111)))
+((($) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-828))
+(|has| |#2| (-828))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
+(|has| |#1| (-370))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#1|) |has| |#2| (-425 |#1|)))
+(((|#1|) |has| |#2| (-425 |#1|)))
+((((-1170)) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-652 |#1|)) . T) (((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-652 |#1|)) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1228)) . T) (((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) |has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+((((-572) |#1|) . T))
+((((-572) |#1|) . T))
+((((-572) |#1|) . T))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((((-572) |#1|) . T))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#1|) |has| |#1| (-174)))
+((((-1188)) |has| |#1| (-909 (-1188))) (((-826 (-1188))) . T))
+(-3783 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-801)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-827 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-868)) . T))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
+((((-870)) . T))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
(((|#1| |#2|) . T))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-(|has| |#1| (-38 (-413 (-570))))
-((((-868)) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)) (((-413 (-570))) |has| |#1| (-562)))
-(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570))))
-(|has| |#1| (-368))
-(-3749 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (-12 (|has| |#1| (-368)) (|has| |#2| (-235))))
-(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))
-(|has| |#1| (-368))
-(((|#1|) . T))
-(((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1| |#1|) . T))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-((((-320 |#1|)) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((#0=(-705) (-1182 #0#)) . T))
-((((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-570)) . T) (((-413 (-570))) . T))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+(|has| |#1| (-38 (-415 (-572))))
+((((-870)) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)) (((-415 (-572))) |has| |#1| (-564)))
+(((|#2|) . T) (((-572)) |has| |#2| (-647 (-572))))
+(|has| |#1| (-370))
+(-3783 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (-12 (|has| |#1| (-370)) (|has| |#2| (-237))))
+(|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))
+(|has| |#1| (-370))
+(((|#1|) . T))
+(((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1| |#1|) . T))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+((((-322 |#1|)) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((#0=(-707) (-1184 #0#)) . T))
+((((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-572)) . T) (((-415 (-572))) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-854))
-(((|#2|) . T) (((-1186)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) ((|#1|) |has| |#1| (-174)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) -3749 (|has| |#1| (-368)) (|has| |#1| (-562))))
-((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1134 |#1| (-1186))) . T) (((-824 (-1186))) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-1186)) . T))
+(|has| |#1| (-856))
+(((|#2|) . T) (((-1188)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))) (((-572)) . T) ((|#1|) |has| |#1| (-174)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) (((-572)) . T) (($) -3783 (|has| |#1| (-370)) (|has| |#1| (-564))))
+((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1136 |#1| (-1188))) . T) (((-826 (-1188))) . T) ((|#1|) . T) (((-572)) |has| |#1| (-1049 (-572))) (((-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) (((-1188)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1091) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1186) $) |has| |#1| (-235)) ((#0# |#1|) |has| |#1| (-235)) ((#1=(-1097 (-1186)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1093) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1188) $) |has| |#1| (-237)) ((#0# |#1|) |has| |#1| (-237)) ((#1=(-1099 (-1188)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))))
-(|has| |#2| (-916))
-((($) . T) ((#0=(-1262 |#2| |#3| |#4|)) |has| #0# (-174)) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))))
+((($) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))))
+(|has| |#2| (-918))
+((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) |has| #0# (-174)) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
(((|#1|) |has| |#1| (-174)))
-((((-570) |#1|) . T))
+((((-572) |#1|) . T))
(((|#1|) . T))
-((((-1191)) . T))
-(((#0=(-1263 |#1| |#2| |#3| |#4|)) |has| #0# (-313 #0#)))
+((((-1193)) . T))
+(((#0=(-1265 |#1| |#2| |#3| |#4|)) |has| #0# (-315 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2| |#2|) |has| |#1| (-368)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-(|has| |#2| (-235))
+((($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2| |#2|) |has| |#1| (-370)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) ((#0=(-415 (-572)) #0#) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+(|has| |#2| (-237))
(|has| $ (-148))
-((((-868)) . T))
-((($) . T) (((-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T))
-((((-868)) . T))
-(|has| |#1| (-854))
+((((-870)) . T))
+((($) . T) (((-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-356))) ((|#1|) . T))
+((((-870)) . T))
+(|has| |#1| (-856))
((((-130)) . T))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T) (((-570)) . T))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T) (((-572)) . T))
(((|#1|) . T))
((((-130)) . T))
-((((-413 |#2|) |#3|) . T))
-((((-868)) . T))
-(-12 (|has| |#1| (-311)) (|has| |#1| (-916)))
-(((|#2| (-678 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-868)) |has| |#1| (-1109)))
+((((-415 |#2|) |#3|) . T))
+((((-870)) . T))
+(-12 (|has| |#1| (-313)) (|has| |#1| (-918)))
+(((|#2| (-680 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-870)) |has| |#1| (-1111)))
(((|#4|) . T))
-(|has| |#1| (-562))
-((($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) ((|#1|) . T))
-((((-1186)) -3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))
-(((|#1|) . T) (($) -3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186)))))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))
-(((|#1|) . T))
-(((|#1| (-537 (-824 (-1186)))) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((((-570)) . T) ((|#2|) . T) (($) . T) (((-413 (-570))) . T) (((-1186)) |has| |#2| (-1047 (-1186))))
-(((|#1|) . T))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-(((|#1|) . T))
-(-3749 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))
-((((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)))
-((($) . T) (((-876 |#1|)) . T) (((-413 (-570))) . T))
-((((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)))
-(|has| |#1| (-562))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-413 |#2|)) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-413 (-570)) #0#) . T) (($ $) . T))
-(((|#2|) . T) (((-413 (-570))) . T) (($) . T))
-((((-570)) . T))
-((((-868)) . T))
-((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-((((-868)) . T))
-((((-413 (-570))) . T) (($) . T))
-((((-570) |#1|) . T))
-((($) . T))
-((($) . T))
-((((-868)) . T))
-((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570)))))
-((((-868)) . T))
-((((-868)) . T))
-((((-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) (((-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) (((-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1|) . T) (((-868)) . T) (((-1191)) . T))
-((((-868)) . T))
-((((-1191)) . T))
-((((-115)) . T) ((|#1|) . T) (((-570)) . T))
-(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+(|has| |#1| (-564))
+((($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))) ((|#2|) |has| |#1| (-370)) ((|#1|) . T))
+((((-1188)) -3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))
+(((|#1|) . T) (($) -3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-564))) (((-415 (-572))) -3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-370))))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188)))))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(((|#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))
+(((|#1|) . T))
+(((|#1| (-539 (-826 (-1188)))) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((((-572)) . T) ((|#2|) . T) (($) . T) (((-415 (-572))) . T) (((-1188)) |has| |#2| (-1049 (-1188))))
+(((|#1|) . T))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+(((|#1|) . T))
+(-3783 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))
+((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((($) . T) (((-878 |#1|)) . T) (((-415 (-572))) . T))
+((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
+(|has| |#1| (-564))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-415 |#2|)) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-415 (-572)) #0#) . T) (($ $) . T))
+(((|#2|) . T) (((-415 (-572))) . T) (($) . T))
+((((-572)) . T))
+((((-870)) . T))
+((((-589 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+((((-870)) . T))
+((((-415 (-572))) . T) (($) . T))
+((((-572) |#1|) . T))
+((($) . T))
+((($) . T))
+((((-870)) . T))
+((((-544)) |has| |#2| (-622 (-544))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))))
+((((-870)) . T))
+((((-870)) . T))
+((((-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) (((-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) (((-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1|) . T) (((-870)) . T) (((-1193)) . T))
+((((-870)) . T))
+((((-1193)) . T))
+((((-115)) . T) ((|#1|) . T) (((-572)) . T))
+(((|#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
((((-130)) . T))
-((($) . T) (((-570)) . T) (((-117 |#1|)) . T) (((-413 (-570))) . T))
-(((|#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) . T))
-(((|#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T))
-((((-868)) . T))
-((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))))
+((($) . T) (((-572)) . T) (((-117 |#1|)) . T) (((-415 (-572))) . T))
+(((|#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) . T))
+(((|#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) . T))
+((((-870)) . T))
+((((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) |has| |#2| (-174)) (($) -3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T))
-((($) . T) (((-570)) . T))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-1113)) . T))
-((((-868)) . T))
-((((-1191)) . T) (((-868)) . T))
-((((-1191)) . T) (((-868)) . T))
-((($) -3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((((-1191)) . T))
-((((-1191)) . T))
-((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((($) . T))
-((($) -3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-((($ $) . T) (((-1186) $) . T))
-(|has| |#2| (-916))
-((((-1269 |#1| |#2| |#3|)) . T))
-((((-1269 |#1| |#2| |#3|)) |has| |#1| (-368)))
-(((|#1|) . T))
-((((-1269 |#1| |#2| |#3|)) . T) (((-1241 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-916))
-((((-1186)) . T) (((-868)) . T))
+((($) . T) (((-415 (-572))) |has| |#2| (-38 (-415 (-572)))) ((|#2|) . T))
+((($) . T) (((-572)) . T))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-1115)) . T))
+((((-870)) . T))
+((((-1193)) . T) (((-870)) . T))
+((((-1193)) . T) (((-870)) . T))
+((($) -3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((((-1193)) . T))
+((((-1193)) . T))
+((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((($) . T))
+((($) -3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918))) ((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+((($ $) . T) (((-1188) $) . T))
+(|has| |#2| (-918))
+((((-1271 |#1| |#2| |#3|)) . T))
+((((-1271 |#1| |#2| |#3|)) |has| |#1| (-370)))
+(((|#1|) . T))
+((((-1271 |#1| |#2| |#3|)) . T) (((-1243 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-918))
+((((-1188)) . T) (((-870)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-((((-705)) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-1191)) . T))
+((((-707)) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-1193)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1191)) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)) (((-413 (-570))) |has| |#1| (-562)))
-((((-1191)) . T))
-((((-1263 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562)) (($) |has| |#1| (-562)))
-((((-413 (-570))) . T) (($) . T))
-(((|#1| (-570)) . T))
+((((-1193)) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)) (((-415 (-572))) |has| |#1| (-564)))
+((((-1193)) . T))
+((((-1265 |#1| |#2| |#3| |#4|)) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-415 (-572))) |has| |#1| (-564)) (($) |has| |#1| (-564)))
+((((-415 (-572))) . T) (($) . T))
+(((|#1| (-572)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-((((-1191)) . T))
-((((-1191)) . T))
-(|has| |#1| (-368))
-(|has| |#1| (-368))
-(-3749 (|has| |#1| (-174)) (|has| |#1| (-562)))
-(((|#1| (-570)) . T))
-(((|#1| (-413 (-570))) . T))
-(((|#1| (-777)) . T))
-((((-413 (-570))) . T))
-(((|#1| (-537 |#2|) |#2|) . T))
-((((-570) |#1|) . T))
-((((-570) |#1|) . T))
-(|has| |#1| (-1109))
-((((-570) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-899 (-384))) . T) (((-899 (-570))) . T) (((-1186)) . T) (((-542)) . T))
-(((|#1|) . T))
-((((-868)) . T))
-(-3749 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-(-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))
-((((-570)) . T))
-((((-570)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
+((((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+((((-1193)) . T))
+((((-1193)) . T))
+(|has| |#1| (-370))
+(|has| |#1| (-370))
+(-3783 (|has| |#1| (-174)) (|has| |#1| (-564)))
+(((|#1| (-572)) . T))
+(((|#1| (-415 (-572))) . T))
+(((|#1| (-779)) . T))
+((((-415 (-572))) . T))
+(((|#1| (-539 |#2|) |#2|) . T))
+((((-572) |#1|) . T))
+((((-572) |#1|) . T))
+(|has| |#1| (-1111))
+((((-572) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-901 (-386))) . T) (((-901 (-572))) . T) (((-1188)) . T) (((-544)) . T))
+(((|#1|) . T))
+((((-870)) . T))
+(-3783 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-370)) (|has| |#2| (-801)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+(-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))
+((((-572)) . T))
+((((-572)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3749 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058)))
-((((-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058))))
-(-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))
+(-3783 (|has| |#2| (-174)) (|has| |#2| (-734)) (|has| |#2| (-856)) (|has| |#2| (-1060)))
+((((-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))))
+(-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-368))
+(|has| |#1| (-370))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1262 |#2| |#3| |#4|)) |has| #0# (-174)) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))))
-(|has| |#1| (-235))
-((($) . T) (((-570)) . T) (((-413 (-570))) . T))
-((($) . T) (((-570)) . T))
-((($) . T) (((-570)) . T))
-((($) . T) ((#0=(-1262 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))))
-((((-868)) . T))
-(((|#1| (-777) (-1091)) . T))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
-((((-1244 (-570)) $) . T) (((-570) |#1|) . T))
+((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) |has| #0# (-174)) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
+(|has| |#1| (-237))
+((($) . T) (((-572)) . T) (((-415 (-572))) . T))
+((($) . T) (((-572)) . T))
+((($) . T) (((-572)) . T))
+((($) . T) ((#0=(-1264 |#2| |#3| |#4|)) . T) (((-415 (-572))) |has| #0# (-38 (-415 (-572)))))
+((((-870)) . T))
+(((|#1| (-779) (-1093)) . T))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
+((((-1246 (-572)) $) . T) (((-572) |#1|) . T))
((((-117 |#1|)) . T))
-((((-413 (-570))) . T) (((-570)) . T))
-(((|#2|) |has| |#2| (-1058)))
-((((-413 (-570))) . T) (($) . T))
-(((|#2|) . T))
-((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)))
-((((-570)) . T))
-((((-570)) . T))
-((((-1168) (-1186) (-570) (-227) (-868)) . T))
+((((-415 (-572))) . T) (((-572)) . T))
+(((|#2|) |has| |#2| (-1060)))
+((((-415 (-572))) . T) (($) . T))
+(((|#2|) . T))
+((((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-564)))
+((((-572)) . T))
+((((-572)) . T))
+((((-1170) (-1188) (-572) (-227) (-870)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-570)) . T) ((|#2|) |has| |#2| (-174)))
-((((-115)) . T) ((|#1|) . T) (((-570)) . T))
-(-3749 (|has| |#1| (-354)) (|has| |#1| (-373)))
+((((-572)) . T) ((|#2|) |has| |#2| (-174)))
+((((-115)) . T) ((|#1|) . T) (((-572)) . T))
+(-3783 (|has| |#1| (-356)) (|has| |#1| (-375)))
(((|#1| |#2|) . T))
((((-227)) . T))
-((((-413 (-570))) . T) (($) . T) (((-570)) . T))
-((((-868)) . T))
+((((-415 (-572))) . T) (($) . T) (((-572)) . T))
+((((-870)) . T))
((($) . T) ((|#1|) . T))
-((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))))
-(((|#2|) |has| |#2| (-1109)) (((-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-542)) |has| |#1| (-620 (-542))))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109))))
-((((-570) $) . T) (((-650 (-570)) $) . T))
-((($) . T) (((-413 (-570))) . T))
-(|has| |#1| (-916))
-(|has| |#1| (-916))
-((((-227)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) (((-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) (((-899 (-384))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-384))))) (((-899 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-570))))) (((-542)) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-542)))))
-((((-868)) . T))
-((((-868)) . T))
+((($) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-415 (-572))) |has| |#1| (-38 (-415 (-572)))))
+(((|#2|) |has| |#2| (-1111)) (((-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (((-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-544)) |has| |#1| (-622 (-544))))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-858)) (|has| |#1| (-1111))))
+((((-572) $) . T) (((-652 (-572)) $) . T))
+((($) . T) (((-415 (-572))) . T))
+(|has| |#1| (-918))
+(|has| |#1| (-918))
+((((-227)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) (((-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) (((-901 (-386))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-386))))) (((-901 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-572))))) (((-544)) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-544)))))
+((((-870)) . T))
+((((-870)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-(((|#1|) . T) (((-570)) . T))
-((((-1191)) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-562)))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
+(((|#1|) . T) (((-572)) . T))
+((((-1193)) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-564)))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
(((|#2|) . T))
-(-3749 (|has| |#1| (-21)) (|has| |#1| (-854)))
+(-3783 (|has| |#1| (-21)) (|has| |#1| (-856)))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-868)) -3749 (-12 (|has| |#1| (-619 (-868))) (|has| |#2| (-619 (-868)))) (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109)))))
-((((-413 |#2|) |#3|) . T))
-((((-413 (-570))) . T) (($) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-368))
-((($ $) . T) ((#0=(-413 (-570)) #0#) . T))
-((($) . T) (((-570)) . T))
-(|has| (-413 |#2|) (-148))
-(|has| (-413 |#2|) (-146))
-((($) . T))
-((((-705)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((#0=(-570) #0#) . T))
-((($) . T) (((-413 (-570))) . T))
-(-3749 (|has| |#4| (-174)) (|has| |#4| (-732)) (|has| |#4| (-854)) (|has| |#4| (-1058)))
-(-3749 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058)))
-((((-868)) . T) (((-1191)) . T))
-(|has| |#4| (-799))
-(-3749 (|has| |#4| (-799)) (|has| |#4| (-854)))
-(|has| |#4| (-854))
-(|has| |#3| (-799))
-((((-1191)) . T))
-(-3749 (|has| |#3| (-799)) (|has| |#3| (-854)))
-(|has| |#3| (-854))
-((((-570)) . T))
-(((|#2|) . T))
-((((-1186)) -3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))))
-((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186)))))
+((((-870)) -3783 (-12 (|has| |#1| (-621 (-870))) (|has| |#2| (-621 (-870)))) (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))))
+((((-415 |#2|) |#3|) . T))
+((((-415 (-572))) . T) (($) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-370))
+((($ $) . T) ((#0=(-415 (-572)) #0#) . T))
+((($) . T) (((-572)) . T))
+(|has| (-415 |#2|) (-148))
+(|has| (-415 |#2|) (-146))
+((($) . T))
+((((-707)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((#0=(-572) #0#) . T))
+((($) . T) (((-415 (-572))) . T))
+(-3783 (|has| |#4| (-174)) (|has| |#4| (-734)) (|has| |#4| (-856)) (|has| |#4| (-1060)))
+(-3783 (|has| |#3| (-174)) (|has| |#3| (-734)) (|has| |#3| (-856)) (|has| |#3| (-1060)))
+((((-870)) . T) (((-1193)) . T))
+(|has| |#4| (-801))
+(-3783 (|has| |#4| (-801)) (|has| |#4| (-856)))
+(|has| |#4| (-856))
+(|has| |#3| (-801))
+((((-1193)) . T))
+(-3783 (|has| |#3| (-801)) (|has| |#3| (-856)))
+(|has| |#3| (-856))
+((((-572)) . T))
+(((|#2|) . T))
+((((-1188)) -3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))))
+((((-1188)) -12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-870 |#1|)) . T))
-((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)))
-((((-1149 |#1| |#2|)) . T))
-((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)))
-(((|#2|) . T) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-((($) . T))
-(|has| |#1| (-1031))
-(((|#2|) . T) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-((((-868)) . T))
-((((-542)) |has| |#2| (-620 (-542))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-384)) . #0=(|has| |#2| (-1031))) (((-227)) . #0#))
-((((-298 |#3|)) . T))
-((((-1186) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-413 (-570))))
-(|has| |#1| (-38 (-413 (-570))))
-((((-868)) . T))
-(((|#2|) . T))
-((((-868)) . T))
-((((-413 (-570)) |#1|) . T) (($ $) . T))
-((((-413 |#2|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-413 (-570))) . T) (((-705)) . T) (($) . T))
-((((-1184 |#1| |#2| |#3|)) . T))
-((((-1184 |#1| |#2| |#3|)) . T) (((-1177 |#1| |#2| |#3|)) . T))
-((((-868)) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-570) |#1|) . T))
-((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)))
+((((-872 |#1|)) . T))
+((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
+((((-1151 |#1| |#2|)) . T))
+((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
+(((|#2|) . T) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+((($) . T))
+(|has| |#1| (-1033))
+(((|#2|) . T) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+((((-870)) . T))
+((((-544)) |has| |#2| (-622 (-544))) (((-901 (-572))) |has| |#2| (-622 (-901 (-572)))) (((-901 (-386))) |has| |#2| (-622 (-901 (-386)))) (((-386)) . #0=(|has| |#2| (-1033))) (((-227)) . #0#))
+((((-300 |#3|)) . T))
+((((-1188) (-52)) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-415 (-572))))
+(|has| |#1| (-38 (-415 (-572))))
+((((-870)) . T))
+(((|#2|) . T))
+((((-870)) . T))
+((((-415 (-572)) |#1|) . T) (($ $) . T))
+((((-415 |#2|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-415 (-572))) . T) (((-707)) . T) (($) . T))
+((((-1186 |#1| |#2| |#3|)) . T))
+((((-1186 |#1| |#2| |#3|)) . T) (((-1179 |#1| |#2| |#3|)) . T))
+((((-870)) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-572) |#1|) . T))
+((((-1186 |#1| |#2| |#3|)) |has| |#1| (-370)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-368))
-(((|#3|) . T) ((|#2|) . T) (($) -3749 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058))) ((|#4|) -3749 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))))
-(((|#2|) . T) (($) -3749 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) ((|#3|) -3749 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))))
+(|has| |#2| (-370))
+(((|#3|) . T) ((|#2|) . T) (($) -3783 (|has| |#4| (-174)) (|has| |#4| (-856)) (|has| |#4| (-1060))) ((|#4|) -3783 (|has| |#4| (-174)) (|has| |#4| (-370)) (|has| |#4| (-1060))))
+(((|#2|) . T) (($) -3783 (|has| |#3| (-174)) (|has| |#3| (-856)) (|has| |#3| (-1060))) ((|#3|) -3783 (|has| |#3| (-174)) (|has| |#3| (-370)) (|has| |#3| (-1060))))
(((|#1|) . T))
(((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T))
-((((-1186)) . T) ((|#1|) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-((((-189)) . T) (((-868)) . T))
-((((-868)) . T))
+((((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) (((-572)) |has| |#2| (-1049 (-572))) ((|#2|) . T) (((-872 |#1|)) . T))
+((((-1188)) . T) ((|#1|) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+((((-189)) . T) (((-870)) . T))
+((((-870)) . T))
(((|#1|) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-((((-130)) . T) (((-868)) . T))
-((((-570) |#1|) . T) (((-1244 (-570)) $) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+((((-130)) . T) (((-870)) . T))
+((((-572) |#1|) . T) (((-1246 (-572)) $) . T))
((((-130)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-368)) (|has| |#2| (-290 |#2| |#2|))) (($ $) . T) (((-570) |#1|) . T))
-((($ $) . T) (((-413 (-570)) |#1|) . T))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-916)))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-((((-868)) . T))
-((((-868)) . T))
-((((-868)) . T))
-(((|#1| (-537 |#2|)) . T))
-((((-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) . T))
-((((-570) (-130)) . T))
-(((|#1| (-570)) . T))
-(((|#1| (-413 (-570))) . T))
-(((|#1| (-777)) . T))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-(-3749 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))
-(-3749 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))
-((($) . T))
-(((|#2| (-537 (-870 |#1|))) . T))
-((((-1191)) . T))
-((((-1191)) . T))
-((((-570) |#1|) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-(((|#2|) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-868)) . T) (((-1191)) . T))
-((((-1191)) . T))
-((((-868)) -3749 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))))
-(((|#1|) . T))
-(((|#2| (-777)) . T))
+(((|#2| $) -12 (|has| |#1| (-370)) (|has| |#2| (-292 |#2| |#2|))) (($ $) . T) (((-572) |#1|) . T))
+((($ $) . T) (((-415 (-572)) |#1|) . T))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-460)) (|has| |#1| (-918)))
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+((((-870)) . T))
+((((-870)) . T))
+((((-870)) . T))
+(((|#1| (-539 |#2|)) . T))
+((((-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) . T))
+((((-572) (-130)) . T))
+(((|#1| (-572)) . T))
+(((|#1| (-415 (-572))) . T))
+(((|#1| (-779)) . T))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+(-3783 (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918)))
+(-3783 (|has| |#1| (-460)) (|has| |#1| (-564)) (|has| |#1| (-918)))
+((($) . T))
+(((|#2| (-539 (-872 |#1|))) . T))
+((((-1193)) . T))
+((((-1193)) . T))
+((((-572) |#1|) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+(((|#2|) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-870)) . T) (((-1193)) . T))
+((((-1193)) . T))
+((((-870)) -3783 (|has| |#1| (-621 (-870))) (|has| |#1| (-1111))))
+(((|#1|) . T))
+(((|#2| (-779)) . T))
(((|#1| |#2|) . T))
-((((-1168) |#1|) . T))
-((((-413 |#2|)) . T))
-((((-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T))
-(|has| |#1| (-562))
-(|has| |#1| (-562))
+((((-1170) |#1|) . T))
+((((-415 |#2|)) . T))
+((((-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T))
+(|has| |#1| (-564))
+(|has| |#1| (-564))
((($) . T) ((|#2|) . T))
-((($) . T) (((-413 (-570))) . T))
-((((-413 (-570))) . T) (($) . T))
+((($) . T) (((-415 (-572))) . T))
+((((-415 (-572))) . T) (($) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-570)) . T) (($) . T))
-(((|#2| $) |has| |#2| (-290 |#2| |#2|)))
-(((|#1| (-650 |#1|)) |has| |#1| (-854)))
-(-3749 (|has| |#1| (-235)) (|has| |#1| (-354)))
-(-3749 (|has| |#1| (-368)) (|has| |#1| (-354)))
-((((-1273 |#1|)) . T) (((-570)) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))))
-(|has| |#1| (-1109))
-(((|#1|) . T))
-((((-1273 |#1|)) . T) (((-570)) . T) (($) -3749 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-1091)) . T) ((|#2|) . T) (((-413 (-570))) -3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))))
-((((-413 (-570))) . T) (($) . T))
-((((-1008 |#1|)) . T) ((|#1|) . T) (((-570)) -3749 (|has| (-1008 |#1|) (-1047 (-570))) (|has| |#1| (-1047 (-570)))) (((-413 (-570))) -3749 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))
-((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-1186)) |has| |#1| (-907 (-1186))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))
-(((|#1| (-608 |#1| |#3|) (-608 |#1| |#2|)) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T))
+((((-572)) . T) (($) . T))
+(((|#2| $) |has| |#2| (-292 |#2| |#2|)))
+(((|#1| (-652 |#1|)) |has| |#1| (-856)))
+(-3783 (|has| |#1| (-237)) (|has| |#1| (-356)))
+(-3783 (|has| |#1| (-370)) (|has| |#1| (-356)))
+((((-1275 |#1|)) . T) (((-572)) . T) ((|#2|) . T) (((-415 (-572))) |has| |#2| (-1049 (-415 (-572)))))
+(|has| |#1| (-1111))
+(((|#1|) . T))
+((((-1275 |#1|)) . T) (((-572)) . T) (($) -3783 (|has| |#2| (-370)) (|has| |#2| (-460)) (|has| |#2| (-564)) (|has| |#2| (-918))) (((-1093)) . T) ((|#2|) . T) (((-415 (-572))) -3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))))
+((((-415 (-572))) . T) (($) . T))
+((((-1010 |#1|)) . T) ((|#1|) . T) (((-572)) -3783 (|has| (-1010 |#1|) (-1049 (-572))) (|has| |#1| (-1049 (-572)))) (((-415 (-572))) -3783 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))
+((((-919 |#1|)) . T) (((-415 (-572))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-1188)) |has| |#1| (-909 (-1188))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+((((-919 |#1|)) . T) (($) . T) (((-415 (-572))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))
+(((|#1| (-610 |#1| |#3|) (-610 |#1| |#2|)) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-415 (-572))) . T) (((-572)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1149 |#1| |#2|) #0#) |has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))))
+(((#0=(-1151 |#1| |#2|) #0#) |has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) #0#) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))))
-(|has| |#1| (-290 |#1| |#1|))
-(((#0=(-117 |#1|)) |has| #0# (-313 #0#)))
+(((|#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((#0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) #0#) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))))
+(|has| |#1| (-292 |#1| |#1|))
+(((#0=(-117 |#1|)) |has| #0# (-315 #0#)))
((($ $) . T))
-(-3749 (|has| |#1| (-856)) (|has| |#1| (-1109)))
-((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-235)) ((|#2| |#1|) |has| |#1| (-235)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-484 . -1109) T) ((-267 . -520) 189795) ((-249 . -520) 189738) ((-247 . -1109) 189688) ((-577 . -111) 189673) ((-537 . -23) T) ((-134 . -1109) T) ((-139 . -1109) T) ((-118 . -313) 189630) ((-138 . -1109) T) ((-805 . -1227) 189599) ((-485 . -520) 189391) ((-683 . -622) 189375) ((-700 . -102) T) ((-1150 . -520) 189294) ((-396 . -132) T) ((-1290 . -985) 189263) ((-1033 . -1060) 189200) ((-31 . -93) T) ((-608 . -495) 189184) ((-1033 . -646) 189121) ((-627 . -132) T) ((-825 . -852) T) ((-529 . -57) 189071) ((-525 . -520) 189004) ((-359 . -1060) 188949) ((-59 . -520) 188882) ((-522 . -520) 188815) ((-424 . -907) 188774) ((-171 . -1058) T) ((-503 . -520) 188707) ((-502 . -520) 188640) ((-359 . -646) 188585) ((-805 . -1047) 188365) ((-705 . -38) 188330) ((-1250 . -622) 188078) ((-348 . -354) T) ((-1103 . -1102) 188062) ((-1103 . -1109) 188040) ((-861 . -622) 187937) ((-171 . -245) 187888) ((-171 . -235) 187839) ((-1103 . -1104) 187797) ((-878 . -290) 187755) ((-227 . -801) T) ((-227 . -798) T) ((-700 . -288) NIL) ((-577 . -622) 187727) ((-1159 . -1203) 187706) ((-413 . -1001) 187690) ((-48 . -1060) 187655) ((-707 . -21) T) ((-707 . -25) T) ((-48 . -646) 187620) ((-1292 . -654) 187594) ((-320 . -161) 187573) ((-320 . -144) 187552) ((-1159 . -107) 187502) ((-117 . -21) T) ((-40 . -233) 187479) ((-135 . -25) T) ((-117 . -25) T) ((-614 . -292) 187455) ((-481 . -292) 187434) ((-1250 . -330) 187411) ((-1250 . -1058) T) ((-861 . -1058) T) ((-805 . -343) 187395) ((-140 . -187) T) ((-118 . -1161) NIL) ((-91 . -619) 187327) ((-483 . -132) T) ((-1250 . -235) T) ((-1105 . -496) 187308) ((-1105 . -619) 187274) ((-1099 . -496) 187255) ((-1099 . -619) 187221) ((-599 . -1227) T) ((-1082 . -496) 187202) ((-577 . -1058) T) ((-1082 . -619) 187168) ((-668 . -723) 187152) ((-1075 . -496) 187133) ((-1075 . -619) 187099) ((-965 . -292) 187076) ((-60 . -34) T) ((-1071 . -801) T) ((-1071 . -798) T) ((-1045 . -496) 187057) ((-1028 . -496) 187038) ((-822 . -732) T) ((-737 . -47) 187003) ((-629 . -38) 186990) ((-360 . -294) T) ((-357 . -294) T) ((-349 . -294) T) ((-267 . -294) 186921) ((-249 . -294) 186852) ((-1045 . -619) 186818) ((-1033 . -102) T) ((-1028 . -619) 186784) ((-632 . -496) 186765) ((-419 . -732) T) ((-118 . -38) 186710) ((-489 . -496) 186691) ((-632 . -619) 186657) ((-419 . -479) T) ((-220 . -496) 186638) ((-489 . -619) 186604) ((-359 . -102) T) ((-220 . -619) 186570) ((-1221 . -1067) T) ((-348 . -652) 186500) ((-717 . -1067) T) ((-1184 . -47) 186477) ((-1183 . -47) 186447) ((-1177 . -47) 186424) ((-129 . -292) 186399) ((-1044 . -152) 186345) ((-917 . -294) T) ((-1135 . -47) 186317) ((-700 . -313) NIL) ((-521 . -619) 186299) ((-516 . -619) 186281) ((-514 . -619) 186263) ((-331 . -1109) 186213) ((-718 . -458) 186144) ((-48 . -102) T) ((-1261 . -290) 186102) ((-1240 . -290) 186002) ((-650 . -672) 185986) ((-650 . -657) 185970) ((-344 . -21) T) ((-344 . -25) T) ((-40 . -354) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-650 . -378) 185954) ((-611 . -496) 185936) ((-608 . -290) 185888) ((-611 . -619) 185855) ((-394 . -102) T) ((-1129 . -144) T) ((-127 . -619) 185787) ((-880 . -1109) T) ((-664 . -417) 185771) ((-720 . -619) 185753) ((-251 . -619) 185720) ((-189 . -619) 185702) ((-163 . -619) 185684) ((-158 . -619) 185666) ((-1292 . -732) T) ((-1111 . -34) T) ((-877 . -801) NIL) ((-877 . -798) NIL) ((-864 . -856) T) ((-737 . -893) NIL) ((-1301 . -132) T) ((-386 . -132) T) ((-899 . -622) 185634) ((-911 . -102) T) ((-737 . -1047) 185510) ((-1184 . -1227) T) ((-537 . -132) T) ((-1183 . -1227) T) ((-1096 . -417) 185494) ((-1009 . -495) 185478) ((-118 . -406) 185455) ((-1177 . -1227) T) ((-788 . -417) 185439) ((-786 . -417) 185423) ((-950 . -34) T) ((-700 . -1161) NIL) ((-254 . -654) 185258) ((-253 . -654) 185080) ((-823 . -927) 185059) ((-460 . -417) 185043) ((-608 . -19) 185027) ((-1155 . -1220) 184996) ((-1177 . -893) NIL) ((-1177 . -891) 184948) ((-608 . -610) 184925) ((-1213 . -619) 184857) ((-1185 . -619) 184839) ((-62 . -401) T) ((-1183 . -1047) 184774) ((-1177 . -1047) 184740) ((-700 . -38) 184690) ((-40 . -652) 184620) ((-480 . -290) 184578) ((-1233 . -619) 184560) ((-737 . -382) 184544) ((-844 . -619) 184526) ((-664 . -1067) T) ((-1261 . -1011) 184492) ((-1240 . -1011) 184458) ((-252 . -1227) T) ((-1097 . -622) 184442) ((-1072 . -1203) 184417) ((-1085 . -622) 184394) ((-878 . -620) 184201) ((-878 . -619) 184183) ((-1199 . -495) 184120) ((-424 . -1031) 184098) ((-48 . -313) 184085) ((-1072 . -107) 184031) ((-485 . -495) 183968) ((-526 . -1227) T) ((-1177 . -343) 183920) ((-1150 . -495) 183891) ((-1177 . -382) 183843) ((-1096 . -1067) T) ((-443 . -102) T) ((-185 . -1109) T) ((-254 . -34) T) ((-253 . -34) T) ((-788 . -1067) T) ((-786 . -1067) T) ((-737 . -907) 183820) ((-460 . -1067) T) ((-59 . -495) 183804) ((-1043 . -1065) 183778) ((-525 . -495) 183762) ((-522 . -495) 183746) ((-503 . -495) 183730) ((-502 . -495) 183714) ((-247 . -520) 183647) ((-1043 . -111) 183614) ((-1184 . -907) 183527) ((-1183 . -907) 183433) ((-1177 . -907) 183266) ((-1135 . -907) 183250) ((-676 . -1121) T) ((-359 . -1161) T) ((-651 . -93) T) ((-326 . -1065) 183232) ((-254 . -797) 183211) ((-254 . -800) 183162) ((-31 . -496) 183143) ((-254 . -799) 183122) ((-253 . -797) 183101) ((-253 . -800) 183052) ((-253 . -799) 183031) ((-31 . -619) 182997) ((-50 . -1067) T) ((-254 . -732) 182907) ((-253 . -732) 182817) ((-1221 . -1109) T) ((-676 . -23) T) ((-587 . -1067) T) ((-524 . -1067) T) ((-384 . -1065) 182782) ((-326 . -111) 182757) ((-73 . -388) T) ((-73 . -401) T) ((-1033 . -38) 182694) ((-700 . -406) 182676) ((-99 . -102) T) ((-717 . -1109) T) ((-1306 . -1060) 182663) ((-1012 . -146) 182635) ((-1012 . -148) 182607) ((-876 . -652) 182579) ((-384 . -111) 182535) ((-323 . -1231) 182514) ((-480 . -1011) 182480) ((-359 . -38) 182445) ((-40 . -375) 182417) ((-879 . -619) 182289) ((-128 . -126) 182273) ((-122 . -126) 182257) ((-842 . -1065) 182227) ((-839 . -21) 182179) ((-833 . -1065) 182163) ((-839 . -25) 182115) ((-323 . -562) 182066) ((-523 . -622) 182047) ((-570 . -834) T) ((-242 . -1227) T) ((-1043 . -622) 182016) ((-842 . -111) 181981) ((-833 . -111) 181960) ((-1261 . -619) 181942) ((-1240 . -619) 181924) ((-1240 . -620) 181595) ((-1182 . -916) 181574) ((-1134 . -916) 181553) ((-48 . -38) 181518) ((-1299 . -1121) T) ((-542 . -290) 181474) ((-608 . -619) 181386) ((-608 . -620) 181347) ((-1297 . -1121) T) ((-366 . -622) 181331) ((-326 . -622) 181315) ((-242 . -1047) 181142) ((-1182 . -654) 181067) ((-1134 . -654) 180992) ((-860 . -654) 180966) ((-724 . -619) 180948) ((-552 . -373) T) ((-1299 . -23) T) ((-1297 . -23) T) ((-497 . -1109) T) ((-384 . -622) 180898) ((-384 . -624) 180880) ((-1043 . -1058) T) ((-871 . -102) T) ((-1199 . -290) 180859) ((-171 . -373) 180810) ((-1013 . -1227) T) ((-842 . -622) 180764) ((-833 . -622) 180719) ((-44 . -23) T) ((-485 . -290) 180698) ((-592 . -1109) T) ((-1155 . -1118) 180667) ((-1113 . -1112) 180619) ((-396 . -21) T) ((-396 . -25) T) ((-153 . -1121) T) ((-1306 . -102) T) ((-1013 . -891) 180601) ((-1013 . -893) 180583) ((-1221 . -723) 180480) ((-629 . -233) 180464) ((-627 . -21) T) ((-293 . -562) T) ((-627 . -25) T) ((-1207 . -1109) T) ((-717 . -723) 180429) ((-242 . -382) 180398) ((-1013 . -1047) 180358) ((-384 . -1058) T) ((-225 . -1067) T) ((-118 . -233) 180335) ((-59 . -290) 180287) ((-153 . -23) T) ((-522 . -290) 180239) ((-331 . -520) 180172) ((-502 . -290) 180124) ((-384 . -245) T) ((-384 . -235) T) ((-842 . -1058) T) ((-833 . -1058) T) ((-718 . -956) 180093) ((-707 . -856) T) ((-480 . -619) 180075) ((-1263 . -1060) 179980) ((-586 . -652) 179952) ((-570 . -652) 179924) ((-501 . -652) 179874) ((-833 . -235) 179853) ((-135 . -856) T) ((-1263 . -646) 179745) ((-664 . -1109) T) ((-1199 . -610) 179724) ((-556 . -1203) 179703) ((-341 . -1109) T) ((-323 . -368) 179682) ((-413 . -148) 179661) ((-413 . -146) 179640) ((-971 . -1121) 179539) ((-242 . -907) 179471) ((-821 . -1121) 179381) ((-660 . -858) 179365) ((-485 . -610) 179344) ((-556 . -107) 179294) ((-1013 . -382) 179276) ((-1013 . -343) 179258) ((-97 . -1109) T) ((-971 . -23) 179069) ((-483 . -21) T) ((-483 . -25) T) ((-821 . -23) 178939) ((-1186 . -619) 178921) ((-59 . -19) 178905) ((-1186 . -620) 178827) ((-1182 . -732) T) ((-1134 . -732) T) ((-522 . -19) 178811) ((-502 . -19) 178795) ((-59 . -610) 178772) ((-1096 . -1109) T) ((-908 . -102) 178750) ((-860 . -732) T) ((-788 . -1109) T) ((-522 . -610) 178727) ((-502 . -610) 178704) ((-786 . -1109) T) ((-786 . -1074) 178671) ((-467 . -1109) T) ((-460 . -1109) T) ((-592 . -723) 178646) ((-655 . -1109) T) ((-1269 . -47) 178623) ((-1263 . -102) T) ((-1262 . -47) 178593) ((-1241 . -47) 178570) ((-1221 . -174) 178521) ((-1183 . -311) 178500) ((-1177 . -311) 178479) ((-1105 . -622) 178460) ((-1099 . -622) 178441) ((-1089 . -562) 178392) ((-1013 . -907) NIL) ((-1089 . -1231) 178343) ((-676 . -132) T) ((-633 . -1121) T) ((-1082 . -622) 178324) ((-1075 . -622) 178305) ((-1045 . -622) 178286) ((-1028 . -622) 178267) ((-705 . -652) 178217) ((-278 . -1109) T) ((-85 . -447) T) ((-85 . -401) T) ((-720 . -1065) 178187) ((-717 . -174) T) ((-50 . -1109) T) ((-601 . -47) 178164) ((-227 . -654) 178129) ((-587 . -1109) T) ((-524 . -1109) T) ((-493 . -826) T) ((-493 . -927) T) ((-364 . -1231) T) ((-358 . -1231) T) ((-350 . -1231) T) ((-323 . -1121) T) ((-320 . -1060) 178039) ((-317 . -1060) 177968) ((-108 . -1231) T) ((-632 . -622) 177949) ((-364 . -562) T) ((-219 . -927) T) ((-219 . -826) T) ((-320 . -646) 177859) ((-317 . -646) 177788) ((-358 . -562) T) ((-350 . -562) T) ((-489 . -622) 177769) ((-108 . -562) T) ((-664 . -723) 177739) ((-1177 . -1031) NIL) ((-220 . -622) 177720) ((-323 . -23) T) ((-67 . -1227) T) ((-1009 . -619) 177652) ((-700 . -233) 177634) ((-720 . -111) 177599) ((-650 . -34) T) ((-247 . -495) 177583) ((-1306 . -1161) T) ((-1301 . -21) T) ((-1301 . -25) T) ((-1111 . -1107) 177567) ((-173 . -1109) T) ((-1299 . -132) T) ((-1297 . -132) T) ((-1290 . -102) T) ((-1273 . -619) 177533) ((-1269 . -1227) T) ((-959 . -916) 177512) ((-1262 . -1227) T) ((-1262 . -1047) 177447) ((-1241 . -1227) T) ((-521 . -622) 177431) ((-1241 . -893) NIL) ((-1241 . -891) 177383) ((-1241 . -1047) 177349) ((-487 . -916) 177328) ((-1221 . -520) 177295) ((-1199 . -620) NIL) ((-1096 . -723) 177144) ((-1071 . -654) 177131) ((-959 . -654) 177056) ((-603 . -496) 177037) ((-591 . -496) 177018) ((-788 . -723) 176847) ((-603 . -619) 176813) ((-591 . -619) 176779) ((-542 . -619) 176761) ((-542 . -620) 176742) ((-786 . -723) 176591) ((-1086 . -102) T) ((-386 . -25) T) ((-629 . -652) 176563) ((-386 . -21) T) ((-487 . -654) 176488) ((-467 . -723) 176459) ((-460 . -723) 176308) ((-996 . -102) T) ((-1199 . -619) 176290) ((-1151 . -1132) 176235) ((-1055 . -1220) 176164) ((-743 . -102) T) ((-118 . -652) 176094) ((-611 . -622) 176076) ((-908 . -313) 176014) ((-882 . -93) T) ((-537 . -25) T) ((-720 . -622) 175968) ((-687 . -93) T) ((-682 . -93) T) ((-651 . -496) 175949) ((-142 . -102) T) ((-44 . -132) T) ((-670 . -619) 175931) ((-601 . -1227) T) ((-348 . -1067) T) ((-293 . -1121) T) ((-651 . -619) 175884) ((-484 . -93) T) ((-360 . -619) 175866) ((-357 . -619) 175848) ((-349 . -619) 175830) ((-267 . -620) 175578) ((-267 . -619) 175560) ((-249 . -619) 175542) ((-249 . -620) 175403) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1150 . -619) 175385) ((-1129 . -646) 175372) ((-1129 . -1060) 175359) ((-825 . -732) T) ((-825 . -863) T) ((-608 . -292) 175336) ((-587 . -723) 175301) ((-485 . -620) NIL) ((-485 . -619) 175283) ((-524 . -723) 175228) ((-320 . -102) T) ((-317 . -102) T) ((-293 . -23) T) ((-153 . -132) T) ((-917 . -619) 175210) ((-917 . -620) 175192) ((-392 . -732) T) ((-878 . -1065) 175144) ((-878 . -111) 175082) ((-720 . -1058) T) ((-718 . -1253) 175066) ((-700 . -354) NIL) ((-137 . -102) T) ((-115 . -102) T) ((-140 . -102) T) ((-525 . -619) 174998) ((-384 . -801) T) ((-225 . -1109) T) ((-169 . -1227) T) ((-384 . -798) T) ((-227 . -800) T) ((-227 . -797) T) ((-59 . -620) 174959) ((-59 . -619) 174871) ((-227 . -732) T) ((-522 . -620) 174832) ((-522 . -619) 174744) ((-503 . -619) 174676) ((-502 . -620) 174637) ((-502 . -619) 174549) ((-1089 . -368) 174500) ((-40 . -417) 174477) ((-77 . -1227) T) ((-877 . -916) NIL) ((-364 . -333) 174461) ((-364 . -368) T) ((-358 . -333) 174445) ((-358 . -368) T) ((-350 . -333) 174429) ((-350 . -368) T) ((-320 . -288) 174408) ((-108 . -368) T) ((-70 . -1227) T) ((-1241 . -343) 174360) ((-877 . -654) 174305) ((-1241 . -382) 174257) ((-971 . -132) 174112) ((-821 . -132) 173982) ((-965 . -657) 173966) ((-1096 . -174) 173877) ((-965 . -378) 173861) ((-1071 . -800) T) ((-1071 . -797) T) ((-878 . -622) 173759) ((-788 . -174) 173650) ((-786 . -174) 173561) ((-822 . -47) 173523) ((-1071 . -732) T) ((-331 . -495) 173507) ((-959 . -732) T) ((-1290 . -313) 173445) ((-460 . -174) 173356) ((-247 . -290) 173308) ((-1269 . -907) 173221) ((-1262 . -907) 173127) ((-1261 . -1065) 172962) ((-487 . -732) T) ((-1241 . -907) 172795) ((-1240 . -1065) 172603) ((-1221 . -294) 172582) ((-1196 . -1227) T) ((-1193 . -373) T) ((-1192 . -373) T) ((-1155 . -152) 172566) ((-1129 . -102) T) ((-1127 . -1109) T) ((-1089 . -23) T) ((-1089 . -1121) T) ((-1084 . -102) T) ((-1066 . -619) 172533) ((-934 . -962) T) ((-743 . -313) 172471) ((-75 . -1227) T) ((-670 . -387) 172443) ((-171 . -916) 172396) ((-30 . -962) T) ((-112 . -850) T) ((-1 . -619) 172378) ((-1012 . -415) 172350) ((-129 . -657) 172332) ((-50 . -626) 172316) ((-700 . -652) 172251) ((-601 . -907) 172164) ((-444 . -102) T) ((-129 . -378) 172146) ((-142 . -313) NIL) ((-878 . -1058) T) ((-839 . -856) 172125) ((-81 . -1227) T) ((-717 . -294) T) ((-40 . -1067) T) ((-587 . -174) T) ((-524 . -174) T) ((-517 . -619) 172107) ((-171 . -654) 172017) ((-513 . -619) 171999) ((-356 . -148) 171981) ((-356 . -146) T) ((-364 . -1121) T) ((-358 . -1121) T) ((-350 . -1121) T) ((-1013 . -311) T) ((-921 . -311) T) ((-878 . -245) T) ((-108 . -1121) T) ((-878 . -235) 171960) ((-1261 . -111) 171781) ((-1240 . -111) 171570) ((-247 . -1265) 171554) ((-570 . -854) T) ((-364 . -23) T) ((-359 . -354) T) ((-320 . -313) 171541) ((-317 . -313) 171482) ((-358 . -23) T) ((-323 . -132) T) ((-350 . -23) T) ((-1013 . -1031) T) ((-31 . -622) 171463) ((-108 . -23) T) ((-660 . -1060) 171447) ((-247 . -610) 171424) ((-337 . -1109) T) ((-660 . -646) 171394) ((-1263 . -38) 171286) ((-1250 . -916) 171265) ((-112 . -1109) T) ((-1044 . -102) T) ((-1250 . -654) 171190) ((-877 . -800) NIL) ((-861 . -654) 171164) ((-877 . -797) NIL) ((-822 . -893) NIL) ((-877 . -732) T) ((-1096 . -520) 171037) ((-788 . -520) 170984) ((-786 . -520) 170936) ((-577 . -654) 170923) ((-822 . -1047) 170751) ((-460 . -520) 170694) ((-394 . -395) T) ((-1261 . -622) 170507) ((-1240 . -622) 170255) ((-60 . -1227) T) ((-627 . -856) 170234) ((-506 . -667) T) ((-1155 . -985) 170203) ((-1033 . -652) 170140) ((-1012 . -458) T) ((-705 . -854) T) ((-516 . -798) T) ((-480 . -1065) 169975) ((-506 . -113) T) ((-348 . -1109) T) ((-317 . -1161) NIL) ((-293 . -132) T) ((-400 . -1109) T) ((-876 . -1067) T) ((-700 . -375) 169942) ((-359 . -652) 169872) ((-225 . -626) 169849) ((-331 . -290) 169801) ((-480 . -111) 169622) ((-1261 . -1058) T) ((-1240 . -1058) T) ((-822 . -382) 169606) ((-171 . -732) T) ((-660 . -102) T) ((-1261 . -245) 169585) ((-1261 . -235) 169537) ((-1240 . -235) 169442) ((-1240 . -245) 169421) ((-1012 . -408) NIL) ((-676 . -645) 169369) ((-320 . -38) 169279) ((-317 . -38) 169208) ((-69 . -619) 169190) ((-323 . -499) 169156) ((-48 . -652) 169106) ((-1199 . -292) 169085) ((-1235 . -856) T) ((-1122 . -1121) 168995) ((-83 . -1227) T) ((-61 . -619) 168977) ((-485 . -292) 168956) ((-1292 . -1047) 168933) ((-1174 . -1109) T) ((-1122 . -23) 168803) ((-822 . -907) 168739) ((-1250 . -732) T) ((-1111 . -1227) T) ((-480 . -622) 168565) ((-1096 . -294) 168496) ((-973 . -1109) T) ((-900 . -102) T) ((-788 . -294) 168407) ((-331 . -19) 168391) ((-59 . -292) 168368) ((-786 . -294) 168299) ((-861 . -732) T) ((-118 . -854) NIL) ((-522 . -292) 168276) ((-331 . -610) 168253) ((-502 . -292) 168230) ((-460 . -294) 168161) ((-1044 . -313) 168012) ((-882 . -496) 167993) ((-882 . -619) 167959) ((-687 . -496) 167940) ((-577 . -732) T) ((-682 . -496) 167921) ((-687 . -619) 167871) ((-682 . -619) 167837) ((-668 . -619) 167819) ((-484 . -496) 167800) ((-484 . -619) 167766) ((-247 . -620) 167727) ((-247 . -496) 167704) ((-139 . -496) 167685) ((-138 . -496) 167666) ((-134 . -496) 167647) ((-247 . -619) 167539) ((-215 . -102) T) ((-139 . -619) 167505) ((-138 . -619) 167471) ((-134 . -619) 167437) ((-1156 . -34) T) ((-950 . -1227) T) ((-348 . -723) 167382) ((-676 . -25) T) ((-676 . -21) T) ((-1186 . -622) 167363) ((-480 . -1058) T) ((-641 . -423) 167328) ((-613 . -423) 167293) ((-1129 . -1161) T) ((-718 . -1060) 167116) ((-587 . -294) T) ((-524 . -294) T) ((-1262 . -311) 167095) ((-480 . -235) 167047) ((-480 . -245) 167026) ((-1241 . -311) 167005) ((-718 . -646) 166834) ((-1241 . -1031) NIL) ((-1089 . -132) T) ((-878 . -801) 166813) ((-145 . -102) T) ((-40 . -1109) T) ((-878 . -798) 166792) ((-650 . -1019) 166776) ((-586 . -1067) T) ((-570 . -1067) T) ((-501 . -1067) T) ((-413 . -458) T) ((-364 . -132) T) ((-320 . -406) 166760) ((-317 . -406) 166721) ((-358 . -132) T) ((-350 . -132) T) ((-1191 . -1109) T) ((-1129 . -38) 166708) ((-1103 . -619) 166675) ((-108 . -132) T) ((-961 . -1109) T) ((-928 . -1109) T) ((-777 . -1109) T) ((-678 . -1109) T) ((-707 . -148) T) ((-117 . -148) T) ((-1299 . -21) T) ((-1299 . -25) T) ((-1297 . -21) T) ((-1297 . -25) T) ((-670 . -1065) 166659) ((-537 . -856) T) ((-506 . -856) T) ((-360 . -1065) 166611) ((-357 . -1065) 166563) ((-349 . -1065) 166515) ((-254 . -1227) T) ((-253 . -1227) T) ((-267 . -1065) 166358) ((-249 . -1065) 166201) ((-670 . -111) 166180) ((-553 . -850) T) ((-360 . -111) 166118) ((-357 . -111) 166056) ((-349 . -111) 165994) ((-267 . -111) 165823) ((-249 . -111) 165652) ((-823 . -1231) 165631) ((-629 . -417) 165615) ((-44 . -21) T) ((-44 . -25) T) ((-821 . -645) 165521) ((-823 . -562) 165500) ((-254 . -1047) 165327) ((-253 . -1047) 165154) ((-127 . -120) 165138) ((-917 . -1065) 165103) ((-718 . -102) T) ((-705 . -1067) T) ((-603 . -622) 165084) ((-591 . -622) 165065) ((-542 . -624) 164968) ((-348 . -174) T) ((-88 . -619) 164950) ((-153 . -21) T) ((-153 . -25) T) ((-917 . -111) 164906) ((-40 . -723) 164851) ((-876 . -1109) T) ((-670 . -622) 164828) ((-651 . -622) 164809) ((-360 . -622) 164746) ((-357 . -622) 164683) ((-553 . -1109) T) ((-349 . -622) 164620) ((-331 . -620) 164581) ((-331 . -619) 164493) ((-267 . -622) 164246) ((-249 . -622) 164031) ((-1240 . -798) 163984) ((-1240 . -801) 163937) ((-254 . -382) 163906) ((-253 . -382) 163875) ((-660 . -38) 163845) ((-614 . -34) T) ((-488 . -1121) 163755) ((-481 . -34) T) ((-1122 . -132) 163625) ((-971 . -25) 163436) ((-917 . -622) 163386) ((-880 . -619) 163368) ((-971 . -21) 163323) ((-821 . -21) 163233) ((-821 . -25) 163084) ((-1233 . -373) T) ((-629 . -1067) T) ((-1188 . -562) 163063) ((-1182 . -47) 163040) ((-360 . -1058) T) ((-357 . -1058) T) ((-488 . -23) 162910) ((-349 . -1058) T) ((-267 . -1058) T) ((-249 . -1058) T) ((-1134 . -47) 162882) ((-118 . -1067) T) ((-1043 . -654) 162856) ((-965 . -34) T) ((-360 . -235) 162835) ((-360 . -245) T) ((-357 . -235) 162814) ((-357 . -245) T) ((-349 . -235) 162793) ((-349 . -245) T) ((-267 . -330) 162765) ((-249 . -330) 162722) ((-267 . -235) 162701) ((-1166 . -152) 162685) ((-254 . -907) 162617) ((-253 . -907) 162549) ((-1091 . -856) T) ((-420 . -1121) T) ((-1063 . -23) T) ((-917 . -1058) T) ((-326 . -654) 162531) ((-1033 . -854) T) ((-1221 . -1011) 162497) ((-1183 . -927) 162476) ((-1177 . -927) 162455) ((-1177 . -826) NIL) ((-1008 . -1060) 162351) ((-974 . -1227) T) ((-917 . -245) T) ((-823 . -368) 162330) ((-390 . -23) T) ((-128 . -1109) 162308) ((-122 . -1109) 162286) ((-917 . -235) T) ((-129 . -34) T) ((-384 . -654) 162251) ((-1008 . -646) 162199) ((-876 . -723) 162186) ((-1306 . -652) 162158) ((-1055 . -152) 162123) ((-1002 . -1227) T) ((-40 . -174) T) ((-700 . -417) 162105) ((-718 . -313) 162092) ((-842 . -654) 162052) ((-833 . -654) 162026) ((-323 . -25) T) ((-323 . -21) T) ((-664 . -290) 162005) ((-586 . -1109) T) ((-570 . -1109) T) ((-501 . -1109) T) ((-247 . -292) 161982) ((-1182 . -1227) T) ((-317 . -233) 161943) ((-1182 . -893) NIL) ((-55 . -1109) T) ((-1134 . -893) 161802) ((-130 . -856) T) ((-1182 . -1047) 161682) ((-1134 . -1047) 161565) ((-185 . -619) 161547) ((-860 . -1047) 161443) ((-788 . -290) 161370) ((-823 . -1121) T) ((-1043 . -732) T) ((-608 . -657) 161354) ((-1055 . -985) 161283) ((-1008 . -102) T) ((-823 . -23) T) ((-718 . -1161) 161261) ((-700 . -1067) T) ((-608 . -378) 161245) ((-356 . -458) T) ((-348 . -294) T) ((-1278 . -1109) T) ((-250 . -1109) T) ((-405 . -102) T) ((-293 . -21) T) ((-293 . -25) T) ((-366 . -732) T) ((-716 . -1109) T) ((-705 . -1109) T) ((-366 . -479) T) ((-1221 . -619) 161227) ((-1182 . -382) 161211) ((-1134 . -382) 161195) ((-1033 . -417) 161157) ((-142 . -231) 161139) ((-384 . -800) T) ((-384 . -797) T) ((-876 . -174) T) ((-384 . -732) T) ((-717 . -619) 161121) ((-718 . -38) 160950) ((-1277 . -1275) 160934) ((-356 . -408) T) ((-1277 . -1109) 160884) ((-1200 . -1109) T) ((-586 . -723) 160871) ((-570 . -723) 160858) ((-501 . -723) 160823) ((-1263 . -652) 160713) ((-320 . -635) 160692) ((-842 . -732) T) ((-833 . -732) T) ((-650 . -1227) T) ((-1089 . -645) 160640) ((-1182 . -907) 160583) ((-1134 . -907) 160567) ((-668 . -1065) 160551) ((-108 . -645) 160533) ((-488 . -132) 160403) ((-1188 . -1121) T) ((-959 . -47) 160372) ((-629 . -1109) T) ((-668 . -111) 160351) ((-497 . -619) 160317) ((-331 . -292) 160294) ((-487 . -47) 160251) ((-1188 . -23) T) ((-118 . -1109) T) ((-103 . -102) 160229) ((-1289 . -1121) T) ((-554 . -856) T) ((-1063 . -132) T) ((-1033 . -1067) T) ((-825 . -1047) 160213) ((-1012 . -730) 160185) ((-1289 . -23) T) ((-705 . -723) 160150) ((-592 . -619) 160132) ((-392 . -1047) 160116) ((-359 . -1067) T) ((-390 . -132) T) ((-328 . -1047) 160100) ((-1207 . -619) 160082) ((-1129 . -834) T) ((-1114 . -1109) T) ((-227 . -893) 160064) ((-1013 . -927) T) ((-91 . -34) T) ((-1013 . -826) T) ((-921 . -927) T) ((-1089 . -21) T) ((-1089 . -25) T) ((-493 . -1231) T) ((-1008 . -313) 160029) ((-882 . -622) 160010) ((-720 . -654) 159970) ((-219 . -1231) T) ((-687 . -622) 159951) ((-227 . -1047) 159911) ((-40 . -294) T) ((-682 . -622) 159892) ((-493 . -562) T) ((-484 . -622) 159873) ((-320 . -652) 159557) ((-317 . -652) 159471) ((-364 . -25) T) ((-364 . -21) T) ((-358 . -25) T) ((-219 . -562) T) ((-358 . -21) T) ((-350 . -25) T) ((-350 . -21) T) ((-247 . -622) 159448) ((-139 . -622) 159429) ((-138 . -622) 159410) ((-134 . -622) 159391) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1067) T) ((-586 . -174) T) ((-570 . -174) T) ((-501 . -174) T) ((-664 . -619) 159373) ((-743 . -742) 159357) ((-341 . -619) 159339) ((-68 . -388) T) ((-68 . -401) T) ((-1111 . -107) 159323) ((-1071 . -893) 159305) ((-959 . -893) 159230) ((-659 . -1121) T) ((-629 . -723) 159217) ((-487 . -893) NIL) ((-1155 . -102) T) ((-1103 . -624) 159201) ((-1071 . -1047) 159183) ((-97 . -619) 159165) ((-483 . -148) T) ((-959 . -1047) 159045) ((-118 . -723) 158990) ((-659 . -23) T) ((-487 . -1047) 158866) ((-1096 . -620) NIL) ((-1096 . -619) 158848) ((-788 . -620) NIL) ((-788 . -619) 158809) ((-786 . -620) 158443) ((-786 . -619) 158357) ((-1122 . -645) 158263) ((-467 . -619) 158245) ((-460 . -619) 158227) ((-460 . -620) 158088) ((-1044 . -231) 158034) ((-878 . -916) 158013) ((-127 . -34) T) ((-823 . -132) T) ((-655 . -619) 157995) ((-584 . -102) T) ((-360 . -1296) 157979) ((-357 . -1296) 157963) ((-349 . -1296) 157947) ((-128 . -520) 157880) ((-122 . -520) 157813) ((-517 . -798) T) ((-517 . -801) T) ((-516 . -800) T) ((-103 . -313) 157751) ((-224 . -102) 157729) ((-705 . -174) T) ((-700 . -1109) T) ((-878 . -654) 157681) ((-65 . -389) T) ((-278 . -619) 157663) ((-65 . -401) T) ((-959 . -382) 157647) ((-876 . -294) T) ((-50 . -619) 157629) ((-1008 . -38) 157577) ((-1129 . -652) 157549) ((-587 . -619) 157531) ((-487 . -382) 157515) ((-587 . -620) 157497) ((-524 . -619) 157479) ((-917 . -1296) 157466) ((-877 . -1227) T) ((-707 . -458) T) ((-501 . -520) 157432) ((-493 . -368) T) ((-360 . -373) 157411) ((-357 . -373) 157390) ((-349 . -373) 157369) ((-720 . -732) T) ((-219 . -368) T) ((-117 . -458) T) ((-1300 . -1291) 157353) ((-877 . -891) 157330) ((-877 . -893) NIL) ((-971 . -856) 157229) ((-821 . -856) 157180) ((-1234 . -102) T) ((-660 . -662) 157164) ((-1213 . -34) T) ((-173 . -619) 157146) ((-1122 . -21) 157056) ((-1122 . -25) 156907) ((-877 . -1047) 156884) ((-959 . -907) 156865) ((-1250 . -47) 156842) ((-917 . -373) T) ((-59 . -657) 156826) ((-522 . -657) 156810) ((-487 . -907) 156787) ((-71 . -447) T) ((-71 . -401) T) ((-502 . -657) 156771) ((-59 . -378) 156755) ((-629 . -174) T) ((-522 . -378) 156739) ((-502 . -378) 156723) ((-833 . -714) 156707) ((-1182 . -311) 156686) ((-1188 . -132) T) ((-1151 . -1060) 156670) ((-118 . -174) T) ((-1151 . -646) 156602) ((-1155 . -313) 156540) ((-171 . -1227) T) ((-1289 . -132) T) ((-872 . -1060) 156510) ((-641 . -750) 156494) ((-613 . -750) 156478) ((-1262 . -927) 156457) ((-1241 . -927) 156436) ((-1241 . -826) NIL) ((-872 . -646) 156406) ((-700 . -723) 156356) ((-1240 . -916) 156309) ((-1033 . -1109) T) ((-877 . -382) 156286) ((-877 . -343) 156263) ((-912 . -1121) T) ((-171 . -891) 156247) ((-171 . -893) 156172) ((-493 . -1121) T) ((-359 . -1109) T) ((-219 . -1121) T) ((-76 . -447) T) ((-76 . -401) T) ((-171 . -1047) 156068) ((-323 . -856) T) ((-1277 . -520) 156001) ((-1261 . -654) 155898) ((-1240 . -654) 155768) ((-878 . -800) 155747) ((-878 . -797) 155726) ((-878 . -732) T) ((-493 . -23) T) ((-225 . -619) 155708) ((-176 . -458) T) ((-224 . -313) 155646) ((-86 . -447) T) ((-86 . -401) T) ((-219 . -23) T) ((-1301 . -1294) 155625) ((-683 . -1047) 155609) ((-586 . -294) T) ((-570 . -294) T) ((-501 . -294) T) ((-137 . -476) 155564) ((-1250 . -1227) T) ((-660 . -652) 155523) ((-48 . -1109) T) ((-718 . -233) 155507) ((-877 . -907) NIL) ((-1250 . -893) NIL) ((-896 . -102) T) ((-892 . -102) T) ((-394 . -1109) T) ((-171 . -382) 155491) ((-171 . -343) 155475) ((-1250 . -1047) 155355) ((-861 . -1047) 155251) ((-1151 . -102) T) ((-668 . -798) 155230) ((-659 . -132) T) ((-668 . -801) 155209) ((-118 . -520) 155117) ((-577 . -1047) 155099) ((-298 . -1284) 155069) ((-872 . -102) T) ((-970 . -562) 155048) ((-1221 . -1065) 154931) ((-1012 . -1060) 154876) ((-488 . -645) 154782) ((-911 . -1109) T) ((-1033 . -723) 154719) ((-717 . -1065) 154684) ((-1012 . -646) 154629) ((-623 . -102) T) ((-608 . -34) T) ((-1156 . -1227) T) ((-1221 . -111) 154498) ((-480 . -654) 154395) ((-359 . -723) 154340) ((-171 . -907) 154299) ((-705 . -294) T) ((-700 . -174) T) ((-717 . -111) 154255) ((-1306 . -1067) T) ((-1250 . -382) 154239) ((-424 . -1231) 154217) ((-1127 . -619) 154199) ((-317 . -854) NIL) ((-424 . -562) T) ((-227 . -311) T) ((-1240 . -797) 154152) ((-1240 . -800) 154105) ((-1261 . -732) T) ((-1240 . -732) T) ((-48 . -723) 154070) ((-227 . -1031) T) ((-356 . -1284) 154047) ((-1263 . -417) 154013) ((-724 . -732) T) ((-337 . -619) 153995) ((-1250 . -907) 153938) ((-1221 . -622) 153820) ((-112 . -619) 153802) ((-112 . -620) 153784) ((-724 . -479) T) ((-717 . -622) 153734) ((-1300 . -1060) 153718) ((-488 . -21) 153628) ((-128 . -495) 153612) ((-122 . -495) 153596) ((-488 . -25) 153447) ((-1300 . -646) 153417) ((-629 . -294) T) ((-592 . -1065) 153392) ((-443 . -1109) T) ((-1071 . -311) T) ((-118 . -294) T) ((-1113 . -102) T) ((-1012 . -102) T) ((-592 . -111) 153360) ((-1151 . -313) 153298) ((-1221 . -1058) T) ((-1071 . -1031) T) ((-66 . -1227) T) ((-1063 . -25) T) ((-1063 . -21) T) ((-717 . -1058) T) ((-390 . -21) T) ((-390 . -25) T) ((-700 . -520) NIL) ((-1033 . -174) T) ((-717 . -245) T) ((-1071 . -551) T) ((-718 . -652) 153208) ((-512 . -102) T) ((-508 . -102) T) ((-359 . -174) T) ((-348 . -619) 153190) ((-413 . -1060) 153142) ((-400 . -619) 153124) ((-1129 . -854) T) ((-480 . -732) T) ((-899 . -1047) 153092) ((-413 . -646) 153044) ((-108 . -856) T) ((-664 . -1065) 153028) ((-493 . -132) T) ((-1263 . -1067) T) ((-219 . -132) T) ((-1166 . -102) 153006) ((-99 . -1109) T) ((-247 . -672) 152990) ((-247 . -657) 152974) ((-664 . -111) 152953) ((-592 . -622) 152937) ((-320 . -417) 152921) ((-247 . -378) 152905) ((-1169 . -237) 152852) ((-1008 . -233) 152836) ((-74 . -1227) T) ((-48 . -174) T) ((-707 . -393) T) ((-707 . -144) T) ((-1300 . -102) T) ((-1207 . -622) 152818) ((-1096 . -1065) 152661) ((-1085 . -1227) T) ((-267 . -916) 152640) ((-249 . -916) 152619) ((-788 . -1065) 152442) ((-786 . -1065) 152285) ((-614 . -1227) T) ((-1174 . -619) 152267) ((-1096 . -111) 152096) ((-1055 . -102) T) ((-481 . -1227) T) ((-467 . -1065) 152067) ((-460 . -1065) 151910) ((-670 . -654) 151894) ((-877 . -311) T) ((-788 . -111) 151703) ((-786 . -111) 151532) ((-360 . -654) 151484) ((-357 . -654) 151436) ((-349 . -654) 151388) ((-267 . -654) 151313) ((-249 . -654) 151238) ((-1168 . -856) T) ((-1097 . -1047) 151222) ((-467 . -111) 151183) ((-460 . -111) 151012) ((-1085 . -1047) 150989) ((-1009 . -34) T) ((-973 . -619) 150971) ((-965 . -1227) T) ((-127 . -1019) 150955) ((-970 . -1121) T) ((-877 . -1031) NIL) ((-741 . -1121) T) ((-721 . -1121) T) ((-664 . -622) 150873) ((-1277 . -495) 150857) ((-1151 . -38) 150817) ((-970 . -23) T) ((-917 . -654) 150782) ((-871 . -1109) T) ((-849 . -102) T) ((-823 . -21) T) ((-641 . -1060) 150766) ((-613 . -1060) 150750) ((-823 . -25) T) ((-741 . -23) T) ((-721 . -23) T) ((-641 . -646) 150734) ((-110 . -667) T) ((-613 . -646) 150718) ((-587 . -1065) 150683) ((-524 . -1065) 150628) ((-229 . -57) 150586) ((-459 . -23) T) ((-413 . -102) T) ((-266 . -102) T) ((-110 . -113) T) ((-700 . -294) T) ((-872 . -38) 150556) ((-587 . -111) 150512) ((-524 . -111) 150441) ((-1096 . -622) 150177) ((-424 . -1121) T) ((-320 . -1067) 150067) ((-317 . -1067) T) ((-129 . -1227) T) ((-788 . -622) 149815) ((-786 . -622) 149581) ((-664 . -1058) T) ((-1306 . -1109) T) ((-460 . -622) 149366) ((-171 . -311) 149297) ((-424 . -23) T) ((-40 . -619) 149279) ((-40 . -620) 149263) ((-108 . -1001) 149245) ((-117 . -875) 149229) ((-655 . -622) 149213) ((-48 . -520) 149179) ((-1213 . -1019) 149163) ((-1191 . -619) 149130) ((-1199 . -34) T) ((-961 . -619) 149096) ((-928 . -619) 149078) ((-1122 . -856) 149029) ((-777 . -619) 149011) ((-678 . -619) 148993) ((-1166 . -313) 148931) ((-485 . -34) T) ((-1101 . -1227) T) ((-483 . -458) T) ((-1150 . -34) T) ((-1096 . -1058) T) ((-50 . -622) 148900) ((-788 . -1058) T) ((-786 . -1058) T) ((-653 . -237) 148884) ((-638 . -237) 148830) ((-587 . -622) 148780) ((-524 . -622) 148710) ((-1250 . -311) 148689) ((-1096 . -330) 148650) ((-460 . -1058) T) ((-1188 . -21) T) ((-1096 . -235) 148629) ((-788 . -330) 148606) ((-788 . -235) T) ((-786 . -330) 148578) ((-737 . -1231) 148557) ((-331 . -657) 148541) ((-1188 . -25) T) ((-59 . -34) T) ((-525 . -34) T) ((-522 . -34) T) ((-460 . -330) 148520) ((-331 . -378) 148504) ((-503 . -34) T) ((-502 . -34) T) ((-1012 . -1161) NIL) ((-737 . -562) 148435) ((-641 . -102) T) ((-613 . -102) T) ((-360 . -732) T) ((-357 . -732) T) ((-349 . -732) T) ((-267 . -732) T) ((-249 . -732) T) ((-1055 . -313) 148343) ((-908 . -1109) 148321) ((-50 . -1058) T) ((-1289 . -21) T) ((-1289 . -25) T) ((-1184 . -562) 148300) ((-1183 . -1231) 148279) ((-1183 . -562) 148230) ((-1177 . -1231) 148209) ((-587 . -1058) T) ((-524 . -1058) T) ((-1177 . -562) 148160) ((-366 . -1047) 148144) ((-326 . -1047) 148128) ((-1033 . -294) T) ((-384 . -893) 148110) ((-1012 . -38) 148055) ((-1008 . -652) 147978) ((-842 . -1227) T) ((-805 . -1121) T) ((-917 . -732) T) ((-587 . -245) T) ((-587 . -235) T) ((-524 . -235) T) ((-524 . -245) T) ((-1135 . -562) 147957) ((-359 . -294) T) ((-653 . -701) 147941) ((-384 . -1047) 147901) ((-298 . -1060) 147822) ((-1129 . -1067) T) ((-103 . -126) 147806) ((-298 . -646) 147748) ((-805 . -23) T) ((-1299 . -1294) 147724) ((-1277 . -290) 147676) ((-413 . -313) 147641) ((-1297 . -1294) 147620) ((-1263 . -1109) T) ((-876 . -619) 147602) ((-842 . -1047) 147571) ((-205 . -793) T) ((-204 . -793) T) ((-203 . -793) T) ((-202 . -793) T) ((-201 . -793) T) ((-200 . -793) T) ((-199 . -793) T) ((-198 . -793) T) ((-197 . -793) T) ((-196 . -793) T) ((-553 . -619) 147553) ((-501 . -1011) T) ((-277 . -845) T) ((-276 . -845) T) ((-275 . -845) T) ((-274 . -845) T) ((-48 . -294) T) ((-273 . -845) T) ((-272 . -845) T) ((-271 . -845) T) ((-195 . -793) T) ((-618 . -856) T) ((-660 . -417) 147537) ((-225 . -622) 147499) ((-110 . -856) T) ((-659 . -21) T) ((-659 . -25) T) ((-1300 . -38) 147469) ((-118 . -290) 147420) ((-1277 . -19) 147404) ((-1277 . -610) 147381) ((-1290 . -1109) T) ((-356 . -1060) 147326) ((-1086 . -1109) T) ((-996 . -1109) T) ((-970 . -132) T) ((-743 . -1109) T) ((-356 . -646) 147271) ((-741 . -132) T) ((-721 . -132) T) ((-517 . -799) T) ((-517 . -800) T) ((-459 . -132) T) ((-413 . -1161) 147249) ((-225 . -1058) T) ((-298 . -102) 147031) ((-142 . -1109) T) ((-705 . -1011) T) ((-1114 . -290) 146987) ((-91 . -1227) T) ((-128 . -619) 146919) ((-122 . -619) 146851) ((-1306 . -174) T) ((-1183 . -368) 146830) ((-1177 . -368) 146809) ((-320 . -1109) T) ((-424 . -132) T) ((-317 . -1109) T) ((-413 . -38) 146761) ((-1142 . -102) T) ((-1263 . -723) 146653) ((-660 . -1067) T) ((-1144 . -1272) T) ((-323 . -146) 146632) ((-323 . -148) 146611) ((-137 . -1109) T) ((-140 . -1109) T) ((-115 . -1109) T) ((-864 . -102) T) ((-586 . -619) 146593) ((-570 . -620) 146492) ((-570 . -619) 146474) ((-501 . -619) 146456) ((-501 . -620) 146401) ((-491 . -23) T) ((-488 . -856) 146352) ((-493 . -645) 146334) ((-972 . -619) 146316) ((-219 . -645) 146298) ((-227 . -410) T) ((-668 . -654) 146282) ((-55 . -619) 146264) ((-1182 . -927) 146243) ((-737 . -1121) T) ((-356 . -102) T) ((-1226 . -1092) T) ((-1129 . -850) T) ((-824 . -856) T) ((-737 . -23) T) ((-348 . -1065) 146188) ((-1168 . -1167) T) ((-1156 . -107) 146172) ((-1184 . -1121) T) ((-1183 . -1121) T) ((-521 . -1047) 146156) ((-1177 . -1121) T) ((-1135 . -1121) T) ((-348 . -111) 146085) ((-1013 . -1231) T) ((-127 . -1227) T) ((-921 . -1231) T) ((-700 . -290) NIL) ((-720 . -1227) T) ((-1278 . -619) 146067) ((-1184 . -23) T) ((-1183 . -23) T) ((-1177 . -23) T) ((-1013 . -562) T) ((-1151 . -233) 146051) ((-921 . -562) T) ((-1135 . -23) T) ((-250 . -619) 146033) ((-1084 . -1109) T) ((-805 . -132) T) ((-716 . -619) 146015) ((-320 . -723) 145925) ((-317 . -723) 145854) ((-705 . -619) 145836) ((-705 . -620) 145781) ((-413 . -406) 145765) ((-444 . -1109) T) ((-493 . -25) T) ((-493 . -21) T) ((-1129 . -1109) T) ((-219 . -25) T) ((-219 . -21) T) ((-718 . -417) 145749) ((-720 . -1047) 145718) ((-1277 . -619) 145630) ((-1277 . -620) 145591) ((-1263 . -174) T) ((-1200 . -619) 145573) ((-247 . -34) T) ((-348 . -622) 145503) ((-400 . -622) 145485) ((-933 . -983) T) ((-1213 . -1227) T) ((-668 . -797) 145464) ((-668 . -800) 145443) ((-404 . -401) T) ((-529 . -102) 145421) ((-1044 . -1109) T) ((-224 . -1004) 145405) ((-510 . -102) T) ((-629 . -619) 145387) ((-45 . -856) NIL) ((-629 . -620) 145364) ((-1044 . -616) 145339) ((-908 . -520) 145272) ((-348 . -1058) T) ((-118 . -620) NIL) ((-118 . -619) 145254) ((-878 . -1227) T) ((-676 . -423) 145238) ((-676 . -1132) 145183) ((-506 . -152) 145165) ((-348 . -235) T) ((-348 . -245) T) ((-40 . -1065) 145110) ((-878 . -891) 145094) ((-878 . -893) 145019) ((-718 . -1067) T) ((-700 . -1011) NIL) ((-1261 . -47) 144989) ((-1240 . -47) 144966) ((-1150 . -1019) 144937) ((-3 . |UnionCategory|) T) ((-1129 . -723) 144924) ((-1114 . -619) 144906) ((-1089 . -148) 144885) ((-1089 . -146) 144836) ((-973 . -622) 144820) ((-227 . -927) T) ((-40 . -111) 144749) ((-878 . -1047) 144613) ((-1013 . -368) T) ((-1012 . -233) 144590) ((-707 . -1060) 144577) ((-921 . -368) T) ((-707 . -646) 144564) ((-323 . -1215) 144530) ((-384 . -311) T) ((-323 . -1212) 144496) ((-320 . -174) 144475) ((-317 . -174) T) ((-587 . -1296) 144462) ((-524 . -1296) 144439) ((-364 . -148) 144418) ((-117 . -1060) 144405) ((-364 . -146) 144356) ((-358 . -148) 144335) ((-358 . -146) 144286) ((-350 . -148) 144265) ((-614 . -1203) 144241) ((-117 . -646) 144228) ((-350 . -146) 144179) ((-323 . -35) 144145) ((-481 . -1203) 144124) ((0 . |EnumerationCategory|) T) ((-323 . -95) 144090) ((-384 . -1031) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -237) 144040) ((-660 . -1109) T) ((-614 . -107) 143987) ((-491 . -132) T) ((-481 . -107) 143937) ((-242 . -1121) 143847) ((-878 . -382) 143831) ((-878 . -343) 143815) ((-242 . -23) 143685) ((-40 . -622) 143615) ((-1071 . -927) T) ((-1071 . -826) T) ((-587 . -373) T) ((-524 . -373) T) ((-1290 . -520) 143548) ((-1269 . -562) 143527) ((-1262 . -1231) 143506) ((-356 . -1161) T) ((-331 . -34) T) ((-44 . -423) 143490) ((-1191 . -622) 143426) ((-879 . -1227) T) ((-396 . -750) 143410) ((-1262 . -562) 143361) ((-1261 . -1227) T) ((-1151 . -652) 143320) ((-737 . -132) T) ((-678 . -622) 143304) ((-1241 . -1231) 143283) ((-1241 . -562) 143234) ((-1240 . -1227) T) ((-1240 . -893) 143107) ((-1240 . -891) 143077) ((-1184 . -132) T) ((-315 . -1092) T) ((-1183 . -132) T) ((-743 . -520) 143010) ((-1177 . -132) T) ((-1135 . -132) T) ((-900 . -1109) T) ((-145 . -850) T) ((-1033 . -1011) T) ((-697 . -619) 142992) ((-1013 . -23) T) ((-529 . -313) 142930) ((-1013 . -1121) T) ((-142 . -520) NIL) ((-872 . -652) 142875) ((-1012 . -354) NIL) ((-980 . -23) T) ((-921 . -1121) T) ((-356 . -38) 142840) ((-921 . -23) T) ((-878 . -907) 142799) ((-82 . -619) 142781) ((-40 . -1058) T) ((-876 . -1065) 142768) ((-876 . -111) 142753) ((-707 . -102) T) ((-700 . -619) 142735) ((-608 . -1227) T) ((-602 . -562) 142714) ((-433 . -1121) T) ((-344 . -1060) 142698) ((-215 . -1109) T) ((-176 . -1060) 142630) ((-480 . -47) 142600) ((-135 . -102) T) ((-40 . -235) 142572) ((-40 . -245) T) ((-117 . -102) T) ((-601 . -562) 142551) ((-344 . -646) 142535) ((-700 . -620) 142443) ((-320 . -520) 142409) ((-176 . -646) 142341) ((-317 . -520) 142233) ((-1261 . -1047) 142217) ((-1240 . -1047) 142003) ((-1008 . -417) 141987) ((-433 . -23) T) ((-1129 . -174) T) ((-1263 . -294) T) ((-660 . -723) 141957) ((-145 . -1109) T) ((-48 . -1011) T) ((-413 . -233) 141941) ((-299 . -237) 141891) ((-877 . -927) T) ((-877 . -826) NIL) ((-876 . -622) 141863) ((-870 . -856) T) ((-1240 . -343) 141833) ((-1240 . -382) 141803) ((-224 . -1130) 141787) ((-1277 . -292) 141764) ((-480 . -1227) T) ((-1221 . -654) 141689) ((-1012 . -652) 141619) ((-970 . -21) T) ((-970 . -25) T) ((-741 . -21) T) ((-741 . -25) T) ((-721 . -21) T) ((-721 . -25) T) ((-717 . -654) 141584) ((-459 . -21) T) ((-459 . -25) T) ((-344 . -102) T) ((-176 . -102) T) ((-1008 . -1067) T) ((-876 . -1058) T) ((-780 . -102) T) ((-1262 . -368) 141563) ((-1261 . -907) 141469) ((-1241 . -368) 141448) ((-1240 . -907) 141299) ((-1033 . -619) 141281) ((-413 . -834) 141234) ((-1184 . -499) 141200) ((-171 . -927) 141131) ((-1183 . -499) 141097) ((-1177 . -499) 141063) ((-718 . -1109) T) ((-1135 . -499) 141029) ((-586 . -1065) 141016) ((-570 . -1065) 141003) ((-501 . -1065) 140968) ((-320 . -294) 140947) ((-317 . -294) T) ((-359 . -619) 140929) ((-424 . -25) T) ((-424 . -21) T) ((-99 . -290) 140908) ((-586 . -111) 140893) ((-570 . -111) 140878) ((-501 . -111) 140834) ((-1186 . -893) 140801) ((-908 . -495) 140785) ((-48 . -619) 140767) ((-48 . -620) 140712) ((-242 . -132) 140582) ((-1300 . -652) 140541) ((-1250 . -927) 140520) ((-822 . -1231) 140499) ((-394 . -496) 140480) ((-1044 . -520) 140324) ((-394 . -619) 140290) ((-822 . -562) 140221) ((-592 . -654) 140196) ((-267 . -47) 140168) ((-249 . -47) 140125) ((-537 . -515) 140102) ((-586 . -622) 140074) ((-570 . -622) 140046) ((-501 . -622) 139979) ((-1083 . -1227) T) ((-1009 . -1227) T) ((-1269 . -23) T) ((-1269 . -1121) T) ((-705 . -1065) 139944) ((-1262 . -1121) T) ((-1262 . -23) T) ((-1241 . -1121) T) ((-1241 . -23) T) ((-1221 . -732) T) ((-1012 . -375) 139916) ((-112 . -373) T) ((-480 . -907) 139822) ((-1129 . -294) T) ((-911 . -619) 139804) ((-55 . -622) 139786) ((-91 . -107) 139770) ((-1013 . -132) T) ((-912 . -856) 139721) ((-707 . -1161) T) ((-705 . -111) 139677) ((-849 . -652) 139594) ((-602 . -1121) T) ((-601 . -1121) T) ((-718 . -723) 139423) ((-717 . -732) T) ((-980 . -132) T) ((-921 . -132) T) ((-493 . -856) T) ((-805 . -25) T) ((-805 . -21) T) ((-586 . -1058) T) ((-219 . -856) T) ((-413 . -652) 139360) ((-570 . -1058) T) ((-542 . -1227) T) ((-501 . -1058) T) ((-602 . -23) T) ((-348 . -1296) 139337) ((-323 . -458) 139316) ((-344 . -313) 139303) ((-601 . -23) T) ((-433 . -132) T) ((-664 . -654) 139277) ((-247 . -1019) 139261) ((-878 . -311) T) ((-1301 . -1291) 139245) ((-777 . -798) T) ((-777 . -801) T) ((-707 . -38) 139232) ((-570 . -235) T) ((-501 . -245) T) ((-501 . -235) T) ((-1159 . -237) 139182) ((-1096 . -916) 139161) ((-117 . -38) 139148) ((-211 . -806) T) ((-210 . -806) T) ((-209 . -806) T) ((-208 . -806) T) ((-878 . -1031) 139126) ((-1290 . -495) 139110) ((-788 . -916) 139089) ((-786 . -916) 139068) ((-1199 . -1227) T) ((-460 . -916) 139047) ((-743 . -495) 139031) ((-1096 . -654) 138956) ((-705 . -622) 138891) ((-788 . -654) 138816) ((-629 . -1065) 138803) ((-485 . -1227) T) ((-348 . -373) T) ((-142 . -495) 138785) ((-786 . -654) 138710) ((-1150 . -1227) T) ((-555 . -856) T) ((-467 . -654) 138681) ((-267 . -893) 138540) ((-249 . -893) NIL) ((-118 . -1065) 138485) ((-460 . -654) 138410) ((-670 . -1047) 138387) ((-629 . -111) 138372) ((-396 . -1060) 138356) ((-360 . -1047) 138340) ((-357 . -1047) 138324) ((-349 . -1047) 138308) ((-267 . -1047) 138152) ((-249 . -1047) 138028) ((-118 . -111) 137957) ((-59 . -1227) T) ((-396 . -646) 137941) ((-627 . -1060) 137925) ((-525 . -1227) T) ((-522 . -1227) T) ((-503 . -1227) T) ((-502 . -1227) T) ((-443 . -619) 137907) ((-440 . -619) 137889) ((-627 . -646) 137873) ((-3 . -102) T) ((-1036 . -1220) 137842) ((-839 . -102) T) ((-695 . -57) 137800) ((-705 . -1058) T) ((-641 . -652) 137769) ((-613 . -652) 137738) ((-50 . -654) 137712) ((-293 . -458) T) ((-482 . -1220) 137681) ((0 . -102) T) ((-587 . -654) 137646) ((-524 . -654) 137591) ((-49 . -102) T) ((-917 . -1047) 137578) ((-705 . -245) T) ((-1089 . -415) 137557) ((-737 . -645) 137505) ((-1008 . -1109) T) ((-718 . -174) 137396) ((-629 . -622) 137291) ((-493 . -1001) 137273) ((-267 . -382) 137257) ((-249 . -382) 137241) ((-405 . -1109) T) ((-1035 . -102) 137219) ((-344 . -38) 137203) ((-219 . -1001) 137185) ((-118 . -622) 137115) ((-176 . -38) 137047) ((-1261 . -311) 137026) ((-1240 . -311) 137005) ((-664 . -732) T) ((-99 . -619) 136987) ((-483 . -1060) 136952) ((-1177 . -645) 136904) ((-483 . -646) 136869) ((-491 . -25) T) ((-491 . -21) T) ((-1240 . -1031) 136821) ((-1066 . -1227) T) ((-629 . -1058) T) ((-384 . -410) T) ((-396 . -102) T) ((-1114 . -624) 136736) ((-267 . -907) 136682) ((-249 . -907) 136659) ((-118 . -1058) T) ((-822 . -1121) T) ((-1096 . -732) T) ((-629 . -235) 136638) ((-627 . -102) T) ((-788 . -732) T) ((-786 . -732) T) ((-419 . -1121) T) ((-118 . -245) T) ((-40 . -373) NIL) ((-118 . -235) NIL) ((-1232 . -856) T) ((-460 . -732) T) ((-822 . -23) T) ((-737 . -25) T) ((-737 . -21) T) ((-1086 . -290) 136617) ((-78 . -402) T) ((-78 . -401) T) ((-539 . -773) 136599) ((-700 . -1065) 136549) ((-1269 . -132) T) ((-1262 . -132) T) ((-1241 . -132) T) ((-1184 . -25) T) ((-1151 . -417) 136533) ((-641 . -372) 136465) ((-613 . -372) 136397) ((-1166 . -1158) 136381) ((-103 . -1109) 136359) ((-1184 . -21) T) ((-1183 . -21) T) ((-871 . -619) 136341) ((-1008 . -723) 136289) ((-225 . -654) 136256) ((-700 . -111) 136190) ((-50 . -732) T) ((-1183 . -25) T) ((-356 . -354) T) ((-1177 . -21) T) ((-1089 . -458) 136141) ((-1177 . -25) T) ((-718 . -520) 136088) ((-587 . -732) T) ((-524 . -732) T) ((-1135 . -21) T) ((-1135 . -25) T) ((-1302 . -102) T) ((-602 . -132) T) ((-298 . -652) 135823) ((-601 . -132) T) ((-364 . -458) T) ((-358 . -458) T) ((-350 . -458) T) ((-480 . -311) 135802) ((-1235 . -102) T) ((-317 . -290) 135737) ((-108 . -458) T) ((-79 . -447) T) ((-79 . -401) T) ((-483 . -102) T) ((-697 . -622) 135721) ((-1306 . -619) 135703) ((-1306 . -620) 135685) ((-1089 . -408) 135664) ((-1044 . -495) 135595) ((-137 . -290) 135572) ((-570 . -801) T) ((-570 . -798) T) ((-1072 . -237) 135518) ((-364 . -408) 135469) ((-358 . -408) 135420) ((-350 . -408) 135371) ((-1292 . -1121) T) ((-1301 . -1060) 135355) ((-386 . -1060) 135339) ((-1301 . -646) 135309) ((-386 . -646) 135279) ((-700 . -622) 135214) ((-1292 . -23) T) ((-1279 . -102) T) ((-177 . -619) 135196) ((-1151 . -1067) T) ((-553 . -373) T) ((-676 . -750) 135180) ((-1188 . -146) 135159) ((-1188 . -148) 135138) ((-1155 . -1109) T) ((-1155 . -1080) 135107) ((-69 . -1227) T) ((-1033 . -1065) 135044) ((-356 . -652) 134974) ((-872 . -1067) T) ((-242 . -645) 134880) ((-700 . -1058) T) ((-359 . -1065) 134825) ((-61 . -1227) T) ((-1033 . -111) 134741) ((-908 . -619) 134652) ((-700 . -245) T) ((-700 . -235) NIL) ((-849 . -854) 134631) ((-705 . -801) T) ((-705 . -798) T) ((-1012 . -417) 134608) ((-359 . -111) 134537) ((-384 . -927) T) ((-413 . -854) 134516) ((-718 . -294) 134427) ((-225 . -732) T) ((-1269 . -499) 134393) ((-1262 . -499) 134359) ((-1241 . -499) 134325) ((-584 . -1109) T) ((-320 . -1011) 134304) ((-224 . -1109) 134282) ((-1234 . -850) T) ((-323 . -982) 134244) ((-105 . -102) T) ((-48 . -1065) 134209) ((-1301 . -102) T) ((-386 . -102) T) ((-48 . -111) 134165) ((-1013 . -645) 134147) ((-1263 . -619) 134129) ((-537 . -102) T) ((-506 . -102) T) ((-1142 . -1143) 134113) ((-153 . -1284) 134097) ((-247 . -1227) T) ((-1226 . -102) T) ((-1033 . -622) 134034) ((-1182 . -1231) 134013) ((-359 . -622) 133943) ((-1134 . -1231) 133922) ((-242 . -21) 133832) ((-242 . -25) 133683) ((-128 . -120) 133667) ((-122 . -120) 133651) ((-44 . -750) 133635) ((-1182 . -562) 133546) ((-1134 . -562) 133477) ((-1234 . -1109) T) ((-1044 . -290) 133452) ((-1176 . -1092) T) ((-1003 . -1092) T) ((-822 . -132) T) ((-118 . -801) NIL) ((-118 . -798) NIL) ((-360 . -311) T) ((-357 . -311) T) ((-349 . -311) T) ((-254 . -1121) 133362) ((-253 . -1121) 133272) ((-1033 . -1058) T) ((-1012 . -1067) T) ((-48 . -622) 133205) ((-348 . -654) 133150) ((-627 . -38) 133134) ((-1290 . -619) 133096) ((-1290 . -620) 133057) ((-1086 . -619) 133039) ((-1033 . -245) T) ((-359 . -1058) T) ((-821 . -1284) 133009) ((-254 . -23) T) ((-253 . -23) T) ((-996 . -619) 132991) ((-743 . -620) 132952) ((-743 . -619) 132934) ((-805 . -856) 132913) ((-1169 . -152) 132860) ((-1008 . -520) 132772) ((-359 . -235) T) ((-359 . -245) T) ((-394 . -622) 132753) ((-1013 . -25) T) ((-142 . -619) 132735) ((-142 . -620) 132694) ((-917 . -311) T) ((-1013 . -21) T) ((-980 . -25) T) ((-921 . -21) T) ((-921 . -25) T) ((-433 . -21) T) ((-433 . -25) T) ((-849 . -417) 132678) ((-48 . -1058) T) ((-1299 . -1291) 132662) ((-1297 . -1291) 132646) ((-1044 . -610) 132621) ((-320 . -620) 132482) ((-320 . -619) 132464) ((-317 . -620) NIL) ((-317 . -619) 132446) ((-48 . -245) T) ((-48 . -235) T) ((-660 . -290) 132407) ((-556 . -237) 132357) ((-140 . -619) 132324) ((-137 . -619) 132306) ((-115 . -619) 132288) ((-483 . -38) 132253) ((-1301 . -1298) 132232) ((-1292 . -132) T) ((-1300 . -1067) T) ((-1091 . -102) T) ((-88 . -1227) T) ((-506 . -313) NIL) ((-1009 . -107) 132216) ((-896 . -1109) T) ((-892 . -1109) T) ((-1277 . -657) 132200) ((-1277 . -378) 132184) ((-331 . -1227) T) ((-599 . -856) T) ((-1151 . -1109) T) ((-1151 . -1062) 132124) ((-103 . -520) 132057) ((-934 . -619) 132039) ((-348 . -732) T) ((-30 . -619) 132021) ((-872 . -1109) T) ((-849 . -1067) 132000) ((-40 . -654) 131945) ((-227 . -1231) T) ((-413 . -1067) T) ((-1168 . -152) 131927) ((-1008 . -294) 131878) ((-623 . -1109) T) ((-227 . -562) T) ((-323 . -1258) 131862) ((-323 . -1255) 131832) ((-707 . -652) 131804) ((-1199 . -1203) 131783) ((-1084 . -619) 131765) ((-1199 . -107) 131715) ((-653 . -152) 131699) ((-638 . -152) 131645) ((-117 . -652) 131617) ((-485 . -1203) 131596) ((-493 . -148) T) ((-493 . -146) NIL) ((-1129 . -620) 131511) ((-444 . -619) 131493) ((-219 . -148) T) ((-219 . -146) NIL) ((-1129 . -619) 131475) ((-130 . -102) T) ((-52 . -102) T) ((-1241 . -645) 131427) ((-485 . -107) 131377) ((-1002 . -23) T) ((-1301 . -38) 131347) ((-1182 . -1121) T) ((-1134 . -1121) T) ((-1071 . -1231) T) ((-315 . -102) T) ((-860 . -1121) T) ((-959 . -1231) 131326) ((-487 . -1231) 131305) ((-1071 . -562) T) ((-959 . -562) 131236) ((-1182 . -23) T) ((-1160 . -1092) T) ((-1134 . -23) T) ((-860 . -23) T) ((-487 . -562) 131167) ((-1151 . -723) 131099) ((-676 . -1060) 131083) ((-1155 . -520) 131016) ((-676 . -646) 131000) ((-1044 . -620) NIL) ((-1044 . -619) 130982) ((-96 . -1092) T) ((-872 . -723) 130952) ((-1221 . -47) 130921) ((-254 . -132) T) ((-253 . -132) T) ((-1113 . -1109) T) ((-1012 . -1109) T) ((-62 . -619) 130903) ((-1177 . -856) NIL) ((-1033 . -798) T) ((-1033 . -801) T) ((-1306 . -1065) 130890) ((-1306 . -111) 130875) ((-1269 . -25) T) ((-1269 . -21) T) ((-876 . -654) 130862) ((-1262 . -21) T) ((-1262 . -25) T) ((-1241 . -21) T) ((-1241 . -25) T) ((-1036 . -152) 130846) ((-878 . -826) 130825) ((-878 . -927) T) ((-718 . -290) 130752) ((-602 . -21) T) ((-344 . -652) 130711) ((-602 . -25) T) ((-601 . -21) T) ((-176 . -652) 130628) ((-40 . -732) T) ((-224 . -520) 130561) ((-601 . -25) T) ((-482 . -152) 130545) ((-469 . -152) 130529) ((-928 . -800) T) ((-928 . -732) T) ((-777 . -799) T) ((-777 . -800) T) ((-512 . -1109) T) ((-508 . -1109) T) ((-777 . -732) T) ((-227 . -368) T) ((-1299 . -1060) 130513) ((-1297 . -1060) 130497) ((-1299 . -646) 130467) ((-1166 . -1109) 130445) ((-877 . -1231) T) ((-1297 . -646) 130415) ((-660 . -619) 130397) ((-877 . -562) T) ((-700 . -373) NIL) ((-44 . -1060) 130381) ((-1306 . -622) 130363) ((-1300 . -1109) T) ((-676 . -102) T) ((-364 . -1284) 130347) ((-358 . -1284) 130331) ((-44 . -646) 130315) ((-350 . -1284) 130299) ((-554 . -102) T) ((-526 . -856) 130278) ((-1055 . -1109) T) ((-823 . -458) 130257) ((-153 . -1060) 130241) ((-1055 . -1080) 130170) ((-1036 . -985) 130139) ((-825 . -1121) T) ((-1012 . -723) 130084) ((-153 . -646) 130068) ((-392 . -1121) T) ((-482 . -985) 130037) ((-469 . -985) 130006) ((-110 . -152) 129988) ((-73 . -619) 129970) ((-900 . -619) 129952) ((-1089 . -730) 129931) ((-1306 . -1058) T) ((-822 . -645) 129879) ((-298 . -1067) 129821) ((-171 . -1231) 129726) ((-227 . -1121) T) ((-328 . -23) T) ((-1177 . -1001) 129678) ((-849 . -1109) T) ((-1263 . -1065) 129583) ((-1135 . -746) 129562) ((-1261 . -927) 129541) ((-1240 . -927) 129520) ((-876 . -732) T) ((-171 . -562) 129431) ((-586 . -654) 129418) ((-570 . -654) 129405) ((-413 . -1109) T) ((-266 . -1109) T) ((-215 . -619) 129387) ((-501 . -654) 129352) ((-227 . -23) T) ((-1240 . -826) 129305) ((-1299 . -102) T) ((-359 . -1296) 129282) ((-1297 . -102) T) ((-1263 . -111) 129174) ((-821 . -1060) 129071) ((-821 . -646) 129013) ((-145 . -619) 128995) ((-1002 . -132) T) ((-44 . -102) T) ((-242 . -856) 128946) ((-1250 . -1231) 128925) ((-103 . -495) 128909) ((-1300 . -723) 128879) ((-1096 . -47) 128840) ((-1071 . -1121) T) ((-959 . -1121) T) ((-128 . -34) T) ((-122 . -34) T) ((-788 . -47) 128817) ((-786 . -47) 128789) ((-1250 . -562) 128700) ((-359 . -373) T) ((-487 . -1121) T) ((-1182 . -132) T) ((-1134 . -132) T) ((-460 . -47) 128679) ((-877 . -368) T) ((-860 . -132) T) ((-153 . -102) T) ((-1071 . -23) T) ((-959 . -23) T) ((-577 . -562) T) ((-822 . -25) T) ((-822 . -21) T) ((-1151 . -520) 128612) ((-598 . -1092) T) ((-592 . -1047) 128596) ((-1263 . -622) 128470) ((-487 . -23) T) ((-356 . -1067) T) ((-1221 . -907) 128451) ((-676 . -313) 128389) ((-1122 . -1284) 128359) ((-705 . -654) 128324) ((-1013 . -856) T) ((-1012 . -174) T) ((-970 . -146) 128303) ((-641 . -1109) T) ((-613 . -1109) T) ((-970 . -148) 128282) ((-741 . -148) 128261) ((-741 . -146) 128240) ((-664 . -1227) T) ((-980 . -856) T) ((-839 . -652) 128157) ((-480 . -927) 128136) ((-323 . -1060) 127971) ((-320 . -1065) 127881) ((-317 . -1065) 127810) ((-1008 . -290) 127768) ((-413 . -723) 127720) ((-323 . -646) 127561) ((-707 . -854) T) ((-1263 . -1058) T) ((-320 . -111) 127457) ((-317 . -111) 127370) ((-971 . -102) T) ((-821 . -102) 127160) ((-718 . -620) NIL) ((-718 . -619) 127142) ((-664 . -1047) 127038) ((-1263 . -330) 126982) ((-1044 . -292) 126957) ((-586 . -732) T) ((-570 . -800) T) ((-171 . -368) 126908) ((-570 . -797) T) ((-570 . -732) T) ((-501 . -732) T) ((-788 . -1227) T) ((-1155 . -495) 126892) ((-1096 . -893) NIL) ((-877 . -1121) T) ((-118 . -916) NIL) ((-1299 . -1298) 126868) ((-1297 . -1298) 126847) ((-788 . -893) NIL) ((-786 . -893) 126706) ((-1292 . -25) T) ((-1292 . -21) T) ((-1224 . -102) 126684) ((-1115 . -401) T) ((-629 . -654) 126671) ((-460 . -893) NIL) ((-681 . -102) 126649) ((-1096 . -1047) 126476) ((-877 . -23) T) ((-788 . -1047) 126335) ((-786 . -1047) 126192) ((-118 . -654) 126137) ((-460 . -1047) 126013) ((-320 . -622) 125577) ((-317 . -622) 125460) ((-396 . -652) 125429) ((-655 . -1047) 125413) ((-633 . -102) T) ((-224 . -495) 125397) ((-1277 . -34) T) ((-627 . -652) 125356) ((-293 . -1060) 125343) ((-137 . -622) 125327) ((-293 . -646) 125314) ((-641 . -723) 125298) ((-613 . -723) 125282) ((-676 . -38) 125242) ((-323 . -102) T) ((-85 . -619) 125224) ((-50 . -1047) 125208) ((-1129 . -1065) 125195) ((-1096 . -382) 125179) ((-788 . -382) 125163) ((-705 . -732) T) ((-705 . -800) T) ((-705 . -797) T) ((-587 . -1047) 125150) ((-524 . -1047) 125127) ((-60 . -57) 125089) ((-328 . -132) T) ((-320 . -1058) 124979) ((-317 . -1058) T) ((-171 . -1121) T) ((-786 . -382) 124963) ((-45 . -152) 124913) ((-1013 . -1001) 124895) ((-460 . -382) 124879) ((-413 . -174) T) ((-320 . -245) 124858) ((-317 . -245) T) ((-317 . -235) NIL) ((-298 . -1109) 124640) ((-227 . -132) T) ((-1129 . -111) 124625) ((-171 . -23) T) ((-805 . -148) 124604) ((-805 . -146) 124583) ((-254 . -645) 124489) ((-253 . -645) 124395) ((-323 . -288) 124361) ((-1166 . -520) 124294) ((-483 . -652) 124244) ((-1142 . -1109) T) ((-227 . -1069) T) ((-821 . -313) 124182) ((-1096 . -907) 124117) ((-788 . -907) 124060) ((-786 . -907) 124044) ((-1299 . -38) 124014) ((-1297 . -38) 123984) ((-1250 . -1121) T) ((-861 . -1121) T) ((-460 . -907) 123961) ((-864 . -1109) T) ((-1250 . -23) T) ((-1129 . -622) 123933) ((-577 . -1121) T) ((-861 . -23) T) ((-629 . -732) T) ((-360 . -927) T) ((-357 . -927) T) ((-293 . -102) T) ((-349 . -927) T) ((-1071 . -132) T) ((-979 . -1092) T) ((-959 . -132) T) ((-118 . -800) NIL) ((-118 . -797) NIL) ((-118 . -732) T) ((-700 . -916) NIL) ((-1055 . -520) 123834) ((-487 . -132) T) ((-577 . -23) T) ((-681 . -313) 123772) ((-641 . -767) T) ((-613 . -767) T) ((-1241 . -856) NIL) ((-1089 . -1060) 123682) ((-1012 . -294) T) ((-700 . -654) 123632) ((-254 . -21) T) ((-356 . -1109) T) ((-254 . -25) T) ((-253 . -21) T) ((-253 . -25) T) ((-153 . -38) 123616) ((-2 . -102) T) ((-917 . -927) T) ((-1089 . -646) 123484) ((-488 . -1284) 123454) ((-1129 . -1058) T) ((-717 . -311) T) ((-364 . -1060) 123406) ((-358 . -1060) 123358) ((-350 . -1060) 123310) ((-364 . -646) 123262) ((-225 . -1047) 123239) ((-358 . -646) 123191) ((-108 . -1060) 123141) ((-350 . -646) 123093) ((-298 . -723) 123035) ((-707 . -1067) T) ((-493 . -458) T) ((-413 . -520) 122947) ((-108 . -646) 122897) ((-219 . -458) T) ((-1129 . -235) T) ((-299 . -152) 122847) ((-1008 . -620) 122808) ((-1008 . -619) 122790) ((-998 . -619) 122772) ((-117 . -1067) T) ((-660 . -1065) 122756) ((-227 . -499) T) ((-405 . -619) 122738) ((-405 . -620) 122715) ((-1063 . -1284) 122685) ((-660 . -111) 122664) ((-1151 . -495) 122648) ((-1301 . -652) 122607) ((-386 . -652) 122576) ((-821 . -38) 122546) ((-63 . -447) T) ((-63 . -401) T) ((-1169 . -102) T) ((-877 . -132) T) ((-490 . -102) 122524) ((-1306 . -373) T) ((-1089 . -102) T) ((-1070 . -102) T) ((-356 . -723) 122469) ((-737 . -148) 122448) ((-737 . -146) 122427) ((-660 . -622) 122345) ((-1033 . -654) 122282) ((-529 . -1109) 122260) ((-364 . -102) T) ((-358 . -102) T) ((-350 . -102) T) ((-108 . -102) T) ((-510 . -1109) T) ((-359 . -654) 122205) ((-1182 . -645) 122153) ((-1134 . -645) 122101) ((-390 . -515) 122080) ((-839 . -854) 122059) ((-384 . -1231) T) ((-700 . -732) T) ((-1241 . -1001) 122011) ((-344 . -1067) T) ((-112 . -1227) T) ((-176 . -1067) T) ((-103 . -619) 121943) ((-1184 . -146) 121922) ((-1184 . -148) 121901) ((-384 . -562) T) ((-1183 . -148) 121880) ((-1183 . -146) 121859) ((-1177 . -146) 121766) ((-413 . -294) T) ((-1177 . -148) 121673) ((-1135 . -148) 121652) ((-1135 . -146) 121631) ((-323 . -38) 121472) ((-171 . -132) T) ((-317 . -801) NIL) ((-317 . -798) NIL) ((-660 . -1058) T) ((-48 . -654) 121437) ((-1122 . -1060) 121334) ((-900 . -622) 121311) ((-1122 . -646) 121253) ((-1176 . -102) T) ((-1003 . -102) T) ((-1002 . -21) T) ((-128 . -1019) 121237) ((-122 . -1019) 121221) ((-1002 . -25) T) ((-908 . -120) 121205) ((-1168 . -102) T) ((-1250 . -132) T) ((-1182 . -25) T) ((-1182 . -21) T) ((-861 . -132) T) ((-1134 . -25) T) ((-1134 . -21) T) ((-860 . -25) T) ((-860 . -21) T) ((-788 . -311) 121184) ((-653 . -102) 121162) ((-638 . -102) T) ((-1169 . -313) 120957) ((-577 . -132) T) ((-627 . -854) 120936) ((-1166 . -495) 120920) ((-1159 . -152) 120870) ((-1155 . -619) 120832) ((-1155 . -620) 120793) ((-1033 . -797) T) ((-1033 . -800) T) ((-1033 . -732) T) ((-718 . -1065) 120616) ((-490 . -313) 120554) ((-459 . -423) 120524) ((-356 . -174) T) ((-293 . -38) 120511) ((-277 . -102) T) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-348 . -1047) 120488) ((-271 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-359 . -732) T) ((-718 . -111) 120297) ((-676 . -233) 120281) ((-587 . -311) T) ((-524 . -311) T) ((-298 . -520) 120230) ((-108 . -313) NIL) ((-72 . -401) T) ((-1122 . -102) 120020) ((-839 . -417) 120004) ((-1129 . -801) T) ((-1129 . -798) T) ((-707 . -1109) T) ((-584 . -619) 119986) ((-384 . -368) T) ((-171 . -499) 119964) ((-224 . -619) 119896) ((-135 . -1109) T) ((-117 . -1109) T) ((-973 . -1227) T) ((-48 . -732) T) ((-1055 . -495) 119861) ((-142 . -431) 119843) ((-142 . -373) T) ((-1036 . -102) T) ((-518 . -515) 119822) ((-718 . -622) 119578) ((-482 . -102) T) ((-469 . -102) T) ((-1043 . -1121) T) ((-1234 . -619) 119560) ((-1191 . -1047) 119496) ((-1184 . -35) 119462) ((-1184 . -95) 119428) ((-1184 . -1215) 119394) ((-1184 . -1212) 119360) ((-1183 . -1212) 119326) ((-1168 . -313) NIL) ((-89 . -402) T) ((-89 . -401) T) ((-1089 . -1161) 119305) ((-1183 . -1215) 119271) ((-1183 . -95) 119237) ((-1043 . -23) T) ((-1183 . -35) 119203) ((-577 . -499) T) ((-1177 . -1212) 119169) ((-1177 . -1215) 119135) ((-1177 . -95) 119101) ((-1177 . -35) 119067) ((-366 . -1121) T) ((-364 . -1161) 119046) ((-358 . -1161) 119025) ((-350 . -1161) 119004) ((-1113 . -290) 118960) ((-1135 . -35) 118926) ((-1135 . -95) 118892) ((-108 . -1161) T) ((-1135 . -1215) 118858) ((-839 . -1067) 118837) ((-653 . -313) 118775) ((-638 . -313) 118626) ((-1135 . -1212) 118592) ((-718 . -1058) T) ((-1071 . -645) 118574) ((-1089 . -38) 118442) ((-959 . -645) 118390) ((-1013 . -148) T) ((-1013 . -146) NIL) ((-384 . -1121) T) ((-328 . -25) T) ((-326 . -23) T) ((-950 . -856) 118369) ((-718 . -330) 118346) ((-487 . -645) 118294) ((-40 . -1047) 118182) ((-718 . -235) T) ((-707 . -723) 118169) ((-344 . -1109) T) ((-176 . -1109) T) ((-335 . -856) T) ((-424 . -458) 118119) ((-384 . -23) T) ((-364 . -38) 118084) ((-358 . -38) 118049) ((-350 . -38) 118014) ((-80 . -447) T) ((-80 . -401) T) ((-227 . -25) T) ((-227 . -21) T) ((-842 . -1121) T) ((-108 . -38) 117964) ((-833 . -1121) T) ((-780 . -1109) T) ((-117 . -723) 117951) ((-678 . -1047) 117935) ((-618 . -102) T) ((-842 . -23) T) ((-833 . -23) T) ((-1166 . -290) 117887) ((-1122 . -313) 117825) ((-488 . -1060) 117722) ((-1111 . -237) 117706) ((-64 . -402) T) ((-64 . -401) T) ((-1160 . -102) T) ((-110 . -102) T) ((-488 . -646) 117648) ((-40 . -382) 117625) ((-96 . -102) T) ((-659 . -858) 117609) ((-1144 . -1092) T) ((-1071 . -21) T) ((-1071 . -25) T) ((-1063 . -1060) 117593) ((-821 . -233) 117562) ((-959 . -25) T) ((-959 . -21) T) ((-1063 . -646) 117504) ((-627 . -1067) T) ((-1129 . -373) T) ((-1036 . -313) 117442) ((-676 . -652) 117401) ((-487 . -25) T) ((-487 . -21) T) ((-390 . -1060) 117385) ((-896 . -619) 117367) ((-892 . -619) 117349) ((-529 . -520) 117282) ((-254 . -856) 117233) ((-253 . -856) 117184) ((-390 . -646) 117154) ((-877 . -645) 117131) ((-482 . -313) 117069) ((-469 . -313) 117007) ((-356 . -294) T) ((-1166 . -1265) 116991) ((-1151 . -619) 116953) ((-1151 . -620) 116914) ((-1149 . -102) T) ((-1008 . -1065) 116810) ((-40 . -907) 116762) ((-1166 . -610) 116739) ((-1306 . -654) 116726) ((-872 . -496) 116703) ((-1072 . -152) 116649) ((-878 . -1231) T) ((-1008 . -111) 116531) ((-344 . -723) 116515) ((-872 . -619) 116477) ((-176 . -723) 116409) ((-413 . -290) 116367) ((-878 . -562) T) ((-108 . -406) 116349) ((-84 . -389) T) ((-84 . -401) T) ((-707 . -174) T) ((-623 . -619) 116331) ((-99 . -732) T) ((-488 . -102) 116121) ((-99 . -479) T) ((-117 . -174) T) ((-1299 . -652) 116080) ((-1297 . -652) 116039) ((-1122 . -38) 116009) ((-171 . -645) 115957) ((-1063 . -102) T) ((-1008 . -622) 115847) ((-877 . -25) T) ((-821 . -240) 115826) ((-877 . -21) T) ((-824 . -102) T) ((-44 . -652) 115769) ((-420 . -102) T) ((-390 . -102) T) ((-110 . -313) NIL) ((-229 . -102) 115747) ((-128 . -1227) T) ((-122 . -1227) T) ((-823 . -1060) 115698) ((-823 . -646) 115640) ((-1043 . -132) T) ((-676 . -372) 115624) ((-153 . -652) 115583) ((-641 . -290) 115541) ((-613 . -290) 115499) ((-1008 . -1058) T) ((-1250 . -645) 115447) ((-1113 . -619) 115429) ((-1012 . -619) 115411) ((-521 . -23) T) ((-516 . -23) T) ((-348 . -311) T) ((-514 . -23) T) ((-326 . -132) T) ((-3 . -1109) T) ((-1012 . -620) 115395) ((-1008 . -245) 115374) ((-1008 . -235) 115353) ((-1306 . -732) T) ((-1269 . -146) 115332) ((-839 . -1109) T) ((-1269 . -148) 115311) ((-1262 . -148) 115290) ((-1262 . -146) 115269) ((-1261 . -1231) 115248) ((-1241 . -146) 115155) ((-1241 . -148) 115062) ((-1240 . -1231) 115041) ((-384 . -132) T) ((-570 . -893) 115023) ((0 . -1109) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1109) T) ((-1263 . -654) 114928) ((-1261 . -562) 114879) ((-720 . -1121) T) ((-1240 . -562) 114830) ((-570 . -1047) 114812) ((-601 . -148) 114791) ((-601 . -146) 114770) ((-501 . -1047) 114713) ((-1144 . -1146) T) ((-87 . -389) T) ((-87 . -401) T) ((-878 . -368) T) ((-842 . -132) T) ((-833 . -132) T) ((-971 . -652) 114657) ((-720 . -23) T) ((-512 . -619) 114623) ((-508 . -619) 114605) ((-821 . -652) 114355) ((-1301 . -1067) T) ((-384 . -1069) T) ((-1035 . -1109) 114333) ((-55 . -1047) 114315) ((-908 . -34) T) ((-488 . -313) 114253) ((-598 . -102) T) ((-1166 . -620) 114214) ((-1166 . -619) 114146) ((-1188 . -1060) 114029) ((-45 . -102) T) ((-823 . -102) T) ((-1188 . -646) 113926) ((-1250 . -25) T) ((-1250 . -21) T) ((-861 . -25) T) ((-44 . -372) 113910) ((-861 . -21) T) ((-737 . -458) 113861) ((-1300 . -619) 113843) ((-1289 . -1060) 113813) ((-1063 . -313) 113751) ((-677 . -1092) T) ((-612 . -1092) T) ((-396 . -1109) T) ((-577 . -25) T) ((-577 . -21) T) ((-182 . -1092) T) ((-162 . -1092) T) ((-157 . -1092) T) ((-155 . -1092) T) ((-1289 . -646) 113721) ((-627 . -1109) T) ((-705 . -893) 113703) ((-1277 . -1227) T) ((-229 . -313) 113641) ((-145 . -373) T) ((-1055 . -620) 113583) ((-1055 . -619) 113526) ((-317 . -916) NIL) ((-1235 . -850) T) ((-705 . -1047) 113471) ((-717 . -927) T) ((-480 . -1231) 113450) ((-1183 . -458) 113429) ((-1177 . -458) 113408) ((-334 . -102) T) ((-878 . -1121) T) ((-323 . -652) 113290) ((-320 . -654) 113111) ((-317 . -654) 113040) ((-480 . -562) 112991) ((-344 . -520) 112957) ((-556 . -152) 112907) ((-40 . -311) T) ((-849 . -619) 112889) ((-707 . -294) T) ((-878 . -23) T) ((-384 . -499) T) ((-1089 . -233) 112859) ((-518 . -102) T) ((-413 . -620) 112666) ((-413 . -619) 112648) ((-266 . -619) 112630) ((-117 . -294) T) ((-1263 . -732) T) ((-1302 . -1109) T) ((-1261 . -368) 112609) ((-1240 . -368) 112588) ((-1290 . -34) T) ((-1235 . -1109) T) ((-118 . -1227) T) ((-108 . -233) 112570) ((-1188 . -102) T) ((-483 . -1109) T) ((-529 . -495) 112554) ((-743 . -34) T) ((-659 . -1060) 112538) ((-488 . -38) 112508) ((-659 . -646) 112478) ((-142 . -34) T) ((-118 . -891) 112455) ((-118 . -893) NIL) ((-629 . -1047) 112338) ((-650 . -856) 112317) ((-1289 . -102) T) ((-299 . -102) T) ((-718 . -373) 112296) ((-118 . -1047) 112273) ((-396 . -723) 112257) ((-627 . -723) 112241) ((-1114 . -1227) T) ((-45 . -313) 112045) ((-822 . -146) 112024) ((-822 . -148) 112003) ((-293 . -652) 111975) ((-1300 . -387) 111954) ((-825 . -856) T) ((-1279 . -1109) T) ((-1169 . -231) 111901) ((-392 . -856) 111880) ((-1269 . -1215) 111846) ((-1269 . -1212) 111812) ((-1262 . -1212) 111778) ((-521 . -132) T) ((-1262 . -1215) 111744) ((-1241 . -1212) 111710) ((-1241 . -1215) 111676) ((-1269 . -35) 111642) ((-1269 . -95) 111608) ((-641 . -619) 111577) ((-613 . -619) 111546) ((-227 . -856) T) ((-1262 . -95) 111512) ((-1262 . -35) 111478) ((-1261 . -1121) T) ((-1129 . -654) 111465) ((-1241 . -95) 111431) ((-1240 . -1121) T) ((-599 . -152) 111413) ((-1089 . -354) 111392) ((-176 . -294) T) ((-118 . -382) 111369) ((-118 . -343) 111346) ((-1241 . -35) 111312) ((-876 . -311) T) ((-317 . -800) NIL) ((-317 . -797) NIL) ((-320 . -732) 111161) ((-317 . -732) T) ((-480 . -368) 111140) ((-364 . -354) 111119) ((-358 . -354) 111098) ((-350 . -354) 111077) ((-320 . -479) 111056) ((-1261 . -23) T) ((-1240 . -23) T) ((-724 . -1121) T) ((-720 . -132) T) ((-659 . -102) T) ((-483 . -723) 111021) ((-45 . -286) 110971) ((-105 . -1109) T) ((-68 . -619) 110953) ((-979 . -102) T) ((-870 . -102) T) ((-629 . -907) 110912) ((-1301 . -1109) T) ((-386 . -1109) T) ((-82 . -1227) T) ((-1226 . -1109) T) ((-1071 . -856) T) ((-118 . -907) NIL) ((-788 . -927) 110891) ((-719 . -856) T) ((-537 . -1109) T) ((-506 . -1109) T) ((-360 . -1231) T) ((-357 . -1231) T) ((-349 . -1231) T) ((-267 . -1231) 110870) ((-249 . -1231) 110849) ((-539 . -866) T) ((-1122 . -233) 110818) ((-1168 . -834) T) ((-1151 . -1065) 110802) ((-396 . -767) T) ((-700 . -1227) T) ((-697 . -1047) 110786) ((-360 . -562) T) ((-357 . -562) T) ((-349 . -562) T) ((-267 . -562) 110717) ((-249 . -562) 110648) ((-531 . -1092) T) ((-1151 . -111) 110627) ((-459 . -750) 110597) ((-872 . -1065) 110567) ((-823 . -38) 110509) ((-700 . -891) 110491) ((-700 . -893) 110473) ((-299 . -313) 110277) ((-917 . -1231) T) ((-1166 . -292) 110254) ((-1089 . -652) 110149) ((-676 . -417) 110133) ((-872 . -111) 110098) ((-1013 . -458) T) ((-700 . -1047) 110043) ((-917 . -562) T) ((-539 . -619) 110025) ((-587 . -927) T) ((-493 . -1060) 109975) ((-480 . -1121) T) ((-524 . -927) T) ((-921 . -458) T) ((-65 . -619) 109957) ((-219 . -1060) 109907) ((-493 . -646) 109857) ((-364 . -652) 109794) ((-358 . -652) 109731) ((-350 . -652) 109668) ((-638 . -231) 109614) ((-219 . -646) 109564) ((-108 . -652) 109514) ((-480 . -23) T) ((-1129 . -800) T) ((-878 . -132) T) ((-1129 . -797) T) ((-1292 . -1294) 109493) ((-1129 . -732) T) ((-660 . -654) 109467) ((-298 . -619) 109208) ((-1151 . -622) 109126) ((-1044 . -34) T) ((-821 . -854) 109105) ((-586 . -311) T) ((-570 . -311) T) ((-501 . -311) T) ((-1301 . -723) 109075) ((-700 . -382) 109057) ((-700 . -343) 109039) ((-483 . -174) T) ((-386 . -723) 109009) ((-872 . -622) 108944) ((-877 . -856) NIL) ((-570 . -1031) T) ((-501 . -1031) T) ((-1142 . -619) 108926) ((-1122 . -240) 108905) ((-216 . -102) T) ((-1159 . -102) T) ((-71 . -619) 108887) ((-1151 . -1058) T) ((-1188 . -38) 108784) ((-864 . -619) 108766) ((-570 . -551) T) ((-676 . -1067) T) ((-737 . -956) 108719) ((-1151 . -235) 108698) ((-1091 . -1109) T) ((-1043 . -25) T) ((-1043 . -21) T) ((-1012 . -1065) 108643) ((-912 . -102) T) ((-872 . -1058) T) ((-700 . -907) NIL) ((-360 . -333) 108627) ((-360 . -368) T) ((-357 . -333) 108611) ((-357 . -368) T) ((-349 . -333) 108595) ((-349 . -368) T) ((-493 . -102) T) ((-1289 . -38) 108565) ((-552 . -856) T) ((-529 . -693) 108515) ((-219 . -102) T) ((-1033 . -1047) 108395) ((-1012 . -111) 108324) ((-1184 . -982) 108293) ((-526 . -152) 108277) ((-1089 . -375) 108256) ((-356 . -619) 108238) ((-326 . -21) T) ((-359 . -1047) 108215) ((-326 . -25) T) ((-1183 . -982) 108177) ((-1177 . -982) 108146) ((-76 . -619) 108128) ((-1135 . -982) 108095) ((-705 . -311) T) ((-130 . -850) T) ((-917 . -368) T) ((-384 . -25) T) ((-384 . -21) T) ((-917 . -333) 108082) ((-86 . -619) 108064) ((-705 . -1031) T) ((-683 . -856) T) ((-1261 . -132) T) ((-1240 . -132) T) ((-908 . -1019) 108048) ((-842 . -21) T) ((-48 . -1047) 107991) ((-842 . -25) T) ((-833 . -25) T) ((-833 . -21) T) ((-1122 . -652) 107741) ((-1299 . -1067) T) ((-555 . -102) T) ((-1297 . -1067) T) ((-660 . -732) T) ((-1113 . -624) 107644) ((-1012 . -622) 107574) ((-1300 . -1065) 107558) ((-821 . -417) 107527) ((-103 . -120) 107511) ((-130 . -1109) T) ((-52 . -1109) T) ((-933 . -619) 107493) ((-877 . -1001) 107470) ((-829 . -102) T) ((-1300 . -111) 107449) ((-659 . -38) 107419) ((-577 . -856) T) ((-360 . -1121) T) ((-357 . -1121) T) ((-349 . -1121) T) ((-267 . -1121) T) ((-249 . -1121) T) ((-629 . -311) 107398) ((-1159 . -313) 107202) ((-670 . -23) T) ((-530 . -1092) T) ((-315 . -1109) T) ((-488 . -233) 107171) ((-153 . -1067) T) ((-360 . -23) T) ((-357 . -23) T) ((-349 . -23) T) ((-118 . -311) T) ((-267 . -23) T) ((-249 . -23) T) ((-1012 . -1058) T) ((-718 . -916) 107150) ((-1166 . -622) 107127) ((-1012 . -235) 107099) ((-1012 . -245) T) ((-118 . -1031) NIL) ((-917 . -1121) T) ((-1262 . -458) 107078) ((-1241 . -458) 107057) ((-529 . -619) 106989) ((-718 . -654) 106914) ((-413 . -1065) 106866) ((-510 . -619) 106848) ((-917 . -23) T) ((-493 . -313) NIL) ((-1300 . -622) 106804) ((-480 . -132) T) ((-219 . -313) NIL) ((-413 . -111) 106742) ((-821 . -1067) 106672) ((-743 . -1107) 106656) ((-1261 . -499) 106622) ((-1240 . -499) 106588) ((-554 . -850) T) ((-142 . -1107) 106570) ((-483 . -294) T) ((-1300 . -1058) T) ((-1232 . -102) T) ((-1072 . -102) T) ((-849 . -622) 106438) ((-506 . -520) NIL) ((-488 . -240) 106417) ((-413 . -622) 106315) ((-970 . -1060) 106198) ((-741 . -1060) 106168) ((-970 . -646) 106065) ((-1182 . -146) 106044) ((-741 . -646) 106014) ((-459 . -1060) 105984) ((-1182 . -148) 105963) ((-1134 . -148) 105942) ((-1134 . -146) 105921) ((-641 . -1065) 105905) ((-613 . -1065) 105889) ((-459 . -646) 105859) ((-1184 . -1268) 105843) ((-1184 . -1255) 105820) ((-1183 . -1260) 105781) ((-676 . -1109) T) ((-676 . -1062) 105721) ((-1183 . -1255) 105691) ((-554 . -1109) T) ((-493 . -1161) T) ((-1183 . -1258) 105675) ((-1177 . -1239) 105636) ((-824 . -269) 105620) ((-219 . -1161) T) ((-348 . -927) T) ((-99 . -1227) T) ((-641 . -111) 105599) ((-613 . -111) 105578) ((-1177 . -1255) 105555) ((-849 . -1058) 105534) ((-1177 . -1237) 105518) ((-521 . -25) T) ((-501 . -306) T) ((-517 . -23) T) ((-516 . -25) T) ((-514 . -25) T) ((-513 . -23) T) ((-424 . -1060) 105492) ((-413 . -1058) T) ((-323 . -1067) T) ((-700 . -311) T) ((-424 . -646) 105466) ((-108 . -854) T) ((-718 . -732) T) ((-413 . -245) T) ((-413 . -235) 105445) ((-493 . -38) 105395) ((-219 . -38) 105345) ((-480 . -499) 105311) ((-1234 . -373) T) ((-1168 . -1153) T) ((-1110 . -102) T) ((-707 . -619) 105293) ((-707 . -620) 105208) ((-720 . -21) T) ((-720 . -25) T) ((-1144 . -102) T) ((-488 . -652) 104958) ((-135 . -619) 104940) ((-117 . -619) 104922) ((-158 . -25) T) ((-1299 . -1109) T) ((-878 . -645) 104870) ((-1297 . -1109) T) ((-970 . -102) T) ((-741 . -102) T) ((-721 . -102) T) ((-459 . -102) T) ((-822 . -458) 104821) ((-44 . -1109) T) ((-1097 . -856) T) ((-1072 . -313) 104672) ((-670 . -132) T) ((-1063 . -652) 104641) ((-676 . -723) 104625) ((-293 . -1067) T) ((-360 . -132) T) ((-357 . -132) T) ((-349 . -132) T) ((-267 . -132) T) ((-249 . -132) T) ((-390 . -652) 104594) ((-424 . -102) T) ((-153 . -1109) T) ((-45 . -231) 104544) ((-805 . -1060) 104528) ((-965 . -856) 104507) ((-1008 . -654) 104445) ((-805 . -646) 104429) ((-242 . -1284) 104399) ((-1033 . -311) T) ((-298 . -1065) 104320) ((-917 . -132) T) ((-40 . -927) T) ((-493 . -406) 104302) ((-359 . -311) T) ((-219 . -406) 104284) ((-1089 . -417) 104268) ((-298 . -111) 104184) ((-1193 . -856) T) ((-1192 . -856) T) ((-878 . -25) T) ((-878 . -21) T) ((-344 . -619) 104166) ((-1263 . -47) 104110) ((-227 . -148) T) ((-176 . -619) 104092) ((-1122 . -854) 104071) ((-780 . -619) 104053) ((-129 . -856) T) ((-614 . -237) 104000) ((-481 . -237) 103950) ((-1299 . -723) 103920) ((-48 . -311) T) ((-1297 . -723) 103890) ((-65 . -622) 103819) ((-971 . -1109) T) ((-821 . -1109) 103609) ((-316 . -102) T) ((-908 . -1227) T) ((-48 . -1031) T) ((-1240 . -645) 103517) ((-695 . -102) 103495) ((-44 . -723) 103479) ((-556 . -102) T) ((-298 . -622) 103410) ((-67 . -388) T) ((-67 . -401) T) ((-668 . -23) T) ((-823 . -652) 103346) ((-676 . -767) T) ((-1224 . -1109) 103324) ((-356 . -1065) 103269) ((-681 . -1109) 103247) ((-1071 . -148) T) ((-959 . -148) 103226) ((-959 . -146) 103205) ((-805 . -102) T) ((-153 . -723) 103189) ((-487 . -148) 103168) ((-487 . -146) 103147) ((-356 . -111) 103076) ((-1089 . -1067) T) ((-326 . -856) 103055) ((-1269 . -982) 103024) ((-633 . -1109) T) ((-1262 . -982) 102986) ((-517 . -132) T) ((-513 . -132) T) ((-299 . -231) 102936) ((-364 . -1067) T) ((-358 . -1067) T) ((-350 . -1067) T) ((-298 . -1058) 102878) ((-1241 . -982) 102847) ((-384 . -856) T) ((-108 . -1067) T) ((-1008 . -732) T) ((-876 . -927) T) ((-849 . -801) 102826) ((-849 . -798) 102805) ((-424 . -313) 102744) ((-474 . -102) T) ((-601 . -982) 102713) ((-323 . -1109) T) ((-413 . -801) 102692) ((-413 . -798) 102671) ((-506 . -495) 102653) ((-1263 . -1047) 102619) ((-1261 . -21) T) ((-1261 . -25) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-821 . -723) 102561) ((-356 . -622) 102491) ((-705 . -410) T) ((-1290 . -1227) T) ((-1122 . -417) 102460) ((-612 . -102) T) ((-1086 . -1227) T) ((-1012 . -373) NIL) ((-677 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1188 . -652) 102370) ((-743 . -1227) T) ((-737 . -1060) 102213) ((-44 . -767) T) ((-737 . -646) 102062) ((-599 . -102) T) ((-77 . -402) T) ((-77 . -401) T) ((-659 . -662) 102046) ((-142 . -1227) T) ((-877 . -148) T) ((-877 . -146) NIL) ((-1226 . -93) T) ((-356 . -1058) T) ((-70 . -388) T) ((-70 . -401) T) ((-1175 . -102) T) ((-676 . -520) 101979) ((-1289 . -652) 101924) ((-695 . -313) 101862) ((-970 . -38) 101759) ((-1190 . -619) 101741) ((-741 . -38) 101711) ((-556 . -313) 101515) ((-1184 . -1060) 101398) ((-320 . -1227) T) ((-356 . -235) T) ((-356 . -245) T) ((-317 . -1227) T) ((-293 . -1109) T) ((-1183 . -1060) 101233) ((-1177 . -1060) 101023) ((-1135 . -1060) 100906) ((-1184 . -646) 100803) ((-1183 . -646) 100644) ((-717 . -1231) T) ((-1177 . -646) 100440) ((-1166 . -657) 100424) ((-1135 . -646) 100321) ((-1221 . -562) 100300) ((-825 . -391) 100284) ((-717 . -562) T) ((-320 . -891) 100268) ((-320 . -893) 100193) ((-137 . -1227) T) ((-317 . -891) 100154) ((-317 . -893) NIL) ((-805 . -313) 100119) ((-323 . -723) 99960) ((-392 . -391) 99944) ((-328 . -327) 99921) ((-491 . -102) T) ((-480 . -25) T) ((-480 . -21) T) ((-424 . -38) 99895) ((-320 . -1047) 99558) ((-227 . -1212) T) ((-227 . -1215) T) ((-3 . -619) 99540) ((-317 . -1047) 99470) ((-2 . -1109) T) ((-2 . |RecordCategory|) T) ((-839 . -619) 99452) ((-1122 . -1067) 99382) ((-586 . -927) T) ((-570 . -826) T) ((-570 . -927) T) ((-501 . -927) T) ((-137 . -1047) 99366) ((-227 . -95) T) ((-171 . -148) 99345) ((-75 . -447) T) ((0 . -619) 99327) ((-75 . -401) T) ((-171 . -146) 99278) ((-227 . -35) T) ((-49 . -619) 99260) ((-483 . -1067) T) ((-493 . -233) 99242) ((-490 . -977) 99226) ((-488 . -854) 99205) ((-219 . -233) 99187) ((-81 . -447) T) ((-81 . -401) T) ((-1155 . -34) T) ((-821 . -174) 99166) ((-737 . -102) T) ((-659 . -652) 99125) ((-1035 . -619) 99092) ((-506 . -290) 99042) ((-320 . -382) 99011) ((-317 . -382) 98972) ((-317 . -343) 98933) ((-1094 . -619) 98915) ((-822 . -956) 98862) ((-668 . -132) T) ((-1250 . -146) 98841) ((-1250 . -148) 98820) ((-1184 . -102) T) ((-1183 . -102) T) ((-1177 . -102) T) ((-1169 . -1109) T) ((-1135 . -102) T) ((-224 . -34) T) ((-293 . -723) 98807) ((-1169 . -616) 98783) ((-599 . -313) NIL) ((-490 . -1109) 98761) ((-1159 . -231) 98711) ((-396 . -619) 98693) ((-516 . -856) T) ((-1129 . -1227) T) ((-1269 . -1268) 98677) ((-1269 . -1255) 98654) ((-1262 . -1260) 98615) ((-1262 . -1255) 98585) ((-1262 . -1258) 98569) ((-1241 . -1239) 98530) ((-1241 . -1255) 98507) ((-627 . -619) 98489) ((-1241 . -1237) 98473) ((-705 . -927) T) ((-1184 . -288) 98439) ((-1183 . -288) 98405) ((-1177 . -288) 98371) ((-1089 . -1109) T) ((-1070 . -1109) T) ((-48 . -306) T) ((-320 . -907) 98337) ((-317 . -907) NIL) ((-1070 . -1077) 98316) ((-1129 . -893) 98298) ((-805 . -38) 98282) ((-267 . -645) 98230) ((-249 . -645) 98178) ((-707 . -1065) 98165) ((-601 . -1255) 98142) ((-1135 . -288) 98108) ((-323 . -174) 98039) ((-364 . -1109) T) ((-358 . -1109) T) ((-350 . -1109) T) ((-506 . -19) 98021) ((-1129 . -1047) 98003) ((-1111 . -152) 97987) ((-108 . -1109) T) ((-117 . -1065) 97974) ((-717 . -368) T) ((-506 . -610) 97949) ((-707 . -111) 97934) ((-442 . -102) T) ((-882 . -1272) T) ((-252 . -102) T) ((-45 . -1158) 97884) ((-117 . -111) 97869) ((-1302 . -619) 97836) ((-641 . -726) T) ((-613 . -726) T) ((-1302 . -496) 97818) ((-1279 . -619) 97800) ((-1235 . -619) 97782) ((-1233 . -856) T) ((-1221 . -1121) T) ((-821 . -520) 97715) ((-1044 . -1227) T) ((-242 . -1060) 97612) ((-1221 . -23) T) ((-1182 . -458) 97543) ((-950 . -152) 97527) ((-1177 . -313) 97412) ((-1176 . -1109) T) ((-242 . -646) 97354) ((-1168 . -1109) T) ((-1151 . -654) 97328) ((-1135 . -313) 97315) ((-531 . -102) T) ((-526 . -102) 97265) ((-1134 . -458) 97216) ((-1096 . -562) 97147) ((-1096 . -1231) 97126) ((-788 . -1231) 97105) ((-786 . -1231) 97084) ((-62 . -1227) T) ((-483 . -619) 97036) ((-483 . -620) 96958) ((-1089 . -723) 96826) ((-1003 . -1109) T) ((-788 . -562) 96737) ((-786 . -562) 96668) ((-488 . -417) 96637) ((-629 . -927) 96616) ((-460 . -1231) 96595) ((-737 . -313) 96582) ((-707 . -622) 96554) ((-404 . -619) 96536) ((-681 . -520) 96469) ((-670 . -25) T) ((-670 . -21) T) ((-460 . -562) 96400) ((-360 . -25) T) ((-360 . -21) T) ((-118 . -927) T) ((-118 . -826) NIL) ((-357 . -25) T) ((-357 . -21) T) ((-349 . -25) T) ((-349 . -21) T) ((-267 . -25) T) ((-267 . -21) T) ((-249 . -25) T) ((-249 . -21) T) ((-83 . -389) T) ((-83 . -401) T) ((-135 . -622) 96382) ((-117 . -622) 96354) ((-1013 . -1060) 96304) ((-1013 . -646) 96254) ((-950 . -989) 96238) ((-921 . -646) 96190) ((-921 . -1060) 96142) ((-917 . -21) T) ((-917 . -25) T) ((-878 . -856) 96093) ((-872 . -654) 96053) ((-717 . -1121) T) ((-717 . -23) T) ((-707 . -1058) T) ((-293 . -174) T) ((-707 . -235) T) ((-315 . -93) T) ((-653 . -1109) 96031) ((-638 . -616) 96006) ((-638 . -1109) T) ((-587 . -1231) T) ((-587 . -562) T) ((-524 . -1231) T) ((-524 . -562) T) ((-493 . -652) 95956) ((-433 . -1060) 95940) ((-433 . -646) 95924) ((-364 . -723) 95876) ((-358 . -723) 95828) ((-350 . -723) 95780) ((-344 . -1065) 95764) ((-344 . -111) 95743) ((-219 . -652) 95693) ((-176 . -1065) 95625) ((-176 . -111) 95536) ((-108 . -723) 95486) ((-277 . -1109) T) ((-276 . -1109) T) ((-660 . -1227) T) ((-275 . -1109) T) ((-274 . -1109) T) ((-273 . -1109) T) ((-272 . -1109) T) ((-271 . -1109) T) ((-214 . -1109) T) ((-213 . -1109) T) ((-171 . -1215) 95464) ((-171 . -1212) 95442) ((-211 . -1109) T) ((-210 . -1109) T) ((-117 . -1058) T) ((-209 . -1109) T) ((-208 . -1109) T) ((-205 . -1109) T) ((-204 . -1109) T) ((-203 . -1109) T) ((-202 . -1109) T) ((-201 . -1109) T) ((-200 . -1109) T) ((-199 . -1109) T) ((-198 . -1109) T) ((-197 . -1109) T) ((-196 . -1109) T) ((-195 . -1109) T) ((-242 . -102) 95232) ((-171 . -35) 95210) ((-171 . -95) 95188) ((-660 . -1047) 95084) ((-488 . -1067) 95014) ((-1122 . -1109) 94804) ((-1151 . -34) T) ((-676 . -495) 94788) ((-73 . -1227) T) ((-105 . -619) 94770) ((-1301 . -619) 94752) ((-386 . -619) 94734) ((-344 . -622) 94686) ((-176 . -622) 94603) ((-1226 . -496) 94584) ((-737 . -38) 94433) ((-577 . -1215) T) ((-577 . -1212) T) ((-537 . -619) 94415) ((-526 . -313) 94353) ((-506 . -619) 94335) ((-506 . -620) 94317) ((-1226 . -619) 94283) ((-1177 . -1161) NIL) ((-1036 . -1080) 94252) ((-1036 . -1109) T) ((-1013 . -102) T) ((-980 . -102) T) ((-921 . -102) T) ((-900 . -1047) 94229) ((-1151 . -732) T) ((-1012 . -654) 94174) ((-482 . -1109) T) ((-469 . -1109) T) ((-592 . -23) T) ((-577 . -35) T) ((-577 . -95) T) ((-433 . -102) T) ((-1072 . -231) 94120) ((-1184 . -38) 94017) ((-872 . -732) T) ((-700 . -927) T) ((-517 . -25) T) ((-513 . -21) T) ((-513 . -25) T) ((-1183 . -38) 93858) ((-344 . -1058) T) ((-1177 . -38) 93654) ((-1089 . -174) T) ((-176 . -1058) T) ((-1135 . -38) 93551) ((-718 . -47) 93528) ((-364 . -174) T) ((-358 . -174) T) ((-525 . -57) 93502) ((-503 . -57) 93452) ((-356 . -1296) 93429) ((-227 . -458) T) ((-323 . -294) 93380) ((-350 . -174) T) ((-176 . -245) T) ((-1240 . -856) 93279) ((-108 . -174) T) ((-878 . -1001) 93263) ((-664 . -1121) T) ((-587 . -368) T) ((-587 . -333) 93250) ((-524 . -333) 93227) ((-524 . -368) T) ((-320 . -311) 93206) ((-317 . -311) T) ((-608 . -856) 93185) ((-1122 . -723) 93127) ((-526 . -286) 93111) ((-664 . -23) T) ((-424 . -233) 93095) ((-317 . -1031) NIL) ((-341 . -23) T) ((-103 . -1019) 93079) ((-45 . -36) 93058) ((-618 . -1109) T) ((-356 . -373) T) ((-530 . -102) T) ((-501 . -27) T) ((-242 . -313) 92996) ((-1096 . -1121) T) ((-1300 . -654) 92970) ((-788 . -1121) T) ((-786 . -1121) T) ((-460 . -1121) T) ((-1071 . -458) T) ((-1160 . -1109) T) ((-959 . -458) 92921) ((-1124 . -1092) T) ((-110 . -1109) T) ((-1096 . -23) T) ((-823 . -1067) T) ((-788 . -23) T) ((-786 . -23) T) ((-487 . -458) 92872) ((-1169 . -520) 92655) ((-386 . -387) 92634) ((-1188 . -417) 92618) ((-467 . -23) T) ((-460 . -23) T) ((-96 . -1109) T) ((-718 . -1227) T) ((-676 . -290) 92595) ((-490 . -520) 92528) ((-1269 . -1060) 92411) ((-1269 . -646) 92308) ((-1262 . -646) 92149) ((-1262 . -1060) 91984) ((-293 . -294) T) ((-1241 . -1060) 91774) ((-1091 . -619) 91756) ((-1091 . -620) 91737) ((-413 . -916) 91716) ((-1241 . -646) 91512) ((-50 . -1121) T) ((-1221 . -132) T) ((-1033 . -927) T) ((-1012 . -732) T) ((-849 . -654) 91485) ((-718 . -893) NIL) ((-602 . -1060) 91445) ((-587 . -1121) T) ((-524 . -1121) T) ((-601 . -1060) 91328) ((-1177 . -406) 91280) ((-1013 . -313) NIL) ((-821 . -495) 91264) ((-602 . -646) 91237) ((-359 . -927) T) ((-601 . -646) 91134) ((-1166 . -34) T) ((-413 . -654) 91086) ((-50 . -23) T) ((-717 . -132) T) ((-718 . -1047) 90966) ((-587 . -23) T) ((-108 . -520) NIL) ((-524 . -23) T) ((-171 . -415) 90937) ((-1149 . -1109) T) ((-1292 . -1291) 90921) ((-707 . -801) T) ((-707 . -798) T) ((-1129 . -311) T) ((-384 . -148) T) ((-284 . -619) 90903) ((-283 . -619) 90885) ((-1240 . -1001) 90855) ((-48 . -927) T) ((-681 . -495) 90839) ((-254 . -1284) 90809) ((-253 . -1284) 90779) ((-1186 . -856) T) ((-1122 . -174) 90758) ((-1129 . -1031) T) ((-1055 . -34) T) ((-842 . -148) 90737) ((-842 . -146) 90716) ((-743 . -107) 90700) ((-618 . -133) T) ((-488 . -1109) 90490) ((-1188 . -1067) T) ((-877 . -458) T) ((-85 . -1227) T) ((-242 . -38) 90460) ((-142 . -107) 90442) ((-718 . -382) 90426) ((-839 . -622) 90294) ((-1300 . -732) T) ((-1289 . -1067) T) ((-1269 . -102) T) ((-1129 . -551) T) ((-585 . -102) T) ((-130 . -496) 90276) ((-1262 . -102) T) ((-396 . -1065) 90260) ((-1182 . -956) 90229) ((-44 . -290) 90206) ((-130 . -619) 90173) ((-52 . -619) 90155) ((-1134 . -956) 90122) ((-659 . -417) 90106) ((-1241 . -102) T) ((-1168 . -520) NIL) ((-668 . -25) T) ((-627 . -1065) 90090) ((-668 . -21) T) ((-970 . -652) 90000) ((-741 . -652) 89945) ((-721 . -652) 89917) ((-396 . -111) 89896) ((-224 . -257) 89880) ((-1063 . -1062) 89820) ((-1063 . -1109) T) ((-1013 . -1161) T) ((-824 . -1109) T) ((-459 . -652) 89735) ((-348 . -1231) T) ((-641 . -654) 89719) ((-627 . -111) 89698) ((-613 . -654) 89682) ((-602 . -102) T) ((-315 . -496) 89663) ((-592 . -132) T) ((-601 . -102) T) ((-420 . -1109) T) ((-390 . -1109) T) ((-315 . -619) 89629) ((-229 . -1109) 89607) ((-653 . -520) 89540) ((-638 . -520) 89384) ((-839 . -1058) 89363) ((-650 . -152) 89347) ((-348 . -562) T) ((-718 . -907) 89290) ((-556 . -231) 89240) ((-1269 . -288) 89206) ((-1262 . -288) 89172) ((-1089 . -294) 89123) ((-493 . -854) T) ((-225 . -1121) T) ((-1241 . -288) 89089) ((-1221 . -499) 89055) ((-1013 . -38) 89005) ((-219 . -854) T) ((-424 . -652) 88964) ((-921 . -38) 88916) ((-849 . -800) 88895) ((-849 . -797) 88874) ((-849 . -732) 88853) ((-364 . -294) T) ((-358 . -294) T) ((-350 . -294) T) ((-171 . -458) 88784) ((-433 . -38) 88768) ((-108 . -294) T) ((-225 . -23) T) ((-413 . -800) 88747) ((-413 . -797) 88726) ((-413 . -732) T) ((-506 . -292) 88701) ((-483 . -1065) 88666) ((-664 . -132) T) ((-627 . -622) 88635) ((-1122 . -520) 88568) ((-341 . -132) T) ((-171 . -408) 88547) ((-488 . -723) 88489) ((-821 . -290) 88466) ((-483 . -111) 88422) ((-659 . -1067) T) ((-822 . -1060) 88265) ((-1288 . -1092) T) ((-1250 . -458) 88196) ((-822 . -646) 88045) ((-1287 . -1092) T) ((-1096 . -132) T) ((-1063 . -723) 87987) ((-788 . -132) T) ((-786 . -132) T) ((-577 . -458) T) ((-1036 . -520) 87920) ((-627 . -1058) T) ((-598 . -1109) T) ((-539 . -175) T) ((-467 . -132) T) ((-460 . -132) T) ((-1008 . -1227) 87889) ((-45 . -1109) T) ((-390 . -723) 87859) ((-823 . -1109) T) ((-482 . -520) 87792) ((-469 . -520) 87725) ((-1302 . -622) 87707) ((-459 . -372) 87677) ((-45 . -616) 87656) ((-320 . -306) T) ((-483 . -622) 87606) ((-1241 . -313) 87491) ((-676 . -619) 87453) ((-59 . -856) 87432) ((-1013 . -406) 87414) ((-554 . -619) 87396) ((-805 . -652) 87355) ((-821 . -610) 87332) ((-522 . -856) 87311) ((-502 . -856) 87290) ((-40 . -1231) T) ((-1008 . -1047) 87186) ((-50 . -132) T) ((-587 . -132) T) ((-524 . -132) T) ((-298 . -654) 87046) ((-348 . -333) 87023) ((-348 . -368) T) ((-326 . -327) 87000) ((-323 . -290) 86958) ((-40 . -562) T) ((-384 . -1212) T) ((-384 . -1215) T) ((-1044 . -1203) 86933) ((-1199 . -237) 86883) ((-1177 . -233) 86835) ((-334 . -1109) T) ((-384 . -95) T) ((-384 . -35) T) ((-1044 . -107) 86781) ((-483 . -1058) T) ((-1301 . -1065) 86765) ((-485 . -237) 86715) ((-1169 . -495) 86649) ((-1292 . -1060) 86633) ((-386 . -1065) 86617) ((-1292 . -646) 86587) ((-483 . -245) T) ((-822 . -102) T) ((-720 . -148) 86566) ((-720 . -146) 86545) ((-490 . -495) 86529) ((-491 . -340) 86498) ((-1301 . -111) 86477) ((-518 . -1109) T) ((-488 . -174) 86456) ((-1008 . -382) 86440) ((-419 . -102) T) ((-386 . -111) 86419) ((-1008 . -343) 86403) ((-282 . -992) 86387) ((-281 . -992) 86371) ((-1299 . -619) 86353) ((-1297 . -619) 86335) ((-110 . -520) NIL) ((-1182 . -1253) 86319) ((-860 . -858) 86303) ((-1188 . -1109) T) ((-103 . -1227) T) ((-959 . -956) 86264) ((-823 . -723) 86206) ((-1241 . -1161) NIL) ((-487 . -956) 86151) ((-1071 . -144) T) ((-60 . -102) 86129) ((-44 . -619) 86111) ((-78 . -619) 86093) ((-356 . -654) 86038) ((-1289 . -1109) T) ((-517 . -856) T) ((-293 . -290) 86017) ((-348 . -1121) T) ((-299 . -1109) T) ((-1008 . -907) 85976) ((-299 . -616) 85955) ((-1301 . -622) 85904) ((-1269 . -38) 85801) ((-1262 . -38) 85642) ((-1241 . -38) 85438) ((-493 . -1067) T) ((-386 . -622) 85422) ((-219 . -1067) T) ((-348 . -23) T) ((-153 . -619) 85404) ((-839 . -801) 85383) ((-839 . -798) 85362) ((-1226 . -622) 85343) ((-602 . -38) 85316) ((-601 . -38) 85213) ((-876 . -562) T) ((-225 . -132) T) ((-323 . -1011) 85179) ((-79 . -619) 85161) ((-718 . -311) 85140) ((-298 . -732) 85042) ((-830 . -102) T) ((-870 . -850) T) ((-298 . -479) 85021) ((-1292 . -102) T) ((-40 . -368) T) ((-878 . -148) 85000) ((-491 . -652) 84982) ((-878 . -146) 84961) ((-1168 . -495) 84943) ((-1301 . -1058) T) ((-488 . -520) 84876) ((-1155 . -1227) T) ((-971 . -619) 84858) ((-653 . -495) 84842) ((-638 . -495) 84773) ((-821 . -619) 84504) ((-48 . -27) T) ((-1188 . -723) 84401) ((-659 . -1109) T) ((-867 . -866) T) ((-442 . -369) 84375) ((-737 . -652) 84285) ((-1111 . -102) T) ((-979 . -1109) T) ((-870 . -1109) T) ((-822 . -313) 84272) ((-539 . -533) T) ((-539 . -582) T) ((-1297 . -387) 84244) ((-1063 . -520) 84177) ((-1169 . -290) 84153) ((-242 . -233) 84122) ((-254 . -1060) 84019) ((-253 . -1060) 83916) ((-1289 . -723) 83886) ((-1176 . -93) T) ((-1003 . -93) T) ((-823 . -174) 83865) ((-254 . -646) 83807) ((-253 . -646) 83749) ((-1224 . -496) 83726) ((-229 . -520) 83659) ((-627 . -801) 83638) ((-627 . -798) 83617) ((-1224 . -619) 83529) ((-224 . -1227) T) ((-681 . -619) 83461) ((-1184 . -652) 83371) ((-1166 . -1019) 83355) ((-950 . -102) 83305) ((-356 . -732) T) ((-867 . -619) 83287) ((-1183 . -652) 83169) ((-1177 . -652) 83006) ((-1135 . -652) 82916) ((-1241 . -406) 82868) ((-1122 . -495) 82852) ((-60 . -313) 82790) ((-335 . -102) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-40 . -1121) T) ((-717 . -21) T) ((-633 . -619) 82772) ((-521 . -327) 82751) ((-717 . -25) T) ((-445 . -102) T) ((-108 . -290) NIL) ((-928 . -1121) T) ((-40 . -23) T) ((-777 . -1121) T) ((-570 . -1231) T) ((-501 . -1231) T) ((-323 . -619) 82733) ((-1013 . -233) 82715) ((-171 . -167) 82699) ((-586 . -562) T) ((-570 . -562) T) ((-501 . -562) T) ((-777 . -23) T) ((-1261 . -148) 82678) ((-1169 . -610) 82654) ((-1261 . -146) 82633) ((-1036 . -495) 82617) ((-1240 . -146) 82542) ((-1240 . -148) 82467) ((-1292 . -1298) 82446) ((-482 . -495) 82430) ((-469 . -495) 82414) ((-529 . -34) T) ((-659 . -723) 82384) ((-112 . -976) T) ((-668 . -856) 82363) ((-1188 . -174) 82314) ((-370 . -102) T) ((-242 . -240) 82293) ((-254 . -102) T) ((-253 . -102) T) ((-1250 . -956) 82262) ((-247 . -856) 82241) ((-822 . -38) 82090) ((-45 . -520) 81882) ((-1168 . -290) 81832) ((-216 . -1109) T) ((-1159 . -1109) T) ((-1159 . -616) 81811) ((-592 . -25) T) ((-592 . -21) T) ((-1111 . -313) 81749) ((-970 . -417) 81733) ((-705 . -1231) T) ((-638 . -290) 81686) ((-1096 . -645) 81634) ((-788 . -645) 81582) ((-786 . -645) 81530) ((-348 . -132) T) ((-293 . -619) 81512) ((-912 . -1109) T) ((-705 . -562) T) ((-130 . -622) 81494) ((-876 . -1121) T) ((-460 . -645) 81442) ((-912 . -910) 81426) ((-384 . -458) T) ((-493 . -1109) T) ((-950 . -313) 81364) ((-707 . -654) 81351) ((-555 . -850) T) ((-219 . -1109) T) ((-320 . -927) 81330) ((-317 . -927) T) ((-317 . -826) NIL) ((-396 . -726) T) ((-876 . -23) T) ((-117 . -654) 81317) ((-480 . -146) 81296) ((-424 . -417) 81280) ((-480 . -148) 81259) ((-110 . -495) 81241) ((-315 . -622) 81222) ((-2 . -619) 81204) ((-188 . -102) T) ((-1168 . -19) 81186) ((-1168 . -610) 81161) ((-664 . -21) T) ((-664 . -25) T) ((-599 . -1153) T) ((-1122 . -290) 81138) ((-341 . -25) T) ((-341 . -21) T) ((-242 . -652) 80888) ((-501 . -368) T) ((-1292 . -38) 80858) ((-1182 . -1060) 80681) ((-1151 . -1227) T) ((-1134 . -1060) 80524) ((-860 . -1060) 80508) ((-638 . -610) 80483) ((-1299 . -1065) 80467) ((-1297 . -1065) 80451) ((-1182 . -646) 80280) ((-1134 . -646) 80129) ((-860 . -646) 80099) ((-1261 . -1212) 80065) ((-1261 . -1215) 80031) ((-555 . -1109) T) ((-1096 . -25) T) ((-1096 . -21) T) ((-537 . -798) T) ((-537 . -801) T) ((-118 . -1231) T) ((-970 . -1067) T) ((-629 . -562) T) ((-788 . -25) T) ((-788 . -21) T) ((-786 . -21) T) ((-786 . -25) T) ((-741 . -1067) T) ((-721 . -1067) T) ((-676 . -1065) 80015) ((-523 . -1092) T) ((-467 . -25) T) ((-118 . -562) T) ((-467 . -21) T) ((-460 . -25) T) ((-460 . -21) T) ((-1261 . -95) 79981) ((-1160 . -93) T) ((-1151 . -1047) 79877) ((-823 . -294) 79856) ((-1244 . -102) 79834) ((-829 . -1109) T) ((-973 . -976) T) ((-676 . -111) 79813) ((-623 . -1227) T) ((-299 . -520) 79605) ((-1241 . -233) 79557) ((-1240 . -1212) 79523) ((-1240 . -1215) 79489) ((-254 . -313) 79427) ((-253 . -313) 79365) ((-1235 . -373) T) ((-1169 . -620) NIL) ((-1169 . -619) 79347) ((-1232 . -850) T) ((-1151 . -382) 79331) ((-1129 . -826) T) ((-96 . -93) T) ((-1129 . -927) T) ((-1122 . -610) 79308) ((-1089 . -620) 79292) ((-1013 . -652) 79242) ((-921 . -652) 79179) ((-821 . -292) 79156) ((-490 . -619) 79088) ((-614 . -152) 79035) ((-493 . -723) 78985) ((-424 . -1067) T) ((-488 . -495) 78969) ((-433 . -652) 78928) ((-331 . -856) 78907) ((-344 . -654) 78881) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -723) 78831) ((-171 . -730) 78802) ((-176 . -654) 78734) ((-587 . -21) T) ((-587 . -25) T) ((-524 . -25) T) ((-524 . -21) T) ((-481 . -152) 78684) ((-1089 . -619) 78666) ((-1070 . -619) 78648) ((-1002 . -102) T) ((-868 . -102) T) ((-805 . -417) 78611) ((-40 . -132) T) ((-705 . -368) T) ((-707 . -732) T) ((-707 . -800) T) ((-707 . -797) T) ((-214 . -902) T) ((-586 . -1121) T) ((-570 . -1121) T) ((-501 . -1121) T) ((-364 . -619) 78593) ((-358 . -619) 78575) ((-350 . -619) 78557) ((-66 . -402) T) ((-66 . -401) T) ((-108 . -620) 78487) ((-108 . -619) 78429) ((-213 . -902) T) ((-965 . -152) 78413) ((-777 . -132) T) ((-676 . -622) 78331) ((-135 . -732) T) ((-117 . -732) T) ((-1261 . -35) 78297) ((-1063 . -495) 78281) ((-586 . -23) T) ((-570 . -23) T) ((-501 . -23) T) ((-1240 . -95) 78247) ((-1240 . -35) 78213) ((-1182 . -102) T) ((-1134 . -102) T) ((-860 . -102) T) ((-229 . -495) 78197) ((-1299 . -111) 78176) ((-1297 . -111) 78155) ((-44 . -1065) 78139) ((-1299 . -622) 78085) ((-1299 . -1058) T) ((-1250 . -1253) 78069) ((-861 . -858) 78053) ((-1188 . -294) 78032) ((-1113 . -1227) T) ((-110 . -290) 77982) ((-1297 . -622) 77911) ((-129 . -152) 77893) ((-1151 . -907) 77852) ((-44 . -111) 77831) ((-1232 . -1109) T) ((-1191 . -1272) T) ((-1176 . -496) 77812) ((-1176 . -619) 77778) ((-676 . -1058) T) ((-1168 . -620) NIL) ((-1168 . -619) 77760) ((-1072 . -616) 77735) ((-1072 . -1109) T) ((-1003 . -496) 77716) ((-74 . -447) T) ((-74 . -401) T) ((-1003 . -619) 77682) ((-153 . -1065) 77666) ((-676 . -235) 77645) ((-577 . -560) 77629) ((-360 . -148) 77608) ((-360 . -146) 77559) ((-357 . -148) 77538) ((-357 . -146) 77489) ((-349 . -148) 77468) ((-349 . -146) 77419) ((-267 . -146) 77398) ((-267 . -148) 77377) ((-254 . -38) 77347) ((-249 . -148) 77326) ((-118 . -368) T) ((-249 . -146) 77305) ((-253 . -38) 77275) ((-153 . -111) 77254) ((-1012 . -1047) 77142) ((-1177 . -854) NIL) ((-700 . -1231) T) ((-805 . -1067) T) ((-705 . -1121) T) ((-1297 . -1058) T) ((-1166 . -1227) T) ((-1012 . -382) 77119) ((-917 . -146) T) ((-917 . -148) 77101) ((-876 . -132) T) ((-821 . -1065) 76998) ((-705 . -23) T) ((-700 . -562) T) ((-227 . -1060) 76963) ((-653 . -619) 76895) ((-653 . -620) 76856) ((-638 . -620) NIL) ((-638 . -619) 76838) ((-493 . -174) T) ((-227 . -646) 76803) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-480 . -1215) 76769) ((-480 . -1212) 76735) ((-277 . -619) 76717) ((-276 . -619) 76699) ((-275 . -619) 76681) ((-274 . -619) 76663) ((-273 . -619) 76645) ((-506 . -657) 76627) ((-272 . -619) 76609) ((-344 . -732) T) ((-271 . -619) 76591) ((-110 . -19) 76573) ((-176 . -732) T) ((-506 . -378) 76555) ((-214 . -619) 76537) ((-526 . -1158) 76521) ((-506 . -124) T) ((-110 . -610) 76496) ((-213 . -619) 76478) ((-480 . -35) 76444) ((-480 . -95) 76410) ((-211 . -619) 76392) ((-210 . -619) 76374) ((-209 . -619) 76356) ((-208 . -619) 76338) ((-205 . -619) 76320) ((-204 . -619) 76302) ((-203 . -619) 76284) ((-202 . -619) 76266) ((-201 . -619) 76248) ((-200 . -619) 76230) ((-199 . -619) 76212) ((-542 . -1112) 76164) ((-198 . -619) 76146) ((-197 . -619) 76128) ((-45 . -495) 76065) ((-196 . -619) 76047) ((-195 . -619) 76029) ((-153 . -622) 75998) ((-1124 . -102) T) ((-821 . -111) 75888) ((-650 . -102) 75838) ((-488 . -290) 75815) ((-1122 . -619) 75546) ((-1110 . -1109) T) ((-1055 . -1227) T) ((-1300 . -1047) 75530) ((-1071 . -1060) 75517) ((-1182 . -313) 75504) ((-959 . -1060) 75347) ((-1144 . -1109) T) ((-1134 . -313) 75334) ((-629 . -1121) T) ((-1071 . -646) 75321) ((-1105 . -1092) T) ((-959 . -646) 75170) ((-1099 . -1092) T) ((-487 . -1060) 75013) ((-1082 . -1092) T) ((-1075 . -1092) T) ((-1045 . -1092) T) ((-1028 . -1092) T) ((-118 . -1121) T) ((-487 . -646) 74862) ((-825 . -102) T) ((-632 . -1092) T) ((-629 . -23) T) ((-1159 . -520) 74654) ((-489 . -1092) T) ((-392 . -102) T) ((-328 . -102) T) ((-220 . -1092) T) ((-970 . -1109) T) ((-153 . -1058) T) ((-737 . -417) 74638) ((-118 . -23) T) ((-1012 . -907) 74590) ((-741 . -1109) T) ((-721 . -1109) T) ((-459 . -1109) T) ((-413 . -1227) T) ((-320 . -436) 74574) ((-598 . -93) T) ((-1269 . -652) 74484) ((-1036 . -620) 74445) ((-1033 . -1231) T) ((-227 . -102) T) ((-1036 . -619) 74407) ((-1262 . -652) 74289) ((-822 . -233) 74273) ((-821 . -622) 74003) ((-1241 . -652) 73840) ((-1033 . -562) T) ((-839 . -654) 73813) ((-359 . -1231) T) ((-482 . -619) 73775) ((-482 . -620) 73736) ((-469 . -620) 73697) ((-469 . -619) 73659) ((-602 . -652) 73618) ((-413 . -891) 73602) ((-323 . -1065) 73437) ((-413 . -893) 73362) ((-601 . -652) 73272) ((-849 . -1047) 73168) ((-493 . -520) NIL) ((-488 . -610) 73145) ((-359 . -562) T) ((-219 . -520) NIL) ((-878 . -458) T) ((-424 . -1109) T) ((-413 . -1047) 73009) ((-323 . -111) 72830) ((-700 . -368) T) ((-227 . -288) T) ((-1224 . -622) 72807) ((-48 . -1231) T) ((-821 . -1058) 72737) ((-1182 . -1161) 72715) ((-586 . -132) T) ((-570 . -132) T) ((-501 . -132) T) ((-1169 . -292) 72691) ((-48 . -562) T) ((-1071 . -102) T) ((-959 . -102) T) ((-877 . -1060) 72636) ((-320 . -27) 72615) ((-821 . -235) 72567) ((-251 . -841) 72549) ((-242 . -854) 72528) ((-189 . -841) 72510) ((-719 . -102) T) ((-299 . -495) 72447) ((-877 . -646) 72392) ((-487 . -102) T) ((-737 . -1067) T) ((-618 . -619) 72374) ((-618 . -620) 72235) ((-413 . -382) 72219) ((-413 . -343) 72203) ((-1182 . -38) 72032) ((-323 . -622) 71858) ((-1134 . -38) 71707) ((-641 . -1227) 71681) ((-613 . -1227) 71655) ((-860 . -38) 71625) ((-396 . -654) 71609) ((-650 . -313) 71547) ((-1160 . -496) 71528) ((-1160 . -619) 71494) ((-970 . -723) 71391) ((-741 . -723) 71361) ((-224 . -107) 71345) ((-45 . -290) 71245) ((-627 . -654) 71219) ((-316 . -1109) T) ((-293 . -1065) 71206) ((-110 . -619) 71188) ((-110 . -620) 71170) ((-459 . -723) 71140) ((-822 . -256) 71079) ((-695 . -1109) 71057) ((-556 . -1109) T) ((-1184 . -1067) T) ((-1183 . -1067) T) ((-96 . -496) 71038) ((-1177 . -1067) T) ((-293 . -111) 71023) ((-1135 . -1067) T) ((-556 . -616) 71002) ((-96 . -619) 70968) ((-1013 . -854) T) ((-229 . -693) 70926) ((-700 . -1121) T) ((-1221 . -746) 70902) ((-1033 . -368) T) ((-844 . -841) 70884) ((-839 . -800) 70863) ((-413 . -907) 70822) ((-323 . -1058) T) ((-348 . -25) T) ((-348 . -21) T) ((-171 . -1060) 70732) ((-68 . -1227) T) ((-839 . -797) 70711) ((-424 . -723) 70685) ((-805 . -1109) T) ((-718 . -927) 70664) ((-705 . -132) T) ((-171 . -646) 70492) ((-700 . -23) T) ((-493 . -294) T) ((-839 . -732) 70471) ((-323 . -235) 70423) ((-323 . -245) 70402) ((-219 . -294) T) ((-130 . -373) T) ((-1261 . -458) 70381) ((-1240 . -458) 70360) ((-359 . -333) 70337) ((-359 . -368) T) ((-1149 . -619) 70319) ((-45 . -1265) 70269) ((-877 . -102) T) ((-650 . -286) 70253) ((-705 . -1069) T) ((-1288 . -102) T) ((-1287 . -102) T) ((-483 . -654) 70218) ((-474 . -1109) T) ((-45 . -610) 70143) ((-1168 . -292) 70118) ((-293 . -622) 70090) ((-40 . -645) 70029) ((-1250 . -1060) 69852) ((-861 . -1060) 69836) ((-48 . -368) T) ((-1115 . -619) 69818) ((-1250 . -646) 69647) ((-861 . -646) 69617) ((-638 . -292) 69592) ((-822 . -652) 69502) ((-577 . -1060) 69489) ((-488 . -619) 69220) ((-242 . -417) 69189) ((-959 . -313) 69176) ((-577 . -646) 69163) ((-65 . -1227) T) ((-1072 . -520) 69007) ((-677 . -1109) T) ((-629 . -132) T) ((-487 . -313) 68994) ((-612 . -1109) T) ((-552 . -102) T) ((-118 . -132) T) ((-293 . -1058) T) ((-182 . -1109) T) ((-162 . -1109) T) ((-157 . -1109) T) ((-155 . -1109) T) ((-459 . -767) T) ((-31 . -1092) T) ((-970 . -174) 68945) ((-979 . -93) T) ((-1089 . -1065) 68855) ((-627 . -800) 68834) ((-599 . -1109) T) ((-627 . -797) 68813) ((-627 . -732) T) ((-299 . -290) 68792) ((-298 . -1227) T) ((-1063 . -619) 68754) ((-1063 . -620) 68715) ((-1033 . -1121) T) ((-171 . -102) T) ((-278 . -856) T) ((-1175 . -1109) T) ((-824 . -619) 68697) ((-1122 . -292) 68674) ((-1111 . -231) 68658) ((-1012 . -311) T) ((-805 . -723) 68642) ((-364 . -1065) 68594) ((-359 . -1121) T) ((-358 . -1065) 68546) ((-420 . -619) 68528) ((-390 . -619) 68510) ((-350 . -1065) 68462) ((-229 . -619) 68394) ((-1089 . -111) 68290) ((-1033 . -23) T) ((-108 . -1065) 68240) ((-905 . -102) T) ((-847 . -102) T) ((-814 . -102) T) ((-775 . -102) T) ((-683 . -102) T) ((-480 . -458) 68219) ((-424 . -174) T) ((-364 . -111) 68157) ((-358 . -111) 68095) ((-350 . -111) 68033) ((-254 . -233) 68002) ((-253 . -233) 67971) ((-359 . -23) T) ((-71 . -1227) T) ((-227 . -38) 67936) ((-108 . -111) 67870) ((-40 . -25) T) ((-40 . -21) T) ((-676 . -726) T) ((-171 . -288) 67848) ((-48 . -1121) T) ((-928 . -25) T) ((-777 . -25) T) ((-1301 . -654) 67822) ((-1159 . -495) 67759) ((-491 . -1109) T) ((-1292 . -652) 67718) ((-1250 . -102) T) ((-1071 . -1161) T) ((-861 . -102) T) ((-242 . -1067) 67648) ((-971 . -798) 67601) ((-971 . -801) 67554) ((-386 . -654) 67538) ((-48 . -23) T) ((-821 . -801) 67489) ((-821 . -798) 67440) ((-554 . -373) T) ((-299 . -610) 67419) ((-483 . -732) T) ((-577 . -102) T) ((-1089 . -622) 67237) ((-251 . -187) T) ((-189 . -187) T) ((-877 . -313) 67194) ((-659 . -290) 67173) ((-112 . -667) T) ((-364 . -622) 67110) ((-358 . -622) 67047) ((-350 . -622) 66984) ((-76 . -1227) T) ((-108 . -622) 66934) ((-112 . -113) T) ((-1071 . -38) 66921) ((-670 . -379) 66900) ((-959 . -38) 66749) ((-737 . -1109) T) ((-487 . -38) 66598) ((-86 . -1227) T) ((-598 . -496) 66579) ((-577 . -288) T) ((-1241 . -854) NIL) ((-598 . -619) 66545) ((-1184 . -1109) T) ((-1183 . -1109) T) ((-1089 . -1058) T) ((-356 . -1047) 66522) ((-823 . -496) 66506) ((-1013 . -1067) T) ((-45 . -619) 66488) ((-45 . -620) NIL) ((-921 . -1067) T) ((-823 . -619) 66457) ((-1177 . -1109) T) ((-1156 . -102) 66435) ((-1089 . -245) 66386) ((-433 . -1067) T) ((-364 . -1058) T) ((-370 . -369) 66363) ((-358 . -1058) T) ((-350 . -1058) T) ((-254 . -240) 66342) ((-253 . -240) 66321) ((-1089 . -235) 66246) ((-1135 . -1109) T) ((-298 . -907) 66205) ((-108 . -1058) T) ((-700 . -132) T) ((-424 . -520) 66047) ((-364 . -235) 66026) ((-364 . -245) T) ((-44 . -726) T) ((-358 . -235) 66005) ((-358 . -245) T) ((-350 . -235) 65984) ((-350 . -245) T) ((-1176 . -622) 65965) ((-171 . -313) 65930) ((-108 . -245) T) ((-108 . -235) T) ((-1003 . -622) 65911) ((-323 . -798) T) ((-876 . -21) T) ((-876 . -25) T) ((-413 . -311) T) ((-506 . -34) T) ((-110 . -292) 65886) ((-1122 . -1065) 65783) ((-877 . -1161) NIL) ((-334 . -619) 65765) ((-413 . -1031) 65743) ((-1122 . -111) 65633) ((-697 . -1272) T) ((-442 . -1109) T) ((-252 . -1109) T) ((-1301 . -732) T) ((-63 . -619) 65615) ((-877 . -38) 65560) ((-529 . -1227) T) ((-608 . -152) 65544) ((-518 . -619) 65526) ((-1250 . -313) 65513) ((-737 . -723) 65362) ((-537 . -799) T) ((-537 . -800) T) ((-570 . -645) 65344) ((-501 . -645) 65304) ((-360 . -458) T) ((-357 . -458) T) ((-349 . -458) T) ((-267 . -458) 65255) ((-531 . -1109) T) ((-526 . -1109) 65205) ((-249 . -458) 65156) ((-1159 . -290) 65135) ((-1188 . -619) 65117) ((-695 . -520) 65050) ((-970 . -294) 65029) ((-556 . -520) 64821) ((-254 . -652) 64641) ((-253 . -652) 64448) ((-1289 . -619) 64417) ((-1289 . -496) 64401) ((-1184 . -723) 64298) ((-1182 . -233) 64282) ((-1122 . -622) 64012) ((-171 . -1161) 63991) ((-1183 . -723) 63832) ((-1177 . -723) 63628) ((-973 . -113) T) ((-899 . -102) T) ((-1166 . -680) 63612) ((-1135 . -723) 63509) ((-1033 . -132) T) ((-360 . -408) 63460) ((-357 . -408) 63411) ((-349 . -408) 63362) ((-971 . -373) 63315) ((-805 . -520) 63227) ((-299 . -620) NIL) ((-299 . -619) 63209) ((-917 . -458) T) ((-912 . -290) 63188) ((-821 . -373) 63167) ((-516 . -515) 63146) ((-514 . -515) 63125) ((-493 . -290) NIL) ((-488 . -292) 63102) ((-424 . -294) T) ((-359 . -132) T) ((-219 . -290) NIL) ((-700 . -499) NIL) ((-99 . -1121) T) ((-171 . -38) 62930) ((-1261 . -982) 62892) ((-1156 . -313) 62830) ((-1240 . -982) 62799) ((-917 . -408) T) ((-1122 . -1058) 62729) ((-1263 . -562) T) ((-1159 . -610) 62708) ((-112 . -856) T) ((-1072 . -495) 62639) ((-586 . -21) T) ((-586 . -25) T) ((-570 . -21) T) ((-570 . -25) T) ((-501 . -25) T) ((-501 . -21) T) ((-1250 . -1161) 62617) ((-1122 . -235) 62569) ((-48 . -132) T) ((-1208 . -102) T) ((-242 . -1109) 62359) ((-877 . -406) 62336) ((-1097 . -102) T) ((-1085 . -102) T) ((-614 . -102) T) ((-481 . -102) T) ((-1250 . -38) 62165) ((-861 . -38) 62135) ((-1043 . -1060) 62109) ((-737 . -174) 62020) ((-659 . -619) 62002) ((-651 . -1092) T) ((-1043 . -646) 61986) ((-577 . -38) 61973) ((-979 . -496) 61954) ((-979 . -619) 61920) ((-965 . -102) 61870) ((-870 . -619) 61852) ((-870 . -620) 61774) ((-599 . -520) NIL) ((-1269 . -1067) T) ((-1262 . -1067) T) ((-326 . -1060) 61756) ((-1241 . -1067) T) ((-1306 . -1121) T) ((-1221 . -148) 61735) ((-326 . -646) 61717) ((-1221 . -146) 61696) ((-1194 . -102) T) ((-1193 . -102) T) ((-1192 . -102) T) ((-1184 . -174) 61647) ((-602 . -1067) T) ((-601 . -1067) T) ((-1183 . -174) 61578) ((-1177 . -174) 61509) ((-384 . -1060) 61474) ((-1160 . -622) 61455) ((-1135 . -174) 61406) ((-1013 . -1109) T) ((-980 . -1109) T) ((-921 . -1109) T) ((-384 . -646) 61371) ((-805 . -803) 61355) ((-705 . -25) T) ((-705 . -21) T) ((-118 . -645) 61332) ((-707 . -893) 61314) ((-433 . -1109) T) ((-320 . -1231) 61293) ((-317 . -1231) T) ((-171 . -406) 61277) ((-842 . -1060) 61247) ((-480 . -982) 61209) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -619) 61191) ((-833 . -1060) 61175) ((-108 . -801) T) ((-108 . -798) T) ((-707 . -1047) 61157) ((-320 . -562) 61136) ((-317 . -562) T) ((-842 . -646) 61106) ((-833 . -646) 61076) ((-1306 . -23) T) ((-135 . -1047) 61058) ((-96 . -622) 61039) ((-1002 . -652) 61021) ((-488 . -1065) 60918) ((-45 . -292) 60843) ((-242 . -723) 60785) ((-523 . -102) T) ((-488 . -111) 60675) ((-1101 . -102) 60645) ((-1043 . -102) T) ((-1182 . -652) 60555) ((-1134 . -652) 60465) ((-860 . -652) 60424) ((-650 . -834) 60403) ((-737 . -520) 60346) ((-1063 . -1065) 60330) ((-1144 . -93) T) ((-1072 . -290) 60305) ((-629 . -21) T) ((-629 . -25) T) ((-530 . -1109) T) ((-676 . -654) 60279) ((-366 . -102) T) ((-326 . -102) T) ((-390 . -1065) 60263) ((-1063 . -111) 60242) ((-822 . -417) 60226) ((-118 . -25) T) ((-89 . -619) 60208) ((-118 . -21) T) ((-614 . -313) 60003) ((-481 . -313) 59807) ((-1159 . -620) NIL) ((-390 . -111) 59786) ((-384 . -102) T) ((-216 . -619) 59768) ((-1159 . -619) 59750) ((-1177 . -520) 59519) ((-1013 . -723) 59469) ((-1135 . -520) 59439) ((-921 . -723) 59391) ((-488 . -622) 59121) ((-356 . -311) T) ((-1199 . -152) 59071) ((-965 . -313) 59009) ((-842 . -102) T) ((-433 . -723) 58993) ((-227 . -834) T) ((-833 . -102) T) ((-831 . -102) T) ((-485 . -152) 58943) ((-1261 . -1260) 58922) ((-1129 . -1231) T) ((-344 . -1047) 58889) ((-1261 . -1255) 58859) ((-1261 . -1258) 58843) ((-1240 . -1239) 58822) ((-80 . -619) 58804) ((-912 . -619) 58786) ((-1240 . -1255) 58763) ((-1129 . -562) T) ((-928 . -856) T) ((-777 . -856) T) ((-678 . -856) T) ((-493 . -620) 58693) ((-493 . -619) 58634) ((-384 . -288) T) ((-1240 . -1237) 58618) ((-1263 . -1121) T) ((-219 . -620) 58548) ((-219 . -619) 58489) ((-1299 . -654) 58463) ((-1072 . -610) 58438) ((-824 . -622) 58422) ((-59 . -152) 58406) ((-522 . -152) 58390) ((-502 . -152) 58374) ((-364 . -1296) 58358) ((-358 . -1296) 58342) ((-350 . -1296) 58326) ((-320 . -368) 58305) ((-317 . -368) T) ((-488 . -1058) 58235) ((-700 . -645) 58217) ((-1297 . -654) 58191) ((-129 . -313) NIL) ((-1263 . -23) T) ((-695 . -495) 58175) ((-64 . -619) 58157) ((-1122 . -801) 58108) ((-1122 . -798) 58059) ((-556 . -495) 57996) ((-676 . -34) T) ((-488 . -235) 57948) ((-299 . -292) 57927) ((-242 . -174) 57906) ((-822 . -1067) T) ((-44 . -654) 57864) ((-1089 . -373) 57815) ((-1096 . -146) 57794) ((-737 . -294) 57725) ((-526 . -520) 57658) ((-823 . -1065) 57609) ((-1096 . -148) 57588) ((-555 . -619) 57570) ((-364 . -373) 57549) ((-358 . -373) 57528) ((-350 . -373) 57507) ((-975 . -1227) T) ((-877 . -233) 57484) ((-823 . -111) 57426) ((-788 . -146) 57405) ((-788 . -148) 57384) ((-267 . -956) 57351) ((-254 . -854) 57330) ((-249 . -956) 57275) ((-253 . -854) 57254) ((-786 . -146) 57233) ((-786 . -148) 57212) ((-153 . -654) 57186) ((-585 . -1109) T) ((-459 . -290) 57149) ((-460 . -148) 57128) ((-460 . -146) 57107) ((-676 . -732) T) ((-829 . -619) 57089) ((-1269 . -1109) T) ((-1262 . -1109) T) ((-1241 . -1109) T) ((-1221 . -1215) 57055) ((-1221 . -1212) 57021) ((-1184 . -294) 57000) ((-1183 . -294) 56951) ((-1177 . -294) 56902) ((-1135 . -294) 56881) ((-344 . -907) 56862) ((-1013 . -174) T) ((-921 . -174) T) ((-700 . -21) T) ((-700 . -25) T) ((-227 . -652) 56812) ((-602 . -1109) T) ((-601 . -1109) T) ((-480 . -1258) 56796) ((-480 . -1255) 56766) ((-424 . -290) 56694) ((-553 . -856) T) ((-320 . -1121) 56543) ((-317 . -1121) T) ((-1221 . -35) 56509) ((-1221 . -95) 56475) ((-84 . -619) 56457) ((-91 . -102) 56435) ((-1306 . -132) T) ((-720 . -1060) 56405) ((-598 . -622) 56386) ((-587 . -146) T) ((-587 . -148) 56368) ((-524 . -148) 56350) ((-524 . -146) T) ((-720 . -646) 56320) ((-320 . -23) 56172) ((-40 . -347) 56146) ((-317 . -23) T) ((-823 . -622) 56060) ((-1168 . -657) 56042) ((-1292 . -1067) T) ((-1168 . -378) 56024) ((-821 . -654) 55872) ((-1105 . -102) T) ((-1099 . -102) T) ((-1082 . -102) T) ((-171 . -233) 55856) ((-1075 . -102) T) ((-1045 . -102) T) ((-1028 . -102) T) ((-599 . -495) 55838) ((-632 . -102) T) ((-242 . -520) 55771) ((-489 . -102) T) ((-1299 . -732) T) ((-1297 . -732) T) ((-220 . -102) T) ((-1188 . -1065) 55654) ((-1071 . -652) 55626) ((-959 . -652) 55536) ((-1188 . -111) 55405) ((-882 . -1092) T) ((-487 . -652) 55315) ((-867 . -175) T) ((-823 . -1058) T) ((-687 . -1092) T) ((-682 . -1092) T) ((-521 . -102) T) ((-516 . -102) T) ((-48 . -645) 55275) ((-514 . -102) T) ((-484 . -1092) T) ((-1289 . -1065) 55245) ((-139 . -1092) T) ((-138 . -1092) T) ((-134 . -1092) T) ((-1043 . -38) 55229) ((-823 . -235) T) ((-823 . -245) 55208) ((-1289 . -111) 55173) ((-1269 . -723) 55070) ((-1262 . -723) 54911) ((-556 . -290) 54890) ((-1250 . -233) 54874) ((-1232 . -619) 54856) ((-612 . -93) T) ((-1072 . -620) NIL) ((-1072 . -619) 54838) ((-677 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1241 . -723) 54634) ((-1012 . -927) T) ((-153 . -732) T) ((-1188 . -622) 54487) ((-1122 . -373) 54466) ((-1033 . -25) T) ((-1013 . -520) NIL) ((-254 . -417) 54435) ((-253 . -417) 54404) ((-1033 . -21) T) ((-878 . -1060) 54356) ((-602 . -723) 54329) ((-601 . -723) 54226) ((-805 . -290) 54184) ((-127 . -102) 54162) ((-839 . -1047) 54058) ((-171 . -834) 54037) ((-323 . -654) 53934) ((-821 . -34) T) ((-720 . -102) T) ((-1129 . -1121) T) ((-1035 . -1227) T) ((-878 . -646) 53886) ((-384 . -38) 53851) ((-359 . -25) T) ((-359 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-251 . -102) T) ((-158 . -102) T) ((-360 . -1284) 53835) ((-357 . -1284) 53819) ((-349 . -1284) 53803) ((-171 . -354) 53782) ((-570 . -856) T) ((-1129 . -23) T) ((-87 . -619) 53764) ((-707 . -311) T) ((-842 . -38) 53734) ((-833 . -38) 53704) ((-1289 . -622) 53646) ((-1263 . -132) T) ((-1159 . -292) 53625) ((-971 . -732) 53524) ((-971 . -799) 53477) ((-971 . -800) 53430) ((-821 . -797) 53409) ((-117 . -311) T) ((-91 . -313) 53347) ((-681 . -34) T) ((-556 . -610) 53326) ((-48 . -25) T) ((-48 . -21) T) ((-821 . -800) 53277) ((-821 . -799) 53256) ((-707 . -1031) T) ((-659 . -1065) 53240) ((-877 . -652) 53170) ((-821 . -732) 53080) ((-971 . -479) 53033) ((-488 . -801) 52984) ((-488 . -798) 52935) ((-917 . -1284) 52922) ((-1188 . -1058) T) ((-659 . -111) 52901) ((-1188 . -330) 52878) ((-1213 . -102) 52856) ((-1110 . -619) 52838) ((-707 . -551) T) ((-822 . -1109) T) ((-1289 . -1058) T) ((-1144 . -496) 52819) ((-1233 . -102) T) ((-419 . -1109) T) ((-1144 . -619) 52785) ((-254 . -1067) 52715) ((-253 . -1067) 52645) ((-844 . -102) T) ((-293 . -654) 52632) ((-599 . -290) 52582) ((-695 . -693) 52540) ((-970 . -619) 52522) ((-878 . -102) T) ((-741 . -619) 52504) ((-721 . -619) 52486) ((-1269 . -174) 52437) ((-1262 . -174) 52368) ((-1241 . -174) 52299) ((-705 . -856) T) ((-1013 . -294) T) ((-459 . -619) 52281) ((-633 . -732) T) ((-60 . -1109) 52259) ((-247 . -152) 52243) ((-921 . -294) T) ((-1033 . -1021) T) ((-633 . -479) T) ((-718 . -1231) 52222) ((-659 . -622) 52140) ((-171 . -652) 52035) ((-1277 . -856) 52014) ((-602 . -174) 51993) ((-601 . -174) 51944) ((-1261 . -646) 51785) ((-1261 . -1060) 51620) ((-1240 . -646) 51434) ((-1240 . -1060) 51242) ((-718 . -562) 51153) ((-413 . -927) T) ((-413 . -826) 51132) ((-323 . -800) T) ((-979 . -622) 51113) ((-323 . -732) T) ((-424 . -619) 51095) ((-424 . -620) 51002) ((-650 . -1158) 50986) ((-110 . -657) 50968) ((-176 . -311) T) ((-127 . -313) 50906) ((-110 . -378) 50888) ((-404 . -1227) T) ((-320 . -132) 50759) ((-317 . -132) T) ((-69 . -401) T) ((-110 . -124) T) ((-526 . -495) 50743) ((-660 . -1121) T) ((-599 . -19) 50725) ((-61 . -447) T) ((-61 . -401) T) ((-830 . -1109) T) ((-599 . -610) 50700) ((-483 . -1047) 50660) ((-659 . -1058) T) ((-660 . -23) T) ((-1292 . -1109) T) ((-31 . -102) T) ((-1250 . -652) 50570) ((-861 . -652) 50529) ((-822 . -723) 50378) ((-583 . -866) T) ((-577 . -652) 50350) ((-118 . -856) NIL) ((-1182 . -417) 50334) ((-1134 . -417) 50318) ((-860 . -417) 50302) ((-879 . -102) 50253) ((-1261 . -102) T) ((-1241 . -520) 50022) ((-1240 . -102) T) ((-1213 . -313) 49960) ((-1184 . -290) 49925) ((-1183 . -290) 49883) ((-531 . -93) T) ((-1177 . -290) 49711) ((-316 . -619) 49693) ((-1111 . -1109) T) ((-1089 . -654) 49603) ((-717 . -458) T) ((-695 . -619) 49535) ((-293 . -732) T) ((-108 . -916) NIL) ((-695 . -620) 49496) ((-607 . -619) 49478) ((-583 . -619) 49460) ((-556 . -620) NIL) ((-556 . -619) 49442) ((-535 . -619) 49424) ((-517 . -515) 49403) ((-493 . -1065) 49353) ((-480 . -1060) 49188) ((-513 . -515) 49167) ((-480 . -646) 49008) ((-219 . -1065) 48958) ((-364 . -654) 48910) ((-358 . -654) 48862) ((-227 . -854) T) ((-350 . -654) 48814) ((-608 . -102) 48764) ((-488 . -373) 48743) ((-108 . -654) 48693) ((-493 . -111) 48627) ((-242 . -495) 48611) ((-348 . -148) 48593) ((-348 . -146) T) ((-171 . -375) 48564) ((-950 . -1275) 48548) ((-219 . -111) 48482) ((-878 . -313) 48447) ((-950 . -1109) 48397) ((-805 . -620) 48358) ((-805 . -619) 48340) ((-724 . -102) T) ((-335 . -1109) T) ((-216 . -622) 48317) ((-1129 . -132) T) ((-720 . -38) 48287) ((-320 . -499) 48266) ((-506 . -1227) T) ((-1261 . -288) 48232) ((-1240 . -288) 48198) ((-331 . -152) 48182) ((-445 . -1109) T) ((-1072 . -292) 48157) ((-1292 . -723) 48127) ((-1169 . -34) T) ((-1301 . -1047) 48104) ((-490 . -34) T) ((-474 . -619) 48086) ((-252 . -290) 48060) ((-386 . -1047) 48044) ((-1182 . -1067) T) ((-1134 . -1067) T) ((-860 . -1067) T) ((-1071 . -854) T) ((-493 . -622) 47994) ((-219 . -622) 47944) ((-822 . -174) 47855) ((-526 . -290) 47807) ((-1269 . -294) 47786) ((-1208 . -369) 47760) ((-1097 . -269) 47744) ((-677 . -496) 47725) ((-677 . -619) 47691) ((-612 . -496) 47672) ((-118 . -1001) 47649) ((-612 . -619) 47599) ((-480 . -102) T) ((-182 . -496) 47580) ((-182 . -619) 47546) ((-162 . -496) 47527) ((-162 . -619) 47493) ((-157 . -496) 47474) ((-155 . -496) 47455) ((-157 . -619) 47421) ((-370 . -1109) T) ((-254 . -1109) T) ((-253 . -1109) T) ((-155 . -619) 47387) ((-1262 . -294) 47338) ((-1241 . -294) 47289) ((-878 . -1161) 47267) ((-1184 . -1011) 47233) ((-614 . -369) 47173) ((-1183 . -1011) 47139) ((-614 . -231) 47086) ((-700 . -856) T) ((-599 . -619) 47068) ((-599 . -620) NIL) ((-481 . -231) 47018) ((-493 . -1058) T) ((-1177 . -1011) 46984) ((-88 . -446) T) ((-88 . -401) T) ((-219 . -1058) T) ((-1135 . -1011) 46950) ((-1089 . -732) T) ((-718 . -1121) T) ((-602 . -294) 46929) ((-601 . -294) 46908) ((-493 . -245) T) ((-493 . -235) T) ((-219 . -245) T) ((-219 . -235) T) ((-1175 . -619) 46890) ((-878 . -38) 46842) ((-364 . -732) T) ((-358 . -732) T) ((-350 . -732) T) ((-108 . -800) T) ((-108 . -797) T) ((-718 . -23) T) ((-108 . -732) T) ((-526 . -1265) 46826) ((-1306 . -25) T) ((-480 . -288) 46792) ((-1306 . -21) T) ((-1240 . -313) 46731) ((-1186 . -102) T) ((-40 . -146) 46703) ((-40 . -148) 46675) ((-526 . -610) 46652) ((-1122 . -654) 46500) ((-608 . -313) 46438) ((-45 . -657) 46388) ((-45 . -672) 46338) ((-45 . -378) 46288) ((-1168 . -34) T) ((-877 . -854) NIL) ((-660 . -132) T) ((-491 . -619) 46270) ((-242 . -290) 46247) ((-188 . -1109) T) ((-1096 . -458) 46198) ((-822 . -520) 46072) ((-670 . -1060) 46056) ((-653 . -34) T) ((-638 . -34) T) ((-788 . -458) 45987) ((-670 . -646) 45971) ((-360 . -1060) 45923) ((-357 . -1060) 45875) ((-349 . -1060) 45827) ((-267 . -1060) 45670) ((-249 . -1060) 45513) ((-786 . -458) 45464) ((-360 . -646) 45416) ((-357 . -646) 45368) ((-349 . -646) 45320) ((-267 . -646) 45169) ((-249 . -646) 45018) ((-460 . -458) 44969) ((-959 . -417) 44953) ((-737 . -619) 44935) ((-254 . -723) 44877) ((-253 . -723) 44819) ((-737 . -620) 44680) ((-487 . -417) 44664) ((-344 . -306) T) ((-530 . -93) T) ((-356 . -927) T) ((-1009 . -102) 44642) ((-917 . -1060) 44607) ((-1033 . -856) T) ((-60 . -520) 44540) ((-917 . -646) 44505) ((-1240 . -1161) 44457) ((-1013 . -290) NIL) ((-227 . -1067) T) ((-384 . -834) T) ((-1122 . -34) T) ((-587 . -458) T) ((-524 . -458) T) ((-1244 . -1102) 44441) ((-1244 . -1109) 44419) ((-242 . -610) 44396) ((-1244 . -1104) 44353) ((-1184 . -619) 44335) ((-1183 . -619) 44317) ((-1177 . -619) 44299) ((-1177 . -620) NIL) ((-1135 . -619) 44281) ((-878 . -406) 44265) ((-603 . -102) T) ((-591 . -102) T) ((-542 . -102) T) ((-1261 . -38) 44106) ((-1240 . -38) 43920) ((-876 . -148) T) ((-587 . -408) T) ((-524 . -408) T) ((-1273 . -102) T) ((-1263 . -21) T) ((-1263 . -25) T) ((-1122 . -797) 43899) ((-1122 . -800) 43850) ((-1122 . -799) 43829) ((-1002 . -1109) T) ((-1036 . -34) T) ((-868 . -1109) T) ((-1122 . -732) 43739) ((-670 . -102) T) ((-651 . -102) T) ((-556 . -292) 43718) ((-1199 . -102) T) ((-482 . -34) T) ((-469 . -34) T) ((-360 . -102) T) ((-357 . -102) T) ((-349 . -102) T) ((-267 . -102) T) ((-249 . -102) T) ((-483 . -311) T) ((-1071 . -1067) T) ((-959 . -1067) T) ((-320 . -645) 43624) ((-317 . -645) 43585) ((-1182 . -1109) T) ((-487 . -1067) T) ((-485 . -102) T) ((-442 . -619) 43567) ((-1134 . -1109) T) ((-252 . -619) 43549) ((-860 . -1109) T) ((-1150 . -102) T) ((-822 . -294) 43480) ((-970 . -1065) 43363) ((-483 . -1031) T) ((-741 . -1065) 43333) ((-1043 . -652) 43292) ((-459 . -1065) 43262) ((-1156 . -1130) 43246) ((-1111 . -520) 43179) ((-970 . -111) 43048) ((-917 . -102) T) ((-741 . -111) 43013) ((-531 . -496) 42994) ((-531 . -619) 42960) ((-59 . -102) 42910) ((-526 . -620) 42871) ((-526 . -619) 42783) ((-525 . -102) 42761) ((-522 . -102) 42711) ((-503 . -102) 42689) ((-502 . -102) 42639) ((-459 . -111) 42602) ((-254 . -174) 42581) ((-253 . -174) 42560) ((-326 . -652) 42542) ((-424 . -1065) 42516) ((-1221 . -982) 42478) ((-1008 . -1121) T) ((-384 . -652) 42428) ((-1144 . -622) 42409) ((-950 . -520) 42342) ((-493 . -801) T) ((-480 . -38) 42183) ((-424 . -111) 42150) ((-493 . -798) T) ((-1009 . -313) 42088) ((-219 . -801) T) ((-219 . -798) T) ((-1008 . -23) T) ((-718 . -132) T) ((-1240 . -406) 42058) ((-842 . -652) 42003) ((-833 . -652) 41962) ((-320 . -25) 41814) ((-171 . -417) 41798) ((-320 . -21) 41669) ((-317 . -25) T) ((-317 . -21) T) ((-870 . -373) T) ((-970 . -622) 41522) ((-110 . -34) T) ((-741 . -622) 41478) ((-721 . -622) 41460) ((-488 . -654) 41308) ((-877 . -1067) T) ((-599 . -292) 41283) ((-586 . -148) T) ((-570 . -148) T) ((-501 . -148) T) ((-1182 . -723) 41112) ((-1066 . -102) 41090) ((-1134 . -723) 40939) ((-1129 . -645) 40921) ((-860 . -723) 40891) ((-676 . -1227) T) ((-1 . -102) T) ((-424 . -622) 40799) ((-242 . -619) 40530) ((-1124 . -1109) T) ((-1250 . -417) 40514) ((-1199 . -313) 40318) ((-970 . -1058) T) ((-741 . -1058) T) ((-721 . -1058) T) ((-650 . -1109) 40268) ((-1063 . -654) 40252) ((-861 . -417) 40236) ((-517 . -102) T) ((-513 . -102) T) ((-267 . -313) 40223) ((-249 . -313) 40210) ((-970 . -330) 40189) ((-390 . -654) 40173) ((-676 . -1047) 40069) ((-485 . -313) 39873) ((-254 . -520) 39806) ((-253 . -520) 39739) ((-1150 . -313) 39665) ((-825 . -1109) T) ((-805 . -1065) 39649) ((-1269 . -290) 39614) ((-1262 . -290) 39572) ((-1241 . -290) 39400) ((-392 . -1109) T) ((-328 . -1109) T) ((-424 . -1058) T) ((-171 . -1067) T) ((-59 . -313) 39338) ((-805 . -111) 39317) ((-601 . -290) 39282) ((-525 . -313) 39220) ((-522 . -313) 39158) ((-503 . -313) 39096) ((-502 . -313) 39034) ((-424 . -235) 39013) ((-488 . -34) T) ((-227 . -1109) T) ((-1013 . -620) 38943) ((-1013 . -619) 38903) ((-980 . -619) 38863) ((-921 . -619) 38845) ((-705 . -148) T) ((-707 . -927) T) ((-707 . -826) T) ((-433 . -619) 38827) ((-1129 . -21) T) ((-1129 . -25) T) ((-676 . -382) 38811) ((-117 . -927) T) ((-878 . -233) 38795) ((-44 . -1227) T) ((-78 . -1227) T) ((-127 . -126) 38779) ((-1063 . -34) T) ((-1299 . -1047) 38753) ((-1297 . -1047) 38710) ((-1250 . -1067) T) ((-861 . -1067) T) ((-488 . -797) 38689) ((-360 . -1161) 38668) ((-357 . -1161) 38647) ((-349 . -1161) 38626) ((-488 . -800) 38577) ((-488 . -799) 38556) ((-229 . -34) T) ((-488 . -732) 38466) ((-805 . -622) 38312) ((-668 . -1060) 38296) ((-60 . -495) 38280) ((-577 . -1067) T) ((-668 . -646) 38264) ((-1182 . -174) 38155) ((-1134 . -174) 38066) ((-1071 . -1109) T) ((-1096 . -956) 38011) ((-959 . -1109) T) ((-823 . -654) 37962) ((-788 . -956) 37931) ((-719 . -1109) T) ((-786 . -956) 37898) ((-522 . -286) 37882) ((-676 . -907) 37841) ((-487 . -1109) T) ((-460 . -956) 37808) ((-79 . -1227) T) ((-360 . -38) 37773) ((-357 . -38) 37738) ((-349 . -38) 37703) ((-267 . -38) 37552) ((-249 . -38) 37401) ((-917 . -1161) T) ((-530 . -496) 37382) ((-629 . -148) 37361) ((-629 . -146) 37340) ((-530 . -619) 37306) ((-118 . -148) T) ((-118 . -146) NIL) ((-420 . -732) T) ((-805 . -1058) T) ((-348 . -458) T) ((-1269 . -1011) 37272) ((-1262 . -1011) 37238) ((-1241 . -1011) 37204) ((-917 . -38) 37169) ((-227 . -723) 37134) ((-323 . -47) 37104) ((-40 . -415) 37076) ((-141 . -619) 37058) ((-1008 . -132) T) ((-821 . -1227) T) ((-176 . -927) T) ((-555 . -373) T) ((-612 . -622) 37039) ((-348 . -408) T) ((-720 . -652) 36984) ((-677 . -622) 36965) ((-182 . -622) 36946) ((-162 . -622) 36927) ((-157 . -622) 36908) ((-155 . -622) 36889) ((-526 . -292) 36866) ((-1240 . -233) 36836) ((-882 . -102) T) ((-821 . -1047) 36663) ((-45 . -34) T) ((-687 . -102) T) ((-682 . -102) T) ((-668 . -102) T) ((-660 . -21) T) ((-660 . -25) T) ((-1111 . -495) 36647) ((-681 . -1227) T) ((-484 . -102) T) ((-247 . -102) 36597) ((-552 . -850) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-877 . -1109) T) ((-1188 . -654) 36522) ((-1071 . -723) 36509) ((-737 . -1065) 36352) ((-1182 . -520) 36299) ((-959 . -723) 36148) ((-1134 . -520) 36100) ((-1288 . -1109) T) ((-1287 . -1109) T) ((-487 . -723) 35949) ((-67 . -619) 35931) ((-737 . -111) 35760) ((-950 . -495) 35744) ((-1289 . -654) 35704) ((-1184 . -1065) 35587) ((-823 . -732) T) ((-1183 . -1065) 35422) ((-1177 . -1065) 35212) ((-323 . -1227) T) ((-1135 . -1065) 35095) ((-1012 . -1231) T) ((-1103 . -102) 35073) ((-821 . -382) 35042) ((-585 . -619) 35024) ((-552 . -1109) T) ((-1012 . -562) T) ((-1184 . -111) 34893) ((-1183 . -111) 34714) ((-1177 . -111) 34483) ((-1135 . -111) 34352) ((-1114 . -1112) 34316) ((-384 . -854) T) ((-1269 . -619) 34298) ((-1262 . -619) 34280) ((-878 . -652) 34217) ((-1241 . -619) 34199) ((-1241 . -620) NIL) ((-242 . -292) 34176) ((-40 . -458) T) ((-227 . -174) T) ((-171 . -1109) T) ((-737 . -622) 33961) ((-700 . -148) T) ((-700 . -146) NIL) ((-602 . -619) 33943) ((-601 . -619) 33925) ((-905 . -1109) T) ((-847 . -1109) T) ((-814 . -1109) T) ((-775 . -1109) T) ((-664 . -858) 33909) ((-683 . -1109) T) ((-821 . -907) 33841) ((-1232 . -373) T) ((-40 . -408) NIL) ((-1184 . -622) 33723) ((-1129 . -667) T) ((-877 . -723) 33668) ((-254 . -495) 33652) ((-253 . -495) 33636) ((-1183 . -622) 33379) ((-1177 . -622) 33174) ((-718 . -645) 33122) ((-659 . -654) 33096) ((-1135 . -622) 32978) ((-299 . -34) T) ((-1129 . -113) T) ((-737 . -1058) T) ((-587 . -1284) 32965) ((-524 . -1284) 32942) ((-1250 . -1109) T) ((-1182 . -294) 32853) ((-1134 . -294) 32784) ((-1071 . -174) T) ((-293 . -1227) T) ((-861 . -1109) T) ((-959 . -174) 32695) ((-788 . -1253) 32679) ((-650 . -520) 32612) ((-77 . -619) 32594) ((-737 . -330) 32559) ((-1188 . -732) T) ((-577 . -1109) T) ((-487 . -174) 32470) ((-247 . -313) 32408) ((-1151 . -1121) T) ((-70 . -619) 32390) ((-1289 . -732) T) ((-1184 . -1058) T) ((-1183 . -1058) T) ((-331 . -102) 32340) ((-1177 . -1058) T) ((-1151 . -23) T) ((-1135 . -1058) T) ((-91 . -1130) 32324) ((-872 . -1121) T) ((-1184 . -235) 32283) ((-1183 . -245) 32262) ((-1183 . -235) 32214) ((-1177 . -235) 32101) ((-1177 . -245) 32080) ((-323 . -907) 31986) ((-872 . -23) T) ((-171 . -723) 31814) ((-413 . -1231) T) ((-1110 . -373) T) ((-1012 . -368) T) ((-876 . -458) T) ((-1033 . -148) T) ((-950 . -290) 31766) ((-317 . -856) NIL) ((-1261 . -652) 31648) ((-880 . -102) T) ((-1240 . -652) 31503) ((-718 . -25) T) ((-413 . -562) T) ((-718 . -21) T) ((-531 . -622) 31484) ((-359 . -148) 31466) ((-359 . -146) T) ((-1156 . -1109) 31444) ((-459 . -726) T) ((-75 . -619) 31426) ((-115 . -856) T) ((-247 . -286) 31410) ((-242 . -1065) 31307) ((-81 . -619) 31289) ((-741 . -373) 31242) ((-1186 . -834) T) ((-743 . -237) 31226) ((-1169 . -1227) T) ((-142 . -237) 31208) ((-242 . -111) 31098) ((-1250 . -723) 30927) ((-48 . -148) T) ((-877 . -174) T) ((-861 . -723) 30897) ((-490 . -1227) T) ((-959 . -520) 30844) ((-659 . -732) T) ((-577 . -723) 30831) ((-1043 . -1067) T) ((-487 . -520) 30774) ((-950 . -19) 30758) ((-950 . -610) 30735) ((-822 . -620) NIL) ((-822 . -619) 30717) ((-1221 . -1060) 30600) ((-1013 . -1065) 30550) ((-419 . -619) 30532) ((-254 . -290) 30509) ((-253 . -290) 30486) ((-493 . -916) NIL) ((-320 . -29) 30456) ((-108 . -1227) T) ((-1012 . -1121) T) ((-219 . -916) NIL) ((-1221 . -646) 30353) ((-921 . -1065) 30305) ((-1089 . -1047) 30201) ((-1013 . -111) 30135) ((-717 . -1060) 30100) ((-1012 . -23) T) ((-921 . -111) 30038) ((-743 . -701) 30022) ((-717 . -646) 29987) ((-267 . -233) 29971) ((-433 . -1065) 29955) ((-384 . -1067) T) ((-242 . -622) 29685) ((-700 . -1215) NIL) ((-493 . -654) 29635) ((-480 . -652) 29517) ((-108 . -891) 29499) ((-108 . -893) 29481) ((-700 . -1212) NIL) ((-219 . -654) 29431) ((-364 . -1047) 29415) ((-358 . -1047) 29399) ((-331 . -313) 29337) ((-350 . -1047) 29321) ((-227 . -294) T) ((-433 . -111) 29300) ((-60 . -619) 29232) ((-171 . -174) T) ((-1129 . -856) T) ((-108 . -1047) 29192) ((-899 . -1109) T) ((-842 . -1067) T) ((-833 . -1067) T) ((-700 . -35) NIL) ((-700 . -95) NIL) ((-317 . -1001) 29153) ((-185 . -102) T) ((-586 . -458) T) ((-570 . -458) T) ((-501 . -458) T) ((-413 . -368) T) ((-242 . -1058) 29083) ((-1159 . -34) T) ((-483 . -927) T) ((-1008 . -645) 29031) ((-254 . -610) 29008) ((-253 . -610) 28985) ((-1089 . -382) 28969) ((-877 . -520) 28877) ((-242 . -235) 28829) ((-1168 . -1227) T) ((-1013 . -622) 28779) ((-921 . -622) 28716) ((-830 . -619) 28698) ((-1300 . -1121) T) ((-1292 . -619) 28680) ((-1250 . -174) 28571) ((-433 . -622) 28540) ((-108 . -382) 28522) ((-108 . -343) 28504) ((-1071 . -294) T) ((-959 . -294) 28435) ((-805 . -373) 28414) ((-653 . -1227) T) ((-638 . -1227) T) ((-592 . -1060) 28389) ((-487 . -294) 28320) ((-577 . -174) T) ((-331 . -286) 28304) ((-1300 . -23) T) ((-1221 . -102) T) ((-1208 . -1109) T) ((-1097 . -1109) T) ((-1085 . -1109) T) ((-592 . -646) 28279) ((-83 . -619) 28261) ((-1193 . -850) T) ((-1192 . -850) T) ((-717 . -102) T) ((-360 . -354) 28240) ((-614 . -1109) T) ((-357 . -354) 28219) ((-349 . -354) 28198) ((-481 . -1109) T) ((-1199 . -231) 28148) ((-267 . -256) 28110) ((-1151 . -132) T) ((-614 . -616) 28086) ((-1089 . -907) 28019) ((-1013 . -1058) T) ((-921 . -1058) T) ((-481 . -616) 27998) ((-1177 . -798) NIL) ((-1177 . -801) NIL) ((-1111 . -620) 27959) ((-485 . -231) 27909) ((-1111 . -619) 27891) ((-1013 . -245) T) ((-1013 . -235) T) ((-433 . -1058) T) ((-965 . -1109) 27841) ((-921 . -245) T) ((-872 . -132) T) ((-705 . -458) T) ((-849 . -1121) 27820) ((-108 . -907) NIL) ((-1221 . -288) 27786) ((-878 . -854) 27765) ((-1122 . -1227) T) ((-912 . -732) T) ((-171 . -520) 27677) ((-1008 . -25) T) ((-912 . -479) T) ((-413 . -1121) T) ((-493 . -800) T) ((-493 . -797) T) ((-917 . -354) T) ((-493 . -732) T) ((-219 . -800) T) ((-219 . -797) T) ((-1008 . -21) T) ((-219 . -732) T) ((-849 . -23) 27629) ((-1194 . -1109) T) ((-664 . -1060) 27613) ((-1193 . -1109) T) ((-530 . -622) 27594) ((-1192 . -1109) T) ((-323 . -311) 27573) ((-1044 . -237) 27519) ((-664 . -646) 27489) ((-413 . -23) T) ((-950 . -620) 27450) ((-950 . -619) 27362) ((-650 . -495) 27346) ((-45 . -1019) 27296) ((-1122 . -1047) 27123) ((-623 . -976) T) ((-497 . -102) T) ((-335 . -619) 27105) ((-1002 . -290) 27072) ((-599 . -657) 27054) ((-131 . -1109) T) ((-129 . -1109) T) ((-599 . -378) 27036) ((-348 . -1284) 27013) ((-445 . -619) 26995) ((-1250 . -520) 26942) ((-1096 . -1060) 26785) ((-1036 . -1227) T) ((-877 . -294) T) ((-1182 . -290) 26712) ((-1096 . -646) 26561) ((-1009 . -1004) 26545) ((-788 . -1060) 26368) ((-786 . -1060) 26211) ((-788 . -646) 26040) ((-786 . -646) 25889) ((-482 . -1227) T) ((-469 . -1227) T) ((-592 . -102) T) ((-467 . -1060) 25860) ((-460 . -1060) 25703) ((-670 . -652) 25672) ((-629 . -458) 25651) ((-467 . -646) 25622) ((-460 . -646) 25471) ((-360 . -652) 25408) ((-357 . -652) 25345) ((-349 . -652) 25282) ((-267 . -652) 25192) ((-249 . -652) 25102) ((-1292 . -387) 25074) ((-523 . -1109) T) ((-118 . -458) T) ((-1207 . -102) T) ((-1101 . -1109) 25044) ((-1043 . -1109) T) ((-1124 . -93) T) ((-900 . -856) T) ((-1269 . -111) 24913) ((-356 . -1231) T) ((-1269 . -1065) 24796) ((-1122 . -382) 24765) ((-1262 . -1065) 24600) ((-1241 . -1065) 24390) ((-1262 . -111) 24211) ((-1241 . -111) 23980) ((-1221 . -313) 23967) ((-1012 . -132) T) ((-917 . -652) 23917) ((-370 . -619) 23899) ((-356 . -562) T) ((-293 . -311) T) ((-602 . -1065) 23859) ((-601 . -1065) 23742) ((-587 . -1060) 23707) ((-524 . -1060) 23652) ((-366 . -1109) T) ((-326 . -1109) T) ((-254 . -619) 23613) ((-253 . -619) 23574) ((-587 . -646) 23539) ((-524 . -646) 23484) ((-700 . -415) 23451) ((-641 . -23) T) ((-613 . -23) T) ((-664 . -102) T) ((-602 . -111) 23404) ((-601 . -111) 23273) ((-384 . -1109) T) ((-341 . -102) T) ((-171 . -294) 23184) ((-1240 . -854) 23137) ((-720 . -1067) T) ((-1156 . -520) 23070) ((-1200 . -841) 23054) ((-1122 . -907) 22986) ((-842 . -1109) T) ((-833 . -1109) T) ((-831 . -1109) T) ((-97 . -102) T) ((-145 . -856) T) ((-618 . -891) 22970) ((-110 . -1227) T) ((-1096 . -102) T) ((-1072 . -34) T) ((-788 . -102) T) ((-786 . -102) T) ((-1269 . -622) 22852) ((-1262 . -622) 22595) ((-467 . -102) T) ((-460 . -102) T) ((-1241 . -622) 22390) ((-242 . -801) 22341) ((-242 . -798) 22292) ((-655 . -102) T) ((-602 . -622) 22250) ((-601 . -622) 22132) ((-1250 . -294) 22043) ((-670 . -640) 22027) ((-188 . -619) 22009) ((-650 . -290) 21961) ((-1043 . -723) 21945) ((-577 . -294) T) ((-970 . -654) 21870) ((-1300 . -132) T) ((-741 . -654) 21830) ((-721 . -654) 21817) ((-278 . -102) T) ((-459 . -654) 21747) ((-50 . -102) T) ((-587 . -102) T) ((-524 . -102) T) ((-1269 . -1058) T) ((-1262 . -1058) T) ((-1241 . -1058) T) ((-513 . -652) 21729) ((-326 . -723) 21711) ((-1269 . -235) 21670) ((-1262 . -245) 21649) ((-1262 . -235) 21601) ((-1241 . -235) 21488) ((-1241 . -245) 21467) ((-1221 . -38) 21364) ((-602 . -1058) T) ((-601 . -1058) T) ((-1013 . -801) T) ((-1013 . -798) T) ((-980 . -801) T) ((-980 . -798) T) ((-878 . -1067) T) ((-109 . -619) 21346) ((-700 . -458) T) ((-384 . -723) 21311) ((-424 . -654) 21285) ((-876 . -875) 21269) ((-717 . -38) 21234) ((-601 . -235) 21193) ((-40 . -730) 21165) ((-356 . -333) 21142) ((-356 . -368) T) ((-1089 . -311) 21093) ((-298 . -1121) 20974) ((-1115 . -1227) T) ((-173 . -102) T) ((-1244 . -619) 20941) ((-849 . -132) 20893) ((-650 . -1265) 20877) ((-842 . -723) 20847) ((-833 . -723) 20817) ((-488 . -1227) T) ((-364 . -311) T) ((-358 . -311) T) ((-350 . -311) T) ((-650 . -610) 20794) ((-413 . -132) T) ((-526 . -672) 20778) ((-108 . -311) T) ((-298 . -23) 20661) ((-526 . -657) 20645) ((-700 . -408) NIL) ((-526 . -378) 20629) ((-295 . -619) 20611) ((-91 . -1109) 20589) ((-108 . -1031) T) ((-570 . -144) T) ((-1277 . -152) 20573) ((-488 . -1047) 20400) ((-1263 . -146) 20361) ((-1263 . -148) 20322) ((-1063 . -1227) T) ((-1002 . -619) 20304) ((-868 . -619) 20286) ((-822 . -1065) 20129) ((-1288 . -93) T) ((-1287 . -93) T) ((-1182 . -620) NIL) ((-1105 . -1109) T) ((-1099 . -1109) T) ((-1096 . -313) 20116) ((-1082 . -1109) T) ((-229 . -1227) T) ((-1075 . -1109) T) ((-1045 . -1109) T) ((-1028 . -1109) T) ((-788 . -313) 20103) ((-786 . -313) 20090) ((-1182 . -619) 20072) ((-822 . -111) 19901) ((-1134 . -619) 19883) ((-632 . -1109) T) ((-583 . -175) T) ((-535 . -175) T) ((-460 . -313) 19870) ((-489 . -1109) T) ((-1134 . -620) 19618) ((-1043 . -174) T) ((-950 . -292) 19595) ((-220 . -1109) T) ((-860 . -619) 19577) ((-614 . -520) 19360) ((-81 . -622) 19301) ((-824 . -1047) 19285) ((-481 . -520) 19077) ((-970 . -732) T) ((-741 . -732) T) ((-721 . -732) T) ((-356 . -1121) T) ((-1189 . -619) 19059) ((-225 . -102) T) ((-488 . -382) 19028) ((-521 . -1109) T) ((-516 . -1109) T) ((-514 . -1109) T) ((-805 . -654) 19002) ((-1033 . -458) T) ((-965 . -520) 18935) ((-356 . -23) T) ((-641 . -132) T) ((-613 . -132) T) ((-359 . -458) T) ((-242 . -373) 18914) ((-384 . -174) T) ((-1261 . -1067) T) ((-1240 . -1067) T) ((-227 . -1011) T) ((-822 . -622) 18651) ((-705 . -393) T) ((-424 . -732) T) ((-707 . -1231) T) ((-1151 . -645) 18599) ((-586 . -875) 18583) ((-1292 . -1065) 18567) ((-1169 . -1203) 18543) ((-707 . -562) T) ((-127 . -1109) 18521) ((-720 . -1109) T) ((-664 . -38) 18491) ((-488 . -907) 18423) ((-251 . -1109) T) ((-189 . -1109) T) ((-359 . -408) T) ((-320 . -148) 18402) ((-320 . -146) 18381) ((-129 . -520) NIL) ((-117 . -562) T) ((-317 . -148) 18337) ((-317 . -146) 18293) ((-48 . -458) T) ((-163 . -1109) T) ((-158 . -1109) T) ((-1169 . -107) 18240) ((-788 . -1161) 18218) ((-695 . -34) T) ((-1292 . -111) 18197) ((-556 . -34) T) ((-490 . -107) 18181) ((-254 . -292) 18158) ((-253 . -292) 18135) ((-877 . -290) 18086) ((-45 . -1227) T) ((-1233 . -850) T) ((-822 . -1058) T) ((-668 . -652) 18055) ((-1188 . -47) 18032) ((-822 . -330) 17994) ((-1096 . -38) 17843) ((-822 . -235) 17822) ((-788 . -38) 17651) ((-786 . -38) 17500) ((-1124 . -496) 17481) ((-460 . -38) 17330) ((-1124 . -619) 17296) ((-1127 . -102) T) ((-650 . -620) 17257) ((-650 . -619) 17169) ((-587 . -1161) T) ((-524 . -1161) T) ((-1156 . -495) 17153) ((-348 . -1060) 17098) ((-1213 . -1109) 17076) ((-1151 . -25) T) ((-1151 . -21) T) ((-348 . -646) 17021) ((-1292 . -622) 16970) ((-480 . -1067) T) ((-1233 . -1109) T) ((-1241 . -798) NIL) ((-1241 . -801) NIL) ((-1008 . -856) 16949) ((-844 . -1109) T) ((-825 . -619) 16931) ((-872 . -21) T) ((-872 . -25) T) ((-805 . -732) T) ((-176 . -1231) T) ((-587 . -38) 16896) ((-524 . -38) 16861) ((-392 . -619) 16843) ((-337 . -102) T) ((-328 . -619) 16825) ((-171 . -290) 16783) ((-63 . -1227) T) ((-112 . -102) T) ((-878 . -1109) T) ((-176 . -562) T) ((-720 . -723) 16753) ((-298 . -132) 16636) ((-227 . -619) 16618) ((-227 . -620) 16548) ((-1012 . -645) 16487) ((-1292 . -1058) T) ((-1129 . -148) T) ((-638 . -1203) 16462) ((-737 . -916) 16441) ((-599 . -34) T) ((-653 . -107) 16425) ((-638 . -107) 16371) ((-1250 . -290) 16298) ((-737 . -654) 16223) ((-299 . -1227) T) ((-1188 . -1047) 16119) ((-950 . -624) 16096) ((-583 . -582) T) ((-583 . -533) T) ((-535 . -533) T) ((-1177 . -916) NIL) ((-1071 . -620) 16011) ((-1071 . -619) 15993) ((-959 . -619) 15975) ((-719 . -496) 15925) ((-348 . -102) T) ((-254 . -1065) 15822) ((-253 . -1065) 15719) ((-400 . -102) T) ((-31 . -1109) T) ((-959 . -620) 15580) ((-719 . -619) 15515) ((-1290 . -1220) 15484) ((-487 . -619) 15466) ((-487 . -620) 15327) ((-267 . -417) 15311) ((-249 . -417) 15295) ((-254 . -111) 15185) ((-253 . -111) 15075) ((-1184 . -654) 15000) ((-1183 . -654) 14897) ((-1177 . -654) 14749) ((-1135 . -654) 14674) ((-356 . -132) T) ((-82 . -447) T) ((-82 . -401) T) ((-1012 . -25) T) ((-1012 . -21) T) ((-879 . -1109) 14625) ((-40 . -1060) 14570) ((-878 . -723) 14522) ((-40 . -646) 14467) ((-384 . -294) T) ((-171 . -1011) 14418) ((-700 . -393) T) ((-1008 . -1006) 14402) ((-707 . -1121) T) ((-700 . -167) 14384) ((-1261 . -1109) T) ((-1240 . -1109) T) ((-320 . -1212) 14363) ((-320 . -1215) 14342) ((-1174 . -102) T) ((-320 . -966) 14321) ((-135 . -1121) T) ((-117 . -1121) T) ((-659 . -1227) T) ((-608 . -1275) 14305) ((-707 . -23) T) ((-608 . -1109) 14255) ((-320 . -95) 14234) ((-91 . -520) 14167) ((-176 . -368) T) ((-254 . -622) 13897) ((-253 . -622) 13627) ((-320 . -35) 13606) ((-614 . -495) 13540) ((-135 . -23) T) ((-117 . -23) T) ((-973 . -102) T) ((-724 . -1109) T) ((-481 . -495) 13477) ((-413 . -645) 13425) ((-659 . -1047) 13321) ((-965 . -495) 13305) ((-360 . -1067) T) ((-357 . -1067) T) ((-349 . -1067) T) ((-267 . -1067) T) ((-249 . -1067) T) ((-877 . -620) NIL) ((-877 . -619) 13287) ((-1288 . -496) 13268) ((-1287 . -496) 13249) ((-1300 . -21) T) ((-1288 . -619) 13215) ((-1287 . -619) 13181) ((-577 . -1011) T) ((-737 . -732) T) ((-1300 . -25) T) ((-254 . -1058) 13111) ((-253 . -1058) 13041) ((-72 . -1227) T) ((-254 . -235) 12993) ((-253 . -235) 12945) ((-40 . -102) T) ((-917 . -1067) T) ((-1191 . -102) T) ((-129 . -495) 12927) ((-1184 . -732) T) ((-1183 . -732) T) ((-1177 . -732) T) ((-1177 . -797) NIL) ((-1177 . -800) NIL) ((-961 . -102) T) ((-928 . -102) T) ((-876 . -1060) 12914) ((-1135 . -732) T) ((-777 . -102) T) ((-678 . -102) T) ((-876 . -646) 12901) ((-552 . -619) 12883) ((-480 . -1109) T) ((-344 . -1121) T) ((-176 . -1121) T) ((-323 . -927) 12862) ((-1261 . -723) 12703) ((-878 . -174) T) ((-1240 . -723) 12517) ((-849 . -21) 12469) ((-849 . -25) 12421) ((-247 . -1158) 12405) ((-127 . -520) 12338) ((-413 . -25) T) ((-413 . -21) T) ((-344 . -23) T) ((-171 . -620) 12104) ((-171 . -619) 12086) ((-176 . -23) T) ((-650 . -292) 12063) ((-526 . -34) T) ((-905 . -619) 12045) ((-89 . -1227) T) ((-847 . -619) 12027) ((-814 . -619) 12009) ((-775 . -619) 11991) ((-683 . -619) 11973) ((-242 . -654) 11821) ((-623 . -113) T) ((-1186 . -1109) T) ((-1182 . -1065) 11644) ((-1159 . -1227) T) ((-1134 . -1065) 11487) ((-860 . -1065) 11471) ((-1244 . -624) 11455) ((-1182 . -111) 11264) ((-1134 . -111) 11093) ((-860 . -111) 11072) ((-1234 . -856) T) ((-1250 . -620) NIL) ((-1250 . -619) 11054) ((-348 . -1161) T) ((-861 . -619) 11036) ((-1085 . -290) 11015) ((-80 . -1227) T) ((-912 . -1227) T) ((-1013 . -916) NIL) ((-614 . -290) 10991) ((-1213 . -520) 10924) ((-493 . -1227) T) ((-577 . -619) 10906) ((-481 . -290) 10885) ((-1221 . -652) 10795) ((-523 . -93) T) ((-1096 . -233) 10779) ((-219 . -1227) T) ((-1013 . -654) 10729) ((-965 . -290) 10681) ((-293 . -927) T) ((-823 . -311) 10660) ((-876 . -102) T) ((-788 . -233) 10644) ((-921 . -654) 10596) ((-717 . -652) 10546) ((-700 . -730) 10513) ((-641 . -21) T) ((-641 . -25) T) ((-613 . -21) T) ((-553 . -102) T) ((-348 . -38) 10478) ((-493 . -891) 10460) ((-493 . -893) 10442) ((-480 . -723) 10283) ((-219 . -891) 10265) ((-64 . -1227) T) ((-219 . -893) 10247) ((-613 . -25) T) ((-433 . -654) 10221) ((-1182 . -622) 9990) ((-493 . -1047) 9950) ((-878 . -520) 9862) ((-1134 . -622) 9654) ((-860 . -622) 9572) ((-219 . -1047) 9532) ((-242 . -34) T) ((-1009 . -1109) 9510) ((-586 . -1060) 9497) ((-570 . -1060) 9484) ((-501 . -1060) 9449) ((-1261 . -174) 9380) ((-1240 . -174) 9311) ((-586 . -646) 9298) ((-570 . -646) 9285) ((-501 . -646) 9250) ((-718 . -146) 9229) ((-718 . -148) 9208) ((-707 . -132) T) ((-137 . -471) 9185) ((-1156 . -619) 9117) ((-664 . -662) 9101) ((-129 . -290) 9051) ((-117 . -132) T) ((-483 . -1231) T) ((-614 . -610) 9027) ((-481 . -610) 9006) ((-341 . -340) 8975) ((-603 . -1109) T) ((-591 . -1109) T) ((-542 . -1109) T) ((-483 . -562) T) ((-1182 . -1058) T) ((-1134 . -1058) T) ((-860 . -1058) T) ((-242 . -797) 8954) ((-242 . -800) 8905) ((-242 . -799) 8884) ((-1182 . -330) 8861) ((-242 . -732) 8771) ((-965 . -19) 8755) ((-493 . -382) 8737) ((-493 . -343) 8719) ((-1134 . -330) 8691) ((-359 . -1284) 8668) ((-219 . -382) 8650) ((-219 . -343) 8632) ((-965 . -610) 8609) ((-1182 . -235) T) ((-1273 . -1109) T) ((-670 . -1109) T) ((-651 . -1109) T) ((-1199 . -1109) T) ((-1096 . -256) 8546) ((-592 . -652) 8506) ((-360 . -1109) T) ((-357 . -1109) T) ((-349 . -1109) T) ((-267 . -1109) T) ((-249 . -1109) T) ((-84 . -1227) T) ((-128 . -102) 8484) ((-122 . -102) 8462) ((-1199 . -616) 8441) ((-1240 . -520) 8301) ((-1150 . -1109) T) ((-1124 . -622) 8282) ((-485 . -1109) T) ((-1089 . -927) 8233) ((-1013 . -800) T) ((-485 . -616) 8212) ((-254 . -801) 8163) ((-254 . -798) 8114) ((-253 . -801) 8065) ((-40 . -1161) NIL) ((-253 . -798) 8016) ((-1013 . -797) T) ((-129 . -19) 7998) ((-1013 . -732) T) ((-705 . -1060) 7963) ((-980 . -800) T) ((-921 . -732) T) ((-917 . -1109) T) ((-129 . -610) 7938) ((-705 . -646) 7903) ((-91 . -495) 7887) ((-493 . -907) NIL) ((-899 . -619) 7869) ((-227 . -1065) 7834) ((-878 . -294) T) ((-219 . -907) NIL) ((-839 . -1121) 7813) ((-59 . -1109) 7763) ((-525 . -1109) 7741) ((-522 . -1109) 7691) ((-503 . -1109) 7669) ((-502 . -1109) 7619) ((-586 . -102) T) ((-570 . -102) T) ((-501 . -102) T) ((-480 . -174) 7550) ((-364 . -927) T) ((-358 . -927) T) ((-350 . -927) T) ((-227 . -111) 7506) ((-839 . -23) 7458) ((-433 . -732) T) ((-108 . -927) T) ((-40 . -38) 7403) ((-108 . -826) T) ((-587 . -354) T) ((-524 . -354) T) ((-842 . -290) 7382) ((-320 . -458) 7361) ((-317 . -458) T) ((-664 . -652) 7320) ((-608 . -520) 7253) ((-344 . -132) T) ((-176 . -132) T) ((-298 . -25) 7117) ((-298 . -21) 7000) ((-45 . -1203) 6979) ((-66 . -619) 6961) ((-55 . -102) T) ((-341 . -652) 6943) ((-1278 . -102) T) ((-45 . -107) 6893) ((-825 . -622) 6877) ((-1277 . -102) 6827) ((-1269 . -654) 6752) ((-1262 . -654) 6649) ((-1241 . -654) 6501) ((-1241 . -916) NIL) ((-1111 . -431) 6485) ((-1111 . -373) 6464) ((-392 . -622) 6448) ((-328 . -622) 6432) ((-1208 . -619) 6414) ((-1200 . -102) T) ((-1072 . -1227) T) ((-1096 . -652) 6324) ((-1071 . -1065) 6311) ((-1071 . -111) 6296) ((-959 . -1065) 6139) ((-959 . -111) 5968) ((-788 . -652) 5878) ((-786 . -652) 5788) ((-629 . -1060) 5775) ((-670 . -723) 5759) ((-629 . -646) 5746) ((-487 . -1065) 5589) ((-483 . -368) T) ((-467 . -652) 5545) ((-460 . -652) 5455) ((-227 . -622) 5405) ((-360 . -723) 5357) ((-357 . -723) 5309) ((-118 . -1060) 5254) ((-349 . -723) 5206) ((-267 . -723) 5055) ((-249 . -723) 4904) ((-1105 . -93) T) ((-1099 . -93) T) ((-118 . -646) 4849) ((-1082 . -93) T) ((-950 . -657) 4833) ((-1075 . -93) T) ((-487 . -111) 4662) ((-1066 . -1109) 4640) ((-1045 . -93) T) ((-950 . -378) 4624) ((-250 . -102) T) ((-1028 . -93) T) ((-74 . -619) 4606) ((-970 . -47) 4585) ((-716 . -102) T) ((-705 . -102) T) ((-1 . -1109) T) ((-627 . -1121) T) ((-1097 . -619) 4567) ((-632 . -93) T) ((-1085 . -619) 4549) ((-917 . -723) 4514) ((-127 . -495) 4498) ((-489 . -93) T) ((-627 . -23) T) ((-396 . -23) T) ((-87 . -1227) T) ((-220 . -93) T) ((-614 . -619) 4480) ((-614 . -620) NIL) ((-481 . -620) NIL) ((-481 . -619) 4462) ((-356 . -25) T) ((-356 . -21) T) ((-50 . -652) 4421) ((-517 . -1109) T) ((-513 . -1109) T) ((-128 . -313) 4359) ((-122 . -313) 4297) ((-602 . -654) 4271) ((-601 . -654) 4196) ((-587 . -652) 4146) ((-227 . -1058) T) ((-524 . -652) 4076) ((-384 . -1011) T) ((-227 . -245) T) ((-227 . -235) T) ((-1071 . -622) 4048) ((-1071 . -624) 4029) ((-965 . -620) 3990) ((-965 . -619) 3902) ((-959 . -622) 3691) ((-876 . -38) 3678) ((-719 . -622) 3628) ((-1261 . -294) 3579) ((-1240 . -294) 3530) ((-487 . -622) 3315) ((-1129 . -458) T) ((-508 . -856) T) ((-320 . -1148) 3294) ((-1008 . -148) 3273) ((-1008 . -146) 3252) ((-501 . -313) 3239) ((-299 . -1203) 3218) ((-1194 . -619) 3200) ((-1193 . -619) 3182) ((-1192 . -619) 3164) ((-877 . -1065) 3109) ((-483 . -1121) T) ((-140 . -841) 3091) ((-115 . -841) 3072) ((-629 . -102) T) ((-1213 . -495) 3056) ((-254 . -373) 3035) ((-253 . -373) 3014) ((-1071 . -1058) T) ((-299 . -107) 2964) ((-131 . -619) 2946) ((-129 . -620) NIL) ((-129 . -619) 2890) ((-118 . -102) T) ((-959 . -1058) T) ((-877 . -111) 2819) ((-483 . -23) T) ((-459 . -1227) T) ((-487 . -1058) T) ((-1071 . -235) T) ((-959 . -330) 2788) ((-487 . -330) 2745) ((-360 . -174) T) ((-357 . -174) T) ((-349 . -174) T) ((-267 . -174) 2656) ((-249 . -174) 2567) ((-970 . -1047) 2463) ((-523 . -496) 2444) ((-741 . -1047) 2415) ((-523 . -619) 2381) ((-424 . -1227) 2318) ((-1114 . -102) T) ((-1101 . -619) 2277) ((-1043 . -619) 2259) ((-700 . -1060) 2209) ((-1290 . -152) 2193) ((-1288 . -622) 2174) ((-1287 . -622) 2155) ((-1282 . -619) 2137) ((-1269 . -732) T) ((-700 . -646) 2087) ((-1262 . -732) T) ((-1241 . -797) NIL) ((-1241 . -800) NIL) ((-171 . -1065) 1997) ((-917 . -174) T) ((-877 . -622) 1927) ((-1241 . -732) T) ((-1012 . -347) 1901) ((-225 . -652) 1853) ((-1009 . -520) 1786) ((-849 . -856) 1765) ((-570 . -1161) T) ((-480 . -294) 1716) ((-602 . -732) T) ((-366 . -619) 1698) ((-326 . -619) 1680) ((-424 . -1047) 1576) ((-601 . -732) T) ((-413 . -856) 1527) ((-171 . -111) 1423) ((-839 . -132) 1375) ((-743 . -152) 1359) ((-1277 . -313) 1297) ((-493 . -311) T) ((-384 . -619) 1264) ((-526 . -1019) 1248) ((-384 . -620) 1162) ((-219 . -311) T) ((-142 . -152) 1144) ((-720 . -290) 1123) ((-493 . -1031) T) ((-586 . -38) 1110) ((-570 . -38) 1097) ((-501 . -38) 1062) ((-219 . -1031) T) ((-877 . -1058) T) ((-842 . -619) 1044) ((-833 . -619) 1026) ((-831 . -619) 1008) ((-822 . -916) 987) ((-1301 . -1121) T) ((-1250 . -1065) 810) ((-861 . -1065) 794) ((-877 . -245) T) ((-877 . -235) NIL) ((-695 . -1227) T) ((-1301 . -23) T) ((-822 . -654) 719) ((-556 . -1227) T) ((-424 . -343) 703) ((-577 . -1065) 690) ((-1250 . -111) 499) ((-707 . -645) 481) ((-861 . -111) 460) ((-386 . -23) T) ((-171 . -622) 238) ((-1199 . -520) 30) ((-882 . -1109) T) ((-687 . -1109) T) ((-682 . -1109) T) ((-668 . -1109) T)) \ No newline at end of file
+(-3783 (|has| |#1| (-858)) (|has| |#1| (-1111)))
+((($ $) . T) ((#0=(-872 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-237)) ((|#2| |#1|) |has| |#1| (-237)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-486 . -1111) T) ((-269 . -522) 189795) ((-251 . -522) 189738) ((-249 . -1111) 189688) ((-579 . -111) 189673) ((-539 . -23) T) ((-134 . -1111) T) ((-139 . -1111) T) ((-118 . -315) 189630) ((-138 . -1111) T) ((-807 . -1229) 189599) ((-487 . -522) 189391) ((-685 . -624) 189375) ((-702 . -102) T) ((-1152 . -522) 189294) ((-398 . -132) T) ((-1292 . -987) 189263) ((-1035 . -1062) 189200) ((-31 . -93) T) ((-610 . -497) 189184) ((-1035 . -648) 189121) ((-629 . -132) T) ((-827 . -854) T) ((-531 . -57) 189071) ((-527 . -522) 189004) ((-361 . -1062) 188949) ((-59 . -522) 188882) ((-524 . -522) 188815) ((-426 . -909) 188774) ((-171 . -1060) T) ((-505 . -522) 188707) ((-504 . -522) 188640) ((-361 . -648) 188585) ((-807 . -1049) 188365) ((-707 . -38) 188330) ((-1252 . -624) 188078) ((-350 . -356) T) ((-1105 . -1104) 188062) ((-1105 . -1111) 188040) ((-863 . -624) 187937) ((-171 . -247) 187888) ((-171 . -237) 187839) ((-1105 . -1106) 187797) ((-880 . -292) 187755) ((-227 . -803) T) ((-227 . -800) T) ((-702 . -290) NIL) ((-579 . -624) 187727) ((-1161 . -1205) 187706) ((-415 . -1003) 187690) ((-48 . -1062) 187655) ((-709 . -21) T) ((-709 . -25) T) ((-48 . -648) 187620) ((-1294 . -656) 187594) ((-322 . -161) 187573) ((-322 . -144) 187552) ((-1161 . -107) 187502) ((-117 . -21) T) ((-40 . -233) 187479) ((-135 . -25) T) ((-117 . -25) T) ((-616 . -294) 187455) ((-483 . -294) 187434) ((-1252 . -332) 187411) ((-1252 . -1060) T) ((-863 . -1060) T) ((-807 . -345) 187395) ((-140 . -187) T) ((-118 . -1163) NIL) ((-91 . -621) 187327) ((-485 . -132) T) ((-1252 . -237) T) ((-1107 . -498) 187308) ((-1107 . -621) 187274) ((-1101 . -498) 187255) ((-1101 . -621) 187221) ((-601 . -1229) T) ((-1084 . -498) 187202) ((-579 . -1060) T) ((-1084 . -621) 187168) ((-670 . -725) 187152) ((-1077 . -498) 187133) ((-1077 . -621) 187099) ((-967 . -294) 187076) ((-60 . -34) T) ((-1073 . -803) T) ((-1073 . -800) T) ((-1047 . -498) 187057) ((-1030 . -498) 187038) ((-824 . -734) T) ((-739 . -47) 187003) ((-631 . -38) 186990) ((-362 . -296) T) ((-359 . -296) T) ((-351 . -296) T) ((-269 . -296) 186921) ((-251 . -296) 186852) ((-1047 . -621) 186818) ((-1035 . -102) T) ((-1030 . -621) 186784) ((-634 . -498) 186765) ((-421 . -734) T) ((-118 . -38) 186710) ((-491 . -498) 186691) ((-634 . -621) 186657) ((-421 . -481) T) ((-220 . -498) 186638) ((-491 . -621) 186604) ((-361 . -102) T) ((-220 . -621) 186570) ((-1223 . -1069) T) ((-350 . -654) 186500) ((-719 . -1069) T) ((-1186 . -47) 186477) ((-1185 . -47) 186447) ((-1179 . -47) 186424) ((-129 . -294) 186399) ((-1046 . -152) 186345) ((-919 . -296) T) ((-1137 . -47) 186317) ((-702 . -315) NIL) ((-523 . -621) 186299) ((-518 . -621) 186281) ((-516 . -621) 186263) ((-333 . -1111) 186213) ((-720 . -460) 186144) ((-48 . -102) T) ((-1263 . -292) 186102) ((-1242 . -292) 186002) ((-652 . -674) 185986) ((-652 . -659) 185970) ((-346 . -21) T) ((-346 . -25) T) ((-40 . -356) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-652 . -380) 185954) ((-613 . -498) 185936) ((-610 . -292) 185888) ((-613 . -621) 185855) ((-396 . -102) T) ((-1131 . -144) T) ((-127 . -621) 185787) ((-882 . -1111) T) ((-666 . -419) 185771) ((-722 . -621) 185753) ((-253 . -621) 185720) ((-189 . -621) 185702) ((-163 . -621) 185684) ((-158 . -621) 185666) ((-1294 . -734) T) ((-1113 . -34) T) ((-879 . -803) NIL) ((-879 . -800) NIL) ((-866 . -858) T) ((-739 . -895) NIL) ((-1303 . -132) T) ((-388 . -132) T) ((-901 . -624) 185634) ((-913 . -102) T) ((-739 . -1049) 185510) ((-1186 . -1229) T) ((-539 . -132) T) ((-1185 . -1229) T) ((-1098 . -419) 185494) ((-1011 . -497) 185478) ((-118 . -408) 185455) ((-1179 . -1229) T) ((-790 . -419) 185439) ((-788 . -419) 185423) ((-952 . -34) T) ((-702 . -1163) NIL) ((-256 . -656) 185258) ((-255 . -656) 185080) ((-825 . -929) 185059) ((-462 . -419) 185043) ((-610 . -19) 185027) ((-1157 . -1222) 184996) ((-1179 . -895) NIL) ((-1179 . -893) 184948) ((-610 . -612) 184925) ((-1215 . -621) 184857) ((-1187 . -621) 184839) ((-62 . -403) T) ((-1185 . -1049) 184774) ((-1179 . -1049) 184740) ((-702 . -38) 184690) ((-40 . -654) 184620) ((-482 . -292) 184578) ((-1235 . -621) 184560) ((-739 . -384) 184544) ((-846 . -621) 184526) ((-666 . -1069) T) ((-1263 . -1013) 184492) ((-1242 . -1013) 184458) ((-254 . -1229) T) ((-1099 . -624) 184442) ((-1074 . -1205) 184417) ((-1087 . -624) 184394) ((-880 . -622) 184201) ((-880 . -621) 184183) ((-1201 . -497) 184120) ((-426 . -1033) 184098) ((-48 . -315) 184085) ((-1074 . -107) 184031) ((-487 . -497) 183968) ((-528 . -1229) T) ((-1179 . -345) 183920) ((-1152 . -497) 183891) ((-1179 . -384) 183843) ((-1098 . -1069) T) ((-445 . -102) T) ((-185 . -1111) T) ((-256 . -34) T) ((-255 . -34) T) ((-790 . -1069) T) ((-788 . -1069) T) ((-739 . -909) 183820) ((-462 . -1069) T) ((-59 . -497) 183804) ((-1045 . -1067) 183778) ((-527 . -497) 183762) ((-524 . -497) 183746) ((-505 . -497) 183730) ((-504 . -497) 183714) ((-249 . -522) 183647) ((-1045 . -111) 183614) ((-1186 . -909) 183527) ((-1185 . -909) 183433) ((-1179 . -909) 183266) ((-1137 . -909) 183250) ((-678 . -1123) T) ((-361 . -1163) T) ((-653 . -93) T) ((-328 . -1067) 183232) ((-256 . -799) 183211) ((-256 . -802) 183162) ((-31 . -498) 183143) ((-256 . -801) 183122) ((-255 . -799) 183101) ((-255 . -802) 183052) ((-255 . -801) 183031) ((-31 . -621) 182997) ((-50 . -1069) T) ((-256 . -734) 182907) ((-255 . -734) 182817) ((-1223 . -1111) T) ((-678 . -23) T) ((-589 . -1069) T) ((-526 . -1069) T) ((-386 . -1067) 182782) ((-328 . -111) 182757) ((-73 . -390) T) ((-73 . -403) T) ((-1035 . -38) 182694) ((-702 . -408) 182676) ((-99 . -102) T) ((-719 . -1111) T) ((-1308 . -1062) 182663) ((-1014 . -146) 182635) ((-1014 . -148) 182607) ((-878 . -654) 182579) ((-386 . -111) 182535) ((-325 . -1233) 182514) ((-482 . -1013) 182480) ((-361 . -38) 182445) ((-40 . -377) 182417) ((-881 . -621) 182289) ((-128 . -126) 182273) ((-122 . -126) 182257) ((-844 . -1067) 182227) ((-841 . -21) 182179) ((-835 . -1067) 182163) ((-841 . -25) 182115) ((-325 . -564) 182066) ((-525 . -624) 182047) ((-572 . -836) T) ((-244 . -1229) T) ((-1045 . -624) 182016) ((-844 . -111) 181981) ((-835 . -111) 181960) ((-1263 . -621) 181942) ((-1242 . -621) 181924) ((-1242 . -622) 181595) ((-1184 . -918) 181574) ((-1136 . -918) 181553) ((-48 . -38) 181518) ((-1301 . -1123) T) ((-544 . -292) 181474) ((-610 . -621) 181386) ((-610 . -622) 181347) ((-1299 . -1123) T) ((-368 . -624) 181331) ((-328 . -624) 181315) ((-244 . -1049) 181142) ((-1184 . -656) 181067) ((-1136 . -656) 180992) ((-862 . -656) 180966) ((-726 . -621) 180948) ((-554 . -375) T) ((-1301 . -23) T) ((-1299 . -23) T) ((-499 . -1111) T) ((-386 . -624) 180898) ((-386 . -626) 180880) ((-1045 . -1060) T) ((-873 . -102) T) ((-1201 . -292) 180859) ((-171 . -375) 180810) ((-1015 . -1229) T) ((-844 . -624) 180764) ((-835 . -624) 180719) ((-44 . -23) T) ((-487 . -292) 180698) ((-594 . -1111) T) ((-1157 . -1120) 180667) ((-1115 . -1114) 180619) ((-398 . -21) T) ((-398 . -25) T) ((-153 . -1123) T) ((-1308 . -102) T) ((-1015 . -893) 180601) ((-1015 . -895) 180583) ((-1223 . -725) 180480) ((-631 . -233) 180464) ((-629 . -21) T) ((-295 . -564) T) ((-629 . -25) T) ((-1209 . -1111) T) ((-719 . -725) 180429) ((-244 . -384) 180398) ((-1015 . -1049) 180358) ((-386 . -1060) T) ((-225 . -1069) T) ((-118 . -233) 180335) ((-59 . -292) 180287) ((-153 . -23) T) ((-524 . -292) 180239) ((-333 . -522) 180172) ((-504 . -292) 180124) ((-386 . -247) T) ((-386 . -237) T) ((-844 . -1060) T) ((-835 . -1060) T) ((-720 . -958) 180093) ((-709 . -858) T) ((-482 . -621) 180075) ((-1265 . -1062) 179980) ((-588 . -654) 179952) ((-572 . -654) 179924) ((-503 . -654) 179874) ((-835 . -237) 179853) ((-135 . -858) T) ((-1265 . -648) 179745) ((-666 . -1111) T) ((-1201 . -612) 179724) ((-558 . -1205) 179703) ((-343 . -1111) T) ((-325 . -370) 179682) ((-415 . -148) 179661) ((-415 . -146) 179640) ((-973 . -1123) 179539) ((-244 . -909) 179471) ((-823 . -1123) 179381) ((-662 . -860) 179365) ((-487 . -612) 179344) ((-558 . -107) 179294) ((-1015 . -384) 179276) ((-1015 . -345) 179258) ((-97 . -1111) T) ((-973 . -23) 179069) ((-485 . -21) T) ((-485 . -25) T) ((-823 . -23) 178939) ((-1188 . -621) 178921) ((-59 . -19) 178905) ((-1188 . -622) 178827) ((-1184 . -734) T) ((-1136 . -734) T) ((-524 . -19) 178811) ((-504 . -19) 178795) ((-59 . -612) 178772) ((-1098 . -1111) T) ((-910 . -102) 178750) ((-862 . -734) T) ((-790 . -1111) T) ((-524 . -612) 178727) ((-504 . -612) 178704) ((-788 . -1111) T) ((-788 . -1076) 178671) ((-469 . -1111) T) ((-462 . -1111) T) ((-594 . -725) 178646) ((-657 . -1111) T) ((-1271 . -47) 178623) ((-1265 . -102) T) ((-1264 . -47) 178593) ((-1243 . -47) 178570) ((-1223 . -174) 178521) ((-1185 . -313) 178500) ((-1179 . -313) 178479) ((-1107 . -624) 178460) ((-1101 . -624) 178441) ((-1091 . -564) 178392) ((-1015 . -909) NIL) ((-1091 . -1233) 178343) ((-678 . -132) T) ((-635 . -1123) T) ((-1084 . -624) 178324) ((-1077 . -624) 178305) ((-1047 . -624) 178286) ((-1030 . -624) 178267) ((-707 . -654) 178217) ((-280 . -1111) T) ((-85 . -449) T) ((-85 . -403) T) ((-722 . -1067) 178187) ((-719 . -174) T) ((-50 . -1111) T) ((-603 . -47) 178164) ((-227 . -656) 178129) ((-589 . -1111) T) ((-526 . -1111) T) ((-495 . -828) T) ((-495 . -929) T) ((-366 . -1233) T) ((-360 . -1233) T) ((-352 . -1233) T) ((-325 . -1123) T) ((-322 . -1062) 178039) ((-319 . -1062) 177968) ((-108 . -1233) T) ((-634 . -624) 177949) ((-366 . -564) T) ((-219 . -929) T) ((-219 . -828) T) ((-322 . -648) 177859) ((-319 . -648) 177788) ((-360 . -564) T) ((-352 . -564) T) ((-491 . -624) 177769) ((-108 . -564) T) ((-666 . -725) 177739) ((-1179 . -1033) NIL) ((-220 . -624) 177720) ((-325 . -23) T) ((-67 . -1229) T) ((-1011 . -621) 177652) ((-702 . -233) 177634) ((-722 . -111) 177599) ((-652 . -34) T) ((-249 . -497) 177583) ((-1308 . -1163) T) ((-1303 . -21) T) ((-1303 . -25) T) ((-1113 . -1109) 177567) ((-173 . -1111) T) ((-1301 . -132) T) ((-1299 . -132) T) ((-1292 . -102) T) ((-1275 . -621) 177533) ((-1271 . -1229) T) ((-961 . -918) 177512) ((-1264 . -1229) T) ((-1264 . -1049) 177447) ((-1243 . -1229) T) ((-523 . -624) 177431) ((-1243 . -895) NIL) ((-1243 . -893) 177383) ((-1243 . -1049) 177349) ((-489 . -918) 177328) ((-1223 . -522) 177295) ((-1201 . -622) NIL) ((-1098 . -725) 177144) ((-1073 . -656) 177131) ((-961 . -656) 177056) ((-605 . -498) 177037) ((-593 . -498) 177018) ((-790 . -725) 176847) ((-605 . -621) 176813) ((-593 . -621) 176779) ((-544 . -621) 176761) ((-544 . -622) 176742) ((-788 . -725) 176591) ((-1088 . -102) T) ((-388 . -25) T) ((-631 . -654) 176563) ((-388 . -21) T) ((-489 . -656) 176488) ((-469 . -725) 176459) ((-462 . -725) 176308) ((-998 . -102) T) ((-1201 . -621) 176290) ((-1153 . -1134) 176235) ((-1057 . -1222) 176164) ((-745 . -102) T) ((-118 . -654) 176094) ((-613 . -624) 176076) ((-910 . -315) 176014) ((-884 . -93) T) ((-539 . -25) T) ((-722 . -624) 175968) ((-689 . -93) T) ((-684 . -93) T) ((-653 . -498) 175949) ((-142 . -102) T) ((-44 . -132) T) ((-672 . -621) 175931) ((-603 . -1229) T) ((-350 . -1069) T) ((-295 . -1123) T) ((-653 . -621) 175884) ((-486 . -93) T) ((-362 . -621) 175866) ((-359 . -621) 175848) ((-351 . -621) 175830) ((-269 . -622) 175578) ((-269 . -621) 175560) ((-251 . -621) 175542) ((-251 . -622) 175403) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1152 . -621) 175385) ((-1131 . -648) 175372) ((-1131 . -1062) 175359) ((-827 . -734) T) ((-827 . -865) T) ((-610 . -294) 175336) ((-589 . -725) 175301) ((-487 . -622) NIL) ((-487 . -621) 175283) ((-526 . -725) 175228) ((-322 . -102) T) ((-319 . -102) T) ((-295 . -23) T) ((-153 . -132) T) ((-919 . -621) 175210) ((-919 . -622) 175192) ((-394 . -734) T) ((-880 . -1067) 175144) ((-880 . -111) 175082) ((-722 . -1060) T) ((-720 . -1255) 175066) ((-702 . -356) NIL) ((-137 . -102) T) ((-115 . -102) T) ((-140 . -102) T) ((-527 . -621) 174998) ((-386 . -803) T) ((-225 . -1111) T) ((-169 . -1229) T) ((-386 . -800) T) ((-227 . -802) T) ((-227 . -799) T) ((-59 . -622) 174959) ((-59 . -621) 174871) ((-227 . -734) T) ((-524 . -622) 174832) ((-524 . -621) 174744) ((-505 . -621) 174676) ((-504 . -622) 174637) ((-504 . -621) 174549) ((-1091 . -370) 174500) ((-40 . -419) 174477) ((-77 . -1229) T) ((-879 . -918) NIL) ((-366 . -335) 174461) ((-366 . -370) T) ((-360 . -335) 174445) ((-360 . -370) T) ((-352 . -335) 174429) ((-352 . -370) T) ((-322 . -290) 174408) ((-108 . -370) T) ((-70 . -1229) T) ((-1243 . -345) 174360) ((-879 . -656) 174305) ((-1243 . -384) 174257) ((-973 . -132) 174112) ((-823 . -132) 173982) ((-967 . -659) 173966) ((-1098 . -174) 173877) ((-967 . -380) 173861) ((-1073 . -802) T) ((-1073 . -799) T) ((-880 . -624) 173759) ((-790 . -174) 173650) ((-788 . -174) 173561) ((-824 . -47) 173523) ((-1073 . -734) T) ((-333 . -497) 173507) ((-961 . -734) T) ((-1292 . -315) 173445) ((-462 . -174) 173356) ((-249 . -292) 173308) ((-1271 . -909) 173221) ((-1264 . -909) 173127) ((-1263 . -1067) 172962) ((-489 . -734) T) ((-1243 . -909) 172795) ((-1242 . -1067) 172603) ((-1223 . -296) 172582) ((-1198 . -1229) T) ((-1195 . -375) T) ((-1194 . -375) T) ((-1157 . -152) 172566) ((-1131 . -102) T) ((-1129 . -1111) T) ((-1091 . -23) T) ((-1091 . -1123) T) ((-1086 . -102) T) ((-1068 . -621) 172533) ((-936 . -964) T) ((-745 . -315) 172471) ((-75 . -1229) T) ((-672 . -389) 172443) ((-171 . -918) 172396) ((-30 . -964) T) ((-112 . -852) T) ((-1 . -621) 172378) ((-1014 . -417) 172350) ((-129 . -659) 172332) ((-50 . -628) 172316) ((-702 . -654) 172251) ((-603 . -909) 172164) ((-446 . -102) T) ((-129 . -380) 172146) ((-142 . -315) NIL) ((-880 . -1060) T) ((-841 . -858) 172125) ((-81 . -1229) T) ((-719 . -296) T) ((-40 . -1069) T) ((-589 . -174) T) ((-526 . -174) T) ((-519 . -621) 172107) ((-171 . -656) 172017) ((-515 . -621) 171999) ((-358 . -148) 171981) ((-358 . -146) T) ((-366 . -1123) T) ((-360 . -1123) T) ((-352 . -1123) T) ((-1015 . -313) T) ((-923 . -313) T) ((-880 . -247) T) ((-108 . -1123) T) ((-880 . -237) 171960) ((-1263 . -111) 171781) ((-1242 . -111) 171570) ((-249 . -1267) 171554) ((-572 . -856) T) ((-366 . -23) T) ((-361 . -356) T) ((-322 . -315) 171541) ((-319 . -315) 171482) ((-360 . -23) T) ((-325 . -132) T) ((-352 . -23) T) ((-1015 . -1033) T) ((-31 . -624) 171463) ((-108 . -23) T) ((-662 . -1062) 171447) ((-249 . -612) 171424) ((-339 . -1111) T) ((-662 . -648) 171394) ((-1265 . -38) 171286) ((-1252 . -918) 171265) ((-112 . -1111) T) ((-1046 . -102) T) ((-1252 . -656) 171190) ((-879 . -802) NIL) ((-863 . -656) 171164) ((-879 . -799) NIL) ((-824 . -895) NIL) ((-879 . -734) T) ((-1098 . -522) 171037) ((-790 . -522) 170984) ((-788 . -522) 170936) ((-579 . -656) 170923) ((-824 . -1049) 170751) ((-462 . -522) 170694) ((-396 . -397) T) ((-1263 . -624) 170507) ((-1242 . -624) 170255) ((-60 . -1229) T) ((-629 . -858) 170234) ((-508 . -669) T) ((-1157 . -987) 170203) ((-1035 . -654) 170140) ((-1014 . -460) T) ((-707 . -856) T) ((-518 . -800) T) ((-482 . -1067) 169975) ((-508 . -113) T) ((-350 . -1111) T) ((-319 . -1163) NIL) ((-295 . -132) T) ((-402 . -1111) T) ((-878 . -1069) T) ((-702 . -377) 169942) ((-361 . -654) 169872) ((-225 . -628) 169849) ((-333 . -292) 169801) ((-482 . -111) 169622) ((-1263 . -1060) T) ((-1242 . -1060) T) ((-824 . -384) 169606) ((-171 . -734) T) ((-662 . -102) T) ((-1263 . -247) 169585) ((-1263 . -237) 169537) ((-1242 . -237) 169442) ((-1242 . -247) 169421) ((-1014 . -410) NIL) ((-678 . -647) 169369) ((-322 . -38) 169279) ((-319 . -38) 169208) ((-69 . -621) 169190) ((-325 . -501) 169156) ((-48 . -654) 169106) ((-1201 . -294) 169085) ((-1237 . -858) T) ((-1124 . -1123) 168995) ((-83 . -1229) T) ((-61 . -621) 168977) ((-487 . -294) 168956) ((-1294 . -1049) 168933) ((-1176 . -1111) T) ((-1124 . -23) 168803) ((-824 . -909) 168739) ((-1252 . -734) T) ((-1113 . -1229) T) ((-482 . -624) 168565) ((-1098 . -296) 168496) ((-975 . -1111) T) ((-902 . -102) T) ((-790 . -296) 168407) ((-333 . -19) 168391) ((-59 . -294) 168368) ((-788 . -296) 168299) ((-863 . -734) T) ((-118 . -856) NIL) ((-524 . -294) 168276) ((-333 . -612) 168253) ((-504 . -294) 168230) ((-462 . -296) 168161) ((-1046 . -315) 168012) ((-884 . -498) 167993) ((-884 . -621) 167959) ((-689 . -498) 167940) ((-579 . -734) T) ((-684 . -498) 167921) ((-689 . -621) 167871) ((-684 . -621) 167837) ((-670 . -621) 167819) ((-486 . -498) 167800) ((-486 . -621) 167766) ((-249 . -622) 167727) ((-249 . -498) 167704) ((-139 . -498) 167685) ((-138 . -498) 167666) ((-134 . -498) 167647) ((-249 . -621) 167539) ((-215 . -102) T) ((-139 . -621) 167505) ((-138 . -621) 167471) ((-134 . -621) 167437) ((-1158 . -34) T) ((-952 . -1229) T) ((-350 . -725) 167382) ((-678 . -25) T) ((-678 . -21) T) ((-1188 . -624) 167363) ((-482 . -1060) T) ((-643 . -425) 167328) ((-615 . -425) 167293) ((-1131 . -1163) T) ((-720 . -1062) 167116) ((-589 . -296) T) ((-526 . -296) T) ((-1264 . -313) 167095) ((-482 . -237) 167047) ((-482 . -247) 167026) ((-1243 . -313) 167005) ((-720 . -648) 166834) ((-1243 . -1033) NIL) ((-1091 . -132) T) ((-880 . -803) 166813) ((-145 . -102) T) ((-40 . -1111) T) ((-880 . -800) 166792) ((-652 . -1021) 166776) ((-588 . -1069) T) ((-572 . -1069) T) ((-503 . -1069) T) ((-415 . -460) T) ((-366 . -132) T) ((-322 . -408) 166760) ((-319 . -408) 166721) ((-360 . -132) T) ((-352 . -132) T) ((-1193 . -1111) T) ((-1131 . -38) 166708) ((-1105 . -621) 166675) ((-108 . -132) T) ((-963 . -1111) T) ((-930 . -1111) T) ((-779 . -1111) T) ((-680 . -1111) T) ((-709 . -148) T) ((-117 . -148) T) ((-1301 . -21) T) ((-1301 . -25) T) ((-1299 . -21) T) ((-1299 . -25) T) ((-672 . -1067) 166659) ((-539 . -858) T) ((-508 . -858) T) ((-362 . -1067) 166611) ((-359 . -1067) 166563) ((-351 . -1067) 166515) ((-256 . -1229) T) ((-255 . -1229) T) ((-269 . -1067) 166358) ((-251 . -1067) 166201) ((-672 . -111) 166180) ((-555 . -852) T) ((-362 . -111) 166118) ((-359 . -111) 166056) ((-351 . -111) 165994) ((-269 . -111) 165823) ((-251 . -111) 165652) ((-825 . -1233) 165631) ((-631 . -419) 165615) ((-44 . -21) T) ((-44 . -25) T) ((-823 . -647) 165521) ((-825 . -564) 165500) ((-256 . -1049) 165327) ((-255 . -1049) 165154) ((-127 . -120) 165138) ((-919 . -1067) 165103) ((-720 . -102) T) ((-707 . -1069) T) ((-605 . -624) 165084) ((-593 . -624) 165065) ((-544 . -626) 164968) ((-350 . -174) T) ((-88 . -621) 164950) ((-153 . -21) T) ((-153 . -25) T) ((-919 . -111) 164906) ((-40 . -725) 164851) ((-878 . -1111) T) ((-672 . -624) 164828) ((-653 . -624) 164809) ((-362 . -624) 164746) ((-359 . -624) 164683) ((-555 . -1111) T) ((-351 . -624) 164620) ((-333 . -622) 164581) ((-333 . -621) 164493) ((-269 . -624) 164246) ((-251 . -624) 164031) ((-1242 . -800) 163984) ((-1242 . -803) 163937) ((-256 . -384) 163906) ((-255 . -384) 163875) ((-662 . -38) 163845) ((-616 . -34) T) ((-490 . -1123) 163755) ((-483 . -34) T) ((-1124 . -132) 163625) ((-973 . -25) 163436) ((-919 . -624) 163386) ((-882 . -621) 163368) ((-973 . -21) 163323) ((-823 . -21) 163233) ((-823 . -25) 163084) ((-1235 . -375) T) ((-631 . -1069) T) ((-1190 . -564) 163063) ((-1184 . -47) 163040) ((-362 . -1060) T) ((-359 . -1060) T) ((-490 . -23) 162910) ((-351 . -1060) T) ((-269 . -1060) T) ((-251 . -1060) T) ((-1136 . -47) 162882) ((-118 . -1069) T) ((-1045 . -656) 162856) ((-967 . -34) T) ((-362 . -237) 162835) ((-362 . -247) T) ((-359 . -237) 162814) ((-359 . -247) T) ((-351 . -237) 162793) ((-351 . -247) T) ((-269 . -332) 162765) ((-251 . -332) 162722) ((-269 . -237) 162701) ((-1168 . -152) 162685) ((-256 . -909) 162617) ((-255 . -909) 162549) ((-1093 . -858) T) ((-422 . -1123) T) ((-1065 . -23) T) ((-919 . -1060) T) ((-328 . -656) 162531) ((-1035 . -856) T) ((-1223 . -1013) 162497) ((-1185 . -929) 162476) ((-1179 . -929) 162455) ((-1179 . -828) NIL) ((-1010 . -1062) 162351) ((-976 . -1229) T) ((-919 . -247) T) ((-825 . -370) 162330) ((-392 . -23) T) ((-128 . -1111) 162308) ((-122 . -1111) 162286) ((-919 . -237) T) ((-129 . -34) T) ((-386 . -656) 162251) ((-1010 . -648) 162199) ((-878 . -725) 162186) ((-1308 . -654) 162158) ((-1057 . -152) 162123) ((-1004 . -1229) T) ((-40 . -174) T) ((-702 . -419) 162105) ((-720 . -315) 162092) ((-844 . -656) 162052) ((-835 . -656) 162026) ((-325 . -25) T) ((-325 . -21) T) ((-666 . -292) 162005) ((-588 . -1111) T) ((-572 . -1111) T) ((-503 . -1111) T) ((-249 . -294) 161982) ((-1184 . -1229) T) ((-319 . -233) 161943) ((-1184 . -895) NIL) ((-55 . -1111) T) ((-1136 . -895) 161802) ((-130 . -858) T) ((-1184 . -1049) 161682) ((-1136 . -1049) 161565) ((-185 . -621) 161547) ((-862 . -1049) 161443) ((-790 . -292) 161370) ((-825 . -1123) T) ((-1045 . -734) T) ((-610 . -659) 161354) ((-1057 . -987) 161283) ((-1010 . -102) T) ((-825 . -23) T) ((-720 . -1163) 161261) ((-702 . -1069) T) ((-610 . -380) 161245) ((-358 . -460) T) ((-350 . -296) T) ((-1280 . -1111) T) ((-252 . -1111) T) ((-407 . -102) T) ((-295 . -21) T) ((-295 . -25) T) ((-368 . -734) T) ((-718 . -1111) T) ((-707 . -1111) T) ((-368 . -481) T) ((-1223 . -621) 161227) ((-1184 . -384) 161211) ((-1136 . -384) 161195) ((-1035 . -419) 161157) ((-142 . -231) 161139) ((-386 . -802) T) ((-386 . -799) T) ((-878 . -174) T) ((-386 . -734) T) ((-719 . -621) 161121) ((-720 . -38) 160950) ((-1279 . -1277) 160934) ((-358 . -410) T) ((-1279 . -1111) 160884) ((-1202 . -1111) T) ((-588 . -725) 160871) ((-572 . -725) 160858) ((-503 . -725) 160823) ((-1265 . -654) 160713) ((-322 . -637) 160692) ((-844 . -734) T) ((-835 . -734) T) ((-652 . -1229) T) ((-1091 . -647) 160640) ((-1184 . -909) 160583) ((-1136 . -909) 160567) ((-670 . -1067) 160551) ((-108 . -647) 160533) ((-490 . -132) 160403) ((-1190 . -1123) T) ((-961 . -47) 160372) ((-631 . -1111) T) ((-670 . -111) 160351) ((-499 . -621) 160317) ((-333 . -294) 160294) ((-489 . -47) 160251) ((-1190 . -23) T) ((-118 . -1111) T) ((-103 . -102) 160229) ((-1291 . -1123) T) ((-556 . -858) T) ((-1065 . -132) T) ((-1035 . -1069) T) ((-827 . -1049) 160213) ((-1014 . -732) 160185) ((-1291 . -23) T) ((-707 . -725) 160150) ((-594 . -621) 160132) ((-394 . -1049) 160116) ((-361 . -1069) T) ((-392 . -132) T) ((-330 . -1049) 160100) ((-1209 . -621) 160082) ((-1131 . -836) T) ((-1116 . -1111) T) ((-227 . -895) 160064) ((-1015 . -929) T) ((-91 . -34) T) ((-1015 . -828) T) ((-923 . -929) T) ((-1091 . -21) T) ((-1091 . -25) T) ((-495 . -1233) T) ((-1010 . -315) 160029) ((-884 . -624) 160010) ((-722 . -656) 159970) ((-219 . -1233) T) ((-689 . -624) 159951) ((-227 . -1049) 159911) ((-40 . -296) T) ((-684 . -624) 159892) ((-495 . -564) T) ((-486 . -624) 159873) ((-322 . -654) 159557) ((-319 . -654) 159471) ((-366 . -25) T) ((-366 . -21) T) ((-360 . -25) T) ((-219 . -564) T) ((-360 . -21) T) ((-352 . -25) T) ((-352 . -21) T) ((-249 . -624) 159448) ((-139 . -624) 159429) ((-138 . -624) 159410) ((-134 . -624) 159391) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1069) T) ((-588 . -174) T) ((-572 . -174) T) ((-503 . -174) T) ((-666 . -621) 159373) ((-745 . -744) 159357) ((-343 . -621) 159339) ((-68 . -390) T) ((-68 . -403) T) ((-1113 . -107) 159323) ((-1073 . -895) 159305) ((-961 . -895) 159230) ((-661 . -1123) T) ((-631 . -725) 159217) ((-489 . -895) NIL) ((-1157 . -102) T) ((-1105 . -626) 159201) ((-1073 . -1049) 159183) ((-97 . -621) 159165) ((-485 . -148) T) ((-961 . -1049) 159045) ((-118 . -725) 158990) ((-661 . -23) T) ((-489 . -1049) 158866) ((-1098 . -622) NIL) ((-1098 . -621) 158848) ((-790 . -622) NIL) ((-790 . -621) 158809) ((-788 . -622) 158443) ((-788 . -621) 158357) ((-1124 . -647) 158263) ((-469 . -621) 158245) ((-462 . -621) 158227) ((-462 . -622) 158088) ((-1046 . -231) 158034) ((-880 . -918) 158013) ((-127 . -34) T) ((-825 . -132) T) ((-657 . -621) 157995) ((-586 . -102) T) ((-362 . -1298) 157979) ((-359 . -1298) 157963) ((-351 . -1298) 157947) ((-128 . -522) 157880) ((-122 . -522) 157813) ((-519 . -800) T) ((-519 . -803) T) ((-518 . -802) T) ((-103 . -315) 157751) ((-224 . -102) 157729) ((-707 . -174) T) ((-702 . -1111) T) ((-880 . -656) 157681) ((-65 . -391) T) ((-280 . -621) 157663) ((-65 . -403) T) ((-961 . -384) 157647) ((-878 . -296) T) ((-50 . -621) 157629) ((-1010 . -38) 157577) ((-1131 . -654) 157549) ((-589 . -621) 157531) ((-489 . -384) 157515) ((-589 . -622) 157497) ((-526 . -621) 157479) ((-919 . -1298) 157466) ((-879 . -1229) T) ((-709 . -460) T) ((-503 . -522) 157432) ((-495 . -370) T) ((-362 . -375) 157411) ((-359 . -375) 157390) ((-351 . -375) 157369) ((-722 . -734) T) ((-219 . -370) T) ((-117 . -460) T) ((-1302 . -1293) 157353) ((-879 . -893) 157330) ((-879 . -895) NIL) ((-973 . -858) 157229) ((-823 . -858) 157180) ((-1236 . -102) T) ((-662 . -664) 157164) ((-1215 . -34) T) ((-173 . -621) 157146) ((-1124 . -21) 157056) ((-1124 . -25) 156907) ((-879 . -1049) 156884) ((-961 . -909) 156865) ((-1252 . -47) 156842) ((-919 . -375) T) ((-59 . -659) 156826) ((-524 . -659) 156810) ((-489 . -909) 156787) ((-71 . -449) T) ((-71 . -403) T) ((-504 . -659) 156771) ((-59 . -380) 156755) ((-631 . -174) T) ((-524 . -380) 156739) ((-504 . -380) 156723) ((-835 . -716) 156707) ((-1184 . -313) 156686) ((-1190 . -132) T) ((-1153 . -1062) 156670) ((-118 . -174) T) ((-1153 . -648) 156602) ((-1157 . -315) 156540) ((-171 . -1229) T) ((-1291 . -132) T) ((-874 . -1062) 156510) ((-643 . -752) 156494) ((-615 . -752) 156478) ((-1264 . -929) 156457) ((-1243 . -929) 156436) ((-1243 . -828) NIL) ((-874 . -648) 156406) ((-702 . -725) 156356) ((-1242 . -918) 156309) ((-1035 . -1111) T) ((-879 . -384) 156286) ((-879 . -345) 156263) ((-914 . -1123) T) ((-171 . -893) 156247) ((-171 . -895) 156172) ((-495 . -1123) T) ((-361 . -1111) T) ((-219 . -1123) T) ((-76 . -449) T) ((-76 . -403) T) ((-171 . -1049) 156068) ((-325 . -858) T) ((-1279 . -522) 156001) ((-1263 . -656) 155898) ((-1242 . -656) 155768) ((-880 . -802) 155747) ((-880 . -799) 155726) ((-880 . -734) T) ((-495 . -23) T) ((-225 . -621) 155708) ((-176 . -460) T) ((-224 . -315) 155646) ((-86 . -449) T) ((-86 . -403) T) ((-219 . -23) T) ((-1303 . -1296) 155625) ((-685 . -1049) 155609) ((-588 . -296) T) ((-572 . -296) T) ((-503 . -296) T) ((-137 . -478) 155564) ((-1252 . -1229) T) ((-662 . -654) 155523) ((-48 . -1111) T) ((-720 . -233) 155507) ((-879 . -909) NIL) ((-1252 . -895) NIL) ((-898 . -102) T) ((-894 . -102) T) ((-396 . -1111) T) ((-171 . -384) 155491) ((-171 . -345) 155475) ((-1252 . -1049) 155355) ((-863 . -1049) 155251) ((-1153 . -102) T) ((-670 . -800) 155230) ((-661 . -132) T) ((-670 . -803) 155209) ((-118 . -522) 155117) ((-579 . -1049) 155099) ((-300 . -1286) 155069) ((-874 . -102) T) ((-972 . -564) 155048) ((-1223 . -1067) 154931) ((-1014 . -1062) 154876) ((-490 . -647) 154782) ((-913 . -1111) T) ((-1035 . -725) 154719) ((-719 . -1067) 154684) ((-1014 . -648) 154629) ((-625 . -102) T) ((-610 . -34) T) ((-1158 . -1229) T) ((-1223 . -111) 154498) ((-482 . -656) 154395) ((-361 . -725) 154340) ((-171 . -909) 154299) ((-707 . -296) T) ((-702 . -174) T) ((-719 . -111) 154255) ((-1308 . -1069) T) ((-1252 . -384) 154239) ((-426 . -1233) 154217) ((-1129 . -621) 154199) ((-319 . -856) NIL) ((-426 . -564) T) ((-227 . -313) T) ((-1242 . -799) 154152) ((-1242 . -802) 154105) ((-1263 . -734) T) ((-1242 . -734) T) ((-48 . -725) 154070) ((-227 . -1033) T) ((-358 . -1286) 154047) ((-1265 . -419) 154013) ((-726 . -734) T) ((-339 . -621) 153995) ((-1252 . -909) 153938) ((-1223 . -624) 153820) ((-112 . -621) 153802) ((-112 . -622) 153784) ((-726 . -481) T) ((-719 . -624) 153734) ((-1302 . -1062) 153718) ((-490 . -21) 153628) ((-128 . -497) 153612) ((-122 . -497) 153596) ((-490 . -25) 153447) ((-1302 . -648) 153417) ((-631 . -296) T) ((-594 . -1067) 153392) ((-445 . -1111) T) ((-1073 . -313) T) ((-118 . -296) T) ((-1115 . -102) T) ((-1014 . -102) T) ((-594 . -111) 153360) ((-1153 . -315) 153298) ((-1223 . -1060) T) ((-1073 . -1033) T) ((-66 . -1229) T) ((-1065 . -25) T) ((-1065 . -21) T) ((-719 . -1060) T) ((-392 . -21) T) ((-392 . -25) T) ((-702 . -522) NIL) ((-1035 . -174) T) ((-719 . -247) T) ((-1073 . -553) T) ((-720 . -654) 153208) ((-514 . -102) T) ((-510 . -102) T) ((-361 . -174) T) ((-350 . -621) 153190) ((-415 . -1062) 153142) ((-402 . -621) 153124) ((-1131 . -856) T) ((-482 . -734) T) ((-901 . -1049) 153092) ((-415 . -648) 153044) ((-108 . -858) T) ((-666 . -1067) 153028) ((-495 . -132) T) ((-1265 . -1069) T) ((-219 . -132) T) ((-1168 . -102) 153006) ((-99 . -1111) T) ((-249 . -674) 152990) ((-249 . -659) 152974) ((-666 . -111) 152953) ((-594 . -624) 152937) ((-322 . -419) 152921) ((-249 . -380) 152905) ((-1171 . -239) 152852) ((-1010 . -233) 152836) ((-74 . -1229) T) ((-48 . -174) T) ((-709 . -395) T) ((-709 . -144) T) ((-1302 . -102) T) ((-1209 . -624) 152818) ((-1098 . -1067) 152661) ((-1087 . -1229) T) ((-269 . -918) 152640) ((-251 . -918) 152619) ((-790 . -1067) 152442) ((-788 . -1067) 152285) ((-616 . -1229) T) ((-1176 . -621) 152267) ((-1098 . -111) 152096) ((-1057 . -102) T) ((-483 . -1229) T) ((-469 . -1067) 152067) ((-462 . -1067) 151910) ((-672 . -656) 151894) ((-879 . -313) T) ((-790 . -111) 151703) ((-788 . -111) 151532) ((-362 . -656) 151484) ((-359 . -656) 151436) ((-351 . -656) 151388) ((-269 . -656) 151313) ((-251 . -656) 151238) ((-1170 . -858) T) ((-1099 . -1049) 151222) ((-469 . -111) 151183) ((-462 . -111) 151012) ((-1087 . -1049) 150989) ((-1011 . -34) T) ((-975 . -621) 150971) ((-967 . -1229) T) ((-127 . -1021) 150955) ((-972 . -1123) T) ((-879 . -1033) NIL) ((-743 . -1123) T) ((-723 . -1123) T) ((-666 . -624) 150873) ((-1279 . -497) 150857) ((-1153 . -38) 150817) ((-972 . -23) T) ((-919 . -656) 150782) ((-873 . -1111) T) ((-851 . -102) T) ((-825 . -21) T) ((-643 . -1062) 150766) ((-615 . -1062) 150750) ((-825 . -25) T) ((-743 . -23) T) ((-723 . -23) T) ((-643 . -648) 150734) ((-110 . -669) T) ((-615 . -648) 150718) ((-589 . -1067) 150683) ((-526 . -1067) 150628) ((-229 . -57) 150586) ((-461 . -23) T) ((-415 . -102) T) ((-268 . -102) T) ((-110 . -113) T) ((-702 . -296) T) ((-874 . -38) 150556) ((-589 . -111) 150512) ((-526 . -111) 150441) ((-1098 . -624) 150177) ((-426 . -1123) T) ((-322 . -1069) 150067) ((-319 . -1069) T) ((-129 . -1229) T) ((-790 . -624) 149815) ((-788 . -624) 149581) ((-666 . -1060) T) ((-1308 . -1111) T) ((-462 . -624) 149366) ((-171 . -313) 149297) ((-426 . -23) T) ((-40 . -621) 149279) ((-40 . -622) 149263) ((-108 . -1003) 149245) ((-117 . -877) 149229) ((-657 . -624) 149213) ((-48 . -522) 149179) ((-1215 . -1021) 149163) ((-1193 . -621) 149130) ((-1201 . -34) T) ((-963 . -621) 149096) ((-930 . -621) 149078) ((-1124 . -858) 149029) ((-779 . -621) 149011) ((-680 . -621) 148993) ((-1168 . -315) 148931) ((-487 . -34) T) ((-1103 . -1229) T) ((-485 . -460) T) ((-1152 . -34) T) ((-1098 . -1060) T) ((-50 . -624) 148900) ((-790 . -1060) T) ((-788 . -1060) T) ((-655 . -239) 148884) ((-640 . -239) 148830) ((-589 . -624) 148780) ((-526 . -624) 148710) ((-1252 . -313) 148689) ((-1098 . -332) 148650) ((-462 . -1060) T) ((-1190 . -21) T) ((-1098 . -237) 148629) ((-790 . -332) 148606) ((-790 . -237) T) ((-788 . -332) 148578) ((-739 . -1233) 148557) ((-333 . -659) 148541) ((-1190 . -25) T) ((-59 . -34) T) ((-527 . -34) T) ((-524 . -34) T) ((-462 . -332) 148520) ((-333 . -380) 148504) ((-505 . -34) T) ((-504 . -34) T) ((-1014 . -1163) NIL) ((-739 . -564) 148435) ((-643 . -102) T) ((-615 . -102) T) ((-362 . -734) T) ((-359 . -734) T) ((-351 . -734) T) ((-269 . -734) T) ((-251 . -734) T) ((-1057 . -315) 148343) ((-910 . -1111) 148321) ((-50 . -1060) T) ((-1291 . -21) T) ((-1291 . -25) T) ((-1186 . -564) 148300) ((-1185 . -1233) 148279) ((-1185 . -564) 148230) ((-1179 . -1233) 148209) ((-589 . -1060) T) ((-526 . -1060) T) ((-1179 . -564) 148160) ((-368 . -1049) 148144) ((-328 . -1049) 148128) ((-1035 . -296) T) ((-386 . -895) 148110) ((-1014 . -38) 148055) ((-1010 . -654) 147978) ((-844 . -1229) T) ((-807 . -1123) T) ((-919 . -734) T) ((-589 . -247) T) ((-589 . -237) T) ((-526 . -237) T) ((-526 . -247) T) ((-1137 . -564) 147957) ((-361 . -296) T) ((-655 . -703) 147941) ((-386 . -1049) 147901) ((-300 . -1062) 147822) ((-1131 . -1069) T) ((-103 . -126) 147806) ((-300 . -648) 147748) ((-807 . -23) T) ((-1301 . -1296) 147724) ((-1279 . -292) 147676) ((-415 . -315) 147641) ((-1299 . -1296) 147620) ((-1265 . -1111) T) ((-878 . -621) 147602) ((-844 . -1049) 147571) ((-205 . -795) T) ((-204 . -795) T) ((-203 . -795) T) ((-202 . -795) T) ((-201 . -795) T) ((-200 . -795) T) ((-199 . -795) T) ((-198 . -795) T) ((-197 . -795) T) ((-196 . -795) T) ((-555 . -621) 147553) ((-503 . -1013) T) ((-279 . -847) T) ((-278 . -847) T) ((-277 . -847) T) ((-276 . -847) T) ((-48 . -296) T) ((-275 . -847) T) ((-274 . -847) T) ((-273 . -847) T) ((-195 . -795) T) ((-620 . -858) T) ((-662 . -419) 147537) ((-225 . -624) 147499) ((-110 . -858) T) ((-661 . -21) T) ((-661 . -25) T) ((-1302 . -38) 147469) ((-118 . -292) 147420) ((-1279 . -19) 147404) ((-1279 . -612) 147381) ((-1292 . -1111) T) ((-358 . -1062) 147326) ((-1088 . -1111) T) ((-998 . -1111) T) ((-972 . -132) T) ((-745 . -1111) T) ((-358 . -648) 147271) ((-743 . -132) T) ((-723 . -132) T) ((-519 . -801) T) ((-519 . -802) T) ((-461 . -132) T) ((-415 . -1163) 147249) ((-225 . -1060) T) ((-300 . -102) 147031) ((-142 . -1111) T) ((-707 . -1013) T) ((-1116 . -292) 146987) ((-91 . -1229) T) ((-128 . -621) 146919) ((-122 . -621) 146851) ((-1308 . -174) T) ((-1185 . -370) 146830) ((-1179 . -370) 146809) ((-322 . -1111) T) ((-426 . -132) T) ((-319 . -1111) T) ((-415 . -38) 146761) ((-1144 . -102) T) ((-1265 . -725) 146653) ((-662 . -1069) T) ((-1146 . -1274) T) ((-325 . -146) 146632) ((-325 . -148) 146611) ((-137 . -1111) T) ((-140 . -1111) T) ((-115 . -1111) T) ((-866 . -102) T) ((-588 . -621) 146593) ((-572 . -622) 146492) ((-572 . -621) 146474) ((-503 . -621) 146456) ((-503 . -622) 146401) ((-493 . -23) T) ((-490 . -858) 146352) ((-495 . -647) 146334) ((-974 . -621) 146316) ((-219 . -647) 146298) ((-227 . -412) T) ((-670 . -656) 146282) ((-55 . -621) 146264) ((-1184 . -929) 146243) ((-739 . -1123) T) ((-358 . -102) T) ((-1228 . -1094) T) ((-1131 . -852) T) ((-826 . -858) T) ((-739 . -23) T) ((-350 . -1067) 146188) ((-1170 . -1169) T) ((-1158 . -107) 146172) ((-1186 . -1123) T) ((-1185 . -1123) T) ((-523 . -1049) 146156) ((-1179 . -1123) T) ((-1137 . -1123) T) ((-350 . -111) 146085) ((-1015 . -1233) T) ((-127 . -1229) T) ((-923 . -1233) T) ((-702 . -292) NIL) ((-722 . -1229) T) ((-1280 . -621) 146067) ((-1186 . -23) T) ((-1185 . -23) T) ((-1179 . -23) T) ((-1015 . -564) T) ((-1153 . -233) 146051) ((-923 . -564) T) ((-1137 . -23) T) ((-252 . -621) 146033) ((-1086 . -1111) T) ((-807 . -132) T) ((-718 . -621) 146015) ((-322 . -725) 145925) ((-319 . -725) 145854) ((-707 . -621) 145836) ((-707 . -622) 145781) ((-415 . -408) 145765) ((-446 . -1111) T) ((-495 . -25) T) ((-495 . -21) T) ((-1131 . -1111) T) ((-219 . -25) T) ((-219 . -21) T) ((-720 . -419) 145749) ((-722 . -1049) 145718) ((-1279 . -621) 145630) ((-1279 . -622) 145591) ((-1265 . -174) T) ((-1202 . -621) 145573) ((-249 . -34) T) ((-350 . -624) 145503) ((-402 . -624) 145485) ((-935 . -985) T) ((-1215 . -1229) T) ((-670 . -799) 145464) ((-670 . -802) 145443) ((-406 . -403) T) ((-531 . -102) 145421) ((-1046 . -1111) T) ((-224 . -1006) 145405) ((-512 . -102) T) ((-631 . -621) 145387) ((-45 . -858) NIL) ((-631 . -622) 145364) ((-1046 . -618) 145339) ((-910 . -522) 145272) ((-350 . -1060) T) ((-118 . -622) NIL) ((-118 . -621) 145254) ((-880 . -1229) T) ((-678 . -425) 145238) ((-678 . -1134) 145183) ((-508 . -152) 145165) ((-350 . -237) T) ((-350 . -247) T) ((-40 . -1067) 145110) ((-880 . -893) 145094) ((-880 . -895) 145019) ((-720 . -1069) T) ((-702 . -1013) NIL) ((-1263 . -47) 144989) ((-1242 . -47) 144966) ((-1152 . -1021) 144937) ((-3 . |UnionCategory|) T) ((-1131 . -725) 144924) ((-1116 . -621) 144906) ((-1091 . -148) 144885) ((-1091 . -146) 144836) ((-975 . -624) 144820) ((-227 . -929) T) ((-40 . -111) 144749) ((-880 . -1049) 144613) ((-1015 . -370) T) ((-1014 . -233) 144590) ((-709 . -1062) 144577) ((-923 . -370) T) ((-709 . -648) 144564) ((-325 . -1217) 144530) ((-386 . -313) T) ((-325 . -1214) 144496) ((-322 . -174) 144475) ((-319 . -174) T) ((-589 . -1298) 144462) ((-526 . -1298) 144439) ((-366 . -148) 144418) ((-117 . -1062) 144405) ((-366 . -146) 144356) ((-360 . -148) 144335) ((-360 . -146) 144286) ((-352 . -148) 144265) ((-616 . -1205) 144241) ((-117 . -648) 144228) ((-352 . -146) 144179) ((-325 . -35) 144145) ((-483 . -1205) 144124) ((0 . |EnumerationCategory|) T) ((-325 . -95) 144090) ((-386 . -1033) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -239) 144040) ((-662 . -1111) T) ((-616 . -107) 143987) ((-493 . -132) T) ((-483 . -107) 143937) ((-244 . -1123) 143847) ((-880 . -384) 143831) ((-880 . -345) 143815) ((-244 . -23) 143685) ((-40 . -624) 143615) ((-1073 . -929) T) ((-1073 . -828) T) ((-589 . -375) T) ((-526 . -375) T) ((-1292 . -522) 143548) ((-1271 . -564) 143527) ((-1264 . -1233) 143506) ((-358 . -1163) T) ((-333 . -34) T) ((-44 . -425) 143490) ((-1193 . -624) 143426) ((-881 . -1229) T) ((-398 . -752) 143410) ((-1264 . -564) 143361) ((-1263 . -1229) T) ((-1153 . -654) 143320) ((-739 . -132) T) ((-680 . -624) 143304) ((-1243 . -1233) 143283) ((-1243 . -564) 143234) ((-1242 . -1229) T) ((-1242 . -895) 143107) ((-1242 . -893) 143077) ((-1186 . -132) T) ((-317 . -1094) T) ((-1185 . -132) T) ((-745 . -522) 143010) ((-1179 . -132) T) ((-1137 . -132) T) ((-902 . -1111) T) ((-145 . -852) T) ((-1035 . -1013) T) ((-699 . -621) 142992) ((-1015 . -23) T) ((-531 . -315) 142930) ((-1015 . -1123) T) ((-142 . -522) NIL) ((-874 . -654) 142875) ((-1014 . -356) NIL) ((-982 . -23) T) ((-923 . -1123) T) ((-358 . -38) 142840) ((-923 . -23) T) ((-880 . -909) 142799) ((-82 . -621) 142781) ((-40 . -1060) T) ((-878 . -1067) 142768) ((-878 . -111) 142753) ((-709 . -102) T) ((-702 . -621) 142735) ((-610 . -1229) T) ((-604 . -564) 142714) ((-435 . -1123) T) ((-346 . -1062) 142698) ((-215 . -1111) T) ((-176 . -1062) 142630) ((-482 . -47) 142600) ((-135 . -102) T) ((-40 . -237) 142572) ((-40 . -247) T) ((-117 . -102) T) ((-603 . -564) 142551) ((-346 . -648) 142535) ((-702 . -622) 142443) ((-322 . -522) 142409) ((-176 . -648) 142341) ((-319 . -522) 142233) ((-1263 . -1049) 142217) ((-1242 . -1049) 142003) ((-1010 . -419) 141987) ((-435 . -23) T) ((-1131 . -174) T) ((-1265 . -296) T) ((-662 . -725) 141957) ((-145 . -1111) T) ((-48 . -1013) T) ((-415 . -233) 141941) ((-301 . -239) 141891) ((-879 . -929) T) ((-879 . -828) NIL) ((-878 . -624) 141863) ((-872 . -858) T) ((-1242 . -345) 141833) ((-1242 . -384) 141803) ((-224 . -1132) 141787) ((-1279 . -294) 141764) ((-482 . -1229) T) ((-1223 . -656) 141689) ((-1014 . -654) 141619) ((-972 . -21) T) ((-972 . -25) T) ((-743 . -21) T) ((-743 . -25) T) ((-723 . -21) T) ((-723 . -25) T) ((-719 . -656) 141584) ((-461 . -21) T) ((-461 . -25) T) ((-346 . -102) T) ((-176 . -102) T) ((-1010 . -1069) T) ((-878 . -1060) T) ((-782 . -102) T) ((-1264 . -370) 141563) ((-1263 . -909) 141469) ((-1243 . -370) 141448) ((-1242 . -909) 141299) ((-1035 . -621) 141281) ((-415 . -836) 141234) ((-1186 . -501) 141200) ((-171 . -929) 141131) ((-1185 . -501) 141097) ((-1179 . -501) 141063) ((-720 . -1111) T) ((-1137 . -501) 141029) ((-588 . -1067) 141016) ((-572 . -1067) 141003) ((-503 . -1067) 140968) ((-322 . -296) 140947) ((-319 . -296) T) ((-361 . -621) 140929) ((-426 . -25) T) ((-426 . -21) T) ((-99 . -292) 140908) ((-588 . -111) 140893) ((-572 . -111) 140878) ((-503 . -111) 140834) ((-1188 . -895) 140801) ((-910 . -497) 140785) ((-48 . -621) 140767) ((-48 . -622) 140712) ((-244 . -132) 140582) ((-1302 . -654) 140541) ((-1252 . -929) 140520) ((-824 . -1233) 140499) ((-396 . -498) 140480) ((-1046 . -522) 140324) ((-396 . -621) 140290) ((-824 . -564) 140221) ((-594 . -656) 140196) ((-269 . -47) 140168) ((-251 . -47) 140125) ((-539 . -517) 140102) ((-588 . -624) 140074) ((-572 . -624) 140046) ((-503 . -624) 139979) ((-1085 . -1229) T) ((-1011 . -1229) T) ((-1271 . -23) T) ((-1271 . -1123) T) ((-707 . -1067) 139944) ((-1264 . -1123) T) ((-1264 . -23) T) ((-1243 . -1123) T) ((-1243 . -23) T) ((-1223 . -734) T) ((-1014 . -377) 139916) ((-112 . -375) T) ((-482 . -909) 139822) ((-1131 . -296) T) ((-913 . -621) 139804) ((-55 . -624) 139786) ((-91 . -107) 139770) ((-1015 . -132) T) ((-914 . -858) 139721) ((-709 . -1163) T) ((-707 . -111) 139677) ((-851 . -654) 139594) ((-604 . -1123) T) ((-603 . -1123) T) ((-720 . -725) 139423) ((-719 . -734) T) ((-982 . -132) T) ((-923 . -132) T) ((-495 . -858) T) ((-807 . -25) T) ((-807 . -21) T) ((-588 . -1060) T) ((-219 . -858) T) ((-415 . -654) 139360) ((-572 . -1060) T) ((-544 . -1229) T) ((-503 . -1060) T) ((-604 . -23) T) ((-350 . -1298) 139337) ((-325 . -460) 139316) ((-346 . -315) 139303) ((-603 . -23) T) ((-435 . -132) T) ((-666 . -656) 139277) ((-249 . -1021) 139261) ((-880 . -313) T) ((-1303 . -1293) 139245) ((-779 . -800) T) ((-779 . -803) T) ((-709 . -38) 139232) ((-572 . -237) T) ((-503 . -247) T) ((-503 . -237) T) ((-1161 . -239) 139182) ((-1098 . -918) 139161) ((-117 . -38) 139148) ((-211 . -808) T) ((-210 . -808) T) ((-209 . -808) T) ((-208 . -808) T) ((-880 . -1033) 139126) ((-1292 . -497) 139110) ((-790 . -918) 139089) ((-788 . -918) 139068) ((-1201 . -1229) T) ((-462 . -918) 139047) ((-745 . -497) 139031) ((-1098 . -656) 138956) ((-707 . -624) 138891) ((-790 . -656) 138816) ((-631 . -1067) 138803) ((-487 . -1229) T) ((-350 . -375) T) ((-142 . -497) 138785) ((-788 . -656) 138710) ((-1152 . -1229) T) ((-557 . -858) T) ((-469 . -656) 138681) ((-269 . -895) 138540) ((-251 . -895) NIL) ((-118 . -1067) 138485) ((-462 . -656) 138410) ((-672 . -1049) 138387) ((-631 . -111) 138372) ((-398 . -1062) 138356) ((-362 . -1049) 138340) ((-359 . -1049) 138324) ((-351 . -1049) 138308) ((-269 . -1049) 138152) ((-251 . -1049) 138028) ((-118 . -111) 137957) ((-59 . -1229) T) ((-398 . -648) 137941) ((-629 . -1062) 137925) ((-527 . -1229) T) ((-524 . -1229) T) ((-505 . -1229) T) ((-504 . -1229) T) ((-445 . -621) 137907) ((-442 . -621) 137889) ((-629 . -648) 137873) ((-3 . -102) T) ((-1038 . -1222) 137842) ((-841 . -102) T) ((-697 . -57) 137800) ((-707 . -1060) T) ((-643 . -654) 137769) ((-615 . -654) 137738) ((-50 . -656) 137712) ((-295 . -460) T) ((-484 . -1222) 137681) ((0 . -102) T) ((-589 . -656) 137646) ((-526 . -656) 137591) ((-49 . -102) T) ((-919 . -1049) 137578) ((-707 . -247) T) ((-1091 . -417) 137557) ((-739 . -647) 137505) ((-1010 . -1111) T) ((-720 . -174) 137396) ((-631 . -624) 137291) ((-495 . -1003) 137273) ((-269 . -384) 137257) ((-251 . -384) 137241) ((-407 . -1111) T) ((-1037 . -102) 137219) ((-346 . -38) 137203) ((-219 . -1003) 137185) ((-118 . -624) 137115) ((-176 . -38) 137047) ((-1263 . -313) 137026) ((-1242 . -313) 137005) ((-666 . -734) T) ((-99 . -621) 136987) ((-485 . -1062) 136952) ((-1179 . -647) 136904) ((-485 . -648) 136869) ((-493 . -25) T) ((-493 . -21) T) ((-1242 . -1033) 136821) ((-1068 . -1229) T) ((-631 . -1060) T) ((-386 . -412) T) ((-398 . -102) T) ((-1116 . -626) 136736) ((-269 . -909) 136682) ((-251 . -909) 136659) ((-118 . -1060) T) ((-824 . -1123) T) ((-1098 . -734) T) ((-631 . -237) 136638) ((-629 . -102) T) ((-790 . -734) T) ((-788 . -734) T) ((-421 . -1123) T) ((-118 . -247) T) ((-40 . -375) NIL) ((-118 . -237) NIL) ((-1234 . -858) T) ((-462 . -734) T) ((-824 . -23) T) ((-739 . -25) T) ((-739 . -21) T) ((-1088 . -292) 136617) ((-78 . -404) T) ((-78 . -403) T) ((-541 . -775) 136599) ((-702 . -1067) 136549) ((-1271 . -132) T) ((-1264 . -132) T) ((-1243 . -132) T) ((-1186 . -25) T) ((-1153 . -419) 136533) ((-643 . -374) 136465) ((-615 . -374) 136397) ((-1168 . -1160) 136381) ((-103 . -1111) 136359) ((-1186 . -21) T) ((-1185 . -21) T) ((-873 . -621) 136341) ((-1010 . -725) 136289) ((-225 . -656) 136256) ((-702 . -111) 136190) ((-50 . -734) T) ((-1185 . -25) T) ((-358 . -356) T) ((-1179 . -21) T) ((-1091 . -460) 136141) ((-1179 . -25) T) ((-720 . -522) 136088) ((-589 . -734) T) ((-526 . -734) T) ((-1137 . -21) T) ((-1137 . -25) T) ((-1304 . -102) T) ((-604 . -132) T) ((-300 . -654) 135823) ((-603 . -132) T) ((-366 . -460) T) ((-360 . -460) T) ((-352 . -460) T) ((-482 . -313) 135802) ((-1237 . -102) T) ((-319 . -292) 135737) ((-108 . -460) T) ((-79 . -449) T) ((-79 . -403) T) ((-485 . -102) T) ((-699 . -624) 135721) ((-1308 . -621) 135703) ((-1308 . -622) 135685) ((-1091 . -410) 135664) ((-1046 . -497) 135595) ((-137 . -292) 135572) ((-572 . -803) T) ((-572 . -800) T) ((-1074 . -239) 135518) ((-366 . -410) 135469) ((-360 . -410) 135420) ((-352 . -410) 135371) ((-1294 . -1123) T) ((-1303 . -1062) 135355) ((-388 . -1062) 135339) ((-1303 . -648) 135309) ((-388 . -648) 135279) ((-702 . -624) 135214) ((-1294 . -23) T) ((-1281 . -102) T) ((-177 . -621) 135196) ((-1153 . -1069) T) ((-555 . -375) T) ((-678 . -752) 135180) ((-1190 . -146) 135159) ((-1190 . -148) 135138) ((-1157 . -1111) T) ((-1157 . -1082) 135107) ((-69 . -1229) T) ((-1035 . -1067) 135044) ((-358 . -654) 134974) ((-874 . -1069) T) ((-244 . -647) 134880) ((-702 . -1060) T) ((-361 . -1067) 134825) ((-61 . -1229) T) ((-1035 . -111) 134741) ((-910 . -621) 134652) ((-702 . -247) T) ((-702 . -237) NIL) ((-851 . -856) 134631) ((-707 . -803) T) ((-707 . -800) T) ((-1014 . -419) 134608) ((-361 . -111) 134537) ((-386 . -929) T) ((-415 . -856) 134516) ((-720 . -296) 134427) ((-225 . -734) T) ((-1271 . -501) 134393) ((-1264 . -501) 134359) ((-1243 . -501) 134325) ((-586 . -1111) T) ((-322 . -1013) 134304) ((-224 . -1111) 134282) ((-1236 . -852) T) ((-325 . -984) 134244) ((-105 . -102) T) ((-48 . -1067) 134209) ((-1303 . -102) T) ((-388 . -102) T) ((-48 . -111) 134165) ((-1015 . -647) 134147) ((-1265 . -621) 134129) ((-539 . -102) T) ((-508 . -102) T) ((-1144 . -1145) 134113) ((-153 . -1286) 134097) ((-249 . -1229) T) ((-1228 . -102) T) ((-1035 . -624) 134034) ((-1184 . -1233) 134013) ((-361 . -624) 133943) ((-1136 . -1233) 133922) ((-244 . -21) 133832) ((-244 . -25) 133683) ((-128 . -120) 133667) ((-122 . -120) 133651) ((-44 . -752) 133635) ((-1184 . -564) 133546) ((-1136 . -564) 133477) ((-1236 . -1111) T) ((-1046 . -292) 133452) ((-1178 . -1094) T) ((-1005 . -1094) T) ((-824 . -132) T) ((-118 . -803) NIL) ((-118 . -800) NIL) ((-362 . -313) T) ((-359 . -313) T) ((-351 . -313) T) ((-256 . -1123) 133362) ((-255 . -1123) 133272) ((-1035 . -1060) T) ((-1014 . -1069) T) ((-48 . -624) 133205) ((-350 . -656) 133150) ((-629 . -38) 133134) ((-1292 . -621) 133096) ((-1292 . -622) 133057) ((-1088 . -621) 133039) ((-1035 . -247) T) ((-361 . -1060) T) ((-823 . -1286) 133009) ((-256 . -23) T) ((-255 . -23) T) ((-998 . -621) 132991) ((-745 . -622) 132952) ((-745 . -621) 132934) ((-807 . -858) 132913) ((-1171 . -152) 132860) ((-1010 . -522) 132772) ((-361 . -237) T) ((-361 . -247) T) ((-396 . -624) 132753) ((-1015 . -25) T) ((-142 . -621) 132735) ((-142 . -622) 132694) ((-919 . -313) T) ((-1015 . -21) T) ((-982 . -25) T) ((-923 . -21) T) ((-923 . -25) T) ((-435 . -21) T) ((-435 . -25) T) ((-851 . -419) 132678) ((-48 . -1060) T) ((-1301 . -1293) 132662) ((-1299 . -1293) 132646) ((-1046 . -612) 132621) ((-322 . -622) 132482) ((-322 . -621) 132464) ((-319 . -622) NIL) ((-319 . -621) 132446) ((-48 . -247) T) ((-48 . -237) T) ((-662 . -292) 132407) ((-558 . -239) 132357) ((-140 . -621) 132324) ((-137 . -621) 132306) ((-115 . -621) 132288) ((-485 . -38) 132253) ((-1303 . -1300) 132232) ((-1294 . -132) T) ((-1302 . -1069) T) ((-1093 . -102) T) ((-88 . -1229) T) ((-508 . -315) NIL) ((-1011 . -107) 132216) ((-898 . -1111) T) ((-894 . -1111) T) ((-1279 . -659) 132200) ((-1279 . -380) 132184) ((-333 . -1229) T) ((-601 . -858) T) ((-1153 . -1111) T) ((-1153 . -1064) 132124) ((-103 . -522) 132057) ((-936 . -621) 132039) ((-350 . -734) T) ((-30 . -621) 132021) ((-874 . -1111) T) ((-851 . -1069) 132000) ((-40 . -656) 131945) ((-227 . -1233) T) ((-415 . -1069) T) ((-1170 . -152) 131927) ((-1010 . -296) 131878) ((-625 . -1111) T) ((-227 . -564) T) ((-325 . -1260) 131862) ((-325 . -1257) 131832) ((-709 . -654) 131804) ((-1201 . -1205) 131783) ((-1086 . -621) 131765) ((-1201 . -107) 131715) ((-655 . -152) 131699) ((-640 . -152) 131645) ((-117 . -654) 131617) ((-487 . -1205) 131596) ((-495 . -148) T) ((-495 . -146) NIL) ((-1131 . -622) 131511) ((-446 . -621) 131493) ((-219 . -148) T) ((-219 . -146) NIL) ((-1131 . -621) 131475) ((-130 . -102) T) ((-52 . -102) T) ((-1243 . -647) 131427) ((-487 . -107) 131377) ((-1004 . -23) T) ((-1303 . -38) 131347) ((-1184 . -1123) T) ((-1136 . -1123) T) ((-1073 . -1233) T) ((-317 . -102) T) ((-862 . -1123) T) ((-961 . -1233) 131326) ((-489 . -1233) 131305) ((-1073 . -564) T) ((-961 . -564) 131236) ((-1184 . -23) T) ((-1162 . -1094) T) ((-1136 . -23) T) ((-862 . -23) T) ((-489 . -564) 131167) ((-1153 . -725) 131099) ((-678 . -1062) 131083) ((-1157 . -522) 131016) ((-678 . -648) 131000) ((-1046 . -622) NIL) ((-1046 . -621) 130982) ((-96 . -1094) T) ((-874 . -725) 130952) ((-1223 . -47) 130921) ((-256 . -132) T) ((-255 . -132) T) ((-1115 . -1111) T) ((-1014 . -1111) T) ((-62 . -621) 130903) ((-1179 . -858) NIL) ((-1035 . -800) T) ((-1035 . -803) T) ((-1308 . -1067) 130890) ((-1308 . -111) 130875) ((-1271 . -25) T) ((-1271 . -21) T) ((-878 . -656) 130862) ((-1264 . -21) T) ((-1264 . -25) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-1038 . -152) 130846) ((-880 . -828) 130825) ((-880 . -929) T) ((-720 . -292) 130752) ((-604 . -21) T) ((-346 . -654) 130711) ((-604 . -25) T) ((-603 . -21) T) ((-176 . -654) 130628) ((-40 . -734) T) ((-224 . -522) 130561) ((-603 . -25) T) ((-484 . -152) 130545) ((-471 . -152) 130529) ((-930 . -802) T) ((-930 . -734) T) ((-779 . -801) T) ((-779 . -802) T) ((-514 . -1111) T) ((-510 . -1111) T) ((-779 . -734) T) ((-227 . -370) T) ((-1301 . -1062) 130513) ((-1299 . -1062) 130497) ((-1301 . -648) 130467) ((-1168 . -1111) 130445) ((-879 . -1233) T) ((-1299 . -648) 130415) ((-662 . -621) 130397) ((-879 . -564) T) ((-702 . -375) NIL) ((-44 . -1062) 130381) ((-1308 . -624) 130363) ((-1302 . -1111) T) ((-678 . -102) T) ((-366 . -1286) 130347) ((-360 . -1286) 130331) ((-44 . -648) 130315) ((-352 . -1286) 130299) ((-556 . -102) T) ((-528 . -858) 130278) ((-1057 . -1111) T) ((-825 . -460) 130257) ((-153 . -1062) 130241) ((-1057 . -1082) 130170) ((-1038 . -987) 130139) ((-827 . -1123) T) ((-1014 . -725) 130084) ((-153 . -648) 130068) ((-394 . -1123) T) ((-484 . -987) 130037) ((-471 . -987) 130006) ((-110 . -152) 129988) ((-73 . -621) 129970) ((-902 . -621) 129952) ((-1091 . -732) 129931) ((-1308 . -1060) T) ((-824 . -647) 129879) ((-300 . -1069) 129821) ((-171 . -1233) 129726) ((-227 . -1123) T) ((-330 . -23) T) ((-1179 . -1003) 129678) ((-851 . -1111) T) ((-1265 . -1067) 129583) ((-1137 . -748) 129562) ((-1263 . -929) 129541) ((-1242 . -929) 129520) ((-878 . -734) T) ((-171 . -564) 129431) ((-588 . -656) 129418) ((-572 . -656) 129405) ((-415 . -1111) T) ((-268 . -1111) T) ((-215 . -621) 129387) ((-503 . -656) 129352) ((-227 . -23) T) ((-1242 . -828) 129305) ((-1301 . -102) T) ((-361 . -1298) 129282) ((-1299 . -102) T) ((-1265 . -111) 129174) ((-823 . -1062) 129071) ((-823 . -648) 129013) ((-145 . -621) 128995) ((-1004 . -132) T) ((-44 . -102) T) ((-244 . -858) 128946) ((-1252 . -1233) 128925) ((-103 . -497) 128909) ((-1302 . -725) 128879) ((-1098 . -47) 128840) ((-1073 . -1123) T) ((-961 . -1123) T) ((-128 . -34) T) ((-122 . -34) T) ((-790 . -47) 128817) ((-788 . -47) 128789) ((-1252 . -564) 128700) ((-361 . -375) T) ((-489 . -1123) T) ((-1184 . -132) T) ((-1136 . -132) T) ((-462 . -47) 128679) ((-879 . -370) T) ((-862 . -132) T) ((-153 . -102) T) ((-1073 . -23) T) ((-961 . -23) T) ((-579 . -564) T) ((-824 . -25) T) ((-824 . -21) T) ((-1153 . -522) 128612) ((-600 . -1094) T) ((-594 . -1049) 128596) ((-1265 . -624) 128470) ((-489 . -23) T) ((-358 . -1069) T) ((-1223 . -909) 128451) ((-678 . -315) 128389) ((-1124 . -1286) 128359) ((-707 . -656) 128324) ((-1015 . -858) T) ((-1014 . -174) T) ((-972 . -146) 128303) ((-643 . -1111) T) ((-615 . -1111) T) ((-972 . -148) 128282) ((-743 . -148) 128261) ((-743 . -146) 128240) ((-666 . -1229) T) ((-982 . -858) T) ((-841 . -654) 128157) ((-482 . -929) 128136) ((-325 . -1062) 127971) ((-322 . -1067) 127881) ((-319 . -1067) 127810) ((-1010 . -292) 127768) ((-415 . -725) 127720) ((-325 . -648) 127561) ((-709 . -856) T) ((-1265 . -1060) T) ((-322 . -111) 127457) ((-319 . -111) 127370) ((-973 . -102) T) ((-823 . -102) 127160) ((-720 . -622) NIL) ((-720 . -621) 127142) ((-666 . -1049) 127038) ((-1265 . -332) 126982) ((-1046 . -294) 126957) ((-588 . -734) T) ((-572 . -802) T) ((-171 . -370) 126908) ((-572 . -799) T) ((-572 . -734) T) ((-503 . -734) T) ((-790 . -1229) T) ((-1157 . -497) 126892) ((-1098 . -895) NIL) ((-879 . -1123) T) ((-118 . -918) NIL) ((-1301 . -1300) 126868) ((-1299 . -1300) 126847) ((-790 . -895) NIL) ((-788 . -895) 126706) ((-1294 . -25) T) ((-1294 . -21) T) ((-1226 . -102) 126684) ((-1117 . -403) T) ((-631 . -656) 126671) ((-462 . -895) NIL) ((-683 . -102) 126649) ((-1098 . -1049) 126476) ((-879 . -23) T) ((-790 . -1049) 126335) ((-788 . -1049) 126192) ((-118 . -656) 126137) ((-462 . -1049) 126013) ((-322 . -624) 125577) ((-319 . -624) 125460) ((-398 . -654) 125429) ((-657 . -1049) 125413) ((-635 . -102) T) ((-224 . -497) 125397) ((-1279 . -34) T) ((-629 . -654) 125356) ((-295 . -1062) 125343) ((-137 . -624) 125327) ((-295 . -648) 125314) ((-643 . -725) 125298) ((-615 . -725) 125282) ((-678 . -38) 125242) ((-325 . -102) T) ((-85 . -621) 125224) ((-50 . -1049) 125208) ((-1131 . -1067) 125195) ((-1098 . -384) 125179) ((-790 . -384) 125163) ((-707 . -734) T) ((-707 . -802) T) ((-707 . -799) T) ((-589 . -1049) 125150) ((-526 . -1049) 125127) ((-60 . -57) 125089) ((-330 . -132) T) ((-322 . -1060) 124979) ((-319 . -1060) T) ((-171 . -1123) T) ((-788 . -384) 124963) ((-45 . -152) 124913) ((-1015 . -1003) 124895) ((-462 . -384) 124879) ((-415 . -174) T) ((-322 . -247) 124858) ((-319 . -247) T) ((-319 . -237) NIL) ((-300 . -1111) 124640) ((-227 . -132) T) ((-1131 . -111) 124625) ((-171 . -23) T) ((-807 . -148) 124604) ((-807 . -146) 124583) ((-256 . -647) 124489) ((-255 . -647) 124395) ((-325 . -290) 124361) ((-1168 . -522) 124294) ((-485 . -654) 124244) ((-1144 . -1111) T) ((-227 . -1071) T) ((-823 . -315) 124182) ((-1098 . -909) 124117) ((-790 . -909) 124060) ((-788 . -909) 124044) ((-1301 . -38) 124014) ((-1299 . -38) 123984) ((-1252 . -1123) T) ((-863 . -1123) T) ((-462 . -909) 123961) ((-866 . -1111) T) ((-1252 . -23) T) ((-1131 . -624) 123933) ((-579 . -1123) T) ((-863 . -23) T) ((-631 . -734) T) ((-362 . -929) T) ((-359 . -929) T) ((-295 . -102) T) ((-351 . -929) T) ((-1073 . -132) T) ((-981 . -1094) T) ((-961 . -132) T) ((-118 . -802) NIL) ((-118 . -799) NIL) ((-118 . -734) T) ((-702 . -918) NIL) ((-1057 . -522) 123834) ((-489 . -132) T) ((-579 . -23) T) ((-683 . -315) 123772) ((-643 . -769) T) ((-615 . -769) T) ((-1243 . -858) NIL) ((-1091 . -1062) 123682) ((-1014 . -296) T) ((-702 . -656) 123632) ((-256 . -21) T) ((-358 . -1111) T) ((-256 . -25) T) ((-255 . -21) T) ((-255 . -25) T) ((-153 . -38) 123616) ((-2 . -102) T) ((-919 . -929) T) ((-1091 . -648) 123484) ((-490 . -1286) 123454) ((-1131 . -1060) T) ((-719 . -313) T) ((-366 . -1062) 123406) ((-360 . -1062) 123358) ((-352 . -1062) 123310) ((-366 . -648) 123262) ((-225 . -1049) 123239) ((-360 . -648) 123191) ((-108 . -1062) 123141) ((-352 . -648) 123093) ((-300 . -725) 123035) ((-709 . -1069) T) ((-495 . -460) T) ((-415 . -522) 122947) ((-108 . -648) 122897) ((-219 . -460) T) ((-1131 . -237) T) ((-301 . -152) 122847) ((-1010 . -622) 122808) ((-1010 . -621) 122790) ((-1000 . -621) 122772) ((-117 . -1069) T) ((-662 . -1067) 122756) ((-227 . -501) T) ((-407 . -621) 122738) ((-407 . -622) 122715) ((-1065 . -1286) 122685) ((-662 . -111) 122664) ((-1153 . -497) 122648) ((-1303 . -654) 122607) ((-388 . -654) 122576) ((-823 . -38) 122546) ((-63 . -449) T) ((-63 . -403) T) ((-1171 . -102) T) ((-879 . -132) T) ((-492 . -102) 122524) ((-1308 . -375) T) ((-1091 . -102) T) ((-1072 . -102) T) ((-358 . -725) 122469) ((-739 . -148) 122448) ((-739 . -146) 122427) ((-662 . -624) 122345) ((-1035 . -656) 122282) ((-531 . -1111) 122260) ((-366 . -102) T) ((-360 . -102) T) ((-352 . -102) T) ((-108 . -102) T) ((-512 . -1111) T) ((-361 . -656) 122205) ((-1184 . -647) 122153) ((-1136 . -647) 122101) ((-392 . -517) 122080) ((-841 . -856) 122059) ((-386 . -1233) T) ((-702 . -734) T) ((-1243 . -1003) 122011) ((-346 . -1069) T) ((-112 . -1229) T) ((-176 . -1069) T) ((-103 . -621) 121943) ((-1186 . -146) 121922) ((-1186 . -148) 121901) ((-386 . -564) T) ((-1185 . -148) 121880) ((-1185 . -146) 121859) ((-1179 . -146) 121766) ((-415 . -296) T) ((-1179 . -148) 121673) ((-1137 . -148) 121652) ((-1137 . -146) 121631) ((-325 . -38) 121472) ((-171 . -132) T) ((-319 . -803) NIL) ((-319 . -800) NIL) ((-662 . -1060) T) ((-48 . -656) 121437) ((-1124 . -1062) 121334) ((-902 . -624) 121311) ((-1124 . -648) 121253) ((-1178 . -102) T) ((-1005 . -102) T) ((-1004 . -21) T) ((-128 . -1021) 121237) ((-122 . -1021) 121221) ((-1004 . -25) T) ((-910 . -120) 121205) ((-1170 . -102) T) ((-1252 . -132) T) ((-1184 . -25) T) ((-1184 . -21) T) ((-863 . -132) T) ((-1136 . -25) T) ((-1136 . -21) T) ((-862 . -25) T) ((-862 . -21) T) ((-790 . -313) 121184) ((-655 . -102) 121162) ((-640 . -102) T) ((-1171 . -315) 120957) ((-579 . -132) T) ((-629 . -856) 120936) ((-1168 . -497) 120920) ((-1161 . -152) 120870) ((-1157 . -621) 120832) ((-1157 . -622) 120793) ((-1035 . -799) T) ((-1035 . -802) T) ((-1035 . -734) T) ((-720 . -1067) 120616) ((-492 . -315) 120554) ((-461 . -425) 120524) ((-358 . -174) T) ((-295 . -38) 120511) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-350 . -1049) 120488) ((-273 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-361 . -734) T) ((-720 . -111) 120297) ((-678 . -233) 120281) ((-589 . -313) T) ((-526 . -313) T) ((-300 . -522) 120230) ((-108 . -315) NIL) ((-72 . -403) T) ((-1124 . -102) 120020) ((-841 . -419) 120004) ((-1131 . -803) T) ((-1131 . -800) T) ((-709 . -1111) T) ((-586 . -621) 119986) ((-386 . -370) T) ((-171 . -501) 119964) ((-224 . -621) 119896) ((-135 . -1111) T) ((-117 . -1111) T) ((-975 . -1229) T) ((-48 . -734) T) ((-1057 . -497) 119861) ((-142 . -433) 119843) ((-142 . -375) T) ((-1038 . -102) T) ((-520 . -517) 119822) ((-720 . -624) 119578) ((-484 . -102) T) ((-471 . -102) T) ((-1045 . -1123) T) ((-1236 . -621) 119560) ((-1193 . -1049) 119496) ((-1186 . -35) 119462) ((-1186 . -95) 119428) ((-1186 . -1217) 119394) ((-1186 . -1214) 119360) ((-1185 . -1214) 119326) ((-1170 . -315) NIL) ((-89 . -404) T) ((-89 . -403) T) ((-1091 . -1163) 119305) ((-1185 . -1217) 119271) ((-1185 . -95) 119237) ((-1045 . -23) T) ((-1185 . -35) 119203) ((-579 . -501) T) ((-1179 . -1214) 119169) ((-1179 . -1217) 119135) ((-1179 . -95) 119101) ((-1179 . -35) 119067) ((-368 . -1123) T) ((-366 . -1163) 119046) ((-360 . -1163) 119025) ((-352 . -1163) 119004) ((-1115 . -292) 118960) ((-1137 . -35) 118926) ((-1137 . -95) 118892) ((-108 . -1163) T) ((-1137 . -1217) 118858) ((-841 . -1069) 118837) ((-655 . -315) 118775) ((-640 . -315) 118626) ((-1137 . -1214) 118592) ((-720 . -1060) T) ((-1073 . -647) 118574) ((-1091 . -38) 118442) ((-961 . -647) 118390) ((-1015 . -148) T) ((-1015 . -146) NIL) ((-386 . -1123) T) ((-330 . -25) T) ((-328 . -23) T) ((-952 . -858) 118369) ((-720 . -332) 118346) ((-489 . -647) 118294) ((-40 . -1049) 118182) ((-720 . -237) T) ((-709 . -725) 118169) ((-346 . -1111) T) ((-176 . -1111) T) ((-337 . -858) T) ((-426 . -460) 118119) ((-386 . -23) T) ((-366 . -38) 118084) ((-360 . -38) 118049) ((-352 . -38) 118014) ((-80 . -449) T) ((-80 . -403) T) ((-227 . -25) T) ((-227 . -21) T) ((-844 . -1123) T) ((-108 . -38) 117964) ((-835 . -1123) T) ((-782 . -1111) T) ((-117 . -725) 117951) ((-680 . -1049) 117935) ((-620 . -102) T) ((-844 . -23) T) ((-835 . -23) T) ((-1168 . -292) 117887) ((-1124 . -315) 117825) ((-490 . -1062) 117722) ((-1113 . -239) 117706) ((-64 . -404) T) ((-64 . -403) T) ((-1162 . -102) T) ((-110 . -102) T) ((-490 . -648) 117648) ((-40 . -384) 117625) ((-96 . -102) T) ((-661 . -860) 117609) ((-1146 . -1094) T) ((-1073 . -21) T) ((-1073 . -25) T) ((-1065 . -1062) 117593) ((-823 . -233) 117562) ((-961 . -25) T) ((-961 . -21) T) ((-1065 . -648) 117504) ((-629 . -1069) T) ((-1131 . -375) T) ((-1038 . -315) 117442) ((-678 . -654) 117401) ((-489 . -25) T) ((-489 . -21) T) ((-392 . -1062) 117385) ((-898 . -621) 117367) ((-894 . -621) 117349) ((-531 . -522) 117282) ((-256 . -858) 117233) ((-255 . -858) 117184) ((-392 . -648) 117154) ((-879 . -647) 117131) ((-484 . -315) 117069) ((-471 . -315) 117007) ((-358 . -296) T) ((-1168 . -1267) 116991) ((-1153 . -621) 116953) ((-1153 . -622) 116914) ((-1151 . -102) T) ((-1010 . -1067) 116810) ((-40 . -909) 116762) ((-1168 . -612) 116739) ((-1308 . -656) 116726) ((-874 . -498) 116703) ((-1074 . -152) 116649) ((-880 . -1233) T) ((-1010 . -111) 116531) ((-346 . -725) 116515) ((-874 . -621) 116477) ((-176 . -725) 116409) ((-415 . -292) 116367) ((-880 . -564) T) ((-108 . -408) 116349) ((-84 . -391) T) ((-84 . -403) T) ((-709 . -174) T) ((-625 . -621) 116331) ((-99 . -734) T) ((-490 . -102) 116121) ((-99 . -481) T) ((-117 . -174) T) ((-1301 . -654) 116080) ((-1299 . -654) 116039) ((-1124 . -38) 116009) ((-171 . -647) 115957) ((-1065 . -102) T) ((-1010 . -624) 115847) ((-879 . -25) T) ((-823 . -242) 115826) ((-879 . -21) T) ((-826 . -102) T) ((-44 . -654) 115769) ((-422 . -102) T) ((-392 . -102) T) ((-110 . -315) NIL) ((-229 . -102) 115747) ((-128 . -1229) T) ((-122 . -1229) T) ((-825 . -1062) 115698) ((-825 . -648) 115640) ((-1045 . -132) T) ((-678 . -374) 115624) ((-153 . -654) 115583) ((-643 . -292) 115541) ((-615 . -292) 115499) ((-1010 . -1060) T) ((-1252 . -647) 115447) ((-1115 . -621) 115429) ((-1014 . -621) 115411) ((-523 . -23) T) ((-518 . -23) T) ((-350 . -313) T) ((-516 . -23) T) ((-328 . -132) T) ((-3 . -1111) T) ((-1014 . -622) 115395) ((-1010 . -247) 115374) ((-1010 . -237) 115353) ((-1308 . -734) T) ((-1271 . -146) 115332) ((-841 . -1111) T) ((-1271 . -148) 115311) ((-1264 . -148) 115290) ((-1264 . -146) 115269) ((-1263 . -1233) 115248) ((-1243 . -146) 115155) ((-1243 . -148) 115062) ((-1242 . -1233) 115041) ((-386 . -132) T) ((-572 . -895) 115023) ((0 . -1111) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1111) T) ((-1265 . -656) 114928) ((-1263 . -564) 114879) ((-722 . -1123) T) ((-1242 . -564) 114830) ((-572 . -1049) 114812) ((-603 . -148) 114791) ((-603 . -146) 114770) ((-503 . -1049) 114713) ((-1146 . -1148) T) ((-87 . -391) T) ((-87 . -403) T) ((-880 . -370) T) ((-844 . -132) T) ((-835 . -132) T) ((-973 . -654) 114657) ((-722 . -23) T) ((-514 . -621) 114623) ((-510 . -621) 114605) ((-823 . -654) 114355) ((-1303 . -1069) T) ((-386 . -1071) T) ((-1037 . -1111) 114333) ((-55 . -1049) 114315) ((-910 . -34) T) ((-490 . -315) 114253) ((-600 . -102) T) ((-1168 . -622) 114214) ((-1168 . -621) 114146) ((-1190 . -1062) 114029) ((-45 . -102) T) ((-825 . -102) T) ((-1190 . -648) 113926) ((-1252 . -25) T) ((-1252 . -21) T) ((-863 . -25) T) ((-44 . -374) 113910) ((-863 . -21) T) ((-739 . -460) 113861) ((-1302 . -621) 113843) ((-1291 . -1062) 113813) ((-1065 . -315) 113751) ((-679 . -1094) T) ((-614 . -1094) T) ((-398 . -1111) T) ((-579 . -25) T) ((-579 . -21) T) ((-182 . -1094) T) ((-162 . -1094) T) ((-157 . -1094) T) ((-155 . -1094) T) ((-1291 . -648) 113721) ((-629 . -1111) T) ((-707 . -895) 113703) ((-1279 . -1229) T) ((-229 . -315) 113641) ((-145 . -375) T) ((-1057 . -622) 113583) ((-1057 . -621) 113526) ((-319 . -918) NIL) ((-1237 . -852) T) ((-707 . -1049) 113471) ((-719 . -929) T) ((-482 . -1233) 113450) ((-1185 . -460) 113429) ((-1179 . -460) 113408) ((-336 . -102) T) ((-880 . -1123) T) ((-325 . -654) 113290) ((-322 . -656) 113111) ((-319 . -656) 113040) ((-482 . -564) 112991) ((-346 . -522) 112957) ((-558 . -152) 112907) ((-40 . -313) T) ((-851 . -621) 112889) ((-709 . -296) T) ((-880 . -23) T) ((-386 . -501) T) ((-1091 . -233) 112859) ((-520 . -102) T) ((-415 . -622) 112666) ((-415 . -621) 112648) ((-268 . -621) 112630) ((-117 . -296) T) ((-1265 . -734) T) ((-1304 . -1111) T) ((-1263 . -370) 112609) ((-1242 . -370) 112588) ((-1292 . -34) T) ((-1237 . -1111) T) ((-118 . -1229) T) ((-108 . -233) 112570) ((-1190 . -102) T) ((-485 . -1111) T) ((-531 . -497) 112554) ((-745 . -34) T) ((-661 . -1062) 112538) ((-490 . -38) 112508) ((-661 . -648) 112478) ((-142 . -34) T) ((-118 . -893) 112455) ((-118 . -895) NIL) ((-631 . -1049) 112338) ((-652 . -858) 112317) ((-1291 . -102) T) ((-301 . -102) T) ((-720 . -375) 112296) ((-118 . -1049) 112273) ((-398 . -725) 112257) ((-629 . -725) 112241) ((-1116 . -1229) T) ((-45 . -315) 112045) ((-824 . -146) 112024) ((-824 . -148) 112003) ((-295 . -654) 111975) ((-1302 . -389) 111954) ((-827 . -858) T) ((-1281 . -1111) T) ((-1171 . -231) 111901) ((-394 . -858) 111880) ((-1271 . -1217) 111846) ((-1271 . -1214) 111812) ((-1264 . -1214) 111778) ((-523 . -132) T) ((-1264 . -1217) 111744) ((-1243 . -1214) 111710) ((-1243 . -1217) 111676) ((-1271 . -35) 111642) ((-1271 . -95) 111608) ((-643 . -621) 111577) ((-615 . -621) 111546) ((-227 . -858) T) ((-1264 . -95) 111512) ((-1264 . -35) 111478) ((-1263 . -1123) T) ((-1131 . -656) 111465) ((-1243 . -95) 111431) ((-1242 . -1123) T) ((-601 . -152) 111413) ((-1091 . -356) 111392) ((-176 . -296) T) ((-118 . -384) 111369) ((-118 . -345) 111346) ((-1243 . -35) 111312) ((-878 . -313) T) ((-319 . -802) NIL) ((-319 . -799) NIL) ((-322 . -734) 111161) ((-319 . -734) T) ((-482 . -370) 111140) ((-366 . -356) 111119) ((-360 . -356) 111098) ((-352 . -356) 111077) ((-322 . -481) 111056) ((-1263 . -23) T) ((-1242 . -23) T) ((-726 . -1123) T) ((-722 . -132) T) ((-661 . -102) T) ((-485 . -725) 111021) ((-45 . -288) 110971) ((-105 . -1111) T) ((-68 . -621) 110953) ((-981 . -102) T) ((-872 . -102) T) ((-631 . -909) 110912) ((-1303 . -1111) T) ((-388 . -1111) T) ((-82 . -1229) T) ((-1228 . -1111) T) ((-1073 . -858) T) ((-118 . -909) NIL) ((-790 . -929) 110891) ((-721 . -858) T) ((-539 . -1111) T) ((-508 . -1111) T) ((-362 . -1233) T) ((-359 . -1233) T) ((-351 . -1233) T) ((-269 . -1233) 110870) ((-251 . -1233) 110849) ((-541 . -868) T) ((-1124 . -233) 110818) ((-1170 . -836) T) ((-1153 . -1067) 110802) ((-398 . -769) T) ((-702 . -1229) T) ((-699 . -1049) 110786) ((-362 . -564) T) ((-359 . -564) T) ((-351 . -564) T) ((-269 . -564) 110717) ((-251 . -564) 110648) ((-533 . -1094) T) ((-1153 . -111) 110627) ((-461 . -752) 110597) ((-874 . -1067) 110567) ((-825 . -38) 110509) ((-702 . -893) 110491) ((-702 . -895) 110473) ((-301 . -315) 110277) ((-919 . -1233) T) ((-1168 . -294) 110254) ((-1091 . -654) 110149) ((-678 . -419) 110133) ((-874 . -111) 110098) ((-1015 . -460) T) ((-702 . -1049) 110043) ((-919 . -564) T) ((-541 . -621) 110025) ((-589 . -929) T) ((-495 . -1062) 109975) ((-482 . -1123) T) ((-526 . -929) T) ((-923 . -460) T) ((-65 . -621) 109957) ((-219 . -1062) 109907) ((-495 . -648) 109857) ((-366 . -654) 109794) ((-360 . -654) 109731) ((-352 . -654) 109668) ((-640 . -231) 109614) ((-219 . -648) 109564) ((-108 . -654) 109514) ((-482 . -23) T) ((-1131 . -802) T) ((-880 . -132) T) ((-1131 . -799) T) ((-1294 . -1296) 109493) ((-1131 . -734) T) ((-662 . -656) 109467) ((-300 . -621) 109208) ((-1153 . -624) 109126) ((-1046 . -34) T) ((-823 . -856) 109105) ((-588 . -313) T) ((-572 . -313) T) ((-503 . -313) T) ((-1303 . -725) 109075) ((-702 . -384) 109057) ((-702 . -345) 109039) ((-485 . -174) T) ((-388 . -725) 109009) ((-874 . -624) 108944) ((-879 . -858) NIL) ((-572 . -1033) T) ((-503 . -1033) T) ((-1144 . -621) 108926) ((-1124 . -242) 108905) ((-216 . -102) T) ((-1161 . -102) T) ((-71 . -621) 108887) ((-1153 . -1060) T) ((-1190 . -38) 108784) ((-866 . -621) 108766) ((-572 . -553) T) ((-678 . -1069) T) ((-739 . -958) 108719) ((-1153 . -237) 108698) ((-1093 . -1111) T) ((-1045 . -25) T) ((-1045 . -21) T) ((-1014 . -1067) 108643) ((-914 . -102) T) ((-874 . -1060) T) ((-702 . -909) NIL) ((-362 . -335) 108627) ((-362 . -370) T) ((-359 . -335) 108611) ((-359 . -370) T) ((-351 . -335) 108595) ((-351 . -370) T) ((-495 . -102) T) ((-1291 . -38) 108565) ((-554 . -858) T) ((-531 . -695) 108515) ((-219 . -102) T) ((-1035 . -1049) 108395) ((-1014 . -111) 108324) ((-1186 . -984) 108293) ((-528 . -152) 108277) ((-1091 . -377) 108256) ((-358 . -621) 108238) ((-328 . -21) T) ((-361 . -1049) 108215) ((-328 . -25) T) ((-1185 . -984) 108177) ((-1179 . -984) 108146) ((-76 . -621) 108128) ((-1137 . -984) 108095) ((-707 . -313) T) ((-130 . -852) T) ((-919 . -370) T) ((-386 . -25) T) ((-386 . -21) T) ((-919 . -335) 108082) ((-86 . -621) 108064) ((-707 . -1033) T) ((-685 . -858) T) ((-1263 . -132) T) ((-1242 . -132) T) ((-910 . -1021) 108048) ((-844 . -21) T) ((-48 . -1049) 107991) ((-844 . -25) T) ((-835 . -25) T) ((-835 . -21) T) ((-1124 . -654) 107741) ((-1301 . -1069) T) ((-557 . -102) T) ((-1299 . -1069) T) ((-662 . -734) T) ((-1115 . -626) 107644) ((-1014 . -624) 107574) ((-1302 . -1067) 107558) ((-823 . -419) 107527) ((-103 . -120) 107511) ((-130 . -1111) T) ((-52 . -1111) T) ((-935 . -621) 107493) ((-879 . -1003) 107470) ((-831 . -102) T) ((-1302 . -111) 107449) ((-661 . -38) 107419) ((-579 . -858) T) ((-362 . -1123) T) ((-359 . -1123) T) ((-351 . -1123) T) ((-269 . -1123) T) ((-251 . -1123) T) ((-631 . -313) 107398) ((-1161 . -315) 107202) ((-672 . -23) T) ((-532 . -1094) T) ((-317 . -1111) T) ((-490 . -233) 107171) ((-153 . -1069) T) ((-362 . -23) T) ((-359 . -23) T) ((-351 . -23) T) ((-118 . -313) T) ((-269 . -23) T) ((-251 . -23) T) ((-1014 . -1060) T) ((-720 . -918) 107150) ((-1168 . -624) 107127) ((-1014 . -237) 107099) ((-1014 . -247) T) ((-118 . -1033) NIL) ((-919 . -1123) T) ((-1264 . -460) 107078) ((-1243 . -460) 107057) ((-531 . -621) 106989) ((-720 . -656) 106914) ((-415 . -1067) 106866) ((-512 . -621) 106848) ((-919 . -23) T) ((-495 . -315) NIL) ((-1302 . -624) 106804) ((-482 . -132) T) ((-219 . -315) NIL) ((-415 . -111) 106742) ((-823 . -1069) 106672) ((-745 . -1109) 106656) ((-1263 . -501) 106622) ((-1242 . -501) 106588) ((-556 . -852) T) ((-142 . -1109) 106570) ((-485 . -296) T) ((-1302 . -1060) T) ((-1234 . -102) T) ((-1074 . -102) T) ((-851 . -624) 106438) ((-508 . -522) NIL) ((-490 . -242) 106417) ((-415 . -624) 106315) ((-972 . -1062) 106198) ((-743 . -1062) 106168) ((-972 . -648) 106065) ((-1184 . -146) 106044) ((-743 . -648) 106014) ((-461 . -1062) 105984) ((-1184 . -148) 105963) ((-1136 . -148) 105942) ((-1136 . -146) 105921) ((-643 . -1067) 105905) ((-615 . -1067) 105889) ((-461 . -648) 105859) ((-1186 . -1270) 105843) ((-1186 . -1257) 105820) ((-1185 . -1262) 105781) ((-678 . -1111) T) ((-678 . -1064) 105721) ((-1185 . -1257) 105691) ((-556 . -1111) T) ((-495 . -1163) T) ((-1185 . -1260) 105675) ((-1179 . -1241) 105636) ((-826 . -271) 105620) ((-219 . -1163) T) ((-350 . -929) T) ((-99 . -1229) T) ((-643 . -111) 105599) ((-615 . -111) 105578) ((-1179 . -1257) 105555) ((-851 . -1060) 105534) ((-1179 . -1239) 105518) ((-523 . -25) T) ((-503 . -308) T) ((-519 . -23) T) ((-518 . -25) T) ((-516 . -25) T) ((-515 . -23) T) ((-426 . -1062) 105492) ((-415 . -1060) T) ((-325 . -1069) T) ((-702 . -313) T) ((-426 . -648) 105466) ((-108 . -856) T) ((-720 . -734) T) ((-415 . -247) T) ((-415 . -237) 105445) ((-495 . -38) 105395) ((-219 . -38) 105345) ((-482 . -501) 105311) ((-1236 . -375) T) ((-1170 . -1155) T) ((-1112 . -102) T) ((-709 . -621) 105293) ((-709 . -622) 105208) ((-722 . -21) T) ((-722 . -25) T) ((-1146 . -102) T) ((-490 . -654) 104958) ((-135 . -621) 104940) ((-117 . -621) 104922) ((-158 . -25) T) ((-1301 . -1111) T) ((-880 . -647) 104870) ((-1299 . -1111) T) ((-972 . -102) T) ((-743 . -102) T) ((-723 . -102) T) ((-461 . -102) T) ((-824 . -460) 104821) ((-44 . -1111) T) ((-1099 . -858) T) ((-1074 . -315) 104672) ((-672 . -132) T) ((-1065 . -654) 104641) ((-678 . -725) 104625) ((-295 . -1069) T) ((-362 . -132) T) ((-359 . -132) T) ((-351 . -132) T) ((-269 . -132) T) ((-251 . -132) T) ((-392 . -654) 104594) ((-426 . -102) T) ((-153 . -1111) T) ((-45 . -231) 104544) ((-807 . -1062) 104528) ((-967 . -858) 104507) ((-1010 . -656) 104445) ((-807 . -648) 104429) ((-244 . -1286) 104399) ((-1035 . -313) T) ((-300 . -1067) 104320) ((-919 . -132) T) ((-40 . -929) T) ((-495 . -408) 104302) ((-361 . -313) T) ((-219 . -408) 104284) ((-1091 . -419) 104268) ((-300 . -111) 104184) ((-1195 . -858) T) ((-1194 . -858) T) ((-880 . -25) T) ((-880 . -21) T) ((-346 . -621) 104166) ((-1265 . -47) 104110) ((-227 . -148) T) ((-176 . -621) 104092) ((-1124 . -856) 104071) ((-782 . -621) 104053) ((-129 . -858) T) ((-616 . -239) 104000) ((-483 . -239) 103950) ((-1301 . -725) 103920) ((-48 . -313) T) ((-1299 . -725) 103890) ((-65 . -624) 103819) ((-973 . -1111) T) ((-823 . -1111) 103609) ((-318 . -102) T) ((-910 . -1229) T) ((-48 . -1033) T) ((-1242 . -647) 103517) ((-697 . -102) 103495) ((-44 . -725) 103479) ((-558 . -102) T) ((-300 . -624) 103410) ((-67 . -390) T) ((-67 . -403) T) ((-670 . -23) T) ((-825 . -654) 103346) ((-678 . -769) T) ((-1226 . -1111) 103324) ((-358 . -1067) 103269) ((-683 . -1111) 103247) ((-1073 . -148) T) ((-961 . -148) 103226) ((-961 . -146) 103205) ((-807 . -102) T) ((-153 . -725) 103189) ((-489 . -148) 103168) ((-489 . -146) 103147) ((-358 . -111) 103076) ((-1091 . -1069) T) ((-328 . -858) 103055) ((-1271 . -984) 103024) ((-635 . -1111) T) ((-1264 . -984) 102986) ((-519 . -132) T) ((-515 . -132) T) ((-301 . -231) 102936) ((-366 . -1069) T) ((-360 . -1069) T) ((-352 . -1069) T) ((-300 . -1060) 102878) ((-1243 . -984) 102847) ((-386 . -858) T) ((-108 . -1069) T) ((-1010 . -734) T) ((-878 . -929) T) ((-851 . -803) 102826) ((-851 . -800) 102805) ((-426 . -315) 102744) ((-476 . -102) T) ((-603 . -984) 102713) ((-325 . -1111) T) ((-415 . -803) 102692) ((-415 . -800) 102671) ((-508 . -497) 102653) ((-1265 . -1049) 102619) ((-1263 . -21) T) ((-1263 . -25) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-823 . -725) 102561) ((-358 . -624) 102491) ((-707 . -412) T) ((-1292 . -1229) T) ((-1124 . -419) 102460) ((-614 . -102) T) ((-1088 . -1229) T) ((-1014 . -375) NIL) ((-679 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1190 . -654) 102370) ((-745 . -1229) T) ((-739 . -1062) 102213) ((-44 . -769) T) ((-739 . -648) 102062) ((-601 . -102) T) ((-77 . -404) T) ((-77 . -403) T) ((-661 . -664) 102046) ((-142 . -1229) T) ((-879 . -148) T) ((-879 . -146) NIL) ((-1228 . -93) T) ((-358 . -1060) T) ((-70 . -390) T) ((-70 . -403) T) ((-1177 . -102) T) ((-678 . -522) 101979) ((-1291 . -654) 101924) ((-697 . -315) 101862) ((-972 . -38) 101759) ((-1192 . -621) 101741) ((-743 . -38) 101711) ((-558 . -315) 101515) ((-1186 . -1062) 101398) ((-322 . -1229) T) ((-358 . -237) T) ((-358 . -247) T) ((-319 . -1229) T) ((-295 . -1111) T) ((-1185 . -1062) 101233) ((-1179 . -1062) 101023) ((-1137 . -1062) 100906) ((-1186 . -648) 100803) ((-1185 . -648) 100644) ((-719 . -1233) T) ((-1179 . -648) 100440) ((-1168 . -659) 100424) ((-1137 . -648) 100321) ((-1223 . -564) 100300) ((-827 . -393) 100284) ((-719 . -564) T) ((-322 . -893) 100268) ((-322 . -895) 100193) ((-137 . -1229) T) ((-319 . -893) 100154) ((-319 . -895) NIL) ((-807 . -315) 100119) ((-325 . -725) 99960) ((-394 . -393) 99944) ((-330 . -329) 99921) ((-493 . -102) T) ((-482 . -25) T) ((-482 . -21) T) ((-426 . -38) 99895) ((-322 . -1049) 99558) ((-227 . -1214) T) ((-227 . -1217) T) ((-3 . -621) 99540) ((-319 . -1049) 99470) ((-2 . -1111) T) ((-2 . |RecordCategory|) T) ((-841 . -621) 99452) ((-1124 . -1069) 99382) ((-588 . -929) T) ((-572 . -828) T) ((-572 . -929) T) ((-503 . -929) T) ((-137 . -1049) 99366) ((-227 . -95) T) ((-171 . -148) 99345) ((-75 . -449) T) ((0 . -621) 99327) ((-75 . -403) T) ((-171 . -146) 99278) ((-227 . -35) T) ((-49 . -621) 99260) ((-485 . -1069) T) ((-495 . -233) 99242) ((-492 . -979) 99226) ((-490 . -856) 99205) ((-219 . -233) 99187) ((-81 . -449) T) ((-81 . -403) T) ((-1157 . -34) T) ((-823 . -174) 99166) ((-739 . -102) T) ((-661 . -654) 99125) ((-1037 . -621) 99092) ((-508 . -292) 99042) ((-322 . -384) 99011) ((-319 . -384) 98972) ((-319 . -345) 98933) ((-1096 . -621) 98915) ((-824 . -958) 98862) ((-670 . -132) T) ((-1252 . -146) 98841) ((-1252 . -148) 98820) ((-1186 . -102) T) ((-1185 . -102) T) ((-1179 . -102) T) ((-1171 . -1111) T) ((-1137 . -102) T) ((-224 . -34) T) ((-295 . -725) 98807) ((-1171 . -618) 98783) ((-601 . -315) NIL) ((-492 . -1111) 98761) ((-1161 . -231) 98711) ((-398 . -621) 98693) ((-518 . -858) T) ((-1131 . -1229) T) ((-1271 . -1270) 98677) ((-1271 . -1257) 98654) ((-1264 . -1262) 98615) ((-1264 . -1257) 98585) ((-1264 . -1260) 98569) ((-1243 . -1241) 98530) ((-1243 . -1257) 98507) ((-629 . -621) 98489) ((-1243 . -1239) 98473) ((-707 . -929) T) ((-1186 . -290) 98439) ((-1185 . -290) 98405) ((-1179 . -290) 98371) ((-1091 . -1111) T) ((-1072 . -1111) T) ((-48 . -308) T) ((-322 . -909) 98337) ((-319 . -909) NIL) ((-1072 . -1079) 98316) ((-1131 . -895) 98298) ((-807 . -38) 98282) ((-269 . -647) 98230) ((-251 . -647) 98178) ((-709 . -1067) 98165) ((-603 . -1257) 98142) ((-1137 . -290) 98108) ((-325 . -174) 98039) ((-366 . -1111) T) ((-360 . -1111) T) ((-352 . -1111) T) ((-508 . -19) 98021) ((-1131 . -1049) 98003) ((-1113 . -152) 97987) ((-108 . -1111) T) ((-117 . -1067) 97974) ((-719 . -370) T) ((-508 . -612) 97949) ((-709 . -111) 97934) ((-444 . -102) T) ((-884 . -1274) T) ((-254 . -102) T) ((-45 . -1160) 97884) ((-117 . -111) 97869) ((-1304 . -621) 97836) ((-643 . -728) T) ((-615 . -728) T) ((-1304 . -498) 97818) ((-1281 . -621) 97800) ((-1237 . -621) 97782) ((-1235 . -858) T) ((-1223 . -1123) T) ((-823 . -522) 97715) ((-1046 . -1229) T) ((-244 . -1062) 97612) ((-1223 . -23) T) ((-1184 . -460) 97543) ((-952 . -152) 97527) ((-1179 . -315) 97412) ((-1178 . -1111) T) ((-244 . -648) 97354) ((-1170 . -1111) T) ((-1153 . -656) 97328) ((-1137 . -315) 97315) ((-533 . -102) T) ((-528 . -102) 97265) ((-1136 . -460) 97216) ((-1098 . -564) 97147) ((-1098 . -1233) 97126) ((-790 . -1233) 97105) ((-788 . -1233) 97084) ((-62 . -1229) T) ((-485 . -621) 97036) ((-485 . -622) 96958) ((-1091 . -725) 96826) ((-1005 . -1111) T) ((-790 . -564) 96737) ((-788 . -564) 96668) ((-490 . -419) 96637) ((-631 . -929) 96616) ((-462 . -1233) 96595) ((-739 . -315) 96582) ((-709 . -624) 96554) ((-406 . -621) 96536) ((-683 . -522) 96469) ((-672 . -25) T) ((-672 . -21) T) ((-462 . -564) 96400) ((-362 . -25) T) ((-362 . -21) T) ((-118 . -929) T) ((-118 . -828) NIL) ((-359 . -25) T) ((-359 . -21) T) ((-351 . -25) T) ((-351 . -21) T) ((-269 . -25) T) ((-269 . -21) T) ((-251 . -25) T) ((-251 . -21) T) ((-83 . -391) T) ((-83 . -403) T) ((-135 . -624) 96382) ((-117 . -624) 96354) ((-1015 . -1062) 96304) ((-1015 . -648) 96254) ((-952 . -991) 96238) ((-923 . -648) 96190) ((-923 . -1062) 96142) ((-919 . -21) T) ((-919 . -25) T) ((-880 . -858) 96093) ((-874 . -656) 96053) ((-719 . -1123) T) ((-719 . -23) T) ((-709 . -1060) T) ((-295 . -174) T) ((-709 . -237) T) ((-317 . -93) T) ((-655 . -1111) 96031) ((-640 . -618) 96006) ((-640 . -1111) T) ((-589 . -1233) T) ((-589 . -564) T) ((-526 . -1233) T) ((-526 . -564) T) ((-495 . -654) 95956) ((-435 . -1062) 95940) ((-435 . -648) 95924) ((-366 . -725) 95876) ((-360 . -725) 95828) ((-352 . -725) 95780) ((-346 . -1067) 95764) ((-346 . -111) 95743) ((-219 . -654) 95693) ((-176 . -1067) 95625) ((-176 . -111) 95536) ((-108 . -725) 95486) ((-279 . -1111) T) ((-278 . -1111) T) ((-662 . -1229) T) ((-277 . -1111) T) ((-276 . -1111) T) ((-275 . -1111) T) ((-274 . -1111) T) ((-273 . -1111) T) ((-214 . -1111) T) ((-213 . -1111) T) ((-171 . -1217) 95464) ((-171 . -1214) 95442) ((-211 . -1111) T) ((-210 . -1111) T) ((-117 . -1060) T) ((-209 . -1111) T) ((-208 . -1111) T) ((-205 . -1111) T) ((-204 . -1111) T) ((-203 . -1111) T) ((-202 . -1111) T) ((-201 . -1111) T) ((-200 . -1111) T) ((-199 . -1111) T) ((-198 . -1111) T) ((-197 . -1111) T) ((-196 . -1111) T) ((-195 . -1111) T) ((-244 . -102) 95232) ((-171 . -35) 95210) ((-171 . -95) 95188) ((-662 . -1049) 95084) ((-490 . -1069) 95014) ((-1124 . -1111) 94804) ((-1153 . -34) T) ((-678 . -497) 94788) ((-73 . -1229) T) ((-105 . -621) 94770) ((-1303 . -621) 94752) ((-388 . -621) 94734) ((-346 . -624) 94686) ((-176 . -624) 94603) ((-1228 . -498) 94584) ((-739 . -38) 94433) ((-579 . -1217) T) ((-579 . -1214) T) ((-539 . -621) 94415) ((-528 . -315) 94353) ((-508 . -621) 94335) ((-508 . -622) 94317) ((-1228 . -621) 94283) ((-1179 . -1163) NIL) ((-1038 . -1082) 94252) ((-1038 . -1111) T) ((-1015 . -102) T) ((-982 . -102) T) ((-923 . -102) T) ((-902 . -1049) 94229) ((-1153 . -734) T) ((-1014 . -656) 94174) ((-484 . -1111) T) ((-471 . -1111) T) ((-594 . -23) T) ((-579 . -35) T) ((-579 . -95) T) ((-435 . -102) T) ((-1074 . -231) 94120) ((-1186 . -38) 94017) ((-874 . -734) T) ((-702 . -929) T) ((-519 . -25) T) ((-515 . -21) T) ((-515 . -25) T) ((-1185 . -38) 93858) ((-346 . -1060) T) ((-1179 . -38) 93654) ((-1091 . -174) T) ((-176 . -1060) T) ((-1137 . -38) 93551) ((-720 . -47) 93528) ((-366 . -174) T) ((-360 . -174) T) ((-527 . -57) 93502) ((-505 . -57) 93452) ((-358 . -1298) 93429) ((-227 . -460) T) ((-325 . -296) 93380) ((-352 . -174) T) ((-176 . -247) T) ((-1242 . -858) 93279) ((-108 . -174) T) ((-880 . -1003) 93263) ((-666 . -1123) T) ((-589 . -370) T) ((-589 . -335) 93250) ((-526 . -335) 93227) ((-526 . -370) T) ((-322 . -313) 93206) ((-319 . -313) T) ((-610 . -858) 93185) ((-1124 . -725) 93127) ((-528 . -288) 93111) ((-666 . -23) T) ((-426 . -233) 93095) ((-319 . -1033) NIL) ((-343 . -23) T) ((-103 . -1021) 93079) ((-45 . -36) 93058) ((-620 . -1111) T) ((-358 . -375) T) ((-532 . -102) T) ((-503 . -27) T) ((-244 . -315) 92996) ((-1098 . -1123) T) ((-1302 . -656) 92970) ((-790 . -1123) T) ((-788 . -1123) T) ((-462 . -1123) T) ((-1073 . -460) T) ((-1162 . -1111) T) ((-961 . -460) 92921) ((-1126 . -1094) T) ((-110 . -1111) T) ((-1098 . -23) T) ((-825 . -1069) T) ((-790 . -23) T) ((-788 . -23) T) ((-489 . -460) 92872) ((-1171 . -522) 92655) ((-388 . -389) 92634) ((-1190 . -419) 92618) ((-469 . -23) T) ((-462 . -23) T) ((-96 . -1111) T) ((-720 . -1229) T) ((-678 . -292) 92595) ((-492 . -522) 92528) ((-1271 . -1062) 92411) ((-1271 . -648) 92308) ((-1264 . -648) 92149) ((-1264 . -1062) 91984) ((-295 . -296) T) ((-1243 . -1062) 91774) ((-1093 . -621) 91756) ((-1093 . -622) 91737) ((-415 . -918) 91716) ((-1243 . -648) 91512) ((-50 . -1123) T) ((-1223 . -132) T) ((-1035 . -929) T) ((-1014 . -734) T) ((-851 . -656) 91485) ((-720 . -895) NIL) ((-604 . -1062) 91445) ((-589 . -1123) T) ((-526 . -1123) T) ((-603 . -1062) 91328) ((-1179 . -408) 91280) ((-1015 . -315) NIL) ((-823 . -497) 91264) ((-604 . -648) 91237) ((-361 . -929) T) ((-603 . -648) 91134) ((-1168 . -34) T) ((-415 . -656) 91086) ((-50 . -23) T) ((-719 . -132) T) ((-720 . -1049) 90966) ((-589 . -23) T) ((-108 . -522) NIL) ((-526 . -23) T) ((-171 . -417) 90937) ((-1151 . -1111) T) ((-1294 . -1293) 90921) ((-709 . -803) T) ((-709 . -800) T) ((-1131 . -313) T) ((-386 . -148) T) ((-286 . -621) 90903) ((-285 . -621) 90885) ((-1242 . -1003) 90855) ((-48 . -929) T) ((-683 . -497) 90839) ((-256 . -1286) 90809) ((-255 . -1286) 90779) ((-1188 . -858) T) ((-1124 . -174) 90758) ((-1131 . -1033) T) ((-1057 . -34) T) ((-844 . -148) 90737) ((-844 . -146) 90716) ((-745 . -107) 90700) ((-620 . -133) T) ((-490 . -1111) 90490) ((-1190 . -1069) T) ((-879 . -460) T) ((-85 . -1229) T) ((-244 . -38) 90460) ((-142 . -107) 90442) ((-720 . -384) 90426) ((-841 . -624) 90294) ((-1302 . -734) T) ((-1291 . -1069) T) ((-1271 . -102) T) ((-1131 . -553) T) ((-587 . -102) T) ((-130 . -498) 90276) ((-1264 . -102) T) ((-398 . -1067) 90260) ((-1184 . -958) 90229) ((-44 . -292) 90206) ((-130 . -621) 90173) ((-52 . -621) 90155) ((-1136 . -958) 90122) ((-661 . -419) 90106) ((-1243 . -102) T) ((-1170 . -522) NIL) ((-670 . -25) T) ((-629 . -1067) 90090) ((-670 . -21) T) ((-972 . -654) 90000) ((-743 . -654) 89945) ((-723 . -654) 89917) ((-398 . -111) 89896) ((-224 . -259) 89880) ((-1065 . -1064) 89820) ((-1065 . -1111) T) ((-1015 . -1163) T) ((-826 . -1111) T) ((-461 . -654) 89735) ((-350 . -1233) T) ((-643 . -656) 89719) ((-629 . -111) 89698) ((-615 . -656) 89682) ((-604 . -102) T) ((-317 . -498) 89663) ((-594 . -132) T) ((-603 . -102) T) ((-422 . -1111) T) ((-392 . -1111) T) ((-317 . -621) 89629) ((-229 . -1111) 89607) ((-655 . -522) 89540) ((-640 . -522) 89384) ((-841 . -1060) 89363) ((-652 . -152) 89347) ((-350 . -564) T) ((-720 . -909) 89290) ((-558 . -231) 89240) ((-1271 . -290) 89206) ((-1264 . -290) 89172) ((-1091 . -296) 89123) ((-495 . -856) T) ((-225 . -1123) T) ((-1243 . -290) 89089) ((-1223 . -501) 89055) ((-1015 . -38) 89005) ((-219 . -856) T) ((-426 . -654) 88964) ((-923 . -38) 88916) ((-851 . -802) 88895) ((-851 . -799) 88874) ((-851 . -734) 88853) ((-366 . -296) T) ((-360 . -296) T) ((-352 . -296) T) ((-171 . -460) 88784) ((-435 . -38) 88768) ((-108 . -296) T) ((-225 . -23) T) ((-415 . -802) 88747) ((-415 . -799) 88726) ((-415 . -734) T) ((-508 . -294) 88701) ((-485 . -1067) 88666) ((-666 . -132) T) ((-629 . -624) 88635) ((-1124 . -522) 88568) ((-343 . -132) T) ((-171 . -410) 88547) ((-490 . -725) 88489) ((-823 . -292) 88466) ((-485 . -111) 88422) ((-661 . -1069) T) ((-824 . -1062) 88265) ((-1290 . -1094) T) ((-1252 . -460) 88196) ((-824 . -648) 88045) ((-1289 . -1094) T) ((-1098 . -132) T) ((-1065 . -725) 87987) ((-790 . -132) T) ((-788 . -132) T) ((-579 . -460) T) ((-1038 . -522) 87920) ((-629 . -1060) T) ((-600 . -1111) T) ((-541 . -175) T) ((-469 . -132) T) ((-462 . -132) T) ((-1010 . -1229) 87889) ((-45 . -1111) T) ((-392 . -725) 87859) ((-825 . -1111) T) ((-484 . -522) 87792) ((-471 . -522) 87725) ((-1304 . -624) 87707) ((-461 . -374) 87677) ((-45 . -618) 87656) ((-322 . -308) T) ((-485 . -624) 87606) ((-1243 . -315) 87491) ((-678 . -621) 87453) ((-59 . -858) 87432) ((-1015 . -408) 87414) ((-556 . -621) 87396) ((-807 . -654) 87355) ((-823 . -612) 87332) ((-524 . -858) 87311) ((-504 . -858) 87290) ((-40 . -1233) T) ((-1010 . -1049) 87186) ((-50 . -132) T) ((-589 . -132) T) ((-526 . -132) T) ((-300 . -656) 87046) ((-350 . -335) 87023) ((-350 . -370) T) ((-328 . -329) 87000) ((-325 . -292) 86958) ((-40 . -564) T) ((-386 . -1214) T) ((-386 . -1217) T) ((-1046 . -1205) 86933) ((-1201 . -239) 86883) ((-1179 . -233) 86835) ((-336 . -1111) T) ((-386 . -95) T) ((-386 . -35) T) ((-1046 . -107) 86781) ((-485 . -1060) T) ((-1303 . -1067) 86765) ((-487 . -239) 86715) ((-1171 . -497) 86649) ((-1294 . -1062) 86633) ((-388 . -1067) 86617) ((-1294 . -648) 86587) ((-485 . -247) T) ((-824 . -102) T) ((-722 . -148) 86566) ((-722 . -146) 86545) ((-492 . -497) 86529) ((-493 . -342) 86498) ((-1303 . -111) 86477) ((-520 . -1111) T) ((-490 . -174) 86456) ((-1010 . -384) 86440) ((-421 . -102) T) ((-388 . -111) 86419) ((-1010 . -345) 86403) ((-284 . -994) 86387) ((-283 . -994) 86371) ((-1301 . -621) 86353) ((-1299 . -621) 86335) ((-110 . -522) NIL) ((-1184 . -1255) 86319) ((-862 . -860) 86303) ((-1190 . -1111) T) ((-103 . -1229) T) ((-961 . -958) 86264) ((-825 . -725) 86206) ((-1243 . -1163) NIL) ((-489 . -958) 86151) ((-1073 . -144) T) ((-60 . -102) 86129) ((-44 . -621) 86111) ((-78 . -621) 86093) ((-358 . -656) 86038) ((-1291 . -1111) T) ((-519 . -858) T) ((-295 . -292) 86017) ((-350 . -1123) T) ((-301 . -1111) T) ((-1010 . -909) 85976) ((-301 . -618) 85955) ((-1303 . -624) 85904) ((-1271 . -38) 85801) ((-1264 . -38) 85642) ((-1243 . -38) 85438) ((-495 . -1069) T) ((-388 . -624) 85422) ((-219 . -1069) T) ((-350 . -23) T) ((-153 . -621) 85404) ((-841 . -803) 85383) ((-841 . -800) 85362) ((-1228 . -624) 85343) ((-604 . -38) 85316) ((-603 . -38) 85213) ((-878 . -564) T) ((-225 . -132) T) ((-325 . -1013) 85179) ((-79 . -621) 85161) ((-720 . -313) 85140) ((-300 . -734) 85042) ((-832 . -102) T) ((-872 . -852) T) ((-300 . -481) 85021) ((-1294 . -102) T) ((-40 . -370) T) ((-880 . -148) 85000) ((-493 . -654) 84982) ((-880 . -146) 84961) ((-1170 . -497) 84943) ((-1303 . -1060) T) ((-490 . -522) 84876) ((-1157 . -1229) T) ((-973 . -621) 84858) ((-655 . -497) 84842) ((-640 . -497) 84773) ((-823 . -621) 84504) ((-48 . -27) T) ((-1190 . -725) 84401) ((-661 . -1111) T) ((-869 . -868) T) ((-444 . -371) 84375) ((-739 . -654) 84285) ((-1113 . -102) T) ((-981 . -1111) T) ((-872 . -1111) T) ((-824 . -315) 84272) ((-541 . -535) T) ((-541 . -584) T) ((-1299 . -389) 84244) ((-1065 . -522) 84177) ((-1171 . -292) 84153) ((-244 . -233) 84122) ((-256 . -1062) 84019) ((-255 . -1062) 83916) ((-1291 . -725) 83886) ((-1178 . -93) T) ((-1005 . -93) T) ((-825 . -174) 83865) ((-256 . -648) 83807) ((-255 . -648) 83749) ((-1226 . -498) 83726) ((-229 . -522) 83659) ((-629 . -803) 83638) ((-629 . -800) 83617) ((-1226 . -621) 83529) ((-224 . -1229) T) ((-683 . -621) 83461) ((-1186 . -654) 83371) ((-1168 . -1021) 83355) ((-952 . -102) 83305) ((-358 . -734) T) ((-869 . -621) 83287) ((-1185 . -654) 83169) ((-1179 . -654) 83006) ((-1137 . -654) 82916) ((-1243 . -408) 82868) ((-1124 . -497) 82852) ((-60 . -315) 82790) ((-337 . -102) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-40 . -1123) T) ((-719 . -21) T) ((-635 . -621) 82772) ((-523 . -329) 82751) ((-719 . -25) T) ((-447 . -102) T) ((-108 . -292) NIL) ((-930 . -1123) T) ((-40 . -23) T) ((-779 . -1123) T) ((-572 . -1233) T) ((-503 . -1233) T) ((-325 . -621) 82733) ((-1015 . -233) 82715) ((-171 . -167) 82699) ((-588 . -564) T) ((-572 . -564) T) ((-503 . -564) T) ((-779 . -23) T) ((-1263 . -148) 82678) ((-1171 . -612) 82654) ((-1263 . -146) 82633) ((-1038 . -497) 82617) ((-1242 . -146) 82542) ((-1242 . -148) 82467) ((-1294 . -1300) 82446) ((-484 . -497) 82430) ((-471 . -497) 82414) ((-531 . -34) T) ((-661 . -725) 82384) ((-112 . -978) T) ((-670 . -858) 82363) ((-1190 . -174) 82314) ((-372 . -102) T) ((-244 . -242) 82293) ((-256 . -102) T) ((-255 . -102) T) ((-1252 . -958) 82262) ((-249 . -858) 82241) ((-824 . -38) 82090) ((-45 . -522) 81882) ((-1170 . -292) 81832) ((-216 . -1111) T) ((-1161 . -1111) T) ((-1161 . -618) 81811) ((-594 . -25) T) ((-594 . -21) T) ((-1113 . -315) 81749) ((-972 . -419) 81733) ((-707 . -1233) T) ((-640 . -292) 81686) ((-1098 . -647) 81634) ((-790 . -647) 81582) ((-788 . -647) 81530) ((-350 . -132) T) ((-295 . -621) 81512) ((-914 . -1111) T) ((-707 . -564) T) ((-130 . -624) 81494) ((-878 . -1123) T) ((-462 . -647) 81442) ((-914 . -912) 81426) ((-386 . -460) T) ((-495 . -1111) T) ((-952 . -315) 81364) ((-709 . -656) 81351) ((-557 . -852) T) ((-219 . -1111) T) ((-322 . -929) 81330) ((-319 . -929) T) ((-319 . -828) NIL) ((-398 . -728) T) ((-878 . -23) T) ((-117 . -656) 81317) ((-482 . -146) 81296) ((-426 . -419) 81280) ((-482 . -148) 81259) ((-110 . -497) 81241) ((-317 . -624) 81222) ((-2 . -621) 81204) ((-188 . -102) T) ((-1170 . -19) 81186) ((-1170 . -612) 81161) ((-666 . -21) T) ((-666 . -25) T) ((-601 . -1155) T) ((-1124 . -292) 81138) ((-343 . -25) T) ((-343 . -21) T) ((-244 . -654) 80888) ((-503 . -370) T) ((-1294 . -38) 80858) ((-1184 . -1062) 80681) ((-1153 . -1229) T) ((-1136 . -1062) 80524) ((-862 . -1062) 80508) ((-640 . -612) 80483) ((-1301 . -1067) 80467) ((-1299 . -1067) 80451) ((-1184 . -648) 80280) ((-1136 . -648) 80129) ((-862 . -648) 80099) ((-1263 . -1214) 80065) ((-1263 . -1217) 80031) ((-557 . -1111) T) ((-1098 . -25) T) ((-1098 . -21) T) ((-539 . -800) T) ((-539 . -803) T) ((-118 . -1233) T) ((-972 . -1069) T) ((-631 . -564) T) ((-790 . -25) T) ((-790 . -21) T) ((-788 . -21) T) ((-788 . -25) T) ((-743 . -1069) T) ((-723 . -1069) T) ((-678 . -1067) 80015) ((-525 . -1094) T) ((-469 . -25) T) ((-118 . -564) T) ((-469 . -21) T) ((-462 . -25) T) ((-462 . -21) T) ((-1263 . -95) 79981) ((-1162 . -93) T) ((-1153 . -1049) 79877) ((-825 . -296) 79856) ((-1246 . -102) 79834) ((-831 . -1111) T) ((-975 . -978) T) ((-678 . -111) 79813) ((-625 . -1229) T) ((-301 . -522) 79605) ((-1243 . -233) 79557) ((-1242 . -1214) 79523) ((-1242 . -1217) 79489) ((-256 . -315) 79427) ((-255 . -315) 79365) ((-1237 . -375) T) ((-1171 . -622) NIL) ((-1171 . -621) 79347) ((-1234 . -852) T) ((-1153 . -384) 79331) ((-1131 . -828) T) ((-96 . -93) T) ((-1131 . -929) T) ((-1124 . -612) 79308) ((-1091 . -622) 79292) ((-1015 . -654) 79242) ((-923 . -654) 79179) ((-823 . -294) 79156) ((-492 . -621) 79088) ((-616 . -152) 79035) ((-495 . -725) 78985) ((-426 . -1069) T) ((-490 . -497) 78969) ((-435 . -654) 78928) ((-333 . -858) 78907) ((-346 . -656) 78881) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -725) 78831) ((-171 . -732) 78802) ((-176 . -656) 78734) ((-589 . -21) T) ((-589 . -25) T) ((-526 . -25) T) ((-526 . -21) T) ((-483 . -152) 78684) ((-1091 . -621) 78666) ((-1072 . -621) 78648) ((-1004 . -102) T) ((-870 . -102) T) ((-807 . -419) 78611) ((-40 . -132) T) ((-707 . -370) T) ((-709 . -734) T) ((-709 . -802) T) ((-709 . -799) T) ((-214 . -904) T) ((-588 . -1123) T) ((-572 . -1123) T) ((-503 . -1123) T) ((-366 . -621) 78593) ((-360 . -621) 78575) ((-352 . -621) 78557) ((-66 . -404) T) ((-66 . -403) T) ((-108 . -622) 78487) ((-108 . -621) 78429) ((-213 . -904) T) ((-967 . -152) 78413) ((-779 . -132) T) ((-678 . -624) 78331) ((-135 . -734) T) ((-117 . -734) T) ((-1263 . -35) 78297) ((-1065 . -497) 78281) ((-588 . -23) T) ((-572 . -23) T) ((-503 . -23) T) ((-1242 . -95) 78247) ((-1242 . -35) 78213) ((-1184 . -102) T) ((-1136 . -102) T) ((-862 . -102) T) ((-229 . -497) 78197) ((-1301 . -111) 78176) ((-1299 . -111) 78155) ((-44 . -1067) 78139) ((-1301 . -624) 78085) ((-1301 . -1060) T) ((-1252 . -1255) 78069) ((-863 . -860) 78053) ((-1190 . -296) 78032) ((-1115 . -1229) T) ((-110 . -292) 77982) ((-1299 . -624) 77911) ((-129 . -152) 77893) ((-1153 . -909) 77852) ((-44 . -111) 77831) ((-1234 . -1111) T) ((-1193 . -1274) T) ((-1178 . -498) 77812) ((-1178 . -621) 77778) ((-678 . -1060) T) ((-1170 . -622) NIL) ((-1170 . -621) 77760) ((-1074 . -618) 77735) ((-1074 . -1111) T) ((-1005 . -498) 77716) ((-74 . -449) T) ((-74 . -403) T) ((-1005 . -621) 77682) ((-153 . -1067) 77666) ((-678 . -237) 77645) ((-579 . -562) 77629) ((-362 . -148) 77608) ((-362 . -146) 77559) ((-359 . -148) 77538) ((-359 . -146) 77489) ((-351 . -148) 77468) ((-351 . -146) 77419) ((-269 . -146) 77398) ((-269 . -148) 77377) ((-256 . -38) 77347) ((-251 . -148) 77326) ((-118 . -370) T) ((-251 . -146) 77305) ((-255 . -38) 77275) ((-153 . -111) 77254) ((-1014 . -1049) 77142) ((-1179 . -856) NIL) ((-702 . -1233) T) ((-807 . -1069) T) ((-707 . -1123) T) ((-1299 . -1060) T) ((-1168 . -1229) T) ((-1014 . -384) 77119) ((-919 . -146) T) ((-919 . -148) 77101) ((-878 . -132) T) ((-823 . -1067) 76998) ((-707 . -23) T) ((-702 . -564) T) ((-227 . -1062) 76963) ((-655 . -621) 76895) ((-655 . -622) 76856) ((-640 . -622) NIL) ((-640 . -621) 76838) ((-495 . -174) T) ((-227 . -648) 76803) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-482 . -1217) 76769) ((-482 . -1214) 76735) ((-279 . -621) 76717) ((-278 . -621) 76699) ((-277 . -621) 76681) ((-276 . -621) 76663) ((-275 . -621) 76645) ((-508 . -659) 76627) ((-274 . -621) 76609) ((-346 . -734) T) ((-273 . -621) 76591) ((-110 . -19) 76573) ((-176 . -734) T) ((-508 . -380) 76555) ((-214 . -621) 76537) ((-528 . -1160) 76521) ((-508 . -124) T) ((-110 . -612) 76496) ((-213 . -621) 76478) ((-482 . -35) 76444) ((-482 . -95) 76410) ((-211 . -621) 76392) ((-210 . -621) 76374) ((-209 . -621) 76356) ((-208 . -621) 76338) ((-205 . -621) 76320) ((-204 . -621) 76302) ((-203 . -621) 76284) ((-202 . -621) 76266) ((-201 . -621) 76248) ((-200 . -621) 76230) ((-199 . -621) 76212) ((-544 . -1114) 76164) ((-198 . -621) 76146) ((-197 . -621) 76128) ((-45 . -497) 76065) ((-196 . -621) 76047) ((-195 . -621) 76029) ((-153 . -624) 75998) ((-1126 . -102) T) ((-823 . -111) 75888) ((-652 . -102) 75838) ((-490 . -292) 75815) ((-1124 . -621) 75546) ((-1112 . -1111) T) ((-1057 . -1229) T) ((-1302 . -1049) 75530) ((-1073 . -1062) 75517) ((-1184 . -315) 75504) ((-961 . -1062) 75347) ((-1146 . -1111) T) ((-1136 . -315) 75334) ((-631 . -1123) T) ((-1073 . -648) 75321) ((-1107 . -1094) T) ((-961 . -648) 75170) ((-1101 . -1094) T) ((-489 . -1062) 75013) ((-1084 . -1094) T) ((-1077 . -1094) T) ((-1047 . -1094) T) ((-1030 . -1094) T) ((-118 . -1123) T) ((-489 . -648) 74862) ((-827 . -102) T) ((-634 . -1094) T) ((-631 . -23) T) ((-1161 . -522) 74654) ((-491 . -1094) T) ((-394 . -102) T) ((-330 . -102) T) ((-220 . -1094) T) ((-972 . -1111) T) ((-153 . -1060) T) ((-739 . -419) 74638) ((-118 . -23) T) ((-1014 . -909) 74590) ((-743 . -1111) T) ((-723 . -1111) T) ((-461 . -1111) T) ((-415 . -1229) T) ((-322 . -438) 74574) ((-600 . -93) T) ((-1271 . -654) 74484) ((-1038 . -622) 74445) ((-1035 . -1233) T) ((-227 . -102) T) ((-1038 . -621) 74407) ((-1264 . -654) 74289) ((-824 . -233) 74273) ((-823 . -624) 74003) ((-1243 . -654) 73840) ((-1035 . -564) T) ((-841 . -656) 73813) ((-361 . -1233) T) ((-484 . -621) 73775) ((-484 . -622) 73736) ((-471 . -622) 73697) ((-471 . -621) 73659) ((-604 . -654) 73618) ((-415 . -893) 73602) ((-325 . -1067) 73437) ((-415 . -895) 73362) ((-603 . -654) 73272) ((-851 . -1049) 73168) ((-495 . -522) NIL) ((-490 . -612) 73145) ((-361 . -564) T) ((-219 . -522) NIL) ((-880 . -460) T) ((-426 . -1111) T) ((-415 . -1049) 73009) ((-325 . -111) 72830) ((-702 . -370) T) ((-227 . -290) T) ((-1226 . -624) 72807) ((-48 . -1233) T) ((-823 . -1060) 72737) ((-1184 . -1163) 72715) ((-588 . -132) T) ((-572 . -132) T) ((-503 . -132) T) ((-1171 . -294) 72691) ((-48 . -564) T) ((-1073 . -102) T) ((-961 . -102) T) ((-879 . -1062) 72636) ((-322 . -27) 72615) ((-823 . -237) 72567) ((-253 . -843) 72549) ((-244 . -856) 72528) ((-189 . -843) 72510) ((-721 . -102) T) ((-301 . -497) 72447) ((-879 . -648) 72392) ((-489 . -102) T) ((-739 . -1069) T) ((-620 . -621) 72374) ((-620 . -622) 72235) ((-415 . -384) 72219) ((-415 . -345) 72203) ((-1184 . -38) 72032) ((-325 . -624) 71858) ((-1136 . -38) 71707) ((-643 . -1229) 71681) ((-615 . -1229) 71655) ((-862 . -38) 71625) ((-398 . -656) 71609) ((-652 . -315) 71547) ((-1162 . -498) 71528) ((-1162 . -621) 71494) ((-972 . -725) 71391) ((-743 . -725) 71361) ((-224 . -107) 71345) ((-45 . -292) 71245) ((-629 . -656) 71219) ((-318 . -1111) T) ((-295 . -1067) 71206) ((-110 . -621) 71188) ((-110 . -622) 71170) ((-461 . -725) 71140) ((-824 . -258) 71079) ((-697 . -1111) 71057) ((-558 . -1111) T) ((-1186 . -1069) T) ((-1185 . -1069) T) ((-96 . -498) 71038) ((-1179 . -1069) T) ((-295 . -111) 71023) ((-1137 . -1069) T) ((-558 . -618) 71002) ((-96 . -621) 70968) ((-1015 . -856) T) ((-229 . -695) 70926) ((-702 . -1123) T) ((-1223 . -748) 70902) ((-1035 . -370) T) ((-846 . -843) 70884) ((-841 . -802) 70863) ((-415 . -909) 70822) ((-325 . -1060) T) ((-350 . -25) T) ((-350 . -21) T) ((-171 . -1062) 70732) ((-68 . -1229) T) ((-841 . -799) 70711) ((-426 . -725) 70685) ((-807 . -1111) T) ((-720 . -929) 70664) ((-707 . -132) T) ((-171 . -648) 70492) ((-702 . -23) T) ((-495 . -296) T) ((-841 . -734) 70471) ((-325 . -237) 70423) ((-325 . -247) 70402) ((-219 . -296) T) ((-130 . -375) T) ((-1263 . -460) 70381) ((-1242 . -460) 70360) ((-361 . -335) 70337) ((-361 . -370) T) ((-1151 . -621) 70319) ((-45 . -1267) 70269) ((-879 . -102) T) ((-652 . -288) 70253) ((-707 . -1071) T) ((-1290 . -102) T) ((-1289 . -102) T) ((-485 . -656) 70218) ((-476 . -1111) T) ((-45 . -612) 70143) ((-1170 . -294) 70118) ((-295 . -624) 70090) ((-40 . -647) 70029) ((-1252 . -1062) 69852) ((-863 . -1062) 69836) ((-48 . -370) T) ((-1117 . -621) 69818) ((-1252 . -648) 69647) ((-863 . -648) 69617) ((-640 . -294) 69592) ((-824 . -654) 69502) ((-579 . -1062) 69489) ((-490 . -621) 69220) ((-244 . -419) 69189) ((-961 . -315) 69176) ((-579 . -648) 69163) ((-65 . -1229) T) ((-1074 . -522) 69007) ((-679 . -1111) T) ((-631 . -132) T) ((-489 . -315) 68994) ((-614 . -1111) T) ((-554 . -102) T) ((-118 . -132) T) ((-295 . -1060) T) ((-182 . -1111) T) ((-162 . -1111) T) ((-157 . -1111) T) ((-155 . -1111) T) ((-461 . -769) T) ((-31 . -1094) T) ((-972 . -174) 68945) ((-981 . -93) T) ((-1091 . -1067) 68855) ((-629 . -802) 68834) ((-601 . -1111) T) ((-629 . -799) 68813) ((-629 . -734) T) ((-301 . -292) 68792) ((-300 . -1229) T) ((-1065 . -621) 68754) ((-1065 . -622) 68715) ((-1035 . -1123) T) ((-171 . -102) T) ((-280 . -858) T) ((-1177 . -1111) T) ((-826 . -621) 68697) ((-1124 . -294) 68674) ((-1113 . -231) 68658) ((-1014 . -313) T) ((-807 . -725) 68642) ((-366 . -1067) 68594) ((-361 . -1123) T) ((-360 . -1067) 68546) ((-422 . -621) 68528) ((-392 . -621) 68510) ((-352 . -1067) 68462) ((-229 . -621) 68394) ((-1091 . -111) 68290) ((-1035 . -23) T) ((-108 . -1067) 68240) ((-907 . -102) T) ((-849 . -102) T) ((-816 . -102) T) ((-777 . -102) T) ((-685 . -102) T) ((-482 . -460) 68219) ((-426 . -174) T) ((-366 . -111) 68157) ((-360 . -111) 68095) ((-352 . -111) 68033) ((-256 . -233) 68002) ((-255 . -233) 67971) ((-361 . -23) T) ((-71 . -1229) T) ((-227 . -38) 67936) ((-108 . -111) 67870) ((-40 . -25) T) ((-40 . -21) T) ((-678 . -728) T) ((-171 . -290) 67848) ((-48 . -1123) T) ((-930 . -25) T) ((-779 . -25) T) ((-1303 . -656) 67822) ((-1161 . -497) 67759) ((-493 . -1111) T) ((-1294 . -654) 67718) ((-1252 . -102) T) ((-1073 . -1163) T) ((-863 . -102) T) ((-244 . -1069) 67648) ((-973 . -800) 67601) ((-973 . -803) 67554) ((-388 . -656) 67538) ((-48 . -23) T) ((-823 . -803) 67489) ((-823 . -800) 67440) ((-556 . -375) T) ((-301 . -612) 67419) ((-485 . -734) T) ((-579 . -102) T) ((-1091 . -624) 67237) ((-253 . -187) T) ((-189 . -187) T) ((-879 . -315) 67194) ((-661 . -292) 67173) ((-112 . -669) T) ((-366 . -624) 67110) ((-360 . -624) 67047) ((-352 . -624) 66984) ((-76 . -1229) T) ((-108 . -624) 66934) ((-112 . -113) T) ((-1073 . -38) 66921) ((-672 . -381) 66900) ((-961 . -38) 66749) ((-739 . -1111) T) ((-489 . -38) 66598) ((-86 . -1229) T) ((-600 . -498) 66579) ((-579 . -290) T) ((-1243 . -856) NIL) ((-600 . -621) 66545) ((-1186 . -1111) T) ((-1185 . -1111) T) ((-1091 . -1060) T) ((-358 . -1049) 66522) ((-825 . -498) 66506) ((-1015 . -1069) T) ((-45 . -621) 66488) ((-45 . -622) NIL) ((-923 . -1069) T) ((-825 . -621) 66457) ((-1179 . -1111) T) ((-1158 . -102) 66435) ((-1091 . -247) 66386) ((-435 . -1069) T) ((-366 . -1060) T) ((-372 . -371) 66363) ((-360 . -1060) T) ((-352 . -1060) T) ((-256 . -242) 66342) ((-255 . -242) 66321) ((-1091 . -237) 66246) ((-1137 . -1111) T) ((-300 . -909) 66205) ((-108 . -1060) T) ((-702 . -132) T) ((-426 . -522) 66047) ((-366 . -237) 66026) ((-366 . -247) T) ((-44 . -728) T) ((-360 . -237) 66005) ((-360 . -247) T) ((-352 . -237) 65984) ((-352 . -247) T) ((-1178 . -624) 65965) ((-171 . -315) 65930) ((-108 . -247) T) ((-108 . -237) T) ((-1005 . -624) 65911) ((-325 . -800) T) ((-878 . -21) T) ((-878 . -25) T) ((-415 . -313) T) ((-508 . -34) T) ((-110 . -294) 65886) ((-1124 . -1067) 65783) ((-879 . -1163) NIL) ((-336 . -621) 65765) ((-415 . -1033) 65743) ((-1124 . -111) 65633) ((-699 . -1274) T) ((-444 . -1111) T) ((-254 . -1111) T) ((-1303 . -734) T) ((-63 . -621) 65615) ((-879 . -38) 65560) ((-531 . -1229) T) ((-610 . -152) 65544) ((-520 . -621) 65526) ((-1252 . -315) 65513) ((-739 . -725) 65362) ((-539 . -801) T) ((-539 . -802) T) ((-572 . -647) 65344) ((-503 . -647) 65304) ((-362 . -460) T) ((-359 . -460) T) ((-351 . -460) T) ((-269 . -460) 65255) ((-533 . -1111) T) ((-528 . -1111) 65205) ((-251 . -460) 65156) ((-1161 . -292) 65135) ((-1190 . -621) 65117) ((-697 . -522) 65050) ((-972 . -296) 65029) ((-558 . -522) 64821) ((-256 . -654) 64641) ((-255 . -654) 64448) ((-1291 . -621) 64417) ((-1291 . -498) 64401) ((-1186 . -725) 64298) ((-1184 . -233) 64282) ((-1124 . -624) 64012) ((-171 . -1163) 63991) ((-1185 . -725) 63832) ((-1179 . -725) 63628) ((-975 . -113) T) ((-901 . -102) T) ((-1168 . -682) 63612) ((-1137 . -725) 63509) ((-1035 . -132) T) ((-362 . -410) 63460) ((-359 . -410) 63411) ((-351 . -410) 63362) ((-973 . -375) 63315) ((-807 . -522) 63227) ((-301 . -622) NIL) ((-301 . -621) 63209) ((-919 . -460) T) ((-914 . -292) 63188) ((-823 . -375) 63167) ((-518 . -517) 63146) ((-516 . -517) 63125) ((-495 . -292) NIL) ((-490 . -294) 63102) ((-426 . -296) T) ((-361 . -132) T) ((-219 . -292) NIL) ((-702 . -501) NIL) ((-99 . -1123) T) ((-171 . -38) 62930) ((-1263 . -984) 62892) ((-1158 . -315) 62830) ((-1242 . -984) 62799) ((-919 . -410) T) ((-1124 . -1060) 62729) ((-1265 . -564) T) ((-1161 . -612) 62708) ((-112 . -858) T) ((-1074 . -497) 62639) ((-588 . -21) T) ((-588 . -25) T) ((-572 . -21) T) ((-572 . -25) T) ((-503 . -25) T) ((-503 . -21) T) ((-1252 . -1163) 62617) ((-1124 . -237) 62569) ((-48 . -132) T) ((-1210 . -102) T) ((-244 . -1111) 62359) ((-879 . -408) 62336) ((-1099 . -102) T) ((-1087 . -102) T) ((-616 . -102) T) ((-483 . -102) T) ((-1252 . -38) 62165) ((-863 . -38) 62135) ((-1045 . -1062) 62109) ((-739 . -174) 62020) ((-661 . -621) 62002) ((-653 . -1094) T) ((-1045 . -648) 61986) ((-579 . -38) 61973) ((-981 . -498) 61954) ((-981 . -621) 61920) ((-967 . -102) 61870) ((-872 . -621) 61852) ((-872 . -622) 61774) ((-601 . -522) NIL) ((-1271 . -1069) T) ((-1264 . -1069) T) ((-328 . -1062) 61756) ((-1243 . -1069) T) ((-1308 . -1123) T) ((-1223 . -148) 61735) ((-328 . -648) 61717) ((-1223 . -146) 61696) ((-1196 . -102) T) ((-1195 . -102) T) ((-1194 . -102) T) ((-1186 . -174) 61647) ((-604 . -1069) T) ((-603 . -1069) T) ((-1185 . -174) 61578) ((-1179 . -174) 61509) ((-386 . -1062) 61474) ((-1162 . -624) 61455) ((-1137 . -174) 61406) ((-1015 . -1111) T) ((-982 . -1111) T) ((-923 . -1111) T) ((-386 . -648) 61371) ((-807 . -805) 61355) ((-707 . -25) T) ((-707 . -21) T) ((-118 . -647) 61332) ((-709 . -895) 61314) ((-435 . -1111) T) ((-322 . -1233) 61293) ((-319 . -1233) T) ((-171 . -408) 61277) ((-844 . -1062) 61247) ((-482 . -984) 61209) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -621) 61191) ((-835 . -1062) 61175) ((-108 . -803) T) ((-108 . -800) T) ((-709 . -1049) 61157) ((-322 . -564) 61136) ((-319 . -564) T) ((-844 . -648) 61106) ((-835 . -648) 61076) ((-1308 . -23) T) ((-135 . -1049) 61058) ((-96 . -624) 61039) ((-1004 . -654) 61021) ((-490 . -1067) 60918) ((-45 . -294) 60843) ((-244 . -725) 60785) ((-525 . -102) T) ((-490 . -111) 60675) ((-1103 . -102) 60645) ((-1045 . -102) T) ((-1184 . -654) 60555) ((-1136 . -654) 60465) ((-862 . -654) 60424) ((-652 . -836) 60403) ((-739 . -522) 60346) ((-1065 . -1067) 60330) ((-1146 . -93) T) ((-1074 . -292) 60305) ((-631 . -21) T) ((-631 . -25) T) ((-532 . -1111) T) ((-678 . -656) 60279) ((-368 . -102) T) ((-328 . -102) T) ((-392 . -1067) 60263) ((-1065 . -111) 60242) ((-824 . -419) 60226) ((-118 . -25) T) ((-89 . -621) 60208) ((-118 . -21) T) ((-616 . -315) 60003) ((-483 . -315) 59807) ((-1161 . -622) NIL) ((-392 . -111) 59786) ((-386 . -102) T) ((-216 . -621) 59768) ((-1161 . -621) 59750) ((-1179 . -522) 59519) ((-1015 . -725) 59469) ((-1137 . -522) 59439) ((-923 . -725) 59391) ((-490 . -624) 59121) ((-358 . -313) T) ((-1201 . -152) 59071) ((-967 . -315) 59009) ((-844 . -102) T) ((-435 . -725) 58993) ((-227 . -836) T) ((-835 . -102) T) ((-833 . -102) T) ((-487 . -152) 58943) ((-1263 . -1262) 58922) ((-1131 . -1233) T) ((-346 . -1049) 58889) ((-1263 . -1257) 58859) ((-1263 . -1260) 58843) ((-1242 . -1241) 58822) ((-80 . -621) 58804) ((-914 . -621) 58786) ((-1242 . -1257) 58763) ((-1131 . -564) T) ((-930 . -858) T) ((-779 . -858) T) ((-680 . -858) T) ((-495 . -622) 58693) ((-495 . -621) 58634) ((-386 . -290) T) ((-1242 . -1239) 58618) ((-1265 . -1123) T) ((-219 . -622) 58548) ((-219 . -621) 58489) ((-1301 . -656) 58463) ((-1074 . -612) 58438) ((-826 . -624) 58422) ((-59 . -152) 58406) ((-524 . -152) 58390) ((-504 . -152) 58374) ((-366 . -1298) 58358) ((-360 . -1298) 58342) ((-352 . -1298) 58326) ((-322 . -370) 58305) ((-319 . -370) T) ((-490 . -1060) 58235) ((-702 . -647) 58217) ((-1299 . -656) 58191) ((-129 . -315) NIL) ((-1265 . -23) T) ((-697 . -497) 58175) ((-64 . -621) 58157) ((-1124 . -803) 58108) ((-1124 . -800) 58059) ((-558 . -497) 57996) ((-678 . -34) T) ((-490 . -237) 57948) ((-301 . -294) 57927) ((-244 . -174) 57906) ((-824 . -1069) T) ((-44 . -656) 57864) ((-1091 . -375) 57815) ((-1098 . -146) 57794) ((-739 . -296) 57725) ((-528 . -522) 57658) ((-825 . -1067) 57609) ((-1098 . -148) 57588) ((-557 . -621) 57570) ((-366 . -375) 57549) ((-360 . -375) 57528) ((-352 . -375) 57507) ((-977 . -1229) T) ((-879 . -233) 57484) ((-825 . -111) 57426) ((-790 . -146) 57405) ((-790 . -148) 57384) ((-269 . -958) 57351) ((-256 . -856) 57330) ((-251 . -958) 57275) ((-255 . -856) 57254) ((-788 . -146) 57233) ((-788 . -148) 57212) ((-153 . -656) 57186) ((-587 . -1111) T) ((-461 . -292) 57149) ((-462 . -148) 57128) ((-462 . -146) 57107) ((-678 . -734) T) ((-831 . -621) 57089) ((-1271 . -1111) T) ((-1264 . -1111) T) ((-1243 . -1111) T) ((-1223 . -1217) 57055) ((-1223 . -1214) 57021) ((-1186 . -296) 57000) ((-1185 . -296) 56951) ((-1179 . -296) 56902) ((-1137 . -296) 56881) ((-346 . -909) 56862) ((-1015 . -174) T) ((-923 . -174) T) ((-702 . -21) T) ((-702 . -25) T) ((-227 . -654) 56812) ((-604 . -1111) T) ((-603 . -1111) T) ((-482 . -1260) 56796) ((-482 . -1257) 56766) ((-426 . -292) 56694) ((-555 . -858) T) ((-322 . -1123) 56543) ((-319 . -1123) T) ((-1223 . -35) 56509) ((-1223 . -95) 56475) ((-84 . -621) 56457) ((-91 . -102) 56435) ((-1308 . -132) T) ((-722 . -1062) 56405) ((-600 . -624) 56386) ((-589 . -146) T) ((-589 . -148) 56368) ((-526 . -148) 56350) ((-526 . -146) T) ((-722 . -648) 56320) ((-322 . -23) 56172) ((-40 . -349) 56146) ((-319 . -23) T) ((-825 . -624) 56060) ((-1170 . -659) 56042) ((-1294 . -1069) T) ((-1170 . -380) 56024) ((-823 . -656) 55872) ((-1107 . -102) T) ((-1101 . -102) T) ((-1084 . -102) T) ((-171 . -233) 55856) ((-1077 . -102) T) ((-1047 . -102) T) ((-1030 . -102) T) ((-601 . -497) 55838) ((-634 . -102) T) ((-244 . -522) 55771) ((-491 . -102) T) ((-1301 . -734) T) ((-1299 . -734) T) ((-220 . -102) T) ((-1190 . -1067) 55654) ((-1073 . -654) 55626) ((-961 . -654) 55536) ((-1190 . -111) 55405) ((-884 . -1094) T) ((-489 . -654) 55315) ((-869 . -175) T) ((-825 . -1060) T) ((-689 . -1094) T) ((-684 . -1094) T) ((-523 . -102) T) ((-518 . -102) T) ((-48 . -647) 55275) ((-516 . -102) T) ((-486 . -1094) T) ((-1291 . -1067) 55245) ((-139 . -1094) T) ((-138 . -1094) T) ((-134 . -1094) T) ((-1045 . -38) 55229) ((-825 . -237) T) ((-825 . -247) 55208) ((-1291 . -111) 55173) ((-1271 . -725) 55070) ((-1264 . -725) 54911) ((-558 . -292) 54890) ((-1252 . -233) 54874) ((-1234 . -621) 54856) ((-614 . -93) T) ((-1074 . -622) NIL) ((-1074 . -621) 54838) ((-679 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1243 . -725) 54634) ((-1014 . -929) T) ((-153 . -734) T) ((-1190 . -624) 54487) ((-1124 . -375) 54466) ((-1035 . -25) T) ((-1015 . -522) NIL) ((-256 . -419) 54435) ((-255 . -419) 54404) ((-1035 . -21) T) ((-880 . -1062) 54356) ((-604 . -725) 54329) ((-603 . -725) 54226) ((-807 . -292) 54184) ((-127 . -102) 54162) ((-841 . -1049) 54058) ((-171 . -836) 54037) ((-325 . -656) 53934) ((-823 . -34) T) ((-722 . -102) T) ((-1131 . -1123) T) ((-1037 . -1229) T) ((-880 . -648) 53886) ((-386 . -38) 53851) ((-361 . -25) T) ((-361 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-253 . -102) T) ((-158 . -102) T) ((-362 . -1286) 53835) ((-359 . -1286) 53819) ((-351 . -1286) 53803) ((-171 . -356) 53782) ((-572 . -858) T) ((-1131 . -23) T) ((-87 . -621) 53764) ((-709 . -313) T) ((-844 . -38) 53734) ((-835 . -38) 53704) ((-1291 . -624) 53646) ((-1265 . -132) T) ((-1161 . -294) 53625) ((-973 . -734) 53524) ((-973 . -801) 53477) ((-973 . -802) 53430) ((-823 . -799) 53409) ((-117 . -313) T) ((-91 . -315) 53347) ((-683 . -34) T) ((-558 . -612) 53326) ((-48 . -25) T) ((-48 . -21) T) ((-823 . -802) 53277) ((-823 . -801) 53256) ((-709 . -1033) T) ((-661 . -1067) 53240) ((-879 . -654) 53170) ((-823 . -734) 53080) ((-973 . -481) 53033) ((-490 . -803) 52984) ((-490 . -800) 52935) ((-919 . -1286) 52922) ((-1190 . -1060) T) ((-661 . -111) 52901) ((-1190 . -332) 52878) ((-1215 . -102) 52856) ((-1112 . -621) 52838) ((-709 . -553) T) ((-824 . -1111) T) ((-1291 . -1060) T) ((-1146 . -498) 52819) ((-1235 . -102) T) ((-421 . -1111) T) ((-1146 . -621) 52785) ((-256 . -1069) 52715) ((-255 . -1069) 52645) ((-846 . -102) T) ((-295 . -656) 52632) ((-601 . -292) 52582) ((-697 . -695) 52540) ((-972 . -621) 52522) ((-880 . -102) T) ((-743 . -621) 52504) ((-723 . -621) 52486) ((-1271 . -174) 52437) ((-1264 . -174) 52368) ((-1243 . -174) 52299) ((-707 . -858) T) ((-1015 . -296) T) ((-461 . -621) 52281) ((-635 . -734) T) ((-60 . -1111) 52259) ((-249 . -152) 52243) ((-923 . -296) T) ((-1035 . -1023) T) ((-635 . -481) T) ((-720 . -1233) 52222) ((-661 . -624) 52140) ((-171 . -654) 52035) ((-1279 . -858) 52014) ((-604 . -174) 51993) ((-603 . -174) 51944) ((-1263 . -648) 51785) ((-1263 . -1062) 51620) ((-1242 . -648) 51434) ((-1242 . -1062) 51242) ((-720 . -564) 51153) ((-415 . -929) T) ((-415 . -828) 51132) ((-325 . -802) T) ((-981 . -624) 51113) ((-325 . -734) T) ((-426 . -621) 51095) ((-426 . -622) 51002) ((-652 . -1160) 50986) ((-110 . -659) 50968) ((-176 . -313) T) ((-127 . -315) 50906) ((-110 . -380) 50888) ((-406 . -1229) T) ((-322 . -132) 50759) ((-319 . -132) T) ((-69 . -403) T) ((-110 . -124) T) ((-528 . -497) 50743) ((-662 . -1123) T) ((-601 . -19) 50725) ((-61 . -449) T) ((-61 . -403) T) ((-832 . -1111) T) ((-601 . -612) 50700) ((-485 . -1049) 50660) ((-661 . -1060) T) ((-662 . -23) T) ((-1294 . -1111) T) ((-31 . -102) T) ((-1252 . -654) 50570) ((-863 . -654) 50529) ((-824 . -725) 50378) ((-585 . -868) T) ((-579 . -654) 50350) ((-118 . -858) NIL) ((-1184 . -419) 50334) ((-1136 . -419) 50318) ((-862 . -419) 50302) ((-881 . -102) 50253) ((-1263 . -102) T) ((-1243 . -522) 50022) ((-1242 . -102) T) ((-1215 . -315) 49960) ((-1186 . -292) 49925) ((-1185 . -292) 49883) ((-533 . -93) T) ((-1179 . -292) 49711) ((-318 . -621) 49693) ((-1113 . -1111) T) ((-1091 . -656) 49603) ((-719 . -460) T) ((-697 . -621) 49535) ((-295 . -734) T) ((-108 . -918) NIL) ((-697 . -622) 49496) ((-609 . -621) 49478) ((-585 . -621) 49460) ((-558 . -622) NIL) ((-558 . -621) 49442) ((-537 . -621) 49424) ((-519 . -517) 49403) ((-495 . -1067) 49353) ((-482 . -1062) 49188) ((-515 . -517) 49167) ((-482 . -648) 49008) ((-219 . -1067) 48958) ((-366 . -656) 48910) ((-360 . -656) 48862) ((-227 . -856) T) ((-352 . -656) 48814) ((-610 . -102) 48764) ((-490 . -375) 48743) ((-108 . -656) 48693) ((-495 . -111) 48627) ((-244 . -497) 48611) ((-350 . -148) 48593) ((-350 . -146) T) ((-171 . -377) 48564) ((-952 . -1277) 48548) ((-219 . -111) 48482) ((-880 . -315) 48447) ((-952 . -1111) 48397) ((-807 . -622) 48358) ((-807 . -621) 48340) ((-726 . -102) T) ((-337 . -1111) T) ((-216 . -624) 48317) ((-1131 . -132) T) ((-722 . -38) 48287) ((-322 . -501) 48266) ((-508 . -1229) T) ((-1263 . -290) 48232) ((-1242 . -290) 48198) ((-333 . -152) 48182) ((-447 . -1111) T) ((-1074 . -294) 48157) ((-1294 . -725) 48127) ((-1171 . -34) T) ((-1303 . -1049) 48104) ((-492 . -34) T) ((-476 . -621) 48086) ((-254 . -292) 48060) ((-388 . -1049) 48044) ((-1184 . -1069) T) ((-1136 . -1069) T) ((-862 . -1069) T) ((-1073 . -856) T) ((-495 . -624) 47994) ((-219 . -624) 47944) ((-824 . -174) 47855) ((-528 . -292) 47807) ((-1271 . -296) 47786) ((-1210 . -371) 47760) ((-1099 . -271) 47744) ((-679 . -498) 47725) ((-679 . -621) 47691) ((-614 . -498) 47672) ((-118 . -1003) 47649) ((-614 . -621) 47599) ((-482 . -102) T) ((-182 . -498) 47580) ((-182 . -621) 47546) ((-162 . -498) 47527) ((-162 . -621) 47493) ((-157 . -498) 47474) ((-155 . -498) 47455) ((-157 . -621) 47421) ((-372 . -1111) T) ((-256 . -1111) T) ((-255 . -1111) T) ((-155 . -621) 47387) ((-1264 . -296) 47338) ((-1243 . -296) 47289) ((-880 . -1163) 47267) ((-1186 . -1013) 47233) ((-616 . -371) 47173) ((-1185 . -1013) 47139) ((-616 . -231) 47086) ((-702 . -858) T) ((-601 . -621) 47068) ((-601 . -622) NIL) ((-483 . -231) 47018) ((-495 . -1060) T) ((-1179 . -1013) 46984) ((-88 . -448) T) ((-88 . -403) T) ((-219 . -1060) T) ((-1137 . -1013) 46950) ((-1091 . -734) T) ((-720 . -1123) T) ((-604 . -296) 46929) ((-603 . -296) 46908) ((-495 . -247) T) ((-495 . -237) T) ((-219 . -247) T) ((-219 . -237) T) ((-1177 . -621) 46890) ((-880 . -38) 46842) ((-366 . -734) T) ((-360 . -734) T) ((-352 . -734) T) ((-108 . -802) T) ((-108 . -799) T) ((-720 . -23) T) ((-108 . -734) T) ((-528 . -1267) 46826) ((-1308 . -25) T) ((-482 . -290) 46792) ((-1308 . -21) T) ((-1242 . -315) 46731) ((-1188 . -102) T) ((-40 . -146) 46703) ((-40 . -148) 46675) ((-528 . -612) 46652) ((-1124 . -656) 46500) ((-610 . -315) 46438) ((-45 . -659) 46388) ((-45 . -674) 46338) ((-45 . -380) 46288) ((-1170 . -34) T) ((-879 . -856) NIL) ((-662 . -132) T) ((-493 . -621) 46270) ((-244 . -292) 46247) ((-188 . -1111) T) ((-1098 . -460) 46198) ((-824 . -522) 46072) ((-672 . -1062) 46056) ((-655 . -34) T) ((-640 . -34) T) ((-790 . -460) 45987) ((-672 . -648) 45971) ((-362 . -1062) 45923) ((-359 . -1062) 45875) ((-351 . -1062) 45827) ((-269 . -1062) 45670) ((-251 . -1062) 45513) ((-788 . -460) 45464) ((-362 . -648) 45416) ((-359 . -648) 45368) ((-351 . -648) 45320) ((-269 . -648) 45169) ((-251 . -648) 45018) ((-462 . -460) 44969) ((-961 . -419) 44953) ((-739 . -621) 44935) ((-256 . -725) 44877) ((-255 . -725) 44819) ((-739 . -622) 44680) ((-489 . -419) 44664) ((-346 . -308) T) ((-532 . -93) T) ((-358 . -929) T) ((-1011 . -102) 44642) ((-919 . -1062) 44607) ((-1035 . -858) T) ((-60 . -522) 44540) ((-919 . -648) 44505) ((-1242 . -1163) 44457) ((-1015 . -292) NIL) ((-227 . -1069) T) ((-386 . -836) T) ((-1124 . -34) T) ((-589 . -460) T) ((-526 . -460) T) ((-1246 . -1104) 44441) ((-1246 . -1111) 44419) ((-244 . -612) 44396) ((-1246 . -1106) 44353) ((-1186 . -621) 44335) ((-1185 . -621) 44317) ((-1179 . -621) 44299) ((-1179 . -622) NIL) ((-1137 . -621) 44281) ((-880 . -408) 44265) ((-605 . -102) T) ((-593 . -102) T) ((-544 . -102) T) ((-1263 . -38) 44106) ((-1242 . -38) 43920) ((-878 . -148) T) ((-589 . -410) T) ((-526 . -410) T) ((-1275 . -102) T) ((-1265 . -21) T) ((-1265 . -25) T) ((-1124 . -799) 43899) ((-1124 . -802) 43850) ((-1124 . -801) 43829) ((-1004 . -1111) T) ((-1038 . -34) T) ((-870 . -1111) T) ((-1124 . -734) 43739) ((-672 . -102) T) ((-653 . -102) T) ((-558 . -294) 43718) ((-1201 . -102) T) ((-484 . -34) T) ((-471 . -34) T) ((-362 . -102) T) ((-359 . -102) T) ((-351 . -102) T) ((-269 . -102) T) ((-251 . -102) T) ((-485 . -313) T) ((-1073 . -1069) T) ((-961 . -1069) T) ((-322 . -647) 43624) ((-319 . -647) 43585) ((-1184 . -1111) T) ((-489 . -1069) T) ((-487 . -102) T) ((-444 . -621) 43567) ((-1136 . -1111) T) ((-254 . -621) 43549) ((-862 . -1111) T) ((-1152 . -102) T) ((-824 . -296) 43480) ((-972 . -1067) 43363) ((-485 . -1033) T) ((-743 . -1067) 43333) ((-1045 . -654) 43292) ((-461 . -1067) 43262) ((-1158 . -1132) 43246) ((-1113 . -522) 43179) ((-972 . -111) 43048) ((-919 . -102) T) ((-743 . -111) 43013) ((-533 . -498) 42994) ((-533 . -621) 42960) ((-59 . -102) 42910) ((-528 . -622) 42871) ((-528 . -621) 42783) ((-527 . -102) 42761) ((-524 . -102) 42711) ((-505 . -102) 42689) ((-504 . -102) 42639) ((-461 . -111) 42602) ((-256 . -174) 42581) ((-255 . -174) 42560) ((-328 . -654) 42542) ((-426 . -1067) 42516) ((-1223 . -984) 42478) ((-1010 . -1123) T) ((-386 . -654) 42428) ((-1146 . -624) 42409) ((-952 . -522) 42342) ((-495 . -803) T) ((-482 . -38) 42183) ((-426 . -111) 42150) ((-495 . -800) T) ((-1011 . -315) 42088) ((-219 . -803) T) ((-219 . -800) T) ((-1010 . -23) T) ((-720 . -132) T) ((-1242 . -408) 42058) ((-844 . -654) 42003) ((-835 . -654) 41962) ((-322 . -25) 41814) ((-171 . -419) 41798) ((-322 . -21) 41669) ((-319 . -25) T) ((-319 . -21) T) ((-872 . -375) T) ((-972 . -624) 41522) ((-110 . -34) T) ((-743 . -624) 41478) ((-723 . -624) 41460) ((-490 . -656) 41308) ((-879 . -1069) T) ((-601 . -294) 41283) ((-588 . -148) T) ((-572 . -148) T) ((-503 . -148) T) ((-1184 . -725) 41112) ((-1068 . -102) 41090) ((-1136 . -725) 40939) ((-1131 . -647) 40921) ((-862 . -725) 40891) ((-678 . -1229) T) ((-1 . -102) T) ((-426 . -624) 40799) ((-244 . -621) 40530) ((-1126 . -1111) T) ((-1252 . -419) 40514) ((-1201 . -315) 40318) ((-972 . -1060) T) ((-743 . -1060) T) ((-723 . -1060) T) ((-652 . -1111) 40268) ((-1065 . -656) 40252) ((-863 . -419) 40236) ((-519 . -102) T) ((-515 . -102) T) ((-269 . -315) 40223) ((-251 . -315) 40210) ((-972 . -332) 40189) ((-392 . -656) 40173) ((-678 . -1049) 40069) ((-487 . -315) 39873) ((-256 . -522) 39806) ((-255 . -522) 39739) ((-1152 . -315) 39665) ((-827 . -1111) T) ((-807 . -1067) 39649) ((-1271 . -292) 39614) ((-1264 . -292) 39572) ((-1243 . -292) 39400) ((-394 . -1111) T) ((-330 . -1111) T) ((-426 . -1060) T) ((-171 . -1069) T) ((-59 . -315) 39338) ((-807 . -111) 39317) ((-603 . -292) 39282) ((-527 . -315) 39220) ((-524 . -315) 39158) ((-505 . -315) 39096) ((-504 . -315) 39034) ((-426 . -237) 39013) ((-490 . -34) T) ((-227 . -1111) T) ((-1015 . -622) 38943) ((-1015 . -621) 38903) ((-982 . -621) 38863) ((-923 . -621) 38845) ((-707 . -148) T) ((-709 . -929) T) ((-709 . -828) T) ((-435 . -621) 38827) ((-1131 . -21) T) ((-1131 . -25) T) ((-678 . -384) 38811) ((-117 . -929) T) ((-880 . -233) 38795) ((-44 . -1229) T) ((-78 . -1229) T) ((-127 . -126) 38779) ((-1065 . -34) T) ((-1301 . -1049) 38753) ((-1299 . -1049) 38710) ((-1252 . -1069) T) ((-863 . -1069) T) ((-490 . -799) 38689) ((-362 . -1163) 38668) ((-359 . -1163) 38647) ((-351 . -1163) 38626) ((-490 . -802) 38577) ((-490 . -801) 38556) ((-229 . -34) T) ((-490 . -734) 38466) ((-807 . -624) 38312) ((-670 . -1062) 38296) ((-60 . -497) 38280) ((-579 . -1069) T) ((-670 . -648) 38264) ((-1184 . -174) 38155) ((-1136 . -174) 38066) ((-1073 . -1111) T) ((-1098 . -958) 38011) ((-961 . -1111) T) ((-825 . -656) 37962) ((-790 . -958) 37931) ((-721 . -1111) T) ((-788 . -958) 37898) ((-524 . -288) 37882) ((-678 . -909) 37841) ((-489 . -1111) T) ((-462 . -958) 37808) ((-79 . -1229) T) ((-362 . -38) 37773) ((-359 . -38) 37738) ((-351 . -38) 37703) ((-269 . -38) 37552) ((-251 . -38) 37401) ((-919 . -1163) T) ((-532 . -498) 37382) ((-631 . -148) 37361) ((-631 . -146) 37340) ((-532 . -621) 37306) ((-118 . -148) T) ((-118 . -146) NIL) ((-422 . -734) T) ((-807 . -1060) T) ((-350 . -460) T) ((-1271 . -1013) 37272) ((-1264 . -1013) 37238) ((-1243 . -1013) 37204) ((-919 . -38) 37169) ((-227 . -725) 37134) ((-325 . -47) 37104) ((-40 . -417) 37076) ((-141 . -621) 37058) ((-1010 . -132) T) ((-823 . -1229) T) ((-176 . -929) T) ((-557 . -375) T) ((-614 . -624) 37039) ((-350 . -410) T) ((-722 . -654) 36984) ((-679 . -624) 36965) ((-182 . -624) 36946) ((-162 . -624) 36927) ((-157 . -624) 36908) ((-155 . -624) 36889) ((-528 . -294) 36866) ((-1242 . -233) 36836) ((-884 . -102) T) ((-823 . -1049) 36663) ((-45 . -34) T) ((-689 . -102) T) ((-684 . -102) T) ((-670 . -102) T) ((-662 . -21) T) ((-662 . -25) T) ((-1113 . -497) 36647) ((-683 . -1229) T) ((-486 . -102) T) ((-249 . -102) 36597) ((-554 . -852) T) ((-134 . -102) T) ((-139 . -102) T) ((-138 . -102) T) ((-879 . -1111) T) ((-1190 . -656) 36522) ((-1073 . -725) 36509) ((-739 . -1067) 36352) ((-1184 . -522) 36299) ((-961 . -725) 36148) ((-1136 . -522) 36100) ((-1290 . -1111) T) ((-1289 . -1111) T) ((-489 . -725) 35949) ((-67 . -621) 35931) ((-739 . -111) 35760) ((-952 . -497) 35744) ((-1291 . -656) 35704) ((-1186 . -1067) 35587) ((-825 . -734) T) ((-1185 . -1067) 35422) ((-1179 . -1067) 35212) ((-325 . -1229) T) ((-1137 . -1067) 35095) ((-1014 . -1233) T) ((-1105 . -102) 35073) ((-823 . -384) 35042) ((-587 . -621) 35024) ((-554 . -1111) T) ((-1014 . -564) T) ((-1186 . -111) 34893) ((-1185 . -111) 34714) ((-1179 . -111) 34483) ((-1137 . -111) 34352) ((-1116 . -1114) 34316) ((-386 . -856) T) ((-1271 . -621) 34298) ((-1264 . -621) 34280) ((-880 . -654) 34217) ((-1243 . -621) 34199) ((-1243 . -622) NIL) ((-244 . -294) 34176) ((-40 . -460) T) ((-227 . -174) T) ((-171 . -1111) T) ((-739 . -624) 33961) ((-702 . -148) T) ((-702 . -146) NIL) ((-604 . -621) 33943) ((-603 . -621) 33925) ((-907 . -1111) T) ((-849 . -1111) T) ((-816 . -1111) T) ((-777 . -1111) T) ((-666 . -860) 33909) ((-685 . -1111) T) ((-823 . -909) 33841) ((-1234 . -375) T) ((-40 . -410) NIL) ((-1186 . -624) 33723) ((-1131 . -669) T) ((-879 . -725) 33668) ((-256 . -497) 33652) ((-255 . -497) 33636) ((-1185 . -624) 33379) ((-1179 . -624) 33174) ((-720 . -647) 33122) ((-661 . -656) 33096) ((-1137 . -624) 32978) ((-301 . -34) T) ((-1131 . -113) T) ((-739 . -1060) T) ((-589 . -1286) 32965) ((-526 . -1286) 32942) ((-1252 . -1111) T) ((-1184 . -296) 32853) ((-1136 . -296) 32784) ((-1073 . -174) T) ((-295 . -1229) T) ((-863 . -1111) T) ((-961 . -174) 32695) ((-790 . -1255) 32679) ((-652 . -522) 32612) ((-77 . -621) 32594) ((-739 . -332) 32559) ((-1190 . -734) T) ((-579 . -1111) T) ((-489 . -174) 32470) ((-249 . -315) 32408) ((-1153 . -1123) T) ((-70 . -621) 32390) ((-1291 . -734) T) ((-1186 . -1060) T) ((-1185 . -1060) T) ((-333 . -102) 32340) ((-1179 . -1060) T) ((-1153 . -23) T) ((-1137 . -1060) T) ((-91 . -1132) 32324) ((-874 . -1123) T) ((-1186 . -237) 32283) ((-1185 . -247) 32262) ((-1185 . -237) 32214) ((-1179 . -237) 32101) ((-1179 . -247) 32080) ((-325 . -909) 31986) ((-874 . -23) T) ((-171 . -725) 31814) ((-415 . -1233) T) ((-1112 . -375) T) ((-1014 . -370) T) ((-878 . -460) T) ((-1035 . -148) T) ((-952 . -292) 31766) ((-319 . -858) NIL) ((-1263 . -654) 31648) ((-882 . -102) T) ((-1242 . -654) 31503) ((-720 . -25) T) ((-415 . -564) T) ((-720 . -21) T) ((-533 . -624) 31484) ((-361 . -148) 31466) ((-361 . -146) T) ((-1158 . -1111) 31444) ((-461 . -728) T) ((-75 . -621) 31426) ((-115 . -858) T) ((-249 . -288) 31410) ((-244 . -1067) 31307) ((-81 . -621) 31289) ((-743 . -375) 31242) ((-1188 . -836) T) ((-745 . -239) 31226) ((-1171 . -1229) T) ((-142 . -239) 31208) ((-244 . -111) 31098) ((-1252 . -725) 30927) ((-48 . -148) T) ((-879 . -174) T) ((-863 . -725) 30897) ((-492 . -1229) T) ((-961 . -522) 30844) ((-661 . -734) T) ((-579 . -725) 30831) ((-1045 . -1069) T) ((-489 . -522) 30774) ((-952 . -19) 30758) ((-952 . -612) 30735) ((-824 . -622) NIL) ((-824 . -621) 30717) ((-1223 . -1062) 30600) ((-1015 . -1067) 30550) ((-421 . -621) 30532) ((-256 . -292) 30509) ((-255 . -292) 30486) ((-495 . -918) NIL) ((-322 . -29) 30456) ((-108 . -1229) T) ((-1014 . -1123) T) ((-219 . -918) NIL) ((-1223 . -648) 30353) ((-923 . -1067) 30305) ((-1091 . -1049) 30201) ((-1015 . -111) 30135) ((-719 . -1062) 30100) ((-1014 . -23) T) ((-923 . -111) 30038) ((-745 . -703) 30022) ((-719 . -648) 29987) ((-269 . -233) 29971) ((-435 . -1067) 29955) ((-386 . -1069) T) ((-244 . -624) 29685) ((-702 . -1217) NIL) ((-495 . -656) 29635) ((-482 . -654) 29517) ((-108 . -893) 29499) ((-108 . -895) 29481) ((-702 . -1214) NIL) ((-219 . -656) 29431) ((-366 . -1049) 29415) ((-360 . -1049) 29399) ((-333 . -315) 29337) ((-352 . -1049) 29321) ((-227 . -296) T) ((-435 . -111) 29300) ((-60 . -621) 29232) ((-171 . -174) T) ((-1131 . -858) T) ((-108 . -1049) 29192) ((-901 . -1111) T) ((-844 . -1069) T) ((-835 . -1069) T) ((-702 . -35) NIL) ((-702 . -95) NIL) ((-319 . -1003) 29153) ((-185 . -102) T) ((-588 . -460) T) ((-572 . -460) T) ((-503 . -460) T) ((-415 . -370) T) ((-244 . -1060) 29083) ((-1161 . -34) T) ((-485 . -929) T) ((-1010 . -647) 29031) ((-256 . -612) 29008) ((-255 . -612) 28985) ((-1091 . -384) 28969) ((-879 . -522) 28877) ((-244 . -237) 28829) ((-1170 . -1229) T) ((-1015 . -624) 28779) ((-923 . -624) 28716) ((-832 . -621) 28698) ((-1302 . -1123) T) ((-1294 . -621) 28680) ((-1252 . -174) 28571) ((-435 . -624) 28540) ((-108 . -384) 28522) ((-108 . -345) 28504) ((-1073 . -296) T) ((-961 . -296) 28435) ((-807 . -375) 28414) ((-655 . -1229) T) ((-640 . -1229) T) ((-594 . -1062) 28389) ((-489 . -296) 28320) ((-579 . -174) T) ((-333 . -288) 28304) ((-1302 . -23) T) ((-1223 . -102) T) ((-1210 . -1111) T) ((-1099 . -1111) T) ((-1087 . -1111) T) ((-594 . -648) 28279) ((-83 . -621) 28261) ((-1195 . -852) T) ((-1194 . -852) T) ((-719 . -102) T) ((-362 . -356) 28240) ((-616 . -1111) T) ((-359 . -356) 28219) ((-351 . -356) 28198) ((-483 . -1111) T) ((-1201 . -231) 28148) ((-269 . -258) 28110) ((-1153 . -132) T) ((-616 . -618) 28086) ((-1091 . -909) 28019) ((-1015 . -1060) T) ((-923 . -1060) T) ((-483 . -618) 27998) ((-1179 . -800) NIL) ((-1179 . -803) NIL) ((-1113 . -622) 27959) ((-487 . -231) 27909) ((-1113 . -621) 27891) ((-1015 . -247) T) ((-1015 . -237) T) ((-435 . -1060) T) ((-967 . -1111) 27841) ((-923 . -247) T) ((-874 . -132) T) ((-707 . -460) T) ((-851 . -1123) 27820) ((-108 . -909) NIL) ((-1223 . -290) 27786) ((-880 . -856) 27765) ((-1124 . -1229) T) ((-914 . -734) T) ((-171 . -522) 27677) ((-1010 . -25) T) ((-914 . -481) T) ((-415 . -1123) T) ((-495 . -802) T) ((-495 . -799) T) ((-919 . -356) T) ((-495 . -734) T) ((-219 . -802) T) ((-219 . -799) T) ((-1010 . -21) T) ((-219 . -734) T) ((-851 . -23) 27629) ((-1196 . -1111) T) ((-666 . -1062) 27613) ((-1195 . -1111) T) ((-532 . -624) 27594) ((-1194 . -1111) T) ((-325 . -313) 27573) ((-1046 . -239) 27519) ((-666 . -648) 27489) ((-415 . -23) T) ((-952 . -622) 27450) ((-952 . -621) 27362) ((-652 . -497) 27346) ((-45 . -1021) 27296) ((-1124 . -1049) 27123) ((-625 . -978) T) ((-499 . -102) T) ((-337 . -621) 27105) ((-1004 . -292) 27072) ((-601 . -659) 27054) ((-131 . -1111) T) ((-129 . -1111) T) ((-601 . -380) 27036) ((-350 . -1286) 27013) ((-447 . -621) 26995) ((-1252 . -522) 26942) ((-1098 . -1062) 26785) ((-1038 . -1229) T) ((-879 . -296) T) ((-1184 . -292) 26712) ((-1098 . -648) 26561) ((-1011 . -1006) 26545) ((-790 . -1062) 26368) ((-788 . -1062) 26211) ((-790 . -648) 26040) ((-788 . -648) 25889) ((-484 . -1229) T) ((-471 . -1229) T) ((-594 . -102) T) ((-469 . -1062) 25860) ((-462 . -1062) 25703) ((-672 . -654) 25672) ((-631 . -460) 25651) ((-469 . -648) 25622) ((-462 . -648) 25471) ((-362 . -654) 25408) ((-359 . -654) 25345) ((-351 . -654) 25282) ((-269 . -654) 25192) ((-251 . -654) 25102) ((-1294 . -389) 25074) ((-525 . -1111) T) ((-118 . -460) T) ((-1209 . -102) T) ((-1103 . -1111) 25044) ((-1045 . -1111) T) ((-1126 . -93) T) ((-902 . -858) T) ((-1271 . -111) 24913) ((-358 . -1233) T) ((-1271 . -1067) 24796) ((-1124 . -384) 24765) ((-1264 . -1067) 24600) ((-1243 . -1067) 24390) ((-1264 . -111) 24211) ((-1243 . -111) 23980) ((-1223 . -315) 23967) ((-1014 . -132) T) ((-919 . -654) 23917) ((-372 . -621) 23899) ((-358 . -564) T) ((-295 . -313) T) ((-604 . -1067) 23859) ((-603 . -1067) 23742) ((-589 . -1062) 23707) ((-526 . -1062) 23652) ((-368 . -1111) T) ((-328 . -1111) T) ((-256 . -621) 23613) ((-255 . -621) 23574) ((-589 . -648) 23539) ((-526 . -648) 23484) ((-702 . -417) 23451) ((-643 . -23) T) ((-615 . -23) T) ((-666 . -102) T) ((-604 . -111) 23404) ((-603 . -111) 23273) ((-386 . -1111) T) ((-343 . -102) T) ((-171 . -296) 23184) ((-1242 . -856) 23137) ((-722 . -1069) T) ((-1158 . -522) 23070) ((-1202 . -843) 23054) ((-1124 . -909) 22986) ((-844 . -1111) T) ((-835 . -1111) T) ((-833 . -1111) T) ((-97 . -102) T) ((-145 . -858) T) ((-620 . -893) 22970) ((-110 . -1229) T) ((-1098 . -102) T) ((-1074 . -34) T) ((-790 . -102) T) ((-788 . -102) T) ((-1271 . -624) 22852) ((-1264 . -624) 22595) ((-469 . -102) T) ((-462 . -102) T) ((-1243 . -624) 22390) ((-244 . -803) 22341) ((-244 . -800) 22292) ((-657 . -102) T) ((-604 . -624) 22250) ((-603 . -624) 22132) ((-1252 . -296) 22043) ((-672 . -642) 22027) ((-188 . -621) 22009) ((-652 . -292) 21961) ((-1045 . -725) 21945) ((-579 . -296) T) ((-972 . -656) 21870) ((-1302 . -132) T) ((-743 . -656) 21830) ((-723 . -656) 21817) ((-280 . -102) T) ((-461 . -656) 21747) ((-50 . -102) T) ((-589 . -102) T) ((-526 . -102) T) ((-1271 . -1060) T) ((-1264 . -1060) T) ((-1243 . -1060) T) ((-515 . -654) 21729) ((-328 . -725) 21711) ((-1271 . -237) 21670) ((-1264 . -247) 21649) ((-1264 . -237) 21601) ((-1243 . -237) 21488) ((-1243 . -247) 21467) ((-1223 . -38) 21364) ((-604 . -1060) T) ((-603 . -1060) T) ((-1015 . -803) T) ((-1015 . -800) T) ((-982 . -803) T) ((-982 . -800) T) ((-880 . -1069) T) ((-109 . -621) 21346) ((-702 . -460) T) ((-386 . -725) 21311) ((-426 . -656) 21285) ((-878 . -877) 21269) ((-719 . -38) 21234) ((-603 . -237) 21193) ((-40 . -732) 21165) ((-358 . -335) 21142) ((-358 . -370) T) ((-1091 . -313) 21093) ((-300 . -1123) 20974) ((-1117 . -1229) T) ((-173 . -102) T) ((-1246 . -621) 20941) ((-851 . -132) 20893) ((-652 . -1267) 20877) ((-844 . -725) 20847) ((-835 . -725) 20817) ((-490 . -1229) T) ((-366 . -313) T) ((-360 . -313) T) ((-352 . -313) T) ((-652 . -612) 20794) ((-415 . -132) T) ((-528 . -674) 20778) ((-108 . -313) T) ((-300 . -23) 20661) ((-528 . -659) 20645) ((-702 . -410) NIL) ((-528 . -380) 20629) ((-297 . -621) 20611) ((-91 . -1111) 20589) ((-108 . -1033) T) ((-572 . -144) T) ((-1279 . -152) 20573) ((-490 . -1049) 20400) ((-1265 . -146) 20361) ((-1265 . -148) 20322) ((-1065 . -1229) T) ((-1004 . -621) 20304) ((-870 . -621) 20286) ((-824 . -1067) 20129) ((-1290 . -93) T) ((-1289 . -93) T) ((-1184 . -622) NIL) ((-1107 . -1111) T) ((-1101 . -1111) T) ((-1098 . -315) 20116) ((-1084 . -1111) T) ((-229 . -1229) T) ((-1077 . -1111) T) ((-1047 . -1111) T) ((-1030 . -1111) T) ((-790 . -315) 20103) ((-788 . -315) 20090) ((-1184 . -621) 20072) ((-824 . -111) 19901) ((-1136 . -621) 19883) ((-634 . -1111) T) ((-585 . -175) T) ((-537 . -175) T) ((-462 . -315) 19870) ((-491 . -1111) T) ((-1136 . -622) 19618) ((-1045 . -174) T) ((-952 . -294) 19595) ((-220 . -1111) T) ((-862 . -621) 19577) ((-616 . -522) 19360) ((-81 . -624) 19301) ((-826 . -1049) 19285) ((-483 . -522) 19077) ((-972 . -734) T) ((-743 . -734) T) ((-723 . -734) T) ((-358 . -1123) T) ((-1191 . -621) 19059) ((-225 . -102) T) ((-490 . -384) 19028) ((-523 . -1111) T) ((-518 . -1111) T) ((-516 . -1111) T) ((-807 . -656) 19002) ((-1035 . -460) T) ((-967 . -522) 18935) ((-358 . -23) T) ((-643 . -132) T) ((-615 . -132) T) ((-361 . -460) T) ((-244 . -375) 18914) ((-386 . -174) T) ((-1263 . -1069) T) ((-1242 . -1069) T) ((-227 . -1013) T) ((-824 . -624) 18651) ((-707 . -395) T) ((-426 . -734) T) ((-709 . -1233) T) ((-1153 . -647) 18599) ((-588 . -877) 18583) ((-1294 . -1067) 18567) ((-1171 . -1205) 18543) ((-709 . -564) T) ((-127 . -1111) 18521) ((-722 . -1111) T) ((-666 . -38) 18491) ((-490 . -909) 18423) ((-253 . -1111) T) ((-189 . -1111) T) ((-361 . -410) T) ((-322 . -148) 18402) ((-322 . -146) 18381) ((-129 . -522) NIL) ((-117 . -564) T) ((-319 . -148) 18337) ((-319 . -146) 18293) ((-48 . -460) T) ((-163 . -1111) T) ((-158 . -1111) T) ((-1171 . -107) 18240) ((-790 . -1163) 18218) ((-697 . -34) T) ((-1294 . -111) 18197) ((-558 . -34) T) ((-492 . -107) 18181) ((-256 . -294) 18158) ((-255 . -294) 18135) ((-879 . -292) 18086) ((-45 . -1229) T) ((-1235 . -852) T) ((-824 . -1060) T) ((-670 . -654) 18055) ((-1190 . -47) 18032) ((-824 . -332) 17994) ((-1098 . -38) 17843) ((-824 . -237) 17822) ((-790 . -38) 17651) ((-788 . -38) 17500) ((-1126 . -498) 17481) ((-462 . -38) 17330) ((-1126 . -621) 17296) ((-1129 . -102) T) ((-652 . -622) 17257) ((-652 . -621) 17169) ((-589 . -1163) T) ((-526 . -1163) T) ((-1158 . -497) 17153) ((-350 . -1062) 17098) ((-1215 . -1111) 17076) ((-1153 . -25) T) ((-1153 . -21) T) ((-350 . -648) 17021) ((-1294 . -624) 16970) ((-482 . -1069) T) ((-1235 . -1111) T) ((-1243 . -800) NIL) ((-1243 . -803) NIL) ((-1010 . -858) 16949) ((-846 . -1111) T) ((-827 . -621) 16931) ((-874 . -21) T) ((-874 . -25) T) ((-807 . -734) T) ((-176 . -1233) T) ((-589 . -38) 16896) ((-526 . -38) 16861) ((-394 . -621) 16843) ((-339 . -102) T) ((-330 . -621) 16825) ((-171 . -292) 16783) ((-63 . -1229) T) ((-112 . -102) T) ((-880 . -1111) T) ((-176 . -564) T) ((-722 . -725) 16753) ((-300 . -132) 16636) ((-227 . -621) 16618) ((-227 . -622) 16548) ((-1014 . -647) 16487) ((-1294 . -1060) T) ((-1131 . -148) T) ((-640 . -1205) 16462) ((-739 . -918) 16441) ((-601 . -34) T) ((-655 . -107) 16425) ((-640 . -107) 16371) ((-1252 . -292) 16298) ((-739 . -656) 16223) ((-301 . -1229) T) ((-1190 . -1049) 16119) ((-952 . -626) 16096) ((-585 . -584) T) ((-585 . -535) T) ((-537 . -535) T) ((-1179 . -918) NIL) ((-1073 . -622) 16011) ((-1073 . -621) 15993) ((-961 . -621) 15975) ((-721 . -498) 15925) ((-350 . -102) T) ((-256 . -1067) 15822) ((-255 . -1067) 15719) ((-402 . -102) T) ((-31 . -1111) T) ((-961 . -622) 15580) ((-721 . -621) 15515) ((-1292 . -1222) 15484) ((-489 . -621) 15466) ((-489 . -622) 15327) ((-269 . -419) 15311) ((-251 . -419) 15295) ((-256 . -111) 15185) ((-255 . -111) 15075) ((-1186 . -656) 15000) ((-1185 . -656) 14897) ((-1179 . -656) 14749) ((-1137 . -656) 14674) ((-358 . -132) T) ((-82 . -449) T) ((-82 . -403) T) ((-1014 . -25) T) ((-1014 . -21) T) ((-881 . -1111) 14625) ((-40 . -1062) 14570) ((-880 . -725) 14522) ((-40 . -648) 14467) ((-386 . -296) T) ((-171 . -1013) 14418) ((-702 . -395) T) ((-1010 . -1008) 14402) ((-709 . -1123) T) ((-702 . -167) 14384) ((-1263 . -1111) T) ((-1242 . -1111) T) ((-322 . -1214) 14363) ((-322 . -1217) 14342) ((-1176 . -102) T) ((-322 . -968) 14321) ((-135 . -1123) T) ((-117 . -1123) T) ((-661 . -1229) T) ((-610 . -1277) 14305) ((-709 . -23) T) ((-610 . -1111) 14255) ((-322 . -95) 14234) ((-91 . -522) 14167) ((-176 . -370) T) ((-256 . -624) 13897) ((-255 . -624) 13627) ((-322 . -35) 13606) ((-616 . -497) 13540) ((-135 . -23) T) ((-117 . -23) T) ((-975 . -102) T) ((-726 . -1111) T) ((-483 . -497) 13477) ((-415 . -647) 13425) ((-661 . -1049) 13321) ((-967 . -497) 13305) ((-362 . -1069) T) ((-359 . -1069) T) ((-351 . -1069) T) ((-269 . -1069) T) ((-251 . -1069) T) ((-879 . -622) NIL) ((-879 . -621) 13287) ((-1290 . -498) 13268) ((-1289 . -498) 13249) ((-1302 . -21) T) ((-1290 . -621) 13215) ((-1289 . -621) 13181) ((-579 . -1013) T) ((-739 . -734) T) ((-1302 . -25) T) ((-256 . -1060) 13111) ((-255 . -1060) 13041) ((-72 . -1229) T) ((-256 . -237) 12993) ((-255 . -237) 12945) ((-40 . -102) T) ((-919 . -1069) T) ((-1193 . -102) T) ((-129 . -497) 12927) ((-1186 . -734) T) ((-1185 . -734) T) ((-1179 . -734) T) ((-1179 . -799) NIL) ((-1179 . -802) NIL) ((-963 . -102) T) ((-930 . -102) T) ((-878 . -1062) 12914) ((-1137 . -734) T) ((-779 . -102) T) ((-680 . -102) T) ((-878 . -648) 12901) ((-554 . -621) 12883) ((-482 . -1111) T) ((-346 . -1123) T) ((-176 . -1123) T) ((-325 . -929) 12862) ((-1263 . -725) 12703) ((-880 . -174) T) ((-1242 . -725) 12517) ((-851 . -21) 12469) ((-851 . -25) 12421) ((-249 . -1160) 12405) ((-127 . -522) 12338) ((-415 . -25) T) ((-415 . -21) T) ((-346 . -23) T) ((-171 . -622) 12104) ((-171 . -621) 12086) ((-176 . -23) T) ((-652 . -294) 12063) ((-528 . -34) T) ((-907 . -621) 12045) ((-89 . -1229) T) ((-849 . -621) 12027) ((-816 . -621) 12009) ((-777 . -621) 11991) ((-685 . -621) 11973) ((-244 . -656) 11821) ((-625 . -113) T) ((-1188 . -1111) T) ((-1184 . -1067) 11644) ((-1161 . -1229) T) ((-1136 . -1067) 11487) ((-862 . -1067) 11471) ((-1246 . -626) 11455) ((-1184 . -111) 11264) ((-1136 . -111) 11093) ((-862 . -111) 11072) ((-1236 . -858) T) ((-1252 . -622) NIL) ((-1252 . -621) 11054) ((-350 . -1163) T) ((-863 . -621) 11036) ((-1087 . -292) 11015) ((-80 . -1229) T) ((-914 . -1229) T) ((-1015 . -918) NIL) ((-616 . -292) 10991) ((-1215 . -522) 10924) ((-495 . -1229) T) ((-579 . -621) 10906) ((-483 . -292) 10885) ((-1223 . -654) 10795) ((-525 . -93) T) ((-1098 . -233) 10779) ((-219 . -1229) T) ((-1015 . -656) 10729) ((-967 . -292) 10681) ((-295 . -929) T) ((-825 . -313) 10660) ((-878 . -102) T) ((-790 . -233) 10644) ((-923 . -656) 10596) ((-719 . -654) 10546) ((-702 . -732) 10513) ((-643 . -21) T) ((-643 . -25) T) ((-615 . -21) T) ((-555 . -102) T) ((-350 . -38) 10478) ((-495 . -893) 10460) ((-495 . -895) 10442) ((-482 . -725) 10283) ((-219 . -893) 10265) ((-64 . -1229) T) ((-219 . -895) 10247) ((-615 . -25) T) ((-435 . -656) 10221) ((-1184 . -624) 9990) ((-495 . -1049) 9950) ((-880 . -522) 9862) ((-1136 . -624) 9654) ((-862 . -624) 9572) ((-219 . -1049) 9532) ((-244 . -34) T) ((-1011 . -1111) 9510) ((-588 . -1062) 9497) ((-572 . -1062) 9484) ((-503 . -1062) 9449) ((-1263 . -174) 9380) ((-1242 . -174) 9311) ((-588 . -648) 9298) ((-572 . -648) 9285) ((-503 . -648) 9250) ((-720 . -146) 9229) ((-720 . -148) 9208) ((-709 . -132) T) ((-137 . -473) 9185) ((-1158 . -621) 9117) ((-666 . -664) 9101) ((-129 . -292) 9051) ((-117 . -132) T) ((-485 . -1233) T) ((-616 . -612) 9027) ((-483 . -612) 9006) ((-343 . -342) 8975) ((-605 . -1111) T) ((-593 . -1111) T) ((-544 . -1111) T) ((-485 . -564) T) ((-1184 . -1060) T) ((-1136 . -1060) T) ((-862 . -1060) T) ((-244 . -799) 8954) ((-244 . -802) 8905) ((-244 . -801) 8884) ((-1184 . -332) 8861) ((-244 . -734) 8771) ((-967 . -19) 8755) ((-495 . -384) 8737) ((-495 . -345) 8719) ((-1136 . -332) 8691) ((-361 . -1286) 8668) ((-219 . -384) 8650) ((-219 . -345) 8632) ((-967 . -612) 8609) ((-1184 . -237) T) ((-1275 . -1111) T) ((-672 . -1111) T) ((-653 . -1111) T) ((-1201 . -1111) T) ((-1098 . -258) 8546) ((-594 . -654) 8506) ((-362 . -1111) T) ((-359 . -1111) T) ((-351 . -1111) T) ((-269 . -1111) T) ((-251 . -1111) T) ((-84 . -1229) T) ((-128 . -102) 8484) ((-122 . -102) 8462) ((-1201 . -618) 8441) ((-1242 . -522) 8301) ((-1152 . -1111) T) ((-1126 . -624) 8282) ((-487 . -1111) T) ((-1091 . -929) 8233) ((-1015 . -802) T) ((-487 . -618) 8212) ((-256 . -803) 8163) ((-256 . -800) 8114) ((-255 . -803) 8065) ((-40 . -1163) NIL) ((-255 . -800) 8016) ((-1015 . -799) T) ((-129 . -19) 7998) ((-1015 . -734) T) ((-707 . -1062) 7963) ((-982 . -802) T) ((-923 . -734) T) ((-919 . -1111) T) ((-129 . -612) 7938) ((-707 . -648) 7903) ((-91 . -497) 7887) ((-495 . -909) NIL) ((-901 . -621) 7869) ((-227 . -1067) 7834) ((-880 . -296) T) ((-219 . -909) NIL) ((-841 . -1123) 7813) ((-59 . -1111) 7763) ((-527 . -1111) 7741) ((-524 . -1111) 7691) ((-505 . -1111) 7669) ((-504 . -1111) 7619) ((-588 . -102) T) ((-572 . -102) T) ((-503 . -102) T) ((-482 . -174) 7550) ((-366 . -929) T) ((-360 . -929) T) ((-352 . -929) T) ((-227 . -111) 7506) ((-841 . -23) 7458) ((-435 . -734) T) ((-108 . -929) T) ((-40 . -38) 7403) ((-108 . -828) T) ((-589 . -356) T) ((-526 . -356) T) ((-844 . -292) 7382) ((-322 . -460) 7361) ((-319 . -460) T) ((-666 . -654) 7320) ((-610 . -522) 7253) ((-346 . -132) T) ((-176 . -132) T) ((-300 . -25) 7117) ((-300 . -21) 7000) ((-45 . -1205) 6979) ((-66 . -621) 6961) ((-55 . -102) T) ((-343 . -654) 6943) ((-1280 . -102) T) ((-45 . -107) 6893) ((-827 . -624) 6877) ((-1279 . -102) 6827) ((-1271 . -656) 6752) ((-1264 . -656) 6649) ((-1243 . -656) 6501) ((-1243 . -918) NIL) ((-1113 . -433) 6485) ((-1113 . -375) 6464) ((-394 . -624) 6448) ((-330 . -624) 6432) ((-1210 . -621) 6414) ((-1202 . -102) T) ((-1074 . -1229) T) ((-1098 . -654) 6324) ((-1073 . -1067) 6311) ((-1073 . -111) 6296) ((-961 . -1067) 6139) ((-961 . -111) 5968) ((-790 . -654) 5878) ((-788 . -654) 5788) ((-631 . -1062) 5775) ((-672 . -725) 5759) ((-631 . -648) 5746) ((-489 . -1067) 5589) ((-485 . -370) T) ((-469 . -654) 5545) ((-462 . -654) 5455) ((-227 . -624) 5405) ((-362 . -725) 5357) ((-359 . -725) 5309) ((-118 . -1062) 5254) ((-351 . -725) 5206) ((-269 . -725) 5055) ((-251 . -725) 4904) ((-1107 . -93) T) ((-1101 . -93) T) ((-118 . -648) 4849) ((-1084 . -93) T) ((-952 . -659) 4833) ((-1077 . -93) T) ((-489 . -111) 4662) ((-1068 . -1111) 4640) ((-1047 . -93) T) ((-952 . -380) 4624) ((-252 . -102) T) ((-1030 . -93) T) ((-74 . -621) 4606) ((-972 . -47) 4585) ((-718 . -102) T) ((-707 . -102) T) ((-1 . -1111) T) ((-629 . -1123) T) ((-1099 . -621) 4567) ((-634 . -93) T) ((-1087 . -621) 4549) ((-919 . -725) 4514) ((-127 . -497) 4498) ((-491 . -93) T) ((-629 . -23) T) ((-398 . -23) T) ((-87 . -1229) T) ((-220 . -93) T) ((-616 . -621) 4480) ((-616 . -622) NIL) ((-483 . -622) NIL) ((-483 . -621) 4462) ((-358 . -25) T) ((-358 . -21) T) ((-50 . -654) 4421) ((-519 . -1111) T) ((-515 . -1111) T) ((-128 . -315) 4359) ((-122 . -315) 4297) ((-604 . -656) 4271) ((-603 . -656) 4196) ((-589 . -654) 4146) ((-227 . -1060) T) ((-526 . -654) 4076) ((-386 . -1013) T) ((-227 . -247) T) ((-227 . -237) T) ((-1073 . -624) 4048) ((-1073 . -626) 4029) ((-967 . -622) 3990) ((-967 . -621) 3902) ((-961 . -624) 3691) ((-878 . -38) 3678) ((-721 . -624) 3628) ((-1263 . -296) 3579) ((-1242 . -296) 3530) ((-489 . -624) 3315) ((-1131 . -460) T) ((-510 . -858) T) ((-322 . -1150) 3294) ((-1010 . -148) 3273) ((-1010 . -146) 3252) ((-503 . -315) 3239) ((-301 . -1205) 3218) ((-1196 . -621) 3200) ((-1195 . -621) 3182) ((-1194 . -621) 3164) ((-879 . -1067) 3109) ((-485 . -1123) T) ((-140 . -843) 3091) ((-115 . -843) 3072) ((-631 . -102) T) ((-1215 . -497) 3056) ((-256 . -375) 3035) ((-255 . -375) 3014) ((-1073 . -1060) T) ((-301 . -107) 2964) ((-131 . -621) 2946) ((-129 . -622) NIL) ((-129 . -621) 2890) ((-118 . -102) T) ((-961 . -1060) T) ((-879 . -111) 2819) ((-485 . -23) T) ((-461 . -1229) T) ((-489 . -1060) T) ((-1073 . -237) T) ((-961 . -332) 2788) ((-489 . -332) 2745) ((-362 . -174) T) ((-359 . -174) T) ((-351 . -174) T) ((-269 . -174) 2656) ((-251 . -174) 2567) ((-972 . -1049) 2463) ((-525 . -498) 2444) ((-743 . -1049) 2415) ((-525 . -621) 2381) ((-426 . -1229) 2318) ((-1116 . -102) T) ((-1103 . -621) 2277) ((-1045 . -621) 2259) ((-702 . -1062) 2209) ((-1292 . -152) 2193) ((-1290 . -624) 2174) ((-1289 . -624) 2155) ((-1284 . -621) 2137) ((-1271 . -734) T) ((-702 . -648) 2087) ((-1264 . -734) T) ((-1243 . -799) NIL) ((-1243 . -802) NIL) ((-171 . -1067) 1997) ((-919 . -174) T) ((-879 . -624) 1927) ((-1243 . -734) T) ((-1014 . -349) 1901) ((-225 . -654) 1853) ((-1011 . -522) 1786) ((-851 . -858) 1765) ((-572 . -1163) T) ((-482 . -296) 1716) ((-604 . -734) T) ((-368 . -621) 1698) ((-328 . -621) 1680) ((-426 . -1049) 1576) ((-603 . -734) T) ((-415 . -858) 1527) ((-171 . -111) 1423) ((-841 . -132) 1375) ((-745 . -152) 1359) ((-1279 . -315) 1297) ((-495 . -313) T) ((-386 . -621) 1264) ((-528 . -1021) 1248) ((-386 . -622) 1162) ((-219 . -313) T) ((-142 . -152) 1144) ((-722 . -292) 1123) ((-495 . -1033) T) ((-588 . -38) 1110) ((-572 . -38) 1097) ((-503 . -38) 1062) ((-219 . -1033) T) ((-879 . -1060) T) ((-844 . -621) 1044) ((-835 . -621) 1026) ((-833 . -621) 1008) ((-824 . -918) 987) ((-1303 . -1123) T) ((-1252 . -1067) 810) ((-863 . -1067) 794) ((-879 . -247) T) ((-879 . -237) NIL) ((-697 . -1229) T) ((-1303 . -23) T) ((-824 . -656) 719) ((-558 . -1229) T) ((-426 . -345) 703) ((-579 . -1067) 690) ((-1252 . -111) 499) ((-709 . -647) 481) ((-863 . -111) 460) ((-388 . -23) T) ((-171 . -624) 238) ((-1201 . -522) 30) ((-884 . -1111) T) ((-689 . -1111) T) ((-684 . -1111) T) ((-670 . -1111) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 983c4b93..7643f261 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3485439393)
-(4455 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3485461454)
+(4457 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -68,14 +68,14 @@
|Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
|DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
|Dictionary| |DifferentialExtension&| |DifferentialExtension|
- |DifferentialRing&| |DifferentialRing| |DictionaryOperations&|
- |DictionaryOperations| |DiophantineSolutionPackage|
- |DirectProductCategory&| |DirectProductCategory|
- |DirectProductFunctions2| |DirectProduct| |DisplayPackage|
- |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
- |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
- |Domain| |DomainConstructor| |DomainTemplate|
- |DirectProductMatrixModule| |DirectProductModule|
+ |DifferentialDomain&| |DifferentialDomain| |DifferentialRing&|
+ |DifferentialRing| |DictionaryOperations&| |DictionaryOperations|
+ |DiophantineSolutionPackage| |DirectProductCategory&|
+ |DirectProductCategory| |DirectProductFunctions2| |DirectProduct|
+ |DisplayPackage| |DivisionRing&| |DivisionRing|
+ |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage|
+ |DistributedMultivariatePolynomial| |Domain| |DomainConstructor|
+ |DomainTemplate| |DirectProductMatrixModule| |DirectProductModule|
|DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
|DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
|TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
@@ -484,662 +484,666 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |OMputEndBind| |middle| |bottom!| |member?|
- |wrregime| |multiEuclideanTree| |clipWithRanges|
- |subresultantSequence| |measure| |cExp| |ddFact| |set| |pleskenSplit|
- |e02ahf| |pointSizeDefault| |readByte!| |lookupFunction| |e02def|
- |toseInvertible?| |inverseColeman| |nil?| |lexTriangular| |property|
- |interReduce| |mainCharacterization| |setIntersection| |nextPartition|
- |monomial?| |iiexp| |multMonom| |setPoly| |collectUpper|
- |scanOneDimSubspaces| |before?| |iflist2Result| |s21baf| |unit|
- |polynomialZeros| |pade| |unknownEndian| |e01saf| |maxdeg|
- |youngGroup| |parent| |cyclic?| |doubleComplex?| |lists| |capacity|
- |badNum| |s15aef| |traverse| |finite?| |integrate|
- |genericLeftDiscriminant| |d01akf| |llprop| |fixedPoint| |getCurve|
- |exportedOperators| |alphanumeric| |cosIfCan| |signature| |csubst|
- |hex| |linearlyDependentOverZ?| |curveColor| |minPol| |pointData|
- |ratPoly| |branchPointAtInfinity?| |removeDuplicates!| |coerceP|
- |OMputAtp| |deepExpand| |jacobian| |isobaric?| |leftRank| |ocf2ocdf|
- |nextsubResultant2| |search| |phiCoord| |continuedFraction| |expr|
- |factorGroebnerBasis| |toseLastSubResultant|
- |factorSquareFreeByRecursion| |tanh2coth| |tValues| |digit|
- |OMputEndApp| |OMread| |dihedralGroup| |currentScope| |radPoly|
- |useNagFunctions| |cot2trig| |sayLength| |outputList| |c06fpf|
- |viewWriteAvailable| |weakBiRank| |changeMeasure| |minPoly|
- |consnewpol| |c06gcf| |setValue!| |iitan| |solve1| |show| |redpps|
- |f04adf| |getVariableOrder| |nextPrimitivePoly| |validExponential|
- |c06gqf| |SturmHabicht| |node?| |OMsend| |reduced?| |convergents|
- |selectFiniteRoutines| |c05adf| |variable| |complexElementary|
- |dualSignature| |cAsinh| |quotient| |primintfldpoly| |trace|
- |addMatch| |readBytes!| |upperBound| |boundOfCauchy| |iterators|
- |listYoungTableaus| |purelyAlgebraic?| |redPol| |maxColIndex|
- |printStatement| |factorList| |rightExtendedGcd| |quasiRegular|
- |position!| |atanIfCan| |datalist| |areEquivalent?| |cyclotomic|
- |systemCommand| |ode| |exprHasLogarithmicWeights| |viewpoint| |d02kef|
- |char| |univariatePolynomialsGcds| |subst| |checkPrecision|
- |perfectSqrt| |legendre| |hconcat| |hasPredicate?| |expint| |iicsch|
- |iExquo| |indicialEquations| |belong?| |bitior| |crushedSet|
- |initiallyReduce| |swapColumns!| |permutationGroup| |move| |sinhIfCan|
- |selectOrPolynomials| |oddintegers| |critMTonD1| |socf2socdf|
- |mainSquareFreePart| |e04mbf| |imagK| |reducedContinuedFraction|
- |extendedEuclidean| |precision| |normal| |copies| |singleFactorBound|
- |purelyTranscendental?| |edf2ef| |redmat| |s20acf| |binomial| |refine|
- |cond| |defineProperty| |pseudoDivide| |concat| |rur| |s18acf|
- |rarrow| |writable?| |zeroSetSplit| |internalDecompose| |leftGcd|
- |sech| |sumOfSquares| |idealSimplify| |transcendent?|
- |selectIntegrationRoutines| |revert| |isOpen?| |cosSinInfo|
- |transcendenceDegree| |elliptic?| |csch| |operation| |makeSin|
- |OMunhandledSymbol| |palgLODE| |functorData| |f2df| |objects| |float|
- |quickSort| |characteristicSerie| |contractSolve| |d01alf| |asinh|
- |eulerE| |lowerCase!| |fortranLiteralLine| |base| |specialTrigs|
- |ptFunc| |paraboloidal| |bernoulli| |safetyMargin| |acosh| |nary?|
- |sup| |inputOutputBinaryFile| |logpart| |kind| |entry?| |duplicates|
- |central?| |categoryFrame| |pushNewContour| |removeZeroes|
- |unitNormal| |arg1| |hostPlatform| |atanh| |fractionFreeGauss!|
- |intChoose| |e02akf| |difference| |makeEq| |op| |fixedDivisor|
- |basisOfCentroid| |arg2| |f01qcf| |setEpilogue!|
- |selectMultiDimensionalRoutines| |rightFactorCandidate| |acoth|
- |parabolicCylindrical| |rational| |numericIfCan| |cAtanh| |s13adf|
- |imports| |randomR| |ldf2vmf| |generateIrredPoly| |asech|
- |rangePascalTriangle| |numer| |OMopenFile| |geometric| |splitLinear|
- |fi2df| |complexSolve| |in?| |extendedResultant| |conditions|
- |epilogue| |realSolve| |variables| |denom| |algebraic?|
- |findConstructor| |outputMeasure| |sh| |bothWays| |choosemon|
- |OMcloseConn| |totalGroebner| |match| |options| |multiple| |cotIfCan|
- |singularAtInfinity?| |box| |readIfCan!| |prolateSpheroidal|
- |numericalOptimization| |factorsOfCyclicGroupSize| |zag|
- |variationOfParameters| |applyQuote| |mightHaveRoots| |c06frf|
- |normalized?| |host| |pi| |tree| |rotatey| |pureLex|
- |removeRoughlyRedundantFactorsInPols| |charClass| |applyRules|
- |taylorIfCan| |extension| |infinity| |leastPower| |screenResolution|
- |union| |homogeneous?| |setlast!| |any| |root?| |spherical| |string|
- |inverseIntegralMatrix| |cTanh| |omError| |compiledFunction|
- |completeHermite| |idealiserMatrix| |d03eef| |iroot| |OMputApp|
- |ruleset| |getDatabase| |putGraph| |trapezoidal| |lyndon|
- |changeWeightLevel| |invmod| |charthRoot| |balancedBinaryTree| |nlde|
- |anfactor| |powers| |kernel| |previous| |se2rfi| |rdHack1| |e04jaf|
- |mapSolve| |showRegion| |ridHack1| |cycleRagits| |concat!| |padecf|
- |expandPower| |list| |complexNumeric| |atrapezoidal|
- |squareFreeFactors| |isAbsolutelyIrreducible?| |create3Space|
- |resetAttributeButtons| |e01sbf| |OMputAttr| |suchThat|
- |mainCoefficients| |var2StepsDefault| |iiacosh| |divergence| |draw|
- |imagi| |infRittWu?| |leftOne| |root| |vedf2vef| |groebner?| |empty|
- |whileLoop| |leftMinimalPolynomial| |prinshINFO|
- |discriminantEuclidean| |alternatingGroup| |fixPredicate| |An|
- |semiDegreeSubResultantEuclidean| |OMgetEndAttr| |iiacsch|
- |particularSolution| |OMmakeConn| |diophantineSystem| |getZechTable|
- |mapExpon| |LazardQuotient2| |schwerpunkt| |linearAssociatedOrder|
- |genericRightMinimalPolynomial| |bumptab| |anticoord| |e04ycf|
- |reciprocalPolynomial| |pack!| |realElementary| |atoms|
- |reducedDiscriminant| |symmetricSquare| |outputBinaryFile|
- |semiResultantEuclideannaif| |cup| |leftLcm| |torsion?|
- |cyclotomicDecomposition| |mindegTerm| |makeObject|
- |toseSquareFreePart| |inconsistent?| |drawStyle| |sin2csc| |monomials|
- |close!| |integralMatrixAtInfinity| |iiGamma| |s19adf| |center|
- |allRootsOf| |currentCategoryFrame| |coef| |rCoord| |extractClosed|
- |zeroDimPrimary?| |pushuconst| |e02zaf| |stack| |solid| |cycleElt|
- |hMonic| |structuralConstants| |OMgetError| |label| |leftRecip|
- |OMputInteger| |nthExpon| |makingStats?| |max| |explimitedint|
- |integralLastSubResultant| |externalList| |squareFreeLexTriangular|
- |point?| |name| |pToDmp| |headReduced?| |constantOpIfCan|
- |stripCommentsAndBlanks| |closeComponent| |nextsousResultant2|
- |checkForZero| |stopMusserTrials| |just| |rightFactorIfCan| |body|
- |imagJ| |infLex?| |changeName| |component| |unitNormalize|
- |rangeIsFinite| |groebnerFactorize| |typeForm| |bit?| |stirling2|
- |highCommonTerms| |interpret| |rightPower| |viewWriteDefault| |maxint|
- |LowTriBddDenomInv| |meshPar1Var| |sizeLess?| |credPol|
- |chainSubResultants| |extractBottom!| |meatAxe| |binaryTournament|
- |normDeriv2| |rightMult| |e01sff| |lazyPseudoQuotient| |shuffle|
- |unravel| |untab| |createZechTable| |setFormula!| |elaborate|
- |setchildren!| |characteristicPolynomial| |expIfCan| |yCoordinates|
- |numberOfNormalPoly| |dflist| |bringDown| |splitSquarefree|
- |internal?| |accuracyIF| |purelyAlgebraicLeadingMonomial?| |solid?|
- |nativeModuleExtension| |normalizeIfCan| |harmonic| |point| |length|
- |symmetricDifference| |status| |Si| |makeResult| |partialDenominators|
- |identification| |outputSpacing| |readInt16!| |lexGroebner|
- |setprevious!| |option| |zeroVector| |scripts| |lagrange| |d02ejf|
- |implies| |leviCivitaSymbol| |alternative?| |viewPhiDefault|
- |nilFactor| SEGMENT |printTypes| |e01sef| |approxSqrt| |s15adf|
- |iiasin| |monic?| |port| |eigenvectors| |prepareDecompose|
- |leftRemainder| |minRowIndex| |leadingCoefficientRicDE| |gbasis|
- |series| |dual| |integralBasis| |prime| |resetBadValues| |fibonacci|
- |roughBasicSet| |separateDegrees| |countRealRootsMultiple| |dn|
- |stoseInvertible?sqfreg| |hessian| |f04maf| |restorePrecision|
- |monicLeftDivide| |t| |nthr| |numberOfImproperPartitions| |unary?|
- |rightDiscriminant| |getlo| |writeLine!| |redPo| |elements|
- |genericLeftNorm| |palgint| |lfunc| |univariate?| |maxIndex|
- |lifting1| |separateFactors| |invertIfCan| |ParCondList|
- |cyclicParents| |createPrimitiveElement| |simpson| |e02adf|
- |baseRDEsys| |basisOfCommutingElements| |evenlambert| |polyred|
- |palglimint| |min| |subSet| |sec2cos| |monicRightFactorIfCan|
- |zeroDimensional?| |LagrangeInterpolation| |f04qaf| |createThreeSpace|
- |finiteBasis| |OMgetEndAtp| |fortranReal| |fullDisplay| |f01qdf|
- |supDimElseRittWu?| |colorDef| |insertBottom!| |nextIrreduciblePoly|
- |zeroSquareMatrix| |polygon| |putProperties| |multiEuclidean|
- |splitConstant| |totalfract| |rootNormalize| |setTex!| |dmpToP|
- |semiIndiceSubResultantEuclidean| |unknown| |apply| |alphanumeric?|
- |cSin| |lieAlgebra?| |figureUnits| |byteBuffer| |seriesToOutputForm|
- |errorInfo| |ramified?| |tab| |alternating| |top!| |first| |moduleSum|
- |expandTrigProducts| |arrayStack| |janko2| |swap| |mainKernel|
- |iidsum| |absolutelyIrreducible?| |elseBranch| |xor| |imag| |LiePoly|
- |divideIfCan| |rest| |certainlySubVariety?| |viewSizeDefault|
- |leftDiscriminant| |safeCeiling| |setfirst!| |directProduct|
- |OMreadFile| |case| |singRicDE| |signatureAst| |odd?|
- |stopTableInvSet!| |digit?| |returnType!| |cAcos| |axesColorDefault|
- |qroot| |setRealSteps| |Zero| |OMgetBVar| |fintegrate| |contours|
- |pseudoQuotient| |mapCoef| |comp| |keys| |true| |scalarMatrix|
- |noncommutativeJordanAlgebra?| |diagonal| |newSubProgram| |void|
- |hcrf| |exprToXXP| |lookup| |One| |top| |tableForDiscreteLogarithm|
- |tablePow| |euclideanSize| |acoshIfCan| |drawComplexVectorField|
- |one?| |components| |continue| |OMgetObject| |primlimitedint|
- |initiallyReduced?| |branchIfCan| |triangSolve| |associatorDependence|
- |eulerPhi| |iidprod| |OMclose| |changeThreshhold| |sort|
- |plusInfinity| |nullity| |dimensionsOf| |graphs| |weight|
- |setPredicates| |completeHensel| |monicDivide| |rightAlternative?|
- |setMinPoints3D| |pdf2ef| |minusInfinity| |f02axf| |nor| |headAst|
- |iiacsc| |setScreenResolution| |d02bbf| |floor| |asinhIfCan|
- |symmetricProduct| |cothIfCan| |completeEval|
- |genericRightDiscriminant| |rdregime| |genericLeftMinimalPolynomial|
- |primextendedint| |unitCanonical| |id| |bigEndian| |leadingExponent|
- |bubbleSort!| |commutativeEquality| |c06gsf| |prindINFO| |prinb|
- |coerceS| |rootOf| |elt| |twoFactor| |eof?| |lo| |any?| |readInt8!|
- |s17def| |OMputString| |less?| |random| |resultant| |interactiveEnv|
- |d03faf| |palgextint| |getBadValues| |next|
- |functionIsContinuousAtEndPoints| |antisymmetric?| |rightRecip|
- |overset?| |vertConcat| |exptMod| |varselect| |bsolve| |iiatan|
- |measure2Result| |increasePrecision| |firstNumer| |writeByte!|
- |fractRagits| |parametric?| |viewDeltaXDefault| |sincos| |Hausdorff|
- |inf| |leftMult| |key?| |polyRDE| |rightNorm| |adjoint| |equality|
- |binding| |iicsc| |univariateSolve| |clearFortranOutputStack|
- |graphImage| |internalIntegrate0| |groebSolve| |argument| |coefChoose|
- |getProperty| |GospersMethod| |binomThmExpt| |divideExponents|
- |exists?| |s17agf| |isAtom| |triangular?| |find| |iomode| |module|
- |primeFrobenius| |insert| |cycles| |interpolate| |legendreP|
- |supRittWu?| |ignore?| |associative?| |totalDifferential| |mapmult|
- |content| |viewZoomDefault| |ranges| |outputAsTex|
- |pmComplexintegrate| |polygamma| |leader| |relerror|
- |recoverAfterFail| |complement| |d01bbf| |s01eaf| |trapezoidalo|
- |OMlistSymbols| |partialQuotients| |maxrow| |lfinfieldint| |prime?|
- |Lazard| |wreath| |s13aaf| |e01bgf| |OMopenString|
- |rewriteSetWithReduction| |f01brf| |internalLastSubResultant|
- |rightZero| |d02gaf| |generalizedContinuumHypothesisAssumed|
- |roughUnitIdeal?| |radicalSolve| |s14baf| |even?| |complete|
- |stoseInvertible?| |maxRowIndex| |littleEndian| |permutations| |smith|
- |linearDependenceOverZ| |leftNorm| |separate| |uncouplingMatrices|
- |empty?| |partialNumerators| |ldf2lst| |subPolSet?| |critT| |s17dgf|
- |OMgetEndBVar| |removeRedundantFactorsInPols| |totolex| |shiftLeft|
- |copyInto!| |decompose| |exp1| |simplifyExp| |shufflein|
- |diagonalProduct| |f02akf| |pushup| |leftScalarTimes!| |graphStates|
- |quoted?| |expintfldpoly| |symbolTable| |factorsOfDegree| |graphState|
- |radicalSimplify| |mainMonomials| |symmetricRemainder| |setStatus|
- |unparse| UP2UTS |createRandomElement| |OMputObject| |swap!|
- |var1StepsDefault| |cAcot| |mpsode| |pr2dmp| |cyclicSubmodule|
- |unaryFunction| |primitivePart| |initializeGroupForWordProblem|
- |triangulate| |pushFortranOutputStack| |countable?| |splitNodeOf!|
- |exteriorDifferential| |optpair| |coord| |medialSet| |atanhIfCan|
- |tanSum| |commonDenominator| |hasSolution?| |popFortranOutputStack|
- |iicot| |cAcsch| |width| |createNormalElement| |euclideanNormalForm|
- |every?| |s17acf| |super| |tubeRadius| |f07fef| |normalize|
- |outputAsFortran| |evaluateInverse| |matrixConcat3D| |mainExpression|
- |iiabs| |conjunction| |setTopPredicate| |nullSpace| |nthFactor| Y
- |listOfLists| |environment| |stoseInvertibleSetreg| |neglist|
- |radicalEigenvector| |ideal| |squareFreePrim| |getMatch| |ListOfTerms|
- |leftRegularRepresentation| |rootOfIrreduciblePoly| |outputFixed|
- |incrementKthElement| |callForm?| |getProperties|
- |getSyntaxFormsFromFile| |reseed| |rightLcm| |jacobi| |elaboration|
- |meshFun2Var| |genus| |HenselLift| |genericRightTraceForm| |cAsech|
- |f04arf| |algebraicVariables| |sparsityIF| |changeBase| |lowerCase|
- |noKaratsuba| |clearCache| |inputBinaryFile| |symmetricPower| |irCtor|
- |exQuo| |lift| |table| |e01baf| |midpoints| |modTree| |cycleTail|
- |factorOfDegree| |OMParseError?| |modulus| |companionBlocks|
- |cardinality| |characteristic| |reduce| |new| |rischNormalize|
- LODO2FUN |makeVariable| |obj| |maximumExponent| |iiatanh|
- |rewriteIdealWithRemainder| F2FG |asechIfCan| |normalDeriv| |irDef|
- |optAttributes| |setFieldInfo| |primitiveElement| |cache|
- |removeCoshSq| |var2Steps| |integralMatrix| |iipow| |li|
- |semiResultantEuclidean2| |derivationCoordinates| |commutator| |elem?|
- |tubePlot| |gethi| |cdr| |OMputFloat| |largest|
- |solveLinearPolynomialEquationByFractions| |sinhcosh|
- |mainDefiningPolynomial| |bumprow| |trigs2explogs|
- |firstUncouplingMatrix| |linkToFortran| |sample| |leftZero| |rombergo|
- |leadingSupport| |c05nbf| |infieldIntegrate| |univariatePolynomial|
- |factor| |OMgetType| |minimumExponent| |setScreenResolution3D|
- |bfKeys| |divisor| |midpoint| |showTheSymbolTable| |groebner|
- |subQuasiComponent?| |eigenMatrix| |f07adf| |distance| |getOperands|
- |mappingMode| |gcdPrimitive| |basisOfLeftNucleus| |goto| |var1Steps|
- |computePowers| |removeZero| |explicitlyEmpty?| |loopPoints| |vector|
- |setrest!| |qfactor| |polCase| |insertRoot!| |coleman| |tRange|
- |unrankImproperPartitions0| |basisOfRightNucleus| |Nul| |thenBranch|
- |gderiv| |differentiate| |elRow2!| |SturmHabichtMultiple| |tubePoints|
- |fglmIfCan| |palgextint0| |partition| |lex| |predicate| |cCsch|
- |SFunction| |internalZeroSetSplit| |genericRightTrace|
- |outputAsScript| |elRow1!| |lexico| |errorKind| |atom?|
- |intPatternMatch| |rootSplit| |setAdaptive3D| |iiacot| |categoryMode|
- |bindings| |vectorise| |iicoth| |size| |monomial| |left| ** |octon|
- |rewriteSetByReducingWithParticularGenerators| |cubic| |e02agf| |dom|
- |test| |diagonals| |exprHasAlgebraicWeight| |besselI| |assign|
- |showAll?| |byte| |multivariate| |mainValue| |sign| |right| |front|
- |blue| |primitivePart!| |repeating| |pomopo!| |morphism| |plus!|
- |gcdcofactprim| |e02dff| |cAcoth| |cTan| |romberg| |probablyZeroDim?|
- |color| |retractIfCan| |polyPart| |dominantTerm|
- |constantCoefficientRicDE| |determinant| |tanQ| |getGraph| |close|
- |overbar| |zeroSetSplitIntoTriangularSystems| |diagonal?|
- |stopTableGcd!| |linear| |stoseInvertibleSetsqfreg| |lazyGintegrate|
- |recolor| |jordanAdmissible?| |cosh2sech| |dimensions| |bitTruth|
- |minus!| |problemPoints| |numberOfComponents| |extractIfCan| |sqrt|
- |nullary?| |Aleph| |powerAssociative?| |createGenericMatrix|
- |nextLatticePermutation| |leadingIdeal| |leaves| |display| |zCoord|
- |stoseInvertibleSet| |plot| |polynomial| |increment| |real| |title|
- |ravel| |leftAlternative?| |rationalIfCan| |numberOfChildren|
- |shellSort| |updatD| |linearPart| |units| |freeOf?| |binary| |prefix|
- |mvar| |listLoops| |clip| |OMsupportsCD?| |exprToGenUPS| |horizConcat|
- |reshape| |fortranCompilerName| |hspace| |userOrdered?|
- |inverseLaplace| |more?| |parameters| |primintegrate| |prinpolINFO|
- |mapdiv| |compound?| |s17aff| |clearTable!| |summation| |df2fi|
- |listRepresentation| |int| |tanNa| |leftDivide| |computeCycleLength|
- |e| |s17aef| |po| |removeRoughlyRedundantFactorsInContents|
- |lazyPremWithDefault| |laurentRep| |node| |cylindrical|
- |createLowComplexityTable| |abs| |divisors| |s19abf| |trim| |nthCoef|
- |rootKerSimp| |lprop| |makeop| |multiplyExponents|
- |functionIsOscillatory| |aspFilename| |prod| |generalPosition| |input|
- |updatF| |map| |hypergeometric0F1| |critMonD1| |directSum|
- |writeUInt8!| |deepestTail| |brace| |kernels| |code| |tanintegrate|
- |radix| |stopTable!| |library| |pushdterm| |digamma|
- |basisOfLeftAnnihilator| |moebiusMu| |cyclicGroup| |minColIndex|
- |limitPlus| |update| |eq| |operator| |basisOfCenter|
- |computeCycleEntry| |conditionP| |fortran| |showSummary| |zero?| |mat|
- |viewDeltaYDefault| |getIdentifier| |droot| |quatern|
- |unrankImproperPartitions1| |connect| |iter| |FormatRoman| |optimize|
- |definingEquations| |coshIfCan| |solve| |inHallBasis?|
- |monomialIntPoly| |getOperator| |derivative| |d01amf| |f04jgf|
- |product| |basisOfRightAnnihilator| |zeroMatrix| |rightQuotient|
- |mathieu11| |mesh| |comparison| |showTheIFTable| |assert| |axes|
- |updateStatus!| |rationalFunction| |complexNumericIfCan| |hdmpToP|
- |e02ajf| |showArrayValues| |triangularSystems| |convert| |f01rcf|
- |weights| |physicalLength!| |setColumn!| |increase| |yellow|
- |abelianGroup| |low| |lfextlimint| |showAttributes| |blankSeparate|
- |level| |permutation| |represents| |c06ecf| |selectODEIVPRoutines|
- |skewSFunction| |position| |intensity| |clikeUniv| |df2mf|
- |OMputError| |conjugates| |halfExtendedResultant1| |pointColorPalette|
- |OMsetEncoding| |showFortranOutputStack| |makeTerm| |nonLinearPart|
- |gensym| |setright!| |block| |exactQuotient| |leftQuotient| |back|
- |eyeDistance| |btwFact| |deepestInitial| |bandedJacobian| |ScanArabic|
- |subResultantsChain| |removeIrreducibleRedundantFactors| |setleft!|
- |compile| |ref| |fortranDoubleComplex| |upDateBranches| |systemSizeIF|
- |degree| |exp| |principalAncestors| |testDim| |numberOfFactors|
- |explicitlyFinite?| |fractRadix| |head| |stFunc1| |viewThetaDefault|
- |factors| |parametersOf| |equation| |createLowComplexityNormalBasis|
- |asinIfCan| |stronglyReduced?| |s19aaf| |numeric|
- |removeRedundantFactors| |rotatex| |f02xef| |children| |flagFactor|
- |nextSublist| |radical| |f02agf| |viewport3D| |addmod|
- |getExplanations| |debug3D| |preprocess| |basis| |rischDE|
- |fortranCharacter| |prevPrime| |hostByteOrder| |showClipRegion|
- |createNormalPoly| |xCoord| |minimumDegree| |approximants|
- |collectUnder| |findCycle| |algint| |generalLambert| |swapRows!|
- |script| |youngDiagram| |rightDivide| |setMinPoints| |solveRetract|
- |clipPointsDefault| |shanksDiscLogAlgorithm| |BumInSepFFE| |reflect|
- |removeSquaresIfCan| |rootProduct| |printInfo| |leaf?| |nullary|
- |leftExtendedGcd| |positiveRemainder| |aromberg|
- |rightRegularRepresentation| |leadingIndex| |yCoord| |makeViewport2D|
- |randnum| |leastMonomial| |qualifier| |rquo| |upperCase!|
- |clearTheSymbolTable| |reduction| |rspace| |startTableGcd!| |tan2cot|
- |sumOfDivisors| |minordet| |tex| |critB| |aQuadratic| |logGamma|
- |conjugate| |asimpson| |selectSumOfSquaresRoutines| |nextNormalPoly|
- |ricDsolve| |nothing| |pile| |invertibleElseSplit?| |stirling1|
- |besselY| |matrixGcd| |range| |factorset| |negative?|
- |clearTheIFTable| |padicallyExpand| |number?| |fortranTypeOf|
- |inverseIntegralMatrixAtInfinity| |sumSquares| |differentialVariables|
- |removeSuperfluousQuasiComponents| |iiperm| |checkRur| |e01bhf|
- |OMgetSymbol| |divideIfCan!| |rightExactQuotient| |c06gbf|
- |principalIdeal| |heap| |cCsc| |encodingDirectory| |simpsono|
- |mapBivariate| |scale| |setErrorBound| |rightMinimalPolynomial|
- |s21bcf| |minPoints| |irreducibleFactors| |qelt| |unvectorise|
- |diagonalMatrix| |makeSketch| |sort!| |c06fuf| |tanhIfCan| |qsetelt|
- |type| |fortranLiteral| |lfintegrate| |substitute| |besselJ| |lquo|
- |rem| |perfectNthRoot| |leftTrace| |const| |newTypeLists| |newLine|
- |OMputSymbol| |expenseOfEvaluationIF| |f02aef| |setMaxPoints|
- |wholeRagits| |quo| |xRange| |insert!| |noLinearFactor?| |initial|
- |ipow| |parseString| |ParCond| |cons| |flexible?| |intcompBasis|
- |f01mcf| |positive?| |yRange| |groebnerIdeal| |iterationVar|
- |shallowExpand| |testModulus| |internalIntegrate| |hasTopPredicate?|
- |dim| |connectTo| |bivariate?| |stoseSquareFreePart| |list?| |div|
- |zRange| |normalForm| |createPrimitivePoly| |OMUnknownSymbol?| |fmecg|
- |deleteProperty!| |modifyPoint| |df2st| |map!| |linears| |ode1|
- |possiblyInfinite?| |exquo| |getRef| |LyndonWordsList| |uniform|
- |viewport2D| |zerosOf| |integerIfCan| |reindex| |qsetelt!|
- |cycleLength| ~= |normalizedAssociate| |OMencodingUnknown|
- |primeFactor| |aCubic| |relationsIdeal| |ScanFloatIgnoreSpaces|
- |setvalue!| |size?| |entries| |#| |setButtonValue|
- |transcendentalDecompose| |dfRange| |e01bef| |s18dcf|
- |OMsupportsSymbol?| |d01gbf| |showTheFTable| |zero| ~ |outputArgs|
- |coerce| |tan2trig| |fortranComplex| |sin?| |reopen!|
- |factorPolynomial| |check| |source| |OMgetEndApp| |primlimintfrac|
- |LyndonCoordinates| |leadingBasisTerm| |construct| |removeSinhSq|
- |complementaryBasis| |monomRDE| |antiCommutator| |And| |inRadical?|
- |mergeDifference| |lepol| |leftExactQuotient| |genericRightNorm|
- |f01qef| |ellipticCylindrical| |f02abf| |/\\| |discriminant|
- |OMputEndObject| |Or| |headReduce| |acsch| |normFactors|
- |palginfieldint| |rectangularMatrix| |clipSurface|
- |listConjugateBases| |multisect| |s20adf| |sylvesterMatrix| |Not|
- |dictionary| |\\/| |showTheRoutinesTable| |OMUnknownCD?| |eq?|
- |listOfMonoms| |nand| |cSec| |constantToUnaryFunction| |tube|
- |duplicates?| |e02dcf| |augment| |s17ajf| |numberOfCycles| |target|
- |supersub| |insertTop!| |numberOfMonomials| |squareFree|
- |karatsubaDivide| |possiblyNewVariety?| |aLinear| |s18def| |infinite?|
- |closed?| |printHeader| |fixedPointExquo| |cyclicEqual?| |associates?|
- |exponent| |mathieu24| |gcdPolynomial| |interpretString|
- |coercePreimagesImages| |getMultiplicationTable| |isNot| |cyclic|
- |OMconnOutDevice| |d01apf| |indiceSubResultant| |setRow!| |endOfFile?|
- |nextColeman| |delay| |diag| |s17ahf| |mergeFactors| |eigenvalues|
- |principal?| |rightRemainder| |hasoln| |laguerreL| |second|
- |hexDigit?| |open| |setPosition| |psolve| |normalizedDivide|
- |OMgetVariable| |bombieriNorm| |PDESolve| |terms| |minGbasis| |e02gaf|
- |third| |chineseRemainder| |processTemplate| |useEisensteinCriterion|
- |uniform01| |numerators| |linearPolynomials| |transform|
- |quadraticForm| |string?| |coth2tanh| |readUInt16!| |coordinates|
- |printInfo!| |powern| |collectQuasiMonic| |laplacian| |constDsolve|
- |arbitrary| |part?| |slash| |polyRicDE| |plotPolar| |localUnquote|
- |expenseOfEvaluation| |divisorCascade| |rowEch| |dark| |reset|
- |modularFactor| |selectNonFiniteRoutines| |compBound| |bright|
- |operations| |OMbindTCP| |univariatePolynomials| |laurentIfCan|
- |c06ekf| |doubleDisc| F |iFTable| |c02aff| |OMencodingXML|
- |fprindINFO| |genericPosition| |setleaves!| |cAcosh| |shrinkable|
- |resultantEuclidean| |iisin| |truncate|
- |dimensionOfIrreducibleRepresentation| |OMReadError?| |infix| |write|
- |numericalIntegration| |inGroundField?| |inc| |deref| |eval| |nthRoot|
- |jokerMode| |acosIfCan| |mappingAst| |setsubMatrix!| |setelt| |save|
- |solveInField| |enqueue!| |nodes| |imagE| |norm| |distribute|
- |monicDecomposeIfCan| |signAround| |cCos| |linearAssociatedLog|
- |virtualDegree| |linGenPos| |reducedSystem| |isPlus| |overlap|
- |indiceSubResultantEuclidean| |mapDown!| |setProperties| |sn|
- |symFunc| |fortranDouble| |factorFraction| |copy| |localReal?|
- |maxrank| |stronglyReduce| |safeFloor| |members| |error|
- |wordInStrongGenerators| |escape| |setDifference|
- |componentUpperBound| |patternMatchTimes| |irreducible?| |sub|
- |rename| EQ |s18adf| |integer?| |quadratic?| |edf2df| |jordanAlgebra?|
- |xn| |viewDefaults| |closedCurve?| |removeSinSq| |infieldint|
- |cschIfCan| |B1solve| |exactQuotient!| |kroneckerDelta| |pdct|
- |elliptic| |degreePartition| |s19acf| |hermite| |e02daf| |iiasinh|
- |lazyResidueClass| |resultantEuclideannaif| |multiplyCoefficients|
- |light| |roughEqualIdeals?| |relativeApprox| |f04axf| |whatInfinity|
- |points| |numberOfHues| |subHeight| |makeCrit| |e02bdf| |match?|
- |lastSubResultantElseSplit| |critBonD| |OMreceive| |rationalPoint?|
- |findBinding| |autoCoerce| |double?| |imaginary| |curveColorPalette|
- |kmax| |coefficients| |fTable| |denominators| |pointPlot|
- |generalizedEigenvector| |collect| |s17dhf| |associatedEquations|
- |shade| |sorted?| |car| |setImagSteps| |nextSubsetGray| |infinityNorm|
- |expPot| |musserTrials| |perfectSquare?| |makeFloatFunction|
- |commutative?| |definingPolynomial| |OMlistCDs| |generators| |pol|
- |flexibleArray| |symbol?| |wholePart| |solveLinearlyOverQ|
- |getPickedPoints| |removeDuplicates| |printStats!| |writeInt8!|
- |deleteRoutine!| |isAnd| |quasiMonic?| |weighted| |child|
- |makeGraphImage| |myDegree| |createNormalPrimitivePoly| |FormatArabic|
- |entry| |writeBytes!| |denomRicDE| |mainVariable| |d02cjf|
- |coerceImages| |stosePrepareSubResAlgo| |extensionDegree| |slex|
- |curve| |UpTriBddDenomInv| |rk4qc| |prepareSubResAlgo| |variable?|
- |isOp| |subCase?| |cRationalPower| |d02bhf| |f02wef|
- |splitDenominator| |write!| |contract| |critpOrder| |s17dlf| |null|
- |sinIfCan| |sequence| |OMputBind| |degreeSubResultantEuclidean|
- |factor1| |RemainderList| |corrPoly| |internalInfRittWu?| |subset?|
- |subResultantGcdEuclidean| |stFuncN| |not| |algebraicDecompose|
- |hermiteH| |initTable!| |superscript| |square?| |reducedQPowers|
- |solveLinearPolynomialEquation| |decomposeFunc| |split| |extractPoint|
- |and| |repSq| |goodPoint| |postfix| |bfEntry| |surface| |categories|
- |space| |outputGeneral| |open?| |mirror| |scripted?| |or| |delete|
- |selectsecond| |localAbs| |superHeight| |s17dcf| |support| |imagI|
- |scopes| |calcRanges| |polarCoordinates| |isTimes| |aQuartic|
- |rightTraceMatrix| |d01asf| |complexEigenvectors| |latex|
- |insertionSort!| |bezoutMatrix| |lyndon?| |paren| |rroot| |cartesian|
- |createMultiplicationTable| |isList| |numerator| |elaborateFile|
- |realEigenvalues| |backOldPos| |readUInt32!|
- |semiResultantReduitEuclidean| |tubeRadiusDefault| |zeroDim?| |split!|
- |f02bbf| |setLength!| |rightRankPolynomial| |palgRDE| |read!|
- |Vectorise| |chvar| |acscIfCan| |someBasis| |cscIfCan|
- |degreeSubResultant| |semiSubResultantGcdEuclidean1| |extractProperty|
- |addMatchRestricted| |stoseLastSubResultant| |brillhartTrials|
- |randomLC| |multiple?| |lastSubResultantEuclidean| |cycleSplit!|
- |isQuotient| |chebyshevU| |dihedral| |doubleResultant| |cos2sec|
- |opeval| |normalElement| |separant| |replace| |infiniteProduct|
- |LiePolyIfCan| |setVariableOrder| |representationType| |queue|
- |setLabelValue| |ip4Address| |rootSimp| |iiacos| |pole?| |oddlambert|
- |addPoint| |LyndonWordsList1| |deriv| |dAndcExp| |cSinh|
- |roughSubIdeal?| |squareMatrix| |domainTemplate| |primes| |depth|
- |extend| |rationalPoints| |qqq| |f01ref| |squareFreePart| |generic|
- |leftFactorIfCan| |create| |enumerate| |cn| |getCode| |d02gbf|
- |OMgetString| |taylorRep| |integerBound| |copy!| |ratDsolve| |round|
- |height| |dmpToHdmp| |pmintegrate| |identitySquareMatrix|
- |trivialIdeal?| |OMputEndAtp| |delete!| |iiasech| |edf2fi| |e04ucf|
- |null?| |dec| |Ci| |rightUnits| |cyclePartition| UTS2UP |lintgcd|
- |ramifiedAtInfinity?| |OMgetBind| |palgintegrate| |insertMatch|
- |dequeue| |getButtonValue| |alphabetic| |select!| |f04asf| |f04atf|
- |isExpt| |meshPar2Var| |orbit| |log10| |remainder| |scaleRoots|
- |s17adf| |OMgetFloat| |simplifyPower| |Is| |composite| |interval|
- |permutationRepresentation| |bitand| |s21bdf| |saturate|
- |sumOfKthPowerDivisors| |isConnected?| |edf2efi| |palgint0| |e04gcf|
- |element?| |evaluate| |stiffnessAndStabilityOfODEIF| |ksec|
- |removeConstantTerm| |iisec| |operators| |c06eaf| |d01ajf|
- |modularGcdPrimitive| |factorSFBRlcUnit| |nextPrimitiveNormalPoly|
- |reducedForm| |definingInequation| |forLoop| |heapSort| |reduceLODE|
- |regime| |rightScalarTimes!| |resultantReduit| |linearMatrix|
- |seriesSolve| |d02raf| |notelem| |inspect| |OMputBVar| |OMreadStr|
- |computeBasis| |halfExtendedSubResultantGcd2| |debug| |f07aef|
- |failed| |badValues| |dot| |cAtan| |lSpaceBasis| |mkPrim| |normalise|
- |transpose| |substring?| D |palgLODE0| |orthonormalBasis| |poisson|
- |minrank| |OMgetInteger| |rotate!| |bezoutDiscriminant| |e02bef|
- |cAsin| |hdmpToDmp| |prologue| |unit?| |returns| |integral?| |charpol|
- |failed?| |suffix?| |curve?| |roman| |PollardSmallFactor|
- |primextintfrac| |monicCompleteDecompose| |OMgetApp| |sts2stst|
- |extendedIntegrate| |ReduceOrder| |henselFact| |nil| |lazyEvaluate|
- |indicialEquation| |removeCosSq| |tail| |log| |groebgen| |univariate|
- |prefix?| |iteratedInitials| |adaptive?| |sechIfCan| |leftPower|
- |basisOfLeftNucloid| |lifting| |readLineIfCan!| |init| |factorial|
- |explicitEntries?| |useEisensteinCriterion?| |clearDenominator|
- |subTriSet?| |vconcat| |macroExpand| |rotatez| |internalSubPolSet?|
- |bernoulliB| |associatedSystem| |resultantReduitEuclidean| |besselK|
- |vark| |varList| |complexNormalize| |cyclotomicFactorization|
- |torsionIfCan| |exponents| |approximate| |mathieu22| |mathieu12|
- |coefficient| |tracePowMod| |log2| |extendIfCan|
- |internalSubQuasiComponent?| |complex| |SturmHabichtCoefficients|
- |setPrologue!| |leftUnit| |isMult| |semiDiscriminantEuclidean| |shape|
- |OMgetAtp| |setClosed| |identity| |attributeData|
- |tryFunctionalDecomposition| |leadingTerm| |brillhartIrreducible?|
- |expandLog| |iisqrt3| |intersect| |innerSolve1| |print|
- |lieAdmissible?| |oddInfiniteProduct| |complexEigenvalues|
- |properties| |multiset| |adaptive3D?| |putProperty| |e02baf| |infix?|
- |lfextendedint| |resolve| |sylvesterSequence| |translate| |hexDigit|
- |multinomial| |mask| |csc2sin| |cycleEntry| |declare| |traceMatrix|
- |nextItem| |fillPascalTriangle| |seed| |karatsuba| |bits|
- |fortranCarriageReturn| |normal?| |upperCase| |subMatrix| |nonQsign|
- |fortranLinkerArgs| |sinh2csch| |fixedPoints| |compose| |addPointLast|
- |linSolve| |rewriteIdealWithHeadRemainder| |setref| |drawComplex|
- |karatsubaOnce| |screenResolution3D| |setnext!| |mindeg|
- |solveLinearPolynomialEquationByRecursion| |integralAtInfinity?|
- |viewPosDefault| |goodnessOfFit| |setMaxPoints3D| GE |getOrder|
- |binarySearchTree| |wholeRadix| |cAcsc| |ScanFloatIgnoreSpacesIfCan|
- |generalTwoFactor| |nextPrime| |mainPrimitivePart|
- |genericLeftTraceForm| |setEmpty!| GT |fortranLogical| |putColorInfo|
- |iCompose| |sequences| |s14aaf| |stoseInvertible?reg| |f04mcf|
- |radicalOfLeftTraceForm| |say| |limitedint| LE |bracket|
- |subResultantChain| |delta| |patternVariable| |roughBase?|
- |exponential1| |e04fdf| |quartic| LT |squareFreePolynomial|
- |makeYoungTableau| |primPartElseUnitCanonical!| |subscriptedVariables|
- |tanAn| |qinterval| |polar| |leftTraceMatrix| |exprex|
- |makeViewport3D| |plus| |lazyPquo| |changeNameToObjf| |row|
- |elColumn2!| |extractTop!| |makeSeries| |printCode| |resize|
- |constantKernel| |noValueMode| |symbolTableOf| |exprToUPS|
- |createIrreduciblePoly| |shift| |closedCurve| |lowerPolynomial|
- |coerceL| |curryLeft| |remove!| |htrigs| |crest| |remove| |critM|
- |d01gaf| |rightGcd| |coerceListOfPairs| |s18aff|
- |removeRedundantFactorsInContents| |alphabetic?| |pointLists|
- |binaryTree| |complexIntegrate| |radicalEigenvalues| |outputFloating|
- |radicalEigenvectors| |contains?| |times| |quadratic| |pow|
- |complexForm| |integers| |last| |commaSeparate| |over| |mainVariable?|
- |useSingleFactorBound?| |qPot| |generator| |factorSquareFree|
- |algintegrate| |mantissa| |asecIfCan| |f02bjf|
- |generalInfiniteProduct| |semiSubResultantGcdEuclidean2| |assoc|
- |reorder| |changeVar| |inrootof| |semiLastSubResultantEuclidean|
- |perspective| |innerint| |minimalPolynomial| |logical?| |predicates|
- |cyclicCopy| |s18aef| |pquo| |iiacoth| |hyperelliptic|
- |numberOfVariables| |f04mbf| BY |pToHdmp| |startTableInvSet!|
- |pseudoRemainder| |basisOfNucleus| |condition| |algDsolve| |merge!|
- |lazyPseudoDivide| |monom| |prefixRagits| |ODESolve| |decimal|
- |curryRight| |nextNormalPrimitivePoly| |times!| |presub| |cSech|
- |kovacic| |lllip| |exponential| |bipolar| |reverseLex| |c06fqf|
- |jacobiIdentity?| |scan| |complexExpand| |Ei| |listexp| |univcase|
- |readable?| |selectPolynomials| |f02fjf| |erf| |basisOfMiddleNucleus|
- |repeatUntilLoop| |idealiser| |toScale| |output| |common| |stFunc2|
- |quoByVar| |appendPoint| |subspace| |lazyPseudoRemainder|
- |setLegalFortranSourceExtensions| |mapUnivariateIfCan| |parabolic|
- |deepCopy| FG2F |simpleBounds?| |symmetricGroup| |unitVector|
- |hitherPlane| |constant| |UnVectorise| |polygon?| |s17akf| |integral|
- |constructor| |nonSingularModel| |simplifyLog| |ratpart|
- |extractIndex| |compactFraction| |dilog| |mainVariables| NOT |real?|
- |startPolynomial| |quotientByP| |leastAffineMultiple| |incr| |ef2edf|
- |OMgetAttr| |sturmSequence| |complexRoots| |sin| |function| |d01aqf|
- |nodeOf?| OR |ffactor| |froot| |hi| |pair?| |enterPointData|
- |numberOfComposites| |rationalPower| |mapUnivariate| |cos|
- |bezoutResultant| |trace2PowMod| |lazyVariations| AND |iprint|
- |rightTrim| |complex?| |OMputEndBVar| |e04naf| |trunc| |sPol| |tan|
- |ratDenom| |acschIfCan| |leftTrim| |basicSet| |cross|
- |irreducibleRepresentation| |numberOfComputedEntries| |invertibleSet|
- |tableau| |getGoodPrime| |cot| |setAttributeButtonStep| |iilog|
- |presuper| |setOfMinN| |numFunEvals3D| |returnTypeOf| |hclf|
- |cyclicEntries| |semiResultantEuclidean1| |sec| |integralRepresents|
- |bat| |complexZeros| |halfExtendedSubResultantGcd1|
- |bivariatePolynomials| |showAllElements| |maxPoints3D| |routines|
- |pastel| |csc| |symbol| |f2st| |minPoints3D| |rootPower| |lyndonIfCan|
- |logIfCan| |moebius| |lazyIntegrate| |autoReduced?| |asin|
- |expression| |denomLODE| |OMputEndError| |lazyIrreducibleFactors|
- |monomRDEsys| |tubePointsDefault| |innerEigenvectors| |direction|
- |partitions| |acos| |zeroDimPrime?| |integer| |rowEchLocal| |destruct|
- |rk4a| |setAdaptive| |simplify| |twist| |quasiMonicPolynomials|
- |numberOfPrimitivePoly| |mdeg| |atan| |lastSubResultant|
- |OMconnectTCP| |symmetricTensors| |getConstant| |baseRDE| |constant?|
- |linearDependence| |invmultisect| |symbolIfCan| |quote| |acot| |cLog|
- |moreAlgebraic?| |clearTheFTable| |constantRight| |quotedOperators|
- |ceiling| |controlPanel| |float?| |asec| |argumentListOf| |typeList| *
- |doubleRank| |raisePolynomial| |lhs| |unmakeSUP| |hasHi|
- |subResultantGcd| |genericLeftTrace| |acsc| |colorFunction|
- |removeSuperfluousCases| |lcm| |isOr| |bytes| |wronskianMatrix| |rhs|
- |inR?| |isImplies| |acotIfCan| |acothIfCan| |sinh| |lflimitedint|
- |wordsForStrongGenerators| |powmod| |linearlyDependent?| |generate|
- |topFortranOutputStack| |f02aff| |lowerBound| |dmp2rfi| |lowerCase?|
- |cosh| |append| |equiv| |antisymmetricTensors| |hash| = |green|
- |currentEnv| |oblateSpheroidal| |solveid| |tanh2trigh| |pattern|
- |coth2trigh| |tanh| |count| |imagj| |gcd| |monicModulo| |f04faf|
- |maxPoints| |incrementBy| |dequeue!| |HermiteIntegrate| |secIfCan|
- |dioSolve| |sqfrFactor| |coth| |totalLex| |false| |lp| |is?| <
- |symmetric?| |expand| |category| |fracPart| |subNodeOf?|
- |semicolonSeparate| |ptree| |nthFlag| |balancedFactorisation|
- |factorAndSplit| |rightUnit| |primaryDecomp| |flatten| |sqfree| >
- |filterWhile| |domain| |cot2tan| |airyBi| |lineColorDefault|
- |loadNativeModule| |pop!| |iibinom| |scalarTypeOf| |linear?|
- |readLine!| <= |high| |filterUntil| |factorials| |package|
- |exprHasWeightCosWXorSinWX| |cAsec| |message| |makeprod|
- |clipParametric| |sizeMultiplication| |showScalarValues| |recip|
- |sizePascalTriangle| >= |select| |digits| |normalizeAtInfinity|
- |setOrder| |realZeros| |universe| |rootBound| |chiSquare| |makeSUP|
- |plenaryPower| |pointColorDefault| |double| |iicos| |reify|
- |eigenvector| |moduloP| |parts| |bitCoef| |hue| |positiveSolve|
- |monicRightDivide| |algebraicOf| |coHeight| |att2Result| |child?|
- |typeLists| |e02aef| |mapUp!| |combineFeatureCompatibility|
- |mapExponents| |rubiksGroup| |mkAnswer| + |quasiComponent| |rational?|
- |order| |f01rdf| |subtractIfCan| |parents| |toroidal| |e02ddf| |mix|
- |partialFraction| - |constantLeft| |diff| |chiSquare1| |mkIntegral|
- |has?| |generalizedContinuumHypothesisAssumed?| |pointColor|
- |getMeasure| |outputForm| / |makeMulti| |s21bbf| |OMconnInDevice|
- |rule| |rootDirectory| |leftRankPolynomial| |KrullNumber| |composites|
- RF2UTS |makeRecord| |csch2sinh| |makeCos| |toseInvertibleSet|
- |generalizedEigenvectors| |decrease| |upperCase?| |irVar|
- |outerProduct| |indicialEquationAtInfinity| |fullPartialFraction|
- |powerSum| |doubleFloatFormat| |Beta| |finiteBound| |divide| |e01bff|
- |addBadValue| |declare!| |constantIfCan| |OMputVariable|
- |OMgetEndObject| |distdfact| |external?| |graeffe|
- |standardBasisOfCyclicSubmodule| |tanIfCan| |ord| |generic?|
- |OMgetEndBind| |localIntegralBasis| GF2FG |startStats!| |nsqfree|
- |invertible?| |discreteLog| |realRoots| |decreasePrecision|
- |doublyTransitive?| |sturmVariationsOf| |drawToScale| |power!|
- |thetaCoord| |inverse| |rules| |tab1| |physicalLength| |weierstrass|
- |rightTrace| |explogs2trigs| |modifyPointData| |cycle| |indices|
- |solveLinear| |shallowCopy| |rightRank| |reduceByQuasiMonic|
- |stoseIntegralLastSubResultant| |step| |retractable?| |initials|
- |listBranches| |rowEchelon| |endSubProgram| |unitsColorDefault|
- |rootsOf| |OMencodingBinary| |singularitiesOf| |addPoint2|
- |headRemainder| |bipolarCylindrical| |df2ef| |isPower|
- |pascalTriangle| |integralCoordinates| |addiag| |antiCommutative?|
- |graphCurves| |column| |segment| |distFact| |OMserve| |fortranInteger|
- |squareTop| |conical| |normInvertible?| |s14abf| |f02awf|
- |resetVariableOrder| |getStream| |fractionPart| |currentSubProgram|
- |quasiRegular?| |irForm| |SturmHabichtSequence| |bivariateSLPEBR|
- |identityMatrix| |padicFraction| |zeroOf| |d01anf| |resetNew| |build|
- |reverse!| |extract!| |numberOfDivisors| |expressIdealMember|
- |usingTable?| |rk4f| |power| |bag| |shiftRight| |region| |unexpand|
- |constantOperator| |reduceBasisAtInfinity| |cCoth|
- |extendedSubResultantGcd| |setClipValue| |limitedIntegrate|
- |coordinate| |character?| |key| |useSingleFactorBound|
- |binaryFunction| |iicosh| |matrixDimensions| |trailingCoefficient|
- |newReduc| |red| |npcoef| |getMultiplicationMatrix|
- |monomialIntegrate| |resultantnaif| |value| |outlineRender|
- |selectPDERoutines| |gradient| |mainContent| |filename| |nthExponent|
- |expt| |iisinh| |rotate| |repeating?| |biRank| |numberOfOperations|
- |firstDenom| |optional| |algSplitSimple| |quasiAlgebraicSet|
- |basisOfRightNucloid| |rightOne| |minimize| |sortConstraints| |c05pbf|
- |pdf2df| |formula| |parse| |rst| |satisfy?| |normalDenom| |schema|
- |birth| |knownInfBasis| |factorSquareFreePolynomial| |subscript|
- |stop| |vspace| |push!| |expextendedint| |approxNthRoot|
- |numberOfIrreduciblePoly| |imagk| |arity| |mr| |arguments|
- |expintegrate| |chebyshevT| |setStatus!| |push| |overlabel| |lighting|
- |totalDegree| |quadraticNorm| |wordInGenerators| |frobenius|
- |elementary| |cap| |style| |iisqrt2| |stiffnessAndStabilityFactor|
- |leftFactor| |compdegd| |algebraicSort| |drawCurves| |nrows| |result|
- |prem| |subNode?| |fill!| |isEquiv| |clipBoolean| |rootRadius|
- |stoseInternalLastSubResultant| |realEigenvectors| |mainMonomial|
- |tryFunctionalDecomposition?| |ncols| |euclideanGroebner|
- |perfectNthPower?| |limit| |magnitude| |antiAssociative?|
- |rightCharacteristicPolynomial| |whitePoint| |completeSmith|
- |numberOfFractionalTerms| |primitive?| |radicalRoots|
- |algebraicCoefficients?| |characteristicSet| |OMputEndAttr| |OMwrite|
- |tower| |buildSyntax| |e02bbf| |mapGen| |argscript|
- |oneDimensionalArray| |lazyPrem| |cCosh|
- |rewriteIdealWithQuasiMonicGenerators| |irreducibleFactor|
- |numFunEvals| |Frobenius| |mulmod| |conditionsForIdempotents| |euler|
- |sncndn| |firstSubsetGray| |lllp| |trigs| |eisensteinIrreducible?|
- |curry| |createPrimitiveNormalPoly| |taylor| |iitanh| |comment| |cCot|
- |disjunction| |iiasec| |beauzamyBound| |modularGcd| |index?|
- |nthFractionalTerm| |laguerre| |mesh?| |laurent|
- |leftCharacteristicPolynomial| |f02aaf| |selectOptimizationRoutines|
- |f02adf| |Gamma| |createMultiplicationMatrix| |rowEchelonLocal| |frst|
- |orbits| |shiftRoots| |puiseux| |option?| |palglimint0| |pushdown|
- |generalSqFr| |palgRDE0| |matrix| |index| |gramschmidt|
- |LazardQuotient| |adaptive| |primPartElseUnitCanonical|
- |showIntensityFunctions| |innerSolve| |s13acf| |argumentList!|
- |bandedHessian| |minset| |laplace| |d01fcf| |selectfirst| |computeInt|
- |voidMode| |trueEqual| |inv| |lambda| |cfirst|
- |integralDerivationMatrix| |bitLength| |intermediateResultsIF|
- |tensorProduct| |zoom| |call| |LyndonBasis| |printingInfo?| |ground?|
- |readUInt8!| |Lazard2| |startTable!| |halfExtendedResultant2|
- |readInt32!| |c06ebf| |linearAssociatedExp| |bumptab1| |pair|
- |sdf2lst| |ground| |setelt!| |f01maf| |pushucoef| |rk4| |nthRootIfCan|
- |replaceKthElement| |bat1| |integralBasisAtInfinity| |bounds|
- |singular?| |f02ajf| |directory| |rootPoly| |UP2ifCan| |setCondition!|
- |rationalApproximation| |ode2| |leadingMonomial| |merge| |cPower|
- |gcdprim| |OMencodingSGML| |e01daf| |f01bsf| |sum|
- |functionIsFracPolynomial?| |exponentialOrder| |taylorQuoByVar|
- |reverse| |lazy?| |topPredicate| |leadingCoefficient| |normal01|
- |gcdcofact| |minIndex| |associator| |withPredicates| |rename!|
- |extendedint| |c02agf| |ran| |countRealRoots| |mkcomm|
- |primitiveMonomials| |makeFR| |BasicMethod| |makeUnit|
- |regularRepresentation| |airyAi| |retract| |dimension| |f07fdf|
- |sech2cosh| |complexLimit| |optional?| |setUnion| |reductum|
- |branchPoint?| |submod| |ScanRoman| |OMgetEndError| |internalAugment|
- |mathieu23| |mainForm| |enterInCache| |selectAndPolynomials|
- |extractSplittingLeaf| |leftUnits| |generalizedInverse| |permanent|
- |rischDEsys| |RittWuCompare| |messagePrint| |completeEchelonBasis|
- |rank| |closed| |evenInfiniteProduct| |e02bcf| |subresultantVector|
- |setProperty| |mapMatrixIfCan| |d03edf| |strongGenerators| |iisech|
- |recur| |packageCall| |denominator| |conjug| |factorByRecursion|
- |iifact| |e04dgf| |patternMatch| |unprotectedRemoveRedundantFactors|
- |lambert| |removeRoughlyRedundantFactorsInPol| |nil| |infinite|
+ |Record| |Union| |groebner?| |iisec| |irDef| |distdfact|
+ |closedCurve?| |OMgetObject| |Ei| |exactQuotient| |empty|
+ |optAttributes| |operators| |external?| |lhs| |primlimitedint|
+ |removeSinSq| |listexp| |leftQuotient| |UP2ifCan| |whileLoop|
+ |setFieldInfo| |c06eaf| |graeffe| |lcm| |rhs| |infieldint|
+ |initiallyReduced?| |univcase| |back| |setCondition!|
+ |leftMinimalPolynomial| |d01ajf| |maxdeg| |primitiveElement|
+ |standardBasisOfCyclicSubmodule| |generate| |cschIfCan| |branchIfCan|
+ |readable?| |eyeDistance| |rationalApproximation| |prinshINFO|
+ |modularGcdPrimitive| |youngGroup| |removeCoshSq| |append| |tanIfCan|
+ |currentEnv| |B1solve| |triangSolve| |btwFact| |selectPolynomials|
+ |pattern| |ode2| |discriminantEuclidean| |var2Steps|
+ |factorSFBRlcUnit| |ord| |gcd| |count| |incrementBy|
+ |associatorDependence| |exactQuotient!| |f02fjf| |deepestInitial|
+ |merge| |integralMatrix| |nextPrimitiveNormalPoly| |alternatingGroup|
+ |factorList| |generic?| |false| |lp| |basisOfMiddleNucleus| |expand|
+ |kroneckerDelta| |eulerPhi| |category| |bandedJacobian| |cPower|
+ |ptree| |fixPredicate| |iipow| |reducedForm| |OMgetEndBind|
+ |rightExtendedGcd| |flatten| |iidprod| |filterWhile| |domain| |pdct|
+ |repeatUntilLoop| |ScanArabic| |gcdprim| |An|
+ |semiResultantEuclidean2| |definingInequation| |localIntegralBasis|
+ |quasiRegular| |package| |filterUntil| |elliptic| |OMclose|
+ |idealiser| |subResultantsChain| |OMencodingSGML| |message|
+ |semiDegreeSubResultantEuclidean| |forLoop| |derivationCoordinates|
+ |position!| GF2FG |select| |degreePartition| |changeThreshhold|
+ |toScale| |removeIrreducibleRedundantFactors| |e01daf| |dualSignature|
+ |OMgetEndAttr| |heapSort| |commutator| |startStats!| |atanIfCan|
+ |s19acf| |double| |nullity| |setleft!| |stFunc2| |f01bsf| |parts|
+ |iiacsch| |elem?| |cAsinh| |reduceLODE| |nsqfree| |areEquivalent?|
+ |dimensionsOf| |hermite| |ref| |quoByVar| |functionIsFracPolynomial?|
+ |particularSolution| |tubePlot| |regime| |invertible?| |cyclotomic|
+ |e02daf| |graphs| |fortranDoubleComplex| |appendPoint|
+ |exponentialOrder| |cExp| |OMmakeConn| |gethi| |rightScalarTimes!|
+ |discreteLog| |ode| |weight| |iiasinh| |upDateBranches| |subspace|
+ |taylorQuoByVar| |ddFact| |exprHasLogarithmicWeights|
+ |diophantineSystem| |resultantReduit| |cdr| |subst| |realRoots|
+ |setPredicates| |lazyResidueClass| |systemSizeIF|
+ |lazyPseudoRemainder| |lazy?| |rule| |getZechTable| |linearMatrix|
+ |OMputFloat| |decreasePrecision| |viewpoint| |makeRecord|
+ |completeHensel| |resultantEuclideannaif|
+ |setLegalFortranSourceExtensions| |degree| |topPredicate| |mapExpon|
+ |seriesSolve| |largest| |doublyTransitive?| |d02kef| |outerProduct|
+ |monicDivide| |multiplyCoefficients| |principalAncestors|
+ |mapUnivariateIfCan| |normal01| |LazardQuotient2|
+ |solveLinearPolynomialEquationByFractions| |d02raf|
+ |sturmVariationsOf| |univariatePolynomialsGcds| |rightAlternative?|
+ |light| |declare!| |parabolic| |testDim| |gcdcofact| |schwerpunkt|
+ |notelem| |sinhcosh| |drawToScale| |perfectSqrt| |rank|
+ |setMinPoints3D| |roughEqualIdeals?| |numberOfFactors| |deepCopy|
+ |minIndex| |linearAssociatedOrder| |inspect| |mainDefiningPolynomial|
+ |power!| |legendre| |pdf2ef| |relativeApprox| FG2F |explicitlyFinite?|
+ |associator| |genericRightMinimalPolynomial| |thetaCoord| |OMputBVar|
+ |bumprow| |objects| |hconcat| |rules| |f02axf| |f04axf|
+ |simpleBounds?| |fractRadix| |withPredicates| |trigs2explogs|
+ |bumptab| |base| |OMreadStr| |inverse| |hasPredicate?| |nor|
+ |whatInfinity| |symmetricGroup| |head| |rename!| |anticoord|
+ |computeBasis| |firstUncouplingMatrix| |tab1| |step| |headAst|
+ |points| |unitVector| |stFunc1| |extendedint| |e04ycf| |linkToFortran|
+ |halfExtendedSubResultantGcd2| |physicalLength| |numberOfHues|
+ |iiacsc| |hitherPlane| |viewThetaDefault| |c02agf|
+ |reciprocalPolynomial| |f07aef| |sample| |weierstrass| |subHeight|
+ |setScreenResolution| |segment| |factors| |UnVectorise| |ran| |pack!|
+ |leftZero| |badValues| |rightTrace| |lists| |makeCrit| |d02bbf|
+ |polygon?| |parametersOf| |countRealRoots| |realElementary| |rombergo|
+ |dot| |explogs2trigs| |e02bdf| |floor|
+ |createLowComplexityNormalBasis| |s17akf| |mkcomm| |atoms|
+ |leadingSupport| |cAtan| |modifyPointData| |asinhIfCan|
+ |lastSubResultantElseSplit| |integral| |asinIfCan| |makeFR|
+ |reducedDiscriminant| |lSpaceBasis| |c05nbf| |cycle| |critBonD|
+ |symmetricProduct| |nonSingularModel| |stronglyReduced?| |BasicMethod|
+ |symmetricSquare| |infieldIntegrate| |mkPrim| |indices| |OMreceive|
+ |cothIfCan| |s19aaf| |simplifyLog| |makeUnit| |key| |outputBinaryFile|
+ |normalise| |univariatePolynomial| |solveLinear| |completeEval|
+ |rationalPoint?| |ratpart| |removeRedundantFactors|
+ |regularRepresentation| |semiResultantEuclideannaif| |OMgetType|
+ |transpose| |value| |shallowCopy| |genericRightDiscriminant|
+ |findBinding| |rotatex| |extractIndex| |airyAi| |filename| |cup|
+ |palgLODE0| |minimumExponent| |rightRank| |previous| |double?|
+ |rdregime| |f02xef| |compactFraction| |dimension| |leftLcm|
+ |setScreenResolution3D| |orthonormalBasis| |reduceByQuasiMonic|
+ |imaginary| |genericLeftMinimalPolynomial| |mainVariables| |children|
+ |f07fdf| |parse| |torsion?| |bfKeys| |poisson|
+ |stoseIntegralLastSubResultant| |curveColorPalette| |primextendedint|
+ |flagFactor| |real?| |datalist| |sech2cosh| |cyclotomicDecomposition|
+ |divisor| |minrank| |stop| |retractable?| |startPolynomial|
+ |unitCanonical| |kmax| |nextSublist| |mr| |arguments| |complexLimit|
+ |mindegTerm| |OMgetInteger| |midpoint| |initials| |bigEndian|
+ |coefficients| |f02agf| |quotientByP| |optional?| |toseSquareFreePart|
+ |rotate!| |showTheSymbolTable| |branchPointAtInfinity?| |listBranches|
+ |leadingExponent| |fTable| |leastAffineMultiple| |viewport3D|
+ |setUnion| |precision| |inconsistent?| |result| |bezoutDiscriminant|
+ |groebner| |removeDuplicates!| |rowEchelon| |denominators|
+ |bubbleSort!| |ef2edf| |addmod| |branchPoint?| |drawStyle| |e02bef|
+ |subQuasiComponent?| |endSubProgram| |commutativeEquality| |pointPlot|
+ |OMgetAttr| |getExplanations| |submod| |cAsin| |eigenMatrix|
+ |unitsColorDefault| |tower| |generalizedEigenvector| |c06gsf|
+ |debug3D| |sturmSequence| |ScanRoman| |totalGroebner| |f07adf|
+ |hdmpToDmp| |rootsOf| |prindINFO| |collect| |complexRoots|
+ |preprocess| |OMgetEndError| |cotIfCan| |distance| |prologue|
+ |OMencodingBinary| |taylor| |comment| |prinb| |s17dhf| |basis|
+ |d01aqf| |doubleComplex?| |internalAugment| |singularAtInfinity?|
+ |unit?| |getOperands| |singularitiesOf| |interpret| |laurent|
+ |rischDE| |nodeOf?| |capacity| |mathieu23| |readIfCan!| |returns|
+ |mappingMode| |addPoint2| |puiseux| |insertBottom!| |compBound|
+ |ffactor| |fortranCharacter| |mainForm| |matrix| |prolateSpheroidal|
+ |index| |integral?| |gcdPrimitive| |headRemainder|
+ |nextIrreduciblePoly| |OMbindTCP| |froot| |prevPrime| |enterInCache|
+ |numericalOptimization| |basisOfLeftNucleus| |charpol|
+ |bipolarCylindrical| |zeroSquareMatrix| |inv| |lambda|
+ |univariatePolynomials| |pair?| |hostByteOrder| |selectAndPolynomials|
+ |factorsOfCyclicGroupSize| |df2ef| |ground?| |c05adf| |polygon|
+ |laurentIfCan| |enterPointData| |showClipRegion|
+ |extractSplittingLeaf| |pair| |zag| |tubeRadius| |rationalPoints|
+ |isPower| |ground| |complexElementary| |putProperties| |c06ekf|
+ |createNormalPoly| |numberOfComposites| |leftUnits|
+ |variationOfParameters| |f07fef| |qqq| |pascalTriangle|
+ |leadingMonomial| |multiEuclidean| |doubleDisc| |xCoord|
+ |rationalPower| |generalizedInverse| |f01ref| |sum| |mightHaveRoots|
+ |normalize| |box| |integralCoordinates| |reverse| |leadingCoefficient|
+ |splitConstant| |iFTable| |any| |permanent| |directory| |c06frf|
+ |evaluateInverse| |squareFreePart| |addiag| |primitiveMonomials|
+ |totalfract| |c02aff| |mat| |pointLists| |rischDEsys| |retract|
+ |normalized?| |generic| |matrixConcat3D| |antiCommutative?| |reductum|
+ |rootNormalize| |OMencodingXML| |binaryTree| |viewDeltaYDefault|
+ |SturmHabicht| |RittWuCompare| |host| |quotient| |leftFactorIfCan|
+ |mainExpression| |graphCurves| |fprindINFO| |setTex!| |getIdentifier|
+ |complexIntegrate| |node?| |messagePrint| |rotatey| |primintfldpoly|
+ |iiabs| |create| |genericPosition| |dmpToP| |droot|
+ |radicalEigenvalues| |completeEchelonBasis| |pureLex| |conjunction|
+ |enumerate| |complementaryBasis| |positiveSolve| |setleaves!|
+ |semiIndiceSubResultantEuclidean| |outputFloating| |quatern| |closed|
+ |removeRoughlyRedundantFactorsInPols| |getCode| |setTopPredicate|
+ |monicRightDivide| |monomRDE| |alphanumeric?| |cAcosh|
+ |radicalEigenvectors| |unrankImproperPartitions1|
+ |evenInfiniteProduct| |charClass| |d02gbf| |antiCommutator|
+ |nullSpace| |algebraicOf| |set| |shrinkable| |cSin| |contains?|
+ |connect| |applyRules| |nthFactor| |OMgetString| |inRadical?|
+ |coHeight| |lieAlgebra?| |resultantEuclidean| |FormatRoman|
+ |quadratic| |createMultiplicationMatrix| |taylorIfCan| |listOfLists|
+ |taylorRep| |att2Result| |mergeDifference| |iisin| |figureUnits| |pow|
+ |definingEquations| |rowEchelonLocal| |extension| |integerBound|
+ |environment| |lepol| |child?| |byteBuffer| |truncate| |coshIfCan|
+ |complexForm| |frst| |leastPower| |copy!| |stoseInvertibleSetreg|
+ |leftExactQuotient| |typeLists| |dimensionOfIrreducibleRepresentation|
+ |seriesToOutputForm| |integers| |solve| |orbits| |screenResolution|
+ |neglist| |ratDsolve| |genericRightNorm| |e02aef| |inHallBasis?|
+ |OMReadError?| |errorInfo| |commaSeparate| |signature| |shiftRoots|
+ |homogeneous?| |radicalEigenvector| |round| |mapUp!| |f01qef|
+ |ramified?| |infix| |monomialIntPoly| |over| |option?| |typeForm|
+ |setlast!| |ideal| |dmpToHdmp| |ellipticCylindrical|
+ |combineFeatureCompatibility| |search| |expr| |numericalIntegration|
+ |tab| |mainVariable?| |getOperator| |palglimint0| |root?|
+ |pmintegrate| |squareFreePrim| |mapExponents| |f02abf| |alternating|
+ |inGroundField?| |derivative| |useSingleFactorBound?| |pushdown|
+ |spherical| |identitySquareMatrix| |getMatch| |outputList|
+ |rubiksGroup| |discriminant| |top!| |deref| |qPot| |d01amf|
+ |generalSqFr| |inverseIntegralMatrix| |mkAnswer| |ListOfTerms|
+ |trivialIdeal?| |OMputEndObject| |show| |moduleSum| |nthRoot| |f04jgf|
+ |factorSquareFree| |palgRDE0| |leftRegularRepresentation| |cTanh|
+ |OMputEndAtp| |length| |headReduce| |quasiComponent| |variable|
+ |jokerMode| |expandTrigProducts| |algintegrate| |product|
+ |gramschmidt| |delete!| |rootOfIrreduciblePoly| |omError|
+ |normFactors| |scripts| |rational?| |trace| |arrayStack| |iterators|
+ |sayLength| |acosIfCan| |basisOfRightAnnihilator| |asecIfCan|
+ |LazardQuotient| |compiledFunction| |redpps| |iiasech| |outputFixed|
+ |palginfieldint| |order| |zeroMatrix| |mappingAst| |c06fpf| |janko2|
+ |systemCommand| |f02bjf| |adaptive| |char| |edf2fi| |f04adf|
+ |completeHermite| |checkPrecision| |incrementKthElement| |f01rdf|
+ |rectangularMatrix| |swap| |setsubMatrix!| |rightQuotient|
+ |generalInfiniteProduct| |primPartElseUnitCanonical| |idealiserMatrix|
+ |callForm?| |e04ucf| |subtractIfCan| |clipSurface| |mainKernel|
+ |solveInField| |mathieu11| |semiSubResultantGcdEuclidean2|
+ |showIntensityFunctions| |d03eef| |getProperties| |null?| |toroidal|
+ |listConjugateBases| |iidsum| |reorder| |enqueue!| |normal| |mesh|
+ |innerSolve| |iroot| |Ci| |getSyntaxFormsFromFile| |e02ddf|
+ |multisect| |comparison| |absolutelyIrreducible?| |nodes| |cond|
+ |changeVar| |s13acf| |concat| |OMputApp| |rightUnits| |reseed|
+ |s20adf| |mix| |elseBranch| |imagE| |inrootof| |showTheIFTable|
+ |argumentList!| |hex| |getDatabase| |rightLcm| |cyclePartition|
+ |sylvesterMatrix| |partialFraction| |LiePoly| |csch| |norm|
+ |semiLastSubResultantEuclidean| |axes| |bandedHessian|
+ |linearlyDependentOverZ?| |dictionary| |putGraph| |jacobi| UTS2UP
+ |constantLeft| |float| |distribute| |asinh| |divideIfCan|
+ |updateStatus!| |perspective| |minset| |trapezoidal| |elaboration|
+ |lintgcd| |diff| |showTheRoutinesTable| |acosh| |certainlySubVariety?|
+ |monicDecomposeIfCan| |innerint| |rationalFunction| |laplace| |OMsend|
+ |lyndon| |ramifiedAtInfinity?| |meshFun2Var| |OMUnknownCD?|
+ |chiSquare1| |signAround| |arg1| |atanh| |viewSizeDefault|
+ |viewWriteAvailable| |minimalPolynomial| |complexNumericIfCan|
+ |d01fcf| |reduced?| |genus| |changeWeightLevel| |op| |OMgetBind| |eq?|
+ |mkIntegral| |weakBiRank| |leftDiscriminant| |cCos| |arg2| |acoth|
+ |logical?| |hdmpToP| |selectfirst| |invmod| |HenselLift|
+ |palgintegrate| |has?| |listOfMonoms| |linearAssociatedLog|
+ |safeCeiling| |asech| |e02ajf| |predicates| |computeInt| |curveColor|
+ |numer| |charthRoot| |genericRightTraceForm| |insertMatch| |nand|
+ |generalizedContinuumHypothesisAssumed?| |virtualDegree| |d01akf|
+ |showArrayValues| |conditions| |setfirst!| |variables| |cyclicCopy|
+ |voidMode| |minPol| |denom| |balancedBinaryTree| |dequeue| |cAsech|
+ |pointColor| |cSec| |linGenPos| |multiple| |OMreadFile| |llprop|
+ |match| |options| |s18aef| |triangularSystems| |trueEqual| |nlde|
+ |getButtonValue| |f04arf| |constantToUnaryFunction| |getMeasure|
+ |applyQuote| |reducedSystem| |singRicDE| |f01rcf| |pquo| |cfirst| |pi|
+ |anfactor| |tree| |alphabetic| |algebraicVariables| |outputForm|
+ |tube| |isPlus| |signatureAst| |weights| |iiacoth|
+ |integralDerivationMatrix| |infinity| |sparsityIF| |powers| |select!|
+ |union| |duplicates?| |makeMulti| |overlap| |odd?| |string|
+ |hyperelliptic| |physicalLength!| |bitLength| |se2rfi| |f04asf|
+ |changeBase| |e02dcf| |s21bbf| |ruleset| |indiceSubResultantEuclidean|
+ |stopTableInvSet!| |setColumn!| |numberOfVariables|
+ |intermediateResultsIF| |rdHack1| |f04atf| |lowerCase|
+ |OMconnInDevice| |augment| |mapDown!| |digit?| |increase| |f04mbf|
+ |tensorProduct| |kernel| |e04jaf| |isExpt| |noKaratsuba| |s17ajf|
+ |rootDirectory| |setProperties| |returnType!| |yellow| |pToHdmp|
+ |zoom| |list| |complexNumeric| |mapSolve| |inputBinaryFile|
+ |meshPar2Var| |leftRankPolynomial| |numberOfCycles| |cAcos| |suchThat|
+ |changeMeasure| |symFunc| |abelianGroup| |startTableInvSet!| |call|
+ |draw| |formula| |showRegion| |symmetricPower| |orbit| |supersub|
+ |KrullNumber| |minPoly| |fortranDouble| |axesColorDefault| |low|
+ |pseudoRemainder| |LyndonBasis| |ridHack1| |irCtor| |remainder|
+ |insertTop!| |composites| |qroot| |factorFraction| |basisOfNucleus|
+ |lfextlimint| |printingInfo?| |addMatch| |cycleRagits| |scaleRoots|
+ |exQuo| |numberOfMonomials| RF2UTS |setRealSteps| |localReal?|
+ |algDsolve| |blankSeparate| |readUInt8!| |concat!| |e01baf| |s17adf|
+ |csch2sinh| |squareFree| |OMgetBVar| |maxrank| |permutation| |merge!|
+ |Lazard2| |makeObject| |nrows| |padecf| |OMgetFloat| |midpoints|
+ |makeCos| |karatsubaDivide| |represents| |stronglyReduce| |fintegrate|
+ |lazyPseudoDivide| |center| |startTable!| |ncols| |coef| |expandPower|
+ |modTree| |simplifyPower| |toseInvertibleSet| |possiblyNewVariety?|
+ |stack| |safeFloor| |contours| |c06ecf| |prefixRagits|
+ |halfExtendedResultant2| |label| |Is| |cycleTail|
+ |generalizedEigenvectors| |aLinear| |members| |pseudoQuotient|
+ |ODESolve| |selectODEIVPRoutines| |readInt32!| |lowerCase!| |name|
+ |factorOfDegree| |composite| |decrease| |s18def| |mapCoef|
+ |wordInStrongGenerators| |skewSFunction| |decimal| |c06ebf|
+ |fortranLiteralLine| |interval| |body| |OMParseError?| ** |upperCase?|
+ |infinite?| |escape| |scalarMatrix| |curryRight| |intensity|
+ |linearAssociatedExp| |specialTrigs| |modulus|
+ |permutationRepresentation| |irVar| |closed?|
+ |nextNormalPrimitivePoly| |clikeUniv| |bumptab1| |ptFunc| |s21bdf|
+ |companionBlocks| |indicialEquationAtInfinity| |printHeader|
+ |leadingCoefficientRicDE| |isNot| |df2mf| |times!| |sdf2lst|
+ |paraboloidal| |cardinality| |saturate| |fullPartialFraction|
+ |fixedPointExquo| |cyclic| |gbasis| |OMputError| |presub| |setelt!|
+ |bernoulli| |pointData| |sumOfKthPowerDivisors| |characteristic|
+ |powerSum| |cyclicEqual?| |OMconnOutDevice| |dual| |point| |cSech|
+ |conjugates| |f01maf| |ratPoly| |safetyMargin| |associates?|
+ |doubleFloatFormat| |d01apf| |integralBasis| |kovacic|
+ |halfExtendedResultant1| |option| |pushucoef| |nary?| |ldf2lst|
+ |realEigenvalues| |exponent| |Beta| SEGMENT |prime|
+ |indiceSubResultant| |pointColorPalette| |lllip| |rk4| |backOldPos|
+ |sup| |subPolSet?| |port| |finiteBound| |mathieu24| |setRow!|
+ |resetBadValues| |series| |OMsetEncoding| |exponential| |nthRootIfCan|
+ |inputOutputBinaryFile| |critT| |readUInt32!| |gcdPolynomial| |divide|
+ |fibonacci| |endOfFile?| |replaceKthElement| |logpart| |s17dgf|
+ |semiResultantReduitEuclidean| |t| |e01bff| |interpretString|
+ |roughBasicSet| |nextColeman| |hspace| |mainPrimitivePart| |bat1|
+ |entry?| |OMgetEndBVar| |tubeRadiusDefault| |addBadValue|
+ |coercePreimagesImages| |separateDegrees| |delay|
+ |genericLeftTraceForm| |userOrdered?| |integralBasisAtInfinity|
+ |duplicates| |zeroDim?| |removeRedundantFactorsInPols|
+ |getMultiplicationTable| |constantIfCan| |inverseLaplace| |diag|
+ |currentScope| |countRealRootsMultiple| |setEmpty!| |min| |bounds|
+ |central?| |totolex| |split!| |radPoly| |dn| |s17ahf| |fortranLogical|
+ |more?| |singular?| |categoryFrame| |f02bbf| |shiftLeft|
+ |iterationVar| |coth2trigh| |mergeFactors| |stoseInvertible?sqfreg|
+ |putColorInfo| |primintegrate| |unknown| |f02ajf| |apply|
+ |pushNewContour| |setLength!| |copyInto!| |shallowExpand| |imagj|
+ |eigenvalues| |hessian| |prinpolINFO| |iCompose| |rootPoly|
+ |removeZeroes| |first| |rightRankPolynomial| |decompose| |testModulus|
+ |monicModulo| |readBytes!| |principal?| |f04maf| |sequences| |mapdiv|
+ |unitNormal| |rest| |exp1| |palgRDE| |internalIntegrate| |f04faf|
+ |rootRadius| |restorePrecision| |rightRemainder| |s14aaf| |compound?|
+ |case| |imag| |hostPlatform| |read!| |simplifyExp| |hasTopPredicate?|
+ |maxPoints| |monicLeftDivide| |hasoln| |s17aff| |stoseInvertible?reg|
+ |Zero| |stoseInternalLastSubResultant| |comp| |fractionFreeGauss!|
+ |Vectorise| |connectTo| |keys| |shufflein| |dequeue!| |true| |f04mcf|
+ |void| |hash| |laguerreL| |nthr| |realEigenvectors| |clearTable!|
+ |One| |top| |intChoose| |chvar| |diagonalProduct| |HermiteIntegrate|
+ |bivariate?| |upperBound| |hexDigit?| |numberOfImproperPartitions|
+ |radicalOfLeftTraceForm| |summation| |continue| |mainMonomial|
+ |e02akf| |f02akf| |acscIfCan| |secIfCan| |stoseSquareFreePart|
+ |unary?| |setPosition| |plusInfinity| |sort| |df2fi| |limitedint|
+ |tryFunctionalDecomposition?| |difference| |someBasis| |pushup|
+ |dioSolve| |list?| |rightDiscriminant| |minusInfinity| |psolve|
+ |bracket| |listRepresentation| |euclideanGroebner| |sqfrFactor|
+ |makeEq| |leftScalarTimes!| |cscIfCan| |continuedFraction|
+ |normalForm| |getlo| |normalizedDivide| |subResultantChain| |tanNa|
+ |perfectNthPower?| |id| |createPrimitivePoly| |fixedDivisor|
+ |degreeSubResultant| |graphStates| |factorGroebnerBasis| |totalLex|
+ |OMgetVariable| |writeLine!| |leftDivide| |patternVariable| |limit|
+ |elt| |lo| |basisOfCentroid| |quoted?| |semiSubResultantGcdEuclidean1|
+ |OMUnknownSymbol?| |is?| |bombieriNorm| |redPo| |random|
+ |computeCycleLength| |roughBase?| |magnitude| |next| |f01qcf|
+ |expintfldpoly| |extractProperty| |symmetric?| |fmecg| |PDESolve|
+ |elements| |s17aef| |exponential1| |antiAssociative?| |setEpilogue!|
+ |factorsOfDegree| |addMatchRestricted| |deleteProperty!| |fracPart|
+ |genericLeftNorm| |terms| |e04fdf| |po|
+ |rightCharacteristicPolynomial| |selectMultiDimensionalRoutines|
+ |stoseLastSubResultant| |graphState| |subNodeOf?| |modifyPoint|
+ |minGbasis| |palgint| |removeRoughlyRedundantFactorsInContents|
+ |quartic| |whitePoint| |rightFactorCandidate| |brillhartTrials|
+ |radicalSimplify| |df2st| |semicolonSeparate| |lfunc| |e02gaf|
+ |squareFreePolynomial| |lazyPremWithDefault| |completeSmith|
+ |parabolicCylindrical| |kind| |randomLC| |mainMonomials| |nthFlag|
+ |linears| |chineseRemainder| |univariate?| |makeYoungTableau|
+ |laurentRep| |numberOfFractionalTerms| |insert| |rational|
+ |symmetricRemainder| |multiple?| |balancedFactorisation| |ode1|
+ |processTemplate| |maxIndex| |cylindrical|
+ |primPartElseUnitCanonical!| |primitive?| |leader| |numericIfCan|
+ |lastSubResultantEuclidean| |setStatus| |factorAndSplit|
+ |possiblyInfinite?| |useEisensteinCriterion| |lifting1| |consnewpol|
+ |subscriptedVariables| |createLowComplexityTable| |radicalRoots|
+ |useNagFunctions| |cAtanh| |unparse| |cycleSplit!| |rightUnit|
+ |getRef| |separateFactors| |uniform01| |abs| |tanAn|
+ |algebraicCoefficients?| |s13adf| |chebyshevU| |cot2trig| UP2UTS
+ |primaryDecomp| |LyndonWordsList| |numerators| |invertIfCan|
+ |qinterval| |divisors| |characteristicSet| |imports| |dihedral|
+ |createRandomElement| |sqfree| |uniform| |boundOfCauchy| |ParCondList|
+ |linearPolynomials| |polar| |s19abf| |OMputEndAttr| |randomR|
+ |doubleResultant| |OMputObject| |cot2tan| |viewport2D|
+ |listYoungTableaus| |transform| |cyclicParents| |leftTraceMatrix|
+ |trim| |OMwrite| |ldf2vmf| |swap!| |cos2sec| |zerosOf| |airyBi|
+ |nthCoef| |createPrimitiveElement| |quadraticForm| |exprex|
+ |symbolTable| |buildSyntax| |generateIrredPoly| |opeval|
+ |var1StepsDefault| |integerIfCan| |lineColorDefault| |simpson|
+ |string?| |rootKerSimp| |makeViewport3D| |e02bbf|
+ |rangePascalTriangle| |normalElement| |cAcot| |reindex| |pop!|
+ |pushFortranOutputStack| |e02adf| |coth2tanh| |lazyPquo| |lprop|
+ |mapGen| |OMopenFile| |separant| |mpsode| |iibinom| |cycleLength|
+ |changeNameToObjf| |readUInt16!| |baseRDEsys| |popFortranOutputStack|
+ |makeop| |argscript| |width| |geometric| |pr2dmp| |replace|
+ |scalarTypeOf| |normalizedAssociate| |super|
+ |basisOfCommutingElements| |coordinates| |row| |outputAsFortran|
+ |multiplyExponents| |oneDimensionalArray| |splitLinear|
+ |cyclicSubmodule| |infiniteProduct| |OMencodingUnknown| |linear?| Y
+ |printInfo!| |evenlambert| |functionIsOscillatory| |elColumn2!|
+ |lazyPrem| |fi2df| |unaryFunction| |LiePolyIfCan| |primeFactor|
+ |readLine!| |polyred| |powern| |extractTop!| |aspFilename| |cCosh|
+ |complexSolve| |primitivePart| |setVariableOrder| |high| |aCubic|
+ |palglimint| |collectQuasiMonic| |makeSeries| |prod|
+ |rewriteIdealWithQuasiMonicGenerators| |in?| |representationType|
+ |initializeGroupForWordProblem| |factorials| |relationsIdeal|
+ |laplacian| |subSet| |printCode| |generalPosition| |irreducibleFactor|
+ |clearCache| |extendedResultant| |triangulate| |queue| |table| |lift|
+ |exprHasWeightCosWXorSinWX| |ScanFloatIgnoreSpaces| |constDsolve|
+ |sec2cos| |updatF| |resize| |numFunEvals| |countable?| |setLabelValue|
+ |epilogue| |new| |reduce| |cAsec| |setvalue!| |obj| |arbitrary|
+ |monicRightFactorIfCan| |hypergeometric0F1| |constantKernel|
+ |Frobenius| |optional| |realSolve| |ip4Address| |splitNodeOf!| |size?|
+ |makeprod| |critMonD1| |zeroDimensional?| |part?| |noValueMode|
+ |cache| |mulmod| |rootSimp| |algebraic?| |clipParametric|
+ |exteriorDifferential| |entries| |li| |slash| |LagrangeInterpolation|
+ |directSum| |symbolTableOf| |conditionsForIdempotents|
+ |findConstructor| |iiacos| |optpair| |setButtonValue|
+ |sizeMultiplication| |f04qaf| |polyRicDE| |exprToUPS| |writeUInt8!|
+ |euler| |outputMeasure| |coord| |pole?| |showScalarValues|
+ |transcendentalDecompose| |factor| |plotPolar| |createThreeSpace|
+ |createIrreduciblePoly| |deepestTail| |sncndn| |sh| |oddlambert|
+ |medialSet| |dfRange| |recip| |localUnquote| |finiteBasis|
+ |tanintegrate| |qelt| |closedCurve| |firstSubsetGray| |bothWays|
+ |atanhIfCan| |addPoint| |sizePascalTriangle| |e01bef| |qsetelt|
+ |expenseOfEvaluation| |lowerPolynomial| |OMgetEndAtp| |radix| |vector|
+ |lllp| |choosemon| |LyndonWordsList1| |tanSum| |s18dcf| |digits|
+ |divisorCascade| |fortranReal| |coerceL| |xRange| |stopTable!|
+ |differentiate| |trigs| |OMcloseConn| |deriv| |commonDenominator|
+ |normalizeAtInfinity| |OMsupportsSymbol?| |predicate| |fullDisplay|
+ |curryLeft| |rowEch| |pushdterm| |yRange| |eisensteinIrreducible?|
+ |dAndcExp| |hasSolution?| |d01gbf| |setOrder| |f01qdf| |dark| |zRange|
+ |digamma| |remove!| |iicot| |curry| |expint| |size| |showTheFTable|
+ |cSinh| |cosIfCan| |left| |monomial| |realZeros|
+ |basisOfLeftAnnihilator| |dom| |test| |modularFactor|
+ |supDimElseRittWu?| |map!| |htrigs| |byte| |createPrimitiveNormalPoly|
+ |iicsch| |universe| |cAcsch| |outputArgs| |roughSubIdeal?| |right|
+ |csubst| |multivariate| |qsetelt!| |selectNonFiniteRoutines|
+ |colorDef| |moebiusMu| |crest| |iitanh| |iExquo| |createNormalElement|
+ |squareMatrix| |rootBound| |tan2trig| |retractIfCan| |critM| EQ
+ |cyclicGroup| |cCot| |indicialEquations| |domainTemplate|
+ |fortranComplex| |euclideanNormalForm| |linear| |chiSquare| |close|
+ |extractBottom!| |d01gaf| |minColIndex| |disjunction| |belong?|
+ |every?| |primes| |sin?| |makeSUP| |sqrt| |meatAxe| |rightGcd|
+ |limitPlus| |iiasec| |reopen!| |crushedSet| |plenaryPower| |s17acf|
+ |polynomial| |extend| |leaves| |display| |real| |binaryTournament|
+ |title| |basisOfCenter| |coerceListOfPairs| |ravel| |beauzamyBound|
+ |initiallyReduce| |prefix| |factorPolynomial| |pointColorDefault|
+ |normDeriv2| |computeCycleEntry| |s18aff| |acsch| |modularGcd|
+ |reshape| |swapColumns!| |find| |sinIfCan| |iicos| |check|
+ |parameters| |rightMult| |conditionP|
+ |removeRedundantFactorsInContents| |index?| |permutationGroup|
+ |iomode| |sequence| |reify| |int| |OMgetEndApp| |toseLastSubResultant|
+ |e| |e01sff| |alphabetic?| |zero?| |nthFractionalTerm| |node| |move|
+ |module| |OMputBind| |eigenvector| |primlimintfrac|
+ |factorSquareFreeByRecursion| |lazyPseudoQuotient| |directProduct|
+ |laguerre| |sinhIfCan| |primeFrobenius| |degreeSubResultantEuclidean|
+ |input| |LyndonCoordinates| |moduloP| |map| |shuffle| |pomopo!|
+ |tryFunctionalDecomposition| |kernels| |mesh?| |code|
+ |selectOrPolynomials| |factor1| |cycles| |leadingBasisTerm| |bitCoef|
+ |library| |unravel| |morphism| |leadingTerm|
+ |leftCharacteristicPolynomial| |update| |eq| |oddintegers| |operator|
+ |interpolate| |RemainderList| |badNum| |fortran| |hue| |removeSinhSq|
+ |showSummary| |nextsubResultant2| |untab| |brillhartIrreducible?|
+ |plus!| |pleskenSplit| |f02aaf| |critMTonD1| |iter| |corrPoly|
+ |legendreP| |s15aef| |phiCoord| |createZechTable| |gcdcofactprim|
+ |expandLog| |e02ahf| |selectOptimizationRoutines| |socf2socdf|
+ |supRittWu?| |internalInfRittWu?| |number?| |setAdaptive|
+ |setFormula!| |iisqrt3| |e02dff| |assert| |pointSizeDefault| |f02adf|
+ |mainSquareFreePart| |ignore?| |subset?| |fortranTypeOf| |simplify|
+ |convert| |elaborate| |cAcoth| |intersect| |readByte!| |Gamma|
+ |e04mbf| |associative?| |subResultantGcdEuclidean|
+ |inverseIntegralMatrixAtInfinity| |twist| |showAttributes| |level|
+ |setchildren!| |innerSolve1| |cTan| |lookupFunction| |position|
+ |imagK| |totalDifferential| |stFuncN| |sumSquares|
+ |quasiMonicPolynomials| |characteristicPolynomial| |lieAdmissible?|
+ |romberg| |e02def| |mainContent| |reducedContinuedFraction|
+ |algebraicDecompose| |mapmult| |differentialVariables|
+ |numberOfPrimitivePoly| |expIfCan| |probablyZeroDim?|
+ |oddInfiniteProduct| |nthExponent| |toseInvertible?|
+ |extendedEuclidean| |hermiteH| |content| |mdeg|
+ |removeSuperfluousQuasiComponents| |yCoordinates| |compile|
+ |complexEigenvalues| |color| |expt| |inverseColeman| |copies| |exp|
+ |initTable!| |viewZoomDefault| |iiperm| |lastSubResultant|
+ |numberOfNormalPoly| |polyPart| |multiset| |iisinh| |nil?|
+ |singleFactorBound| |equation| |ranges| |superscript| |checkRur|
+ |OMconnectTCP| |numeric| |dflist| |adaptive3D?| |dominantTerm|
+ |lexTriangular| |rotate| |purelyTranscendental?| |square?|
+ |outputAsTex| |e01bhf| |symmetricTensors| |radical| |bringDown|
+ |putProperty| |constantCoefficientRicDE| |repeating?| |property|
+ |edf2ef| |reducedQPowers| |pmComplexintegrate| |getConstant|
+ |OMgetSymbol| |splitSquarefree| |e02baf| |determinant| |biRank|
+ |interReduce| |divideIfCan!| |redmat| |solveLinearPolynomialEquation|
+ |polygamma| |baseRDE| |script| |internal?| |tanQ| |lfextendedint|
+ |numberOfOperations| |mainCharacterization| |relerror| |s20acf|
+ |decomposeFunc| |rightExactQuotient| |printInfo| |constant?|
+ |accuracyIF| |sylvesterSequence| |getGraph| |setIntersection|
+ |firstDenom| |binomial| |recoverAfterFail| |split| |linearDependence|
+ |c06gbf| |purelyAlgebraicLeadingMonomial?| |hexDigit| |overbar|
+ |algSplitSimple| |nextPartition| |complement| |refine| |extractPoint|
+ |principalIdeal| |invmultisect| |tex| |solid?| |multinomial|
+ |zeroSetSplitIntoTriangularSystems| |quasiAlgebraicSet| |monomial?|
+ |repSq| |defineProperty| |nothing| |d01bbf| |heap| |symbolIfCan|
+ |nativeModuleExtension| |diagonal?| |csc2sin| |basisOfRightNucloid|
+ |iiexp| |pseudoDivide| |goodPoint| |s01eaf| |cCsc| |quote|
+ |normalizeIfCan| |stopTableGcd!| |cycleEntry| |rightOne| |multMonom|
+ |rur| |trapezoidalo| |postfix| |encodingDirectory| |cLog| |harmonic|
+ |traceMatrix| |stoseInvertibleSetsqfreg| |minimize| |setPoly|
+ |bfEntry| |s18acf| |OMlistSymbols| |simpsono| |moreAlgebraic?|
+ |tanh2coth| |symmetricDifference| |nextItem| |lazyGintegrate|
+ |sortConstraints| |collectUpper| |partialQuotients| |type| |rarrow|
+ |mapBivariate| |surface| |clearTheFTable| |tValues| |rem| |status|
+ |recolor| |fillPascalTriangle| |c05pbf| |scanOneDimSubspaces|
+ |writable?| |space| |maxrow| |constantRight| |scale| |quo| |initial|
+ |Si| |jordanAdmissible?| |seed| |pdf2df| |before?| |cons|
+ |zeroSetSplit| |outputGeneral| |lfinfieldint| |setErrorBound|
+ |quotedOperators| |makeResult| |cosh2sech| |karatsuba| |iflist2Result|
+ |rst| |dim| |internalDecompose| |open?| |prime?|
+ |rightMinimalPolynomial| |ceiling| |div| |partialDenominators| |bits|
+ |dimensions| |s21baf| |satisfy?| |leftGcd| |Lazard| |mirror| |s21bcf|
+ |controlPanel| |exquo| |identification| |fortranCarriageReturn|
+ |bitTruth| |unit| |normalDenom| |sumOfSquares| |wreath| |scripted?|
+ |minPoints| |float?| ~= |outputSpacing| |normal?| |minus!|
+ |polynomialZeros| |schema| |idealSimplify| |s13aaf| |selectsecond|
+ |irreducibleFactors| |argumentListOf| |#| |traverse| |init|
+ |readInt16!| |problemPoints| |upperCase| |birth| |pade| |localAbs|
+ |transcendent?| |e01bgf| |unvectorise| |typeList| |zero| ~ |finite?|
+ |coerce| |lexGroebner| |subMatrix| |numberOfComponents|
+ |knownInfBasis| |unknownEndian| |source| |selectIntegrationRoutines|
+ |OMopenString| |superHeight| |doubleRank| |diagonalMatrix| |construct|
+ |setprevious!| |extractIfCan| |nonQsign| |e01saf|
+ |factorSquareFreePolynomial| |makeSketch| |revert| |s17dcf|
+ |rewriteSetWithReduction| |raisePolynomial| |And| |zeroVector|
+ |nullary?| |fortranLinkerArgs| |subscript| |sort!| |isOpen?| |f01brf|
+ |support| |Or| |unmakeSUP| |/\\| |lagrange| |Aleph| |sinh2csch|
+ |vspace| |c06fuf| |cosSinInfo| |imagI| |internalLastSubResultant|
+ |Not| |hasHi| |\\/| |d02ejf| |powerAssociative?| |fixedPoints| |push!|
+ |transcendenceDegree| |scopes| |rightZero| |tanhIfCan|
+ |subResultantGcd| |implies| |createGenericMatrix| |compose|
+ |expextendedint| |target| |elliptic?| |d02gaf| |calcRanges|
+ |fortranLiteral| |genericLeftTrace| |leviCivitaSymbol|
+ |nextLatticePermutation| |addPointLast| |approxNthRoot| |makeSin|
+ |generalizedContinuumHypothesisAssumed| |polarCoordinates|
+ |colorFunction| |lfintegrate| |alternative?| |leadingIdeal| |linSolve|
+ |numberOfIrreduciblePoly| |OMunhandledSymbol| |isTimes|
+ |roughUnitIdeal?| |substitute| |removeSuperfluousCases|
+ |viewPhiDefault| |rewriteIdealWithHeadRemainder| |zCoord| |imagk|
+ |palgLODE| |aQuartic| |radicalSolve| |isOr| |besselJ| |nilFactor|
+ |setref| |stoseInvertibleSet| |arity| |second| |functorData| |open|
+ |rightTraceMatrix| |s14baf| |bytes| |lquo| |printTypes| |drawComplex|
+ |plot| |expintegrate| |third| |f2df| |d01asf| |even?| |perfectNthRoot|
+ |wronskianMatrix| |e01sef| |increment| |karatsubaOnce| |chebyshevT|
+ |quickSort| |complexEigenvectors| |complete| |leftTrace| |inR?|
+ |approxSqrt| |leftAlternative?| |screenResolution3D| |setStatus!|
+ |characteristicSerie| |latex| |stoseInvertible?| |const| |isImplies|
+ |setnext!| |s15adf| |rationalIfCan| |reset| |push| |operations|
+ |purelyAlgebraic?| |bright| |contractSolve| |maxRowIndex|
+ |insertionSort!| |acotIfCan| |newTypeLists| |iiasin| F
+ |numberOfChildren| |mindeg| |overlabel| |redPol| |d01alf|
+ |bezoutMatrix| |littleEndian| |newLine| |acothIfCan| |shellSort|
+ |monic?| |solveLinearPolynomialEquationByRecursion| |write| |lighting|
+ |inc| |maxColIndex| |eulerE| |eval| |lyndon?| |permutations|
+ |lflimitedint| |OMputSymbol| |setelt| |eigenvectors| |save|
+ |integralAtInfinity?| |updatD| |totalDegree| |printStatement| |paren|
+ |smith| |expenseOfEvaluationIF| |wordsForStrongGenerators|
+ |prepareDecompose| |linearPart| |viewPosDefault| |quadraticNorm| |sn|
+ |rroot| |linearDependenceOverZ| |powmod| |f02aef| |copy|
+ |leftRemainder| |freeOf?| |goodnessOfFit| |wordInGenerators| |error|
+ |cartesian| |leftNorm| |linearlyDependent?| |setMaxPoints|
+ |minRowIndex| |binary| |setMaxPoints3D| |frobenius|
+ |createMultiplicationTable| |separate| |topFortranOutputStack|
+ |wholeRagits| |getVariableOrder| |mvar| |getOrder| |elementary|
+ |uncouplingMatrices| |isList| |f02aff| |insert!| |nextPrimitivePoly|
+ |sin2csc| |binarySearchTree| |listLoops| |cap| |numerator| BY |empty?|
+ |noLinearFactor?| |lowerBound| |monomials| |parent| |clip|
+ |wholeRadix| |style| |match?| |elaborateFile| |partialNumerators|
+ |ipow| |dmp2rfi| |close!| |autoCoerce| |cyclic?| |cAcsc|
+ |OMsupportsCD?| |iisqrt2| |lowerCase?| |parseString|
+ |integralMatrixAtInfinity| |erf| |exprToGenUPS|
+ |ScanFloatIgnoreSpacesIfCan| |stiffnessAndStabilityFactor|
+ |associatedEquations| |coerceS| |isobaric?| |ParCond| |equiv|
+ |iiGamma| |horizConcat| |generalTwoFactor| |leftFactor| |shade|
+ |rootOf| |flexible?| |antisymmetricTensors| |s19adf|
+ |fortranCompilerName| |nextPrime| |compdegd| |sorted?| |twoFactor|
+ |leftRank| |intcompBasis| |green| |dilog| |allRootsOf| |entry|
+ |algebraicSort| |eof?| |car| |oblateSpheroidal| |ocf2ocdf| |f01mcf|
+ |currentCategoryFrame| |sin| |goto| |failed?| NOT |drawCurves|
+ |setImagSteps| |any?| |solveid| |positive?| |rCoord| |cos| |var1Steps|
+ |curve?| OR |null| |prem| |nextSubsetGray| |readInt8!| |groebnerIdeal|
+ |tanh2trigh| |tan| |extractClosed| |computePowers| |roman| AND |not|
+ |subNode?| |infinityNorm| |s17def| |zeroDimPrimary?| |cot|
+ |PollardSmallFactor| |removeZero| |fill!| |and| |expPot| |OMputString|
+ |mapUnivariate| |minimumDegree| |categories| |pushuconst| |sec|
+ |primextintfrac| |explicitlyEmpty?| |or| |isEquiv| |musserTrials|
+ |delete| |less?| |bezoutResultant| |approximants| |e02zaf| |csc|
+ |loopPoints| |monicCompleteDecompose| |clipBoolean| |brace| |xor|
+ |perfectSquare?| |resultant| |trace2PowMod| |collectUnder| |solid|
+ |asin| |OMgetApp| |setrest!| |interactiveEnv| |makeFloatFunction|
+ |lazyVariations| |findCycle| |cycleElt| |c06gcf| |acos| |qfactor|
+ |sts2stst| |column| |commutative?| |d03faf| |algint| |iprint|
+ |convergents| |hMonic| |atan| |setValue!| |extendedIntegrate|
+ |polCase| |distFact| |palgextint| |definingPolynomial| |complex?|
+ |generalLambert| |acot| |structuralConstants| |insertRoot!|
+ |ReduceOrder| |OMserve| |isQuotient| |OMlistCDs| |getBadValues|
+ |swapRows!| |OMputEndBVar| |asec| |OMgetError| |coleman| |henselFact|
+ |fortranInteger| |functionIsContinuousAtEndPoints| |generators|
+ |e04naf| |youngDiagram| |e02bcf| |lazyEvaluate| |leftRecip| |acsc|
+ |tRange| |selectFiniteRoutines| |squareTop| * |pol| |antisymmetric?|
+ |rightDivide| |trunc| |subresultantVector| |sinh| |OMputInteger|
+ |indicialEquation| |unrankImproperPartitions0| |conical|
+ |flexibleArray| |rightRecip| |depth| |sPol| |setMinPoints|
+ |setProperty| |nthExpon| |cosh| |basisOfRightNucleus| |removeCosSq|
+ |normInvertible?| |ratDenom| |overset?| |symbol?| |cn| |solveRetract|
+ |mapMatrixIfCan| |tanh| |makingStats?| |Nul| |groebgen| |s14abf|
+ |height| = |vertConcat| |wholePart| |clipPointsDefault| |acschIfCan|
+ |d03edf| |coth| |max| |thenBranch| |iteratedInitials| |f02awf|
+ |shanksDiscLogAlgorithm| |exptMod| |solveLinearlyOverQ| |dec|
+ |basicSet| |strongGenerators| |explimitedint| |sech| |adaptive?|
+ |gderiv| |resetVariableOrder| < |varselect| |getPickedPoints|
+ |BumInSepFFE| |cross| |iisech| |loadNativeModule|
+ |integralLastSubResultant| |elRow2!| |sechIfCan| |getStream| >
+ |removeDuplicates| |log10| |bsolve| |reflect|
+ |irreducibleRepresentation| |recur| |externalList| |leftPower|
+ |SturmHabichtMultiple| |fractionPart| <= |iiatan| |bitand|
+ |printStats!| |numberOfComputedEntries| |removeSquaresIfCan|
+ |packageCall| |squareFreeLexTriangular| |basisOfLeftNucloid|
+ |tubePoints| |currentSubProgram| >= |measure2Result| |bitior|
+ |writeInt8!| |rootProduct| |invertibleSet| |denominator| |point?|
+ |fglmIfCan| |lifting| |quasiRegular?| |increasePrecision|
+ |deleteRoutine!| |leaf?| |tableau| |conjug| |pToDmp| |palgextint0|
+ |readLineIfCan!| |irForm| |firstNumer| |isAnd| |nullary|
+ |getGoodPrime| |factorByRecursion| |headReduced?| |factorial|
+ |partition| |SturmHabichtSequence| + |setAttributeButtonStep|
+ |writeByte!| |debug| |quasiMonic?| |leftExtendedGcd| |failed| |iifact|
+ |constantOpIfCan| |explicitEntries?| |lex| |bivariateSLPEBR|
+ |substring?| - D |fractRagits| |weighted| |iilog| |positiveRemainder|
+ |e04dgf| |stripCommentsAndBlanks| |useEisensteinCriterion?| |cCsch|
+ |identityMatrix| / |parametric?| |child| |aromberg| |presuper|
+ |patternMatch| |closeComponent| |SFunction| |clearDenominator|
+ |padicFraction| |suffix?| |coerceP| |makeGraphImage|
+ |viewDeltaXDefault| |rightRegularRepresentation| |setOfMinN|
+ |unprotectedRemoveRedundantFactors| |nextsousResultant2| |subTriSet?|
+ |internalZeroSetSplit| |zeroOf| |myDegree| |OMputAtp| |sincos|
+ |leadingIndex| |numFunEvals3D| |nil| |lambert| |log| |tail|
+ |checkForZero| |genericRightTrace| |vconcat| |d01anf| |univariate|
+ |prefix?| |createNormalPrimitivePoly| |Hausdorff| |yCoord|
+ |returnTypeOf| |removeRoughlyRedundantFactorsInPol| |stopMusserTrials|
+ |rotatez| |outputAsScript| |resetNew| |fixedPoint| |inf|
+ |FormatArabic| |hclf| |makeViewport2D| |macroExpand| |just| |elRow1!|
+ |internalSubPolSet?| |build| |varList| |getCurve| |leftMult|
+ |writeBytes!| |randnum| |cyclicEntries| |approximate|
+ |validExponential| |rightFactorIfCan| |bernoulliB| |lexico| |reverse!|
+ |key?| |denomRicDE| |semiResultantEuclidean1| |leastMonomial|
+ |complex| |c06gqf| |imagJ| |associatedSystem| |errorKind| |extract!|
+ |polyRDE| |mainVariable| |integralRepresents| |qualifier| |infLex?|
+ |resultantReduitEuclidean| |atom?| |numberOfDivisors| |rightNorm|
+ |d02cjf| |print| |bat| |rquo| |properties| |changeName|
+ |intPatternMatch| |besselK| |expressIdealMember| |infix?| |resolve|
+ |adjoint| |coerceImages| |complexZeros| |upperCase!| |component|
+ |translate| |rootSplit| |vark| |usingTable?| |mask| |equality|
+ |declare| |deepExpand| |stosePrepareSubResAlgo|
+ |halfExtendedSubResultantGcd1| |clearTheSymbolTable| |unitNormalize|
+ |setAdaptive3D| |complexNormalize| |rk4f| |binding| |jacobian|
+ |extensionDegree| |reduction| |bivariatePolynomials| |rangeIsFinite|
+ |cyclotomicFactorization| |iiacot| |power| |iicsc| |slex| |rspace|
+ |showAllElements| |groebnerFactorize| |categoryMode| |integrate|
+ |torsionIfCan| |bag| |curve| |univariateSolve| |maxPoints3D|
+ |startTableGcd!| |bindings| |exponents| |bit?|
+ |genericLeftDiscriminant| GE |shiftRight| |digit|
+ |clearFortranOutputStack| |OMputEndBind| |UpTriBddDenomInv| |routines|
+ |tan2cot| |stirling2| GT |mathieu22| |vectorise| |region| |graphImage|
+ |sumOfDivisors| |rk4qc| |middle| |OMputEndApp| |pastel| |iicoth|
+ |highCommonTerms| LE |mathieu12| |say| |unexpand| |bottom!| |delta|
+ |internalIntegrate0| |prepareSubResAlgo| |f2st| |minordet|
+ |rightPower| LT |octon| |coefficient| |constantOperator| |variable?|
+ |critB| |groebSolve| |member?| |minPoints3D| |viewWriteDefault|
+ |tracePowMod| |rewriteSetByReducingWithParticularGenerators|
+ |reduceBasisAtInfinity| |plus| |rootPower| |argument| |isOp|
+ |wrregime| |aQuadratic| |maxint| |log2| |cubic| |cCoth| |parents|
+ |multiEuclideanTree| |coefChoose| |subCase?| |logGamma| |lyndonIfCan|
+ |e02agf| |LowTriBddDenomInv| |shift| |extendIfCan|
+ |extendedSubResultantGcd| |clipWithRanges| |getProperty|
+ |cRationalPower| |logIfCan| |conjugate| |remove| |meshPar1Var|
+ |internalSubQuasiComponent?| |diagonals| |setClipValue|
+ |GospersMethod| |d02bhf| |moebius| |asimpson| |sizeLess?|
+ |exprHasAlgebraicWeight| |SturmHabichtCoefficients| |limitedIntegrate|
+ |times| |binomThmExpt| |f02wef| |selectSumOfSquaresRoutines|
+ |lazyIntegrate| |last| |iitan| |credPol| |besselI| |setPrologue!|
+ |coordinate| |generator| |nextNormalPoly| |mantissa|
+ |splitDenominator| |divideExponents| |OMread| |autoReduced?| |assoc|
+ |solve1| |chainSubResultants| |leftUnit| |assign| |character?|
+ |write!| |exists?| |denomLODE| |ricDsolve| |dihedralGroup| |isMult|
+ |showAll?| |useSingleFactorBound| |contract| |s17agf| |OMputEndError|
+ |pile| |atrapezoidal| |operation| |semiDiscriminantEuclidean|
+ |mainValue| |condition| |binaryFunction| |monom| |critpOrder| |isAtom|
+ |lazyIrreducibleFactors| |invertibleElseSplit?| |squareFreeFactors|
+ |sign| |shape| |iicosh| |s17dlf| |triangular?| |units| |stirling1|
+ |monomRDEsys| |isAbsolutelyIrreducible?| |OMgetAtp| |front|
+ |matrixDimensions| |subresultantSequence| |besselY|
+ |tubePointsDefault| |create3Space| |blue| |setClosed|
+ |trailingCoefficient| |output| |common| |noncommutativeJordanAlgebra?|
+ |setDifference| |matrixGcd| |innerEigenvectors| |measure|
+ |resetAttributeButtons| |identity| |primitivePart!| |newReduc|
+ |componentUpperBound| |diagonal| |range| |direction| |constant|
+ |e01sbf| |attributeData| |repeating| |red| |constructor|
+ |patternMatchTimes| |newSubProgram| |factorset| |partitions|
+ |OMputAttr| |npcoef| |incr| |irreducible?| |hcrf| |zeroDimPrime?|
+ |negative?| |mainCoefficients| |rischNormalize| |isConnected?|
+ |function| |getMultiplicationMatrix| |hi| |exprToXXP| |sub|
+ |rowEchLocal| |clearTheIFTable| |var2StepsDefault| |edf2efi| LODO2FUN
+ |monomialIntegrate| |rightTrim| |lookup| |rename| |rk4a| |optimize|
+ |padicallyExpand| |iiacosh| |makeVariable| |palgint0| |resultantnaif|
+ |leftTrim| |tableForDiscreteLogarithm| |s18adf| |divergence|
+ |maximumExponent| |e04gcf| |outlineRender| |tablePow| |integer?|
+ |bipolar| |showFortranOutputStack| |imagi| |iiatanh| |element?|
+ |selectPDERoutines| |quadratic?| |euclideanSize| |makeTerm|
+ |reverseLex| |infRittWu?| |evaluate| |rewriteIdealWithRemainder|
+ |symbol| |gradient| |edf2df| |acoshIfCan| |nonLinearPart| |c06fqf|
+ |stiffnessAndStabilityOfODEIF| |leftOne| F2FG |expression|
+ |drawComplexVectorField| |jordanAlgebra?| |jacobiIdentity?| |gensym|
+ |ksec| |root| |asechIfCan| |integer| |OMputVariable| |destruct| |xn|
+ |one?| |setright!| |scan| |exportedOperators| |vedf2vef| |normalDeriv|
+ |removeConstantTerm| |OMgetEndObject| |components| |viewDefaults|
+ |block| |complexExpand| |alphanumeric| |nil| |infinite|
|arbitraryExponent| |approximate| |complex| |shallowMutable|
|canonical| |noetherian| |central| |partiallyOrderedSet|
|arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index bb71a570..2bbd45cf 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5391 +1,5400 @@
-(3228434 . 3485439413)
-((-3134 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2778 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3040 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-1244 (-570)) |#2|) 44)) (-4125 (($ $) 80)) (-2295 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2619 (((-570) (-1 (-112) |#2|) $) 27) (((-570) |#2| $) NIL) (((-570) |#2| $ (-570)) 96)) (-3976 (((-650 |#2|) $) 13)) (-4356 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2833 (($ (-1 |#2| |#2|) $) 37)) (-2536 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2119 (($ |#2| $ (-570)) NIL) (($ $ $ (-570)) 67)) (-2115 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2231 (((-112) (-1 (-112) |#2|) $) 23)) (-2057 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) NIL) (($ $ (-1244 (-570))) 66)) (-3225 (($ $ (-570)) 76) (($ $ (-1244 (-570))) 75)) (-3901 (((-777) (-1 (-112) |#2|) $) 34) (((-777) |#2| $) NIL)) (-2181 (($ $ $ (-570)) 69)) (-3064 (($ $) 68)) (-2881 (($ (-650 |#2|)) 73)) (-1505 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-650 $)) 85)) (-2869 (((-868) $) 92)) (-2061 (((-112) (-1 (-112) |#2|) $) 22)) (-3892 (((-112) $ $) 95)) (-3918 (((-112) $ $) 99)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -3892 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3918 ((-112) |#1| |#1|)) (-15 -2778 (|#1| |#1|)) (-15 -2778 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -2181 (|#1| |#1| |#1| (-570))) (-15 -3134 ((-112) |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2619 ((-570) |#2| |#1| (-570))) (-15 -2619 ((-570) |#2| |#1|)) (-15 -2619 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -3134 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4356 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3040 (|#2| |#1| (-1244 (-570)) |#2|)) (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -3225 (|#1| |#1| (-1244 (-570)))) (-15 -3225 (|#1| |#1| (-570))) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1505 (|#1| (-650 |#1|))) (-15 -1505 (|#1| |#1| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#2|)) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -2881 (|#1| (-650 |#2|))) (-15 -2115 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2057 (|#2| |#1| (-570))) (-15 -2057 (|#2| |#1| (-570) |#2|)) (-15 -3040 (|#2| |#1| (-570) |#2|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3976 ((-650 |#2|) |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3064 (|#1| |#1|))) (-19 |#2|) (-1227)) (T -18))
+(3228885 . 3485461475)
+((-3755 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3519 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3659 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-1246 (-572)) |#2|) 44)) (-4095 (($ $) 80)) (-2925 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3239 (((-572) (-1 (-112) |#2|) $) 27) (((-572) |#2| $) NIL) (((-572) |#2| $ (-572)) 96)) (-1442 (((-652 |#2|) $) 13)) (-1377 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3049 (($ (-1 |#2| |#2|) $) 37)) (-3161 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2744 (($ |#2| $ (-572)) NIL) (($ $ $ (-572)) 67)) (-3124 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3089 (((-112) (-1 (-112) |#2|) $) 23)) (-2679 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) NIL) (($ $ (-1246 (-572))) 66)) (-3817 (($ $ (-572)) 76) (($ $ (-1246 (-572))) 75)) (-1371 (((-779) (-1 (-112) |#2|) $) 34) (((-779) |#2| $) NIL)) (-2561 (($ $ $ (-572)) 69)) (-3679 (($ $) 68)) (-3503 (($ (-652 |#2|)) 73)) (-2121 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-652 $)) 85)) (-3491 (((-870) $) 92)) (-3776 (((-112) (-1 (-112) |#2|) $) 22)) (-3921 (((-112) $ $) 95)) (-3943 (((-112) $ $) 99)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3921 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -2561 (|#1| |#1| |#1| (-572))) (-15 -3755 ((-112) |#1|)) (-15 -1377 (|#1| |#1| |#1|)) (-15 -3239 ((-572) |#2| |#1| (-572))) (-15 -3239 ((-572) |#2| |#1|)) (-15 -3239 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -3755 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1377 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3659 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -3817 (|#1| |#1| (-1246 (-572)))) (-15 -3817 (|#1| |#1| (-572))) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2121 (|#1| (-652 |#1|))) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -3503 (|#1| (-652 |#2|))) (-15 -3124 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2679 (|#2| |#1| (-572))) (-15 -2679 (|#2| |#1| (-572) |#2|)) (-15 -3659 (|#2| |#1| (-572) |#2|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1442 ((-652 |#2|) |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3679 (|#1| |#1|))) (-19 |#2|) (-1229)) (T -18))
NIL
-(-10 -8 (-15 -3892 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3918 ((-112) |#1| |#1|)) (-15 -2778 (|#1| |#1|)) (-15 -2778 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -2181 (|#1| |#1| |#1| (-570))) (-15 -3134 ((-112) |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2619 ((-570) |#2| |#1| (-570))) (-15 -2619 ((-570) |#2| |#1|)) (-15 -2619 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -3134 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4356 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3040 (|#2| |#1| (-1244 (-570)) |#2|)) (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -3225 (|#1| |#1| (-1244 (-570)))) (-15 -3225 (|#1| |#1| (-570))) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1505 (|#1| (-650 |#1|))) (-15 -1505 (|#1| |#1| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#2|)) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -2881 (|#1| (-650 |#2|))) (-15 -2115 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2057 (|#2| |#1| (-570))) (-15 -2057 (|#2| |#1| (-570) |#2|)) (-15 -3040 (|#2| |#1| (-570) |#2|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3976 ((-650 |#2|) |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3064 (|#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4453))) (($ $) 91 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4453))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 60 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-4125 (($ $) 93 (|has| $ (-6 -4453)))) (-4366 (($ $) 103)) (-3153 (($ $) 80 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#1| $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 52)) (-2619 (((-570) (-1 (-112) |#1|) $) 100) (((-570) |#1| $) 99 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 98 (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-1908 (($ $ $) 90 (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-1764 (($ $ $) 89 (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 43 (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4222 (($ $ |#1|) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1244 (-570))) 71)) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2181 (($ $ $ (-570)) 94 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 72)) (-1505 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) 87 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 86 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-3945 (((-112) $ $) 88 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 85 (|has| |#1| (-856)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-19 |#1|) (-141) (-1227)) (T -19))
+(-10 -8 (-15 -3921 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4095 (|#1| |#1|)) (-15 -2561 (|#1| |#1| |#1| (-572))) (-15 -3755 ((-112) |#1|)) (-15 -1377 (|#1| |#1| |#1|)) (-15 -3239 ((-572) |#2| |#1| (-572))) (-15 -3239 ((-572) |#2| |#1|)) (-15 -3239 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -3755 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1377 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3659 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -3817 (|#1| |#1| (-1246 (-572)))) (-15 -3817 (|#1| |#1| (-572))) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2121 (|#1| (-652 |#1|))) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -3503 (|#1| (-652 |#2|))) (-15 -3124 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2679 (|#2| |#1| (-572))) (-15 -2679 (|#2| |#1| (-572) |#2|)) (-15 -3659 (|#2| |#1| (-572) |#2|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1442 ((-652 |#2|) |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3679 (|#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-4095 (($ $) 93 (|has| $ (-6 -4455)))) (-1852 (($ $) 103)) (-3955 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 52)) (-3239 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2536 (($ $ $) 90 (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3928 (($ $ $) 89 (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 43 (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3803 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2561 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 72)) (-2121 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 86 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3965 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-858)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-19 |#1|) (-141) (-1229)) (T -19))
NIL
-(-13 (-378 |t#1|) (-10 -7 (-6 -4453)))
-(((-34) . T) ((-102) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1227) . T))
-((-3997 (((-3 $ "failed") $ $) 12)) (-4003 (($ $) NIL) (($ $ $) 9)) (* (($ (-928) $) NIL) (($ (-777) $) 16) (($ (-570) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -3997 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-21)) (T -20))
+(-13 (-380 |t#1|) (-10 -7 (-6 -4455)))
+(((-34) . T) ((-102) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T))
+((-2092 (((-3 $ "failed") $ $) 12)) (-4018 (($ $) NIL) (($ $ $) 9)) (* (($ (-930) $) NIL) (($ (-779) $) 16) (($ (-572) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -2092 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -3997 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24)))
+(-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -2092 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24)))
(((-21) (-141)) (T -21))
-((-4003 (*1 *1 *1) (-4 *1 (-21))) (-4003 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-132) (-652 (-570)) (-10 -8 (-15 -4003 ($ $)) (-15 -4003 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1109) . T))
-((-2564 (((-112) $) 10)) (-2333 (($) 15)) (* (($ (-928) $) 14) (($ (-777) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-777) |#1|)) (-15 -2564 ((-112) |#1|)) (-15 -2333 (|#1|)) (-15 * (|#1| (-928) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-777) |#1|)) (-15 -2564 ((-112) |#1|)) (-15 -2333 (|#1|)) (-15 * (|#1| (-928) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16)))
+((-4018 (*1 *1 *1) (-4 *1 (-21))) (-4018 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-132) (-654 (-572)) (-10 -8 (-15 -4018 ($ $)) (-15 -4018 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1111) . T))
+((-3143 (((-112) $) 10)) (-1586 (($) 15)) (* (($ (-930) $) 14) (($ (-779) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-779) |#1|)) (-15 -3143 ((-112) |#1|)) (-15 -1586 (|#1|)) (-15 * (|#1| (-930) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-779) |#1|)) (-15 -3143 ((-112) |#1|)) (-15 -1586 (|#1|)) (-15 * (|#1| (-930) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
(((-23) (-141)) (T -23))
-((-1981 (*1 *1) (-4 *1 (-23))) (-2333 (*1 *1) (-4 *1 (-23))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-777)))))
-(-13 (-25) (-10 -8 (-15 (-1981) ($) -3722) (-15 -2333 ($) -3722) (-15 -2564 ((-112) $)) (-15 * ($ (-777) $))))
-(((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((* (($ (-928) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-928) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-928) |#1|)))
-((-2847 (((-112) $ $) 7)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14)))
+((-2602 (*1 *1) (-4 *1 (-23))) (-1586 (*1 *1) (-4 *1 (-23))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-779)))))
+(-13 (-25) (-10 -8 (-15 (-2602) ($) -4338) (-15 -1586 ($) -4338) (-15 -3143 ((-112) $)) (-15 * ($ (-779) $))))
+(((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((* (($ (-930) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-930) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-930) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14)))
(((-25) (-141)) (T -25))
-((-3992 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-928)))))
-(-13 (-1109) (-10 -8 (-15 -3992 ($ $ $)) (-15 * ($ (-928) $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2842 (((-650 $) (-959 $)) 32) (((-650 $) (-1182 $)) 16) (((-650 $) (-1182 $) (-1186)) 20)) (-4121 (($ (-959 $)) 30) (($ (-1182 $)) 11) (($ (-1182 $) (-1186)) 60)) (-4088 (((-650 $) (-959 $)) 33) (((-650 $) (-1182 $)) 18) (((-650 $) (-1182 $) (-1186)) 19)) (-2056 (($ (-959 $)) 31) (($ (-1182 $)) 13) (($ (-1182 $) (-1186)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2842 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -2842 ((-650 |#1|) (-1182 |#1|))) (-15 -2842 ((-650 |#1|) (-959 |#1|))) (-15 -4121 (|#1| (-1182 |#1|) (-1186))) (-15 -4121 (|#1| (-1182 |#1|))) (-15 -4121 (|#1| (-959 |#1|))) (-15 -4088 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4088 ((-650 |#1|) (-1182 |#1|))) (-15 -4088 ((-650 |#1|) (-959 |#1|))) (-15 -2056 (|#1| (-1182 |#1|) (-1186))) (-15 -2056 (|#1| (-1182 |#1|))) (-15 -2056 (|#1| (-959 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2842 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -2842 ((-650 |#1|) (-1182 |#1|))) (-15 -2842 ((-650 |#1|) (-959 |#1|))) (-15 -4121 (|#1| (-1182 |#1|) (-1186))) (-15 -4121 (|#1| (-1182 |#1|))) (-15 -4121 (|#1| (-959 |#1|))) (-15 -4088 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4088 ((-650 |#1|) (-1182 |#1|))) (-15 -4088 ((-650 |#1|) (-959 |#1|))) (-15 -2056 (|#1| (-1182 |#1|) (-1186))) (-15 -2056 (|#1| (-1182 |#1|))) (-15 -2056 (|#1| (-959 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2842 (((-650 $) (-959 $)) 88) (((-650 $) (-1182 $)) 87) (((-650 $) (-1182 $) (-1186)) 86)) (-4121 (($ (-959 $)) 91) (($ (-1182 $)) 90) (($ (-1182 $) (-1186)) 89)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-2459 (($ $) 100)) (-1799 (((-112) $ $) 65)) (-2333 (($) 18 T CONST)) (-4088 (((-650 $) (-959 $)) 94) (((-650 $) (-1182 $)) 93) (((-650 $) (-1182 $) (-1186)) 92)) (-2056 (($ (-959 $)) 97) (($ (-1182 $)) 96) (($ (-1182 $) (-1186)) 95)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2145 (((-112) $) 79)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 99)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 98)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75)))
+((-4005 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-930)))))
+(-13 (-1111) (-10 -8 (-15 -4005 ($ $ $)) (-15 * ($ (-930) $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-2814 (((-652 $) (-961 $)) 32) (((-652 $) (-1184 $)) 16) (((-652 $) (-1184 $) (-1188)) 20)) (-4049 (($ (-961 $)) 30) (($ (-1184 $)) 11) (($ (-1184 $) (-1188)) 60)) (-1755 (((-652 $) (-961 $)) 33) (((-652 $) (-1184 $)) 18) (((-652 $) (-1184 $) (-1188)) 19)) (-3748 (($ (-961 $)) 31) (($ (-1184 $)) 13) (($ (-1184 $) (-1188)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2814 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2814 ((-652 |#1|) (-1184 |#1|))) (-15 -2814 ((-652 |#1|) (-961 |#1|))) (-15 -4049 (|#1| (-1184 |#1|) (-1188))) (-15 -4049 (|#1| (-1184 |#1|))) (-15 -4049 (|#1| (-961 |#1|))) (-15 -1755 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -1755 ((-652 |#1|) (-1184 |#1|))) (-15 -1755 ((-652 |#1|) (-961 |#1|))) (-15 -3748 (|#1| (-1184 |#1|) (-1188))) (-15 -3748 (|#1| (-1184 |#1|))) (-15 -3748 (|#1| (-961 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2814 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2814 ((-652 |#1|) (-1184 |#1|))) (-15 -2814 ((-652 |#1|) (-961 |#1|))) (-15 -4049 (|#1| (-1184 |#1|) (-1188))) (-15 -4049 (|#1| (-1184 |#1|))) (-15 -4049 (|#1| (-961 |#1|))) (-15 -1755 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -1755 ((-652 |#1|) (-1184 |#1|))) (-15 -1755 ((-652 |#1|) (-961 |#1|))) (-15 -3748 (|#1| (-1184 |#1|) (-1188))) (-15 -3748 (|#1| (-1184 |#1|))) (-15 -3748 (|#1| (-961 |#1|))))
+((-3464 (((-112) $ $) 7)) (-2814 (((-652 $) (-961 $)) 88) (((-652 $) (-1184 $)) 87) (((-652 $) (-1184 $) (-1188)) 86)) (-4049 (($ (-961 $)) 91) (($ (-1184 $)) 90) (($ (-1184 $) (-1188)) 89)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-3093 (($ $) 100)) (-4252 (((-112) $ $) 65)) (-1586 (($) 18 T CONST)) (-1755 (((-652 $) (-961 $)) 94) (((-652 $) (-1184 $)) 93) (((-652 $) (-1184 $) (-1188)) 92)) (-3748 (($ (-961 $)) 97) (($ (-1184 $)) 96) (($ (-1184 $) (-1188)) 95)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3439 (((-112) $) 79)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 99)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 98)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
(((-27) (-141)) (T -27))
-((-2056 (*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27)))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27)))) (-2056 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-4121 (*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27)))) (-4121 (*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-2842 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27)) (-5 *2 (-650 *1)))))
-(-13 (-368) (-1011) (-10 -8 (-15 -2056 ($ (-959 $))) (-15 -2056 ($ (-1182 $))) (-15 -2056 ($ (-1182 $) (-1186))) (-15 -4088 ((-650 $) (-959 $))) (-15 -4088 ((-650 $) (-1182 $))) (-15 -4088 ((-650 $) (-1182 $) (-1186))) (-15 -4121 ($ (-959 $))) (-15 -4121 ($ (-1182 $))) (-15 -4121 ($ (-1182 $) (-1186))) (-15 -2842 ((-650 $) (-959 $))) (-15 -2842 ((-650 $) (-1182 $))) (-15 -2842 ((-650 $) (-1182 $) (-1186)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1011) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T))
-((-2842 (((-650 $) (-959 $)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-1182 $) (-1186)) 55) (((-650 $) $) 22) (((-650 $) $ (-1186)) 46)) (-4121 (($ (-959 $)) NIL) (($ (-1182 $)) NIL) (($ (-1182 $) (-1186)) 57) (($ $) 20) (($ $ (-1186)) 40)) (-4088 (((-650 $) (-959 $)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-1182 $) (-1186)) 53) (((-650 $) $) 18) (((-650 $) $ (-1186)) 48)) (-2056 (($ (-959 $)) NIL) (($ (-1182 $)) NIL) (($ (-1182 $) (-1186)) NIL) (($ $) 15) (($ $ (-1186)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2842 ((-650 |#1|) |#1| (-1186))) (-15 -4121 (|#1| |#1| (-1186))) (-15 -2842 ((-650 |#1|) |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -4088 ((-650 |#1|) |#1| (-1186))) (-15 -2056 (|#1| |#1| (-1186))) (-15 -4088 ((-650 |#1|) |#1|)) (-15 -2056 (|#1| |#1|)) (-15 -2842 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -2842 ((-650 |#1|) (-1182 |#1|))) (-15 -2842 ((-650 |#1|) (-959 |#1|))) (-15 -4121 (|#1| (-1182 |#1|) (-1186))) (-15 -4121 (|#1| (-1182 |#1|))) (-15 -4121 (|#1| (-959 |#1|))) (-15 -4088 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4088 ((-650 |#1|) (-1182 |#1|))) (-15 -4088 ((-650 |#1|) (-959 |#1|))) (-15 -2056 (|#1| (-1182 |#1|) (-1186))) (-15 -2056 (|#1| (-1182 |#1|))) (-15 -2056 (|#1| (-959 |#1|)))) (-29 |#2|) (-562)) (T -28))
-NIL
-(-10 -8 (-15 -2842 ((-650 |#1|) |#1| (-1186))) (-15 -4121 (|#1| |#1| (-1186))) (-15 -2842 ((-650 |#1|) |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -4088 ((-650 |#1|) |#1| (-1186))) (-15 -2056 (|#1| |#1| (-1186))) (-15 -4088 ((-650 |#1|) |#1|)) (-15 -2056 (|#1| |#1|)) (-15 -2842 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -2842 ((-650 |#1|) (-1182 |#1|))) (-15 -2842 ((-650 |#1|) (-959 |#1|))) (-15 -4121 (|#1| (-1182 |#1|) (-1186))) (-15 -4121 (|#1| (-1182 |#1|))) (-15 -4121 (|#1| (-959 |#1|))) (-15 -4088 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4088 ((-650 |#1|) (-1182 |#1|))) (-15 -4088 ((-650 |#1|) (-959 |#1|))) (-15 -2056 (|#1| (-1182 |#1|) (-1186))) (-15 -2056 (|#1| (-1182 |#1|))) (-15 -2056 (|#1| (-959 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2842 (((-650 $) (-959 $)) 88) (((-650 $) (-1182 $)) 87) (((-650 $) (-1182 $) (-1186)) 86) (((-650 $) $) 134) (((-650 $) $ (-1186)) 132)) (-4121 (($ (-959 $)) 91) (($ (-1182 $)) 90) (($ (-1182 $) (-1186)) 89) (($ $) 135) (($ $ (-1186)) 133)) (-2564 (((-112) $) 17)) (-1598 (((-650 (-1186)) $) 203)) (-3449 (((-413 (-1182 $)) $ (-618 $)) 235 (|has| |#1| (-562)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-4246 (((-650 (-618 $)) $) 166)) (-3997 (((-3 $ "failed") $ $) 20)) (-1465 (($ $ (-650 (-618 $)) (-650 $)) 156) (($ $ (-650 (-298 $))) 155) (($ $ (-298 $)) 154)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-2459 (($ $) 100)) (-1799 (((-112) $ $) 65)) (-2333 (($) 18 T CONST)) (-4088 (((-650 $) (-959 $)) 94) (((-650 $) (-1182 $)) 93) (((-650 $) (-1182 $) (-1186)) 92) (((-650 $) $) 138) (((-650 $) $ (-1186)) 136)) (-2056 (($ (-959 $)) 97) (($ (-1182 $)) 96) (($ (-1182 $) (-1186)) 95) (($ $) 139) (($ $ (-1186)) 137)) (-2435 (((-3 (-959 |#1|) "failed") $) 253 (|has| |#1| (-1058))) (((-3 (-413 (-959 |#1|)) "failed") $) 237 (|has| |#1| (-562))) (((-3 |#1| "failed") $) 199) (((-3 (-570) "failed") $) 196 (|has| |#1| (-1047 (-570)))) (((-3 (-1186) "failed") $) 190) (((-3 (-618 $) "failed") $) 141) (((-3 (-413 (-570)) "failed") $) 130 (-3749 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-4387 (((-959 |#1|) $) 252 (|has| |#1| (-1058))) (((-413 (-959 |#1|)) $) 236 (|has| |#1| (-562))) ((|#1| $) 198) (((-570) $) 197 (|has| |#1| (-1047 (-570)))) (((-1186) $) 189) (((-618 $) $) 140) (((-413 (-570)) $) 131 (-3749 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-2788 (($ $ $) 61)) (-3054 (((-695 |#1|) (-695 $)) 243 (|has| |#1| (-1058))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 242 (|has| |#1| (-1058))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 129 (-3749 (-3212 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-3212 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (((-695 (-570)) (-695 $)) 128 (-3749 (-3212 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-3212 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2145 (((-112) $) 79)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 195 (|has| |#1| (-893 (-384)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 194 (|has| |#1| (-893 (-570))))) (-3244 (($ (-650 $)) 160) (($ $) 159)) (-3380 (((-650 (-115)) $) 167)) (-2558 (((-115) (-115)) 168)) (-2005 (((-112) $) 35)) (-1973 (((-112) $) 188 (|has| $ (-1047 (-570))))) (-3249 (($ $) 220 (|has| |#1| (-1058)))) (-1587 (((-1134 |#1| (-618 $)) $) 219 (|has| |#1| (-1058)))) (-3035 (($ $ (-570)) 99)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1413 (((-1182 $) (-618 $)) 185 (|has| $ (-1058)))) (-2536 (($ (-1 $ $) (-618 $)) 174)) (-1954 (((-3 (-618 $) "failed") $) 164)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-2543 (((-650 (-618 $)) $) 165)) (-1665 (($ (-115) (-650 $)) 173) (($ (-115) $) 172)) (-3235 (((-3 (-650 $) "failed") $) 214 (|has| |#1| (-1121)))) (-4095 (((-3 (-2 (|:| |val| $) (|:| -2940 (-570))) "failed") $) 223 (|has| |#1| (-1058)))) (-3055 (((-3 (-650 $) "failed") $) 216 (|has| |#1| (-25)))) (-3490 (((-3 (-2 (|:| -1747 (-570)) (|:| |var| (-618 $))) "failed") $) 217 (|has| |#1| (-25)))) (-3353 (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-1186)) 222 (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-115)) 221 (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $) 215 (|has| |#1| (-1121)))) (-3917 (((-112) $ (-1186)) 171) (((-112) $ (-115)) 170)) (-4315 (($ $) 78)) (-3326 (((-777) $) 163)) (-3891 (((-1129) $) 11)) (-4326 (((-112) $) 201)) (-4337 ((|#1| $) 202)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2483 (((-112) $ (-1186)) 176) (((-112) $ $) 175)) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2160 (((-112) $) 187 (|has| $ (-1047 (-570))))) (-3034 (($ $ (-1186) (-777) (-1 $ $)) 227 (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ (-650 $))) 226 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) 225 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) 224 (|has| |#1| (-1058))) (($ $ (-650 (-115)) (-650 $) (-1186)) 213 (|has| |#1| (-620 (-542)))) (($ $ (-115) $ (-1186)) 212 (|has| |#1| (-620 (-542)))) (($ $) 211 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186))) 210 (|has| |#1| (-620 (-542)))) (($ $ (-1186)) 209 (|has| |#1| (-620 (-542)))) (($ $ (-115) (-1 $ $)) 184) (($ $ (-115) (-1 $ (-650 $))) 183) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 182) (($ $ (-650 (-115)) (-650 (-1 $ $))) 181) (($ $ (-1186) (-1 $ $)) 180) (($ $ (-1186) (-1 $ (-650 $))) 179) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 178) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 177) (($ $ (-650 $) (-650 $)) 148) (($ $ $ $) 147) (($ $ (-298 $)) 146) (($ $ (-650 (-298 $))) 145) (($ $ (-650 (-618 $)) (-650 $)) 144) (($ $ (-618 $) $) 143)) (-2002 (((-777) $) 64)) (-2057 (($ (-115) (-650 $)) 153) (($ (-115) $ $ $ $) 152) (($ (-115) $ $ $) 151) (($ (-115) $ $) 150) (($ (-115) $) 149)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-3047 (($ $ $) 162) (($ $) 161)) (-2375 (($ $ (-1186)) 251 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 250 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 249 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) 248 (|has| |#1| (-1058)))) (-4424 (($ $) 230 (|has| |#1| (-562)))) (-1599 (((-1134 |#1| (-618 $)) $) 229 (|has| |#1| (-562)))) (-3144 (($ $) 186 (|has| $ (-1058)))) (-2601 (((-542) $) 257 (|has| |#1| (-620 (-542)))) (($ (-424 $)) 228 (|has| |#1| (-562))) (((-899 (-384)) $) 193 (|has| |#1| (-620 (-899 (-384))))) (((-899 (-570)) $) 192 (|has| |#1| (-620 (-899 (-570)))))) (-2733 (($ $ $) 256 (|has| |#1| (-479)))) (-2319 (($ $ $) 255 (|has| |#1| (-479)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ (-959 |#1|)) 254 (|has| |#1| (-1058))) (($ (-413 (-959 |#1|))) 238 (|has| |#1| (-562))) (($ (-413 (-959 (-413 |#1|)))) 234 (|has| |#1| (-562))) (($ (-959 (-413 |#1|))) 233 (|has| |#1| (-562))) (($ (-413 |#1|)) 232 (|has| |#1| (-562))) (($ (-1134 |#1| (-618 $))) 218 (|has| |#1| (-1058))) (($ |#1|) 200) (($ (-1186)) 191) (($ (-618 $)) 142)) (-1660 (((-3 $ "failed") $) 241 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1613 (($ (-650 $)) 158) (($ $) 157)) (-1475 (((-112) (-115)) 169)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1620 (($ (-1186) (-650 $)) 208) (($ (-1186) $ $ $ $) 207) (($ (-1186) $ $ $) 206) (($ (-1186) $ $) 205) (($ (-1186) $) 204)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-1186)) 247 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 246 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 245 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) 244 (|has| |#1| (-1058)))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 73) (($ (-1134 |#1| (-618 $)) (-1134 |#1| (-618 $))) 231 (|has| |#1| (-562)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 98)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-174))) (($ |#1| $) 239 (|has| |#1| (-174)))))
-(((-29 |#1|) (-141) (-562)) (T -29))
-((-2056 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))) (-4088 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3)))) (-2056 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) (-4088 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *4)))) (-4121 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))) (-2842 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) (-2842 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-436 |t#1|) (-10 -8 (-15 -2056 ($ $)) (-15 -4088 ((-650 $) $)) (-15 -2056 ($ $ (-1186))) (-15 -4088 ((-650 $) $ (-1186))) (-15 -4121 ($ $)) (-15 -2842 ((-650 $) $)) (-15 -4121 ($ $ (-1186))) (-15 -2842 ((-650 $) $ (-1186)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 #1=(-413 (-959 |#1|))) |has| |#1| (-562)) ((-622 (-570)) . T) ((-622 #2=(-618 $)) . T) ((-622 #3=(-959 |#1|)) |has| |#1| (-1058)) ((-622 #4=(-1186)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-245) . T) ((-294) . T) ((-311) . T) ((-313 $) . T) ((-306) . T) ((-368) . T) ((-382 |#1|) |has| |#1| (-1058)) ((-406 |#1|) . T) ((-417 |#1|) . T) ((-436 |#1|) . T) ((-458) . T) ((-479) |has| |#1| (-479)) ((-520 (-618 $) $) . T) ((-520 $ $) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) |has| |#1| (-174)) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) . T) ((-645 (-570)) -12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) ((-645 |#1|) |has| |#1| (-1058)) ((-723 #0#) . T) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) . T) ((-732) . T) ((-907 (-1186)) |has| |#1| (-1058)) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-927) . T) ((-1011) . T) ((-1047 (-413 (-570))) -3749 (|has| |#1| (-1047 (-413 (-570)))) (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) ((-1047 #1#) |has| |#1| (-562)) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #2#) . T) ((-1047 #3#) |has| |#1| (-1058)) ((-1047 #4#) . T) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) |has| |#1| (-174)) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) |has| |#1| (-174)) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1227) . T) ((-1231) . T))
-((-2812 (((-1103 (-227)) $) NIL)) (-2800 (((-1103 (-227)) $) NIL)) (-1501 (($ $ (-227)) 164)) (-2777 (($ (-959 (-570)) (-1186) (-1186) (-1103 (-413 (-570))) (-1103 (-413 (-570)))) 104)) (-4084 (((-650 (-650 (-950 (-227)))) $) 180)) (-2869 (((-868) $) 194)))
-(((-30) (-13 (-962) (-10 -8 (-15 -2777 ($ (-959 (-570)) (-1186) (-1186) (-1103 (-413 (-570))) (-1103 (-413 (-570))))) (-15 -1501 ($ $ (-227)))))) (T -30))
-((-2777 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-959 (-570))) (-5 *3 (-1186)) (-5 *4 (-1103 (-413 (-570)))) (-5 *1 (-30)))) (-1501 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
-(-13 (-962) (-10 -8 (-15 -2777 ($ (-959 (-570)) (-1186) (-1186) (-1103 (-413 (-570))) (-1103 (-413 (-570))))) (-15 -1501 ($ $ (-227)))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-1144) $) 11)) (-1344 (((-112) $ $) NIL)) (-1540 (((-1144) $) 9)) (-3892 (((-112) $ $) NIL)))
-(((-31) (-13 (-1092) (-10 -8 (-15 -1540 ((-1144) $)) (-15 -1781 ((-1144) $))))) (T -31))
-((-1540 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31)))))
-(-13 (-1092) (-10 -8 (-15 -1540 ((-1144) $)) (-15 -1781 ((-1144) $))))
-((-2056 ((|#2| (-1182 |#2|) (-1186)) 41)) (-2558 (((-115) (-115)) 55)) (-1413 (((-1182 |#2|) (-618 |#2|)) 149 (|has| |#1| (-1047 (-570))))) (-1651 ((|#2| |#1| (-570)) 137 (|has| |#1| (-1047 (-570))))) (-3654 ((|#2| (-1182 |#2|) |#2|) 29)) (-2568 (((-868) (-650 |#2|)) 86)) (-3144 ((|#2| |#2|) 144 (|has| |#1| (-1047 (-570))))) (-1475 (((-112) (-115)) 17)) (** ((|#2| |#2| (-413 (-570))) 103 (|has| |#1| (-1047 (-570))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -2056 (|#2| (-1182 |#2|) (-1186))) (-15 -2558 ((-115) (-115))) (-15 -1475 ((-112) (-115))) (-15 -3654 (|#2| (-1182 |#2|) |#2|)) (-15 -2568 ((-868) (-650 |#2|))) (IF (|has| |#1| (-1047 (-570))) (PROGN (-15 ** (|#2| |#2| (-413 (-570)))) (-15 -1413 ((-1182 |#2|) (-618 |#2|))) (-15 -3144 (|#2| |#2|)) (-15 -1651 (|#2| |#1| (-570)))) |%noBranch|)) (-562) (-436 |#1|)) (T -32))
-((-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-4 *2 (-436 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1047 *4)) (-4 *3 (-562)))) (-3144 (*1 *2 *2) (-12 (-4 *3 (-1047 (-570))) (-4 *3 (-562)) (-5 *1 (-32 *3 *2)) (-4 *2 (-436 *3)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-436 *4)) (-4 *4 (-1047 (-570))) (-4 *4 (-562)) (-5 *2 (-1182 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-1047 (-570))) (-4 *4 (-562)) (-5 *1 (-32 *4 *2)) (-4 *2 (-436 *4)))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-562)) (-5 *2 (-868)) (-5 *1 (-32 *4 *5)))) (-3654 (*1 *2 *3 *2) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) (-5 *1 (-32 *4 *2)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-436 *4)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-32 *3 *4)) (-4 *4 (-436 *3)))) (-2056 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *2)) (-5 *4 (-1186)) (-4 *2 (-436 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-562)))))
-(-10 -7 (-15 -2056 (|#2| (-1182 |#2|) (-1186))) (-15 -2558 ((-115) (-115))) (-15 -1475 ((-112) (-115))) (-15 -3654 (|#2| (-1182 |#2|) |#2|)) (-15 -2568 ((-868) (-650 |#2|))) (IF (|has| |#1| (-1047 (-570))) (PROGN (-15 ** (|#2| |#2| (-413 (-570)))) (-15 -1413 ((-1182 |#2|) (-618 |#2|))) (-15 -3144 (|#2| |#2|)) (-15 -1651 (|#2| |#1| (-570)))) |%noBranch|))
-((-2855 (((-112) $ (-777)) 20)) (-2333 (($) 10)) (-2497 (((-112) $ (-777)) 19)) (-2065 (((-112) $ (-777)) 17)) (-2914 (((-112) $ $) 8)) (-2171 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -2333 (|#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777))) (-15 -2171 ((-112) |#1|)) (-15 -2914 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -2333 (|#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777))) (-15 -2171 ((-112) |#1|)) (-15 -2914 ((-112) |#1| |#1|)))
-((-2855 (((-112) $ (-777)) 8)) (-2333 (($) 7 T CONST)) (-2497 (((-112) $ (-777)) 9)) (-2065 (((-112) $ (-777)) 10)) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3064 (($ $) 13)) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
+((-3748 (*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27)))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27)))) (-3748 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-4049 (*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27)))) (-4049 (*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27)))) (-4049 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27)) (-5 *2 (-652 *1)))))
+(-13 (-370) (-1013) (-10 -8 (-15 -3748 ($ (-961 $))) (-15 -3748 ($ (-1184 $))) (-15 -3748 ($ (-1184 $) (-1188))) (-15 -1755 ((-652 $) (-961 $))) (-15 -1755 ((-652 $) (-1184 $))) (-15 -1755 ((-652 $) (-1184 $) (-1188))) (-15 -4049 ($ (-961 $))) (-15 -4049 ($ (-1184 $))) (-15 -4049 ($ (-1184 $) (-1188))) (-15 -2814 ((-652 $) (-961 $))) (-15 -2814 ((-652 $) (-1184 $))) (-15 -2814 ((-652 $) (-1184 $) (-1188)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1013) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
+((-2814 (((-652 $) (-961 $)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-1184 $) (-1188)) 55) (((-652 $) $) 22) (((-652 $) $ (-1188)) 46)) (-4049 (($ (-961 $)) NIL) (($ (-1184 $)) NIL) (($ (-1184 $) (-1188)) 57) (($ $) 20) (($ $ (-1188)) 40)) (-1755 (((-652 $) (-961 $)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-1184 $) (-1188)) 53) (((-652 $) $) 18) (((-652 $) $ (-1188)) 48)) (-3748 (($ (-961 $)) NIL) (($ (-1184 $)) NIL) (($ (-1184 $) (-1188)) NIL) (($ $) 15) (($ $ (-1188)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2814 ((-652 |#1|) |#1| (-1188))) (-15 -4049 (|#1| |#1| (-1188))) (-15 -2814 ((-652 |#1|) |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -1755 ((-652 |#1|) |#1| (-1188))) (-15 -3748 (|#1| |#1| (-1188))) (-15 -1755 ((-652 |#1|) |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -2814 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2814 ((-652 |#1|) (-1184 |#1|))) (-15 -2814 ((-652 |#1|) (-961 |#1|))) (-15 -4049 (|#1| (-1184 |#1|) (-1188))) (-15 -4049 (|#1| (-1184 |#1|))) (-15 -4049 (|#1| (-961 |#1|))) (-15 -1755 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -1755 ((-652 |#1|) (-1184 |#1|))) (-15 -1755 ((-652 |#1|) (-961 |#1|))) (-15 -3748 (|#1| (-1184 |#1|) (-1188))) (-15 -3748 (|#1| (-1184 |#1|))) (-15 -3748 (|#1| (-961 |#1|)))) (-29 |#2|) (-564)) (T -28))
+NIL
+(-10 -8 (-15 -2814 ((-652 |#1|) |#1| (-1188))) (-15 -4049 (|#1| |#1| (-1188))) (-15 -2814 ((-652 |#1|) |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -1755 ((-652 |#1|) |#1| (-1188))) (-15 -3748 (|#1| |#1| (-1188))) (-15 -1755 ((-652 |#1|) |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -2814 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -2814 ((-652 |#1|) (-1184 |#1|))) (-15 -2814 ((-652 |#1|) (-961 |#1|))) (-15 -4049 (|#1| (-1184 |#1|) (-1188))) (-15 -4049 (|#1| (-1184 |#1|))) (-15 -4049 (|#1| (-961 |#1|))) (-15 -1755 ((-652 |#1|) (-1184 |#1|) (-1188))) (-15 -1755 ((-652 |#1|) (-1184 |#1|))) (-15 -1755 ((-652 |#1|) (-961 |#1|))) (-15 -3748 (|#1| (-1184 |#1|) (-1188))) (-15 -3748 (|#1| (-1184 |#1|))) (-15 -3748 (|#1| (-961 |#1|))))
+((-3464 (((-112) $ $) 7)) (-2814 (((-652 $) (-961 $)) 88) (((-652 $) (-1184 $)) 87) (((-652 $) (-1184 $) (-1188)) 86) (((-652 $) $) 134) (((-652 $) $ (-1188)) 132)) (-4049 (($ (-961 $)) 91) (($ (-1184 $)) 90) (($ (-1184 $) (-1188)) 89) (($ $) 135) (($ $ (-1188)) 133)) (-3143 (((-112) $) 17)) (-2220 (((-652 (-1188)) $) 203)) (-4063 (((-415 (-1184 $)) $ (-620 $)) 235 (|has| |#1| (-564)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-1746 (((-652 (-620 $)) $) 166)) (-2092 (((-3 $ "failed") $ $) 20)) (-1480 (($ $ (-652 (-620 $)) (-652 $)) 156) (($ $ (-652 (-300 $))) 155) (($ $ (-300 $)) 154)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-3093 (($ $) 100)) (-4252 (((-112) $ $) 65)) (-1586 (($) 18 T CONST)) (-1755 (((-652 $) (-961 $)) 94) (((-652 $) (-1184 $)) 93) (((-652 $) (-1184 $) (-1188)) 92) (((-652 $) $) 138) (((-652 $) $ (-1188)) 136)) (-3748 (($ (-961 $)) 97) (($ (-1184 $)) 96) (($ (-1184 $) (-1188)) 95) (($ $) 139) (($ $ (-1188)) 137)) (-3072 (((-3 (-961 |#1|) "failed") $) 253 (|has| |#1| (-1060))) (((-3 (-415 (-961 |#1|)) "failed") $) 237 (|has| |#1| (-564))) (((-3 |#1| "failed") $) 199) (((-3 (-572) "failed") $) 196 (|has| |#1| (-1049 (-572)))) (((-3 (-1188) "failed") $) 190) (((-3 (-620 $) "failed") $) 141) (((-3 (-415 (-572)) "failed") $) 130 (-3783 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-1869 (((-961 |#1|) $) 252 (|has| |#1| (-1060))) (((-415 (-961 |#1|)) $) 236 (|has| |#1| (-564))) ((|#1| $) 198) (((-572) $) 197 (|has| |#1| (-1049 (-572)))) (((-1188) $) 189) (((-620 $) $) 140) (((-415 (-572)) $) 131 (-3783 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-3407 (($ $ $) 61)) (-2245 (((-697 |#1|) (-697 $)) 243 (|has| |#1| (-1060))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 242 (|has| |#1| (-1060))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 129 (-3783 (-3804 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (-3804 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (((-697 (-572)) (-697 $)) 128 (-3783 (-3804 (|has| |#1| (-1060)) (|has| |#1| (-647 (-572)))) (-3804 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3439 (((-112) $) 79)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 195 (|has| |#1| (-895 (-386)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 194 (|has| |#1| (-895 (-572))))) (-3666 (($ (-652 $)) 160) (($ $) 159)) (-1323 (((-652 (-115)) $) 167)) (-3181 (((-115) (-115)) 168)) (-4422 (((-112) $) 35)) (-2270 (((-112) $) 188 (|has| $ (-1049 (-572))))) (-3710 (($ $) 220 (|has| |#1| (-1060)))) (-2209 (((-1136 |#1| (-620 $)) $) 219 (|has| |#1| (-1060)))) (-2033 (($ $ (-572)) 99)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2328 (((-1184 $) (-620 $)) 185 (|has| $ (-1060)))) (-3161 (($ (-1 $ $) (-620 $)) 174)) (-2094 (((-3 (-620 $) "failed") $) 164)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-3165 (((-652 (-620 $)) $) 165)) (-2296 (($ (-115) (-652 $)) 173) (($ (-115) $) 172)) (-3570 (((-3 (-652 $) "failed") $) 214 (|has| |#1| (-1123)))) (-1828 (((-3 (-2 (|:| |val| $) (|:| -2477 (-572))) "failed") $) 223 (|has| |#1| (-1060)))) (-2257 (((-3 (-652 $) "failed") $) 216 (|has| |#1| (-25)))) (-4285 (((-3 (-2 (|:| -2379 (-572)) (|:| |var| (-620 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2298 (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-1188)) 222 (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-115)) 221 (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $) 215 (|has| |#1| (-1123)))) (-2685 (((-112) $ (-1188)) 171) (((-112) $ (-115)) 170)) (-1809 (($ $) 78)) (-3920 (((-779) $) 163)) (-2614 (((-1131) $) 11)) (-1817 (((-112) $) 201)) (-1829 ((|#1| $) 202)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3681 (((-112) $ (-1188)) 176) (((-112) $ $) 175)) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3601 (((-112) $) 187 (|has| $ (-1049 (-572))))) (-3654 (($ $ (-1188) (-779) (-1 $ $)) 227 (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ (-652 $))) 226 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) 225 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) 224 (|has| |#1| (-1060))) (($ $ (-652 (-115)) (-652 $) (-1188)) 213 (|has| |#1| (-622 (-544)))) (($ $ (-115) $ (-1188)) 212 (|has| |#1| (-622 (-544)))) (($ $) 211 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188))) 210 (|has| |#1| (-622 (-544)))) (($ $ (-1188)) 209 (|has| |#1| (-622 (-544)))) (($ $ (-115) (-1 $ $)) 184) (($ $ (-115) (-1 $ (-652 $))) 183) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 182) (($ $ (-652 (-115)) (-652 (-1 $ $))) 181) (($ $ (-1188) (-1 $ $)) 180) (($ $ (-1188) (-1 $ (-652 $))) 179) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 178) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 177) (($ $ (-652 $) (-652 $)) 148) (($ $ $ $) 147) (($ $ (-300 $)) 146) (($ $ (-652 (-300 $))) 145) (($ $ (-652 (-620 $)) (-652 $)) 144) (($ $ (-620 $) $) 143)) (-4395 (((-779) $) 64)) (-2679 (($ (-115) (-652 $)) 153) (($ (-115) $ $ $ $) 152) (($ (-115) $ $ $) 151) (($ (-115) $ $) 150) (($ (-115) $) 149)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-2151 (($ $ $) 162) (($ $) 161)) (-3011 (($ $ (-1188)) 251 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 250 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 249 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) 248 (|has| |#1| (-1060)))) (-3982 (($ $) 230 (|has| |#1| (-564)))) (-2224 (((-1136 |#1| (-620 $)) $) 229 (|has| |#1| (-564)))) (-3858 (($ $) 186 (|has| $ (-1060)))) (-3222 (((-544) $) 257 (|has| |#1| (-622 (-544)))) (($ (-426 $)) 228 (|has| |#1| (-564))) (((-901 (-386)) $) 193 (|has| |#1| (-622 (-901 (-386))))) (((-901 (-572)) $) 192 (|has| |#1| (-622 (-901 (-572)))))) (-4242 (($ $ $) 256 (|has| |#1| (-481)))) (-1433 (($ $ $) 255 (|has| |#1| (-481)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ (-961 |#1|)) 254 (|has| |#1| (-1060))) (($ (-415 (-961 |#1|))) 238 (|has| |#1| (-564))) (($ (-415 (-961 (-415 |#1|)))) 234 (|has| |#1| (-564))) (($ (-961 (-415 |#1|))) 233 (|has| |#1| (-564))) (($ (-415 |#1|)) 232 (|has| |#1| (-564))) (($ (-1136 |#1| (-620 $))) 218 (|has| |#1| (-1060))) (($ |#1|) 200) (($ (-1188)) 191) (($ (-620 $)) 142)) (-2210 (((-3 $ "failed") $) 241 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-1850 (($ (-652 $)) 158) (($ $) 157)) (-3088 (((-112) (-115)) 169)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2244 (($ (-1188) (-652 $)) 208) (($ (-1188) $ $ $ $) 207) (($ (-1188) $ $ $) 206) (($ (-1188) $ $) 205) (($ (-1188) $) 204)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-1188)) 247 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 246 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 245 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) 244 (|has| |#1| (-1060)))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 73) (($ (-1136 |#1| (-620 $)) (-1136 |#1| (-620 $))) 231 (|has| |#1| (-564)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 98)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-174))) (($ |#1| $) 239 (|has| |#1| (-174)))))
+(((-29 |#1|) (-141) (-564)) (T -29))
+((-3748 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564)))) (-1755 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3)))) (-3748 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564)))) (-1755 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *4)))) (-4049 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564)))) (-2814 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564)))) (-2814 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-438 |t#1|) (-10 -8 (-15 -3748 ($ $)) (-15 -1755 ((-652 $) $)) (-15 -3748 ($ $ (-1188))) (-15 -1755 ((-652 $) $ (-1188))) (-15 -4049 ($ $)) (-15 -2814 ((-652 $) $)) (-15 -4049 ($ $ (-1188))) (-15 -2814 ((-652 $) $ (-1188)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 #1=(-415 (-961 |#1|))) |has| |#1| (-564)) ((-624 (-572)) . T) ((-624 #2=(-620 $)) . T) ((-624 #3=(-961 |#1|)) |has| |#1| (-1060)) ((-624 #4=(-1188)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-247) . T) ((-296) . T) ((-313) . T) ((-315 $) . T) ((-308) . T) ((-370) . T) ((-384 |#1|) |has| |#1| (-1060)) ((-408 |#1|) . T) ((-419 |#1|) . T) ((-438 |#1|) . T) ((-460) . T) ((-481) |has| |#1| (-481)) ((-522 (-620 $) $) . T) ((-522 $ $) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) |has| |#1| (-174)) ((-654 $) . T) ((-656 #0#) . T) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) . T) ((-647 (-572)) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) ((-647 |#1|) |has| |#1| (-1060)) ((-725 #0#) . T) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) . T) ((-734) . T) ((-909 (-1188)) |has| |#1| (-1060)) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-929) . T) ((-1013) . T) ((-1049 (-415 (-572))) -3783 (|has| |#1| (-1049 (-415 (-572)))) (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) ((-1049 #1#) |has| |#1| (-564)) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #2#) . T) ((-1049 #3#) |has| |#1| (-1060)) ((-1049 #4#) . T) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) |has| |#1| (-174)) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T) ((-1233) . T))
+((-3023 (((-1105 (-227)) $) NIL)) (-3009 (((-1105 (-227)) $) NIL)) (-3348 (($ $ (-227)) 164)) (-3509 (($ (-961 (-572)) (-1188) (-1188) (-1105 (-415 (-572))) (-1105 (-415 (-572)))) 104)) (-1716 (((-652 (-652 (-952 (-227)))) $) 180)) (-3491 (((-870) $) 194)))
+(((-30) (-13 (-964) (-10 -8 (-15 -3509 ($ (-961 (-572)) (-1188) (-1188) (-1105 (-415 (-572))) (-1105 (-415 (-572))))) (-15 -3348 ($ $ (-227)))))) (T -30))
+((-3509 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-961 (-572))) (-5 *3 (-1188)) (-5 *4 (-1105 (-415 (-572)))) (-5 *1 (-30)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
+(-13 (-964) (-10 -8 (-15 -3509 ($ (-961 (-572)) (-1188) (-1188) (-1105 (-415 (-572))) (-1105 (-415 (-572))))) (-15 -3348 ($ $ (-227)))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-1146) $) 11)) (-3424 (((-112) $ $) NIL)) (-1556 (((-1146) $) 9)) (-3921 (((-112) $ $) NIL)))
+(((-31) (-13 (-1094) (-10 -8 (-15 -1556 ((-1146) $)) (-15 -2414 ((-1146) $))))) (T -31))
+((-1556 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31)))))
+(-13 (-1094) (-10 -8 (-15 -1556 ((-1146) $)) (-15 -2414 ((-1146) $))))
+((-3748 ((|#2| (-1184 |#2|) (-1188)) 41)) (-3181 (((-115) (-115)) 55)) (-2328 (((-1184 |#2|) (-620 |#2|)) 149 (|has| |#1| (-1049 (-572))))) (-2110 ((|#2| |#1| (-572)) 137 (|has| |#1| (-1049 (-572))))) (-2129 ((|#2| (-1184 |#2|) |#2|) 29)) (-1898 (((-870) (-652 |#2|)) 86)) (-3858 ((|#2| |#2|) 144 (|has| |#1| (-1049 (-572))))) (-3088 (((-112) (-115)) 17)) (** ((|#2| |#2| (-415 (-572))) 103 (|has| |#1| (-1049 (-572))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3748 (|#2| (-1184 |#2|) (-1188))) (-15 -3181 ((-115) (-115))) (-15 -3088 ((-112) (-115))) (-15 -2129 (|#2| (-1184 |#2|) |#2|)) (-15 -1898 ((-870) (-652 |#2|))) (IF (|has| |#1| (-1049 (-572))) (PROGN (-15 ** (|#2| |#2| (-415 (-572)))) (-15 -2328 ((-1184 |#2|) (-620 |#2|))) (-15 -3858 (|#2| |#2|)) (-15 -2110 (|#2| |#1| (-572)))) |%noBranch|)) (-564) (-438 |#1|)) (T -32))
+((-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-4 *2 (-438 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1049 *4)) (-4 *3 (-564)))) (-3858 (*1 *2 *2) (-12 (-4 *3 (-1049 (-572))) (-4 *3 (-564)) (-5 *1 (-32 *3 *2)) (-4 *2 (-438 *3)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-438 *4)) (-4 *4 (-1049 (-572))) (-4 *4 (-564)) (-5 *2 (-1184 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-1049 (-572))) (-4 *4 (-564)) (-5 *1 (-32 *4 *2)) (-4 *2 (-438 *4)))) (-1898 (*1 *2 *3) (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-564)) (-5 *2 (-870)) (-5 *1 (-32 *4 *5)))) (-2129 (*1 *2 *3 *2) (-12 (-5 *3 (-1184 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564)) (-5 *1 (-32 *4 *2)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-438 *4)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-32 *3 *4)) (-4 *4 (-438 *3)))) (-3748 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *2)) (-5 *4 (-1188)) (-4 *2 (-438 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-564)))))
+(-10 -7 (-15 -3748 (|#2| (-1184 |#2|) (-1188))) (-15 -3181 ((-115) (-115))) (-15 -3088 ((-112) (-115))) (-15 -2129 (|#2| (-1184 |#2|) |#2|)) (-15 -1898 ((-870) (-652 |#2|))) (IF (|has| |#1| (-1049 (-572))) (PROGN (-15 ** (|#2| |#2| (-415 (-572)))) (-15 -2328 ((-1184 |#2|) (-620 |#2|))) (-15 -3858 (|#2| |#2|)) (-15 -2110 (|#2| |#1| (-572)))) |%noBranch|))
+((-2938 (((-112) $ (-779)) 20)) (-1586 (($) 10)) (-2545 (((-112) $ (-779)) 19)) (-3818 (((-112) $ (-779)) 17)) (-2187 (((-112) $ $) 8)) (-3712 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -1586 (|#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779))) (-15 -3712 ((-112) |#1|)) (-15 -2187 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -1586 (|#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779))) (-15 -3712 ((-112) |#1|)) (-15 -2187 ((-112) |#1| |#1|)))
+((-2938 (((-112) $ (-779)) 8)) (-1586 (($) 7 T CONST)) (-2545 (((-112) $ (-779)) 9)) (-3818 (((-112) $ (-779)) 10)) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-3679 (($ $) 13)) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
(((-34) (-141)) (T -34))
-((-2914 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3064 (*1 *1 *1) (-4 *1 (-34))) (-1698 (*1 *1) (-4 *1 (-34))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2065 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) (-2497 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) (-2855 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) (-2333 (*1 *1) (-4 *1 (-34))) (-2857 (*1 *2 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-34)) (-5 *2 (-777)))))
-(-13 (-1227) (-10 -8 (-15 -2914 ((-112) $ $)) (-15 -3064 ($ $)) (-15 -1698 ($)) (-15 -2171 ((-112) $)) (-15 -2065 ((-112) $ (-777))) (-15 -2497 ((-112) $ (-777))) (-15 -2855 ((-112) $ (-777))) (-15 -2333 ($) -3722) (IF (|has| $ (-6 -4452)) (-15 -2857 ((-777) $)) |%noBranch|)))
-(((-1227) . T))
-((-1561 (($ $) 11)) (-1536 (($ $) 10)) (-1585 (($ $) 9)) (-2900 (($ $) 8)) (-1575 (($ $) 7)) (-1546 (($ $) 6)))
+((-2187 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3679 (*1 *1 *1) (-4 *1 (-34))) (-1321 (*1 *1) (-4 *1 (-34))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3818 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))) (-2545 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))) (-2938 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))) (-1586 (*1 *1) (-4 *1 (-34))) (-3475 (*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-34)) (-5 *2 (-779)))))
+(-13 (-1229) (-10 -8 (-15 -2187 ((-112) $ $)) (-15 -3679 ($ $)) (-15 -1321 ($)) (-15 -3712 ((-112) $)) (-15 -3818 ((-112) $ (-779))) (-15 -2545 ((-112) $ (-779))) (-15 -2938 ((-112) $ (-779))) (-15 -1586 ($) -4338) (IF (|has| $ (-6 -4454)) (-15 -3475 ((-779) $)) |%noBranch|)))
+(((-1229) . T))
+((-2176 (($ $) 11)) (-2152 (($ $) 10)) (-2204 (($ $) 9)) (-3120 (($ $) 8)) (-2193 (($ $) 7)) (-2162 (($ $) 6)))
(((-35) (-141)) (T -35))
-((-1561 (*1 *1 *1) (-4 *1 (-35))) (-1536 (*1 *1 *1) (-4 *1 (-35))) (-1585 (*1 *1 *1) (-4 *1 (-35))) (-2900 (*1 *1 *1) (-4 *1 (-35))) (-1575 (*1 *1 *1) (-4 *1 (-35))) (-1546 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -1546 ($ $)) (-15 -1575 ($ $)) (-15 -2900 ($ $)) (-15 -1585 ($ $)) (-15 -1536 ($ $)) (-15 -1561 ($ $))))
-((-2847 (((-112) $ $) 19 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-4156 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 127)) (-2975 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 150)) (-3446 (($ $) 148)) (-2284 (($) 73) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 72)) (-2204 (((-1282) $ |#1| |#1|) 100 (|has| $ (-6 -4453))) (((-1282) $ (-570) (-570)) 180 (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) 161 (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2778 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 202 (|has| $ (-6 -4453))) (($ $) 201 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)) (|has| $ (-6 -4453))))) (-2018 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2855 (((-112) $ (-777)) 8)) (-2854 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 136 (|has| $ (-6 -4453)))) (-2364 (($ $ $) 157 (|has| $ (-6 -4453)))) (-1639 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 159 (|has| $ (-6 -4453)))) (-1967 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 155 (|has| $ (-6 -4453)))) (-3040 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 191 (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-1244 (-570)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 162 (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "last" (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 160 (|has| $ (-6 -4453))) (($ $ "rest" $) 158 (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "first" (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 156 (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "value" (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 135 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 134 (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 46 (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 218)) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 56 (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 177 (|has| $ (-6 -4452)))) (-2963 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 149)) (-1390 (((-3 |#2| "failed") |#1| $) 62)) (-2333 (($) 7 T CONST)) (-4125 (($ $) 203 (|has| $ (-6 -4453)))) (-4366 (($ $) 213)) (-1962 (($ $ (-777)) 144) (($ $) 142)) (-1381 (($ $) 216 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-3153 (($ $) 59 (-3749 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452))) (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 47 (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 222) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 217 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 55 (|has| $ (-6 -4452))) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 176 (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 57 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 54 (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 53 (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 178 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 175 (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 174 (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 192 (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) 89) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) 190)) (-2836 (((-112) $) 194)) (-2619 (((-570) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 210) (((-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 209 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) (((-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) 208 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 31 (|has| $ (-6 -4452))) (((-650 |#2|) $) 80 (|has| $ (-6 -4452))) (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 116 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 125)) (-1427 (((-112) $ $) 133 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-2296 (($ (-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 170)) (-2497 (((-112) $ (-777)) 9)) (-4372 ((|#1| $) 97 (|has| |#1| (-856))) (((-570) $) 182 (|has| (-570) (-856)))) (-1908 (($ $ $) 200 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3675 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-4356 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 30 (|has| $ (-6 -4452))) (((-650 |#2|) $) 81 (|has| $ (-6 -4452))) (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 117 (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452)))) (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452))))) (-1894 ((|#1| $) 96 (|has| |#1| (-856))) (((-570) $) 183 (|has| (-570) (-856)))) (-1764 (($ $ $) 199 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 35 (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4453))) (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 112 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 111)) (-1677 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 227)) (-2065 (((-112) $ (-777)) 10)) (-2466 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 130)) (-2708 (((-112) $) 126)) (-3240 (((-1168) $) 22 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3637 (($ $ (-777)) 147) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 145)) (-1988 (((-650 |#1|) $) 64)) (-2093 (((-112) |#1| $) 65)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 40)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 41) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) 221) (($ $ $ (-570)) 220)) (-2119 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) 164) (($ $ $ (-570)) 163)) (-4075 (((-650 |#1|) $) 94) (((-650 (-570)) $) 185)) (-4276 (((-112) |#1| $) 93) (((-112) (-570) $) 186)) (-3891 (((-1129) $) 21 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-1948 ((|#2| $) 98 (|has| |#1| (-856))) (($ $ (-777)) 141) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 139)) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 52) (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 173)) (-4222 (($ $ |#2|) 99 (|has| $ (-6 -4453))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 181 (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 42)) (-2655 (((-112) $) 193)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 33 (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 114 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) 27 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 26 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 25 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 24 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 87 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 85 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) 84 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 123 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 122 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 121 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) 120 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 184 (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-2856 (((-650 |#2|) $) 92) (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 187)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 189) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) 188) (($ $ (-1244 (-570))) 171) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "first") 140) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "value") 128)) (-2352 (((-570) $ $) 131)) (-2910 (($) 50) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 49)) (-3332 (($ $ (-570)) 224) (($ $ (-1244 (-570))) 223)) (-3225 (($ $ (-570)) 166) (($ $ (-1244 (-570))) 165)) (-1355 (((-112) $) 129)) (-2288 (($ $) 153)) (-3277 (($ $) 154 (|has| $ (-6 -4453)))) (-2846 (((-777) $) 152)) (-3522 (($ $) 151)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 32 (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-777) |#2| $) 82 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 115 (|has| $ (-6 -4452)))) (-2181 (($ $ $ (-570)) 204 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542)))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 51) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 172)) (-1674 (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 226) (($ $ $) 225)) (-1505 (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 169) (($ (-650 $)) 168) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 138) (($ $ $) 137)) (-2869 (((-868) $) 18 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868)))))) (-2671 (((-650 $) $) 124)) (-3984 (((-112) $ $) 132 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-1344 (((-112) $ $) 23 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 43)) (-3651 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") |#1| $) 110)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 34 (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 113 (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) 197 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3933 (((-112) $ $) 196 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3892 (((-112) $ $) 20 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3945 (((-112) $ $) 198 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3918 (((-112) $ $) 195 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-36 |#1| |#2|) (-141) (-1109) (-1109)) (T -36))
-((-3651 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| -4144 *3) (|:| -3165 *4))))))
-(-13 (-1203 |t#1| |t#2|) (-672 (-2 (|:| -4144 |t#1|) (|:| -3165 |t#2|))) (-10 -8 (-15 -3651 ((-3 (-2 (|:| -4144 |t#1|) (|:| -3165 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) ((-102) -3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856))) ((-619 (-868)) -3749 (|has| |#2| (-1109)) (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868)))) ((-152 #1=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) ((-620 (-542)) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))) ((-231 #0#) . T) ((-237 #0#) . T) ((-290 #2=(-570) #1#) . T) ((-290 (-1244 (-570)) $) . T) ((-290 |#1| |#2|) . T) ((-292 #2# #1#) . T) ((-292 |#1| |#2|) . T) ((-313 #1#) -12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-286 #1#) . T) ((-378 #1#) . T) ((-495 #1#) . T) ((-495 |#2|) . T) ((-610 #2# #1#) . T) ((-610 |#1| |#2|) . T) ((-520 #1# #1#) -12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-616 |#1| |#2|) . T) ((-657 #1#) . T) ((-672 #1#) . T) ((-856) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)) ((-1019 #1#) . T) ((-1109) -3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856))) ((-1158 #1#) . T) ((-1203 |#1| |#2|) . T) ((-1227) . T) ((-1265 #1#) . T))
-((-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-38 |#2|) (-174)) (T -37))
-NIL
-(-10 -8 (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-2176 (*1 *1 *1) (-4 *1 (-35))) (-2152 (*1 *1 *1) (-4 *1 (-35))) (-2204 (*1 *1 *1) (-4 *1 (-35))) (-3120 (*1 *1 *1) (-4 *1 (-35))) (-2193 (*1 *1 *1) (-4 *1 (-35))) (-2162 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -2162 ($ $)) (-15 -2193 ($ $)) (-15 -3120 ($ $)) (-15 -2204 ($ $)) (-15 -2152 ($ $)) (-15 -2176 ($ $))))
+((-3464 (((-112) $ $) 19 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-1653 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 127)) (-3598 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 150)) (-4058 (($ $) 148)) (-2912 (($) 73) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 72)) (-2812 (((-1284) $ |#1| |#1|) 100 (|has| $ (-6 -4455))) (((-1284) $ (-572) (-572)) 180 (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) 161 (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3519 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 202 (|has| $ (-6 -4455))) (($ $) 201 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)) (|has| $ (-6 -4455))))) (-2641 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-2938 (((-112) $ (-779)) 8)) (-2927 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 136 (|has| $ (-6 -4455)))) (-3835 (($ $ $) 157 (|has| $ (-6 -4455)))) (-1993 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 159 (|has| $ (-6 -4455)))) (-2219 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 155 (|has| $ (-6 -4455)))) (-3659 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 191 (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-1246 (-572)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 162 (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "last" (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 160 (|has| $ (-6 -4455))) (($ $ "rest" $) 158 (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "first" (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 156 (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "value" (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 135 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 134 (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 46 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 218)) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 56 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 177 (|has| $ (-6 -4454)))) (-3587 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 149)) (-1998 (((-3 |#2| "failed") |#1| $) 62)) (-1586 (($) 7 T CONST)) (-4095 (($ $) 203 (|has| $ (-6 -4455)))) (-1852 (($ $) 213)) (-2581 (($ $ (-779)) 144) (($ $) 142)) (-1727 (($ $) 216 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-3955 (($ $) 59 (-3783 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454))) (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 47 (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 222) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 217 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 55 (|has| $ (-6 -4454))) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 179 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 176 (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 57 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 54 (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 53 (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 178 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 175 (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 174 (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 192 (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) 89) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) 190)) (-2760 (((-112) $) 194)) (-3239 (((-572) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 210) (((-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 209 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) (((-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) 208 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 31 (|has| $ (-6 -4454))) (((-652 |#2|) $) 80 (|has| $ (-6 -4454))) (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 116 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 125)) (-1890 (((-112) $ $) 133 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-2924 (($ (-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 170)) (-2545 (((-112) $ (-779)) 9)) (-1531 ((|#1| $) 97 (|has| |#1| (-858))) (((-572) $) 182 (|has| (-572) (-858)))) (-2536 (($ $ $) 200 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-2363 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-1377 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 30 (|has| $ (-6 -4454))) (((-652 |#2|) $) 81 (|has| $ (-6 -4454))) (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 117 (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454)))) (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 119 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-2751 ((|#1| $) 96 (|has| |#1| (-858))) (((-572) $) 183 (|has| (-572) (-858)))) (-3928 (($ $ $) 199 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 35 (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4455))) (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 112 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 111)) (-2307 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 227)) (-3818 (((-112) $ (-779)) 10)) (-3104 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 130)) (-3989 (((-112) $) 126)) (-3618 (((-1170) $) 22 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-4261 (($ $ (-779)) 147) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 145)) (-2608 (((-652 |#1|) $) 64)) (-4096 (((-112) |#1| $) 65)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 40)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 41) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) 221) (($ $ $ (-572)) 220)) (-2744 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) 164) (($ $ $ (-572)) 163)) (-1634 (((-652 |#1|) $) 94) (((-652 (-572)) $) 185)) (-3132 (((-112) |#1| $) 93) (((-112) (-572) $) 186)) (-2614 (((-1131) $) 21 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2570 ((|#2| $) 98 (|has| |#1| (-858))) (($ $ (-779)) 141) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 139)) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 52) (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 173)) (-3803 (($ $ |#2|) 99 (|has| $ (-6 -4455))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 181 (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 42)) (-1540 (((-112) $) 193)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 33 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 114 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) 27 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 26 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 25 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 24 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 87 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 85 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) 84 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 123 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 122 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 121 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) 120 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 184 (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2950 (((-652 |#2|) $) 92) (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 187)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 189) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) 188) (($ $ (-1246 (-572))) 171) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "first") 140) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "value") 128)) (-1762 (((-572) $ $) 131)) (-2145 (($) 50) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 49)) (-2049 (($ $ (-572)) 224) (($ $ (-1246 (-572))) 223)) (-3817 (($ $ (-572)) 166) (($ $ (-1246 (-572))) 165)) (-3727 (((-112) $) 129)) (-2393 (($ $) 153)) (-2770 (($ $) 154 (|has| $ (-6 -4455)))) (-2847 (((-779) $) 152)) (-3376 (($ $) 151)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 32 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-779) |#2| $) 82 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 115 (|has| $ (-6 -4454)))) (-2561 (($ $ $ (-572)) 204 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544)))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 51) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 172)) (-2355 (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 226) (($ $ $) 225)) (-2121 (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 169) (($ (-652 $)) 168) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 138) (($ $ $) 137)) (-3491 (((-870) $) 18 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870)))))) (-1678 (((-652 $) $) 124)) (-1955 (((-112) $ $) 132 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-3424 (((-112) $ $) 23 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 43)) (-4274 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") |#1| $) 110)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 34 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 113 (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) 197 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3954 (((-112) $ $) 196 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3921 (((-112) $ $) 20 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3965 (((-112) $ $) 198 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3943 (((-112) $ $) 195 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-36 |#1| |#2|) (-141) (-1111) (-1111)) (T -36))
+((-4274 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| -1640 *3) (|:| -3762 *4))))))
+(-13 (-1205 |t#1| |t#2|) (-674 (-2 (|:| -1640 |t#1|) (|:| -3762 |t#2|))) (-10 -8 (-15 -4274 ((-3 (-2 (|:| -1640 |t#1|) (|:| -3762 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) ((-102) -3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858))) ((-621 (-870)) -3783 (|has| |#2| (-1111)) (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870)))) ((-152 #1=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) ((-622 (-544)) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))) ((-231 #0#) . T) ((-239 #0#) . T) ((-292 #2=(-572) #1#) . T) ((-292 (-1246 (-572)) $) . T) ((-292 |#1| |#2|) . T) ((-294 #2# #1#) . T) ((-294 |#1| |#2|) . T) ((-315 #1#) -12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-288 #1#) . T) ((-380 #1#) . T) ((-497 #1#) . T) ((-497 |#2|) . T) ((-612 #2# #1#) . T) ((-612 |#1| |#2|) . T) ((-522 #1# #1#) -12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-618 |#1| |#2|) . T) ((-659 #1#) . T) ((-674 #1#) . T) ((-858) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)) ((-1021 #1#) . T) ((-1111) -3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858))) ((-1160 #1#) . T) ((-1205 |#1| |#2|) . T) ((-1229) . T) ((-1267 #1#) . T))
+((-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-38 |#2|) (-174)) (T -37))
+NIL
+(-10 -8 (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-141) (-174)) (T -38))
NIL
-(-13 (-1058) (-723 |t#1|) (-622 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-3210 (((-424 |#1|) |#1|) 41)) (-2340 (((-424 |#1|) |#1|) 30) (((-424 |#1|) |#1| (-650 (-48))) 33)) (-4061 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -2340 ((-424 |#1|) |#1| (-650 (-48)))) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3210 ((-424 |#1|) |#1|)) (-15 -4061 ((-112) |#1|))) (-1253 (-48))) (T -39))
-((-4061 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1253 (-48))))) (-3210 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1253 (-48))))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1253 (-48))))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-48))) (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1253 (-48))))))
-(-10 -7 (-15 -2340 ((-424 |#1|) |#1| (-650 (-48)))) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3210 ((-424 |#1|) |#1|)) (-15 -4061 ((-112) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1818 (((-2 (|:| |num| (-1277 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| (-413 |#2|) (-368)))) (-2046 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-3426 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-3524 (((-695 (-413 |#2|)) (-1277 $)) NIL) (((-695 (-413 |#2|))) NIL)) (-1439 (((-413 |#2|) $) NIL)) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-413 |#2|) (-354)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2929 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-1799 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2401 (((-777)) NIL (|has| (-413 |#2|) (-373)))) (-1612 (((-112)) NIL)) (-4347 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-3 (-413 |#2|) "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-413 |#2|) $) NIL)) (-2615 (($ (-1277 (-413 |#2|)) (-1277 $)) NIL) (($ (-1277 (-413 |#2|))) 61) (($ (-1277 |#2|) |#2|) 131)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-413 |#2|) (-354)))) (-2788 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4385 (((-695 (-413 |#2|)) $ (-1277 $)) NIL) (((-695 (-413 |#2|)) $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-413 |#2|))) (|:| |vec| (-1277 (-413 |#2|)))) (-695 $) (-1277 $)) NIL) (((-695 (-413 |#2|)) (-695 $)) NIL)) (-4137 (((-1277 $) (-1277 $)) NIL)) (-2295 (($ |#3|) NIL) (((-3 $ "failed") (-413 |#3|)) NIL (|has| (-413 |#2|) (-368)))) (-3957 (((-3 $ "failed") $) NIL)) (-3309 (((-650 (-650 |#1|))) NIL (|has| |#1| (-373)))) (-3118 (((-112) |#1| |#1|) NIL)) (-4412 (((-928)) NIL)) (-2066 (($) NIL (|has| (-413 |#2|) (-373)))) (-3343 (((-112)) NIL)) (-1944 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2799 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| (-413 |#2|) (-368)))) (-2211 (($ $) NIL)) (-2310 (($) NIL (|has| (-413 |#2|) (-354)))) (-4240 (((-112) $) NIL (|has| (-413 |#2|) (-354)))) (-2118 (($ $ (-777)) NIL (|has| (-413 |#2|) (-354))) (($ $) NIL (|has| (-413 |#2|) (-354)))) (-2145 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-3995 (((-928) $) NIL (|has| (-413 |#2|) (-354))) (((-839 (-928)) $) NIL (|has| (-413 |#2|) (-354)))) (-2005 (((-112) $) NIL)) (-2457 (((-777)) NIL)) (-3962 (((-1277 $) (-1277 $)) 106)) (-3046 (((-413 |#2|) $) NIL)) (-3728 (((-650 (-959 |#1|)) (-1186)) NIL (|has| |#1| (-368)))) (-3525 (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-3658 ((|#3| $) NIL (|has| (-413 |#2|) (-368)))) (-1997 (((-928) $) NIL (|has| (-413 |#2|) (-373)))) (-2283 ((|#3| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-3240 (((-1168) $) NIL)) (-4186 (((-1282) (-777)) 84)) (-2751 (((-695 (-413 |#2|))) 56)) (-1644 (((-695 (-413 |#2|))) 49)) (-4315 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-3792 (($ (-1277 |#2|) |#2|) 132)) (-1741 (((-695 (-413 |#2|))) 50)) (-2314 (((-695 (-413 |#2|))) 48)) (-4318 (((-2 (|:| |num| (-695 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-4097 (((-2 (|:| |num| (-1277 |#2|)) (|:| |den| |#2|)) $) 68)) (-4345 (((-1277 $)) 47)) (-1868 (((-1277 $)) 46)) (-3549 (((-112) $) NIL)) (-3428 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3458 (($) NIL (|has| (-413 |#2|) (-354)) CONST)) (-4298 (($ (-928)) NIL (|has| (-413 |#2|) (-373)))) (-3665 (((-3 |#2| "failed")) NIL)) (-3891 (((-1129) $) NIL)) (-2268 (((-777)) NIL)) (-3643 (($) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| (-413 |#2|) (-368)))) (-3903 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| (-413 |#2|) (-354)))) (-2340 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-413 |#2|) (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| (-413 |#2|) (-368)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-2002 (((-777) $) NIL (|has| (-413 |#2|) (-368)))) (-2057 ((|#1| $ |#1| |#1|) NIL)) (-3095 (((-3 |#2| "failed")) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2896 (((-413 |#2|) (-1277 $)) NIL) (((-413 |#2|)) 44)) (-4058 (((-777) $) NIL (|has| (-413 |#2|) (-354))) (((-3 (-777) "failed") $ $) NIL (|has| (-413 |#2|) (-354)))) (-2375 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-2318 (((-695 (-413 |#2|)) (-1277 $) (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368)))) (-3144 ((|#3|) 55)) (-1900 (($) NIL (|has| (-413 |#2|) (-354)))) (-2987 (((-1277 (-413 |#2|)) $ (-1277 $)) NIL) (((-695 (-413 |#2|)) (-1277 $) (-1277 $)) NIL) (((-1277 (-413 |#2|)) $) 62) (((-695 (-413 |#2|)) (-1277 $)) 107)) (-2601 (((-1277 (-413 |#2|)) $) NIL) (($ (-1277 (-413 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| (-413 |#2|) (-354)))) (-2883 (((-1277 $) (-1277 $)) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 |#2|)) NIL) (($ (-413 (-570))) NIL (-3749 (|has| (-413 |#2|) (-1047 (-413 (-570)))) (|has| (-413 |#2|) (-368)))) (($ $) NIL (|has| (-413 |#2|) (-368)))) (-1660 (($ $) NIL (|has| (-413 |#2|) (-354))) (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-146)))) (-1816 ((|#3| $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1380 (((-112)) 42)) (-4395 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL)) (-2939 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-4171 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1956 (((-112)) NIL)) (-1981 (($) 17 T CONST)) (-1998 (($) 27 T CONST)) (-3414 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| (-413 |#2|) (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 |#2|)) NIL) (($ (-413 |#2|) $) NIL) (($ (-413 (-570)) $) NIL (|has| (-413 |#2|) (-368))) (($ $ (-413 (-570))) NIL (|has| (-413 |#2|) (-368)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-347 |#1| |#2| |#3|) (-10 -7 (-15 -4186 ((-1282) (-777))))) (-368) (-1253 |#1|) (-1253 (-413 |#2|)) |#3|) (T -40))
-((-4186 (*1 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-4 *5 (-1253 *4)) (-5 *2 (-1282)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1253 (-413 *5))) (-14 *7 *6))))
-(-13 (-347 |#1| |#2| |#3|) (-10 -7 (-15 -4186 ((-1282) (-777)))))
-((-2394 ((|#2| |#2|) 47)) (-3294 ((|#2| |#2|) 139 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-2706 ((|#2| |#2|) 100 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-3805 ((|#2| |#2|) 101 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-2526 ((|#2| (-115) |#2| (-777)) 135 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-1379 (((-1182 |#2|) |#2|) 44)) (-3771 ((|#2| |#2| (-650 (-618 |#2|))) 18) ((|#2| |#2| (-650 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -2394 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3771 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| (-650 |#2|))) (-15 -3771 (|#2| |#2| (-650 (-618 |#2|)))) (-15 -1379 ((-1182 |#2|) |#2|)) (IF (|has| |#1| (-13 (-458) (-1047 (-570)))) (IF (|has| |#2| (-436 |#1|)) (PROGN (-15 -3805 (|#2| |#2|)) (-15 -2706 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -2526 (|#2| (-115) |#2| (-777)))) |%noBranch|) |%noBranch|)) (-562) (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 |#1| (-618 $)) $)) (-15 -1599 ((-1134 |#1| (-618 $)) $)) (-15 -2869 ($ (-1134 |#1| (-618 $))))))) (T -41))
-((-2526 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-777)) (-4 *5 (-13 (-458) (-1047 (-570)))) (-4 *5 (-562)) (-5 *1 (-41 *5 *2)) (-4 *2 (-436 *5)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *5 (-618 $)) $)) (-15 -1599 ((-1134 *5 (-618 $)) $)) (-15 -2869 ($ (-1134 *5 (-618 $))))))))) (-3294 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $)) (-15 -1599 ((-1134 *3 (-618 $)) $)) (-15 -2869 ($ (-1134 *3 (-618 $))))))))) (-2706 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $)) (-15 -1599 ((-1134 *3 (-618 $)) $)) (-15 -2869 ($ (-1134 *3 (-618 $))))))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $)) (-15 -1599 ((-1134 *3 (-618 $)) $)) (-15 -2869 ($ (-1134 *3 (-618 $))))))))) (-1379 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-1182 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *4 (-618 $)) $)) (-15 -1599 ((-1134 *4 (-618 $)) $)) (-15 -2869 ($ (-1134 *4 (-618 $))))))))) (-3771 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-618 *2))) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *4 (-618 $)) $)) (-15 -1599 ((-1134 *4 (-618 $)) $)) (-15 -2869 ($ (-1134 *4 (-618 $))))))) (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))) (-3771 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *4 (-618 $)) $)) (-15 -1599 ((-1134 *4 (-618 $)) $)) (-15 -2869 ($ (-1134 *4 (-618 $))))))) (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))) (-3771 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $)) (-15 -1599 ((-1134 *3 (-618 $)) $)) (-15 -2869 ($ (-1134 *3 (-618 $))))))))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $)) (-15 -1599 ((-1134 *3 (-618 $)) $)) (-15 -2869 ($ (-1134 *3 (-618 $))))))))) (-2394 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $)) (-15 -1599 ((-1134 *3 (-618 $)) $)) (-15 -2869 ($ (-1134 *3 (-618 $))))))))))
-(-10 -7 (-15 -2394 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3771 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| (-650 |#2|))) (-15 -3771 (|#2| |#2| (-650 (-618 |#2|)))) (-15 -1379 ((-1182 |#2|) |#2|)) (IF (|has| |#1| (-13 (-458) (-1047 (-570)))) (IF (|has| |#2| (-436 |#1|)) (PROGN (-15 -3805 (|#2| |#2|)) (-15 -2706 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -2526 (|#2| (-115) |#2| (-777)))) |%noBranch|) |%noBranch|))
-((-2340 (((-424 (-1182 |#3|)) (-1182 |#3|) (-650 (-48))) 23) (((-424 |#3|) |#3| (-650 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-424 |#3|) |#3| (-650 (-48)))) (-15 -2340 ((-424 (-1182 |#3|)) (-1182 |#3|) (-650 (-48))))) (-856) (-799) (-956 (-48) |#2| |#1|)) (T -42))
-((-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *7 (-956 (-48) *6 *5)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799)) (-5 *2 (-424 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-956 (-48) *6 *5)))))
-(-10 -7 (-15 -2340 ((-424 |#3|) |#3| (-650 (-48)))) (-15 -2340 ((-424 (-1182 |#3|)) (-1182 |#3|) (-650 (-48)))))
-((-1411 (((-777) |#2|) 70)) (-4078 (((-777) |#2|) 74)) (-3572 (((-650 |#2|)) 37)) (-1387 (((-777) |#2|) 73)) (-3857 (((-777) |#2|) 69)) (-4167 (((-777) |#2|) 72)) (-4173 (((-650 (-695 |#1|))) 65)) (-2371 (((-650 |#2|)) 60)) (-2585 (((-650 |#2|) |#2|) 48)) (-3672 (((-650 |#2|)) 62)) (-3702 (((-650 |#2|)) 61)) (-3455 (((-650 (-695 |#1|))) 53)) (-2356 (((-650 |#2|)) 59)) (-2551 (((-650 |#2|) |#2|) 47)) (-1904 (((-650 |#2|)) 55)) (-1569 (((-650 (-695 |#1|))) 66)) (-2559 (((-650 |#2|)) 64)) (-2681 (((-1277 |#2|) (-1277 |#2|)) 99 (|has| |#1| (-311)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1387 ((-777) |#2|)) (-15 -4078 ((-777) |#2|)) (-15 -3857 ((-777) |#2|)) (-15 -1411 ((-777) |#2|)) (-15 -4167 ((-777) |#2|)) (-15 -1904 ((-650 |#2|))) (-15 -2551 ((-650 |#2|) |#2|)) (-15 -2585 ((-650 |#2|) |#2|)) (-15 -2356 ((-650 |#2|))) (-15 -2371 ((-650 |#2|))) (-15 -3702 ((-650 |#2|))) (-15 -3672 ((-650 |#2|))) (-15 -2559 ((-650 |#2|))) (-15 -3455 ((-650 (-695 |#1|)))) (-15 -4173 ((-650 (-695 |#1|)))) (-15 -1569 ((-650 (-695 |#1|)))) (-15 -3572 ((-650 |#2|))) (IF (|has| |#1| (-311)) (-15 -2681 ((-1277 |#2|) (-1277 |#2|))) |%noBranch|)) (-562) (-423 |#1|)) (T -43))
-((-2681 (*1 *2 *2) (-12 (-5 *2 (-1277 *4)) (-4 *4 (-423 *3)) (-4 *3 (-311)) (-4 *3 (-562)) (-5 *1 (-43 *3 *4)))) (-3572 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1569 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-4173 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-3455 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-2559 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-3672 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-3702 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-2371 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-2356 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-2585 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-2551 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1904 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-3857 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-4078 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1387 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))))
-(-10 -7 (-15 -1387 ((-777) |#2|)) (-15 -4078 ((-777) |#2|)) (-15 -3857 ((-777) |#2|)) (-15 -1411 ((-777) |#2|)) (-15 -4167 ((-777) |#2|)) (-15 -1904 ((-650 |#2|))) (-15 -2551 ((-650 |#2|) |#2|)) (-15 -2585 ((-650 |#2|) |#2|)) (-15 -2356 ((-650 |#2|))) (-15 -2371 ((-650 |#2|))) (-15 -3702 ((-650 |#2|))) (-15 -3672 ((-650 |#2|))) (-15 -2559 ((-650 |#2|))) (-15 -3455 ((-650 (-695 |#1|)))) (-15 -4173 ((-650 (-695 |#1|)))) (-15 -1569 ((-650 (-695 |#1|)))) (-15 -3572 ((-650 |#2|))) (IF (|has| |#1| (-311)) (-15 -2681 ((-1277 |#2|) (-1277 |#2|))) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1347 (((-3 $ "failed")) NIL (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-1757 (((-1277 (-695 |#1|)) (-1277 $)) NIL) (((-1277 (-695 |#1|))) 24)) (-3266 (((-1277 $)) 52)) (-2333 (($) NIL T CONST)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (|has| |#1| (-562)))) (-3929 (((-3 $ "failed")) NIL (|has| |#1| (-562)))) (-3237 (((-695 |#1|) (-1277 $)) NIL) (((-695 |#1|)) NIL)) (-4071 ((|#1| $) NIL)) (-2713 (((-695 |#1|) $ (-1277 $)) NIL) (((-695 |#1|) $) NIL)) (-2075 (((-3 $ "failed") $) NIL (|has| |#1| (-562)))) (-3260 (((-1182 (-959 |#1|))) NIL (|has| |#1| (-368)))) (-1794 (($ $ (-928)) NIL)) (-2095 ((|#1| $) NIL)) (-2770 (((-1182 |#1|) $) NIL (|has| |#1| (-562)))) (-1885 ((|#1| (-1277 $)) NIL) ((|#1|) NIL)) (-4236 (((-1182 |#1|) $) NIL)) (-2027 (((-112)) 99)) (-2615 (($ (-1277 |#1|) (-1277 $)) NIL) (($ (-1277 |#1|)) NIL)) (-3957 (((-3 $ "failed") $) 14 (|has| |#1| (-562)))) (-4412 (((-928)) 53)) (-2462 (((-112)) NIL)) (-3969 (($ $ (-928)) NIL)) (-1991 (((-112)) NIL)) (-1939 (((-112)) NIL)) (-3505 (((-112)) 101)) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (|has| |#1| (-562)))) (-3489 (((-3 $ "failed")) NIL (|has| |#1| (-562)))) (-3592 (((-695 |#1|) (-1277 $)) NIL) (((-695 |#1|)) NIL)) (-2790 ((|#1| $) NIL)) (-2256 (((-695 |#1|) $ (-1277 $)) NIL) (((-695 |#1|) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-562)))) (-4019 (((-1182 (-959 |#1|))) NIL (|has| |#1| (-368)))) (-3454 (($ $ (-928)) NIL)) (-2168 ((|#1| $) NIL)) (-1700 (((-1182 |#1|) $) NIL (|has| |#1| (-562)))) (-1965 ((|#1| (-1277 $)) NIL) ((|#1|) NIL)) (-4281 (((-1182 |#1|) $) NIL)) (-2476 (((-112)) 98)) (-3240 (((-1168) $) NIL)) (-3084 (((-112)) 106)) (-2451 (((-112)) 105)) (-3692 (((-112)) 107)) (-3891 (((-1129) $) NIL)) (-2808 (((-112)) 100)) (-2057 ((|#1| $ (-570)) 55)) (-2987 (((-1277 |#1|) $ (-1277 $)) 48) (((-695 |#1|) (-1277 $) (-1277 $)) NIL) (((-1277 |#1|) $) 28) (((-695 |#1|) (-1277 $)) NIL)) (-2601 (((-1277 |#1|) $) NIL) (($ (-1277 |#1|)) NIL)) (-4259 (((-650 (-959 |#1|)) (-1277 $)) NIL) (((-650 (-959 |#1|))) NIL)) (-2319 (($ $ $) NIL)) (-3143 (((-112)) 95)) (-2869 (((-868) $) 71) (($ (-1277 |#1|)) 22)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) 51)) (-2013 (((-650 (-1277 |#1|))) NIL (|has| |#1| (-562)))) (-4373 (($ $ $ $) NIL)) (-2125 (((-112)) 91)) (-1936 (($ (-695 |#1|) $) 18)) (-2885 (($ $ $) NIL)) (-4099 (((-112)) 97)) (-4235 (((-112)) 92)) (-1849 (((-112)) 90)) (-1981 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1151 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-423 |#1|) (-654 (-1151 |#2| |#1|)) (-10 -8 (-15 -2869 ($ (-1277 |#1|))))) (-368) (-928) (-650 (-1186)) (-1277 (-695 |#1|))) (T -44))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-368)) (-14 *6 (-1277 (-695 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))))))
-(-13 (-423 |#1|) (-654 (-1151 |#2| |#1|)) (-10 -8 (-15 -2869 ($ (-1277 |#1|)))))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4156 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2975 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-3446 (($ $) NIL)) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2204 (((-1282) $ |#1| |#1|) NIL (|has| $ (-6 -4453))) (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2778 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856))))) (-2018 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-2854 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453)))) (-2364 (($ $ $) 33 (|has| $ (-6 -4453)))) (-1639 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453)))) (-1967 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 35 (|has| $ (-6 -4453)))) (-3040 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-1244 (-570)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "last" (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453))) (($ $ "rest" $) NIL (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "first" (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "value" (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2963 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-1390 (((-3 |#2| "failed") |#1| $) 43)) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-1962 (($ $ (-777)) NIL) (($ $) 29)) (-1381 (($ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4453))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) NIL)) (-2836 (((-112) $) NIL)) (-2619 (((-570) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (((-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) (((-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 20 (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452))) (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 20 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-2296 (($ (-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 ((|#1| $) NIL (|has| |#1| (-856))) (((-570) $) 38 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3675 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-4356 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452))) (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-1894 ((|#1| $) NIL (|has| |#1| (-856))) (((-570) $) 40 (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453))) (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-1677 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2466 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-2708 (((-112) $) NIL)) (-3240 (((-1168) $) 49 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3637 (($ $ (-777)) NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-1988 (((-650 |#1|) $) 22)) (-2093 (((-112) |#1| $) NIL)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2119 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 |#1|) $) NIL) (((-650 (-570)) $) NIL)) (-4276 (((-112) |#1| $) NIL) (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#2| $) NIL (|has| |#1| (-856))) (($ $ (-777)) NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 27)) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2655 (((-112) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-2856 (((-650 |#2|) $) NIL) (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 19)) (-2171 (((-112) $) 18)) (-1698 (($) 14)) (-2057 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ (-570)) NIL) (($ $ (-1244 (-570))) NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "first") NIL) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $ "value") NIL)) (-2352 (((-570) $ $) NIL)) (-2910 (($) 13) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3332 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-1355 (((-112) $) NIL)) (-2288 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4453)))) (-2846 (((-777) $) NIL)) (-3522 (($ $) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-1674 (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL) (($ $ $) NIL)) (-1505 (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL) (($ (-650 $)) NIL) (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 31) (($ $ $) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3651 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") |#1| $) 51)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3945 (((-112) $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-856)))) (-2857 (((-777) $) 25 (|has| $ (-6 -4452)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1109) (-1109)) (T -45))
+(-13 (-1060) (-725 |t#1|) (-624 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3339 (((-426 |#1|) |#1|) 41)) (-2972 (((-426 |#1|) |#1|) 30) (((-426 |#1|) |#1| (-652 (-48))) 33)) (-1502 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -2972 ((-426 |#1|) |#1| (-652 (-48)))) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -3339 ((-426 |#1|) |#1|)) (-15 -1502 ((-112) |#1|))) (-1255 (-48))) (T -39))
+((-1502 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))) (-3339 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))) (-2972 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-48))) (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))))
+(-10 -7 (-15 -2972 ((-426 |#1|) |#1| (-652 (-48)))) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -3339 ((-426 |#1|) |#1|)) (-15 -1502 ((-112) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3265 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| (-415 |#2|) (-370)))) (-1697 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-1774 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-3385 (((-697 (-415 |#2|)) (-1279 $)) NIL) (((-697 (-415 |#2|))) NIL)) (-2055 (((-415 |#2|) $) NIL)) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-415 |#2|) (-356)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2359 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-4252 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3037 (((-779)) NIL (|has| (-415 |#2|) (-375)))) (-1773 (((-112)) NIL)) (-2546 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-3 (-415 |#2|) "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-415 |#2|) $) NIL)) (-2372 (($ (-1279 (-415 |#2|)) (-1279 $)) NIL) (($ (-1279 (-415 |#2|))) 61) (($ (-1279 |#2|) |#2|) 131)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-415 |#2|) (-356)))) (-3407 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-1649 (((-697 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-415 |#2|))) (|:| |vec| (-1279 (-415 |#2|)))) (-697 $) (-1279 $)) NIL) (((-697 (-415 |#2|)) (-697 $)) NIL)) (-4216 (((-1279 $) (-1279 $)) NIL)) (-2925 (($ |#3|) NIL) (((-3 $ "failed") (-415 |#3|)) NIL (|has| (-415 |#2|) (-370)))) (-2982 (((-3 $ "failed") $) NIL)) (-1827 (((-652 (-652 |#1|))) NIL (|has| |#1| (-375)))) (-1646 (((-112) |#1| |#1|) NIL)) (-1526 (((-930)) NIL)) (-2688 (($) NIL (|has| (-415 |#2|) (-375)))) (-2170 (((-112)) NIL)) (-1987 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3418 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| (-415 |#2|) (-370)))) (-2889 (($ $) NIL)) (-1345 (($) NIL (|has| (-415 |#2|) (-356)))) (-2754 (((-112) $) NIL (|has| (-415 |#2|) (-356)))) (-3156 (($ $ (-779)) NIL (|has| (-415 |#2|) (-356))) (($ $) NIL (|has| (-415 |#2|) (-356)))) (-3439 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-2068 (((-930) $) NIL (|has| (-415 |#2|) (-356))) (((-841 (-930)) $) NIL (|has| (-415 |#2|) (-356)))) (-4422 (((-112) $) NIL)) (-3494 (((-779)) NIL)) (-3016 (((-1279 $) (-1279 $)) 106)) (-2140 (((-415 |#2|) $) NIL)) (-1628 (((-652 (-961 |#1|)) (-1188)) NIL (|has| |#1| (-370)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-2179 ((|#3| $) NIL (|has| (-415 |#2|) (-370)))) (-4370 (((-930) $) NIL (|has| (-415 |#2|) (-375)))) (-2913 ((|#3| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3618 (((-1170) $) NIL)) (-3495 (((-1284) (-779)) 84)) (-3231 (((-697 (-415 |#2|))) 56)) (-2026 (((-697 (-415 |#2|))) 49)) (-1809 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-4108 (($ (-1279 |#2|) |#2|) 132)) (-3733 (((-697 (-415 |#2|))) 50)) (-1378 (((-697 (-415 |#2|))) 48)) (-2261 (((-2 (|:| |num| (-697 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-1851 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 68)) (-2525 (((-1279 $)) 47)) (-2469 (((-1279 $)) 46)) (-3662 (((-112) $) NIL)) (-1796 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3477 (($) NIL (|has| (-415 |#2|) (-356)) CONST)) (-1795 (($ (-930)) NIL (|has| (-415 |#2|) (-375)))) (-2272 (((-3 |#2| "failed")) NIL)) (-2614 (((-1131) $) NIL)) (-2183 (((-779)) NIL)) (-4267 (($) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| (-415 |#2|) (-370)))) (-1370 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| (-415 |#2|) (-356)))) (-2972 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-415 |#2|) (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3453 (((-3 $ "failed") $ $) NIL (|has| (-415 |#2|) (-370)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-4395 (((-779) $) NIL (|has| (-415 |#2|) (-370)))) (-2679 ((|#1| $ |#1| |#1|) NIL)) (-1413 (((-3 |#2| "failed")) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-2020 (((-415 |#2|) (-1279 $)) NIL) (((-415 |#2|)) 44)) (-1468 (((-779) $) NIL (|has| (-415 |#2|) (-356))) (((-3 (-779) "failed") $ $) NIL (|has| (-415 |#2|) (-356)))) (-3011 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-1421 (((-697 (-415 |#2|)) (-1279 $) (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370)))) (-3858 ((|#3|) 55)) (-2817 (($) NIL (|has| (-415 |#2|) (-356)))) (-2862 (((-1279 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) (-1279 $) (-1279 $)) NIL) (((-1279 (-415 |#2|)) $) 62) (((-697 (-415 |#2|)) (-1279 $)) 107)) (-3222 (((-1279 (-415 |#2|)) $) NIL) (($ (-1279 (-415 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-415 |#2|) (-356)))) (-1904 (((-1279 $) (-1279 $)) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 |#2|)) NIL) (($ (-415 (-572))) NIL (-3783 (|has| (-415 |#2|) (-1049 (-415 (-572)))) (|has| (-415 |#2|) (-370)))) (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2210 (($ $) NIL (|has| (-415 |#2|) (-356))) (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-146)))) (-3245 ((|#3| $) NIL)) (-2455 (((-779)) NIL T CONST)) (-1715 (((-112)) 42)) (-1733 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL)) (-2466 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3345 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2116 (((-112)) NIL)) (-2602 (($) 17 T CONST)) (-2619 (($) 27 T CONST)) (-4019 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| (-415 |#2|) (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 |#2|)) NIL) (($ (-415 |#2|) $) NIL) (($ (-415 (-572)) $) NIL (|has| (-415 |#2|) (-370))) (($ $ (-415 (-572))) NIL (|has| (-415 |#2|) (-370)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3|) (-10 -7 (-15 -3495 ((-1284) (-779))))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) |#3|) (T -40))
+((-3495 (*1 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *2 (-1284)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1255 (-415 *5))) (-14 *7 *6))))
+(-13 (-349 |#1| |#2| |#3|) (-10 -7 (-15 -3495 ((-1284) (-779)))))
+((-4132 ((|#2| |#2|) 47)) (-2946 ((|#2| |#2|) 139 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-3980 ((|#2| |#2|) 100 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-4218 ((|#2| |#2|) 101 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-2829 ((|#2| (-115) |#2| (-779)) 135 (-12 (|has| |#2| (-438 |#1|)) (|has| |#1| (-13 (-460) (-1049 (-572))))))) (-2464 (((-1184 |#2|) |#2|) 44)) (-3909 ((|#2| |#2| (-652 (-620 |#2|))) 18) ((|#2| |#2| (-652 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -4132 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3909 (|#2| |#2| |#2|)) (-15 -3909 (|#2| |#2| (-652 |#2|))) (-15 -3909 (|#2| |#2| (-652 (-620 |#2|)))) (-15 -2464 ((-1184 |#2|) |#2|)) (IF (|has| |#1| (-13 (-460) (-1049 (-572)))) (IF (|has| |#2| (-438 |#1|)) (PROGN (-15 -4218 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2829 (|#2| (-115) |#2| (-779)))) |%noBranch|) |%noBranch|)) (-564) (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 |#1| (-620 $)) $)) (-15 -2224 ((-1136 |#1| (-620 $)) $)) (-15 -3491 ($ (-1136 |#1| (-620 $))))))) (T -41))
+((-2829 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-779)) (-4 *5 (-13 (-460) (-1049 (-572)))) (-4 *5 (-564)) (-5 *1 (-41 *5 *2)) (-4 *2 (-438 *5)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *5 (-620 $)) $)) (-15 -2224 ((-1136 *5 (-620 $)) $)) (-15 -3491 ($ (-1136 *5 (-620 $))))))))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $)) (-15 -2224 ((-1136 *3 (-620 $)) $)) (-15 -3491 ($ (-1136 *3 (-620 $))))))))) (-3980 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $)) (-15 -2224 ((-1136 *3 (-620 $)) $)) (-15 -3491 ($ (-1136 *3 (-620 $))))))))) (-4218 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $)) (-15 -2224 ((-1136 *3 (-620 $)) $)) (-15 -3491 ($ (-1136 *3 (-620 $))))))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-1184 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *4 (-620 $)) $)) (-15 -2224 ((-1136 *4 (-620 $)) $)) (-15 -3491 ($ (-1136 *4 (-620 $))))))))) (-3909 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-620 *2))) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *4 (-620 $)) $)) (-15 -2224 ((-1136 *4 (-620 $)) $)) (-15 -3491 ($ (-1136 *4 (-620 $))))))) (-4 *4 (-564)) (-5 *1 (-41 *4 *2)))) (-3909 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *4 (-620 $)) $)) (-15 -2224 ((-1136 *4 (-620 $)) $)) (-15 -3491 ($ (-1136 *4 (-620 $))))))) (-4 *4 (-564)) (-5 *1 (-41 *4 *2)))) (-3909 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $)) (-15 -2224 ((-1136 *3 (-620 $)) $)) (-15 -3491 ($ (-1136 *3 (-620 $))))))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $)) (-15 -2224 ((-1136 *3 (-620 $)) $)) (-15 -3491 ($ (-1136 *3 (-620 $))))))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-370) (-308) (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $)) (-15 -2224 ((-1136 *3 (-620 $)) $)) (-15 -3491 ($ (-1136 *3 (-620 $))))))))))
+(-10 -7 (-15 -4132 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3909 (|#2| |#2| |#2|)) (-15 -3909 (|#2| |#2| (-652 |#2|))) (-15 -3909 (|#2| |#2| (-652 (-620 |#2|)))) (-15 -2464 ((-1184 |#2|) |#2|)) (IF (|has| |#1| (-13 (-460) (-1049 (-572)))) (IF (|has| |#2| (-438 |#1|)) (PROGN (-15 -4218 (|#2| |#2|)) (-15 -3980 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2829 (|#2| (-115) |#2| (-779)))) |%noBranch|) |%noBranch|))
+((-2972 (((-426 (-1184 |#3|)) (-1184 |#3|) (-652 (-48))) 23) (((-426 |#3|) |#3| (-652 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2972 ((-426 |#3|) |#3| (-652 (-48)))) (-15 -2972 ((-426 (-1184 |#3|)) (-1184 |#3|) (-652 (-48))))) (-858) (-801) (-958 (-48) |#2| |#1|)) (T -42))
+((-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *7 (-958 (-48) *6 *5)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801)) (-5 *2 (-426 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-958 (-48) *6 *5)))))
+(-10 -7 (-15 -2972 ((-426 |#3|) |#3| (-652 (-48)))) (-15 -2972 ((-426 (-1184 |#3|)) (-1184 |#3|) (-652 (-48)))))
+((-2189 (((-779) |#2|) 70)) (-1664 (((-779) |#2|) 74)) (-2629 (((-652 |#2|)) 37)) (-3757 (((-779) |#2|) 73)) (-3501 (((-779) |#2|) 69)) (-3313 (((-779) |#2|) 72)) (-3367 (((-652 (-697 |#1|))) 65)) (-3906 (((-652 |#2|)) 60)) (-2060 (((-652 |#2|) |#2|) 48)) (-2341 (((-652 |#2|)) 62)) (-1385 (((-652 |#2|)) 61)) (-3973 (((-652 (-697 |#1|))) 53)) (-1805 (((-652 |#2|)) 59)) (-3044 (((-652 |#2|) |#2|) 47)) (-2861 (((-652 |#2|)) 55)) (-2681 (((-652 (-697 |#1|))) 66)) (-3109 (((-652 |#2|)) 64)) (-1769 (((-1279 |#2|) (-1279 |#2|)) 99 (|has| |#1| (-313)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -3757 ((-779) |#2|)) (-15 -1664 ((-779) |#2|)) (-15 -3501 ((-779) |#2|)) (-15 -2189 ((-779) |#2|)) (-15 -3313 ((-779) |#2|)) (-15 -2861 ((-652 |#2|))) (-15 -3044 ((-652 |#2|) |#2|)) (-15 -2060 ((-652 |#2|) |#2|)) (-15 -1805 ((-652 |#2|))) (-15 -3906 ((-652 |#2|))) (-15 -1385 ((-652 |#2|))) (-15 -2341 ((-652 |#2|))) (-15 -3109 ((-652 |#2|))) (-15 -3973 ((-652 (-697 |#1|)))) (-15 -3367 ((-652 (-697 |#1|)))) (-15 -2681 ((-652 (-697 |#1|)))) (-15 -2629 ((-652 |#2|))) (IF (|has| |#1| (-313)) (-15 -1769 ((-1279 |#2|) (-1279 |#2|))) |%noBranch|)) (-564) (-425 |#1|)) (T -43))
+((-1769 (*1 *2 *2) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-425 *3)) (-4 *3 (-313)) (-4 *3 (-564)) (-5 *1 (-43 *3 *4)))) (-2629 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-2681 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-3367 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-3973 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-3109 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-2341 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-1385 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-3906 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-1805 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-2060 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-3044 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-2861 (*1 *2) (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-425 *3)))) (-3313 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-2189 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3)) (-4 *3 (-425 *4)))))
+(-10 -7 (-15 -3757 ((-779) |#2|)) (-15 -1664 ((-779) |#2|)) (-15 -3501 ((-779) |#2|)) (-15 -2189 ((-779) |#2|)) (-15 -3313 ((-779) |#2|)) (-15 -2861 ((-652 |#2|))) (-15 -3044 ((-652 |#2|) |#2|)) (-15 -2060 ((-652 |#2|) |#2|)) (-15 -1805 ((-652 |#2|))) (-15 -3906 ((-652 |#2|))) (-15 -1385 ((-652 |#2|))) (-15 -2341 ((-652 |#2|))) (-15 -3109 ((-652 |#2|))) (-15 -3973 ((-652 (-697 |#1|)))) (-15 -3367 ((-652 (-697 |#1|)))) (-15 -2681 ((-652 (-697 |#1|)))) (-15 -2629 ((-652 |#2|))) (IF (|has| |#1| (-313)) (-15 -1769 ((-1279 |#2|) (-1279 |#2|))) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3457 (((-3 $ "failed")) NIL (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3862 (((-1279 (-697 |#1|)) (-1279 $)) NIL) (((-1279 (-697 |#1|))) 24)) (-2646 (((-1279 $)) 52)) (-1586 (($) NIL T CONST)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (|has| |#1| (-564)))) (-2771 (((-3 $ "failed")) NIL (|has| |#1| (-564)))) (-3590 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) NIL)) (-1597 ((|#1| $) NIL)) (-4043 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-3899 (((-3 $ "failed") $) NIL (|has| |#1| (-564)))) (-2571 (((-1184 (-961 |#1|))) NIL (|has| |#1| (-370)))) (-4203 (($ $ (-930)) NIL)) (-4114 ((|#1| $) NIL)) (-3440 (((-1184 |#1|) $) NIL (|has| |#1| (-564)))) (-2650 ((|#1| (-1279 $)) NIL) ((|#1|) NIL)) (-2712 (((-1184 |#1|) $) NIL)) (-1515 (((-112)) 99)) (-2372 (($ (-1279 |#1|) (-1279 $)) NIL) (($ (-1279 |#1|)) NIL)) (-2982 (((-3 $ "failed") $) 14 (|has| |#1| (-564)))) (-1526 (((-930)) 53)) (-3538 (((-112)) NIL)) (-3100 (($ $ (-930)) NIL)) (-4325 (((-112)) NIL)) (-1936 (((-112)) NIL)) (-3246 (((-112)) 101)) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (|has| |#1| (-564)))) (-4277 (((-3 $ "failed")) NIL (|has| |#1| (-564)))) (-2808 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) NIL)) (-3611 ((|#1| $) NIL)) (-2037 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-3882 (((-3 $ "failed") $) NIL (|has| |#1| (-564)))) (-2312 (((-1184 (-961 |#1|))) NIL (|has| |#1| (-370)))) (-3962 (($ $ (-930)) NIL)) (-3686 ((|#1| $) NIL)) (-1342 (((-1184 |#1|) $) NIL (|has| |#1| (-564)))) (-2190 ((|#1| (-1279 $)) NIL) ((|#1|) NIL)) (-3177 (((-1184 |#1|) $) NIL)) (-3614 (((-112)) 98)) (-3618 (((-1170) $) NIL)) (-4412 (((-112)) 106)) (-3421 (((-112)) 105)) (-4413 (((-112)) 107)) (-2614 (((-1131) $) NIL)) (-3749 (((-112)) 100)) (-2679 ((|#1| $ (-572)) 55)) (-2862 (((-1279 |#1|) $ (-1279 $)) 48) (((-697 |#1|) (-1279 $) (-1279 $)) NIL) (((-1279 |#1|) $) 28) (((-697 |#1|) (-1279 $)) NIL)) (-3222 (((-1279 |#1|) $) NIL) (($ (-1279 |#1|)) NIL)) (-2956 (((-652 (-961 |#1|)) (-1279 $)) NIL) (((-652 (-961 |#1|))) NIL)) (-1433 (($ $ $) NIL)) (-3846 (((-112)) 95)) (-3491 (((-870) $) 71) (($ (-1279 |#1|)) 22)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) 51)) (-1373 (((-652 (-1279 |#1|))) NIL (|has| |#1| (-564)))) (-1541 (($ $ $ $) NIL)) (-3229 (((-112)) 91)) (-2558 (($ (-697 |#1|) $) 18)) (-1923 (($ $ $) NIL)) (-1873 (((-112)) 97)) (-2702 (((-112)) 92)) (-3565 (((-112)) 90)) (-2602 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1153 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-425 |#1|) (-656 (-1153 |#2| |#1|)) (-10 -8 (-15 -3491 ($ (-1279 |#1|))))) (-370) (-930) (-652 (-1188)) (-1279 (-697 |#1|))) (T -44))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-14 *6 (-1279 (-697 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))))))
+(-13 (-425 |#1|) (-656 (-1153 |#2| |#1|)) (-10 -8 (-15 -3491 ($ (-1279 |#1|)))))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-1653 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3598 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-4058 (($ $) NIL)) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2812 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455))) (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3519 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858))))) (-2641 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-2927 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455)))) (-3835 (($ $ $) 33 (|has| $ (-6 -4455)))) (-1993 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455)))) (-2219 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 35 (|has| $ (-6 -4455)))) (-3659 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-1246 (-572)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "last" (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455))) (($ $ "rest" $) NIL (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "first" (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "value" (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3587 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1998 (((-3 |#2| "failed") |#1| $) 43)) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-2581 (($ $ (-779)) NIL) (($ $) 29)) (-1727 (($ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) NIL)) (-2760 (((-112) $) NIL)) (-3239 (((-572) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (((-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) (((-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 20 (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 20 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-2924 (($ (-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 ((|#1| $) NIL (|has| |#1| (-858))) (((-572) $) 38 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-2363 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-1377 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2751 ((|#1| $) NIL (|has| |#1| (-858))) (((-572) $) 40 (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-2307 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3104 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3989 (((-112) $) NIL)) (-3618 (((-1170) $) 49 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4261 (($ $ (-779)) NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-2608 (((-652 |#1|) $) 22)) (-4096 (((-112) |#1| $) NIL)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-2744 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 |#1|) $) NIL) (((-652 (-572)) $) NIL)) (-3132 (((-112) |#1| $) NIL) (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#2| $) NIL (|has| |#1| (-858))) (($ $ (-779)) NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 27)) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1540 (((-112) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2950 (((-652 |#2|) $) NIL) (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 19)) (-3712 (((-112) $) 18)) (-1321 (($) 14)) (-2679 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ (-572)) NIL) (($ $ (-1246 (-572))) NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "first") NIL) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $ "value") NIL)) (-1762 (((-572) $ $) NIL)) (-2145 (($) 13) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2049 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3727 (((-112) $) NIL)) (-2393 (($ $) NIL)) (-2770 (($ $) NIL (|has| $ (-6 -4455)))) (-2847 (((-779) $) NIL)) (-3376 (($ $) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2355 (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL) (($ $ $) NIL)) (-2121 (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL) (($ (-652 $)) NIL) (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 31) (($ $ $) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-4274 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") |#1| $) 51)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3965 (((-112) $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-858)))) (-3475 (((-779) $) 25 (|has| $ (-6 -4454)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1111) (-1111)) (T -45))
NIL
(-36 |#1| |#2|)
-((-1338 (((-112) $) 12)) (-2536 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-413 (-570)) $) 25) (($ $ (-413 (-570))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-47 |#2| |#3|) (-1058) (-798)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -1338 ((-112) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-1338 (((-112) $) 74)) (-2402 (($ |#1| |#2|) 73)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-2650 ((|#2| $) 76)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3481 ((|#1| $ |#2|) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-47 |#1| |#2|) (-141) (-1058) (-798)) (T -47))
-((-4369 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-4355 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-112)))) (-2402 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-4394 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-3481 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *2 (-368)))))
-(-13 (-1058) (-111 |t#1| |t#1|) (-10 -8 (-15 -4369 (|t#1| $)) (-15 -4355 ($ $)) (-15 -2650 (|t#2| $)) (-15 -2536 ($ (-1 |t#1| |t#1|) $)) (-15 -1338 ((-112) $)) (-15 -2402 ($ |t#1| |t#2|)) (-15 -4394 ($ $)) (-15 -3481 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-368)) (-15 -4013 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-562)) (-6 (-562)) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (-6 (-38 (-413 (-570)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-294) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2842 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-4121 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-2564 (((-112) $) 9)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-4246 (((-650 (-618 $)) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1465 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-2459 (($ $) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-4088 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-2056 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-2435 (((-3 (-618 $) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL)) (-4387 (((-618 $) $) NIL) (((-570) $) NIL) (((-413 (-570)) $) NIL)) (-2788 (($ $ $) NIL)) (-3054 (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-413 (-570)))) (|:| |vec| (-1277 (-413 (-570))))) (-695 $) (-1277 $)) NIL) (((-695 (-413 (-570))) (-695 $)) NIL)) (-2295 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-3244 (($ $) NIL) (($ (-650 $)) NIL)) (-3380 (((-650 (-115)) $) NIL)) (-2558 (((-115) (-115)) NIL)) (-2005 (((-112) $) 11)) (-1973 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-1587 (((-1134 (-570) (-618 $)) $) NIL)) (-3035 (($ $ (-570)) NIL)) (-3046 (((-1182 $) (-1182 $) (-618 $)) NIL) (((-1182 $) (-1182 $) (-650 (-618 $))) NIL) (($ $ (-618 $)) NIL) (($ $ (-650 (-618 $))) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1413 (((-1182 $) (-618 $)) NIL (|has| $ (-1058)))) (-2536 (($ (-1 $ $) (-618 $)) NIL)) (-1954 (((-3 (-618 $) "failed") $) NIL)) (-3867 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-2543 (((-650 (-618 $)) $) NIL)) (-1665 (($ (-115) $) NIL) (($ (-115) (-650 $)) NIL)) (-3917 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) NIL)) (-4315 (($ $) NIL)) (-3326 (((-777) $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ (-650 $)) NIL) (($ $ $) NIL)) (-2483 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2160 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-3034 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2002 (((-777) $) NIL)) (-2057 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3047 (($ $) NIL) (($ $ $) NIL)) (-2375 (($ $ (-777)) NIL) (($ $) NIL)) (-1599 (((-1134 (-570) (-618 $)) $) NIL)) (-3144 (($ $) NIL (|has| $ (-1058)))) (-2601 (((-384) $) NIL) (((-227) $) NIL) (((-171 (-384)) $) NIL)) (-2869 (((-868) $) NIL) (($ (-618 $)) NIL) (($ (-413 (-570))) NIL) (($ $) NIL) (($ (-570)) NIL) (($ (-1134 (-570) (-618 $))) NIL)) (-2294 (((-777)) NIL T CONST)) (-1613 (($ $) NIL) (($ (-650 $)) NIL)) (-1475 (((-112) (-115)) NIL)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) 6 T CONST)) (-1998 (($) 10 T CONST)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3892 (((-112) $ $) 13)) (-4013 (($ $ $) NIL)) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-413 (-570))) NIL) (($ $ (-570)) NIL) (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ $ $) NIL) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL)))
-(((-48) (-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -2869 ($ (-1134 (-570) (-618 $)))) (-15 -1587 ((-1134 (-570) (-618 $)) $)) (-15 -1599 ((-1134 (-570) (-618 $)) $)) (-15 -2295 ($ $)) (-15 -3046 ((-1182 $) (-1182 $) (-618 $))) (-15 -3046 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -3046 ($ $ (-618 $))) (-15 -3046 ($ $ (-650 (-618 $))))))) (T -48))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) (-2295 (*1 *1 *1) (-5 *1 (-48))) (-3046 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-618 (-48))) (-5 *1 (-48)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-650 (-618 (-48)))) (-5 *1 (-48)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-48))) (-5 *1 (-48)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-48)))) (-5 *1 (-48)))))
-(-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -2869 ($ (-1134 (-570) (-618 $)))) (-15 -1587 ((-1134 (-570) (-618 $)) $)) (-15 -1599 ((-1134 (-570) (-618 $)) $)) (-15 -2295 ($ $)) (-15 -3046 ((-1182 $) (-1182 $) (-618 $))) (-15 -3046 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -3046 ($ $ (-618 $))) (-15 -3046 ($ $ (-650 (-618 $))))))
-((-2847 (((-112) $ $) NIL)) (-2498 (((-650 (-512)) $) 17)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 7)) (-1781 (((-1191) $) 18)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-49) (-13 (-1109) (-10 -8 (-15 -2498 ((-650 (-512)) $)) (-15 -1781 ((-1191) $))))) (T -49))
-((-2498 (*1 *2 *1) (-12 (-5 *2 (-650 (-512))) (-5 *1 (-49)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-49)))))
-(-13 (-1109) (-10 -8 (-15 -2498 ((-650 (-512)) $)) (-15 -1781 ((-1191) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 85)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-4082 (((-112) $) 30)) (-2435 (((-3 |#1| "failed") $) 33)) (-4387 ((|#1| $) 34)) (-4394 (($ $) 40)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-4369 ((|#1| $) 31)) (-2880 (($ $) 74)) (-3240 (((-1168) $) NIL)) (-1638 (((-112) $) 43)) (-3891 (((-1129) $) NIL)) (-3643 (($ (-777)) 72)) (-2651 (($ (-650 (-570))) 73)) (-2650 (((-777) $) 44)) (-2869 (((-868) $) 91) (($ (-570)) 69) (($ |#1|) 67)) (-3481 ((|#1| $ $) 28)) (-2294 (((-777)) 71 T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 45 T CONST)) (-1998 (($) 17 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 64)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
-(((-50 |#1| |#2|) (-13 (-626 |#1|) (-1047 |#1|) (-10 -8 (-15 -4369 (|#1| $)) (-15 -2880 ($ $)) (-15 -4394 ($ $)) (-15 -3481 (|#1| $ $)) (-15 -3643 ($ (-777))) (-15 -2651 ($ (-650 (-570)))) (-15 -1638 ((-112) $)) (-15 -4082 ((-112) $)) (-15 -2650 ((-777) $)) (-15 -2536 ($ (-1 |#1| |#1|) $)))) (-1058) (-650 (-1186))) (T -50))
-((-4369 (*1 *2 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186))))) (-2880 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))))) (-4394 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))))) (-3481 (*1 *2 *1 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186))))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-2651 (*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-50 *3 *4)) (-14 *4 (-650 (-1186))))))
-(-13 (-626 |#1|) (-1047 |#1|) (-10 -8 (-15 -4369 (|#1| $)) (-15 -2880 ($ $)) (-15 -4394 ($ $)) (-15 -3481 (|#1| $ $)) (-15 -3643 ($ (-777))) (-15 -2651 ($ (-650 (-570)))) (-15 -1638 ((-112) $)) (-15 -4082 ((-112) $)) (-15 -2650 ((-777) $)) (-15 -2536 ($ (-1 |#1| |#1|) $))))
-((-4082 (((-112) (-52)) 18)) (-2435 (((-3 |#1| "failed") (-52)) 20)) (-4387 ((|#1| (-52)) 21)) (-2869 (((-52) |#1|) 14)))
-(((-51 |#1|) (-10 -7 (-15 -2869 ((-52) |#1|)) (-15 -2435 ((-3 |#1| "failed") (-52))) (-15 -4082 ((-112) (-52))) (-15 -4387 (|#1| (-52)))) (-1227)) (T -51))
-((-4387 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1227)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1227)))) (-2435 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1227)))) (-2869 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1227)))))
-(-10 -7 (-15 -2869 ((-52) |#1|)) (-15 -2435 ((-3 |#1| "failed") (-52))) (-15 -4082 ((-112) (-52))) (-15 -4387 (|#1| (-52))))
-((-2847 (((-112) $ $) NIL)) (-2300 (((-780) $) 8)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2409 (((-1113) $) 10)) (-2869 (((-868) $) 15)) (-1344 (((-112) $ $) NIL)) (-1640 (($ (-1113) (-780)) 16)) (-3892 (((-112) $ $) 12)))
-(((-52) (-13 (-1109) (-10 -8 (-15 -1640 ($ (-1113) (-780))) (-15 -2409 ((-1113) $)) (-15 -2300 ((-780) $))))) (T -52))
-((-1640 (*1 *1 *2 *3) (-12 (-5 *2 (-1113)) (-5 *3 (-780)) (-5 *1 (-52)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-52)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-52)))))
-(-13 (-1109) (-10 -8 (-15 -1640 ($ (-1113) (-780))) (-15 -2409 ((-1113) $)) (-15 -2300 ((-780) $))))
-((-1936 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1936 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1058) (-654 |#1|) (-858 |#1|)) (T -53))
-((-1936 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-654 *5)) (-4 *5 (-1058)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-858 *5)))))
-(-10 -7 (-15 -1936 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2998 ((|#3| |#3| (-650 (-1186))) 44)) (-1631 ((|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3| (-928)) 32) ((|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1631 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3|)) (-15 -1631 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3| (-928))) (-15 -2998 (|#3| |#3| (-650 (-1186))))) (-1109) (-13 (-1058) (-893 |#1|) (-620 (-899 |#1|))) (-13 (-436 |#2|) (-893 |#1|) (-620 (-899 |#1|)))) (T -54))
-((-2998 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) (-1631 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-650 (-1085 *5 *6 *2))) (-5 *4 (-928)) (-4 *5 (-1109)) (-4 *6 (-13 (-1058) (-893 *5) (-620 (-899 *5)))) (-4 *2 (-13 (-436 *6) (-893 *5) (-620 (-899 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1631 (*1 *2 *3 *2) (-12 (-5 *3 (-650 (-1085 *4 *5 *2))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -1631 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3|)) (-15 -1631 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3| (-928))) (-15 -2998 (|#3| |#3| (-650 (-1186)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 14)) (-2435 (((-3 (-777) "failed") $) 34)) (-4387 (((-777) $) NIL)) (-2005 (((-112) $) 16)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) 18)) (-2869 (((-868) $) 23) (($ (-777)) 29)) (-1344 (((-112) $ $) NIL)) (-2993 (($) 11 T CONST)) (-3892 (((-112) $ $) 20)))
-(((-55) (-13 (-1109) (-1047 (-777)) (-10 -8 (-15 -2993 ($) -3722) (-15 -2564 ((-112) $)) (-15 -2005 ((-112) $))))) (T -55))
-((-2993 (*1 *1) (-5 *1 (-55))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1109) (-1047 (-777)) (-10 -8 (-15 -2993 ($) -3722) (-15 -2564 ((-112) $)) (-15 -2005 ((-112) $))))
-((-2855 (((-112) $ (-777)) 27)) (-2951 (($ $ (-570) |#3|) 66)) (-2605 (($ $ (-570) |#4|) 70)) (-3598 ((|#3| $ (-570)) 79)) (-3976 (((-650 |#2|) $) 47)) (-2497 (((-112) $ (-777)) 31)) (-1314 (((-112) |#2| $) 74)) (-2833 (($ (-1 |#2| |#2|) $) 55)) (-2536 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2065 (((-112) $ (-777)) 29)) (-4222 (($ $ |#2|) 52)) (-2231 (((-112) (-1 (-112) |#2|) $) 21)) (-2057 ((|#2| $ (-570) (-570)) NIL) ((|#2| $ (-570) (-570) |#2|) 35)) (-3901 (((-777) (-1 (-112) |#2|) $) 41) (((-777) |#2| $) 76)) (-3064 (($ $) 51)) (-4101 ((|#4| $ (-570)) 82)) (-2869 (((-868) $) 88)) (-2061 (((-112) (-1 (-112) |#2|) $) 20)) (-3892 (((-112) $ $) 73)) (-2857 (((-777) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2605 (|#1| |#1| (-570) |#4|)) (-15 -2951 (|#1| |#1| (-570) |#3|)) (-15 -3976 ((-650 |#2|) |#1|)) (-15 -4101 (|#4| |#1| (-570))) (-15 -3598 (|#3| |#1| (-570))) (-15 -2057 (|#2| |#1| (-570) (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) (-570))) (-15 -4222 (|#1| |#1| |#2|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -1314 ((-112) |#2| |#1|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777))) (-15 -3064 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1227) (-378 |#2|) (-378 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2605 (|#1| |#1| (-570) |#4|)) (-15 -2951 (|#1| |#1| (-570) |#3|)) (-15 -3976 ((-650 |#2|) |#1|)) (-15 -4101 (|#4| |#1| (-570))) (-15 -3598 (|#3| |#1| (-570))) (-15 -2057 (|#2| |#1| (-570) (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) (-570))) (-15 -4222 (|#1| |#1| |#2|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -1314 ((-112) |#2| |#1|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777))) (-15 -3064 (|#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#1| $ (-570) (-570) |#1|) 45)) (-2951 (($ $ (-570) |#2|) 43)) (-2605 (($ $ (-570) |#3|) 42)) (-2333 (($) 7 T CONST)) (-3598 ((|#2| $ (-570)) 47)) (-2845 ((|#1| $ (-570) (-570) |#1|) 44)) (-2774 ((|#1| $ (-570) (-570)) 49)) (-3976 (((-650 |#1|) $) 31)) (-4218 (((-777) $) 52)) (-2296 (($ (-777) (-777) |#1|) 58)) (-4230 (((-777) $) 51)) (-2497 (((-112) $ (-777)) 9)) (-1863 (((-570) $) 56)) (-2554 (((-570) $) 54)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2163 (((-570) $) 55)) (-1448 (((-570) $) 53)) (-2833 (($ (-1 |#1| |#1|) $) 35)) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) 57)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) (-570)) 50) ((|#1| $ (-570) (-570) |#1|) 48)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-4101 ((|#3| $ (-570)) 46)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-57 |#1| |#2| |#3|) (-141) (-1227) (-378 |t#1|) (-378 |t#1|)) (T -57))
-((-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2296 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-777)) (-4 *3 (-1227)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-4222 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-777)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-777)))) (-2057 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-1227)))) (-2774 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-1227)))) (-2057 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1227)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) (-3598 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1227)) (-4 *5 (-378 *4)) (-4 *2 (-378 *4)))) (-4101 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1227)) (-4 *5 (-378 *4)) (-4 *2 (-378 *4)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-650 *3)))) (-3040 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1227)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) (-2845 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1227)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) (-2951 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1227)) (-4 *3 (-378 *4)) (-4 *5 (-378 *4)))) (-2605 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1227)) (-4 *5 (-378 *4)) (-4 *3 (-378 *4)))) (-2833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2536 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2536 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))))
-(-13 (-495 |t#1|) (-10 -8 (-6 -4453) (-6 -4452) (-15 -2296 ($ (-777) (-777) |t#1|)) (-15 -4222 ($ $ |t#1|)) (-15 -1863 ((-570) $)) (-15 -2163 ((-570) $)) (-15 -2554 ((-570) $)) (-15 -1448 ((-570) $)) (-15 -4218 ((-777) $)) (-15 -4230 ((-777) $)) (-15 -2057 (|t#1| $ (-570) (-570))) (-15 -2774 (|t#1| $ (-570) (-570))) (-15 -2057 (|t#1| $ (-570) (-570) |t#1|)) (-15 -3598 (|t#2| $ (-570))) (-15 -4101 (|t#3| $ (-570))) (-15 -3976 ((-650 |t#1|) $)) (-15 -3040 (|t#1| $ (-570) (-570) |t#1|)) (-15 -2845 (|t#1| $ (-570) (-570) |t#1|)) (-15 -2951 ($ $ (-570) |t#2|)) (-15 -2605 ($ $ (-570) |t#3|)) (-15 -2536 ($ (-1 |t#1| |t#1|) $)) (-15 -2833 ($ (-1 |t#1| |t#1|) $)) (-15 -2536 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2536 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-3693 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2295 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2536 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -3693 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2536 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1227) (-1227)) (T -58))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1227)) (-4 *2 (-1227)) (-5 *1 (-58 *5 *2)))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1227)) (-4 *5 (-1227)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -3693 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2536 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-4251 (($ (-650 |#1|)) 11) (($ (-777) |#1|) 14)) (-2296 (($ (-777) |#1|) 13)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 10)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4251 ($ (-650 |#1|))) (-15 -4251 ($ (-777) |#1|)))) (-1227)) (T -59))
-((-4251 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-59 *3)))) (-4251 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-59 *3)) (-4 *3 (-1227)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -4251 ($ (-650 |#1|))) (-15 -4251 ($ (-777) |#1|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2951 (($ $ (-570) (-59 |#1|)) NIL)) (-2605 (($ $ (-570) (-59 |#1|)) NIL)) (-2333 (($) NIL T CONST)) (-3598 (((-59 |#1|) $ (-570)) NIL)) (-2845 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2774 ((|#1| $ (-570) (-570)) NIL)) (-3976 (((-650 |#1|) $) NIL)) (-4218 (((-777) $) NIL)) (-2296 (($ (-777) (-777) |#1|) NIL)) (-4230 (((-777) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-1863 (((-570) $) NIL)) (-2554 (((-570) $) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2163 (((-570) $) NIL)) (-1448 (((-570) $) NIL)) (-2833 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-4101 (((-59 |#1|) $ (-570)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4453))) (-1227)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4453)))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 74) (((-3 $ "failed") (-1277 (-320 (-570)))) 63) (((-3 $ "failed") (-1277 (-959 (-384)))) 94) (((-3 $ "failed") (-1277 (-959 (-570)))) 84) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 52) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 39)) (-4387 (($ (-1277 (-320 (-384)))) 70) (($ (-1277 (-320 (-570)))) 59) (($ (-1277 (-959 (-384)))) 90) (($ (-1277 (-959 (-570)))) 80) (($ (-1277 (-413 (-959 (-384))))) 48) (($ (-1277 (-413 (-959 (-570))))) 32)) (-2237 (((-1282) $) 124)) (-2869 (((-868) $) 118) (($ (-650 (-334))) 103) (($ (-334)) 97) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 101) (($ (-1277 (-344 (-2881 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2881) (-705)))) 31)))
-(((-61 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2881) (-705))))))) (-1186)) (T -61))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2881) (-705)))) (-5 *1 (-61 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2881) (-705)))))))
-((-2237 (((-1282) $) 54) (((-1282)) 55)) (-2869 (((-868) $) 51)))
-(((-62 |#1|) (-13 (-401) (-10 -7 (-15 -2237 ((-1282))))) (-1186)) (T -62))
-((-2237 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-62 *3)) (-14 *3 (-1186)))))
-(-13 (-401) (-10 -7 (-15 -2237 ((-1282)))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 150) (((-3 $ "failed") (-1277 (-320 (-570)))) 140) (((-3 $ "failed") (-1277 (-959 (-384)))) 170) (((-3 $ "failed") (-1277 (-959 (-570)))) 160) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 129) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 117)) (-4387 (($ (-1277 (-320 (-384)))) 146) (($ (-1277 (-320 (-570)))) 136) (($ (-1277 (-959 (-384)))) 166) (($ (-1277 (-959 (-570)))) 156) (($ (-1277 (-413 (-959 (-384))))) 125) (($ (-1277 (-413 (-959 (-570))))) 110)) (-2237 (((-1282) $) 103)) (-2869 (((-868) $) 97) (($ (-650 (-334))) 30) (($ (-334)) 35) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 33) (($ (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705)))) 95)))
-(((-63 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705))))))) (-1186)) (T -63))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705)))) (-5 *1 (-63 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705)))))))
-((-2435 (((-3 $ "failed") (-320 (-384))) 41) (((-3 $ "failed") (-320 (-570))) 46) (((-3 $ "failed") (-959 (-384))) 50) (((-3 $ "failed") (-959 (-570))) 54) (((-3 $ "failed") (-413 (-959 (-384)))) 36) (((-3 $ "failed") (-413 (-959 (-570)))) 29)) (-4387 (($ (-320 (-384))) 39) (($ (-320 (-570))) 44) (($ (-959 (-384))) 48) (($ (-959 (-570))) 52) (($ (-413 (-959 (-384)))) 34) (($ (-413 (-959 (-570)))) 26)) (-2237 (((-1282) $) 76)) (-2869 (((-868) $) 69) (($ (-650 (-334))) 61) (($ (-334)) 66) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 64) (($ (-344 (-2881 (QUOTE X)) (-2881) (-705))) 25)))
-(((-64 |#1|) (-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881 (QUOTE X)) (-2881) (-705)))))) (-1186)) (T -64))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-344 (-2881 (QUOTE X)) (-2881) (-705))) (-5 *1 (-64 *3)) (-14 *3 (-1186)))))
-(-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881 (QUOTE X)) (-2881) (-705))))))
-((-2435 (((-3 $ "failed") (-695 (-320 (-384)))) 111) (((-3 $ "failed") (-695 (-320 (-570)))) 99) (((-3 $ "failed") (-695 (-959 (-384)))) 133) (((-3 $ "failed") (-695 (-959 (-570)))) 122) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 87) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 73)) (-4387 (($ (-695 (-320 (-384)))) 107) (($ (-695 (-320 (-570)))) 95) (($ (-695 (-959 (-384)))) 129) (($ (-695 (-959 (-570)))) 118) (($ (-695 (-413 (-959 (-384))))) 83) (($ (-695 (-413 (-959 (-570))))) 66)) (-2237 (((-1282) $) 141)) (-2869 (((-868) $) 135) (($ (-650 (-334))) 29) (($ (-334)) 34) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 32) (($ (-695 (-344 (-2881) (-2881 (QUOTE X) (QUOTE HESS)) (-705)))) 56)))
-(((-65 |#1|) (-13 (-389) (-622 (-695 (-344 (-2881) (-2881 (QUOTE X) (QUOTE HESS)) (-705))))) (-1186)) (T -65))
-NIL
-(-13 (-389) (-622 (-695 (-344 (-2881) (-2881 (QUOTE X) (QUOTE HESS)) (-705)))))
-((-2435 (((-3 $ "failed") (-320 (-384))) 60) (((-3 $ "failed") (-320 (-570))) 65) (((-3 $ "failed") (-959 (-384))) 69) (((-3 $ "failed") (-959 (-570))) 73) (((-3 $ "failed") (-413 (-959 (-384)))) 55) (((-3 $ "failed") (-413 (-959 (-570)))) 48)) (-4387 (($ (-320 (-384))) 58) (($ (-320 (-570))) 63) (($ (-959 (-384))) 67) (($ (-959 (-570))) 71) (($ (-413 (-959 (-384)))) 53) (($ (-413 (-959 (-570)))) 45)) (-2237 (((-1282) $) 82)) (-2869 (((-868) $) 76) (($ (-650 (-334))) 29) (($ (-334)) 34) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 32) (($ (-344 (-2881) (-2881 (QUOTE XC)) (-705))) 40)))
-(((-66 |#1|) (-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881) (-2881 (QUOTE XC)) (-705)))))) (-1186)) (T -66))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-344 (-2881) (-2881 (QUOTE XC)) (-705))) (-5 *1 (-66 *3)) (-14 *3 (-1186)))))
-(-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881) (-2881 (QUOTE XC)) (-705))))))
-((-2237 (((-1282) $) 65)) (-2869 (((-868) $) 59) (($ (-695 (-705))) 51) (($ (-650 (-334))) 50) (($ (-334)) 57) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 55)))
-(((-67 |#1|) (-388) (-1186)) (T -67))
-NIL
-(-388)
-((-2237 (((-1282) $) 66)) (-2869 (((-868) $) 60) (($ (-695 (-705))) 52) (($ (-650 (-334))) 51) (($ (-334)) 54) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 57)))
-(((-68 |#1|) (-388) (-1186)) (T -68))
-NIL
-(-388)
-((-2237 (((-1282) $) NIL) (((-1282)) 33)) (-2869 (((-868) $) NIL)))
-(((-69 |#1|) (-13 (-401) (-10 -7 (-15 -2237 ((-1282))))) (-1186)) (T -69))
-((-2237 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-69 *3)) (-14 *3 (-1186)))))
-(-13 (-401) (-10 -7 (-15 -2237 ((-1282)))))
-((-2237 (((-1282) $) 75)) (-2869 (((-868) $) 69) (($ (-695 (-705))) 61) (($ (-650 (-334))) 63) (($ (-334)) 66) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 60)))
-(((-70 |#1|) (-388) (-1186)) (T -70))
-NIL
-(-388)
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 109) (((-3 $ "failed") (-1277 (-320 (-570)))) 98) (((-3 $ "failed") (-1277 (-959 (-384)))) 129) (((-3 $ "failed") (-1277 (-959 (-570)))) 119) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 87) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 74)) (-4387 (($ (-1277 (-320 (-384)))) 105) (($ (-1277 (-320 (-570)))) 94) (($ (-1277 (-959 (-384)))) 125) (($ (-1277 (-959 (-570)))) 115) (($ (-1277 (-413 (-959 (-384))))) 83) (($ (-1277 (-413 (-959 (-570))))) 67)) (-2237 (((-1282) $) 142)) (-2869 (((-868) $) 136) (($ (-650 (-334))) 131) (($ (-334)) 134) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 59) (($ (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705)))) 60)))
-(((-71 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705))))))) (-1186)) (T -71))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705)))) (-5 *1 (-71 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705)))))))
-((-2237 (((-1282) $) 33) (((-1282)) 32)) (-2869 (((-868) $) 36)))
-(((-72 |#1|) (-13 (-401) (-10 -7 (-15 -2237 ((-1282))))) (-1186)) (T -72))
-((-2237 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-72 *3)) (-14 *3 (-1186)))))
-(-13 (-401) (-10 -7 (-15 -2237 ((-1282)))))
-((-2237 (((-1282) $) 65)) (-2869 (((-868) $) 59) (($ (-695 (-705))) 51) (($ (-650 (-334))) 53) (($ (-334)) 56) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 50)))
-(((-73 |#1|) (-388) (-1186)) (T -73))
-NIL
-(-388)
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 127) (((-3 $ "failed") (-1277 (-320 (-570)))) 117) (((-3 $ "failed") (-1277 (-959 (-384)))) 147) (((-3 $ "failed") (-1277 (-959 (-570)))) 137) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 107) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 95)) (-4387 (($ (-1277 (-320 (-384)))) 123) (($ (-1277 (-320 (-570)))) 113) (($ (-1277 (-959 (-384)))) 143) (($ (-1277 (-959 (-570)))) 133) (($ (-1277 (-413 (-959 (-384))))) 103) (($ (-1277 (-413 (-959 (-570))))) 88)) (-2237 (((-1282) $) 80)) (-2869 (((-868) $) 28) (($ (-650 (-334))) 70) (($ (-334)) 66) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 73) (($ (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))) 67)))
-(((-74 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705))))))) (-1186)) (T -74))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))) (-5 *1 (-74 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 132) (((-3 $ "failed") (-1277 (-320 (-570)))) 121) (((-3 $ "failed") (-1277 (-959 (-384)))) 152) (((-3 $ "failed") (-1277 (-959 (-570)))) 142) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 110) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 97)) (-4387 (($ (-1277 (-320 (-384)))) 128) (($ (-1277 (-320 (-570)))) 117) (($ (-1277 (-959 (-384)))) 148) (($ (-1277 (-959 (-570)))) 138) (($ (-1277 (-413 (-959 (-384))))) 106) (($ (-1277 (-413 (-959 (-570))))) 90)) (-2237 (((-1282) $) 82)) (-2869 (((-868) $) 74) (($ (-650 (-334))) NIL) (($ (-334)) NIL) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) NIL) (($ (-1277 (-344 (-2881 (QUOTE X) (QUOTE EPS)) (-2881 (QUOTE -2246)) (-705)))) 69)))
-(((-75 |#1| |#2| |#3|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X) (QUOTE EPS)) (-2881 (QUOTE -2246)) (-705))))))) (-1186) (-1186) (-1186)) (T -75))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881 (QUOTE X) (QUOTE EPS)) (-2881 (QUOTE -2246)) (-705)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186)) (-14 *5 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X) (QUOTE EPS)) (-2881 (QUOTE -2246)) (-705)))))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 138) (((-3 $ "failed") (-1277 (-320 (-570)))) 127) (((-3 $ "failed") (-1277 (-959 (-384)))) 158) (((-3 $ "failed") (-1277 (-959 (-570)))) 148) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 116) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 103)) (-4387 (($ (-1277 (-320 (-384)))) 134) (($ (-1277 (-320 (-570)))) 123) (($ (-1277 (-959 (-384)))) 154) (($ (-1277 (-959 (-570)))) 144) (($ (-1277 (-413 (-959 (-384))))) 112) (($ (-1277 (-413 (-959 (-570))))) 96)) (-2237 (((-1282) $) 88)) (-2869 (((-868) $) 80) (($ (-650 (-334))) NIL) (($ (-334)) NIL) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) NIL) (($ (-1277 (-344 (-2881 (QUOTE EPS)) (-2881 (QUOTE YA) (QUOTE YB)) (-705)))) 75)))
-(((-76 |#1| |#2| |#3|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE EPS)) (-2881 (QUOTE YA) (QUOTE YB)) (-705))))))) (-1186) (-1186) (-1186)) (T -76))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881 (QUOTE EPS)) (-2881 (QUOTE YA) (QUOTE YB)) (-705)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186)) (-14 *5 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE EPS)) (-2881 (QUOTE YA) (QUOTE YB)) (-705)))))))
-((-2435 (((-3 $ "failed") (-320 (-384))) 83) (((-3 $ "failed") (-320 (-570))) 88) (((-3 $ "failed") (-959 (-384))) 92) (((-3 $ "failed") (-959 (-570))) 96) (((-3 $ "failed") (-413 (-959 (-384)))) 78) (((-3 $ "failed") (-413 (-959 (-570)))) 71)) (-4387 (($ (-320 (-384))) 81) (($ (-320 (-570))) 86) (($ (-959 (-384))) 90) (($ (-959 (-570))) 94) (($ (-413 (-959 (-384)))) 76) (($ (-413 (-959 (-570)))) 68)) (-2237 (((-1282) $) 63)) (-2869 (((-868) $) 51) (($ (-650 (-334))) 47) (($ (-334)) 57) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 55) (($ (-344 (-2881) (-2881 (QUOTE X)) (-705))) 48)))
-(((-77 |#1|) (-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881) (-2881 (QUOTE X)) (-705)))))) (-1186)) (T -77))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-344 (-2881) (-2881 (QUOTE X)) (-705))) (-5 *1 (-77 *3)) (-14 *3 (-1186)))))
-(-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881) (-2881 (QUOTE X)) (-705))))))
-((-2435 (((-3 $ "failed") (-320 (-384))) 47) (((-3 $ "failed") (-320 (-570))) 52) (((-3 $ "failed") (-959 (-384))) 56) (((-3 $ "failed") (-959 (-570))) 60) (((-3 $ "failed") (-413 (-959 (-384)))) 42) (((-3 $ "failed") (-413 (-959 (-570)))) 35)) (-4387 (($ (-320 (-384))) 45) (($ (-320 (-570))) 50) (($ (-959 (-384))) 54) (($ (-959 (-570))) 58) (($ (-413 (-959 (-384)))) 40) (($ (-413 (-959 (-570)))) 32)) (-2237 (((-1282) $) 81)) (-2869 (((-868) $) 75) (($ (-650 (-334))) 67) (($ (-334)) 72) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 70) (($ (-344 (-2881) (-2881 (QUOTE X)) (-705))) 31)))
-(((-78 |#1|) (-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881) (-2881 (QUOTE X)) (-705)))))) (-1186)) (T -78))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-344 (-2881) (-2881 (QUOTE X)) (-705))) (-5 *1 (-78 *3)) (-14 *3 (-1186)))))
-(-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881) (-2881 (QUOTE X)) (-705))))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 90) (((-3 $ "failed") (-1277 (-320 (-570)))) 79) (((-3 $ "failed") (-1277 (-959 (-384)))) 110) (((-3 $ "failed") (-1277 (-959 (-570)))) 100) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 68) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 55)) (-4387 (($ (-1277 (-320 (-384)))) 86) (($ (-1277 (-320 (-570)))) 75) (($ (-1277 (-959 (-384)))) 106) (($ (-1277 (-959 (-570)))) 96) (($ (-1277 (-413 (-959 (-384))))) 64) (($ (-1277 (-413 (-959 (-570))))) 48)) (-2237 (((-1282) $) 126)) (-2869 (((-868) $) 120) (($ (-650 (-334))) 113) (($ (-334)) 38) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 116) (($ (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705)))) 39)))
-(((-79 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705))))))) (-1186)) (T -79))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705)))) (-5 *1 (-79 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE XC)) (-705)))))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 151) (((-3 $ "failed") (-1277 (-320 (-570)))) 141) (((-3 $ "failed") (-1277 (-959 (-384)))) 171) (((-3 $ "failed") (-1277 (-959 (-570)))) 161) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 131) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 119)) (-4387 (($ (-1277 (-320 (-384)))) 147) (($ (-1277 (-320 (-570)))) 137) (($ (-1277 (-959 (-384)))) 167) (($ (-1277 (-959 (-570)))) 157) (($ (-1277 (-413 (-959 (-384))))) 127) (($ (-1277 (-413 (-959 (-570))))) 112)) (-2237 (((-1282) $) 105)) (-2869 (((-868) $) 99) (($ (-650 (-334))) 90) (($ (-334)) 97) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 95) (($ (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))) 91)))
-(((-80 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705))))))) (-1186)) (T -80))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))) (-5 *1 (-80 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 79) (((-3 $ "failed") (-1277 (-320 (-570)))) 68) (((-3 $ "failed") (-1277 (-959 (-384)))) 99) (((-3 $ "failed") (-1277 (-959 (-570)))) 89) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 57) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 44)) (-4387 (($ (-1277 (-320 (-384)))) 75) (($ (-1277 (-320 (-570)))) 64) (($ (-1277 (-959 (-384)))) 95) (($ (-1277 (-959 (-570)))) 85) (($ (-1277 (-413 (-959 (-384))))) 53) (($ (-1277 (-413 (-959 (-570))))) 37)) (-2237 (((-1282) $) 125)) (-2869 (((-868) $) 119) (($ (-650 (-334))) 110) (($ (-334)) 116) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 114) (($ (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))) 36)))
-(((-81 |#1|) (-13 (-447) (-622 (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705))))) (-1186)) (T -81))
-NIL
-(-13 (-447) (-622 (-1277 (-344 (-2881) (-2881 (QUOTE X)) (-705)))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 98) (((-3 $ "failed") (-1277 (-320 (-570)))) 87) (((-3 $ "failed") (-1277 (-959 (-384)))) 118) (((-3 $ "failed") (-1277 (-959 (-570)))) 108) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 76) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 63)) (-4387 (($ (-1277 (-320 (-384)))) 94) (($ (-1277 (-320 (-570)))) 83) (($ (-1277 (-959 (-384)))) 114) (($ (-1277 (-959 (-570)))) 104) (($ (-1277 (-413 (-959 (-384))))) 72) (($ (-1277 (-413 (-959 (-570))))) 56)) (-2237 (((-1282) $) 48)) (-2869 (((-868) $) 42) (($ (-650 (-334))) 32) (($ (-334)) 35) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 38) (($ (-1277 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705)))) 33)))
-(((-82 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705))))))) (-1186)) (T -82))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705)))) (-5 *1 (-82 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705)))))))
-((-2435 (((-3 $ "failed") (-695 (-320 (-384)))) 118) (((-3 $ "failed") (-695 (-320 (-570)))) 107) (((-3 $ "failed") (-695 (-959 (-384)))) 140) (((-3 $ "failed") (-695 (-959 (-570)))) 129) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 96) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 83)) (-4387 (($ (-695 (-320 (-384)))) 114) (($ (-695 (-320 (-570)))) 103) (($ (-695 (-959 (-384)))) 136) (($ (-695 (-959 (-570)))) 125) (($ (-695 (-413 (-959 (-384))))) 92) (($ (-695 (-413 (-959 (-570))))) 76)) (-2237 (((-1282) $) 66)) (-2869 (((-868) $) 53) (($ (-650 (-334))) 60) (($ (-334)) 49) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 58) (($ (-695 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705)))) 50)))
-(((-83 |#1|) (-13 (-389) (-10 -8 (-15 -2869 ($ (-695 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705))))))) (-1186)) (T -83))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-695 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705)))) (-5 *1 (-83 *3)) (-14 *3 (-1186)))))
-(-13 (-389) (-10 -8 (-15 -2869 ($ (-695 (-344 (-2881 (QUOTE X) (QUOTE -2246)) (-2881) (-705)))))))
-((-2435 (((-3 $ "failed") (-695 (-320 (-384)))) 113) (((-3 $ "failed") (-695 (-320 (-570)))) 101) (((-3 $ "failed") (-695 (-959 (-384)))) 135) (((-3 $ "failed") (-695 (-959 (-570)))) 124) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 89) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 75)) (-4387 (($ (-695 (-320 (-384)))) 109) (($ (-695 (-320 (-570)))) 97) (($ (-695 (-959 (-384)))) 131) (($ (-695 (-959 (-570)))) 120) (($ (-695 (-413 (-959 (-384))))) 85) (($ (-695 (-413 (-959 (-570))))) 68)) (-2237 (((-1282) $) 60)) (-2869 (((-868) $) 54) (($ (-650 (-334))) 48) (($ (-334)) 51) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 45) (($ (-695 (-344 (-2881 (QUOTE X)) (-2881) (-705)))) 46)))
-(((-84 |#1|) (-13 (-389) (-10 -8 (-15 -2869 ($ (-695 (-344 (-2881 (QUOTE X)) (-2881) (-705))))))) (-1186)) (T -84))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-695 (-344 (-2881 (QUOTE X)) (-2881) (-705)))) (-5 *1 (-84 *3)) (-14 *3 (-1186)))))
-(-13 (-389) (-10 -8 (-15 -2869 ($ (-695 (-344 (-2881 (QUOTE X)) (-2881) (-705)))))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 105) (((-3 $ "failed") (-1277 (-320 (-570)))) 94) (((-3 $ "failed") (-1277 (-959 (-384)))) 125) (((-3 $ "failed") (-1277 (-959 (-570)))) 115) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 83) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 70)) (-4387 (($ (-1277 (-320 (-384)))) 101) (($ (-1277 (-320 (-570)))) 90) (($ (-1277 (-959 (-384)))) 121) (($ (-1277 (-959 (-570)))) 111) (($ (-1277 (-413 (-959 (-384))))) 79) (($ (-1277 (-413 (-959 (-570))))) 63)) (-2237 (((-1282) $) 47)) (-2869 (((-868) $) 41) (($ (-650 (-334))) 50) (($ (-334)) 37) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 53) (($ (-1277 (-344 (-2881 (QUOTE X)) (-2881) (-705)))) 38)))
-(((-85 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X)) (-2881) (-705))))))) (-1186)) (T -85))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881 (QUOTE X)) (-2881) (-705)))) (-5 *1 (-85 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X)) (-2881) (-705)))))))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 80) (((-3 $ "failed") (-1277 (-320 (-570)))) 69) (((-3 $ "failed") (-1277 (-959 (-384)))) 100) (((-3 $ "failed") (-1277 (-959 (-570)))) 90) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 58) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 45)) (-4387 (($ (-1277 (-320 (-384)))) 76) (($ (-1277 (-320 (-570)))) 65) (($ (-1277 (-959 (-384)))) 96) (($ (-1277 (-959 (-570)))) 86) (($ (-1277 (-413 (-959 (-384))))) 54) (($ (-1277 (-413 (-959 (-570))))) 38)) (-2237 (((-1282) $) 126)) (-2869 (((-868) $) 120) (($ (-650 (-334))) 111) (($ (-334)) 117) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 115) (($ (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705)))) 37)))
-(((-86 |#1|) (-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705))))))) (-1186)) (T -86))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705)))) (-5 *1 (-86 *3)) (-14 *3 (-1186)))))
-(-13 (-447) (-10 -8 (-15 -2869 ($ (-1277 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705)))))))
-((-2435 (((-3 $ "failed") (-695 (-320 (-384)))) 117) (((-3 $ "failed") (-695 (-320 (-570)))) 105) (((-3 $ "failed") (-695 (-959 (-384)))) 139) (((-3 $ "failed") (-695 (-959 (-570)))) 128) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 93) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 79)) (-4387 (($ (-695 (-320 (-384)))) 113) (($ (-695 (-320 (-570)))) 101) (($ (-695 (-959 (-384)))) 135) (($ (-695 (-959 (-570)))) 124) (($ (-695 (-413 (-959 (-384))))) 89) (($ (-695 (-413 (-959 (-570))))) 72)) (-2237 (((-1282) $) 63)) (-2869 (((-868) $) 57) (($ (-650 (-334))) 47) (($ (-334)) 54) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 52) (($ (-695 (-344 (-2881 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2881) (-705)))) 48)))
-(((-87 |#1|) (-13 (-389) (-10 -8 (-15 -2869 ($ (-695 (-344 (-2881 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2881) (-705))))))) (-1186)) (T -87))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-695 (-344 (-2881 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2881) (-705)))) (-5 *1 (-87 *3)) (-14 *3 (-1186)))))
-(-13 (-389) (-10 -8 (-15 -2869 ($ (-695 (-344 (-2881 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2881) (-705)))))))
-((-2237 (((-1282) $) 45)) (-2869 (((-868) $) 39) (($ (-1277 (-705))) 100) (($ (-650 (-334))) 31) (($ (-334)) 36) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 34)))
-(((-88 |#1|) (-446) (-1186)) (T -88))
-NIL
-(-446)
-((-2435 (((-3 $ "failed") (-320 (-384))) 48) (((-3 $ "failed") (-320 (-570))) 53) (((-3 $ "failed") (-959 (-384))) 57) (((-3 $ "failed") (-959 (-570))) 61) (((-3 $ "failed") (-413 (-959 (-384)))) 43) (((-3 $ "failed") (-413 (-959 (-570)))) 36)) (-4387 (($ (-320 (-384))) 46) (($ (-320 (-570))) 51) (($ (-959 (-384))) 55) (($ (-959 (-570))) 59) (($ (-413 (-959 (-384)))) 41) (($ (-413 (-959 (-570)))) 33)) (-2237 (((-1282) $) 91)) (-2869 (((-868) $) 85) (($ (-650 (-334))) 79) (($ (-334)) 82) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 77) (($ (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705))) 32)))
-(((-89 |#1|) (-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705)))))) (-1186)) (T -89))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705))) (-5 *1 (-89 *3)) (-14 *3 (-1186)))))
-(-13 (-402) (-10 -8 (-15 -2869 ($ (-344 (-2881 (QUOTE X)) (-2881 (QUOTE -2246)) (-705))))))
-((-2170 (((-1277 (-695 |#1|)) (-695 |#1|)) 61)) (-3469 (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 (-650 (-928))))) |#2| (-928)) 49)) (-3132 (((-2 (|:| |minor| (-650 (-928))) (|:| -2557 |#2|) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 |#2|))) |#2| (-928)) 72 (|has| |#1| (-368)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -3469 ((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 (-650 (-928))))) |#2| (-928))) (-15 -2170 ((-1277 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-368)) (-15 -3132 ((-2 (|:| |minor| (-650 (-928))) (|:| -2557 |#2|) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 |#2|))) |#2| (-928))) |%noBranch|)) (-562) (-662 |#1|)) (T -90))
-((-3132 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |minor| (-650 (-928))) (|:| -2557 *3) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5)))) (-2170 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-1277 (-695 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-695 *4)) (-4 *5 (-662 *4)))) (-3469 (*1 *2 *3 *4) (-12 (-4 *5 (-562)) (-5 *2 (-2 (|:| -2565 (-695 *5)) (|:| |vec| (-1277 (-650 (-928)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5)))))
-(-10 -7 (-15 -3469 ((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 (-650 (-928))))) |#2| (-928))) (-15 -2170 ((-1277 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-368)) (-15 -3132 ((-2 (|:| |minor| (-650 (-928))) (|:| -2557 |#2|) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 |#2|))) |#2| (-928))) |%noBranch|))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1999 ((|#1| $) 40)) (-2855 (((-112) $ (-777)) NIL)) (-2333 (($) NIL T CONST)) (-4191 ((|#1| |#1| $) 35)) (-3940 ((|#1| $) 33)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3398 ((|#1| $) NIL)) (-2801 (($ |#1| $) 36)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4126 ((|#1| $) 34)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 18)) (-1698 (($) 45)) (-3307 (((-777) $) 31)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 17)) (-2869 (((-868) $) 30 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) NIL)) (-1951 (($ (-650 |#1|)) 42)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 15 (|has| |#1| (-1109)))) (-2857 (((-777) $) 12 (|has| $ (-6 -4452)))))
-(((-91 |#1|) (-13 (-1130 |#1|) (-10 -8 (-15 -1951 ($ (-650 |#1|))))) (-1109)) (T -91))
-((-1951 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-91 *3)))))
-(-13 (-1130 |#1|) (-10 -8 (-15 -1951 ($ (-650 |#1|)))))
-((-2869 (((-868) $) 13) (($ (-1191)) 9) (((-1191) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -2869 ((-1191) |#1|)) (-15 -2869 (|#1| (-1191))) (-15 -2869 ((-868) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -2869 ((-1191) |#1|)) (-15 -2869 (|#1| (-1191))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-1191)) 17) (((-1191) $) 16)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
+((-3357 (((-112) $) 12)) (-3161 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-415 (-572)) $) 25) (($ $ (-415 (-572))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3357 ((-112) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-47 |#2| |#3|) (-1060) (-800)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3357 ((-112) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3357 (((-112) $) 74)) (-3042 (($ |#1| |#2|) 73)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-1497 ((|#2| $) 76)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4206 ((|#1| $ |#2|) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-47 |#1| |#2|) (-141) (-1060) (-800)) (T -47))
+((-1853 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-112)))) (-3042 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-4206 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *2 (-370)))))
+(-13 (-1060) (-111 |t#1| |t#1|) (-10 -8 (-15 -1853 (|t#1| $)) (-15 -1840 ($ $)) (-15 -1497 (|t#2| $)) (-15 -3161 ($ (-1 |t#1| |t#1|) $)) (-15 -3357 ((-112) $)) (-15 -3042 ($ |t#1| |t#2|)) (-15 -1874 ($ $)) (-15 -4206 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-370)) (-15 -4029 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-564)) (-6 (-564)) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (-6 (-38 (-415 (-572)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-296) |has| |#1| (-564)) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-2814 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-4049 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-3143 (((-112) $) 9)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-1746 (((-652 (-620 $)) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1480 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3093 (($ $) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-1755 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-3748 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-3072 (((-3 (-620 $) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL)) (-1869 (((-620 $) $) NIL) (((-572) $) NIL) (((-415 (-572)) $) NIL)) (-3407 (($ $ $) NIL)) (-2245 (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-415 (-572)))) (|:| |vec| (-1279 (-415 (-572))))) (-697 $) (-1279 $)) NIL) (((-697 (-415 (-572))) (-697 $)) NIL)) (-2925 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3666 (($ $) NIL) (($ (-652 $)) NIL)) (-1323 (((-652 (-115)) $) NIL)) (-3181 (((-115) (-115)) NIL)) (-4422 (((-112) $) 11)) (-2270 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2209 (((-1136 (-572) (-620 $)) $) NIL)) (-2033 (($ $ (-572)) NIL)) (-2140 (((-1184 $) (-1184 $) (-620 $)) NIL) (((-1184 $) (-1184 $) (-652 (-620 $))) NIL) (($ $ (-620 $)) NIL) (($ $ (-652 (-620 $))) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2328 (((-1184 $) (-620 $)) NIL (|has| $ (-1060)))) (-3161 (($ (-1 $ $) (-620 $)) NIL)) (-2094 (((-3 (-620 $) "failed") $) NIL)) (-1335 (($ (-652 $)) NIL) (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-3165 (((-652 (-620 $)) $) NIL)) (-2296 (($ (-115) $) NIL) (($ (-115) (-652 $)) NIL)) (-2685 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) NIL)) (-1809 (($ $) NIL)) (-3920 (((-779) $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ (-652 $)) NIL) (($ $ $) NIL)) (-3681 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3601 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-3654 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4395 (((-779) $) NIL)) (-2679 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-2151 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ (-779)) NIL) (($ $) NIL)) (-2224 (((-1136 (-572) (-620 $)) $) NIL)) (-3858 (($ $) NIL (|has| $ (-1060)))) (-3222 (((-386) $) NIL) (((-227) $) NIL) (((-171 (-386)) $) NIL)) (-3491 (((-870) $) NIL) (($ (-620 $)) NIL) (($ (-415 (-572))) NIL) (($ $) NIL) (($ (-572)) NIL) (($ (-1136 (-572) (-620 $))) NIL)) (-2455 (((-779)) NIL T CONST)) (-1850 (($ $) NIL) (($ (-652 $)) NIL)) (-3088 (((-112) (-115)) NIL)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) 6 T CONST)) (-2619 (($) 10 T CONST)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3921 (((-112) $ $) 13)) (-4029 (($ $ $) NIL)) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-415 (-572))) NIL) (($ $ (-572)) NIL) (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ $ $) NIL) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
+(((-48) (-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -3491 ($ (-1136 (-572) (-620 $)))) (-15 -2209 ((-1136 (-572) (-620 $)) $)) (-15 -2224 ((-1136 (-572) (-620 $)) $)) (-15 -2925 ($ $)) (-15 -2140 ((-1184 $) (-1184 $) (-620 $))) (-15 -2140 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2140 ($ $ (-620 $))) (-15 -2140 ($ $ (-652 (-620 $))))))) (T -48))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48)))) (-2925 (*1 *1 *1) (-5 *1 (-48))) (-2140 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-620 (-48))) (-5 *1 (-48)))) (-2140 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-652 (-620 (-48)))) (-5 *1 (-48)))) (-2140 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-48))) (-5 *1 (-48)))) (-2140 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-48)))) (-5 *1 (-48)))))
+(-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -3491 ($ (-1136 (-572) (-620 $)))) (-15 -2209 ((-1136 (-572) (-620 $)) $)) (-15 -2224 ((-1136 (-572) (-620 $)) $)) (-15 -2925 ($ $)) (-15 -2140 ((-1184 $) (-1184 $) (-620 $))) (-15 -2140 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2140 ($ $ (-620 $))) (-15 -2140 ($ $ (-652 (-620 $))))))
+((-3464 (((-112) $ $) NIL)) (-3128 (((-652 (-514)) $) 17)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 7)) (-2414 (((-1193) $) 18)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-49) (-13 (-1111) (-10 -8 (-15 -3128 ((-652 (-514)) $)) (-15 -2414 ((-1193) $))))) (T -49))
+((-3128 (*1 *2 *1) (-12 (-5 *2 (-652 (-514))) (-5 *1 (-49)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-49)))))
+(-13 (-1111) (-10 -8 (-15 -3128 ((-652 (-514)) $)) (-15 -2414 ((-1193) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 85)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-1695 (((-112) $) 30)) (-3072 (((-3 |#1| "failed") $) 33)) (-1869 ((|#1| $) 34)) (-1874 (($ $) 40)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1853 ((|#1| $) 31)) (-3171 (($ $) 74)) (-3618 (((-1170) $) NIL)) (-1982 (((-112) $) 43)) (-2614 (((-1131) $) NIL)) (-4267 (($ (-779)) 72)) (-3272 (($ (-652 (-572))) 73)) (-1497 (((-779) $) 44)) (-3491 (((-870) $) 91) (($ (-572)) 69) (($ |#1|) 67)) (-4206 ((|#1| $ $) 28)) (-2455 (((-779)) 71 T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 45 T CONST)) (-2619 (($) 17 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 64)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
+(((-50 |#1| |#2|) (-13 (-628 |#1|) (-1049 |#1|) (-10 -8 (-15 -1853 (|#1| $)) (-15 -3171 ($ $)) (-15 -1874 ($ $)) (-15 -4206 (|#1| $ $)) (-15 -4267 ($ (-779))) (-15 -3272 ($ (-652 (-572)))) (-15 -1982 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -1497 ((-779) $)) (-15 -3161 ($ (-1 |#1| |#1|) $)))) (-1060) (-652 (-1188))) (T -50))
+((-1853 (*1 *2 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188))))) (-3171 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188))))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188))))) (-4206 (*1 *2 *1 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188))))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-3272 (*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060)) (-14 *4 (-652 (-1188))))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-50 *3 *4)) (-14 *4 (-652 (-1188))))))
+(-13 (-628 |#1|) (-1049 |#1|) (-10 -8 (-15 -1853 (|#1| $)) (-15 -3171 ($ $)) (-15 -1874 ($ $)) (-15 -4206 (|#1| $ $)) (-15 -4267 ($ (-779))) (-15 -3272 ($ (-652 (-572)))) (-15 -1982 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -1497 ((-779) $)) (-15 -3161 ($ (-1 |#1| |#1|) $))))
+((-1695 (((-112) (-52)) 18)) (-3072 (((-3 |#1| "failed") (-52)) 20)) (-1869 ((|#1| (-52)) 21)) (-3491 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -3491 ((-52) |#1|)) (-15 -3072 ((-3 |#1| "failed") (-52))) (-15 -1695 ((-112) (-52))) (-15 -1869 (|#1| (-52)))) (-1229)) (T -51))
+((-1869 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1229)))) (-3072 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1229)))))
+(-10 -7 (-15 -3491 ((-52) |#1|)) (-15 -3072 ((-3 |#1| "failed") (-52))) (-15 -1695 ((-112) (-52))) (-15 -1869 (|#1| (-52))))
+((-3464 (((-112) $ $) NIL)) (-2928 (((-782) $) 8)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3045 (((-1115) $) 10)) (-3491 (((-870) $) 15)) (-3424 (((-112) $ $) NIL)) (-1856 (($ (-1115) (-782)) 16)) (-3921 (((-112) $ $) 12)))
+(((-52) (-13 (-1111) (-10 -8 (-15 -1856 ($ (-1115) (-782))) (-15 -3045 ((-1115) $)) (-15 -2928 ((-782) $))))) (T -52))
+((-1856 (*1 *1 *2 *3) (-12 (-5 *2 (-1115)) (-5 *3 (-782)) (-5 *1 (-52)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-52)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-52)))))
+(-13 (-1111) (-10 -8 (-15 -1856 ($ (-1115) (-782))) (-15 -3045 ((-1115) $)) (-15 -2928 ((-782) $))))
+((-2558 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2558 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1060) (-656 |#1|) (-860 |#1|)) (T -53))
+((-2558 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-656 *5)) (-4 *5 (-1060)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-860 *5)))))
+(-10 -7 (-15 -2558 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2983 ((|#3| |#3| (-652 (-1188))) 44)) (-1931 ((|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3| (-930)) 32) ((|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1931 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3|)) (-15 -1931 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3| (-930))) (-15 -2983 (|#3| |#3| (-652 (-1188))))) (-1111) (-13 (-1060) (-895 |#1|) (-622 (-901 |#1|))) (-13 (-438 |#2|) (-895 |#1|) (-622 (-901 |#1|)))) (T -54))
+((-2983 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))) (-1931 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-652 (-1087 *5 *6 *2))) (-5 *4 (-930)) (-4 *5 (-1111)) (-4 *6 (-13 (-1060) (-895 *5) (-622 (-901 *5)))) (-4 *2 (-13 (-438 *6) (-895 *5) (-622 (-901 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1931 (*1 *2 *3 *2) (-12 (-5 *3 (-652 (-1087 *4 *5 *2))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1931 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3|)) (-15 -1931 (|#3| (-652 (-1087 |#1| |#2| |#3|)) |#3| (-930))) (-15 -2983 (|#3| |#3| (-652 (-1188)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 14)) (-3072 (((-3 (-779) "failed") $) 34)) (-1869 (((-779) $) NIL)) (-4422 (((-112) $) 16)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) 18)) (-3491 (((-870) $) 23) (($ (-779)) 29)) (-3424 (((-112) $ $) NIL)) (-2929 (($) 11 T CONST)) (-3921 (((-112) $ $) 20)))
+(((-55) (-13 (-1111) (-1049 (-779)) (-10 -8 (-15 -2929 ($) -4338) (-15 -3143 ((-112) $)) (-15 -4422 ((-112) $))))) (T -55))
+((-2929 (*1 *1) (-5 *1 (-55))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1111) (-1049 (-779)) (-10 -8 (-15 -2929 ($) -4338) (-15 -3143 ((-112) $)) (-15 -4422 ((-112) $))))
+((-2938 (((-112) $ (-779)) 27)) (-2491 (($ $ (-572) |#3|) 66)) (-2283 (($ $ (-572) |#4|) 70)) (-2863 ((|#3| $ (-572)) 79)) (-1442 (((-652 |#2|) $) 47)) (-2545 (((-112) $ (-779)) 31)) (-4211 (((-112) |#2| $) 74)) (-3049 (($ (-1 |#2| |#2|) $) 55)) (-3161 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3818 (((-112) $ (-779)) 29)) (-3803 (($ $ |#2|) 52)) (-3089 (((-112) (-1 (-112) |#2|) $) 21)) (-2679 ((|#2| $ (-572) (-572)) NIL) ((|#2| $ (-572) (-572) |#2|) 35)) (-1371 (((-779) (-1 (-112) |#2|) $) 41) (((-779) |#2| $) 76)) (-3679 (($ $) 51)) (-3845 ((|#4| $ (-572)) 82)) (-3491 (((-870) $) 88)) (-3776 (((-112) (-1 (-112) |#2|) $) 20)) (-3921 (((-112) $ $) 73)) (-3475 (((-779) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2283 (|#1| |#1| (-572) |#4|)) (-15 -2491 (|#1| |#1| (-572) |#3|)) (-15 -1442 ((-652 |#2|) |#1|)) (-15 -3845 (|#4| |#1| (-572))) (-15 -2863 (|#3| |#1| (-572))) (-15 -2679 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) (-572))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -4211 ((-112) |#2| |#1|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779))) (-15 -3679 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1229) (-380 |#2|) (-380 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2283 (|#1| |#1| (-572) |#4|)) (-15 -2491 (|#1| |#1| (-572) |#3|)) (-15 -1442 ((-652 |#2|) |#1|)) (-15 -3845 (|#4| |#1| (-572))) (-15 -2863 (|#3| |#1| (-572))) (-15 -2679 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) (-572))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -4211 ((-112) |#2| |#1|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779))) (-15 -3679 (|#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#1| $ (-572) (-572) |#1|) 45)) (-2491 (($ $ (-572) |#2|) 43)) (-2283 (($ $ (-572) |#3|) 42)) (-1586 (($) 7 T CONST)) (-2863 ((|#2| $ (-572)) 47)) (-3061 ((|#1| $ (-572) (-572) |#1|) 44)) (-2986 ((|#1| $ (-572) (-572)) 49)) (-1442 (((-652 |#1|) $) 31)) (-2366 (((-779) $) 52)) (-2924 (($ (-779) (-779) |#1|) 58)) (-2378 (((-779) $) 51)) (-2545 (((-112) $ (-779)) 9)) (-3689 (((-572) $) 56)) (-3086 (((-572) $) 54)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3631 (((-572) $) 55)) (-3652 (((-572) $) 53)) (-3049 (($ (-1 |#1| |#1|) $) 35)) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) 57)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) (-572)) 50) ((|#1| $ (-572) (-572) |#1|) 48)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3845 ((|#3| $ (-572)) 46)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-57 |#1| |#2| |#3|) (-141) (-1229) (-380 |t#1|) (-380 |t#1|)) (T -57))
+((-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2924 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-779)) (-4 *3 (-1229)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-572)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-779)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-779)))) (-2679 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-1229)))) (-2986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-1229)))) (-2679 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)))) (-2863 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1229)) (-4 *5 (-380 *4)) (-4 *2 (-380 *4)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1229)) (-4 *5 (-380 *4)) (-4 *2 (-380 *4)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-652 *3)))) (-3659 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)))) (-3061 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229)) (-4 *4 (-380 *2)) (-4 *5 (-380 *2)))) (-2491 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-380 *4)) (-4 *5 (-380 *4)))) (-2283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1229)) (-4 *5 (-380 *4)) (-4 *3 (-380 *4)))) (-3049 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3161 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3161 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
+(-13 (-497 |t#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -2924 ($ (-779) (-779) |t#1|)) (-15 -3803 ($ $ |t#1|)) (-15 -3689 ((-572) $)) (-15 -3631 ((-572) $)) (-15 -3086 ((-572) $)) (-15 -3652 ((-572) $)) (-15 -2366 ((-779) $)) (-15 -2378 ((-779) $)) (-15 -2679 (|t#1| $ (-572) (-572))) (-15 -2986 (|t#1| $ (-572) (-572))) (-15 -2679 (|t#1| $ (-572) (-572) |t#1|)) (-15 -2863 (|t#2| $ (-572))) (-15 -3845 (|t#3| $ (-572))) (-15 -1442 ((-652 |t#1|) $)) (-15 -3659 (|t#1| $ (-572) (-572) |t#1|)) (-15 -3061 (|t#1| $ (-572) (-572) |t#1|)) (-15 -2491 ($ $ (-572) |t#2|)) (-15 -2283 ($ $ (-572) |t#3|)) (-15 -3161 ($ (-1 |t#1| |t#1|) $)) (-15 -3049 ($ (-1 |t#1| |t#1|) $)) (-15 -3161 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3161 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-4424 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2925 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3161 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -4424 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3161 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1229) (-1229)) (T -58))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-58 *5 *2)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -4424 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3161 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2866 (($ (-652 |#1|)) 11) (($ (-779) |#1|) 14)) (-2924 (($ (-779) |#1|) 13)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 10)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2866 ($ (-652 |#1|))) (-15 -2866 ($ (-779) |#1|)))) (-1229)) (T -59))
+((-2866 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-59 *3)))) (-2866 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-59 *3)) (-4 *3 (-1229)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2866 ($ (-652 |#1|))) (-15 -2866 ($ (-779) |#1|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2491 (($ $ (-572) (-59 |#1|)) NIL)) (-2283 (($ $ (-572) (-59 |#1|)) NIL)) (-1586 (($) NIL T CONST)) (-2863 (((-59 |#1|) $ (-572)) NIL)) (-3061 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2986 ((|#1| $ (-572) (-572)) NIL)) (-1442 (((-652 |#1|) $) NIL)) (-2366 (((-779) $) NIL)) (-2924 (($ (-779) (-779) |#1|) NIL)) (-2378 (((-779) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-3689 (((-572) $) NIL)) (-3086 (((-572) $) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3631 (((-572) $) NIL)) (-3652 (((-572) $) NIL)) (-3049 (($ (-1 |#1| |#1|) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3845 (((-59 |#1|) $ (-572)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4455))) (-1229)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4455)))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 74) (((-3 $ "failed") (-1279 (-322 (-572)))) 63) (((-3 $ "failed") (-1279 (-961 (-386)))) 94) (((-3 $ "failed") (-1279 (-961 (-572)))) 84) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 52) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 39)) (-1869 (($ (-1279 (-322 (-386)))) 70) (($ (-1279 (-322 (-572)))) 59) (($ (-1279 (-961 (-386)))) 90) (($ (-1279 (-961 (-572)))) 80) (($ (-1279 (-415 (-961 (-386))))) 48) (($ (-1279 (-415 (-961 (-572))))) 32)) (-2864 (((-1284) $) 124)) (-3491 (((-870) $) 118) (($ (-652 (-336))) 103) (($ (-336)) 97) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 101) (($ (-1279 (-346 (-3503 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3503) (-707)))) 31)))
+(((-61 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3503) (-707))))))) (-1188)) (T -61))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3503) (-707)))) (-5 *1 (-61 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3503) (-707)))))))
+((-2864 (((-1284) $) 54) (((-1284)) 55)) (-3491 (((-870) $) 51)))
+(((-62 |#1|) (-13 (-403) (-10 -7 (-15 -2864 ((-1284))))) (-1188)) (T -62))
+((-2864 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-62 *3)) (-14 *3 (-1188)))))
+(-13 (-403) (-10 -7 (-15 -2864 ((-1284)))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 150) (((-3 $ "failed") (-1279 (-322 (-572)))) 140) (((-3 $ "failed") (-1279 (-961 (-386)))) 170) (((-3 $ "failed") (-1279 (-961 (-572)))) 160) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 129) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 117)) (-1869 (($ (-1279 (-322 (-386)))) 146) (($ (-1279 (-322 (-572)))) 136) (($ (-1279 (-961 (-386)))) 166) (($ (-1279 (-961 (-572)))) 156) (($ (-1279 (-415 (-961 (-386))))) 125) (($ (-1279 (-415 (-961 (-572))))) 110)) (-2864 (((-1284) $) 103)) (-3491 (((-870) $) 97) (($ (-652 (-336))) 30) (($ (-336)) 35) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 33) (($ (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707)))) 95)))
+(((-63 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707))))))) (-1188)) (T -63))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707)))) (-5 *1 (-63 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707)))))))
+((-3072 (((-3 $ "failed") (-322 (-386))) 41) (((-3 $ "failed") (-322 (-572))) 46) (((-3 $ "failed") (-961 (-386))) 50) (((-3 $ "failed") (-961 (-572))) 54) (((-3 $ "failed") (-415 (-961 (-386)))) 36) (((-3 $ "failed") (-415 (-961 (-572)))) 29)) (-1869 (($ (-322 (-386))) 39) (($ (-322 (-572))) 44) (($ (-961 (-386))) 48) (($ (-961 (-572))) 52) (($ (-415 (-961 (-386)))) 34) (($ (-415 (-961 (-572)))) 26)) (-2864 (((-1284) $) 76)) (-3491 (((-870) $) 69) (($ (-652 (-336))) 61) (($ (-336)) 66) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 64) (($ (-346 (-3503 (QUOTE X)) (-3503) (-707))) 25)))
+(((-64 |#1|) (-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503 (QUOTE X)) (-3503) (-707)))))) (-1188)) (T -64))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-346 (-3503 (QUOTE X)) (-3503) (-707))) (-5 *1 (-64 *3)) (-14 *3 (-1188)))))
+(-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503 (QUOTE X)) (-3503) (-707))))))
+((-3072 (((-3 $ "failed") (-697 (-322 (-386)))) 111) (((-3 $ "failed") (-697 (-322 (-572)))) 99) (((-3 $ "failed") (-697 (-961 (-386)))) 133) (((-3 $ "failed") (-697 (-961 (-572)))) 122) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 87) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 73)) (-1869 (($ (-697 (-322 (-386)))) 107) (($ (-697 (-322 (-572)))) 95) (($ (-697 (-961 (-386)))) 129) (($ (-697 (-961 (-572)))) 118) (($ (-697 (-415 (-961 (-386))))) 83) (($ (-697 (-415 (-961 (-572))))) 66)) (-2864 (((-1284) $) 141)) (-3491 (((-870) $) 135) (($ (-652 (-336))) 29) (($ (-336)) 34) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 32) (($ (-697 (-346 (-3503) (-3503 (QUOTE X) (QUOTE HESS)) (-707)))) 56)))
+(((-65 |#1|) (-13 (-391) (-624 (-697 (-346 (-3503) (-3503 (QUOTE X) (QUOTE HESS)) (-707))))) (-1188)) (T -65))
+NIL
+(-13 (-391) (-624 (-697 (-346 (-3503) (-3503 (QUOTE X) (QUOTE HESS)) (-707)))))
+((-3072 (((-3 $ "failed") (-322 (-386))) 60) (((-3 $ "failed") (-322 (-572))) 65) (((-3 $ "failed") (-961 (-386))) 69) (((-3 $ "failed") (-961 (-572))) 73) (((-3 $ "failed") (-415 (-961 (-386)))) 55) (((-3 $ "failed") (-415 (-961 (-572)))) 48)) (-1869 (($ (-322 (-386))) 58) (($ (-322 (-572))) 63) (($ (-961 (-386))) 67) (($ (-961 (-572))) 71) (($ (-415 (-961 (-386)))) 53) (($ (-415 (-961 (-572)))) 45)) (-2864 (((-1284) $) 82)) (-3491 (((-870) $) 76) (($ (-652 (-336))) 29) (($ (-336)) 34) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 32) (($ (-346 (-3503) (-3503 (QUOTE XC)) (-707))) 40)))
+(((-66 |#1|) (-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503) (-3503 (QUOTE XC)) (-707)))))) (-1188)) (T -66))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-346 (-3503) (-3503 (QUOTE XC)) (-707))) (-5 *1 (-66 *3)) (-14 *3 (-1188)))))
+(-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503) (-3503 (QUOTE XC)) (-707))))))
+((-2864 (((-1284) $) 65)) (-3491 (((-870) $) 59) (($ (-697 (-707))) 51) (($ (-652 (-336))) 50) (($ (-336)) 57) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 55)))
+(((-67 |#1|) (-390) (-1188)) (T -67))
+NIL
+(-390)
+((-2864 (((-1284) $) 66)) (-3491 (((-870) $) 60) (($ (-697 (-707))) 52) (($ (-652 (-336))) 51) (($ (-336)) 54) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 57)))
+(((-68 |#1|) (-390) (-1188)) (T -68))
+NIL
+(-390)
+((-2864 (((-1284) $) NIL) (((-1284)) 33)) (-3491 (((-870) $) NIL)))
+(((-69 |#1|) (-13 (-403) (-10 -7 (-15 -2864 ((-1284))))) (-1188)) (T -69))
+((-2864 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-69 *3)) (-14 *3 (-1188)))))
+(-13 (-403) (-10 -7 (-15 -2864 ((-1284)))))
+((-2864 (((-1284) $) 75)) (-3491 (((-870) $) 69) (($ (-697 (-707))) 61) (($ (-652 (-336))) 63) (($ (-336)) 66) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 60)))
+(((-70 |#1|) (-390) (-1188)) (T -70))
+NIL
+(-390)
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 109) (((-3 $ "failed") (-1279 (-322 (-572)))) 98) (((-3 $ "failed") (-1279 (-961 (-386)))) 129) (((-3 $ "failed") (-1279 (-961 (-572)))) 119) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 87) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 74)) (-1869 (($ (-1279 (-322 (-386)))) 105) (($ (-1279 (-322 (-572)))) 94) (($ (-1279 (-961 (-386)))) 125) (($ (-1279 (-961 (-572)))) 115) (($ (-1279 (-415 (-961 (-386))))) 83) (($ (-1279 (-415 (-961 (-572))))) 67)) (-2864 (((-1284) $) 142)) (-3491 (((-870) $) 136) (($ (-652 (-336))) 131) (($ (-336)) 134) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 59) (($ (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707)))) 60)))
+(((-71 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707))))))) (-1188)) (T -71))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707)))) (-5 *1 (-71 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707)))))))
+((-2864 (((-1284) $) 33) (((-1284)) 32)) (-3491 (((-870) $) 36)))
+(((-72 |#1|) (-13 (-403) (-10 -7 (-15 -2864 ((-1284))))) (-1188)) (T -72))
+((-2864 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-72 *3)) (-14 *3 (-1188)))))
+(-13 (-403) (-10 -7 (-15 -2864 ((-1284)))))
+((-2864 (((-1284) $) 65)) (-3491 (((-870) $) 59) (($ (-697 (-707))) 51) (($ (-652 (-336))) 53) (($ (-336)) 56) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 50)))
+(((-73 |#1|) (-390) (-1188)) (T -73))
+NIL
+(-390)
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 127) (((-3 $ "failed") (-1279 (-322 (-572)))) 117) (((-3 $ "failed") (-1279 (-961 (-386)))) 147) (((-3 $ "failed") (-1279 (-961 (-572)))) 137) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 107) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 95)) (-1869 (($ (-1279 (-322 (-386)))) 123) (($ (-1279 (-322 (-572)))) 113) (($ (-1279 (-961 (-386)))) 143) (($ (-1279 (-961 (-572)))) 133) (($ (-1279 (-415 (-961 (-386))))) 103) (($ (-1279 (-415 (-961 (-572))))) 88)) (-2864 (((-1284) $) 80)) (-3491 (((-870) $) 28) (($ (-652 (-336))) 70) (($ (-336)) 66) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 73) (($ (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))) 67)))
+(((-74 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707))))))) (-1188)) (T -74))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))) (-5 *1 (-74 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 132) (((-3 $ "failed") (-1279 (-322 (-572)))) 121) (((-3 $ "failed") (-1279 (-961 (-386)))) 152) (((-3 $ "failed") (-1279 (-961 (-572)))) 142) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 110) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 97)) (-1869 (($ (-1279 (-322 (-386)))) 128) (($ (-1279 (-322 (-572)))) 117) (($ (-1279 (-961 (-386)))) 148) (($ (-1279 (-961 (-572)))) 138) (($ (-1279 (-415 (-961 (-386))))) 106) (($ (-1279 (-415 (-961 (-572))))) 90)) (-2864 (((-1284) $) 82)) (-3491 (((-870) $) 74) (($ (-652 (-336))) NIL) (($ (-336)) NIL) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) NIL) (($ (-1279 (-346 (-3503 (QUOTE X) (QUOTE EPS)) (-3503 (QUOTE -2872)) (-707)))) 69)))
+(((-75 |#1| |#2| |#3|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X) (QUOTE EPS)) (-3503 (QUOTE -2872)) (-707))))))) (-1188) (-1188) (-1188)) (T -75))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503 (QUOTE X) (QUOTE EPS)) (-3503 (QUOTE -2872)) (-707)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188)) (-14 *5 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X) (QUOTE EPS)) (-3503 (QUOTE -2872)) (-707)))))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 138) (((-3 $ "failed") (-1279 (-322 (-572)))) 127) (((-3 $ "failed") (-1279 (-961 (-386)))) 158) (((-3 $ "failed") (-1279 (-961 (-572)))) 148) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 116) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 103)) (-1869 (($ (-1279 (-322 (-386)))) 134) (($ (-1279 (-322 (-572)))) 123) (($ (-1279 (-961 (-386)))) 154) (($ (-1279 (-961 (-572)))) 144) (($ (-1279 (-415 (-961 (-386))))) 112) (($ (-1279 (-415 (-961 (-572))))) 96)) (-2864 (((-1284) $) 88)) (-3491 (((-870) $) 80) (($ (-652 (-336))) NIL) (($ (-336)) NIL) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) NIL) (($ (-1279 (-346 (-3503 (QUOTE EPS)) (-3503 (QUOTE YA) (QUOTE YB)) (-707)))) 75)))
+(((-76 |#1| |#2| |#3|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE EPS)) (-3503 (QUOTE YA) (QUOTE YB)) (-707))))))) (-1188) (-1188) (-1188)) (T -76))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503 (QUOTE EPS)) (-3503 (QUOTE YA) (QUOTE YB)) (-707)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188)) (-14 *5 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE EPS)) (-3503 (QUOTE YA) (QUOTE YB)) (-707)))))))
+((-3072 (((-3 $ "failed") (-322 (-386))) 83) (((-3 $ "failed") (-322 (-572))) 88) (((-3 $ "failed") (-961 (-386))) 92) (((-3 $ "failed") (-961 (-572))) 96) (((-3 $ "failed") (-415 (-961 (-386)))) 78) (((-3 $ "failed") (-415 (-961 (-572)))) 71)) (-1869 (($ (-322 (-386))) 81) (($ (-322 (-572))) 86) (($ (-961 (-386))) 90) (($ (-961 (-572))) 94) (($ (-415 (-961 (-386)))) 76) (($ (-415 (-961 (-572)))) 68)) (-2864 (((-1284) $) 63)) (-3491 (((-870) $) 51) (($ (-652 (-336))) 47) (($ (-336)) 57) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 55) (($ (-346 (-3503) (-3503 (QUOTE X)) (-707))) 48)))
+(((-77 |#1|) (-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503) (-3503 (QUOTE X)) (-707)))))) (-1188)) (T -77))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-346 (-3503) (-3503 (QUOTE X)) (-707))) (-5 *1 (-77 *3)) (-14 *3 (-1188)))))
+(-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503) (-3503 (QUOTE X)) (-707))))))
+((-3072 (((-3 $ "failed") (-322 (-386))) 47) (((-3 $ "failed") (-322 (-572))) 52) (((-3 $ "failed") (-961 (-386))) 56) (((-3 $ "failed") (-961 (-572))) 60) (((-3 $ "failed") (-415 (-961 (-386)))) 42) (((-3 $ "failed") (-415 (-961 (-572)))) 35)) (-1869 (($ (-322 (-386))) 45) (($ (-322 (-572))) 50) (($ (-961 (-386))) 54) (($ (-961 (-572))) 58) (($ (-415 (-961 (-386)))) 40) (($ (-415 (-961 (-572)))) 32)) (-2864 (((-1284) $) 81)) (-3491 (((-870) $) 75) (($ (-652 (-336))) 67) (($ (-336)) 72) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 70) (($ (-346 (-3503) (-3503 (QUOTE X)) (-707))) 31)))
+(((-78 |#1|) (-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503) (-3503 (QUOTE X)) (-707)))))) (-1188)) (T -78))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-346 (-3503) (-3503 (QUOTE X)) (-707))) (-5 *1 (-78 *3)) (-14 *3 (-1188)))))
+(-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503) (-3503 (QUOTE X)) (-707))))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 90) (((-3 $ "failed") (-1279 (-322 (-572)))) 79) (((-3 $ "failed") (-1279 (-961 (-386)))) 110) (((-3 $ "failed") (-1279 (-961 (-572)))) 100) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 68) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 55)) (-1869 (($ (-1279 (-322 (-386)))) 86) (($ (-1279 (-322 (-572)))) 75) (($ (-1279 (-961 (-386)))) 106) (($ (-1279 (-961 (-572)))) 96) (($ (-1279 (-415 (-961 (-386))))) 64) (($ (-1279 (-415 (-961 (-572))))) 48)) (-2864 (((-1284) $) 126)) (-3491 (((-870) $) 120) (($ (-652 (-336))) 113) (($ (-336)) 38) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 116) (($ (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707)))) 39)))
+(((-79 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707))))))) (-1188)) (T -79))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707)))) (-5 *1 (-79 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE XC)) (-707)))))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 151) (((-3 $ "failed") (-1279 (-322 (-572)))) 141) (((-3 $ "failed") (-1279 (-961 (-386)))) 171) (((-3 $ "failed") (-1279 (-961 (-572)))) 161) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 131) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 119)) (-1869 (($ (-1279 (-322 (-386)))) 147) (($ (-1279 (-322 (-572)))) 137) (($ (-1279 (-961 (-386)))) 167) (($ (-1279 (-961 (-572)))) 157) (($ (-1279 (-415 (-961 (-386))))) 127) (($ (-1279 (-415 (-961 (-572))))) 112)) (-2864 (((-1284) $) 105)) (-3491 (((-870) $) 99) (($ (-652 (-336))) 90) (($ (-336)) 97) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 95) (($ (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))) 91)))
+(((-80 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707))))))) (-1188)) (T -80))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))) (-5 *1 (-80 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 79) (((-3 $ "failed") (-1279 (-322 (-572)))) 68) (((-3 $ "failed") (-1279 (-961 (-386)))) 99) (((-3 $ "failed") (-1279 (-961 (-572)))) 89) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 57) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 44)) (-1869 (($ (-1279 (-322 (-386)))) 75) (($ (-1279 (-322 (-572)))) 64) (($ (-1279 (-961 (-386)))) 95) (($ (-1279 (-961 (-572)))) 85) (($ (-1279 (-415 (-961 (-386))))) 53) (($ (-1279 (-415 (-961 (-572))))) 37)) (-2864 (((-1284) $) 125)) (-3491 (((-870) $) 119) (($ (-652 (-336))) 110) (($ (-336)) 116) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 114) (($ (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))) 36)))
+(((-81 |#1|) (-13 (-449) (-624 (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707))))) (-1188)) (T -81))
+NIL
+(-13 (-449) (-624 (-1279 (-346 (-3503) (-3503 (QUOTE X)) (-707)))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 98) (((-3 $ "failed") (-1279 (-322 (-572)))) 87) (((-3 $ "failed") (-1279 (-961 (-386)))) 118) (((-3 $ "failed") (-1279 (-961 (-572)))) 108) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 76) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 63)) (-1869 (($ (-1279 (-322 (-386)))) 94) (($ (-1279 (-322 (-572)))) 83) (($ (-1279 (-961 (-386)))) 114) (($ (-1279 (-961 (-572)))) 104) (($ (-1279 (-415 (-961 (-386))))) 72) (($ (-1279 (-415 (-961 (-572))))) 56)) (-2864 (((-1284) $) 48)) (-3491 (((-870) $) 42) (($ (-652 (-336))) 32) (($ (-336)) 35) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 38) (($ (-1279 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707)))) 33)))
+(((-82 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707))))))) (-1188)) (T -82))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707)))) (-5 *1 (-82 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707)))))))
+((-3072 (((-3 $ "failed") (-697 (-322 (-386)))) 118) (((-3 $ "failed") (-697 (-322 (-572)))) 107) (((-3 $ "failed") (-697 (-961 (-386)))) 140) (((-3 $ "failed") (-697 (-961 (-572)))) 129) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 96) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 83)) (-1869 (($ (-697 (-322 (-386)))) 114) (($ (-697 (-322 (-572)))) 103) (($ (-697 (-961 (-386)))) 136) (($ (-697 (-961 (-572)))) 125) (($ (-697 (-415 (-961 (-386))))) 92) (($ (-697 (-415 (-961 (-572))))) 76)) (-2864 (((-1284) $) 66)) (-3491 (((-870) $) 53) (($ (-652 (-336))) 60) (($ (-336)) 49) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 58) (($ (-697 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707)))) 50)))
+(((-83 |#1|) (-13 (-391) (-10 -8 (-15 -3491 ($ (-697 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707))))))) (-1188)) (T -83))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-697 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707)))) (-5 *1 (-83 *3)) (-14 *3 (-1188)))))
+(-13 (-391) (-10 -8 (-15 -3491 ($ (-697 (-346 (-3503 (QUOTE X) (QUOTE -2872)) (-3503) (-707)))))))
+((-3072 (((-3 $ "failed") (-697 (-322 (-386)))) 113) (((-3 $ "failed") (-697 (-322 (-572)))) 101) (((-3 $ "failed") (-697 (-961 (-386)))) 135) (((-3 $ "failed") (-697 (-961 (-572)))) 124) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 89) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 75)) (-1869 (($ (-697 (-322 (-386)))) 109) (($ (-697 (-322 (-572)))) 97) (($ (-697 (-961 (-386)))) 131) (($ (-697 (-961 (-572)))) 120) (($ (-697 (-415 (-961 (-386))))) 85) (($ (-697 (-415 (-961 (-572))))) 68)) (-2864 (((-1284) $) 60)) (-3491 (((-870) $) 54) (($ (-652 (-336))) 48) (($ (-336)) 51) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 45) (($ (-697 (-346 (-3503 (QUOTE X)) (-3503) (-707)))) 46)))
+(((-84 |#1|) (-13 (-391) (-10 -8 (-15 -3491 ($ (-697 (-346 (-3503 (QUOTE X)) (-3503) (-707))))))) (-1188)) (T -84))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-697 (-346 (-3503 (QUOTE X)) (-3503) (-707)))) (-5 *1 (-84 *3)) (-14 *3 (-1188)))))
+(-13 (-391) (-10 -8 (-15 -3491 ($ (-697 (-346 (-3503 (QUOTE X)) (-3503) (-707)))))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 105) (((-3 $ "failed") (-1279 (-322 (-572)))) 94) (((-3 $ "failed") (-1279 (-961 (-386)))) 125) (((-3 $ "failed") (-1279 (-961 (-572)))) 115) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 83) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 70)) (-1869 (($ (-1279 (-322 (-386)))) 101) (($ (-1279 (-322 (-572)))) 90) (($ (-1279 (-961 (-386)))) 121) (($ (-1279 (-961 (-572)))) 111) (($ (-1279 (-415 (-961 (-386))))) 79) (($ (-1279 (-415 (-961 (-572))))) 63)) (-2864 (((-1284) $) 47)) (-3491 (((-870) $) 41) (($ (-652 (-336))) 50) (($ (-336)) 37) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 53) (($ (-1279 (-346 (-3503 (QUOTE X)) (-3503) (-707)))) 38)))
+(((-85 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X)) (-3503) (-707))))))) (-1188)) (T -85))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503 (QUOTE X)) (-3503) (-707)))) (-5 *1 (-85 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X)) (-3503) (-707)))))))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 80) (((-3 $ "failed") (-1279 (-322 (-572)))) 69) (((-3 $ "failed") (-1279 (-961 (-386)))) 100) (((-3 $ "failed") (-1279 (-961 (-572)))) 90) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 58) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 45)) (-1869 (($ (-1279 (-322 (-386)))) 76) (($ (-1279 (-322 (-572)))) 65) (($ (-1279 (-961 (-386)))) 96) (($ (-1279 (-961 (-572)))) 86) (($ (-1279 (-415 (-961 (-386))))) 54) (($ (-1279 (-415 (-961 (-572))))) 38)) (-2864 (((-1284) $) 126)) (-3491 (((-870) $) 120) (($ (-652 (-336))) 111) (($ (-336)) 117) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 115) (($ (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707)))) 37)))
+(((-86 |#1|) (-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707))))))) (-1188)) (T -86))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707)))) (-5 *1 (-86 *3)) (-14 *3 (-1188)))))
+(-13 (-449) (-10 -8 (-15 -3491 ($ (-1279 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707)))))))
+((-3072 (((-3 $ "failed") (-697 (-322 (-386)))) 117) (((-3 $ "failed") (-697 (-322 (-572)))) 105) (((-3 $ "failed") (-697 (-961 (-386)))) 139) (((-3 $ "failed") (-697 (-961 (-572)))) 128) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 93) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 79)) (-1869 (($ (-697 (-322 (-386)))) 113) (($ (-697 (-322 (-572)))) 101) (($ (-697 (-961 (-386)))) 135) (($ (-697 (-961 (-572)))) 124) (($ (-697 (-415 (-961 (-386))))) 89) (($ (-697 (-415 (-961 (-572))))) 72)) (-2864 (((-1284) $) 63)) (-3491 (((-870) $) 57) (($ (-652 (-336))) 47) (($ (-336)) 54) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 52) (($ (-697 (-346 (-3503 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3503) (-707)))) 48)))
+(((-87 |#1|) (-13 (-391) (-10 -8 (-15 -3491 ($ (-697 (-346 (-3503 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3503) (-707))))))) (-1188)) (T -87))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-697 (-346 (-3503 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3503) (-707)))) (-5 *1 (-87 *3)) (-14 *3 (-1188)))))
+(-13 (-391) (-10 -8 (-15 -3491 ($ (-697 (-346 (-3503 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3503) (-707)))))))
+((-2864 (((-1284) $) 45)) (-3491 (((-870) $) 39) (($ (-1279 (-707))) 100) (($ (-652 (-336))) 31) (($ (-336)) 36) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 34)))
+(((-88 |#1|) (-448) (-1188)) (T -88))
+NIL
+(-448)
+((-3072 (((-3 $ "failed") (-322 (-386))) 48) (((-3 $ "failed") (-322 (-572))) 53) (((-3 $ "failed") (-961 (-386))) 57) (((-3 $ "failed") (-961 (-572))) 61) (((-3 $ "failed") (-415 (-961 (-386)))) 43) (((-3 $ "failed") (-415 (-961 (-572)))) 36)) (-1869 (($ (-322 (-386))) 46) (($ (-322 (-572))) 51) (($ (-961 (-386))) 55) (($ (-961 (-572))) 59) (($ (-415 (-961 (-386)))) 41) (($ (-415 (-961 (-572)))) 33)) (-2864 (((-1284) $) 91)) (-3491 (((-870) $) 85) (($ (-652 (-336))) 79) (($ (-336)) 82) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 77) (($ (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707))) 32)))
+(((-89 |#1|) (-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707)))))) (-1188)) (T -89))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707))) (-5 *1 (-89 *3)) (-14 *3 (-1188)))))
+(-13 (-404) (-10 -8 (-15 -3491 ($ (-346 (-3503 (QUOTE X)) (-3503 (QUOTE -2872)) (-707))))))
+((-3701 (((-1279 (-697 |#1|)) (-697 |#1|)) 61)) (-4103 (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 (-652 (-930))))) |#2| (-930)) 49)) (-3738 (((-2 (|:| |minor| (-652 (-930))) (|:| -3179 |#2|) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 |#2|))) |#2| (-930)) 72 (|has| |#1| (-370)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -4103 ((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 (-652 (-930))))) |#2| (-930))) (-15 -3701 ((-1279 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-370)) (-15 -3738 ((-2 (|:| |minor| (-652 (-930))) (|:| -3179 |#2|) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 |#2|))) |#2| (-930))) |%noBranch|)) (-564) (-664 |#1|)) (T -90))
+((-3738 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |minor| (-652 (-930))) (|:| -3179 *3) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))) (-3701 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-697 *4)) (-4 *5 (-664 *4)))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-564)) (-5 *2 (-2 (|:| -1866 (-697 *5)) (|:| |vec| (-1279 (-652 (-930)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))))
+(-10 -7 (-15 -4103 ((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 (-652 (-930))))) |#2| (-930))) (-15 -3701 ((-1279 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-370)) (-15 -3738 ((-2 (|:| |minor| (-652 (-930))) (|:| -3179 |#2|) (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 |#2|))) |#2| (-930))) |%noBranch|))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2620 ((|#1| $) 40)) (-2938 (((-112) $ (-779)) NIL)) (-1586 (($) NIL T CONST)) (-3540 ((|#1| |#1| $) 35)) (-2836 ((|#1| $) 33)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1533 ((|#1| $) NIL)) (-3704 (($ |#1| $) 36)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-4105 ((|#1| $) 34)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 18)) (-1321 (($) 45)) (-3900 (((-779) $) 31)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 17)) (-3491 (((-870) $) 30 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) NIL)) (-2056 (($ (-652 |#1|)) 42)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 15 (|has| |#1| (-1111)))) (-3475 (((-779) $) 12 (|has| $ (-6 -4454)))))
+(((-91 |#1|) (-13 (-1132 |#1|) (-10 -8 (-15 -2056 ($ (-652 |#1|))))) (-1111)) (T -91))
+((-2056 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-91 *3)))))
+(-13 (-1132 |#1|) (-10 -8 (-15 -2056 ($ (-652 |#1|)))))
+((-3491 (((-870) $) 13) (($ (-1193)) 9) (((-1193) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -3491 ((-1193) |#1|)) (-15 -3491 (|#1| (-1193))) (-15 -3491 ((-870) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -3491 ((-1193) |#1|)) (-15 -3491 (|#1| (-1193))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-1193)) 17) (((-1193) $) 16)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
(((-93) (-141)) (T -93))
NIL
-(-13 (-1109) (-496 (-1191)))
-(((-102) . T) ((-622 #0=(-1191)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T))
-((-3853 (($ $) 10)) (-3864 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -3864 (|#1| |#1|)) (-15 -3853 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1111) (-498 (-1193)))
+(((-102) . T) ((-624 #0=(-1193)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T))
+((-3871 (($ $) 10)) (-3883 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -3864 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)))
-((-3833 (($ $) 11)) (-3811 (($ $) 10)) (-3853 (($ $) 9)) (-3864 (($ $) 8)) (-3844 (($ $) 7)) (-3821 (($ $) 6)))
+(-10 -8 (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)))
+((-3852 (($ $) 11)) (-3833 (($ $) 10)) (-3871 (($ $) 9)) (-3883 (($ $) 8)) (-3861 (($ $) 7)) (-3842 (($ $) 6)))
(((-95) (-141)) (T -95))
-((-3833 (*1 *1 *1) (-4 *1 (-95))) (-3811 (*1 *1 *1) (-4 *1 (-95))) (-3853 (*1 *1 *1) (-4 *1 (-95))) (-3864 (*1 *1 *1) (-4 *1 (-95))) (-3844 (*1 *1 *1) (-4 *1 (-95))) (-3821 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -3821 ($ $)) (-15 -3844 ($ $)) (-15 -3864 ($ $)) (-15 -3853 ($ $)) (-15 -3811 ($ $)) (-15 -3833 ($ $))))
-((-2847 (((-112) $ $) NIL)) (-1770 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-96) (-13 (-1092) (-10 -8 (-15 -1770 ((-1144) $))))) (T -96))
-((-1770 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-96)))))
-(-13 (-1092) (-10 -8 (-15 -1770 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-2858 (((-384) (-1168) (-384)) 46) (((-384) (-1168) (-1168) (-384)) 44)) (-3782 (((-384) (-384)) 35)) (-1683 (((-1282)) 37)) (-3240 (((-1168) $) NIL)) (-2606 (((-384) (-1168) (-1168)) 50) (((-384) (-1168)) 52)) (-3891 (((-1129) $) NIL)) (-3348 (((-384) (-1168) (-1168)) 51)) (-4028 (((-384) (-1168) (-1168)) 53) (((-384) (-1168)) 54)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-97) (-13 (-1109) (-10 -7 (-15 -2606 ((-384) (-1168) (-1168))) (-15 -2606 ((-384) (-1168))) (-15 -4028 ((-384) (-1168) (-1168))) (-15 -4028 ((-384) (-1168))) (-15 -3348 ((-384) (-1168) (-1168))) (-15 -1683 ((-1282))) (-15 -3782 ((-384) (-384))) (-15 -2858 ((-384) (-1168) (-384))) (-15 -2858 ((-384) (-1168) (-1168) (-384))) (-6 -4452)))) (T -97))
-((-2606 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-4028 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-3348 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-1683 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-97)))) (-3782 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-97)))) (-2858 (*1 *2 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97)))) (-2858 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97)))))
-(-13 (-1109) (-10 -7 (-15 -2606 ((-384) (-1168) (-1168))) (-15 -2606 ((-384) (-1168))) (-15 -4028 ((-384) (-1168) (-1168))) (-15 -4028 ((-384) (-1168))) (-15 -3348 ((-384) (-1168) (-1168))) (-15 -1683 ((-1282))) (-15 -3782 ((-384) (-384))) (-15 -2858 ((-384) (-1168) (-384))) (-15 -2858 ((-384) (-1168) (-1168) (-384))) (-6 -4452)))
+((-3852 (*1 *1 *1) (-4 *1 (-95))) (-3833 (*1 *1 *1) (-4 *1 (-95))) (-3871 (*1 *1 *1) (-4 *1 (-95))) (-3883 (*1 *1 *1) (-4 *1 (-95))) (-3861 (*1 *1 *1) (-4 *1 (-95))) (-3842 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -3842 ($ $)) (-15 -3861 ($ $)) (-15 -3883 ($ $)) (-15 -3871 ($ $)) (-15 -3833 ($ $)) (-15 -3852 ($ $))))
+((-3464 (((-112) $ $) NIL)) (-2402 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-96) (-13 (-1094) (-10 -8 (-15 -2402 ((-1146) $))))) (T -96))
+((-2402 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-96)))))
+(-13 (-1094) (-10 -8 (-15 -2402 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-2960 (((-386) (-1170) (-386)) 46) (((-386) (-1170) (-1170) (-386)) 44)) (-4006 (((-386) (-386)) 35)) (-4330 (((-1284)) 37)) (-3618 (((-1170) $) NIL)) (-2293 (((-386) (-1170) (-1170)) 50) (((-386) (-1170)) 52)) (-2614 (((-1131) $) NIL)) (-2240 (((-386) (-1170) (-1170)) 51)) (-2405 (((-386) (-1170) (-1170)) 53) (((-386) (-1170)) 54)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-97) (-13 (-1111) (-10 -7 (-15 -2293 ((-386) (-1170) (-1170))) (-15 -2293 ((-386) (-1170))) (-15 -2405 ((-386) (-1170) (-1170))) (-15 -2405 ((-386) (-1170))) (-15 -2240 ((-386) (-1170) (-1170))) (-15 -4330 ((-1284))) (-15 -4006 ((-386) (-386))) (-15 -2960 ((-386) (-1170) (-386))) (-15 -2960 ((-386) (-1170) (-1170) (-386))) (-6 -4454)))) (T -97))
+((-2293 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-2293 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-2405 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-2240 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))) (-4330 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-97)))) (-4006 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-97)))) (-2960 (*1 *2 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97)))) (-2960 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97)))))
+(-13 (-1111) (-10 -7 (-15 -2293 ((-386) (-1170) (-1170))) (-15 -2293 ((-386) (-1170))) (-15 -2405 ((-386) (-1170) (-1170))) (-15 -2405 ((-386) (-1170))) (-15 -2240 ((-386) (-1170) (-1170))) (-15 -4330 ((-1284))) (-15 -4006 ((-386) (-386))) (-15 -2960 ((-386) (-1170) (-386))) (-15 -2960 ((-386) (-1170) (-1170) (-386))) (-6 -4454)))
NIL
(((-98) (-141)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4452) (-6 (-4454 "*")) (-6 -4453) (-6 -4449) (-6 -4447) (-6 -4446) (-6 -4445) (-6 -4450) (-6 -4444) (-6 -4443) (-6 -4442) (-6 -4441) (-6 -4440) (-6 -4448) (-6 -4451) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4439)))
-((-2847 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-2426 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-570))) 24)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 16)) (-3891 (((-1129) $) NIL)) (-2057 ((|#1| $ |#1|) 13)) (-2733 (($ $ $) NIL)) (-2319 (($ $ $) NIL)) (-2869 (((-868) $) 22)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 8 T CONST)) (-3892 (((-112) $ $) 10)) (-4013 (($ $ $) NIL)) (** (($ $ (-928)) 32) (($ $ (-777)) NIL) (($ $ (-570)) 18)) (* (($ $ $) 33)))
-(((-99 |#1|) (-13 (-479) (-290 |#1| |#1|) (-10 -8 (-15 -2426 ($ (-1 |#1| |#1|))) (-15 -2426 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2426 ($ (-1 |#1| |#1| (-570)))))) (-1058)) (T -99))
-((-2426 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3)))) (-2426 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3)))) (-2426 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-99 *3)))))
-(-13 (-479) (-290 |#1| |#1|) (-10 -8 (-15 -2426 ($ (-1 |#1| |#1|))) (-15 -2426 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2426 ($ (-1 |#1| |#1| (-570))))))
-((-3927 (((-424 |#2|) |#2| (-650 |#2|)) 10) (((-424 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3927 ((-424 |#2|) |#2| |#2|)) (-15 -3927 ((-424 |#2|) |#2| (-650 |#2|)))) (-13 (-458) (-148)) (-1253 |#1|)) (T -100))
-((-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-13 (-458) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-100 *5 *3)))) (-3927 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-458) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -3927 ((-424 |#2|) |#2| |#2|)) (-15 -3927 ((-424 |#2|) |#2| (-650 |#2|))))
-((-2847 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -2847 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2847 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-3892 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4454) (-6 (-4456 "*")) (-6 -4455) (-6 -4451) (-6 -4449) (-6 -4448) (-6 -4447) (-6 -4452) (-6 -4446) (-6 -4445) (-6 -4444) (-6 -4443) (-6 -4442) (-6 -4450) (-6 -4453) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4441)))
+((-3464 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-3175 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-572))) 24)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 16)) (-2614 (((-1131) $) NIL)) (-2679 ((|#1| $ |#1|) 13)) (-4242 (($ $ $) NIL)) (-1433 (($ $ $) NIL)) (-3491 (((-870) $) 22)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 8 T CONST)) (-3921 (((-112) $ $) 10)) (-4029 (($ $ $) NIL)) (** (($ $ (-930)) 32) (($ $ (-779)) NIL) (($ $ (-572)) 18)) (* (($ $ $) 33)))
+(((-99 |#1|) (-13 (-481) (-292 |#1| |#1|) (-10 -8 (-15 -3175 ($ (-1 |#1| |#1|))) (-15 -3175 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3175 ($ (-1 |#1| |#1| (-572)))))) (-1060)) (T -99))
+((-3175 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3)))) (-3175 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3)))) (-3175 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-99 *3)))))
+(-13 (-481) (-292 |#1| |#1|) (-10 -8 (-15 -3175 ($ (-1 |#1| |#1|))) (-15 -3175 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3175 ($ (-1 |#1| |#1| (-572))))))
+((-2748 (((-426 |#2|) |#2| (-652 |#2|)) 10) (((-426 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -2748 ((-426 |#2|) |#2| |#2|)) (-15 -2748 ((-426 |#2|) |#2| (-652 |#2|)))) (-13 (-460) (-148)) (-1255 |#1|)) (T -100))
+((-2748 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-13 (-460) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-100 *5 *3)))) (-2748 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-460) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -2748 ((-426 |#2|) |#2| |#2|)) (-15 -2748 ((-426 |#2|) |#2| (-652 |#2|))))
+((-3464 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -3464 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -3464 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3921 (((-112) $ $) 6)))
(((-102) (-141)) (T -102))
-((-2847 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3892 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -3892 ((-112) $ $)) (-15 -2847 ((-112) $ $))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) 24 (|has| $ (-6 -4453)))) (-2632 (($ $ $) NIL (|has| $ (-6 -4453)))) (-2644 (($ $ $) NIL (|has| $ (-6 -4453)))) (-3020 (($ $ (-650 |#1|)) 30)) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) (($ $ "left" $) NIL (|has| $ (-6 -4453))) (($ $ "right" $) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2420 (($ $) 12)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2518 (($ $ |#1| $) 32)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3987 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3058 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-650 |#1|) |#1| |#1| |#1|)) 49)) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2403 (($ $) 11)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) 13)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 9)) (-1698 (($) 31)) (-2057 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2352 (((-570) $ $) NIL)) (-1355 (((-112) $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1661 (($ (-777) |#1|) 33)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4452) (-6 -4453) (-15 -1661 ($ (-777) |#1|)) (-15 -3020 ($ $ (-650 |#1|))) (-15 -3987 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3987 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3058 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3058 ($ $ |#1| (-1 (-650 |#1|) |#1| |#1| |#1|))))) (-1109)) (T -103))
-((-1661 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-103 *3)) (-4 *3 (-1109)))) (-3020 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3)))) (-3987 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1109)))) (-3987 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3)))) (-3058 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (-5 *1 (-103 *2)))) (-3058 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-650 *2) *2 *2 *2)) (-4 *2 (-1109)) (-5 *1 (-103 *2)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4452) (-6 -4453) (-15 -1661 ($ (-777) |#1|)) (-15 -3020 ($ $ (-650 |#1|))) (-15 -3987 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3987 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3058 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3058 ($ $ |#1| (-1 (-650 |#1|) |#1| |#1| |#1|)))))
-((-2908 ((|#3| |#2| |#2|) 34)) (-3759 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4454 "*"))))) (-3242 ((|#3| |#2| |#2|) 36)) (-3421 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4454 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2908 (|#3| |#2| |#2|)) (-15 -3242 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4454 "*"))) (PROGN (-15 -3759 (|#1| |#2| |#2|)) (-15 -3421 (|#1| |#2|))) |%noBranch|)) (-1058) (-1253 |#1|) (-693 |#1| |#4| |#5|) (-378 |#1|) (-378 |#1|)) (T -104))
-((-3421 (*1 *2 *3) (-12 (|has| *2 (-6 (-4454 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2)) (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1253 *2)) (-4 *4 (-693 *2 *5 *6)))) (-3759 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4454 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2)) (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1253 *2)) (-4 *4 (-693 *2 *5 *6)))) (-3242 (*1 *2 *3 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1253 *4)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)))) (-2908 (*1 *2 *3 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1253 *4)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)))))
-(-10 -7 (-15 -2908 (|#3| |#2| |#2|)) (-15 -3242 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4454 "*"))) (PROGN (-15 -3759 (|#1| |#2| |#2|)) (-15 -3421 (|#1| |#2|))) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-2344 (((-650 (-1186))) 37)) (-3216 (((-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227)))) (-1186)) 39)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-105) (-13 (-1109) (-10 -7 (-15 -2344 ((-650 (-1186)))) (-15 -3216 ((-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227)))) (-1186))) (-6 -4452)))) (T -105))
-((-2344 (*1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-105)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227))))) (-5 *1 (-105)))))
-(-13 (-1109) (-10 -7 (-15 -2344 ((-650 (-1186)))) (-15 -3216 ((-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227)))) (-1186))) (-6 -4452)))
-((-4132 (($ (-650 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -4132 (|#1| (-650 |#2|)))) (-107 |#2|) (-1227)) (T -106))
-NIL
-(-10 -8 (-15 -4132 (|#1| (-650 |#2|))))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-2333 (($) 7 T CONST)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-107 |#1|) (-141) (-1227)) (T -107))
-((-4132 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-4 *1 (-107 *3)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1227)))) (-2801 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1227)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1227)))))
-(-13 (-495 |t#1|) (-10 -8 (-6 -4453) (-15 -4132 ($ (-650 |t#1|))) (-15 -4126 (|t#1| $)) (-15 -2801 ($ |t#1| $)) (-15 -3398 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 (((-570) $) NIL (|has| (-570) (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| (-570) (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-570) (-1047 (-570))))) (-4387 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-570) (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| (-570) (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 (((-570) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-2746 (((-112) $) NIL (|has| (-570) (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-570) (-856)))) (-2536 (($ (-1 (-570) (-570)) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-570) (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) NIL)) (-2037 (((-570) $) NIL (|has| (-570) (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-2002 (((-777) $) NIL)) (-2057 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-4424 (($ $) NIL)) (-1599 (((-570) $) NIL)) (-2601 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 8) (($ (-570)) NIL) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL) (((-1013 2) $) 10)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2294 (((-777)) NIL T CONST)) (-3850 (((-570) $) NIL (|has| (-570) (-551)))) (-2484 (($ (-413 (-570))) 9)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| (-570) (-826)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-3959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-570) (-856)))) (-4013 (($ $ $) NIL) (($ (-570) (-570)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL)))
-(((-108) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 2)) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -2484 ($ (-413 (-570))))))) (T -108))
-((-4113 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108)))))
-(-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 2)) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -2484 ($ (-413 (-570))))))
-((-3508 (((-650 (-972)) $) 13)) (-1770 (((-512) $) 9)) (-2869 (((-868) $) 20)) (-2098 (($ (-512) (-650 (-972))) 15)))
-(((-109) (-13 (-619 (-868)) (-10 -8 (-15 -1770 ((-512) $)) (-15 -3508 ((-650 (-972)) $)) (-15 -2098 ($ (-512) (-650 (-972))))))) (T -109))
-((-1770 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-109)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-650 (-972))) (-5 *1 (-109)))) (-2098 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-109)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -1770 ((-512) $)) (-15 -3508 ((-650 (-972)) $)) (-15 -2098 ($ (-512) (-650 (-972))))))
-((-2847 (((-112) $ $) NIL)) (-2867 (($ $) NIL)) (-1958 (($ $ $) NIL)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) $) NIL (|has| (-112) (-856))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2778 (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| (-112) (-856)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4453)))) (-2018 (($ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3040 (((-112) $ (-1244 (-570)) (-112)) NIL (|has| $ (-6 -4453))) (((-112) $ (-570) (-112)) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-3617 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-2295 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-2845 (((-112) $ (-570) (-112)) NIL (|has| $ (-6 -4453)))) (-2774 (((-112) $ (-570)) NIL)) (-2619 (((-570) (-112) $ (-570)) NIL (|has| (-112) (-1109))) (((-570) (-112) $) NIL (|has| (-112) (-1109))) (((-570) (-1 (-112) (-112)) $) NIL)) (-3976 (((-650 (-112)) $) NIL (|has| $ (-6 -4452)))) (-3224 (($ $ $) NIL)) (-3201 (($ $) NIL)) (-2032 (($ $ $) NIL)) (-2296 (($ (-777) (-112)) 10)) (-2916 (($ $ $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3069 (((-650 (-112)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL)) (-2833 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-2119 (($ $ $ (-570)) NIL) (($ (-112) $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-112) $) NIL (|has| (-570) (-856)))) (-2115 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4222 (($ $ (-112)) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-112)) (-650 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-298 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-650 (-298 (-112)))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-2856 (((-650 (-112)) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 (($ $ (-1244 (-570))) NIL) (((-112) $ (-570)) NIL) (((-112) $ (-570) (-112)) NIL)) (-3225 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-3901 (((-777) (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109)))) (((-777) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-112) (-620 (-542))))) (-2881 (($ (-650 (-112))) NIL)) (-1505 (($ (-650 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2869 (((-868) $) NIL)) (-3529 (($ (-777) (-112)) 11)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-3212 (($ $ $) NIL)) (-2911 (($ $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-2895 (($ $ $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-110) (-13 (-124) (-10 -8 (-15 -3529 ($ (-777) (-112)))))) (T -110))
-((-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-124) (-10 -8 (-15 -3529 ($ (-777) (-112)))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
-(((-111 |#1| |#2|) (-141) (-1058) (-1058)) (T -111))
-NIL
-(-13 (-654 |t#1|) (-1065 |t#2|) (-10 -7 (-6 -4447) (-6 -4446)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2867 (($ $) 10)) (-1958 (($ $ $) 15)) (-1989 (($) 7 T CONST)) (-2410 (($ $) 6)) (-2401 (((-777)) 24)) (-2066 (($) 32)) (-3224 (($ $ $) 13)) (-3201 (($ $) 9)) (-2032 (($ $ $) 16)) (-2916 (($ $ $) 17)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) 30)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) 28)) (-1847 (($ $ $) 20)) (-3891 (((-1129) $) NIL)) (-3915 (($) 8 T CONST)) (-3889 (($ $ $) 21)) (-2601 (((-542) $) 34)) (-2869 (((-868) $) 36)) (-1344 (((-112) $ $) NIL)) (-3212 (($ $ $) 11)) (-2911 (($ $ $) 14)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 19)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 22)) (-2895 (($ $ $) 12)))
-(((-112) (-13 (-850) (-667) (-976) (-620 (-542)) (-10 -8 (-15 -1958 ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2032 ($ $ $)) (-15 -2410 ($ $))))) (T -112))
-((-1958 (*1 *1 *1 *1) (-5 *1 (-112))) (-2916 (*1 *1 *1 *1) (-5 *1 (-112))) (-2032 (*1 *1 *1 *1) (-5 *1 (-112))) (-2410 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-850) (-667) (-976) (-620 (-542)) (-10 -8 (-15 -1958 ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2032 ($ $ $)) (-15 -2410 ($ $))))
-((-3224 (($ $ $) 6)) (-3201 (($ $) 8)) (-3212 (($ $ $) 7)))
+((-3464 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3921 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -3921 ((-112) $ $)) (-15 -3464 ((-112) $ $))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) 24 (|has| $ (-6 -4455)))) (-4423 (($ $ $) NIL (|has| $ (-6 -4455)))) (-1439 (($ $ $) NIL (|has| $ (-6 -4455)))) (-1906 (($ $ (-652 |#1|)) 30)) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3058 (($ $) 12)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3145 (($ $ |#1| $) 32)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-1985 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2291 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-652 |#1|) |#1| |#1| |#1|)) 49)) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3041 (($ $) 11)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) 13)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 9)) (-1321 (($) 31)) (-2679 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1762 (((-572) $ $) NIL)) (-3727 (((-112) $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2225 (($ (-779) |#1|) 33)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2225 ($ (-779) |#1|)) (-15 -1906 ($ $ (-652 |#1|))) (-15 -1985 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1985 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2291 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2291 ($ $ |#1| (-1 (-652 |#1|) |#1| |#1| |#1|))))) (-1111)) (T -103))
+((-2225 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-103 *3)) (-4 *3 (-1111)))) (-1906 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1111)))) (-1985 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3)))) (-2291 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (-5 *1 (-103 *2)))) (-2291 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-652 *2) *2 *2 *2)) (-4 *2 (-1111)) (-5 *1 (-103 *2)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2225 ($ (-779) |#1|)) (-15 -1906 ($ $ (-652 |#1|))) (-15 -1985 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1985 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2291 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2291 ($ $ |#1| (-1 (-652 |#1|) |#1| |#1| |#1|)))))
+((-2136 ((|#3| |#2| |#2|) 34)) (-3819 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4456 "*"))))) (-3642 ((|#3| |#2| |#2|) 36)) (-1725 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4456 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2136 (|#3| |#2| |#2|)) (-15 -3642 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4456 "*"))) (PROGN (-15 -3819 (|#1| |#2| |#2|)) (-15 -1725 (|#1| |#2|))) |%noBranch|)) (-1060) (-1255 |#1|) (-695 |#1| |#4| |#5|) (-380 |#1|) (-380 |#1|)) (T -104))
+((-1725 (*1 *2 *3) (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2)) (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2)) (-4 *4 (-695 *2 *5 *6)))) (-3819 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2)) (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2)) (-4 *4 (-695 *2 *5 *6)))) (-3642 (*1 *2 *3 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)))) (-2136 (*1 *2 *3 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)))))
+(-10 -7 (-15 -2136 (|#3| |#2| |#2|)) (-15 -3642 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4456 "*"))) (PROGN (-15 -3819 (|#1| |#2| |#2|)) (-15 -1725 (|#1| |#2|))) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-1682 (((-652 (-1188))) 37)) (-3389 (((-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227)))) (-1188)) 39)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-105) (-13 (-1111) (-10 -7 (-15 -1682 ((-652 (-1188)))) (-15 -3389 ((-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227)))) (-1188))) (-6 -4454)))) (T -105))
+((-1682 (*1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-105)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227))))) (-5 *1 (-105)))))
+(-13 (-1111) (-10 -7 (-15 -1682 ((-652 (-1188)))) (-15 -3389 ((-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227))) (|:| |singularities| (-1168 (-227)))) (-1188))) (-6 -4454)))
+((-4163 (($ (-652 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -4163 (|#1| (-652 |#2|)))) (-107 |#2|) (-1229)) (T -106))
+NIL
+(-10 -8 (-15 -4163 (|#1| (-652 |#2|))))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-1586 (($) 7 T CONST)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-107 |#1|) (-141) (-1229)) (T -107))
+((-4163 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-107 *3)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))) (-3704 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))))
+(-13 (-497 |t#1|) (-10 -8 (-6 -4455) (-15 -4163 ($ (-652 |t#1|))) (-15 -4105 (|t#1| $)) (-15 -3704 ($ |t#1| $)) (-15 -1533 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 (((-572) $) NIL (|has| (-572) (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| (-572) (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-572) (-1049 (-572))))) (-1869 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-572) (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| (-572) (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 (((-572) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-4354 (((-112) $) NIL (|has| (-572) (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-572) (-858)))) (-3161 (($ (-1 (-572) (-572)) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-572) (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) NIL)) (-1609 (((-572) $) NIL (|has| (-572) (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-4395 (((-779) $) NIL)) (-2679 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3982 (($ $) NIL)) (-2224 (((-572) $) NIL)) (-3222 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 8) (($ (-572)) NIL) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL) (((-1015 2) $) 10)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-2455 (((-779)) NIL T CONST)) (-3441 (((-572) $) NIL (|has| (-572) (-553)))) (-3690 (($ (-415 (-572))) 9)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| (-572) (-828)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3976 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-572) (-858)))) (-4029 (($ $ $) NIL) (($ (-572) (-572)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL)))
+(((-108) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 2)) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -3690 ($ (-415 (-572))))))) (T -108))
+((-3964 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108)))))
+(-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 2)) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -3690 ($ (-415 (-572))))))
+((-4119 (((-652 (-974)) $) 13)) (-2402 (((-514) $) 9)) (-3491 (((-870) $) 20)) (-4146 (($ (-514) (-652 (-974))) 15)))
+(((-109) (-13 (-621 (-870)) (-10 -8 (-15 -2402 ((-514) $)) (-15 -4119 ((-652 (-974)) $)) (-15 -4146 ($ (-514) (-652 (-974))))))) (T -109))
+((-2402 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-109)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-652 (-974))) (-5 *1 (-109)))) (-4146 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-109)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -2402 ((-514) $)) (-15 -4119 ((-652 (-974)) $)) (-15 -4146 ($ (-514) (-652 (-974))))))
+((-3464 (((-112) $ $) NIL)) (-3489 (($ $) NIL)) (-3827 (($ $ $) NIL)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) $) NIL (|has| (-112) (-858))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-858)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2641 (($ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-3659 (((-112) $ (-1246 (-572)) (-112)) NIL (|has| $ (-6 -4455))) (((-112) $ (-572) (-112)) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-4243 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2925 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-3061 (((-112) $ (-572) (-112)) NIL (|has| $ (-6 -4455)))) (-2986 (((-112) $ (-572)) NIL)) (-3239 (((-572) (-112) $ (-572)) NIL (|has| (-112) (-1111))) (((-572) (-112) $) NIL (|has| (-112) (-1111))) (((-572) (-1 (-112) (-112)) $) NIL)) (-1442 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-3814 (($ $ $) NIL)) (-3795 (($ $) NIL)) (-1560 (($ $ $) NIL)) (-2924 (($ (-779) (-112)) 10)) (-2213 (($ $ $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL)) (-1377 (($ $ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2396 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL)) (-3049 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-2744 (($ $ $ (-572)) NIL) (($ (-112) $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-112) $) NIL (|has| (-572) (-858)))) (-3124 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3803 (($ $ (-112)) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-112)) (-652 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-300 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-652 (-300 (-112)))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2950 (((-652 (-112)) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 (($ $ (-1246 (-572))) NIL) (((-112) $ (-572)) NIL) (((-112) $ (-572) (-112)) NIL)) (-3817 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-1371 (((-779) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111)))) (((-779) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-112) (-622 (-544))))) (-3503 (($ (-652 (-112))) NIL)) (-2121 (($ (-652 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3491 (((-870) $) NIL)) (-3444 (($ (-779) (-112)) 11)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-3804 (($ $ $) NIL)) (-3536 (($ $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-3525 (($ $ $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-110) (-13 (-124) (-10 -8 (-15 -3444 ($ (-779) (-112)))))) (T -110))
+((-3444 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-124) (-10 -8 (-15 -3444 ($ (-779) (-112)))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+(((-111 |#1| |#2|) (-141) (-1060) (-1060)) (T -111))
+NIL
+(-13 (-656 |t#1|) (-1067 |t#2|) (-10 -7 (-6 -4449) (-6 -4448)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3489 (($ $) 10)) (-3827 (($ $ $) 15)) (-2611 (($) 7 T CONST)) (-3046 (($ $) 6)) (-3037 (((-779)) 24)) (-2688 (($) 32)) (-3814 (($ $ $) 13)) (-3795 (($ $) 9)) (-1560 (($ $ $) 16)) (-2213 (($ $ $) 17)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) 30)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) 28)) (-3546 (($ $ $) 20)) (-2614 (((-1131) $) NIL)) (-1383 (($) 8 T CONST)) (-3742 (($ $ $) 21)) (-3222 (((-544) $) 34)) (-3491 (((-870) $) 36)) (-3424 (((-112) $ $) NIL)) (-3804 (($ $ $) 11)) (-3536 (($ $ $) 14)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 19)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 22)) (-3525 (($ $ $) 12)))
+(((-112) (-13 (-852) (-669) (-978) (-622 (-544)) (-10 -8 (-15 -3827 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1560 ($ $ $)) (-15 -3046 ($ $))))) (T -112))
+((-3827 (*1 *1 *1 *1) (-5 *1 (-112))) (-2213 (*1 *1 *1 *1) (-5 *1 (-112))) (-1560 (*1 *1 *1 *1) (-5 *1 (-112))) (-3046 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-852) (-669) (-978) (-622 (-544)) (-10 -8 (-15 -3827 ($ $ $)) (-15 -2213 ($ $ $)) (-15 -1560 ($ $ $)) (-15 -3046 ($ $))))
+((-3814 (($ $ $) 6)) (-3795 (($ $) 8)) (-3804 (($ $ $) 7)))
(((-113) (-141)) (T -113))
-((-3201 (*1 *1 *1) (-4 *1 (-113))) (-3212 (*1 *1 *1 *1) (-4 *1 (-113))) (-3224 (*1 *1 *1 *1) (-4 *1 (-113))))
-(-13 (-1227) (-10 -8 (-15 -3201 ($ $)) (-15 -3212 ($ $ $)) (-15 -3224 ($ $ $))))
-(((-1227) . T))
-((-3375 (((-3 (-1 |#1| (-650 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-650 |#1|))) 11) (((-3 |#1| "failed") (-115) (-650 |#1|)) 25)) (-2581 (((-3 (-650 (-1 |#1| (-650 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-650 (-1 |#1| (-650 |#1|)))) 30)) (-4136 (((-115) |#1|) 63)) (-1773 (((-3 |#1| "failed") (-115)) 58)))
-(((-114 |#1|) (-10 -7 (-15 -3375 ((-3 |#1| "failed") (-115) (-650 |#1|))) (-15 -3375 ((-115) (-115) (-1 |#1| (-650 |#1|)))) (-15 -3375 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3375 ((-3 (-1 |#1| (-650 |#1|)) "failed") (-115))) (-15 -2581 ((-115) (-115) (-650 (-1 |#1| (-650 |#1|))))) (-15 -2581 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2581 ((-3 (-650 (-1 |#1| (-650 |#1|))) "failed") (-115))) (-15 -4136 ((-115) |#1|)) (-15 -1773 ((-3 |#1| "failed") (-115)))) (-1109)) (T -114))
-((-1773 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1109)))) (-4136 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1109)))) (-2581 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-1 *4 (-650 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1109)))) (-2581 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-2581 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 (-1 *4 (-650 *4)))) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-3375 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-650 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1109)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-650 *4))) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-3375 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-650 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1109)))))
-(-10 -7 (-15 -3375 ((-3 |#1| "failed") (-115) (-650 |#1|))) (-15 -3375 ((-115) (-115) (-1 |#1| (-650 |#1|)))) (-15 -3375 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3375 ((-3 (-1 |#1| (-650 |#1|)) "failed") (-115))) (-15 -2581 ((-115) (-115) (-650 (-1 |#1| (-650 |#1|))))) (-15 -2581 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2581 ((-3 (-650 (-1 |#1| (-650 |#1|))) "failed") (-115))) (-15 -4136 ((-115) |#1|)) (-15 -1773 ((-3 |#1| "failed") (-115))))
-((-2847 (((-112) $ $) NIL)) (-2023 (((-777) $) 91) (($ $ (-777)) 37)) (-1884 (((-112) $) 41)) (-4417 (($ $ (-1168) (-780)) 58) (($ $ (-512) (-780)) 33)) (-3059 (($ $ (-45 (-1168) (-780))) 16)) (-1333 (((-3 (-780) "failed") $ (-1168)) 27) (((-697 (-780)) $ (-512)) 32)) (-3508 (((-45 (-1168) (-780)) $) 15)) (-2558 (($ (-1186)) 20) (($ (-1186) (-777)) 23) (($ (-1186) (-55)) 24)) (-2460 (((-112) $) 39)) (-1547 (((-112) $) 43)) (-1770 (((-1186) $) 8)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3917 (((-112) $ (-1186)) 11)) (-2534 (($ $ (-1 (-542) (-650 (-542)))) 64) (((-3 (-1 (-542) (-650 (-542))) "failed") $) 71)) (-3891 (((-1129) $) NIL)) (-4008 (((-112) $ (-512)) 36)) (-2097 (($ $ (-1 (-112) $ $)) 45)) (-2467 (((-3 (-1 (-868) (-650 (-868))) "failed") $) 69) (($ $ (-1 (-868) (-650 (-868)))) 51) (($ $ (-1 (-868) (-868))) 53)) (-2830 (($ $ (-1168)) 55) (($ $ (-512)) 56)) (-3064 (($ $) 77)) (-2590 (($ $ (-1 (-112) $ $)) 46)) (-2869 (((-868) $) 60)) (-1344 (((-112) $ $) NIL)) (-2592 (($ $ (-512)) 34)) (-4196 (((-55) $) 72)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 89)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 103)))
-(((-115) (-13 (-856) (-841 (-1186)) (-10 -8 (-15 -3508 ((-45 (-1168) (-780)) $)) (-15 -3064 ($ $)) (-15 -2558 ($ (-1186))) (-15 -2558 ($ (-1186) (-777))) (-15 -2558 ($ (-1186) (-55))) (-15 -2460 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -1547 ((-112) $)) (-15 -2023 ((-777) $)) (-15 -2023 ($ $ (-777))) (-15 -2097 ($ $ (-1 (-112) $ $))) (-15 -2590 ($ $ (-1 (-112) $ $))) (-15 -2467 ((-3 (-1 (-868) (-650 (-868))) "failed") $)) (-15 -2467 ($ $ (-1 (-868) (-650 (-868))))) (-15 -2467 ($ $ (-1 (-868) (-868)))) (-15 -2534 ($ $ (-1 (-542) (-650 (-542))))) (-15 -2534 ((-3 (-1 (-542) (-650 (-542))) "failed") $)) (-15 -4008 ((-112) $ (-512))) (-15 -2592 ($ $ (-512))) (-15 -2830 ($ $ (-1168))) (-15 -2830 ($ $ (-512))) (-15 -1333 ((-3 (-780) "failed") $ (-1168))) (-15 -1333 ((-697 (-780)) $ (-512))) (-15 -4417 ($ $ (-1168) (-780))) (-15 -4417 ($ $ (-512) (-780))) (-15 -3059 ($ $ (-45 (-1168) (-780))))))) (T -115))
-((-3508 (*1 *2 *1) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115)))) (-3064 (*1 *1 *1) (-5 *1 (-115))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-115)))) (-2558 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *1 (-115)))) (-2558 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-115)))) (-2023 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-115)))) (-2097 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2467 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-868))) (-5 *1 (-115)))) (-2534 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115)))) (-2534 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115)))) (-4008 (*1 *2 *1 *3) (-12 (-5 *3 (-512)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2592 (*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-115)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115)))) (-1333 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-780)) (-5 *1 (-115)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-780))) (-5 *1 (-115)))) (-4417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-780)) (-5 *1 (-115)))) (-4417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-780)) (-5 *1 (-115)))) (-3059 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115)))))
-(-13 (-856) (-841 (-1186)) (-10 -8 (-15 -3508 ((-45 (-1168) (-780)) $)) (-15 -3064 ($ $)) (-15 -2558 ($ (-1186))) (-15 -2558 ($ (-1186) (-777))) (-15 -2558 ($ (-1186) (-55))) (-15 -2460 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -1547 ((-112) $)) (-15 -2023 ((-777) $)) (-15 -2023 ($ $ (-777))) (-15 -2097 ($ $ (-1 (-112) $ $))) (-15 -2590 ($ $ (-1 (-112) $ $))) (-15 -2467 ((-3 (-1 (-868) (-650 (-868))) "failed") $)) (-15 -2467 ($ $ (-1 (-868) (-650 (-868))))) (-15 -2467 ($ $ (-1 (-868) (-868)))) (-15 -2534 ($ $ (-1 (-542) (-650 (-542))))) (-15 -2534 ((-3 (-1 (-542) (-650 (-542))) "failed") $)) (-15 -4008 ((-112) $ (-512))) (-15 -2592 ($ $ (-512))) (-15 -2830 ($ $ (-1168))) (-15 -2830 ($ $ (-512))) (-15 -1333 ((-3 (-780) "failed") $ (-1168))) (-15 -1333 ((-697 (-780)) $ (-512))) (-15 -4417 ($ $ (-1168) (-780))) (-15 -4417 ($ $ (-512) (-780))) (-15 -3059 ($ $ (-45 (-1168) (-780))))))
-((-3322 (((-570) |#2|) 41)))
-(((-116 |#1| |#2|) (-10 -7 (-15 -3322 ((-570) |#2|))) (-13 (-368) (-1047 (-413 (-570)))) (-1253 |#1|)) (T -116))
-((-3322 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-1047 (-413 *2)))) (-5 *2 (-570)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -3322 ((-570) |#2|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $ (-570)) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-1695 (($ (-1182 (-570)) (-570)) NIL)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3738 (($ $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-3995 (((-777) $) NIL)) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2291 (((-570)) NIL)) (-3975 (((-570) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3308 (($ $ (-570)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3961 (((-1166 (-570)) $) NIL)) (-2161 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-3478 (((-570) $ (-570)) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL)))
-(((-117 |#1|) (-875 |#1|) (-570)) (T -117))
-NIL
-(-875 |#1|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| (-117 |#1|) (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-117 |#1|) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-117 |#1|) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-117 |#1|) (-1047 (-570))))) (-4387 (((-117 |#1|) $) NIL) (((-1186) $) NIL (|has| (-117 |#1|) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-117 |#1|) (-1047 (-570)))) (((-570) $) NIL (|has| (-117 |#1|) (-1047 (-570))))) (-1557 (($ $) NIL) (($ (-570) $) NIL)) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-117 |#1|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-117 |#1|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-117 |#1|))) (|:| |vec| (-1277 (-117 |#1|)))) (-695 $) (-1277 $)) NIL) (((-695 (-117 |#1|)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-117 |#1|) (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| (-117 |#1|) (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-117 |#1|) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-117 |#1|) (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 (((-117 |#1|) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1161)))) (-2746 (((-112) $) NIL (|has| (-117 |#1|) (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| (-117 |#1|) (-856)))) (-1764 (($ $ $) NIL (|has| (-117 |#1|) (-856)))) (-2536 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-117 |#1|) (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| (-117 |#1|) (-311)))) (-2037 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 (-117 |#1|)) (-650 (-117 |#1|))) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-298 (-117 |#1|))) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-650 (-298 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-650 (-1186)) (-650 (-117 |#1|))) NIL (|has| (-117 |#1|) (-520 (-1186) (-117 |#1|)))) (($ $ (-1186) (-117 |#1|)) NIL (|has| (-117 |#1|) (-520 (-1186) (-117 |#1|))))) (-2002 (((-777) $) NIL)) (-2057 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-290 (-117 |#1|) (-117 |#1|))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| (-117 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-117 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-777)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-4424 (($ $) NIL)) (-1599 (((-117 |#1|) $) NIL)) (-2601 (((-899 (-570)) $) NIL (|has| (-117 |#1|) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-117 |#1|) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-117 |#1|) (-620 (-542)))) (((-384) $) NIL (|has| (-117 |#1|) (-1031))) (((-227) $) NIL (|has| (-117 |#1|) (-1031)))) (-1392 (((-176 (-413 (-570))) $) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-117 |#1|)) NIL) (($ (-1186)) NIL (|has| (-117 |#1|) (-1047 (-1186))))) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-916))) (|has| (-117 |#1|) (-146))))) (-2294 (((-777)) NIL T CONST)) (-3850 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-3478 (((-413 (-570)) $ (-570)) NIL)) (-2521 (($ $) NIL (|has| (-117 |#1|) (-826)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $) NIL (|has| (-117 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-117 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-777)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3959 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-4013 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
-(((-118 |#1|) (-13 (-1001 (-117 |#1|)) (-10 -8 (-15 -3478 ((-413 (-570)) $ (-570))) (-15 -1392 ((-176 (-413 (-570))) $)) (-15 -1557 ($ $)) (-15 -1557 ($ (-570) $)))) (-570)) (T -118))
-((-3478 (*1 *2 *1 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-570)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-118 *3)) (-14 *3 (-570)))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-570)))) (-1557 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-118 *3)) (-14 *3 *2))))
-(-13 (-1001 (-117 |#1|)) (-10 -8 (-15 -3478 ((-413 (-570)) $ (-570))) (-15 -1392 ((-176 (-413 (-570))) $)) (-15 -1557 ($ $)) (-15 -1557 ($ (-570) $))))
-((-3040 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3044 (((-650 $) $) 31)) (-1427 (((-112) $ $) 36)) (-1314 (((-112) |#2| $) 40)) (-2466 (((-650 |#2|) $) 25)) (-2708 (((-112) $) 18)) (-2057 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1355 (((-112) $) 57)) (-2869 (((-868) $) 47)) (-2671 (((-650 $) $) 32)) (-3892 (((-112) $ $) 38)) (-2857 (((-777) $) 50)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -3040 (|#1| |#1| "right" |#1|)) (-15 -3040 (|#1| |#1| "left" |#1|)) (-15 -2057 (|#1| |#1| "right")) (-15 -2057 (|#1| |#1| "left")) (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -1427 ((-112) |#1| |#1|)) (-15 -2466 ((-650 |#2|) |#1|)) (-15 -1355 ((-112) |#1|)) (-15 -2057 (|#2| |#1| "value")) (-15 -2708 ((-112) |#1|)) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2671 ((-650 |#1|) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -1314 ((-112) |#2| |#1|)) (-15 -2857 ((-777) |#1|))) (-120 |#2|) (-1227)) (T -119))
-NIL
-(-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -3040 (|#1| |#1| "right" |#1|)) (-15 -3040 (|#1| |#1| "left" |#1|)) (-15 -2057 (|#1| |#1| "right")) (-15 -2057 (|#1| |#1| "left")) (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -1427 ((-112) |#1| |#1|)) (-15 -2466 ((-650 |#2|) |#1|)) (-15 -1355 ((-112) |#1|)) (-15 -2057 (|#2| |#1| "value")) (-15 -2708 ((-112) |#1|)) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2671 ((-650 |#1|) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -1314 ((-112) |#2| |#1|)) (-15 -2857 ((-777) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-2632 (($ $ $) 53 (|has| $ (-6 -4453)))) (-2644 (($ $ $) 55 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453))) (($ $ "left" $) 56 (|has| $ (-6 -4453))) (($ $ "right" $) 54 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-2333 (($) 7 T CONST)) (-2420 (($ $) 58)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-2403 (($ $) 60)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2352 (((-570) $ $) 45)) (-1355 (((-112) $) 47)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-120 |#1|) (-141) (-1227)) (T -120))
-((-2403 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1227)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1227)))) (-2420 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1227)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1227)))) (-3040 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4453)) (-4 *1 (-120 *3)) (-4 *3 (-1227)))) (-2644 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-120 *2)) (-4 *2 (-1227)))) (-3040 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4453)) (-4 *1 (-120 *3)) (-4 *3 (-1227)))) (-2632 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-120 *2)) (-4 *2 (-1227)))))
-(-13 (-1019 |t#1|) (-10 -8 (-15 -2403 ($ $)) (-15 -2057 ($ $ "left")) (-15 -2420 ($ $)) (-15 -2057 ($ $ "right")) (IF (|has| $ (-6 -4453)) (PROGN (-15 -3040 ($ $ "left" $)) (-15 -2644 ($ $ $)) (-15 -3040 ($ $ "right" $)) (-15 -2632 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2802 (((-112) |#1|) 29)) (-3273 (((-777) (-777)) 28) (((-777)) 27)) (-3499 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-121 |#1|) (-10 -7 (-15 -3499 ((-112) |#1|)) (-15 -3499 ((-112) |#1| (-112))) (-15 -3273 ((-777))) (-15 -3273 ((-777) (-777))) (-15 -2802 ((-112) |#1|))) (-1253 (-570))) (T -121))
-((-2802 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))) (-3273 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))) (-3499 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))) (-3499 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))))
-(-10 -7 (-15 -3499 ((-112) |#1|)) (-15 -3499 ((-112) |#1| (-112))) (-15 -3273 ((-777))) (-15 -3273 ((-777) (-777))) (-15 -2802 ((-112) |#1|)))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) 18)) (-3210 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-2632 (($ $ $) 21 (|has| $ (-6 -4453)))) (-2644 (($ $ $) 23 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) (($ $ "left" $) NIL (|has| $ (-6 -4453))) (($ $ "right" $) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2420 (($ $) 20)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2518 (($ $ |#1| $) 27)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2403 (($ $) 22)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2367 (($ |#1| $) 28)) (-2801 (($ |#1| $) 15)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 17)) (-1698 (($) 11)) (-2057 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2352 (((-570) $ $) NIL)) (-1355 (((-112) $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3555 (($ (-650 |#1|)) 16)) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4453) (-6 -4452) (-15 -3555 ($ (-650 |#1|))) (-15 -2801 ($ |#1| $)) (-15 -2367 ($ |#1| $)) (-15 -3210 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-856)) (T -122))
-((-3555 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-122 *3)))) (-2801 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856)))) (-3210 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-856)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4453) (-6 -4452) (-15 -3555 ($ (-650 |#1|))) (-15 -2801 ($ |#1| $)) (-15 -2367 ($ |#1| $)) (-15 -3210 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2867 (($ $) 13)) (-3201 (($ $) 11)) (-2032 (($ $ $) 23)) (-2916 (($ $ $) 21)) (-2911 (($ $ $) 19)) (-2895 (($ $ $) 17)))
-(((-123 |#1|) (-10 -8 (-15 -2032 (|#1| |#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -2895 (|#1| |#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -3201 (|#1| |#1|))) (-124)) (T -123))
-NIL
-(-10 -8 (-15 -2032 (|#1| |#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -2895 (|#1| |#1| |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -3201 (|#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2867 (($ $) 103)) (-1958 (($ $ $) 28)) (-2204 (((-1282) $ (-570) (-570)) 66 (|has| $ (-6 -4453)))) (-3134 (((-112) $) 98 (|has| (-112) (-856))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2778 (($ $) 102 (-12 (|has| (-112) (-856)) (|has| $ (-6 -4453)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4453)))) (-2018 (($ $) 97 (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2855 (((-112) $ (-777)) 37)) (-3040 (((-112) $ (-1244 (-570)) (-112)) 88 (|has| $ (-6 -4453))) (((-112) $ (-570) (-112)) 54 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4452)))) (-2333 (($) 38 T CONST)) (-4125 (($ $) 100 (|has| $ (-6 -4453)))) (-4366 (($ $) 90)) (-3153 (($ $) 68 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4452))) (($ (-112) $) 69 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4452))))) (-2295 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4452))))) (-2845 (((-112) $ (-570) (-112)) 53 (|has| $ (-6 -4453)))) (-2774 (((-112) $ (-570)) 55)) (-2619 (((-570) (-112) $ (-570)) 95 (|has| (-112) (-1109))) (((-570) (-112) $) 94 (|has| (-112) (-1109))) (((-570) (-1 (-112) (-112)) $) 93)) (-3976 (((-650 (-112)) $) 45 (|has| $ (-6 -4452)))) (-3224 (($ $ $) 108)) (-3201 (($ $) 106)) (-2032 (($ $ $) 29)) (-2296 (($ (-777) (-112)) 78)) (-2916 (($ $ $) 30)) (-2497 (((-112) $ (-777)) 36)) (-4372 (((-570) $) 63 (|has| (-570) (-856)))) (-1908 (($ $ $) 14)) (-4356 (($ $ $) 96 (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3069 (((-650 (-112)) $) 46 (|has| $ (-6 -4452)))) (-1314 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 62 (|has| (-570) (-856)))) (-1764 (($ $ $) 15)) (-2833 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2065 (((-112) $ (-777)) 35)) (-3240 (((-1168) $) 10)) (-2119 (($ $ $ (-570)) 87) (($ (-112) $ (-570)) 86)) (-4075 (((-650 (-570)) $) 60)) (-4276 (((-112) (-570) $) 59)) (-3891 (((-1129) $) 11)) (-1948 (((-112) $) 64 (|has| (-570) (-856)))) (-2115 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-4222 (($ $ (-112)) 65 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-112)) (-650 (-112))) 52 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-298 (-112))) 50 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-650 (-298 (-112)))) 49 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))))) (-2914 (((-112) $ $) 31)) (-1552 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-2856 (((-650 (-112)) $) 58)) (-2171 (((-112) $) 34)) (-1698 (($) 33)) (-2057 (($ $ (-1244 (-570))) 77) (((-112) $ (-570)) 57) (((-112) $ (-570) (-112)) 56)) (-3225 (($ $ (-1244 (-570))) 85) (($ $ (-570)) 84)) (-3901 (((-777) (-112) $) 47 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4452)))) (-2181 (($ $ $ (-570)) 99 (|has| $ (-6 -4453)))) (-3064 (($ $) 32)) (-2601 (((-542) $) 67 (|has| (-112) (-620 (-542))))) (-2881 (($ (-650 (-112))) 76)) (-1505 (($ (-650 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-2061 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4452)))) (-3212 (($ $ $) 107)) (-2911 (($ $ $) 105)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (-2895 (($ $ $) 104)) (-2857 (((-777) $) 39 (|has| $ (-6 -4452)))))
+((-3795 (*1 *1 *1) (-4 *1 (-113))) (-3804 (*1 *1 *1 *1) (-4 *1 (-113))) (-3814 (*1 *1 *1 *1) (-4 *1 (-113))))
+(-13 (-1229) (-10 -8 (-15 -3795 ($ $)) (-15 -3804 ($ $ $)) (-15 -3814 ($ $ $))))
+(((-1229) . T))
+((-4399 (((-3 (-1 |#1| (-652 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-652 |#1|))) 11) (((-3 |#1| "failed") (-115) (-652 |#1|)) 25)) (-2012 (((-3 (-652 (-1 |#1| (-652 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-652 (-1 |#1| (-652 |#1|)))) 30)) (-4207 (((-115) |#1|) 63)) (-4013 (((-3 |#1| "failed") (-115)) 58)))
+(((-114 |#1|) (-10 -7 (-15 -4399 ((-3 |#1| "failed") (-115) (-652 |#1|))) (-15 -4399 ((-115) (-115) (-1 |#1| (-652 |#1|)))) (-15 -4399 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4399 ((-3 (-1 |#1| (-652 |#1|)) "failed") (-115))) (-15 -2012 ((-115) (-115) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2012 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2012 ((-3 (-652 (-1 |#1| (-652 |#1|))) "failed") (-115))) (-15 -4207 ((-115) |#1|)) (-15 -4013 ((-3 |#1| "failed") (-115)))) (-1111)) (T -114))
+((-4013 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1111)))) (-4207 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1111)))) (-2012 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-1 *4 (-652 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1111)))) (-2012 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-2012 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 (-1 *4 (-652 *4)))) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-4399 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-652 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1111)))) (-4399 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-4399 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-652 *4))) (-4 *4 (-1111)) (-5 *1 (-114 *4)))) (-4399 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-652 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1111)))))
+(-10 -7 (-15 -4399 ((-3 |#1| "failed") (-115) (-652 |#1|))) (-15 -4399 ((-115) (-115) (-1 |#1| (-652 |#1|)))) (-15 -4399 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4399 ((-3 (-1 |#1| (-652 |#1|)) "failed") (-115))) (-15 -2012 ((-115) (-115) (-652 (-1 |#1| (-652 |#1|))))) (-15 -2012 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2012 ((-3 (-652 (-1 |#1| (-652 |#1|))) "failed") (-115))) (-15 -4207 ((-115) |#1|)) (-15 -4013 ((-3 |#1| "failed") (-115))))
+((-3464 (((-112) $ $) NIL)) (-1470 (((-779) $) 91) (($ $ (-779)) 37)) (-2638 (((-112) $) 41)) (-3903 (($ $ (-1170) (-782)) 58) (($ $ (-514) (-782)) 33)) (-2302 (($ $ (-45 (-1170) (-782))) 16)) (-3304 (((-3 (-782) "failed") $ (-1170)) 27) (((-699 (-782)) $ (-514)) 32)) (-4119 (((-45 (-1170) (-782)) $) 15)) (-3181 (($ (-1188)) 20) (($ (-1188) (-779)) 23) (($ (-1188) (-55)) 24)) (-3516 (((-112) $) 39)) (-2474 (((-112) $) 43)) (-2402 (((-1188) $) 8)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2685 (((-112) $ (-1188)) 11)) (-3158 (($ $ (-1 (-544) (-652 (-544)))) 64) (((-3 (-1 (-544) (-652 (-544))) "failed") $) 71)) (-2614 (((-1131) $) NIL)) (-2200 (((-112) $ (-514)) 36)) (-4136 (($ $ (-1 (-112) $ $)) 45)) (-3105 (((-3 (-1 (-870) (-652 (-870))) "failed") $) 69) (($ $ (-1 (-870) (-652 (-870)))) 51) (($ $ (-1 (-870) (-870))) 53)) (-2706 (($ $ (-1170)) 55) (($ $ (-514)) 56)) (-3679 (($ $) 77)) (-2115 (($ $ (-1 (-112) $ $)) 46)) (-3491 (((-870) $) 60)) (-3424 (((-112) $ $) NIL)) (-3214 (($ $ (-514)) 34)) (-3586 (((-55) $) 72)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 89)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 103)))
+(((-115) (-13 (-858) (-843 (-1188)) (-10 -8 (-15 -4119 ((-45 (-1170) (-782)) $)) (-15 -3679 ($ $)) (-15 -3181 ($ (-1188))) (-15 -3181 ($ (-1188) (-779))) (-15 -3181 ($ (-1188) (-55))) (-15 -3516 ((-112) $)) (-15 -2638 ((-112) $)) (-15 -2474 ((-112) $)) (-15 -1470 ((-779) $)) (-15 -1470 ($ $ (-779))) (-15 -4136 ($ $ (-1 (-112) $ $))) (-15 -2115 ($ $ (-1 (-112) $ $))) (-15 -3105 ((-3 (-1 (-870) (-652 (-870))) "failed") $)) (-15 -3105 ($ $ (-1 (-870) (-652 (-870))))) (-15 -3105 ($ $ (-1 (-870) (-870)))) (-15 -3158 ($ $ (-1 (-544) (-652 (-544))))) (-15 -3158 ((-3 (-1 (-544) (-652 (-544))) "failed") $)) (-15 -2200 ((-112) $ (-514))) (-15 -3214 ($ $ (-514))) (-15 -2706 ($ $ (-1170))) (-15 -2706 ($ $ (-514))) (-15 -3304 ((-3 (-782) "failed") $ (-1170))) (-15 -3304 ((-699 (-782)) $ (-514))) (-15 -3903 ($ $ (-1170) (-782))) (-15 -3903 ($ $ (-514) (-782))) (-15 -2302 ($ $ (-45 (-1170) (-782))))))) (T -115))
+((-4119 (*1 *2 *1) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))) (-3679 (*1 *1 *1) (-5 *1 (-115))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *1 (-115)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-115)))) (-1470 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-115)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3105 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115)))) (-3105 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115)))) (-3105 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-870))) (-5 *1 (-115)))) (-3158 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115)))) (-3158 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-514)) (-5 *2 (-112)) (-5 *1 (-115)))) (-3214 (*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115)))) (-2706 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-115)))) (-2706 (*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115)))) (-3304 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-782)) (-5 *1 (-115)))) (-3304 (*1 *2 *1 *3) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-782))) (-5 *1 (-115)))) (-3903 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-782)) (-5 *1 (-115)))) (-3903 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-782)) (-5 *1 (-115)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))))
+(-13 (-858) (-843 (-1188)) (-10 -8 (-15 -4119 ((-45 (-1170) (-782)) $)) (-15 -3679 ($ $)) (-15 -3181 ($ (-1188))) (-15 -3181 ($ (-1188) (-779))) (-15 -3181 ($ (-1188) (-55))) (-15 -3516 ((-112) $)) (-15 -2638 ((-112) $)) (-15 -2474 ((-112) $)) (-15 -1470 ((-779) $)) (-15 -1470 ($ $ (-779))) (-15 -4136 ($ $ (-1 (-112) $ $))) (-15 -2115 ($ $ (-1 (-112) $ $))) (-15 -3105 ((-3 (-1 (-870) (-652 (-870))) "failed") $)) (-15 -3105 ($ $ (-1 (-870) (-652 (-870))))) (-15 -3105 ($ $ (-1 (-870) (-870)))) (-15 -3158 ($ $ (-1 (-544) (-652 (-544))))) (-15 -3158 ((-3 (-1 (-544) (-652 (-544))) "failed") $)) (-15 -2200 ((-112) $ (-514))) (-15 -3214 ($ $ (-514))) (-15 -2706 ($ $ (-1170))) (-15 -2706 ($ $ (-514))) (-15 -3304 ((-3 (-782) "failed") $ (-1170))) (-15 -3304 ((-699 (-782)) $ (-514))) (-15 -3903 ($ $ (-1170) (-782))) (-15 -3903 ($ $ (-514) (-782))) (-15 -2302 ($ $ (-45 (-1170) (-782))))))
+((-1952 (((-572) |#2|) 41)))
+(((-116 |#1| |#2|) (-10 -7 (-15 -1952 ((-572) |#2|))) (-13 (-370) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -116))
+((-1952 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-1049 (-415 *2)))) (-5 *2 (-572)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -1952 ((-572) |#2|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $ (-572)) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-4416 (($ (-1184 (-572)) (-572)) NIL)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1710 (($ $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-2068 (((-779) $) NIL)) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2425 (((-572)) NIL)) (-3160 (((-572) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3103 (($ $ (-572)) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3005 (((-1168 (-572)) $) NIL)) (-3610 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-4090 (((-572) $ (-572)) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL)))
+(((-117 |#1|) (-877 |#1|) (-572)) (T -117))
+NIL
+(-877 |#1|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| (-117 |#1|) (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-117 |#1|) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-117 |#1|) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-117 |#1|) (-1049 (-572))))) (-1869 (((-117 |#1|) $) NIL) (((-1188) $) NIL (|has| (-117 |#1|) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-117 |#1|) (-1049 (-572)))) (((-572) $) NIL (|has| (-117 |#1|) (-1049 (-572))))) (-2569 (($ $) NIL) (($ (-572) $) NIL)) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-117 |#1|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-117 |#1|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-117 |#1|))) (|:| |vec| (-1279 (-117 |#1|)))) (-697 $) (-1279 $)) NIL) (((-697 (-117 |#1|)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-117 |#1|) (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| (-117 |#1|) (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-117 |#1|) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-117 |#1|) (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 (((-117 |#1|) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1163)))) (-4354 (((-112) $) NIL (|has| (-117 |#1|) (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| (-117 |#1|) (-858)))) (-3928 (($ $ $) NIL (|has| (-117 |#1|) (-858)))) (-3161 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-117 |#1|) (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| (-117 |#1|) (-313)))) (-1609 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-117 |#1|) (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 (-117 |#1|)) (-652 (-117 |#1|))) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-300 (-117 |#1|))) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-652 (-300 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-315 (-117 |#1|)))) (($ $ (-652 (-1188)) (-652 (-117 |#1|))) NIL (|has| (-117 |#1|) (-522 (-1188) (-117 |#1|)))) (($ $ (-1188) (-117 |#1|)) NIL (|has| (-117 |#1|) (-522 (-1188) (-117 |#1|))))) (-4395 (((-779) $) NIL)) (-2679 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-292 (-117 |#1|) (-117 |#1|))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-117 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-779)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3982 (($ $) NIL)) (-2224 (((-117 |#1|) $) NIL)) (-3222 (((-901 (-572)) $) NIL (|has| (-117 |#1|) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-117 |#1|) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-117 |#1|) (-622 (-544)))) (((-386) $) NIL (|has| (-117 |#1|) (-1033))) (((-227) $) NIL (|has| (-117 |#1|) (-1033)))) (-2660 (((-176 (-415 (-572))) $) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-117 |#1|)) NIL) (($ (-1188)) NIL (|has| (-117 |#1|) (-1049 (-1188))))) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-918))) (|has| (-117 |#1|) (-146))))) (-2455 (((-779)) NIL T CONST)) (-3441 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-4090 (((-415 (-572)) $ (-572)) NIL)) (-2775 (($ $) NIL (|has| (-117 |#1|) (-828)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-117 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-117 |#1|) (-909 (-1188)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-779)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-3976 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-117 |#1|) (-858)))) (-4029 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
+(((-118 |#1|) (-13 (-1003 (-117 |#1|)) (-10 -8 (-15 -4090 ((-415 (-572)) $ (-572))) (-15 -2660 ((-176 (-415 (-572))) $)) (-15 -2569 ($ $)) (-15 -2569 ($ (-572) $)))) (-572)) (T -118))
+((-4090 (*1 *2 *1 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-572)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-118 *3)) (-14 *3 (-572)))) (-2569 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-572)))) (-2569 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-118 *3)) (-14 *3 *2))))
+(-13 (-1003 (-117 |#1|)) (-10 -8 (-15 -4090 ((-415 (-572)) $ (-572))) (-15 -2660 ((-176 (-415 (-572))) $)) (-15 -2569 ($ $)) (-15 -2569 ($ (-572) $))))
+((-3659 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2117 (((-652 $) $) 31)) (-1890 (((-112) $ $) 36)) (-4211 (((-112) |#2| $) 40)) (-3104 (((-652 |#2|) $) 25)) (-3989 (((-112) $) 18)) (-2679 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3727 (((-112) $) 57)) (-3491 (((-870) $) 47)) (-1678 (((-652 $) $) 32)) (-3921 (((-112) $ $) 38)) (-3475 (((-779) $) 50)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -3659 (|#1| |#1| "right" |#1|)) (-15 -3659 (|#1| |#1| "left" |#1|)) (-15 -2679 (|#1| |#1| "right")) (-15 -2679 (|#1| |#1| "left")) (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -1890 ((-112) |#1| |#1|)) (-15 -3104 ((-652 |#2|) |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -2679 (|#2| |#1| "value")) (-15 -3989 ((-112) |#1|)) (-15 -2117 ((-652 |#1|) |#1|)) (-15 -1678 ((-652 |#1|) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -4211 ((-112) |#2| |#1|)) (-15 -3475 ((-779) |#1|))) (-120 |#2|) (-1229)) (T -119))
+NIL
+(-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -3659 (|#1| |#1| "right" |#1|)) (-15 -3659 (|#1| |#1| "left" |#1|)) (-15 -2679 (|#1| |#1| "right")) (-15 -2679 (|#1| |#1| "left")) (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -1890 ((-112) |#1| |#1|)) (-15 -3104 ((-652 |#2|) |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -2679 (|#2| |#1| "value")) (-15 -3989 ((-112) |#1|)) (-15 -2117 ((-652 |#1|) |#1|)) (-15 -1678 ((-652 |#1|) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -4211 ((-112) |#2| |#1|)) (-15 -3475 ((-779) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-4423 (($ $ $) 53 (|has| $ (-6 -4455)))) (-1439 (($ $ $) 55 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) (($ $ "left" $) 56 (|has| $ (-6 -4455))) (($ $ "right" $) 54 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-1586 (($) 7 T CONST)) (-3058 (($ $) 58)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3041 (($ $) 60)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1762 (((-572) $ $) 45)) (-3727 (((-112) $) 47)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-120 |#1|) (-141) (-1229)) (T -120))
+((-3041 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-3058 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-3659 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-1439 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))) (-3659 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3)) (-4 *3 (-1229)))) (-4423 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))))
+(-13 (-1021 |t#1|) (-10 -8 (-15 -3041 ($ $)) (-15 -2679 ($ $ "left")) (-15 -3058 ($ $)) (-15 -2679 ($ $ "right")) (IF (|has| $ (-6 -4455)) (PROGN (-15 -3659 ($ $ "left" $)) (-15 -1439 ($ $ $)) (-15 -3659 ($ $ "right" $)) (-15 -4423 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3713 (((-112) |#1|) 29)) (-2724 (((-779) (-779)) 28) (((-779)) 27)) (-3191 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-121 |#1|) (-10 -7 (-15 -3191 ((-112) |#1|)) (-15 -3191 ((-112) |#1| (-112))) (-15 -2724 ((-779))) (-15 -2724 ((-779) (-779))) (-15 -3713 ((-112) |#1|))) (-1255 (-572))) (T -121))
+((-3713 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-2724 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-3191 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))) (-3191 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
+(-10 -7 (-15 -3191 ((-112) |#1|)) (-15 -3191 ((-112) |#1| (-112))) (-15 -2724 ((-779))) (-15 -2724 ((-779) (-779))) (-15 -3713 ((-112) |#1|)))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) 18)) (-3339 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-4423 (($ $ $) 21 (|has| $ (-6 -4455)))) (-1439 (($ $ $) 23 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3058 (($ $) 20)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3145 (($ $ |#1| $) 27)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3041 (($ $) 22)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3863 (($ |#1| $) 28)) (-3704 (($ |#1| $) 15)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 17)) (-1321 (($) 11)) (-2679 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1762 (((-572) $ $) NIL)) (-3727 (((-112) $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3707 (($ (-652 |#1|)) 16)) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -3707 ($ (-652 |#1|))) (-15 -3704 ($ |#1| $)) (-15 -3863 ($ |#1| $)) (-15 -3339 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-858)) (T -122))
+((-3707 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-122 *3)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858)))) (-3863 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858)))) (-3339 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-858)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -3707 ($ (-652 |#1|))) (-15 -3704 ($ |#1| $)) (-15 -3863 ($ |#1| $)) (-15 -3339 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-3489 (($ $) 13)) (-3795 (($ $) 11)) (-1560 (($ $ $) 23)) (-2213 (($ $ $) 21)) (-3536 (($ $ $) 19)) (-3525 (($ $ $) 17)))
+(((-123 |#1|) (-10 -8 (-15 -1560 (|#1| |#1| |#1|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3525 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3795 (|#1| |#1|))) (-124)) (T -123))
+NIL
+(-10 -8 (-15 -1560 (|#1| |#1| |#1|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3525 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3795 (|#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3489 (($ $) 103)) (-3827 (($ $ $) 28)) (-2812 (((-1284) $ (-572) (-572)) 66 (|has| $ (-6 -4455)))) (-3755 (((-112) $) 98 (|has| (-112) (-858))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3519 (($ $) 102 (-12 (|has| (-112) (-858)) (|has| $ (-6 -4455)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4455)))) (-2641 (($ $) 97 (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2938 (((-112) $ (-779)) 37)) (-3659 (((-112) $ (-1246 (-572)) (-112)) 88 (|has| $ (-6 -4455))) (((-112) $ (-572) (-112)) 54 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4454)))) (-1586 (($) 38 T CONST)) (-4095 (($ $) 100 (|has| $ (-6 -4455)))) (-1852 (($ $) 90)) (-3955 (($ $) 68 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4454))) (($ (-112) $) 69 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-2925 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-3061 (((-112) $ (-572) (-112)) 53 (|has| $ (-6 -4455)))) (-2986 (((-112) $ (-572)) 55)) (-3239 (((-572) (-112) $ (-572)) 95 (|has| (-112) (-1111))) (((-572) (-112) $) 94 (|has| (-112) (-1111))) (((-572) (-1 (-112) (-112)) $) 93)) (-1442 (((-652 (-112)) $) 45 (|has| $ (-6 -4454)))) (-3814 (($ $ $) 108)) (-3795 (($ $) 106)) (-1560 (($ $ $) 29)) (-2924 (($ (-779) (-112)) 78)) (-2213 (($ $ $) 30)) (-2545 (((-112) $ (-779)) 36)) (-1531 (((-572) $) 63 (|has| (-572) (-858)))) (-2536 (($ $ $) 14)) (-1377 (($ $ $) 96 (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2396 (((-652 (-112)) $) 46 (|has| $ (-6 -4454)))) (-4211 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 62 (|has| (-572) (-858)))) (-3928 (($ $ $) 15)) (-3049 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-3818 (((-112) $ (-779)) 35)) (-3618 (((-1170) $) 10)) (-2744 (($ $ $ (-572)) 87) (($ (-112) $ (-572)) 86)) (-1634 (((-652 (-572)) $) 60)) (-3132 (((-112) (-572) $) 59)) (-2614 (((-1131) $) 11)) (-2570 (((-112) $) 64 (|has| (-572) (-858)))) (-3124 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3803 (($ $ (-112)) 65 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-112)) (-652 (-112))) 52 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-300 (-112))) 50 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-652 (-300 (-112)))) 49 (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))))) (-2187 (((-112) $ $) 31)) (-2516 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2950 (((-652 (-112)) $) 58)) (-3712 (((-112) $) 34)) (-1321 (($) 33)) (-2679 (($ $ (-1246 (-572))) 77) (((-112) $ (-572)) 57) (((-112) $ (-572) (-112)) 56)) (-3817 (($ $ (-1246 (-572))) 85) (($ $ (-572)) 84)) (-1371 (((-779) (-112) $) 47 (-12 (|has| (-112) (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4454)))) (-2561 (($ $ $ (-572)) 99 (|has| $ (-6 -4455)))) (-3679 (($ $) 32)) (-3222 (((-544) $) 67 (|has| (-112) (-622 (-544))))) (-3503 (($ (-652 (-112))) 76)) (-2121 (($ (-652 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3776 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4454)))) (-3804 (($ $ $) 107)) (-3536 (($ $ $) 105)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-3525 (($ $ $) 104)) (-3475 (((-779) $) 39 (|has| $ (-6 -4454)))))
(((-124) (-141)) (T -124))
-((-2916 (*1 *1 *1 *1) (-4 *1 (-124))) (-2032 (*1 *1 *1 *1) (-4 *1 (-124))) (-1958 (*1 *1 *1 *1) (-4 *1 (-124))))
-(-13 (-856) (-113) (-667) (-19 (-112)) (-10 -8 (-15 -2916 ($ $ $)) (-15 -2032 ($ $ $)) (-15 -1958 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-113) . T) ((-619 (-868)) . T) ((-152 #0=(-112)) . T) ((-620 (-542)) |has| (-112) (-620 (-542))) ((-290 #1=(-570) #0#) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #1# #0#) . T) ((-313 #0#) -12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))) ((-378 #0#) . T) ((-495 #0#) . T) ((-610 #1# #0#) . T) ((-520 #0# #0#) -12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))) ((-657 #0#) . T) ((-667) . T) ((-19 #0#) . T) ((-856) . T) ((-1109) . T) ((-1227) . T))
-((-2833 (($ (-1 |#2| |#2|) $) 22)) (-3064 (($ $) 16)) (-2857 (((-777) $) 25)))
-(((-125 |#1| |#2|) (-10 -8 (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -3064 (|#1| |#1|))) (-126 |#2|) (-1109)) (T -125))
-NIL
-(-10 -8 (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -3064 (|#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-2632 (($ $ $) 53 (|has| $ (-6 -4453)))) (-2644 (($ $ $) 55 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453))) (($ $ "left" $) 56 (|has| $ (-6 -4453))) (($ $ "right" $) 54 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-2333 (($) 7 T CONST)) (-2420 (($ $) 58)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2518 (($ $ |#1| $) 61)) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-2403 (($ $) 60)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2352 (((-570) $ $) 45)) (-1355 (((-112) $) 47)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-126 |#1|) (-141) (-1109)) (T -126))
-((-2518 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1109)))))
-(-13 (-120 |t#1|) (-10 -8 (-6 -4453) (-6 -4452) (-15 -2518 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-120 |#1|) . T) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) 18)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) 22 (|has| $ (-6 -4453)))) (-2632 (($ $ $) 23 (|has| $ (-6 -4453)))) (-2644 (($ $ $) 21 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) (($ $ "left" $) NIL (|has| $ (-6 -4453))) (($ $ "right" $) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2420 (($ $) 24)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2518 (($ $ |#1| $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2403 (($ $) NIL)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2801 (($ |#1| $) 15)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 17)) (-1698 (($) 11)) (-2057 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2352 (((-570) $ $) NIL)) (-1355 (((-112) $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 20)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1804 (($ (-650 |#1|)) 16)) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4453) (-15 -1804 ($ (-650 |#1|))) (-15 -2801 ($ |#1| $)))) (-856)) (T -127))
-((-1804 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-127 *3)))) (-2801 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-856)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4453) (-15 -1804 ($ (-650 |#1|))) (-15 -2801 ($ |#1| $))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) 30)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) 32 (|has| $ (-6 -4453)))) (-2632 (($ $ $) 36 (|has| $ (-6 -4453)))) (-2644 (($ $ $) 34 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) (($ $ "left" $) NIL (|has| $ (-6 -4453))) (($ $ "right" $) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2420 (($ $) 23)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2518 (($ $ |#1| $) 16)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2403 (($ $) 22)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) 25)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 20)) (-1698 (($) 11)) (-2057 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2352 (((-570) $ $) NIL)) (-1355 (((-112) $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3626 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 10 (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -3626 ($ |#1|)) (-15 -3626 ($ $ |#1| $)))) (-1109)) (T -128))
-((-3626 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109)))) (-3626 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109)))))
-(-13 (-126 |#1|) (-10 -8 (-15 -3626 ($ |#1|)) (-15 -3626 ($ $ |#1| $))))
-((-2847 (((-112) $ $) NIL (|has| (-130) (-1109)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-856)))) (-2778 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| (-130) (-856))))) (-2018 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 (((-130) $ (-570) (-130)) 26 (|has| $ (-6 -4453))) (((-130) $ (-1244 (-570)) (-130)) NIL (|has| $ (-6 -4453)))) (-3259 (((-777) $ (-777)) 34)) (-3960 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-130) (-1109))))) (-3617 (($ (-130) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-130) (-1109)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4452)) (|has| (-130) (-1109)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4452))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4452)))) (-2845 (((-130) $ (-570) (-130)) 25 (|has| $ (-6 -4453)))) (-2774 (((-130) $ (-570)) 20)) (-2619 (((-570) (-1 (-112) (-130)) $) NIL) (((-570) (-130) $) NIL (|has| (-130) (-1109))) (((-570) (-130) $ (-570)) NIL (|has| (-130) (-1109)))) (-3976 (((-650 (-130)) $) NIL (|has| $ (-6 -4452)))) (-2296 (($ (-777) (-130)) 14)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 27 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| (-130) (-856)))) (-4356 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-856)))) (-3069 (((-650 (-130)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-130) (-1109))))) (-1894 (((-570) $) 30 (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-130) (-856)))) (-2833 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| (-130) (-1109)))) (-2119 (($ (-130) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| (-130) (-1109)))) (-1948 (((-130) $) NIL (|has| (-570) (-856)))) (-2115 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-4222 (($ $ (-130)) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-130)))) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109)))) (($ $ (-298 (-130))) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109)))) (($ $ (-650 (-130)) (-650 (-130))) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-130) (-1109))))) (-2856 (((-650 (-130)) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 12)) (-2057 (((-130) $ (-570) (-130)) NIL) (((-130) $ (-570)) 23) (($ $ (-1244 (-570))) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4452))) (((-777) (-130) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-130) (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-130) (-620 (-542))))) (-2881 (($ (-650 (-130))) 46)) (-1505 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-650 $)) NIL)) (-2869 (((-965 (-130)) $) 35) (((-1168) $) 43) (((-868) $) NIL (|has| (-130) (-619 (-868))))) (-1358 (((-777) $) 18)) (-1941 (($ (-777)) 8)) (-1344 (((-112) $ $) NIL (|has| (-130) (-1109)))) (-2061 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| (-130) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-130) (-856)))) (-3892 (((-112) $ $) 32 (|has| (-130) (-1109)))) (-3945 (((-112) $ $) NIL (|has| (-130) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-130) (-856)))) (-2857 (((-777) $) 15 (|has| $ (-6 -4452)))))
-(((-129) (-13 (-19 (-130)) (-619 (-965 (-130))) (-619 (-1168)) (-10 -8 (-15 -1941 ($ (-777))) (-15 -1358 ((-777) $)) (-15 -3259 ((-777) $ (-777))) (-6 -4452)))) (T -129))
-((-1941 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-129)))) (-3259 (*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129)))))
-(-13 (-19 (-130)) (-619 (-965 (-130))) (-619 (-1168)) (-10 -8 (-15 -1941 ($ (-777))) (-15 -1358 ((-777) $)) (-15 -3259 ((-777) $ (-777))) (-6 -4452)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) 26)) (-2333 (($) NIL T CONST)) (-2066 (($) 35)) (-1908 (($ $ $) NIL) (($) 24 T CONST)) (-1764 (($ $ $) NIL) (($) 25 T CONST)) (-1997 (((-928) $) 33)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) 31)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2416 (($ (-777)) 8)) (-1476 (($ $ $) 37)) (-3366 (($ $ $) 36)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) 22)) (-3933 (((-112) $ $) 20)) (-3892 (((-112) $ $) 18)) (-3945 (((-112) $ $) 21)) (-3918 (((-112) $ $) 19)))
-(((-130) (-13 (-850) (-496 (-145)) (-10 -8 (-15 -2416 ($ (-777))) (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))) (T -130))
-((-2416 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-130)))) (-3366 (*1 *1 *1 *1) (-5 *1 (-130))) (-1476 (*1 *1 *1 *1) (-5 *1 (-130))) (-2333 (*1 *1) (-5 *1 (-130))))
-(-13 (-850) (-496 (-145)) (-10 -8 (-15 -2416 ($ (-777))) (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))
+((-2213 (*1 *1 *1 *1) (-4 *1 (-124))) (-1560 (*1 *1 *1 *1) (-4 *1 (-124))) (-3827 (*1 *1 *1 *1) (-4 *1 (-124))))
+(-13 (-858) (-113) (-669) (-19 (-112)) (-10 -8 (-15 -2213 ($ $ $)) (-15 -1560 ($ $ $)) (-15 -3827 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-113) . T) ((-621 (-870)) . T) ((-152 #0=(-112)) . T) ((-622 (-544)) |has| (-112) (-622 (-544))) ((-292 #1=(-572) #0#) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #1# #0#) . T) ((-315 #0#) -12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))) ((-380 #0#) . T) ((-497 #0#) . T) ((-612 #1# #0#) . T) ((-522 #0# #0#) -12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))) ((-659 #0#) . T) ((-669) . T) ((-19 #0#) . T) ((-858) . T) ((-1111) . T) ((-1229) . T))
+((-3049 (($ (-1 |#2| |#2|) $) 22)) (-3679 (($ $) 16)) (-3475 (((-779) $) 25)))
+(((-125 |#1| |#2|) (-10 -8 (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -3679 (|#1| |#1|))) (-126 |#2|) (-1111)) (T -125))
+NIL
+(-10 -8 (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -3679 (|#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-4423 (($ $ $) 53 (|has| $ (-6 -4455)))) (-1439 (($ $ $) 55 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) (($ $ "left" $) 56 (|has| $ (-6 -4455))) (($ $ "right" $) 54 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-1586 (($) 7 T CONST)) (-3058 (($ $) 58)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-3145 (($ $ |#1| $) 61)) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3041 (($ $) 60)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1762 (((-572) $ $) 45)) (-3727 (((-112) $) 47)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-126 |#1|) (-141) (-1111)) (T -126))
+((-3145 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1111)))))
+(-13 (-120 |t#1|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -3145 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-120 |#1|) . T) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) 18)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) 22 (|has| $ (-6 -4455)))) (-4423 (($ $ $) 23 (|has| $ (-6 -4455)))) (-1439 (($ $ $) 21 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3058 (($ $) 24)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3145 (($ $ |#1| $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3041 (($ $) NIL)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3704 (($ |#1| $) 15)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 17)) (-1321 (($) 11)) (-2679 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1762 (((-572) $ $) NIL)) (-3727 (((-112) $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 20)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3107 (($ (-652 |#1|)) 16)) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4455) (-15 -3107 ($ (-652 |#1|))) (-15 -3704 ($ |#1| $)))) (-858)) (T -127))
+((-3107 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-127 *3)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-858)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4455) (-15 -3107 ($ (-652 |#1|))) (-15 -3704 ($ |#1| $))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) 30)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) 32 (|has| $ (-6 -4455)))) (-4423 (($ $ $) 36 (|has| $ (-6 -4455)))) (-1439 (($ $ $) 34 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3058 (($ $) 23)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3145 (($ $ |#1| $) 16)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3041 (($ $) 22)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) 25)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 20)) (-1321 (($) 11)) (-2679 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1762 (((-572) $ $) NIL)) (-3727 (((-112) $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1877 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 10 (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1877 ($ |#1|)) (-15 -1877 ($ $ |#1| $)))) (-1111)) (T -128))
+((-1877 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111)))) (-1877 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111)))))
+(-13 (-126 |#1|) (-10 -8 (-15 -1877 ($ |#1|)) (-15 -1877 ($ $ |#1| $))))
+((-3464 (((-112) $ $) NIL (|has| (-130) (-1111)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-858)))) (-3519 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-130) (-858))))) (-2641 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 (((-130) $ (-572) (-130)) 26 (|has| $ (-6 -4455))) (((-130) $ (-1246 (-572)) (-130)) NIL (|has| $ (-6 -4455)))) (-2560 (((-779) $ (-779)) 34)) (-1424 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-4243 (($ (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4454))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4454)))) (-3061 (((-130) $ (-572) (-130)) 25 (|has| $ (-6 -4455)))) (-2986 (((-130) $ (-572)) 20)) (-3239 (((-572) (-1 (-112) (-130)) $) NIL) (((-572) (-130) $) NIL (|has| (-130) (-1111))) (((-572) (-130) $ (-572)) NIL (|has| (-130) (-1111)))) (-1442 (((-652 (-130)) $) NIL (|has| $ (-6 -4454)))) (-2924 (($ (-779) (-130)) 14)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 27 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| (-130) (-858)))) (-1377 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-858)))) (-2396 (((-652 (-130)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-2751 (((-572) $) 30 (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-130) (-858)))) (-3049 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| (-130) (-1111)))) (-2744 (($ (-130) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| (-130) (-1111)))) (-2570 (((-130) $) NIL (|has| (-572) (-858)))) (-3124 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-3803 (($ $ (-130)) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-130)))) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111)))) (($ $ (-300 (-130))) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111)))) (($ $ (-652 (-130)) (-652 (-130))) NIL (-12 (|has| (-130) (-315 (-130))) (|has| (-130) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-2950 (((-652 (-130)) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 12)) (-2679 (((-130) $ (-572) (-130)) NIL) (((-130) $ (-572)) 23) (($ $ (-1246 (-572))) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454))) (((-779) (-130) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-130) (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-130) (-622 (-544))))) (-3503 (($ (-652 (-130))) 46)) (-2121 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-652 $)) NIL)) (-3491 (((-967 (-130)) $) 35) (((-1170) $) 43) (((-870) $) NIL (|has| (-130) (-621 (-870))))) (-1781 (((-779) $) 18)) (-1956 (($ (-779)) 8)) (-3424 (((-112) $ $) NIL (|has| (-130) (-1111)))) (-3776 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| (-130) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-130) (-858)))) (-3921 (((-112) $ $) 32 (|has| (-130) (-1111)))) (-3965 (((-112) $ $) NIL (|has| (-130) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-130) (-858)))) (-3475 (((-779) $) 15 (|has| $ (-6 -4454)))))
+(((-129) (-13 (-19 (-130)) (-621 (-967 (-130))) (-621 (-1170)) (-10 -8 (-15 -1956 ($ (-779))) (-15 -1781 ((-779) $)) (-15 -2560 ((-779) $ (-779))) (-6 -4454)))) (T -129))
+((-1956 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-129)))) (-2560 (*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
+(-13 (-19 (-130)) (-621 (-967 (-130))) (-621 (-1170)) (-10 -8 (-15 -1956 ($ (-779))) (-15 -1781 ((-779) $)) (-15 -2560 ((-779) $ (-779))) (-6 -4454)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) 26)) (-1586 (($) NIL T CONST)) (-2688 (($) 35)) (-2536 (($ $ $) NIL) (($) 24 T CONST)) (-3928 (($ $ $) NIL) (($) 25 T CONST)) (-4370 (((-930) $) 33)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) 31)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3051 (($ (-779)) 8)) (-3978 (($ $ $) 37)) (-3967 (($ $ $) 36)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) 22)) (-3954 (((-112) $ $) 20)) (-3921 (((-112) $ $) 18)) (-3965 (((-112) $ $) 21)) (-3943 (((-112) $ $) 19)))
+(((-130) (-13 (-852) (-498 (-145)) (-10 -8 (-15 -3051 ($ (-779))) (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))) (T -130))
+((-3051 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-130)))) (-3967 (*1 *1 *1 *1) (-5 *1 (-130))) (-3978 (*1 *1 *1 *1) (-5 *1 (-130))) (-1586 (*1 *1) (-5 *1 (-130))))
+(-13 (-852) (-498 (-145)) (-10 -8 (-15 -3051 ($ (-779))) (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))
((|NonNegativeInteger|) (|%ilt| |#1| 256))
-((-2847 (((-112) $ $) NIL)) (-1350 (($) 6 T CONST)) (-2164 (($) 7 T CONST)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 14)) (-2048 (($) 8 T CONST)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 10)))
-(((-131) (-13 (-1109) (-10 -8 (-15 -2164 ($) -3722) (-15 -2048 ($) -3722) (-15 -1350 ($) -3722)))) (T -131))
-((-2164 (*1 *1) (-5 *1 (-131))) (-2048 (*1 *1) (-5 *1 (-131))) (-1350 (*1 *1) (-5 *1 (-131))))
-(-13 (-1109) (-10 -8 (-15 -2164 ($) -3722) (-15 -2048 ($) -3722) (-15 -1350 ($) -3722)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16)))
+((-3464 (((-112) $ $) NIL)) (-3496 (($) 6 T CONST)) (-3643 (($) 7 T CONST)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 14)) (-1707 (($) 8 T CONST)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 10)))
+(((-131) (-13 (-1111) (-10 -8 (-15 -3643 ($) -4338) (-15 -1707 ($) -4338) (-15 -3496 ($) -4338)))) (T -131))
+((-3643 (*1 *1) (-5 *1 (-131))) (-1707 (*1 *1) (-5 *1 (-131))) (-3496 (*1 *1) (-5 *1 (-131))))
+(-13 (-1111) (-10 -8 (-15 -3643 ($) -4338) (-15 -1707 ($) -4338) (-15 -3496 ($) -4338)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
(((-132) (-141)) (T -132))
-((-3997 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-23) (-10 -8 (-15 -3997 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-2966 (((-1282) $ (-777)) 14)) (-2619 (((-777) $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
+((-2092 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-23) (-10 -8 (-15 -2092 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-2639 (((-1284) $ (-779)) 14)) (-3239 (((-779) $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
(((-133) (-141)) (T -133))
-((-2619 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-777)))) (-2966 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-777)) (-5 *2 (-1282)))))
-(-13 (-1109) (-10 -8 (-15 -2619 ((-777) $)) (-15 -2966 ((-1282) $ (-777)))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-650 (-1144)) $) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-134) (-13 (-1092) (-10 -8 (-15 -1781 ((-650 (-1144)) $))))) (T -134))
-((-1781 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-134)))))
-(-13 (-1092) (-10 -8 (-15 -1781 ((-650 (-1144)) $))))
-((-2847 (((-112) $ $) 49)) (-2564 (((-112) $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-777) "failed") $) 58)) (-4387 (((-777) $) 56)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) 37)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-4009 (((-112)) 59)) (-2156 (((-112) (-112)) 61)) (-1362 (((-112) $) 30)) (-2215 (((-112) $) 55)) (-2869 (((-868) $) 28) (($ (-777)) 20)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 18 T CONST)) (-1998 (($) 19 T CONST)) (-2461 (($ (-777)) 21)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) 40)) (-3892 (((-112) $ $) 32)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 35)) (-4003 (((-3 $ "failed") $ $) 42)) (-3992 (($ $ $) 38)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL) (($ $ $) 54)) (* (($ (-777) $) 48) (($ (-928) $) NIL) (($ $ $) 45)))
-(((-135) (-13 (-856) (-23) (-732) (-1047 (-777)) (-10 -8 (-6 (-4454 "*")) (-15 -4003 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2461 ($ (-777))) (-15 -1362 ((-112) $)) (-15 -2215 ((-112) $)) (-15 -4009 ((-112))) (-15 -2156 ((-112) (-112)))))) (T -135))
-((-4003 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-135)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4009 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(-13 (-856) (-23) (-732) (-1047 (-777)) (-10 -8 (-6 (-4454 "*")) (-15 -4003 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2461 ($ (-777))) (-15 -1362 ((-112) $)) (-15 -2215 ((-112) $)) (-15 -4009 ((-112))) (-15 -2156 ((-112) (-112)))))
-((-2492 (((-137 |#1| |#2| |#4|) (-650 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2536 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
-(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2492 ((-137 |#1| |#2| |#4|) (-650 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2536 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-570) (-777) (-174) (-174)) (T -136))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570)) (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570)) (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2492 ((-137 |#1| |#2| |#4|) (-650 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2536 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
-((-2847 (((-112) $ $) NIL)) (-1810 (($ (-650 |#3|)) 61)) (-3412 (($ $) 123) (($ $ (-570) (-570)) 122)) (-2333 (($) 20)) (-2435 (((-3 |#3| "failed") $) 83)) (-4387 ((|#3| $) NIL)) (-2844 (($ $ (-650 (-570))) 124)) (-2475 (((-650 |#3|) $) 56)) (-4412 (((-777) $) 66)) (-2584 (($ $ $) 117)) (-1848 (($) 65)) (-3240 (((-1168) $) NIL)) (-3093 (($) 19)) (-3891 (((-1129) $) NIL)) (-2057 ((|#3| $ (-570)) 69) ((|#3| $) 68) ((|#3| $ (-570) (-570)) 70) ((|#3| $ (-570) (-570) (-570)) 71) ((|#3| $ (-570) (-570) (-570) (-570)) 72) ((|#3| $ (-650 (-570))) 73)) (-2650 (((-777) $) 67)) (-3186 (($ $ (-570) $ (-570)) 118) (($ $ (-570) (-570)) 120)) (-2869 (((-868) $) 91) (($ |#3|) 92) (($ (-242 |#2| |#3|)) 99) (($ (-1151 |#2| |#3|)) 102) (($ (-650 |#3|)) 74) (($ (-650 $)) 80)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 93 T CONST)) (-1998 (($) 94 T CONST)) (-3892 (((-112) $ $) 104)) (-4003 (($ $) 110) (($ $ $) 108)) (-3992 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-570)) 113) (($ (-570) $) 112) (($ $ $) 119)))
-(((-137 |#1| |#2| |#3|) (-13 (-471 |#3| (-777)) (-476 (-570) (-777)) (-290 (-570) |#3|) (-10 -8 (-15 -2869 ($ (-242 |#2| |#3|))) (-15 -2869 ($ (-1151 |#2| |#3|))) (-15 -2869 ($ (-650 |#3|))) (-15 -2869 ($ (-650 $))) (-15 -4412 ((-777) $)) (-15 -2057 (|#3| $)) (-15 -2057 (|#3| $ (-570) (-570))) (-15 -2057 (|#3| $ (-570) (-570) (-570))) (-15 -2057 (|#3| $ (-570) (-570) (-570) (-570))) (-15 -2057 (|#3| $ (-650 (-570)))) (-15 -2584 ($ $ $)) (-15 * ($ $ $)) (-15 -3186 ($ $ (-570) $ (-570))) (-15 -3186 ($ $ (-570) (-570))) (-15 -3412 ($ $)) (-15 -3412 ($ $ (-570) (-570))) (-15 -2844 ($ $ (-650 (-570)))) (-15 -3093 ($)) (-15 -1848 ($)) (-15 -2475 ((-650 |#3|) $)) (-15 -1810 ($ (-650 |#3|))) (-15 -2333 ($)))) (-570) (-777) (-174)) (T -137))
-((-2584 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-242 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1151 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 *2) (-4 *5 (-174)))) (-2057 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-570)) (-14 *4 (-777)))) (-2057 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-777)))) (-2057 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-777)))) (-2057 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-777)))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 (-650 (-570))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-570)) (-14 *5 (-777)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-3186 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-777)) (-4 *5 (-174)))) (-3186 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-777)) (-4 *5 (-174)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-3412 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-777)) (-4 *5 (-174)))) (-2844 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174)))) (-3093 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-1848 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-650 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)))) (-2333 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))))
-(-13 (-471 |#3| (-777)) (-476 (-570) (-777)) (-290 (-570) |#3|) (-10 -8 (-15 -2869 ($ (-242 |#2| |#3|))) (-15 -2869 ($ (-1151 |#2| |#3|))) (-15 -2869 ($ (-650 |#3|))) (-15 -2869 ($ (-650 $))) (-15 -4412 ((-777) $)) (-15 -2057 (|#3| $)) (-15 -2057 (|#3| $ (-570) (-570))) (-15 -2057 (|#3| $ (-570) (-570) (-570))) (-15 -2057 (|#3| $ (-570) (-570) (-570) (-570))) (-15 -2057 (|#3| $ (-650 (-570)))) (-15 -2584 ($ $ $)) (-15 * ($ $ $)) (-15 -3186 ($ $ (-570) $ (-570))) (-15 -3186 ($ $ (-570) (-570))) (-15 -3412 ($ $)) (-15 -3412 ($ $ (-570) (-570))) (-15 -2844 ($ $ (-650 (-570)))) (-15 -3093 ($)) (-15 -1848 ($)) (-15 -2475 ((-650 |#3|) $)) (-15 -1810 ($ (-650 |#3|))) (-15 -2333 ($))))
-((-2847 (((-112) $ $) NIL)) (-3871 (((-1144) $) 11)) (-3859 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-138) (-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))) (T -138))
-((-3859 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138)))))
-(-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-1551 (((-188) $) 10)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-650 (-1144)) $) 13)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-139) (-13 (-1092) (-10 -8 (-15 -1551 ((-188) $)) (-15 -1781 ((-650 (-1144)) $))))) (T -139))
-((-1551 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-139)))))
-(-13 (-1092) (-10 -8 (-15 -1551 ((-188) $)) (-15 -1781 ((-650 (-1144)) $))))
-((-2847 (((-112) $ $) NIL)) (-3008 (((-650 (-871)) $) NIL)) (-1770 (((-512) $) NIL)) (-3240 (((-1168) $) NIL)) (-1551 (((-188) $) NIL)) (-3917 (((-112) $ (-512)) NIL)) (-3891 (((-1129) $) NIL)) (-1435 (((-650 (-112)) $) NIL)) (-2869 (((-868) $) NIL) (((-189) $) 6)) (-1344 (((-112) $ $) NIL)) (-4196 (((-55) $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-140) (-13 (-187) (-619 (-189)))) (T -140))
-NIL
-(-13 (-187) (-619 (-189)))
-((-2652 (((-650 (-185 (-140))) $) 13)) (-3998 (((-650 (-185 (-140))) $) 14)) (-1369 (((-650 (-844)) $) 10)) (-3727 (((-140) $) 7)) (-2869 (((-868) $) 16)))
-(((-141) (-13 (-619 (-868)) (-10 -8 (-15 -3727 ((-140) $)) (-15 -1369 ((-650 (-844)) $)) (-15 -2652 ((-650 (-185 (-140))) $)) (-15 -3998 ((-650 (-185 (-140))) $))))) (T -141))
-((-3727 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-650 (-844))) (-5 *1 (-141)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -3727 ((-140) $)) (-15 -1369 ((-650 (-844)) $)) (-15 -2652 ((-650 (-185 (-140))) $)) (-15 -3998 ((-650 (-185 (-140))) $))))
-((-2847 (((-112) $ $) NIL)) (-3532 (($) 17 T CONST)) (-3965 (($) NIL (|has| (-145) (-373)))) (-1637 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-1832 (($ $ $) NIL)) (-3198 (((-112) $ $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| (-145) (-373)))) (-1322 (($) NIL) (($ (-650 (-145))) NIL)) (-3350 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-3614 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452))) (($ (-145) $) 60 (|has| $ (-6 -4452)))) (-3617 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2295 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4452))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4452))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2066 (($) NIL (|has| (-145) (-373)))) (-3976 (((-650 (-145)) $) 69 (|has| $ (-6 -4452)))) (-2994 (((-112) $ $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-1908 (((-145) $) NIL (|has| (-145) (-856)))) (-3069 (((-650 (-145)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-1764 (((-145) $) NIL (|has| (-145) (-856)))) (-2833 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-145) (-145)) $) 64)) (-2276 (($) 18 T CONST)) (-1997 (((-928) $) NIL (|has| (-145) (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3502 (($ $ $) 30)) (-3398 (((-145) $) 61)) (-2801 (($ (-145) $) 59)) (-4298 (($ (-928)) NIL (|has| (-145) (-373)))) (-3518 (($) 16 T CONST)) (-3891 (((-1129) $) NIL)) (-2115 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4126 (((-145) $) 62)) (-2231 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-145)) (-650 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-298 (-145)))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 57)) (-1399 (($) 15 T CONST)) (-1565 (($ $ $) 32) (($ $ (-145)) NIL)) (-2910 (($ (-650 (-145))) NIL) (($) NIL)) (-3901 (((-777) (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109)))) (((-777) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-1168) $) 37) (((-542) $) NIL (|has| (-145) (-620 (-542)))) (((-650 (-145)) $) 35)) (-2881 (($ (-650 (-145))) NIL)) (-2137 (($ $) 33 (|has| (-145) (-373)))) (-2869 (((-868) $) 53)) (-1630 (($ (-1168)) 14) (($ (-650 (-145))) 50)) (-2293 (((-777) $) NIL)) (-2542 (($) 58) (($ (-650 (-145))) NIL)) (-1344 (((-112) $ $) NIL)) (-4132 (($ (-650 (-145))) NIL)) (-2061 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-1370 (($) 21 T CONST)) (-3349 (($) 20 T CONST)) (-3892 (((-112) $ $) 24)) (-2857 (((-777) $) 56 (|has| $ (-6 -4452)))))
-(((-142) (-13 (-1109) (-620 (-1168)) (-431 (-145)) (-620 (-650 (-145))) (-10 -8 (-15 -1630 ($ (-1168))) (-15 -1630 ($ (-650 (-145)))) (-15 -1399 ($) -3722) (-15 -3518 ($) -3722) (-15 -3532 ($) -3722) (-15 -2276 ($) -3722) (-15 -3349 ($) -3722) (-15 -1370 ($) -3722)))) (T -142))
-((-1630 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-142)))) (-1630 (*1 *1 *2) (-12 (-5 *2 (-650 (-145))) (-5 *1 (-142)))) (-1399 (*1 *1) (-5 *1 (-142))) (-3518 (*1 *1) (-5 *1 (-142))) (-3532 (*1 *1) (-5 *1 (-142))) (-2276 (*1 *1) (-5 *1 (-142))) (-3349 (*1 *1) (-5 *1 (-142))) (-1370 (*1 *1) (-5 *1 (-142))))
-(-13 (-1109) (-620 (-1168)) (-431 (-145)) (-620 (-650 (-145))) (-10 -8 (-15 -1630 ($ (-1168))) (-15 -1630 ($ (-650 (-145)))) (-15 -1399 ($) -3722) (-15 -3518 ($) -3722) (-15 -3532 ($) -3722) (-15 -2276 ($) -3722) (-15 -3349 ($) -3722) (-15 -1370 ($) -3722)))
-((-3184 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2223 ((|#1| |#3|) 9)) (-3462 ((|#3| |#3|) 15)))
-(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -2223 (|#1| |#3|)) (-15 -3462 (|#3| |#3|)) (-15 -3184 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-562) (-1001 |#1|) (-378 |#2|)) (T -143))
-((-3184 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-378 *5)))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-378 *4)))) (-2223 (*1 *2 *3) (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-378 *4)))))
-(-10 -7 (-15 -2223 (|#1| |#3|)) (-15 -3462 (|#3| |#3|)) (-15 -3184 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2614 (($ $ $) 8)) (-3459 (($ $) 7)) (-1500 (($ $ $) 6)))
+((-3239 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-779)))) (-2639 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-779)) (-5 *2 (-1284)))))
+(-13 (-1111) (-10 -8 (-15 -3239 ((-779) $)) (-15 -2639 ((-1284) $ (-779)))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-652 (-1146)) $) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-134) (-13 (-1094) (-10 -8 (-15 -2414 ((-652 (-1146)) $))))) (T -134))
+((-2414 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-134)))))
+(-13 (-1094) (-10 -8 (-15 -2414 ((-652 (-1146)) $))))
+((-3464 (((-112) $ $) 49)) (-3143 (((-112) $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-779) "failed") $) 58)) (-1869 (((-779) $) 56)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) 37)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2214 (((-112)) 59)) (-3561 (((-112) (-112)) 61)) (-3490 (((-112) $) 30)) (-2921 (((-112) $) 55)) (-3491 (((-870) $) 28) (($ (-779)) 20)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 18 T CONST)) (-2619 (($) 19 T CONST)) (-3527 (($ (-779)) 21)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) 40)) (-3921 (((-112) $ $) 32)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 35)) (-4018 (((-3 $ "failed") $ $) 42)) (-4005 (($ $ $) 38)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL) (($ $ $) 54)) (* (($ (-779) $) 48) (($ (-930) $) NIL) (($ $ $) 45)))
+(((-135) (-13 (-858) (-23) (-734) (-1049 (-779)) (-10 -8 (-6 (-4456 "*")) (-15 -4018 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3527 ($ (-779))) (-15 -3490 ((-112) $)) (-15 -2921 ((-112) $)) (-15 -2214 ((-112))) (-15 -3561 ((-112) (-112)))))) (T -135))
+((-4018 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-135)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2214 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(-13 (-858) (-23) (-734) (-1049 (-779)) (-10 -8 (-6 (-4456 "*")) (-15 -4018 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3527 ($ (-779))) (-15 -3490 ((-112) $)) (-15 -2921 ((-112) $)) (-15 -2214 ((-112))) (-15 -3561 ((-112) (-112)))))
+((-3122 (((-137 |#1| |#2| |#4|) (-652 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-3161 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
+(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3122 ((-137 |#1| |#2| |#4|) (-652 |#4|) (-137 |#1| |#2| |#3|))) (-15 -3161 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-572) (-779) (-174) (-174)) (T -136))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572)) (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572)) (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3122 ((-137 |#1| |#2| |#4|) (-652 |#4|) (-137 |#1| |#2| |#3|))) (-15 -3161 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
+((-3464 (((-112) $ $) NIL)) (-3174 (($ (-652 |#3|)) 61)) (-1652 (($ $) 123) (($ $ (-572) (-572)) 122)) (-1586 (($) 20)) (-3072 (((-3 |#3| "failed") $) 83)) (-1869 ((|#3| $) NIL)) (-2835 (($ $ (-652 (-572))) 124)) (-3111 (((-652 |#3|) $) 56)) (-1526 (((-779) $) 66)) (-2047 (($ $ $) 117)) (-3556 (($) 65)) (-3618 (((-1170) $) NIL)) (-1387 (($) 19)) (-2614 (((-1131) $) NIL)) (-2679 ((|#3| $ (-572)) 69) ((|#3| $) 68) ((|#3| $ (-572) (-572)) 70) ((|#3| $ (-572) (-572) (-572)) 71) ((|#3| $ (-572) (-572) (-572) (-572)) 72) ((|#3| $ (-652 (-572))) 73)) (-1497 (((-779) $) 67)) (-4288 (($ $ (-572) $ (-572)) 118) (($ $ (-572) (-572)) 120)) (-3491 (((-870) $) 91) (($ |#3|) 92) (($ (-244 |#2| |#3|)) 99) (($ (-1153 |#2| |#3|)) 102) (($ (-652 |#3|)) 74) (($ (-652 $)) 80)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 93 T CONST)) (-2619 (($) 94 T CONST)) (-3921 (((-112) $ $) 104)) (-4018 (($ $) 110) (($ $ $) 108)) (-4005 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-572)) 113) (($ (-572) $) 112) (($ $ $) 119)))
+(((-137 |#1| |#2| |#3|) (-13 (-473 |#3| (-779)) (-478 (-572) (-779)) (-292 (-572) |#3|) (-10 -8 (-15 -3491 ($ (-244 |#2| |#3|))) (-15 -3491 ($ (-1153 |#2| |#3|))) (-15 -3491 ($ (-652 |#3|))) (-15 -3491 ($ (-652 $))) (-15 -1526 ((-779) $)) (-15 -2679 (|#3| $)) (-15 -2679 (|#3| $ (-572) (-572))) (-15 -2679 (|#3| $ (-572) (-572) (-572))) (-15 -2679 (|#3| $ (-572) (-572) (-572) (-572))) (-15 -2679 (|#3| $ (-652 (-572)))) (-15 -2047 ($ $ $)) (-15 * ($ $ $)) (-15 -4288 ($ $ (-572) $ (-572))) (-15 -4288 ($ $ (-572) (-572))) (-15 -1652 ($ $)) (-15 -1652 ($ $ (-572) (-572))) (-15 -2835 ($ $ (-652 (-572)))) (-15 -1387 ($)) (-15 -3556 ($)) (-15 -3111 ((-652 |#3|) $)) (-15 -3174 ($ (-652 |#3|))) (-15 -1586 ($)))) (-572) (-779) (-174)) (T -137))
+((-2047 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-244 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1153 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 *2) (-4 *5 (-174)))) (-2679 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-572)) (-14 *4 (-779)))) (-2679 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-779)))) (-2679 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-779)))) (-2679 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-779)))) (-2679 (*1 *2 *1 *3) (-12 (-5 *3 (-652 (-572))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-572)) (-14 *5 (-779)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-4288 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-779)) (-4 *5 (-174)))) (-4288 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-779)) (-4 *5 (-174)))) (-1652 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-1652 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-779)) (-4 *5 (-174)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174)))) (-1387 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-3556 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-652 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174)))) (-3174 (*1 *1 *2) (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572)) (-14 *4 (-779)))) (-1586 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779)) (-4 *4 (-174)))))
+(-13 (-473 |#3| (-779)) (-478 (-572) (-779)) (-292 (-572) |#3|) (-10 -8 (-15 -3491 ($ (-244 |#2| |#3|))) (-15 -3491 ($ (-1153 |#2| |#3|))) (-15 -3491 ($ (-652 |#3|))) (-15 -3491 ($ (-652 $))) (-15 -1526 ((-779) $)) (-15 -2679 (|#3| $)) (-15 -2679 (|#3| $ (-572) (-572))) (-15 -2679 (|#3| $ (-572) (-572) (-572))) (-15 -2679 (|#3| $ (-572) (-572) (-572) (-572))) (-15 -2679 (|#3| $ (-652 (-572)))) (-15 -2047 ($ $ $)) (-15 * ($ $ $)) (-15 -4288 ($ $ (-572) $ (-572))) (-15 -4288 ($ $ (-572) (-572))) (-15 -1652 ($ $)) (-15 -1652 ($ $ (-572) (-572))) (-15 -2835 ($ $ (-652 (-572)))) (-15 -1387 ($)) (-15 -3556 ($)) (-15 -3111 ((-652 |#3|) $)) (-15 -3174 ($ (-652 |#3|))) (-15 -1586 ($))))
+((-3464 (((-112) $ $) NIL)) (-1336 (((-1146) $) 11)) (-1325 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-138) (-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))) (T -138))
+((-1325 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138)))))
+(-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2734 (((-188) $) 10)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-652 (-1146)) $) 13)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-139) (-13 (-1094) (-10 -8 (-15 -2734 ((-188) $)) (-15 -2414 ((-652 (-1146)) $))))) (T -139))
+((-2734 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-139)))))
+(-13 (-1094) (-10 -8 (-15 -2734 ((-188) $)) (-15 -2414 ((-652 (-1146)) $))))
+((-3464 (((-112) $ $) NIL)) (-3627 (((-652 (-873)) $) NIL)) (-2402 (((-514) $) NIL)) (-3618 (((-1170) $) NIL)) (-2734 (((-188) $) NIL)) (-2685 (((-112) $ (-514)) NIL)) (-2614 (((-1131) $) NIL)) (-1430 (((-652 (-112)) $) NIL)) (-3491 (((-870) $) NIL) (((-189) $) 6)) (-3424 (((-112) $ $) NIL)) (-3586 (((-55) $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-140) (-13 (-187) (-621 (-189)))) (T -140))
+NIL
+(-13 (-187) (-621 (-189)))
+((-1507 (((-652 (-185 (-140))) $) 13)) (-4227 (((-652 (-185 (-140))) $) 14)) (-4425 (((-652 (-846)) $) 10)) (-4343 (((-140) $) 7)) (-3491 (((-870) $) 16)))
+(((-141) (-13 (-621 (-870)) (-10 -8 (-15 -4343 ((-140) $)) (-15 -4425 ((-652 (-846)) $)) (-15 -1507 ((-652 (-185 (-140))) $)) (-15 -4227 ((-652 (-185 (-140))) $))))) (T -141))
+((-4343 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-4425 (*1 *2 *1) (-12 (-5 *2 (-652 (-846))) (-5 *1 (-141)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -4343 ((-140) $)) (-15 -4425 ((-652 (-846)) $)) (-15 -1507 ((-652 (-185 (-140))) $)) (-15 -4227 ((-652 (-185 (-140))) $))))
+((-3464 (((-112) $ $) NIL)) (-3480 (($) 17 T CONST)) (-3054 (($) NIL (|has| (-145) (-375)))) (-2266 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3395 (($ $ $) NIL)) (-3219 (((-112) $ $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| (-145) (-375)))) (-1926 (($) NIL) (($ (-652 (-145))) NIL)) (-2265 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-3033 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (($ (-145) $) 60 (|has| $ (-6 -4454)))) (-4243 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2925 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2688 (($) NIL (|has| (-145) (-375)))) (-1442 (((-652 (-145)) $) 69 (|has| $ (-6 -4454)))) (-2942 (((-112) $ $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-2536 (((-145) $) NIL (|has| (-145) (-858)))) (-2396 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-3928 (((-145) $) NIL (|has| (-145) (-858)))) (-3049 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-145) (-145)) $) 64)) (-2288 (($) 18 T CONST)) (-4370 (((-930) $) NIL (|has| (-145) (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-3225 (($ $ $) 30)) (-1533 (((-145) $) 61)) (-3704 (($ (-145) $) 59)) (-1795 (($ (-930)) NIL (|has| (-145) (-375)))) (-3343 (($) 16 T CONST)) (-2614 (((-1131) $) NIL)) (-3124 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4105 (((-145) $) 62)) (-3089 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-145)) (-652 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-300 (-145)))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 57)) (-4174 (($) 15 T CONST)) (-2645 (($ $ $) 32) (($ $ (-145)) NIL)) (-2145 (($ (-652 (-145))) NIL) (($) NIL)) (-1371 (((-779) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (((-779) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-1170) $) 37) (((-544) $) NIL (|has| (-145) (-622 (-544)))) (((-652 (-145)) $) 35)) (-3503 (($ (-652 (-145))) NIL)) (-3347 (($ $) 33 (|has| (-145) (-375)))) (-3491 (((-870) $) 53)) (-1921 (($ (-1170)) 14) (($ (-652 (-145))) 50)) (-2443 (((-779) $) NIL)) (-3826 (($) 58) (($ (-652 (-145))) NIL)) (-3424 (((-112) $ $) NIL)) (-4163 (($ (-652 (-145))) NIL)) (-3776 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-4434 (($) 21 T CONST)) (-2253 (($) 20 T CONST)) (-3921 (((-112) $ $) 24)) (-3475 (((-779) $) 56 (|has| $ (-6 -4454)))))
+(((-142) (-13 (-1111) (-622 (-1170)) (-433 (-145)) (-622 (-652 (-145))) (-10 -8 (-15 -1921 ($ (-1170))) (-15 -1921 ($ (-652 (-145)))) (-15 -4174 ($) -4338) (-15 -3343 ($) -4338) (-15 -3480 ($) -4338) (-15 -2288 ($) -4338) (-15 -2253 ($) -4338) (-15 -4434 ($) -4338)))) (T -142))
+((-1921 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-142)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-652 (-145))) (-5 *1 (-142)))) (-4174 (*1 *1) (-5 *1 (-142))) (-3343 (*1 *1) (-5 *1 (-142))) (-3480 (*1 *1) (-5 *1 (-142))) (-2288 (*1 *1) (-5 *1 (-142))) (-2253 (*1 *1) (-5 *1 (-142))) (-4434 (*1 *1) (-5 *1 (-142))))
+(-13 (-1111) (-622 (-1170)) (-433 (-145)) (-622 (-652 (-145))) (-10 -8 (-15 -1921 ($ (-1170))) (-15 -1921 ($ (-652 (-145)))) (-15 -4174 ($) -4338) (-15 -3343 ($) -4338) (-15 -3480 ($) -4338) (-15 -2288 ($) -4338) (-15 -2253 ($) -4338) (-15 -4434 ($) -4338)))
+((-4270 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3015 ((|#1| |#3|) 9)) (-4037 ((|#3| |#3|) 15)))
+(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3015 (|#1| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4270 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-564) (-1003 |#1|) (-380 |#2|)) (T -143))
+((-4270 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-380 *5)))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-380 *4)))) (-3015 (*1 *2 *3) (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-380 *4)))))
+(-10 -7 (-15 -3015 (|#1| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4270 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2362 (($ $ $) 8)) (-4002 (($ $) 7)) (-3337 (($ $ $) 6)))
(((-144) (-141)) (T -144))
-((-2614 (*1 *1 *1 *1) (-4 *1 (-144))) (-3459 (*1 *1 *1) (-4 *1 (-144))) (-1500 (*1 *1 *1 *1) (-4 *1 (-144))))
-(-13 (-10 -8 (-15 -1500 ($ $ $)) (-15 -3459 ($ $)) (-15 -2614 ($ $ $))))
-((-2847 (((-112) $ $) NIL)) (-4029 (((-112) $) 39)) (-3532 (($ $) 55)) (-3219 (($) 26 T CONST)) (-2401 (((-777)) 13)) (-2066 (($) 25)) (-3843 (($) 27 T CONST)) (-4050 (((-777) $) 21)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-3886 (((-112) $) 41)) (-2276 (($ $) 56)) (-1997 (((-928) $) 23)) (-3240 (((-1168) $) 49)) (-4298 (($ (-928)) 20)) (-2964 (((-112) $) 37)) (-3891 (((-1129) $) NIL)) (-3072 (($) 28 T CONST)) (-1975 (((-112) $) 35)) (-2869 (((-868) $) 30)) (-1463 (($ (-777)) 19) (($ (-1168)) 54)) (-1344 (((-112) $ $) NIL)) (-1937 (((-112) $) 45)) (-3624 (((-112) $) 43)) (-3959 (((-112) $ $) 11)) (-3933 (((-112) $ $) 9)) (-3892 (((-112) $ $) 7)) (-3945 (((-112) $ $) 10)) (-3918 (((-112) $ $) 8)))
-(((-145) (-13 (-850) (-10 -8 (-15 -4050 ((-777) $)) (-15 -1463 ($ (-777))) (-15 -1463 ($ (-1168))) (-15 -3219 ($) -3722) (-15 -3843 ($) -3722) (-15 -3072 ($) -3722) (-15 -3532 ($ $)) (-15 -2276 ($ $)) (-15 -1975 ((-112) $)) (-15 -2964 ((-112) $)) (-15 -3624 ((-112) $)) (-15 -4029 ((-112) $)) (-15 -3886 ((-112) $)) (-15 -1937 ((-112) $))))) (T -145))
-((-4050 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-145)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-145)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-145)))) (-3219 (*1 *1) (-5 *1 (-145))) (-3843 (*1 *1) (-5 *1 (-145))) (-3072 (*1 *1) (-5 *1 (-145))) (-3532 (*1 *1 *1) (-5 *1 (-145))) (-2276 (*1 *1 *1) (-5 *1 (-145))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(-13 (-850) (-10 -8 (-15 -4050 ((-777) $)) (-15 -1463 ($ (-777))) (-15 -1463 ($ (-1168))) (-15 -3219 ($) -3722) (-15 -3843 ($) -3722) (-15 -3072 ($) -3722) (-15 -3532 ($ $)) (-15 -2276 ($ $)) (-15 -1975 ((-112) $)) (-15 -2964 ((-112) $)) (-15 -3624 ((-112) $)) (-15 -4029 ((-112) $)) (-15 -3886 ((-112) $)) (-15 -1937 ((-112) $))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-1660 (((-3 $ "failed") $) 39)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
+((-2362 (*1 *1 *1 *1) (-4 *1 (-144))) (-4002 (*1 *1 *1) (-4 *1 (-144))) (-3337 (*1 *1 *1 *1) (-4 *1 (-144))))
+(-13 (-10 -8 (-15 -3337 ($ $ $)) (-15 -4002 ($ $)) (-15 -2362 ($ $ $))))
+((-3464 (((-112) $ $) NIL)) (-2417 (((-112) $) 39)) (-3480 (($ $) 55)) (-3414 (($) 26 T CONST)) (-3037 (((-779)) 13)) (-2688 (($) 25)) (-3373 (($) 27 T CONST)) (-1369 (((-779) $) 21)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-3731 (((-112) $) 41)) (-2288 (($ $) 56)) (-4370 (((-930) $) 23)) (-3618 (((-1170) $) 49)) (-1795 (($ (-930)) 20)) (-2627 (((-112) $) 37)) (-2614 (((-1131) $) NIL)) (-2419 (($) 28 T CONST)) (-2292 (((-112) $) 35)) (-3491 (((-870) $) 30)) (-2076 (($ (-779)) 19) (($ (-1170)) 54)) (-3424 (((-112) $ $) NIL)) (-1916 (((-112) $) 45)) (-3142 (((-112) $) 43)) (-3976 (((-112) $ $) 11)) (-3954 (((-112) $ $) 9)) (-3921 (((-112) $ $) 7)) (-3965 (((-112) $ $) 10)) (-3943 (((-112) $ $) 8)))
+(((-145) (-13 (-852) (-10 -8 (-15 -1369 ((-779) $)) (-15 -2076 ($ (-779))) (-15 -2076 ($ (-1170))) (-15 -3414 ($) -4338) (-15 -3373 ($) -4338) (-15 -2419 ($) -4338) (-15 -3480 ($ $)) (-15 -2288 ($ $)) (-15 -2292 ((-112) $)) (-15 -2627 ((-112) $)) (-15 -3142 ((-112) $)) (-15 -2417 ((-112) $)) (-15 -3731 ((-112) $)) (-15 -1916 ((-112) $))))) (T -145))
+((-1369 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-145)))) (-2076 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-145)))) (-2076 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-145)))) (-3414 (*1 *1) (-5 *1 (-145))) (-3373 (*1 *1) (-5 *1 (-145))) (-2419 (*1 *1) (-5 *1 (-145))) (-3480 (*1 *1 *1) (-5 *1 (-145))) (-2288 (*1 *1 *1) (-5 *1 (-145))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(-13 (-852) (-10 -8 (-15 -1369 ((-779) $)) (-15 -2076 ($ (-779))) (-15 -2076 ($ (-1170))) (-15 -3414 ($) -4338) (-15 -3373 ($) -4338) (-15 -2419 ($) -4338) (-15 -3480 ($ $)) (-15 -2288 ($ $)) (-15 -2292 ((-112) $)) (-15 -2627 ((-112) $)) (-15 -3142 ((-112) $)) (-15 -2417 ((-112) $)) (-15 -3731 ((-112) $)) (-15 -1916 ((-112) $))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2210 (((-3 $ "failed") $) 39)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
(((-146) (-141)) (T -146))
-((-1660 (*1 *1 *1) (|partial| -4 *1 (-146))))
-(-13 (-1058) (-10 -8 (-15 -1660 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-1816 ((|#1| (-695 |#1|) |#1|) 19)))
-(((-147 |#1|) (-10 -7 (-15 -1816 (|#1| (-695 |#1|) |#1|))) (-174)) (T -147))
-((-1816 (*1 *2 *3 *2) (-12 (-5 *3 (-695 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
-(-10 -7 (-15 -1816 (|#1| (-695 |#1|) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
+((-2210 (*1 *1 *1) (|partial| -4 *1 (-146))))
+(-13 (-1060) (-10 -8 (-15 -2210 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3245 ((|#1| (-697 |#1|) |#1|) 19)))
+(((-147 |#1|) (-10 -7 (-15 -3245 (|#1| (-697 |#1|) |#1|))) (-174)) (T -147))
+((-3245 (*1 *2 *3 *2) (-12 (-5 *3 (-697 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
+(-10 -7 (-15 -3245 (|#1| (-697 |#1|) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
(((-148) (-141)) (T -148))
NIL
-(-13 (-1058))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-4350 (((-2 (|:| -2940 (-777)) (|:| -1747 (-413 |#2|)) (|:| |radicand| |#2|)) (-413 |#2|) (-777)) 76)) (-1404 (((-3 (-2 (|:| |radicand| (-413 |#2|)) (|:| |deg| (-777))) "failed") |#3|) 56)) (-4007 (((-2 (|:| -1747 (-413 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3214 ((|#1| |#3| |#3|) 44)) (-3034 ((|#3| |#3| (-413 |#2|) (-413 |#2|)) 20)) (-3264 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| |deg| (-777))) |#3| |#3|) 53)))
-(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -4007 ((-2 (|:| -1747 (-413 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1404 ((-3 (-2 (|:| |radicand| (-413 |#2|)) (|:| |deg| (-777))) "failed") |#3|)) (-15 -4350 ((-2 (|:| -2940 (-777)) (|:| -1747 (-413 |#2|)) (|:| |radicand| |#2|)) (-413 |#2|) (-777))) (-15 -3214 (|#1| |#3| |#3|)) (-15 -3034 (|#3| |#3| (-413 |#2|) (-413 |#2|))) (-15 -3264 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| |deg| (-777))) |#3| |#3|))) (-1231) (-1253 |#1|) (-1253 (-413 |#2|))) (T -149))
-((-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-413 *5)) (|:| |c2| (-413 *5)) (|:| |deg| (-777)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1253 (-413 *5))))) (-3034 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-413 *5)) (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1253 *3)))) (-3214 (*1 *2 *3 *3) (-12 (-4 *4 (-1253 *2)) (-4 *2 (-1231)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1253 (-413 *4))))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *6)) (-4 *5 (-1231)) (-4 *6 (-1253 *5)) (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-777)) (-4 *7 (-1253 *3)))) (-1404 (*1 *2 *3) (|partial| -12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| |radicand| (-413 *5)) (|:| |deg| (-777)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1253 (-413 *5))))) (-4007 (*1 *2 *3) (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| -1747 (-413 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1253 (-413 *5))))))
-(-10 -7 (-15 -4007 ((-2 (|:| -1747 (-413 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1404 ((-3 (-2 (|:| |radicand| (-413 |#2|)) (|:| |deg| (-777))) "failed") |#3|)) (-15 -4350 ((-2 (|:| -2940 (-777)) (|:| -1747 (-413 |#2|)) (|:| |radicand| |#2|)) (-413 |#2|) (-777))) (-15 -3214 (|#1| |#3| |#3|)) (-15 -3034 (|#3| |#3| (-413 |#2|) (-413 |#2|))) (-15 -3264 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| |deg| (-777))) |#3| |#3|)))
-((-3208 (((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|)) 35)))
-(((-150 |#1| |#2|) (-10 -7 (-15 -3208 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|)))) (-551) (-167 |#1|)) (T -150))
-((-3208 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5)) (-4 *5 (-167 *4)) (-4 *4 (-551)) (-5 *1 (-150 *4 *5)))))
-(-10 -7 (-15 -3208 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|))))
-((-3960 (($ (-1 (-112) |#2|) $) 37)) (-3153 (($ $) 44)) (-3617 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2295 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2115 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-2231 (((-112) (-1 (-112) |#2|) $) 24)) (-3901 (((-777) (-1 (-112) |#2|) $) 18) (((-777) |#2| $) NIL)) (-2061 (((-112) (-1 (-112) |#2|) $) 21)) (-2857 (((-777) $) 12)))
-(((-151 |#1| |#2|) (-10 -8 (-15 -3153 (|#1| |#1|)) (-15 -3617 (|#1| |#2| |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3960 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3617 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2115 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2857 ((-777) |#1|))) (-152 |#2|) (-1227)) (T -151))
-NIL
-(-10 -8 (-15 -3153 (|#1| |#1|)) (-15 -3617 (|#1| |#2| |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3960 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3617 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2115 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2857 ((-777) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-3960 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-3153 (($ $) 42 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4452))) (($ |#1| $) 43 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 41 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 50)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-152 |#1|) (-141) (-1227)) (T -152))
-((-2881 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-4 *1 (-152 *3)))) (-2115 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1227)))) (-2295 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *2)) (-4 *2 (-1227)))) (-2295 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *2)) (-4 *2 (-1227)))) (-3617 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *3)) (-4 *3 (-1227)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *3)) (-4 *3 (-1227)))) (-2295 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *2)) (-4 *2 (-1227)))) (-3617 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-152 *2)) (-4 *2 (-1227)) (-4 *2 (-1109)))) (-3153 (*1 *1 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-152 *2)) (-4 *2 (-1227)) (-4 *2 (-1109)))))
-(-13 (-495 |t#1|) (-10 -8 (-15 -2881 ($ (-650 |t#1|))) (-15 -2115 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4452)) (PROGN (-15 -2295 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2295 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3617 ($ (-1 (-112) |t#1|) $)) (-15 -3960 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -2295 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3617 ($ |t#1| $)) (-15 -3153 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) 111)) (-2005 (((-112) $) NIL)) (-2402 (($ |#2| (-650 (-928))) 71)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2512 (($ (-928)) 57)) (-4388 (((-135)) 23)) (-2869 (((-868) $) 86) (($ (-570)) 53) (($ |#2|) 54)) (-3481 ((|#2| $ (-650 (-928))) 74)) (-2294 (((-777)) 20 T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 47 T CONST)) (-1998 (($) 51 T CONST)) (-3892 (((-112) $ $) 33)) (-4013 (($ $ |#2|) NIL)) (-4003 (($ $) 42) (($ $ $) 40)) (-3992 (($ $ $) 38)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
-(((-153 |#1| |#2| |#3|) (-13 (-1058) (-38 |#2|) (-1284 |#2|) (-10 -8 (-15 -2512 ($ (-928))) (-15 -2402 ($ |#2| (-650 (-928)))) (-15 -3481 (|#2| $ (-650 (-928)))) (-15 -3957 ((-3 $ "failed") $)))) (-928) (-368) (-1002 |#1| |#2|)) (T -153))
-((-3957 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-928)) (-4 *3 (-368)) (-14 *4 (-1002 *2 *3)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-368)) (-14 *5 (-1002 *3 *4)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-928)) (-4 *2 (-368)) (-14 *5 (-1002 *4 *2)))) (-3481 (*1 *2 *1 *3) (-12 (-5 *3 (-650 (-928))) (-4 *2 (-368)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-928)) (-14 *5 (-1002 *4 *2)))))
-(-13 (-1058) (-38 |#2|) (-1284 |#2|) (-10 -8 (-15 -2512 ($ (-928))) (-15 -2402 ($ |#2| (-650 (-928)))) (-15 -3481 (|#2| $ (-650 (-928)))) (-15 -3957 ((-3 $ "failed") $))))
-((-1317 (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-3954 (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570))) 95) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934)) 96)) (-2488 (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227))))) 99) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-950 (-227)))) 98) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570))) 90) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934)) 91)))
-(((-154) (-10 -7 (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -3954 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -3954 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -1317 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-950 (-227))))) (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))))))) (T -154))
-((-2488 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 (-227))))))) (-2488 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)) (-5 *3 (-650 (-950 (-227)))))) (-1317 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 *4)))) (|:| |xValues| (-1103 *4)) (|:| |yValues| (-1103 *4)))) (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 *4)))))) (-3954 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570))) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)))) (-2488 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570))) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)))))
-(-10 -7 (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -3954 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -3954 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -1317 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-950 (-227))))) (-15 -2488 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-1444 (((-650 (-1144)) $) 20)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 27) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-1144) $) 9)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-155) (-13 (-1092) (-10 -8 (-15 -1444 ((-650 (-1144)) $)) (-15 -1781 ((-1144) $))))) (T -155))
-((-1444 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-155)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-155)))))
-(-13 (-1092) (-10 -8 (-15 -1444 ((-650 (-1144)) $)) (-15 -1781 ((-1144) $))))
-((-3794 (((-650 (-171 |#2|)) |#1| |#2|) 50)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -3794 ((-650 (-171 |#2|)) |#1| |#2|))) (-1253 (-171 (-570))) (-13 (-368) (-854))) (T -156))
-((-3794 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1253 (-171 (-570)))) (-4 *4 (-13 (-368) (-854))))))
-(-10 -7 (-15 -3794 ((-650 (-171 |#2|)) |#1| |#2|)))
-((-2847 (((-112) $ $) NIL)) (-3871 (((-1226) $) 12)) (-3859 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-157) (-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1226) $))))) (T -157))
-((-3859 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-157)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-157)))))
-(-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1226) $))))
-((-2847 (((-112) $ $) NIL)) (-2607 (($) 41)) (-4151 (($) 40)) (-3110 (((-928)) 46)) (-3240 (((-1168) $) NIL)) (-3978 (((-570) $) 44)) (-3891 (((-1129) $) NIL)) (-3893 (($) 42)) (-2434 (($ (-570)) 47)) (-2869 (((-868) $) 53)) (-2422 (($) 43)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 38)) (-3992 (($ $ $) 35)) (* (($ (-928) $) 45) (($ (-227) $) 11)))
-(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-928) $)) (-15 * ($ (-227) $)) (-15 -3992 ($ $ $)) (-15 -4151 ($)) (-15 -2607 ($)) (-15 -3893 ($)) (-15 -2422 ($)) (-15 -3978 ((-570) $)) (-15 -3110 ((-928))) (-15 -2434 ($ (-570)))))) (T -158))
-((-3992 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-4151 (*1 *1) (-5 *1 (-158))) (-2607 (*1 *1) (-5 *1 (-158))) (-3893 (*1 *1) (-5 *1 (-158))) (-2422 (*1 *1) (-5 *1 (-158))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-158)))) (-3110 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-158)))) (-2434 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-158)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-928) $)) (-15 * ($ (-227) $)) (-15 -3992 ($ $ $)) (-15 -4151 ($)) (-15 -2607 ($)) (-15 -3893 ($)) (-15 -2422 ($)) (-15 -3978 ((-570) $)) (-15 -3110 ((-928))) (-15 -2434 ($ (-570)))))
-((-2505 ((|#2| |#2| (-1101 |#2|)) 98) ((|#2| |#2| (-1186)) 75)) (-2584 ((|#2| |#2| (-1101 |#2|)) 97) ((|#2| |#2| (-1186)) 74)) (-2614 ((|#2| |#2| |#2|) 25)) (-2558 (((-115) (-115)) 111)) (-2804 ((|#2| (-650 |#2|)) 130)) (-2315 ((|#2| (-650 |#2|)) 151)) (-2755 ((|#2| (-650 |#2|)) 138)) (-4427 ((|#2| |#2|) 136)) (-1955 ((|#2| (-650 |#2|)) 124)) (-2015 ((|#2| (-650 |#2|)) 125)) (-3941 ((|#2| (-650 |#2|)) 149)) (-3948 ((|#2| |#2| (-1186)) 63) ((|#2| |#2|) 62)) (-3459 ((|#2| |#2|) 21)) (-1500 ((|#2| |#2| |#2|) 24)) (-1475 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-159 |#1| |#2|) (-10 -7 (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1500 (|#2| |#2| |#2|)) (-15 -2614 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3948 (|#2| |#2| (-1186))) (-15 -2505 (|#2| |#2| (-1186))) (-15 -2505 (|#2| |#2| (-1101 |#2|))) (-15 -2584 (|#2| |#2| (-1186))) (-15 -2584 (|#2| |#2| (-1101 |#2|))) (-15 -4427 (|#2| |#2|)) (-15 -3941 (|#2| (-650 |#2|))) (-15 -2755 (|#2| (-650 |#2|))) (-15 -2315 (|#2| (-650 |#2|))) (-15 -1955 (|#2| (-650 |#2|))) (-15 -2015 (|#2| (-650 |#2|))) (-15 -2804 (|#2| (-650 |#2|)))) (-562) (-436 |#1|)) (T -159))
-((-2804 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-4427 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-2584 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)))) (-2584 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) (-4 *2 (-436 *4)))) (-2505 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)))) (-2505 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) (-4 *2 (-436 *4)))) (-3948 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) (-4 *2 (-436 *4)))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-3459 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-2614 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-1500 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-159 *3 *4)) (-4 *4 (-436 *3)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-436 *4)))))
-(-10 -7 (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1500 (|#2| |#2| |#2|)) (-15 -2614 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3948 (|#2| |#2| (-1186))) (-15 -2505 (|#2| |#2| (-1186))) (-15 -2505 (|#2| |#2| (-1101 |#2|))) (-15 -2584 (|#2| |#2| (-1186))) (-15 -2584 (|#2| |#2| (-1101 |#2|))) (-15 -4427 (|#2| |#2|)) (-15 -3941 (|#2| (-650 |#2|))) (-15 -2755 (|#2| (-650 |#2|))) (-15 -2315 (|#2| (-650 |#2|))) (-15 -1955 (|#2| (-650 |#2|))) (-15 -2015 (|#2| (-650 |#2|))) (-15 -2804 (|#2| (-650 |#2|))))
-((-1791 ((|#1| |#1| |#1|) 64)) (-2741 ((|#1| |#1| |#1|) 61)) (-2614 ((|#1| |#1| |#1|) 55)) (-2381 ((|#1| |#1|) 42)) (-3519 ((|#1| |#1| (-650 |#1|)) 53)) (-3459 ((|#1| |#1|) 46)) (-1500 ((|#1| |#1| |#1|) 49)))
-(((-160 |#1|) (-10 -7 (-15 -1500 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-650 |#1|))) (-15 -2381 (|#1| |#1|)) (-15 -2614 (|#1| |#1| |#1|)) (-15 -2741 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| |#1|))) (-551)) (T -160))
-((-1791 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-2741 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-2614 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-2381 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-3519 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-551)) (-5 *1 (-160 *2)))) (-3459 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-1500 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))))
-(-10 -7 (-15 -1500 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-650 |#1|))) (-15 -2381 (|#1| |#1|)) (-15 -2614 (|#1| |#1| |#1|)) (-15 -2741 (|#1| |#1| |#1|)) (-15 -1791 (|#1| |#1| |#1|)))
-((-2505 (($ $ (-1186)) 12) (($ $ (-1101 $)) 11)) (-2584 (($ $ (-1186)) 10) (($ $ (-1101 $)) 9)) (-2614 (($ $ $) 8)) (-3948 (($ $) 14) (($ $ (-1186)) 13)) (-3459 (($ $) 7)) (-1500 (($ $ $) 6)))
+(-13 (-1060))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-2568 (((-2 (|:| -2477 (-779)) (|:| -2379 (-415 |#2|)) (|:| |radicand| |#2|)) (-415 |#2|) (-779)) 76)) (-2541 (((-3 (-2 (|:| |radicand| (-415 |#2|)) (|:| |deg| (-779))) "failed") |#3|) 56)) (-2188 (((-2 (|:| -2379 (-415 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3370 ((|#1| |#3| |#3|) 44)) (-3654 ((|#3| |#3| (-415 |#2|) (-415 |#2|)) 20)) (-2622 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| |deg| (-779))) |#3| |#3|) 53)))
+(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2188 ((-2 (|:| -2379 (-415 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2541 ((-3 (-2 (|:| |radicand| (-415 |#2|)) (|:| |deg| (-779))) "failed") |#3|)) (-15 -2568 ((-2 (|:| -2477 (-779)) (|:| -2379 (-415 |#2|)) (|:| |radicand| |#2|)) (-415 |#2|) (-779))) (-15 -3370 (|#1| |#3| |#3|)) (-15 -3654 (|#3| |#3| (-415 |#2|) (-415 |#2|))) (-15 -2622 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| |deg| (-779))) |#3| |#3|))) (-1233) (-1255 |#1|) (-1255 (-415 |#2|))) (T -149))
+((-2622 (*1 *2 *3 *3) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-415 *5)) (|:| |c2| (-415 *5)) (|:| |deg| (-779)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))) (-3654 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-415 *5)) (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1255 *3)))) (-3370 (*1 *2 *3 *3) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1233)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1255 (-415 *4))))) (-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-415 *6)) (-4 *5 (-1233)) (-4 *6 (-1255 *5)) (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-779)) (-4 *7 (-1255 *3)))) (-2541 (*1 *2 *3) (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| |radicand| (-415 *5)) (|:| |deg| (-779)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -2379 (-415 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
+(-10 -7 (-15 -2188 ((-2 (|:| -2379 (-415 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2541 ((-3 (-2 (|:| |radicand| (-415 |#2|)) (|:| |deg| (-779))) "failed") |#3|)) (-15 -2568 ((-2 (|:| -2477 (-779)) (|:| -2379 (-415 |#2|)) (|:| |radicand| |#2|)) (-415 |#2|) (-779))) (-15 -3370 (|#1| |#3| |#3|)) (-15 -3654 (|#3| |#3| (-415 |#2|) (-415 |#2|))) (-15 -2622 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| |deg| (-779))) |#3| |#3|)))
+((-3317 (((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|)) 35)))
+(((-150 |#1| |#2|) (-10 -7 (-15 -3317 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|)))) (-553) (-167 |#1|)) (T -150))
+((-3317 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5)) (-4 *5 (-167 *4)) (-4 *4 (-553)) (-5 *1 (-150 *4 *5)))))
+(-10 -7 (-15 -3317 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|))))
+((-1424 (($ (-1 (-112) |#2|) $) 37)) (-3955 (($ $) 44)) (-4243 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2925 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-3124 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3089 (((-112) (-1 (-112) |#2|) $) 24)) (-1371 (((-779) (-1 (-112) |#2|) $) 18) (((-779) |#2| $) NIL)) (-3776 (((-112) (-1 (-112) |#2|) $) 21)) (-3475 (((-779) $) 12)))
+(((-151 |#1| |#2|) (-10 -8 (-15 -3955 (|#1| |#1|)) (-15 -4243 (|#1| |#2| |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4243 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3124 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3475 ((-779) |#1|))) (-152 |#2|) (-1229)) (T -151))
+NIL
+(-10 -8 (-15 -3955 (|#1| |#1|)) (-15 -4243 (|#1| |#2| |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4243 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3124 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3475 ((-779) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-1424 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-3955 (($ $) 42 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454))) (($ |#1| $) 43 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 41 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 50)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-152 |#1|) (-141) (-1229)) (T -152))
+((-3503 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-152 *3)))) (-3124 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-2925 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-2925 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-4243 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3)) (-4 *3 (-1229)))) (-1424 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3)) (-4 *3 (-1229)))) (-2925 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)))) (-4243 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))) (-3955 (*1 *1 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))))
+(-13 (-497 |t#1|) (-10 -8 (-15 -3503 ($ (-652 |t#1|))) (-15 -3124 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4454)) (PROGN (-15 -2925 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2925 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -4243 ($ (-1 (-112) |t#1|) $)) (-15 -1424 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -2925 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -4243 ($ |t#1| $)) (-15 -3955 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) 111)) (-4422 (((-112) $) NIL)) (-3042 (($ |#2| (-652 (-930))) 71)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3140 (($ (-930)) 57)) (-1670 (((-135)) 23)) (-3491 (((-870) $) 86) (($ (-572)) 53) (($ |#2|) 54)) (-4206 ((|#2| $ (-652 (-930))) 74)) (-2455 (((-779)) 20 T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 47 T CONST)) (-2619 (($) 51 T CONST)) (-3921 (((-112) $ $) 33)) (-4029 (($ $ |#2|) NIL)) (-4018 (($ $) 42) (($ $ $) 40)) (-4005 (($ $ $) 38)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
+(((-153 |#1| |#2| |#3|) (-13 (-1060) (-38 |#2|) (-1286 |#2|) (-10 -8 (-15 -3140 ($ (-930))) (-15 -3042 ($ |#2| (-652 (-930)))) (-15 -4206 (|#2| $ (-652 (-930)))) (-15 -2982 ((-3 $ "failed") $)))) (-930) (-370) (-1004 |#1| |#2|)) (T -153))
+((-2982 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-930)) (-4 *3 (-370)) (-14 *4 (-1004 *2 *3)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-370)) (-14 *5 (-1004 *3 *4)))) (-3042 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-930)) (-4 *2 (-370)) (-14 *5 (-1004 *4 *2)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-652 (-930))) (-4 *2 (-370)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-930)) (-14 *5 (-1004 *4 *2)))))
+(-13 (-1060) (-38 |#2|) (-1286 |#2|) (-10 -8 (-15 -3140 ($ (-930))) (-15 -3042 ($ |#2| (-652 (-930)))) (-15 -4206 (|#2| $ (-652 (-930)))) (-15 -2982 ((-3 $ "failed") $))))
+((-4238 (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2948 (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572))) 95) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936)) 96)) (-3717 (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227))))) 99) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-952 (-227)))) 98) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572))) 90) (((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936)) 91)))
+(((-154) (-10 -7 (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -2948 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -2948 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -4238 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-952 (-227))))) (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))))))) (T -154))
+((-3717 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 (-227))))))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)) (-5 *3 (-652 (-952 (-227)))))) (-4238 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 *4)))) (|:| |xValues| (-1105 *4)) (|:| |yValues| (-1105 *4)))) (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 *4)))))) (-2948 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572))) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))) (-3717 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572))) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227))))) (-5 *1 (-154)))))
+(-10 -7 (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -2948 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936))) (-15 -2948 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-936) (-415 (-572)) (-415 (-572)))) (-15 -4238 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-952 (-227))))) (-15 -3717 ((-2 (|:| |brans| (-652 (-652 (-952 (-227))))) (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))) (-652 (-652 (-952 (-227)))))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2057 (((-652 (-1146)) $) 20)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 27) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-1146) $) 9)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-155) (-13 (-1094) (-10 -8 (-15 -2057 ((-652 (-1146)) $)) (-15 -2414 ((-1146) $))))) (T -155))
+((-2057 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-155)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-155)))))
+(-13 (-1094) (-10 -8 (-15 -2057 ((-652 (-1146)) $)) (-15 -2414 ((-1146) $))))
+((-4128 (((-652 (-171 |#2|)) |#1| |#2|) 50)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -4128 ((-652 (-171 |#2|)) |#1| |#2|))) (-1255 (-171 (-572))) (-13 (-370) (-856))) (T -156))
+((-4128 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1255 (-171 (-572)))) (-4 *4 (-13 (-370) (-856))))))
+(-10 -7 (-15 -4128 ((-652 (-171 |#2|)) |#1| |#2|)))
+((-3464 (((-112) $ $) NIL)) (-1336 (((-1228) $) 12)) (-1325 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-157) (-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1228) $))))) (T -157))
+((-1325 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-157)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-157)))))
+(-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1228) $))))
+((-3464 (((-112) $ $) NIL)) (-2304 (($) 41)) (-4342 (($) 40)) (-1579 (((-930)) 46)) (-3618 (((-1170) $) NIL)) (-3186 (((-572) $) 44)) (-2614 (((-1131) $) NIL)) (-3759 (($) 42)) (-3268 (($ (-572)) 47)) (-3491 (((-870) $) 53)) (-4320 (($) 43)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 38)) (-4005 (($ $ $) 35)) (* (($ (-930) $) 45) (($ (-227) $) 11)))
+(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-930) $)) (-15 * ($ (-227) $)) (-15 -4005 ($ $ $)) (-15 -4342 ($)) (-15 -2304 ($)) (-15 -3759 ($)) (-15 -4320 ($)) (-15 -3186 ((-572) $)) (-15 -1579 ((-930))) (-15 -3268 ($ (-572)))))) (T -158))
+((-4005 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-4342 (*1 *1) (-5 *1 (-158))) (-2304 (*1 *1) (-5 *1 (-158))) (-3759 (*1 *1) (-5 *1 (-158))) (-4320 (*1 *1) (-5 *1 (-158))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-158)))) (-1579 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-158)))) (-3268 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-158)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-930) $)) (-15 * ($ (-227) $)) (-15 -4005 ($ $ $)) (-15 -4342 ($)) (-15 -2304 ($)) (-15 -3759 ($)) (-15 -4320 ($)) (-15 -3186 ((-572) $)) (-15 -1579 ((-930))) (-15 -3268 ($ (-572)))))
+((-2630 ((|#2| |#2| (-1103 |#2|)) 98) ((|#2| |#2| (-1188)) 75)) (-2047 ((|#2| |#2| (-1103 |#2|)) 97) ((|#2| |#2| (-1188)) 74)) (-2362 ((|#2| |#2| |#2|) 25)) (-3181 (((-115) (-115)) 111)) (-3723 ((|#2| (-652 |#2|)) 130)) (-1394 ((|#2| (-652 |#2|)) 151)) (-3275 ((|#2| (-652 |#2|)) 138)) (-4012 ((|#2| |#2|) 136)) (-2104 ((|#2| (-652 |#2|)) 124)) (-1399 ((|#2| (-652 |#2|)) 125)) (-2846 ((|#2| (-652 |#2|)) 149)) (-2901 ((|#2| |#2| (-1188)) 63) ((|#2| |#2|) 62)) (-4002 ((|#2| |#2|) 21)) (-3337 ((|#2| |#2| |#2|) 24)) (-3088 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-159 |#1| |#2|) (-10 -7 (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3337 (|#2| |#2| |#2|)) (-15 -2362 (|#2| |#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -2901 (|#2| |#2|)) (-15 -2901 (|#2| |#2| (-1188))) (-15 -2630 (|#2| |#2| (-1188))) (-15 -2630 (|#2| |#2| (-1103 |#2|))) (-15 -2047 (|#2| |#2| (-1188))) (-15 -2047 (|#2| |#2| (-1103 |#2|))) (-15 -4012 (|#2| |#2|)) (-15 -2846 (|#2| (-652 |#2|))) (-15 -3275 (|#2| (-652 |#2|))) (-15 -1394 (|#2| (-652 |#2|))) (-15 -2104 (|#2| (-652 |#2|))) (-15 -1399 (|#2| (-652 |#2|))) (-15 -3723 (|#2| (-652 |#2|)))) (-564) (-438 |#1|)) (T -159))
+((-3723 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-1399 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-564)))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-2047 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)))) (-2047 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)) (-4 *2 (-438 *4)))) (-2630 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)))) (-2630 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)) (-4 *2 (-438 *4)))) (-2901 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2)) (-4 *2 (-438 *4)))) (-2901 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-2362 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-3337 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-159 *3 *4)) (-4 *4 (-438 *3)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-438 *4)))))
+(-10 -7 (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3337 (|#2| |#2| |#2|)) (-15 -2362 (|#2| |#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -2901 (|#2| |#2|)) (-15 -2901 (|#2| |#2| (-1188))) (-15 -2630 (|#2| |#2| (-1188))) (-15 -2630 (|#2| |#2| (-1103 |#2|))) (-15 -2047 (|#2| |#2| (-1188))) (-15 -2047 (|#2| |#2| (-1103 |#2|))) (-15 -4012 (|#2| |#2|)) (-15 -2846 (|#2| (-652 |#2|))) (-15 -3275 (|#2| (-652 |#2|))) (-15 -1394 (|#2| (-652 |#2|))) (-15 -2104 (|#2| (-652 |#2|))) (-15 -1399 (|#2| (-652 |#2|))) (-15 -3723 (|#2| (-652 |#2|))))
+((-4180 ((|#1| |#1| |#1|) 64)) (-4310 ((|#1| |#1| |#1|) 61)) (-2362 ((|#1| |#1| |#1|) 55)) (-4003 ((|#1| |#1|) 42)) (-3354 ((|#1| |#1| (-652 |#1|)) 53)) (-4002 ((|#1| |#1|) 46)) (-3337 ((|#1| |#1| |#1|) 49)))
+(((-160 |#1|) (-10 -7 (-15 -3337 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3354 (|#1| |#1| (-652 |#1|))) (-15 -4003 (|#1| |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -4310 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|))) (-553)) (T -160))
+((-4180 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-4310 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-2362 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-4003 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-3354 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-553)) (-5 *1 (-160 *2)))) (-4002 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))) (-3337 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
+(-10 -7 (-15 -3337 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3354 (|#1| |#1| (-652 |#1|))) (-15 -4003 (|#1| |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -4310 (|#1| |#1| |#1|)) (-15 -4180 (|#1| |#1| |#1|)))
+((-2630 (($ $ (-1188)) 12) (($ $ (-1103 $)) 11)) (-2047 (($ $ (-1188)) 10) (($ $ (-1103 $)) 9)) (-2362 (($ $ $) 8)) (-2901 (($ $) 14) (($ $ (-1188)) 13)) (-4002 (($ $) 7)) (-3337 (($ $ $) 6)))
(((-161) (-141)) (T -161))
-((-3948 (*1 *1 *1) (-4 *1 (-161))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) (-2505 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) (-2505 (*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161)))) (-2584 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) (-2584 (*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161)))))
-(-13 (-144) (-10 -8 (-15 -3948 ($ $)) (-15 -3948 ($ $ (-1186))) (-15 -2505 ($ $ (-1186))) (-15 -2505 ($ $ (-1101 $))) (-15 -2584 ($ $ (-1186))) (-15 -2584 ($ $ (-1101 $)))))
+((-2901 (*1 *1 *1) (-4 *1 (-161))) (-2901 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))) (-2630 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))) (-2630 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161)))) (-2047 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))) (-2047 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161)))))
+(-13 (-144) (-10 -8 (-15 -2901 ($ $)) (-15 -2901 ($ $ (-1188))) (-15 -2630 ($ $ (-1188))) (-15 -2630 ($ $ (-1103 $))) (-15 -2047 ($ $ (-1188))) (-15 -2047 ($ $ (-1103 $)))))
(((-144) . T))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-650 (-1144)) $) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-162) (-13 (-1092) (-10 -8 (-15 -1781 ((-650 (-1144)) $))))) (T -162))
-((-1781 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-162)))))
-(-13 (-1092) (-10 -8 (-15 -1781 ((-650 (-1144)) $))))
-((-2847 (((-112) $ $) NIL)) (-4380 (($ (-570)) 14) (($ $ $) 15)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 18)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 9)))
-(((-163) (-13 (-1109) (-10 -8 (-15 -4380 ($ (-570))) (-15 -4380 ($ $ $))))) (T -163))
-((-4380 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-163)))) (-4380 (*1 *1 *1 *1) (-5 *1 (-163))))
-(-13 (-1109) (-10 -8 (-15 -4380 ($ (-570))) (-15 -4380 ($ $ $))))
-((-2558 (((-115) (-1186)) 102)))
-(((-164) (-10 -7 (-15 -2558 ((-115) (-1186))))) (T -164))
-((-2558 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-115)) (-5 *1 (-164)))))
-(-10 -7 (-15 -2558 ((-115) (-1186))))
-((-1953 ((|#3| |#3|) 19)))
-(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1953 (|#3| |#3|))) (-1058) (-1253 |#1|) (-1253 |#2|)) (T -165))
-((-1953 (*1 *2 *2) (-12 (-4 *3 (-1058)) (-4 *4 (-1253 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1253 *4)))))
-(-10 -7 (-15 -1953 (|#3| |#3|)))
-((-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 223)) (-1439 ((|#2| $) 102)) (-3900 (($ $) 256)) (-3770 (($ $) 250)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 47)) (-3876 (($ $) 254)) (-3745 (($ $) 248)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4387 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 144)) (-2788 (($ $ $) 229)) (-3054 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) 160) (((-695 |#2|) (-695 $)) 154)) (-2295 (($ (-1182 |#2|)) 125) (((-3 $ "failed") (-413 (-1182 |#2|))) NIL)) (-3957 (((-3 $ "failed") $) 214)) (-2477 (((-3 (-413 (-570)) "failed") $) 204)) (-3994 (((-112) $) 199)) (-1577 (((-413 (-570)) $) 202)) (-4412 (((-928)) 96)) (-2799 (($ $ $) 231)) (-3234 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1625 (($) 245)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 193) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 198)) (-3046 ((|#2| $) 100)) (-3658 (((-1182 |#2|) $) 127)) (-2536 (($ (-1 |#2| |#2|) $) 108)) (-3447 (($ $) 247)) (-2283 (((-1182 |#2|) $) 126)) (-4315 (($ $) 207)) (-3122 (($) 103)) (-4187 (((-424 (-1182 $)) (-1182 $)) 95)) (-2874 (((-424 (-1182 $)) (-1182 $)) 64)) (-2837 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2651 (($ $) 246)) (-2002 (((-777) $) 226)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 236)) (-2896 ((|#2| (-1277 $)) NIL) ((|#2|) 98)) (-2375 (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-3144 (((-1182 |#2|)) 120)) (-3887 (($ $) 255)) (-3758 (($ $) 249)) (-2987 (((-1277 |#2|) $ (-1277 $)) 136) (((-695 |#2|) (-1277 $) (-1277 $)) NIL) (((-1277 |#2|) $) 116) (((-695 |#2|) (-1277 $)) NIL)) (-2601 (((-1277 |#2|) $) NIL) (($ (-1277 |#2|)) NIL) (((-1182 |#2|) $) NIL) (($ (-1182 |#2|)) NIL) (((-899 (-570)) $) 184) (((-899 (-384)) $) 188) (((-171 (-384)) $) 172) (((-171 (-227)) $) 167) (((-542) $) 180)) (-2733 (($ $) 104)) (-2869 (((-868) $) 143) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-413 (-570))) NIL) (($ $) NIL)) (-1816 (((-1182 |#2|) $) 32)) (-2294 (((-777)) 106)) (-1344 (((-112) $ $) 13)) (-1561 (($ $) 259)) (-3833 (($ $) 253)) (-1536 (($ $) 257)) (-3811 (($ $) 251)) (-2105 ((|#2| $) 242)) (-1546 (($ $) 258)) (-3821 (($ $) 252)) (-2521 (($ $) 162)) (-3892 (((-112) $ $) 110)) (-4003 (($ $) 112) (($ $ $) NIL)) (-3992 (($ $ $) 111)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-413 (-570))) 276) (($ $ $) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL)))
-(((-166 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2869 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1558 ((-2 (|:| -1347 |#1|) (|:| -4439 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2002 ((-777) |#1|)) (-15 -4038 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -4315 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2601 ((-542) |#1|)) (-15 -2601 ((-171 (-227)) |#1|)) (-15 -2601 ((-171 (-384)) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1625 (|#1|)) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -2874 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4187 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -3234 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2105 (|#2| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2733 (|#1| |#1|)) (-15 -3122 (|#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2295 ((-3 |#1| "failed") (-413 (-1182 |#2|)))) (-15 -2283 ((-1182 |#2|) |#1|)) (-15 -2601 (|#1| (-1182 |#2|))) (-15 -2295 (|#1| (-1182 |#2|))) (-15 -3144 ((-1182 |#2|))) (-15 -3054 ((-695 |#2|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2601 ((-1182 |#2|) |#1|)) (-15 -2896 (|#2|)) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -3658 ((-1182 |#2|) |#1|)) (-15 -1816 ((-1182 |#2|) |#1|)) (-15 -2896 (|#2| (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -3046 (|#2| |#1|)) (-15 -1439 (|#2| |#1|)) (-15 -4412 ((-928))) (-15 -2869 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -1344 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
-((-2294 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4412 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-928)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2896 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3144 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1182 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
-(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2869 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1558 ((-2 (|:| -1347 |#1|) (|:| -4439 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2002 ((-777) |#1|)) (-15 -4038 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -4315 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2601 ((-542) |#1|)) (-15 -2601 ((-171 (-227)) |#1|)) (-15 -2601 ((-171 (-384)) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1625 (|#1|)) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -2874 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4187 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -3234 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2105 (|#2| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2733 (|#1| |#1|)) (-15 -3122 (|#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2295 ((-3 |#1| "failed") (-413 (-1182 |#2|)))) (-15 -2283 ((-1182 |#2|) |#1|)) (-15 -2601 (|#1| (-1182 |#2|))) (-15 -2295 (|#1| (-1182 |#2|))) (-15 -3144 ((-1182 |#2|))) (-15 -3054 ((-695 |#2|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2601 ((-1182 |#2|) |#1|)) (-15 -2896 (|#2|)) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -3658 ((-1182 |#2|) |#1|)) (-15 -1816 ((-1182 |#2|) |#1|)) (-15 -2896 (|#2| (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -3046 (|#2| |#1|)) (-15 -1439 (|#2| |#1|)) (-15 -4412 ((-928))) (-15 -2869 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -1344 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 102 (-3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-2046 (($ $) 103 (-3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-3426 (((-112) $) 105 (-3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-3524 (((-695 |#1|) (-1277 $)) 53) (((-695 |#1|)) 68)) (-1439 ((|#1| $) 59)) (-3900 (($ $) 229 (|has| |#1| (-1212)))) (-3770 (($ $) 212 (|has| |#1| (-1212)))) (-2000 (((-1199 (-928) (-777)) (-570)) 155 (|has| |#1| (-354)))) (-3997 (((-3 $ "failed") $ $) 20)) (-3585 (((-424 (-1182 $)) (-1182 $)) 243 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3312 (($ $) 122 (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-2929 (((-424 $) $) 123 (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-2459 (($ $) 242 (-12 (|has| |#1| (-1011)) (|has| |#1| (-1212))))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 246 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-1799 (((-112) $ $) 113 (|has| |#1| (-311)))) (-2401 (((-777)) 96 (|has| |#1| (-373)))) (-3876 (($ $) 228 (|has| |#1| (-1212)))) (-3745 (($ $) 213 (|has| |#1| (-1212)))) (-1513 (($ $) 227 (|has| |#1| (-1212)))) (-3791 (($ $) 214 (|has| |#1| (-1212)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 178 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 176 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 173)) (-4387 (((-570) $) 177 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 175 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 174)) (-2615 (($ (-1277 |#1|) (-1277 $)) 55) (($ (-1277 |#1|)) 71)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-354)))) (-2788 (($ $ $) 117 (|has| |#1| (-311)))) (-4385 (((-695 |#1|) $ (-1277 $)) 60) (((-695 |#1|) $) 66)) (-3054 (((-695 (-570)) (-695 $)) 172 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 171 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 170) (((-695 |#1|) (-695 $)) 169)) (-2295 (($ (-1182 |#1|)) 166) (((-3 $ "failed") (-413 (-1182 |#1|))) 163 (|has| |#1| (-368)))) (-3957 (((-3 $ "failed") $) 37)) (-2473 ((|#1| $) 254)) (-2477 (((-3 (-413 (-570)) "failed") $) 247 (|has| |#1| (-551)))) (-3994 (((-112) $) 249 (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) 248 (|has| |#1| (-551)))) (-4412 (((-928)) 61)) (-2066 (($) 99 (|has| |#1| (-373)))) (-2799 (($ $ $) 116 (|has| |#1| (-311)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 111 (|has| |#1| (-311)))) (-2310 (($) 157 (|has| |#1| (-354)))) (-4240 (((-112) $) 158 (|has| |#1| (-354)))) (-2118 (($ $ (-777)) 149 (|has| |#1| (-354))) (($ $) 148 (|has| |#1| (-354)))) (-2145 (((-112) $) 124 (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-3234 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1212))))) (-1625 (($) 239 (|has| |#1| (-1212)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 262 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 261 (|has| |#1| (-893 (-384))))) (-3995 (((-928) $) 160 (|has| |#1| (-354))) (((-839 (-928)) $) 146 (|has| |#1| (-354)))) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 241 (-12 (|has| |#1| (-1011)) (|has| |#1| (-1212))))) (-3046 ((|#1| $) 58)) (-3525 (((-3 $ "failed") $) 150 (|has| |#1| (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 120 (|has| |#1| (-311)))) (-3658 (((-1182 |#1|) $) 51 (|has| |#1| (-368)))) (-2536 (($ (-1 |#1| |#1|) $) 263)) (-1997 (((-928) $) 98 (|has| |#1| (-373)))) (-3447 (($ $) 236 (|has| |#1| (-1212)))) (-2283 (((-1182 |#1|) $) 164)) (-3867 (($ (-650 $)) 109 (-3749 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (($ $ $) 108 (-3749 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-3240 (((-1168) $) 10)) (-4315 (($ $) 125 (|has| |#1| (-368)))) (-3458 (($) 151 (|has| |#1| (-354)) CONST)) (-4298 (($ (-928)) 97 (|has| |#1| (-373)))) (-3122 (($) 258)) (-1959 ((|#1| $) 255)) (-3891 (((-1129) $) 11)) (-3643 (($) 168)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 110 (-3749 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-3903 (($ (-650 $)) 107 (-3749 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (($ $ $) 106 (-3749 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 154 (|has| |#1| (-354)))) (-4187 (((-424 (-1182 $)) (-1182 $)) 245 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-2874 (((-424 (-1182 $)) (-1182 $)) 244 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-2340 (((-424 $) $) 121 (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-311))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 118 (|has| |#1| (-311)))) (-2837 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 101 (-3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 112 (|has| |#1| (-311)))) (-2651 (($ $) 237 (|has| |#1| (-1212)))) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) 269 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 267 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 266 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 265 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 264 (|has| |#1| (-520 (-1186) |#1|)))) (-2002 (((-777) $) 114 (|has| |#1| (-311)))) (-2057 (($ $ |#1|) 270 (|has| |#1| (-290 |#1| |#1|)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 115 (|has| |#1| (-311)))) (-2896 ((|#1| (-1277 $)) 54) ((|#1|) 67)) (-4058 (((-777) $) 159 (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) 147 (|has| |#1| (-354)))) (-2375 (($ $ (-1 |#1| |#1|) (-777)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-650 (-1186)) (-650 (-777))) 138 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 139 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 140 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 141 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 143 (-3749 (-3212 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-3212 (|has| |#1| (-235)) (|has| |#1| (-368))))) (($ $) 145 (-3749 (-3212 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-3212 (|has| |#1| (-235)) (|has| |#1| (-368)))))) (-2318 (((-695 |#1|) (-1277 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-368)))) (-3144 (((-1182 |#1|)) 167)) (-1523 (($ $) 226 (|has| |#1| (-1212)))) (-3801 (($ $) 215 (|has| |#1| (-1212)))) (-1900 (($) 156 (|has| |#1| (-354)))) (-3913 (($ $) 225 (|has| |#1| (-1212)))) (-3781 (($ $) 216 (|has| |#1| (-1212)))) (-3887 (($ $) 224 (|has| |#1| (-1212)))) (-3758 (($ $) 217 (|has| |#1| (-1212)))) (-2987 (((-1277 |#1|) $ (-1277 $)) 57) (((-695 |#1|) (-1277 $) (-1277 $)) 56) (((-1277 |#1|) $) 73) (((-695 |#1|) (-1277 $)) 72)) (-2601 (((-1277 |#1|) $) 70) (($ (-1277 |#1|)) 69) (((-1182 |#1|) $) 179) (($ (-1182 |#1|)) 165) (((-899 (-570)) $) 260 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 259 (|has| |#1| (-620 (-899 (-384))))) (((-171 (-384)) $) 211 (|has| |#1| (-1031))) (((-171 (-227)) $) 210 (|has| |#1| (-1031))) (((-542) $) 209 (|has| |#1| (-620 (-542))))) (-2733 (($ $) 257)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 153 (-3749 (-3212 (|has| $ (-146)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (|has| |#1| (-354))))) (-3486 (($ |#1| |#1|) 256)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ (-413 (-570))) 95 (-3749 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) 100 (-3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-1660 (($ $) 152 (|has| |#1| (-354))) (((-3 $ "failed") $) 50 (-3749 (-3212 (|has| $ (-146)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (|has| |#1| (-146))))) (-1816 (((-1182 |#1|) $) 52)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2681 (((-1277 $)) 74)) (-1561 (($ $) 235 (|has| |#1| (-1212)))) (-3833 (($ $) 223 (|has| |#1| (-1212)))) (-2939 (((-112) $ $) 104 (-3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-1536 (($ $) 234 (|has| |#1| (-1212)))) (-3811 (($ $) 222 (|has| |#1| (-1212)))) (-1585 (($ $) 233 (|has| |#1| (-1212)))) (-3853 (($ $) 221 (|has| |#1| (-1212)))) (-2105 ((|#1| $) 251 (|has| |#1| (-1212)))) (-2900 (($ $) 232 (|has| |#1| (-1212)))) (-3864 (($ $) 220 (|has| |#1| (-1212)))) (-1575 (($ $) 231 (|has| |#1| (-1212)))) (-3844 (($ $) 219 (|has| |#1| (-1212)))) (-1546 (($ $) 230 (|has| |#1| (-1212)))) (-3821 (($ $) 218 (|has| |#1| (-1212)))) (-2521 (($ $) 252 (|has| |#1| (-1069)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-1 |#1| |#1|) (-777)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-650 (-1186)) (-650 (-777))) 134 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 135 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 136 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 137 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 142 (-3749 (-3212 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-3212 (|has| |#1| (-235)) (|has| |#1| (-368))))) (($ $) 144 (-3749 (-3212 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-3212 (|has| |#1| (-235)) (|has| |#1| (-368)))))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 129 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-413 (-570))) 240 (-12 (|has| |#1| (-1011)) (|has| |#1| (-1212)))) (($ $ $) 238 (|has| |#1| (-1212))) (($ $ (-570)) 126 (|has| |#1| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-413 (-570)) $) 128 (|has| |#1| (-368))) (($ $ (-413 (-570))) 127 (|has| |#1| (-368)))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-652 (-1146)) $) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-162) (-13 (-1094) (-10 -8 (-15 -2414 ((-652 (-1146)) $))))) (T -162))
+((-2414 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-162)))))
+(-13 (-1094) (-10 -8 (-15 -2414 ((-652 (-1146)) $))))
+((-3464 (((-112) $ $) NIL)) (-1612 (($ (-572)) 14) (($ $ $) 15)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 18)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 9)))
+(((-163) (-13 (-1111) (-10 -8 (-15 -1612 ($ (-572))) (-15 -1612 ($ $ $))))) (T -163))
+((-1612 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-163)))) (-1612 (*1 *1 *1 *1) (-5 *1 (-163))))
+(-13 (-1111) (-10 -8 (-15 -1612 ($ (-572))) (-15 -1612 ($ $ $))))
+((-3181 (((-115) (-1188)) 102)))
+(((-164) (-10 -7 (-15 -3181 ((-115) (-1188))))) (T -164))
+((-3181 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-115)) (-5 *1 (-164)))))
+(-10 -7 (-15 -3181 ((-115) (-1188))))
+((-2084 ((|#3| |#3|) 19)))
+(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -2084 (|#3| |#3|))) (-1060) (-1255 |#1|) (-1255 |#2|)) (T -165))
+((-2084 (*1 *2 *2) (-12 (-4 *3 (-1060)) (-4 *4 (-1255 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1255 *4)))))
+(-10 -7 (-15 -2084 (|#3| |#3|)))
+((-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 223)) (-2055 ((|#2| $) 102)) (-3915 (($ $) 256)) (-3790 (($ $) 250)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 47)) (-3893 (($ $) 254)) (-3770 (($ $) 248)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-1869 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 144)) (-3407 (($ $ $) 229)) (-2245 (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 160) (((-697 |#2|) (-697 $)) 154)) (-2925 (($ (-1184 |#2|)) 125) (((-3 $ "failed") (-415 (-1184 |#2|))) NIL)) (-2982 (((-3 $ "failed") $) 214)) (-3624 (((-3 (-415 (-572)) "failed") $) 204)) (-2054 (((-112) $) 199)) (-2745 (((-415 (-572)) $) 202)) (-1526 (((-930)) 96)) (-3418 (($ $ $) 231)) (-3562 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-2250 (($) 245)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 193) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 198)) (-2140 ((|#2| $) 100)) (-2179 (((-1184 |#2|) $) 127)) (-3161 (($ (-1 |#2| |#2|) $) 108)) (-4057 (($ $) 247)) (-2913 (((-1184 |#2|) $) 126)) (-1809 (($ $) 207)) (-1675 (($) 103)) (-3508 (((-426 (-1184 $)) (-1184 $)) 95)) (-3115 (((-426 (-1184 $)) (-1184 $)) 64)) (-3453 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3272 (($ $) 246)) (-4395 (((-779) $) 226)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 236)) (-2020 ((|#2| (-1279 $)) NIL) ((|#2|) 98)) (-3011 (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-3858 (((-1184 |#2|)) 120)) (-3905 (($ $) 255)) (-3780 (($ $) 249)) (-2862 (((-1279 |#2|) $ (-1279 $)) 136) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $) 116) (((-697 |#2|) (-1279 $)) NIL)) (-3222 (((-1279 |#2|) $) NIL) (($ (-1279 |#2|)) NIL) (((-1184 |#2|) $) NIL) (($ (-1184 |#2|)) NIL) (((-901 (-572)) $) 184) (((-901 (-386)) $) 188) (((-171 (-386)) $) 172) (((-171 (-227)) $) 167) (((-544) $) 180)) (-4242 (($ $) 104)) (-3491 (((-870) $) 143) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-415 (-572))) NIL) (($ $) NIL)) (-3245 (((-1184 |#2|) $) 32)) (-2455 (((-779)) 106)) (-3424 (((-112) $ $) 13)) (-2176 (($ $) 259)) (-3852 (($ $) 253)) (-2152 (($ $) 257)) (-3833 (($ $) 251)) (-4219 ((|#2| $) 242)) (-2162 (($ $) 258)) (-3842 (($ $) 252)) (-2775 (($ $) 162)) (-3921 (((-112) $ $) 110)) (-4018 (($ $) 112) (($ $ $) NIL)) (-4005 (($ $ $) 111)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-415 (-572))) 276) (($ $ $) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL)))
+(((-166 |#1| |#2|) (-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3491 (|#1| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2580 ((-2 (|:| -3457 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -4395 ((-779) |#1|)) (-15 -2501 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -1809 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3222 ((-544) |#1|)) (-15 -3222 ((-171 (-227)) |#1|)) (-15 -3222 ((-171 (-386)) |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2250 (|#1|)) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -3115 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3508 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -3562 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4219 (|#2| |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4242 (|#1| |#1|)) (-15 -1675 (|#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -2925 ((-3 |#1| "failed") (-415 (-1184 |#2|)))) (-15 -2913 ((-1184 |#2|) |#1|)) (-15 -3222 (|#1| (-1184 |#2|))) (-15 -2925 (|#1| (-1184 |#2|))) (-15 -3858 ((-1184 |#2|))) (-15 -2245 ((-697 |#2|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3222 ((-1184 |#2|) |#1|)) (-15 -2020 (|#2|)) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -2179 ((-1184 |#2|) |#1|)) (-15 -3245 ((-1184 |#2|) |#1|)) (-15 -2020 (|#2| (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -2140 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1526 ((-930))) (-15 -3491 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -3424 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
+((-2455 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1526 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-930)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2020 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3858 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1184 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
+(-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3491 (|#1| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2580 ((-2 (|:| -3457 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -4395 ((-779) |#1|)) (-15 -2501 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -1809 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3222 ((-544) |#1|)) (-15 -3222 ((-171 (-227)) |#1|)) (-15 -3222 ((-171 (-386)) |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2250 (|#1|)) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -3115 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3508 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -3562 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4219 (|#2| |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4242 (|#1| |#1|)) (-15 -1675 (|#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -2925 ((-3 |#1| "failed") (-415 (-1184 |#2|)))) (-15 -2913 ((-1184 |#2|) |#1|)) (-15 -3222 (|#1| (-1184 |#2|))) (-15 -2925 (|#1| (-1184 |#2|))) (-15 -3858 ((-1184 |#2|))) (-15 -2245 ((-697 |#2|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3222 ((-1184 |#2|) |#1|)) (-15 -2020 (|#2|)) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -2179 ((-1184 |#2|) |#1|)) (-15 -3245 ((-1184 |#2|) |#1|)) (-15 -2020 (|#2| (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -2140 (|#2| |#1|)) (-15 -2055 (|#2| |#1|)) (-15 -1526 ((-930))) (-15 -3491 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -3424 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 102 (-3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-1697 (($ $) 103 (-3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-1774 (((-112) $) 105 (-3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-3385 (((-697 |#1|) (-1279 $)) 53) (((-697 |#1|)) 68)) (-2055 ((|#1| $) 59)) (-3915 (($ $) 229 (|has| |#1| (-1214)))) (-3790 (($ $) 212 (|has| |#1| (-1214)))) (-4380 (((-1201 (-930) (-779)) (-572)) 155 (|has| |#1| (-356)))) (-2092 (((-3 $ "failed") $ $) 20)) (-2730 (((-426 (-1184 $)) (-1184 $)) 243 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-1861 (($ $) 122 (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-2359 (((-426 $) $) 123 (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3093 (($ $) 242 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 246 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-4252 (((-112) $ $) 113 (|has| |#1| (-313)))) (-3037 (((-779)) 96 (|has| |#1| (-375)))) (-3893 (($ $) 228 (|has| |#1| (-1214)))) (-3770 (($ $) 213 (|has| |#1| (-1214)))) (-3939 (($ $) 227 (|has| |#1| (-1214)))) (-3811 (($ $) 214 (|has| |#1| (-1214)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 178 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 176 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 173)) (-1869 (((-572) $) 177 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 175 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 174)) (-2372 (($ (-1279 |#1|) (-1279 $)) 55) (($ (-1279 |#1|)) 71)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-356)))) (-3407 (($ $ $) 117 (|has| |#1| (-313)))) (-1649 (((-697 |#1|) $ (-1279 $)) 60) (((-697 |#1|) $) 66)) (-2245 (((-697 (-572)) (-697 $)) 172 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 171 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 170) (((-697 |#1|) (-697 $)) 169)) (-2925 (($ (-1184 |#1|)) 166) (((-3 $ "failed") (-415 (-1184 |#1|))) 163 (|has| |#1| (-370)))) (-2982 (((-3 $ "failed") $) 37)) (-3106 ((|#1| $) 254)) (-3624 (((-3 (-415 (-572)) "failed") $) 247 (|has| |#1| (-553)))) (-2054 (((-112) $) 249 (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) 248 (|has| |#1| (-553)))) (-1526 (((-930)) 61)) (-2688 (($) 99 (|has| |#1| (-375)))) (-3418 (($ $ $) 116 (|has| |#1| (-313)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 111 (|has| |#1| (-313)))) (-1345 (($) 157 (|has| |#1| (-356)))) (-2754 (((-112) $) 158 (|has| |#1| (-356)))) (-3156 (($ $ (-779)) 149 (|has| |#1| (-356))) (($ $) 148 (|has| |#1| (-356)))) (-3439 (((-112) $) 124 (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3562 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1214))))) (-2250 (($) 239 (|has| |#1| (-1214)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 262 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 261 (|has| |#1| (-895 (-386))))) (-2068 (((-930) $) 160 (|has| |#1| (-356))) (((-841 (-930)) $) 146 (|has| |#1| (-356)))) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 241 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-2140 ((|#1| $) 58)) (-3396 (((-3 $ "failed") $) 150 (|has| |#1| (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 120 (|has| |#1| (-313)))) (-2179 (((-1184 |#1|) $) 51 (|has| |#1| (-370)))) (-3161 (($ (-1 |#1| |#1|) $) 263)) (-4370 (((-930) $) 98 (|has| |#1| (-375)))) (-4057 (($ $) 236 (|has| |#1| (-1214)))) (-2913 (((-1184 |#1|) $) 164)) (-1335 (($ (-652 $)) 109 (-3783 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (($ $ $) 108 (-3783 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-3618 (((-1170) $) 10)) (-1809 (($ $) 125 (|has| |#1| (-370)))) (-3477 (($) 151 (|has| |#1| (-356)) CONST)) (-1795 (($ (-930)) 97 (|has| |#1| (-375)))) (-1675 (($) 258)) (-2592 ((|#1| $) 255)) (-2614 (((-1131) $) 11)) (-4267 (($) 168)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 110 (-3783 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-1370 (($ (-652 $)) 107 (-3783 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (($ $ $) 106 (-3783 (|has| |#1| (-313)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 154 (|has| |#1| (-356)))) (-3508 (((-426 (-1184 $)) (-1184 $)) 245 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-3115 (((-426 (-1184 $)) (-1184 $)) 244 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-2972 (((-426 $) $) 121 (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-313))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 118 (|has| |#1| (-313)))) (-3453 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 101 (-3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 112 (|has| |#1| (-313)))) (-3272 (($ $) 237 (|has| |#1| (-1214)))) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) 269 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 267 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 266 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 265 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 264 (|has| |#1| (-522 (-1188) |#1|)))) (-4395 (((-779) $) 114 (|has| |#1| (-313)))) (-2679 (($ $ |#1|) 270 (|has| |#1| (-292 |#1| |#1|)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 115 (|has| |#1| (-313)))) (-2020 ((|#1| (-1279 $)) 54) ((|#1|) 67)) (-1468 (((-779) $) 159 (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) 147 (|has| |#1| (-356)))) (-3011 (($ $ (-1 |#1| |#1|) (-779)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-652 (-1188)) (-652 (-779))) 138 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 139 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 140 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 141 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 143 (-3783 (-3804 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-3804 (|has| |#1| (-237)) (|has| |#1| (-370))))) (($ $) 145 (-3783 (-3804 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-3804 (|has| |#1| (-237)) (|has| |#1| (-370)))))) (-1421 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-370)))) (-3858 (((-1184 |#1|)) 167)) (-2139 (($ $) 226 (|has| |#1| (-1214)))) (-3822 (($ $) 215 (|has| |#1| (-1214)))) (-2817 (($) 156 (|has| |#1| (-356)))) (-3927 (($ $) 225 (|has| |#1| (-1214)))) (-3800 (($ $) 216 (|has| |#1| (-1214)))) (-3905 (($ $) 224 (|has| |#1| (-1214)))) (-3780 (($ $) 217 (|has| |#1| (-1214)))) (-2862 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56) (((-1279 |#1|) $) 73) (((-697 |#1|) (-1279 $)) 72)) (-3222 (((-1279 |#1|) $) 70) (($ (-1279 |#1|)) 69) (((-1184 |#1|) $) 179) (($ (-1184 |#1|)) 165) (((-901 (-572)) $) 260 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 259 (|has| |#1| (-622 (-901 (-386))))) (((-171 (-386)) $) 211 (|has| |#1| (-1033))) (((-171 (-227)) $) 210 (|has| |#1| (-1033))) (((-544) $) 209 (|has| |#1| (-622 (-544))))) (-4242 (($ $) 257)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 153 (-3783 (-3804 (|has| $ (-146)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (|has| |#1| (-356))))) (-4100 (($ |#1| |#1|) 256)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ (-415 (-572))) 95 (-3783 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) 100 (-3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-2210 (($ $) 152 (|has| |#1| (-356))) (((-3 $ "failed") $) 50 (-3783 (-3804 (|has| $ (-146)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))) (|has| |#1| (-146))))) (-3245 (((-1184 |#1|) $) 52)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-1769 (((-1279 $)) 74)) (-2176 (($ $) 235 (|has| |#1| (-1214)))) (-3852 (($ $) 223 (|has| |#1| (-1214)))) (-2466 (((-112) $ $) 104 (-3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))) (-2152 (($ $) 234 (|has| |#1| (-1214)))) (-3833 (($ $) 222 (|has| |#1| (-1214)))) (-2204 (($ $) 233 (|has| |#1| (-1214)))) (-3871 (($ $) 221 (|has| |#1| (-1214)))) (-4219 ((|#1| $) 251 (|has| |#1| (-1214)))) (-3120 (($ $) 232 (|has| |#1| (-1214)))) (-3883 (($ $) 220 (|has| |#1| (-1214)))) (-2193 (($ $) 231 (|has| |#1| (-1214)))) (-3861 (($ $) 219 (|has| |#1| (-1214)))) (-2162 (($ $) 230 (|has| |#1| (-1214)))) (-3842 (($ $) 218 (|has| |#1| (-1214)))) (-2775 (($ $) 252 (|has| |#1| (-1071)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-1 |#1| |#1|) (-779)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-652 (-1188)) (-652 (-779))) 134 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 135 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 136 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 137 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 142 (-3783 (-3804 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-3804 (|has| |#1| (-237)) (|has| |#1| (-370))))) (($ $) 144 (-3783 (-3804 (|has| |#1| (-370)) (|has| |#1| (-237))) (|has| |#1| (-237)) (-3804 (|has| |#1| (-237)) (|has| |#1| (-370)))))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 129 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-415 (-572))) 240 (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214)))) (($ $ $) 238 (|has| |#1| (-1214))) (($ $ (-572)) 126 (|has| |#1| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-415 (-572)) $) 128 (|has| |#1| (-370))) (($ $ (-415 (-572))) 127 (|has| |#1| (-370)))))
(((-167 |#1|) (-141) (-174)) (T -167))
-((-3046 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3122 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2733 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3486 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1212)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1069)) (-4 *3 (-1212)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))))
-(-13 (-730 |t#1| (-1182 |t#1|)) (-417 |t#1|) (-233 |t#1|) (-343 |t#1|) (-406 |t#1|) (-891 |t#1|) (-382 |t#1|) (-174) (-10 -8 (-6 -3486) (-15 -3122 ($)) (-15 -2733 ($ $)) (-15 -3486 ($ |t#1| |t#1|)) (-15 -1959 (|t#1| $)) (-15 -2473 (|t#1| $)) (-15 -3046 (|t#1| $)) (IF (|has| |t#1| (-562)) (PROGN (-6 (-562)) (-15 -2837 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|) (IF (|has| |t#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |t#1| (-6 -4448)) (-6 -4448) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1031)) (PROGN (-6 (-620 (-171 (-227)))) (-6 (-620 (-171 (-384))))) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -2521 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1212)) (PROGN (-6 (-1212)) (-15 -2105 (|t#1| $)) (IF (|has| |t#1| (-1011)) (-6 (-1011)) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -3234 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-311)) (-6 (-916)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-38 |#1|) . T) ((-38 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-35) |has| |#1| (-1212)) ((-95) |has| |#1| (-1212)) ((-102) . T) ((-111 #0# #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3749 (|has| |#1| (-354)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-354)) (|has| |#1| (-368))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-619 (-868)) . T) ((-174) . T) ((-620 (-171 (-227))) |has| |#1| (-1031)) ((-620 (-171 (-384))) |has| |#1| (-1031)) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-620 #1=(-1182 |#1|)) . T) ((-233 |#1|) . T) ((-235) -3749 (|has| |#1| (-354)) (|has| |#1| (-235))) ((-245) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-288) |has| |#1| (-1212)) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-294) -3749 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-311) -3749 (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-368) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-408) |has| |#1| (-354)) ((-373) -3749 (|has| |#1| (-373)) (|has| |#1| (-354))) ((-354) |has| |#1| (-354)) ((-375 |#1| #1#) . T) ((-415 |#1| #1#) . T) ((-343 |#1|) . T) ((-382 |#1|) . T) ((-406 |#1|) . T) ((-417 |#1|) . T) ((-458) -3749 (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-499) |has| |#1| (-1212)) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-562) -3749 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-652 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-646 |#1|) . T) ((-646 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-723 |#1|) . T) ((-723 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-730 |#1| #1#) . T) ((-732) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-916) -12 (|has| |#1| (-311)) (|has| |#1| (-916))) ((-927) -3749 (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-1011) -12 (|has| |#1| (-1011)) (|has| |#1| (-1212))) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-354)) ((-1212) |has| |#1| (-1212)) ((-1215) |has| |#1| (-1212)) ((-1227) . T) ((-1231) -3749 (|has| |#1| (-354)) (|has| |#1| (-368)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))
-((-2340 (((-424 |#2|) |#2|) 67)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -2340 ((-424 |#2|) |#2|))) (-311) (-1253 (-171 |#1|))) (T -168))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1253 (-171 *4))))))
-(-10 -7 (-15 -2340 ((-424 |#2|) |#2|)))
-((-3465 (((-1144) (-1144) (-295)) 8)) (-3250 (((-650 (-697 (-284))) (-1168)) 81)) (-1814 (((-697 (-284)) (-1144)) 76)))
-(((-169) (-13 (-1227) (-10 -7 (-15 -3465 ((-1144) (-1144) (-295))) (-15 -1814 ((-697 (-284)) (-1144))) (-15 -3250 ((-650 (-697 (-284))) (-1168)))))) (T -169))
-((-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-295)) (-5 *1 (-169)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-697 (-284))) (-5 *1 (-169)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-697 (-284)))) (-5 *1 (-169)))))
-(-13 (-1227) (-10 -7 (-15 -3465 ((-1144) (-1144) (-295))) (-15 -1814 ((-697 (-284)) (-1144))) (-15 -3250 ((-650 (-697 (-284))) (-1168)))))
-((-2536 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -2536 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
-(-10 -7 (-15 -2536 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 34)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-2046 (($ $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-3426 (((-112) $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-3524 (((-695 |#1|) (-1277 $)) NIL) (((-695 |#1|)) NIL)) (-1439 ((|#1| $) NIL)) (-3900 (($ $) NIL (|has| |#1| (-1212)))) (-3770 (($ $) NIL (|has| |#1| (-1212)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-354)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3312 (($ $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-2929 (((-424 $) $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-2459 (($ $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1212))))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-311)))) (-2401 (((-777)) NIL (|has| |#1| (-373)))) (-3876 (($ $) NIL (|has| |#1| (-1212)))) (-3745 (($ $) NIL (|has| |#1| (-1212)))) (-1513 (($ $) NIL (|has| |#1| (-1212)))) (-3791 (($ $) NIL (|has| |#1| (-1212)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-2615 (($ (-1277 |#1|) (-1277 $)) NIL) (($ (-1277 |#1|)) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-354)))) (-2788 (($ $ $) NIL (|has| |#1| (-311)))) (-4385 (((-695 |#1|) $ (-1277 $)) NIL) (((-695 |#1|) $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2295 (($ (-1182 |#1|)) NIL) (((-3 $ "failed") (-413 (-1182 |#1|))) NIL (|has| |#1| (-368)))) (-3957 (((-3 $ "failed") $) NIL)) (-2473 ((|#1| $) 13)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-551)))) (-3994 (((-112) $) NIL (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) NIL (|has| |#1| (-551)))) (-4412 (((-928)) NIL)) (-2066 (($) NIL (|has| |#1| (-373)))) (-2799 (($ $ $) NIL (|has| |#1| (-311)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-311)))) (-2310 (($) NIL (|has| |#1| (-354)))) (-4240 (((-112) $) NIL (|has| |#1| (-354)))) (-2118 (($ $ (-777)) NIL (|has| |#1| (-354))) (($ $) NIL (|has| |#1| (-354)))) (-2145 (((-112) $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-3234 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1069)) (|has| |#1| (-1212))))) (-1625 (($) NIL (|has| |#1| (-1212)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| |#1| (-893 (-384))))) (-3995 (((-928) $) NIL (|has| |#1| (-354))) (((-839 (-928)) $) NIL (|has| |#1| (-354)))) (-2005 (((-112) $) 36)) (-3035 (($ $ (-570)) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1212))))) (-3046 ((|#1| $) 47)) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-311)))) (-3658 (((-1182 |#1|) $) NIL (|has| |#1| (-368)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#1| (-373)))) (-3447 (($ $) NIL (|has| |#1| (-1212)))) (-2283 (((-1182 |#1|) $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-311))) (($ $ $) NIL (|has| |#1| (-311)))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-3458 (($) NIL (|has| |#1| (-354)) CONST)) (-4298 (($ (-928)) NIL (|has| |#1| (-373)))) (-3122 (($) NIL)) (-1959 ((|#1| $) 15)) (-3891 (((-1129) $) NIL)) (-3643 (($) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-311)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-311))) (($ $ $) NIL (|has| |#1| (-311)))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| |#1| (-354)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-2340 (((-424 $) $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-311))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-311)))) (-2837 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 48 (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-311)))) (-2651 (($ $) NIL (|has| |#1| (-1212)))) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-2002 (((-777) $) NIL (|has| |#1| (-311)))) (-2057 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-311)))) (-2896 ((|#1| (-1277 $)) NIL) ((|#1|) NIL)) (-4058 (((-777) $) NIL (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) NIL (|has| |#1| (-354)))) (-2375 (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-2318 (((-695 |#1|) (-1277 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-3144 (((-1182 |#1|)) NIL)) (-1523 (($ $) NIL (|has| |#1| (-1212)))) (-3801 (($ $) NIL (|has| |#1| (-1212)))) (-1900 (($) NIL (|has| |#1| (-354)))) (-3913 (($ $) NIL (|has| |#1| (-1212)))) (-3781 (($ $) NIL (|has| |#1| (-1212)))) (-3887 (($ $) NIL (|has| |#1| (-1212)))) (-3758 (($ $) NIL (|has| |#1| (-1212)))) (-2987 (((-1277 |#1|) $ (-1277 $)) NIL) (((-695 |#1|) (-1277 $) (-1277 $)) NIL) (((-1277 |#1|) $) NIL) (((-695 |#1|) (-1277 $)) NIL)) (-2601 (((-1277 |#1|) $) NIL) (($ (-1277 |#1|)) NIL) (((-1182 |#1|) $) NIL) (($ (-1182 |#1|)) NIL) (((-899 (-570)) $) NIL (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#1| (-620 (-899 (-384))))) (((-171 (-384)) $) NIL (|has| |#1| (-1031))) (((-171 (-227)) $) NIL (|has| |#1| (-1031))) (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2733 (($ $) 46)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-354))))) (-3486 (($ |#1| |#1|) 38)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) 37) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-1660 (($ $) NIL (|has| |#1| (-354))) (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-1816 (((-1182 |#1|) $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL)) (-1561 (($ $) NIL (|has| |#1| (-1212)))) (-3833 (($ $) NIL (|has| |#1| (-1212)))) (-2939 (((-112) $ $) NIL (-3749 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-1536 (($ $) NIL (|has| |#1| (-1212)))) (-3811 (($ $) NIL (|has| |#1| (-1212)))) (-1585 (($ $) NIL (|has| |#1| (-1212)))) (-3853 (($ $) NIL (|has| |#1| (-1212)))) (-2105 ((|#1| $) NIL (|has| |#1| (-1212)))) (-2900 (($ $) NIL (|has| |#1| (-1212)))) (-3864 (($ $) NIL (|has| |#1| (-1212)))) (-1575 (($ $) NIL (|has| |#1| (-1212)))) (-3844 (($ $) NIL (|has| |#1| (-1212)))) (-1546 (($ $) NIL (|has| |#1| (-1212)))) (-3821 (($ $) NIL (|has| |#1| (-1212)))) (-2521 (($ $) NIL (|has| |#1| (-1069)))) (-1981 (($) 28 T CONST)) (-1998 (($) 30 T CONST)) (-4245 (((-1168) $) 23 (|has| |#1| (-834))) (((-1168) $ (-112)) 25 (|has| |#1| (-834))) (((-1282) (-828) $) 26 (|has| |#1| (-834))) (((-1282) (-828) $ (-112)) 27 (|has| |#1| (-834)))) (-3414 (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 40)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-413 (-570))) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1212)))) (($ $ $) NIL (|has| |#1| (-1212))) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-368))) (($ $ (-413 (-570))) NIL (|has| |#1| (-368)))))
-(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|))) (-174)) (T -171))
-NIL
-(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|)))
-((-2601 (((-899 |#1|) |#3|) 22)))
-(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -2601 ((-899 |#1|) |#3|))) (-1109) (-13 (-620 (-899 |#1|)) (-174)) (-167 |#2|)) (T -172))
-((-2601 (*1 *2 *3) (-12 (-4 *5 (-13 (-620 *2) (-174))) (-5 *2 (-899 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1109)) (-4 *3 (-167 *5)))))
-(-10 -7 (-15 -2601 ((-899 |#1|) |#3|)))
-((-2847 (((-112) $ $) NIL)) (-1826 (((-112) $) 9)) (-1754 (((-112) $ (-112)) 11)) (-2296 (($) 13)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3064 (($ $) 14)) (-2869 (((-868) $) 18)) (-2935 (((-112) $) 8)) (-2442 (((-112) $ (-112)) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-173) (-13 (-1109) (-10 -8 (-15 -2296 ($)) (-15 -2935 ((-112) $)) (-15 -1826 ((-112) $)) (-15 -2442 ((-112) $ (-112))) (-15 -1754 ((-112) $ (-112))) (-15 -3064 ($ $))))) (T -173))
-((-2296 (*1 *1) (-5 *1 (-173))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2442 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1754 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3064 (*1 *1 *1) (-5 *1 (-173))))
-(-13 (-1109) (-10 -8 (-15 -2296 ($)) (-15 -2935 ((-112) $)) (-15 -1826 ((-112) $)) (-15 -2442 ((-112) $ (-112))) (-15 -1754 ((-112) $ (-112))) (-15 -3064 ($ $))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
+((-2140 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1675 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4100 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2592 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3453 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-2775 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1214)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1071)) (-4 *3 (-1214)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-3624 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))))
+(-13 (-732 |t#1| (-1184 |t#1|)) (-419 |t#1|) (-233 |t#1|) (-345 |t#1|) (-408 |t#1|) (-893 |t#1|) (-384 |t#1|) (-174) (-10 -8 (-6 -4100) (-15 -1675 ($)) (-15 -4242 ($ $)) (-15 -4100 ($ |t#1| |t#1|)) (-15 -2592 (|t#1| $)) (-15 -3106 (|t#1| $)) (-15 -2140 (|t#1| $)) (IF (|has| |t#1| (-564)) (PROGN (-6 (-564)) (-15 -3453 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |t#1| (-6 -4450)) (-6 -4450) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1033)) (PROGN (-6 (-622 (-171 (-227)))) (-6 (-622 (-171 (-386))))) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -2775 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1214)) (PROGN (-6 (-1214)) (-15 -4219 (|t#1| $)) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -3562 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-918)) (IF (|has| |t#1| (-313)) (-6 (-918)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-38 |#1|) . T) ((-38 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-35) |has| |#1| (-1214)) ((-95) |has| |#1| (-1214)) ((-102) . T) ((-111 #0# #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3783 (|has| |#1| (-356)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-356)) (|has| |#1| (-370))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-621 (-870)) . T) ((-174) . T) ((-622 (-171 (-227))) |has| |#1| (-1033)) ((-622 (-171 (-386))) |has| |#1| (-1033)) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-622 #1=(-1184 |#1|)) . T) ((-233 |#1|) . T) ((-237) -3783 (|has| |#1| (-356)) (|has| |#1| (-237))) ((-247) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-290) |has| |#1| (-1214)) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-296) -3783 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-313) -3783 (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-370) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-410) |has| |#1| (-356)) ((-375) -3783 (|has| |#1| (-375)) (|has| |#1| (-356))) ((-356) |has| |#1| (-356)) ((-377 |#1| #1#) . T) ((-417 |#1| #1#) . T) ((-345 |#1|) . T) ((-384 |#1|) . T) ((-408 |#1|) . T) ((-419 |#1|) . T) ((-460) -3783 (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-501) |has| |#1| (-1214)) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-564) -3783 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-654 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-648 |#1|) . T) ((-648 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-725 |#1|) . T) ((-725 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-732 |#1| #1#) . T) ((-734) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-918) -12 (|has| |#1| (-313)) (|has| |#1| (-918))) ((-929) -3783 (|has| |#1| (-356)) (|has| |#1| (-370)) (|has| |#1| (-313))) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#1| (-1214))) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-356)) ((-1214) |has| |#1| (-1214)) ((-1217) |has| |#1| (-1214)) ((-1229) . T) ((-1233) -3783 (|has| |#1| (-356)) (|has| |#1| (-370)) (-12 (|has| |#1| (-313)) (|has| |#1| (-918)))))
+((-2972 (((-426 |#2|) |#2|) 67)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -2972 ((-426 |#2|) |#2|))) (-313) (-1255 (-171 |#1|))) (T -168))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
+(-10 -7 (-15 -2972 ((-426 |#2|) |#2|)))
+((-4079 (((-1146) (-1146) (-297)) 8)) (-3721 (((-652 (-699 (-286))) (-1170)) 81)) (-3223 (((-699 (-286)) (-1146)) 76)))
+(((-169) (-13 (-1229) (-10 -7 (-15 -4079 ((-1146) (-1146) (-297))) (-15 -3223 ((-699 (-286)) (-1146))) (-15 -3721 ((-652 (-699 (-286))) (-1170)))))) (T -169))
+((-4079 (*1 *2 *2 *3) (-12 (-5 *2 (-1146)) (-5 *3 (-297)) (-5 *1 (-169)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1146)) (-5 *2 (-699 (-286))) (-5 *1 (-169)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-699 (-286)))) (-5 *1 (-169)))))
+(-13 (-1229) (-10 -7 (-15 -4079 ((-1146) (-1146) (-297))) (-15 -3223 ((-699 (-286)) (-1146))) (-15 -3721 ((-652 (-699 (-286))) (-1170)))))
+((-3161 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -3161 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
+(-10 -7 (-15 -3161 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 34)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-1697 (($ $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-1774 (((-112) $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-3385 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) NIL)) (-2055 ((|#1| $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-1214)))) (-3790 (($ $) NIL (|has| |#1| (-1214)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-356)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-1861 (($ $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-2359 (((-426 $) $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3093 (($ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-313)))) (-3037 (((-779)) NIL (|has| |#1| (-375)))) (-3893 (($ $) NIL (|has| |#1| (-1214)))) (-3770 (($ $) NIL (|has| |#1| (-1214)))) (-3939 (($ $) NIL (|has| |#1| (-1214)))) (-3811 (($ $) NIL (|has| |#1| (-1214)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-2372 (($ (-1279 |#1|) (-1279 $)) NIL) (($ (-1279 |#1|)) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-356)))) (-3407 (($ $ $) NIL (|has| |#1| (-313)))) (-1649 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2925 (($ (-1184 |#1|)) NIL) (((-3 $ "failed") (-415 (-1184 |#1|))) NIL (|has| |#1| (-370)))) (-2982 (((-3 $ "failed") $) NIL)) (-3106 ((|#1| $) 13)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-553)))) (-2054 (((-112) $) NIL (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) NIL (|has| |#1| (-553)))) (-1526 (((-930)) NIL)) (-2688 (($) NIL (|has| |#1| (-375)))) (-3418 (($ $ $) NIL (|has| |#1| (-313)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-313)))) (-1345 (($) NIL (|has| |#1| (-356)))) (-2754 (((-112) $) NIL (|has| |#1| (-356)))) (-3156 (($ $ (-779)) NIL (|has| |#1| (-356))) (($ $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3562 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1071)) (|has| |#1| (-1214))))) (-2250 (($) NIL (|has| |#1| (-1214)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| |#1| (-895 (-386))))) (-2068 (((-930) $) NIL (|has| |#1| (-356))) (((-841 (-930)) $) NIL (|has| |#1| (-356)))) (-4422 (((-112) $) 36)) (-2033 (($ $ (-572)) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214))))) (-2140 ((|#1| $) 47)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-313)))) (-2179 (((-1184 |#1|) $) NIL (|has| |#1| (-370)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#1| (-375)))) (-4057 (($ $) NIL (|has| |#1| (-1214)))) (-2913 (((-1184 |#1|) $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-313))) (($ $ $) NIL (|has| |#1| (-313)))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-3477 (($) NIL (|has| |#1| (-356)) CONST)) (-1795 (($ (-930)) NIL (|has| |#1| (-375)))) (-1675 (($) NIL)) (-2592 ((|#1| $) 15)) (-2614 (((-1131) $) NIL)) (-4267 (($) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-313)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-313))) (($ $ $) NIL (|has| |#1| (-313)))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| |#1| (-356)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#1| (-313)) (|has| |#1| (-918))))) (-2972 (((-426 $) $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-370))))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-313))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-313)))) (-3453 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 48 (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-313)))) (-3272 (($ $) NIL (|has| |#1| (-1214)))) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-4395 (((-779) $) NIL (|has| |#1| (-313)))) (-2679 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-313)))) (-2020 ((|#1| (-1279 $)) NIL) ((|#1|) NIL)) (-1468 (((-779) $) NIL (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) NIL (|has| |#1| (-356)))) (-3011 (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-1421 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-3858 (((-1184 |#1|)) NIL)) (-2139 (($ $) NIL (|has| |#1| (-1214)))) (-3822 (($ $) NIL (|has| |#1| (-1214)))) (-2817 (($) NIL (|has| |#1| (-356)))) (-3927 (($ $) NIL (|has| |#1| (-1214)))) (-3800 (($ $) NIL (|has| |#1| (-1214)))) (-3905 (($ $) NIL (|has| |#1| (-1214)))) (-3780 (($ $) NIL (|has| |#1| (-1214)))) (-2862 (((-1279 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) (-1279 $) (-1279 $)) NIL) (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-3222 (((-1279 |#1|) $) NIL) (($ (-1279 |#1|)) NIL) (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL) (((-901 (-572)) $) NIL (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#1| (-622 (-901 (-386))))) (((-171 (-386)) $) NIL (|has| |#1| (-1033))) (((-171 (-227)) $) NIL (|has| |#1| (-1033))) (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-4242 (($ $) 46)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-356))))) (-4100 (($ |#1| |#1|) 38)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) 37) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-2210 (($ $) NIL (|has| |#1| (-356))) (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-3245 (((-1184 |#1|) $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL)) (-2176 (($ $) NIL (|has| |#1| (-1214)))) (-3852 (($ $) NIL (|has| |#1| (-1214)))) (-2466 (((-112) $ $) NIL (-3783 (-12 (|has| |#1| (-313)) (|has| |#1| (-918))) (|has| |#1| (-564))))) (-2152 (($ $) NIL (|has| |#1| (-1214)))) (-3833 (($ $) NIL (|has| |#1| (-1214)))) (-2204 (($ $) NIL (|has| |#1| (-1214)))) (-3871 (($ $) NIL (|has| |#1| (-1214)))) (-4219 ((|#1| $) NIL (|has| |#1| (-1214)))) (-3120 (($ $) NIL (|has| |#1| (-1214)))) (-3883 (($ $) NIL (|has| |#1| (-1214)))) (-2193 (($ $) NIL (|has| |#1| (-1214)))) (-3861 (($ $) NIL (|has| |#1| (-1214)))) (-2162 (($ $) NIL (|has| |#1| (-1214)))) (-3842 (($ $) NIL (|has| |#1| (-1214)))) (-2775 (($ $) NIL (|has| |#1| (-1071)))) (-2602 (($) 28 T CONST)) (-2619 (($) 30 T CONST)) (-2810 (((-1170) $) 23 (|has| |#1| (-836))) (((-1170) $ (-112)) 25 (|has| |#1| (-836))) (((-1284) (-830) $) 26 (|has| |#1| (-836))) (((-1284) (-830) $ (-112)) 27 (|has| |#1| (-836)))) (-4019 (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 40)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-415 (-572))) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1214)))) (($ $ $) NIL (|has| |#1| (-1214))) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-370))) (($ $ (-415 (-572))) NIL (|has| |#1| (-370)))))
+(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-174)) (T -171))
+NIL
+(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|)))
+((-3222 (((-901 |#1|) |#3|) 22)))
+(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -3222 ((-901 |#1|) |#3|))) (-1111) (-13 (-622 (-901 |#1|)) (-174)) (-167 |#2|)) (T -172))
+((-3222 (*1 *2 *3) (-12 (-4 *5 (-13 (-622 *2) (-174))) (-5 *2 (-901 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1111)) (-4 *3 (-167 *5)))))
+(-10 -7 (-15 -3222 ((-901 |#1|) |#3|)))
+((-3464 (((-112) $ $) NIL)) (-3353 (((-112) $) 9)) (-3832 (((-112) $ (-112)) 11)) (-2924 (($) 13)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3679 (($ $) 14)) (-3491 (((-870) $) 18)) (-2428 (((-112) $) 8)) (-3083 (((-112) $ (-112)) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-173) (-13 (-1111) (-10 -8 (-15 -2924 ($)) (-15 -2428 ((-112) $)) (-15 -3353 ((-112) $)) (-15 -3083 ((-112) $ (-112))) (-15 -3832 ((-112) $ (-112))) (-15 -3679 ($ $))))) (T -173))
+((-2924 (*1 *1) (-5 *1 (-173))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3083 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3832 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3679 (*1 *1 *1) (-5 *1 (-173))))
+(-13 (-1111) (-10 -8 (-15 -2924 ($)) (-15 -2428 ((-112) $)) (-15 -3353 ((-112) $)) (-15 -3083 ((-112) $ (-112))) (-15 -3832 ((-112) $ (-112))) (-15 -3679 ($ $))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
(((-174) (-141)) (T -174))
NIL
-(-13 (-1058) (-111 $ $) (-10 -7 (-6 (-4454 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-1740 (($ $) 6)))
+(-13 (-1060) (-111 $ $) (-10 -7 (-6 (-4456 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3725 (($ $) 6)))
(((-175) (-141)) (T -175))
-((-1740 (*1 *1 *1) (-4 *1 (-175))))
-(-13 (-10 -8 (-15 -1740 ($ $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 ((|#1| $) 81)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) NIL)) (-3386 (($ $) 21)) (-1490 (($ |#1| (-1166 |#1|)) 50)) (-3957 (((-3 $ "failed") $) 123)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2142 (((-1166 |#1|) $) 88)) (-2172 (((-1166 |#1|) $) 85)) (-1836 (((-1166 |#1|) $) 86)) (-2005 (((-112) $) NIL)) (-2980 (((-1166 |#1|) $) 94)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3867 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ (-650 $)) NIL) (($ $ $) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL)) (-3308 (($ $ (-570)) 97)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3127 (((-1166 |#1|) $) 95)) (-1430 (((-1166 (-413 |#1|)) $) 14)) (-1392 (($ (-413 |#1|)) 17) (($ |#1| (-1166 |#1|) (-1166 |#1|)) 40)) (-2161 (($ $) 99)) (-2869 (((-868) $) 139) (($ (-570)) 53) (($ |#1|) 54) (($ (-413 |#1|)) 38) (($ (-413 (-570))) NIL) (($ $) NIL)) (-2294 (((-777)) 69 T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-2690 (((-1166 (-413 |#1|)) $) 20)) (-1981 (($) 27 T CONST)) (-1998 (($) 30 T CONST)) (-3892 (((-112) $ $) 37)) (-4013 (($ $ $) 121)) (-4003 (($ $) 112) (($ $ $) 109)) (-3992 (($ $ $) 107)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-413 |#1|) $) 117) (($ $ (-413 |#1|)) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL)))
-(((-176 |#1|) (-13 (-38 |#1|) (-38 (-413 |#1|)) (-368) (-10 -8 (-15 -1392 ($ (-413 |#1|))) (-15 -1392 ($ |#1| (-1166 |#1|) (-1166 |#1|))) (-15 -1490 ($ |#1| (-1166 |#1|))) (-15 -2172 ((-1166 |#1|) $)) (-15 -1836 ((-1166 |#1|) $)) (-15 -2142 ((-1166 |#1|) $)) (-15 -3150 (|#1| $)) (-15 -3386 ($ $)) (-15 -2690 ((-1166 (-413 |#1|)) $)) (-15 -1430 ((-1166 (-413 |#1|)) $)) (-15 -2980 ((-1166 |#1|) $)) (-15 -3127 ((-1166 |#1|) $)) (-15 -3308 ($ $ (-570))) (-15 -2161 ($ $)))) (-311)) (T -176))
-((-1392 (*1 *1 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-311)) (-5 *1 (-176 *3)))) (-1392 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2)))) (-1490 (*1 *1 *2 *3) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3150 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))) (-3386 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3308 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))))
-(-13 (-38 |#1|) (-38 (-413 |#1|)) (-368) (-10 -8 (-15 -1392 ($ (-413 |#1|))) (-15 -1392 ($ |#1| (-1166 |#1|) (-1166 |#1|))) (-15 -1490 ($ |#1| (-1166 |#1|))) (-15 -2172 ((-1166 |#1|) $)) (-15 -1836 ((-1166 |#1|) $)) (-15 -2142 ((-1166 |#1|) $)) (-15 -3150 (|#1| $)) (-15 -3386 ($ $)) (-15 -2690 ((-1166 (-413 |#1|)) $)) (-15 -1430 ((-1166 (-413 |#1|)) $)) (-15 -2980 ((-1166 |#1|) $)) (-15 -3127 ((-1166 |#1|) $)) (-15 -3308 ($ $ (-570))) (-15 -2161 ($ $))))
-((-4202 (($ (-109) $) 15)) (-3119 (((-697 (-109)) (-512) $) 14)) (-2869 (((-868) $) 18)) (-2398 (((-650 (-109)) $) 8)))
-(((-177) (-13 (-619 (-868)) (-10 -8 (-15 -2398 ((-650 (-109)) $)) (-15 -4202 ($ (-109) $)) (-15 -3119 ((-697 (-109)) (-512) $))))) (T -177))
-((-2398 (*1 *2 *1) (-12 (-5 *2 (-650 (-109))) (-5 *1 (-177)))) (-4202 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-3119 (*1 *2 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-177)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2398 ((-650 (-109)) $)) (-15 -4202 ($ (-109) $)) (-15 -3119 ((-697 (-109)) (-512) $))))
-((-3999 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 38)) (-1642 (((-950 |#1|) (-950 |#1|)) 22)) (-1615 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 34)) (-3591 (((-950 |#1|) (-950 |#1|)) 20)) (-1543 (((-950 |#1|) (-950 |#1|)) 28)) (-1576 (((-950 |#1|) (-950 |#1|)) 27)) (-3715 (((-950 |#1|) (-950 |#1|)) 26)) (-3895 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 35)) (-2893 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 33)) (-3095 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 32)) (-2519 (((-950 |#1|) (-950 |#1|)) 21)) (-4107 (((-1 (-950 |#1|) (-950 |#1|)) |#1| |#1|) 41)) (-3246 (((-950 |#1|) (-950 |#1|)) 8)) (-4093 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 37)) (-3689 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 36)))
-(((-178 |#1|) (-10 -7 (-15 -3246 ((-950 |#1|) (-950 |#1|))) (-15 -3591 ((-950 |#1|) (-950 |#1|))) (-15 -2519 ((-950 |#1|) (-950 |#1|))) (-15 -1642 ((-950 |#1|) (-950 |#1|))) (-15 -3715 ((-950 |#1|) (-950 |#1|))) (-15 -1576 ((-950 |#1|) (-950 |#1|))) (-15 -1543 ((-950 |#1|) (-950 |#1|))) (-15 -3095 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -2893 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -1615 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3895 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3689 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4093 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3999 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4107 ((-1 (-950 |#1|) (-950 |#1|)) |#1| |#1|))) (-13 (-368) (-1212) (-1011))) (T -178))
-((-4107 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-3999 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-4093 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-3689 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-3895 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-1615 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-2893 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-3095 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))) (-5 *1 (-178 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))) (-5 *1 (-178 *3)))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))) (-5 *1 (-178 *3)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))) (-5 *1 (-178 *3)))) (-2519 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))) (-5 *1 (-178 *3)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))) (-5 *1 (-178 *3)))) (-3246 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011))) (-5 *1 (-178 *3)))))
-(-10 -7 (-15 -3246 ((-950 |#1|) (-950 |#1|))) (-15 -3591 ((-950 |#1|) (-950 |#1|))) (-15 -2519 ((-950 |#1|) (-950 |#1|))) (-15 -1642 ((-950 |#1|) (-950 |#1|))) (-15 -3715 ((-950 |#1|) (-950 |#1|))) (-15 -1576 ((-950 |#1|) (-950 |#1|))) (-15 -1543 ((-950 |#1|) (-950 |#1|))) (-15 -3095 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -2893 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -1615 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3895 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3689 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4093 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3999 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4107 ((-1 (-950 |#1|) (-950 |#1|)) |#1| |#1|)))
-((-1816 ((|#2| |#3|) 28)))
-(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -1816 (|#2| |#3|))) (-174) (-1253 |#1|) (-730 |#1| |#2|)) (T -179))
-((-1816 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1253 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-730 *4 *2)))))
-(-10 -7 (-15 -1816 (|#2| |#3|)))
-((-4429 (((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)) 44 (|has| (-959 |#2|) (-893 |#1|)))))
-(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-959 |#2|) (-893 |#1|)) (-15 -4429 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) |%noBranch|)) (-1109) (-13 (-893 |#1|) (-174)) (-167 |#2|)) (T -180))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *3 (-167 *6)) (-4 (-959 *6) (-893 *5)) (-4 *6 (-13 (-893 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-959 |#2|) (-893 |#1|)) (-15 -4429 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) |%noBranch|))
-((-1316 (((-650 |#1|) (-650 |#1|) |#1|) 41)) (-2287 (((-650 |#1|) |#1| (-650 |#1|)) 20)) (-2976 (((-650 |#1|) (-650 (-650 |#1|)) (-650 |#1|)) 36) ((|#1| (-650 |#1|) (-650 |#1|)) 32)))
-(((-181 |#1|) (-10 -7 (-15 -2287 ((-650 |#1|) |#1| (-650 |#1|))) (-15 -2976 (|#1| (-650 |#1|) (-650 |#1|))) (-15 -2976 ((-650 |#1|) (-650 (-650 |#1|)) (-650 |#1|))) (-15 -1316 ((-650 |#1|) (-650 |#1|) |#1|))) (-311)) (T -181))
-((-1316 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3)))) (-2976 (*1 *2 *3 *2) (-12 (-5 *3 (-650 (-650 *4))) (-5 *2 (-650 *4)) (-4 *4 (-311)) (-5 *1 (-181 *4)))) (-2976 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-181 *2)) (-4 *2 (-311)))) (-2287 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3)))))
-(-10 -7 (-15 -2287 ((-650 |#1|) |#1| (-650 |#1|))) (-15 -2976 (|#1| (-650 |#1|) (-650 |#1|))) (-15 -2976 ((-650 |#1|) (-650 (-650 |#1|)) (-650 |#1|))) (-15 -1316 ((-650 |#1|) (-650 |#1|) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2925 (((-1226) $) 13)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3812 (((-1144) $) 10)) (-2869 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-182) (-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2925 ((-1226) $))))) (T -182))
-((-3812 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-182)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-182)))))
-(-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2925 ((-1226) $))))
-((-3737 (((-2 (|:| |start| |#2|) (|:| -2660 (-424 |#2|))) |#2|) 66)) (-2769 ((|#1| |#1|) 58)) (-1715 (((-171 |#1|) |#2|) 93)) (-4225 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-1721 ((|#2| |#2|) 91)) (-1323 (((-424 |#2|) |#2| |#1|) 118) (((-424 |#2|) |#2| |#1| (-112)) 88)) (-3046 ((|#1| |#2|) 117)) (-4047 ((|#2| |#2|) 130)) (-2340 (((-424 |#2|) |#2|) 153) (((-424 |#2|) |#2| |#1|) 33) (((-424 |#2|) |#2| |#1| (-112)) 152)) (-3000 (((-650 (-2 (|:| -2660 (-650 |#2|)) (|:| -3070 |#1|))) |#2| |#2|) 151) (((-650 (-2 (|:| -2660 (-650 |#2|)) (|:| -3070 |#1|))) |#2| |#2| (-112)) 81)) (-3794 (((-650 (-171 |#1|)) |#2| |#1|) 42) (((-650 (-171 |#1|)) |#2|) 43)))
-(((-183 |#1| |#2|) (-10 -7 (-15 -3794 ((-650 (-171 |#1|)) |#2|)) (-15 -3794 ((-650 (-171 |#1|)) |#2| |#1|)) (-15 -3000 ((-650 (-2 (|:| -2660 (-650 |#2|)) (|:| -3070 |#1|))) |#2| |#2| (-112))) (-15 -3000 ((-650 (-2 (|:| -2660 (-650 |#2|)) (|:| -3070 |#1|))) |#2| |#2|)) (-15 -2340 ((-424 |#2|) |#2| |#1| (-112))) (-15 -2340 ((-424 |#2|) |#2| |#1|)) (-15 -2340 ((-424 |#2|) |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3046 (|#1| |#2|)) (-15 -1323 ((-424 |#2|) |#2| |#1| (-112))) (-15 -1323 ((-424 |#2|) |#2| |#1|)) (-15 -1721 (|#2| |#2|)) (-15 -4225 (|#1| |#2| |#1|)) (-15 -4225 (|#1| |#2|)) (-15 -1715 ((-171 |#1|) |#2|)) (-15 -2769 (|#1| |#1|)) (-15 -3737 ((-2 (|:| |start| |#2|) (|:| -2660 (-424 |#2|))) |#2|))) (-13 (-368) (-854)) (-1253 (-171 |#1|))) (T -183))
-((-3737 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-2 (|:| |start| *3) (|:| -2660 (-424 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-2769 (*1 *2 *2) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1253 (-171 *2))))) (-1715 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-368) (-854))) (-4 *3 (-1253 *2)))) (-4225 (*1 *2 *3) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1253 (-171 *2))))) (-4225 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1253 (-171 *2))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1253 (-171 *3))))) (-1323 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-1323 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-3046 (*1 *2 *3) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1253 (-171 *2))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1253 (-171 *3))))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-2340 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-2340 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-2 (|:| -2660 (-650 *3)) (|:| -3070 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-3000 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-368) (-854))) (-5 *2 (-650 (-2 (|:| -2660 (-650 *3)) (|:| -3070 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1253 (-171 *5))))) (-3794 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))))
-(-10 -7 (-15 -3794 ((-650 (-171 |#1|)) |#2|)) (-15 -3794 ((-650 (-171 |#1|)) |#2| |#1|)) (-15 -3000 ((-650 (-2 (|:| -2660 (-650 |#2|)) (|:| -3070 |#1|))) |#2| |#2| (-112))) (-15 -3000 ((-650 (-2 (|:| -2660 (-650 |#2|)) (|:| -3070 |#1|))) |#2| |#2|)) (-15 -2340 ((-424 |#2|) |#2| |#1| (-112))) (-15 -2340 ((-424 |#2|) |#2| |#1|)) (-15 -2340 ((-424 |#2|) |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3046 (|#1| |#2|)) (-15 -1323 ((-424 |#2|) |#2| |#1| (-112))) (-15 -1323 ((-424 |#2|) |#2| |#1|)) (-15 -1721 (|#2| |#2|)) (-15 -4225 (|#1| |#2| |#1|)) (-15 -4225 (|#1| |#2|)) (-15 -1715 ((-171 |#1|) |#2|)) (-15 -2769 (|#1| |#1|)) (-15 -3737 ((-2 (|:| |start| |#2|) (|:| -2660 (-424 |#2|))) |#2|)))
-((-1755 (((-3 |#2| "failed") |#2|) 16)) (-2511 (((-777) |#2|) 18)) (-2560 ((|#2| |#2| |#2|) 20)))
-(((-184 |#1| |#2|) (-10 -7 (-15 -1755 ((-3 |#2| "failed") |#2|)) (-15 -2511 ((-777) |#2|)) (-15 -2560 (|#2| |#2| |#2|))) (-1227) (-680 |#1|)) (T -184))
-((-2560 (*1 *2 *2 *2) (-12 (-4 *3 (-1227)) (-5 *1 (-184 *3 *2)) (-4 *2 (-680 *3)))) (-2511 (*1 *2 *3) (-12 (-4 *4 (-1227)) (-5 *2 (-777)) (-5 *1 (-184 *4 *3)) (-4 *3 (-680 *4)))) (-1755 (*1 *2 *2) (|partial| -12 (-4 *3 (-1227)) (-5 *1 (-184 *3 *2)) (-4 *2 (-680 *3)))))
-(-10 -7 (-15 -1755 ((-3 |#2| "failed") |#2|)) (-15 -2511 ((-777) |#2|)) (-15 -2560 (|#2| |#2| |#2|)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3727 ((|#1| $) 7)) (-2869 (((-868) $) 14)) (-1344 (((-112) $ $) NIL)) (-4198 (((-650 (-1191)) $) 10)) (-3892 (((-112) $ $) 12)))
-(((-185 |#1|) (-13 (-1109) (-10 -8 (-15 -3727 (|#1| $)) (-15 -4198 ((-650 (-1191)) $)))) (-187)) (T -185))
-((-3727 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(-13 (-1109) (-10 -8 (-15 -3727 (|#1| $)) (-15 -4198 ((-650 (-1191)) $))))
-((-3008 (((-650 (-871)) $) 16)) (-1551 (((-188) $) 8)) (-1435 (((-650 (-112)) $) 13)) (-4196 (((-55) $) 10)))
-(((-186 |#1|) (-10 -8 (-15 -3008 ((-650 (-871)) |#1|)) (-15 -1435 ((-650 (-112)) |#1|)) (-15 -1551 ((-188) |#1|)) (-15 -4196 ((-55) |#1|))) (-187)) (T -186))
-NIL
-(-10 -8 (-15 -3008 ((-650 (-871)) |#1|)) (-15 -1435 ((-650 (-112)) |#1|)) (-15 -1551 ((-188) |#1|)) (-15 -4196 ((-55) |#1|)))
-((-2847 (((-112) $ $) 7)) (-3008 (((-650 (-871)) $) 19)) (-1770 (((-512) $) 16)) (-3240 (((-1168) $) 10)) (-1551 (((-188) $) 21)) (-3917 (((-112) $ (-512)) 14)) (-3891 (((-1129) $) 11)) (-1435 (((-650 (-112)) $) 20)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-4196 (((-55) $) 15)) (-3892 (((-112) $ $) 6)))
+((-3725 (*1 *1 *1) (-4 *1 (-175))))
+(-13 (-10 -8 (-15 -3725 ($ $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 ((|#1| $) 81)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) NIL)) (-1395 (($ $) 21)) (-3250 (($ |#1| (-1168 |#1|)) 50)) (-2982 (((-3 $ "failed") $) 123)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3400 (((-1168 |#1|) $) 88)) (-3722 (((-1168 |#1|) $) 85)) (-3443 (((-1168 |#1|) $) 86)) (-4422 (((-112) $) NIL)) (-2784 (((-1168 |#1|) $) 94)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1335 (($ (-652 $)) NIL) (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ (-652 $)) NIL) (($ $ $) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL)) (-3103 (($ $ (-572)) 97)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1729 (((-1168 |#1|) $) 95)) (-3850 (((-1168 (-415 |#1|)) $) 14)) (-2660 (($ (-415 |#1|)) 17) (($ |#1| (-1168 |#1|) (-1168 |#1|)) 40)) (-3610 (($ $) 99)) (-3491 (((-870) $) 139) (($ (-572)) 53) (($ |#1|) 54) (($ (-415 |#1|)) 38) (($ (-415 (-572))) NIL) (($ $) NIL)) (-2455 (((-779)) 69 T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-3820 (((-1168 (-415 |#1|)) $) 20)) (-2602 (($) 27 T CONST)) (-2619 (($) 30 T CONST)) (-3921 (((-112) $ $) 37)) (-4029 (($ $ $) 121)) (-4018 (($ $) 112) (($ $ $) 109)) (-4005 (($ $ $) 107)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-415 |#1|) $) 117) (($ $ (-415 |#1|)) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL)))
+(((-176 |#1|) (-13 (-38 |#1|) (-38 (-415 |#1|)) (-370) (-10 -8 (-15 -2660 ($ (-415 |#1|))) (-15 -2660 ($ |#1| (-1168 |#1|) (-1168 |#1|))) (-15 -3250 ($ |#1| (-1168 |#1|))) (-15 -3722 ((-1168 |#1|) $)) (-15 -3443 ((-1168 |#1|) $)) (-15 -3400 ((-1168 |#1|) $)) (-15 -3923 (|#1| $)) (-15 -1395 ($ $)) (-15 -3820 ((-1168 (-415 |#1|)) $)) (-15 -3850 ((-1168 (-415 |#1|)) $)) (-15 -2784 ((-1168 |#1|) $)) (-15 -1729 ((-1168 |#1|) $)) (-15 -3103 ($ $ (-572))) (-15 -3610 ($ $)))) (-313)) (T -176))
+((-2660 (*1 *1 *2) (-12 (-5 *2 (-415 *3)) (-4 *3 (-313)) (-5 *1 (-176 *3)))) (-2660 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2)))) (-3250 (*1 *1 *2 *3) (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-3400 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-3923 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))) (-1395 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-176 *3)) (-4 *3 (-313)))) (-3610 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))))
+(-13 (-38 |#1|) (-38 (-415 |#1|)) (-370) (-10 -8 (-15 -2660 ($ (-415 |#1|))) (-15 -2660 ($ |#1| (-1168 |#1|) (-1168 |#1|))) (-15 -3250 ($ |#1| (-1168 |#1|))) (-15 -3722 ((-1168 |#1|) $)) (-15 -3443 ((-1168 |#1|) $)) (-15 -3400 ((-1168 |#1|) $)) (-15 -3923 (|#1| $)) (-15 -1395 ($ $)) (-15 -3820 ((-1168 (-415 |#1|)) $)) (-15 -3850 ((-1168 (-415 |#1|)) $)) (-15 -2784 ((-1168 |#1|) $)) (-15 -1729 ((-1168 |#1|) $)) (-15 -3103 ($ $ (-572))) (-15 -3610 ($ $))))
+((-3626 (($ (-109) $) 15)) (-1656 (((-699 (-109)) (-514) $) 14)) (-3491 (((-870) $) 18)) (-4168 (((-652 (-109)) $) 8)))
+(((-177) (-13 (-621 (-870)) (-10 -8 (-15 -4168 ((-652 (-109)) $)) (-15 -3626 ($ (-109) $)) (-15 -1656 ((-699 (-109)) (-514) $))))) (T -177))
+((-4168 (*1 *2 *1) (-12 (-5 *2 (-652 (-109))) (-5 *1 (-177)))) (-3626 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-1656 (*1 *2 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-177)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -4168 ((-652 (-109)) $)) (-15 -3626 ($ (-109) $)) (-15 -1656 ((-699 (-109)) (-514) $))))
+((-2102 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 38)) (-2015 (((-952 |#1|) (-952 |#1|)) 22)) (-1794 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 34)) (-2797 (((-952 |#1|) (-952 |#1|)) 20)) (-2442 (((-952 |#1|) (-952 |#1|)) 28)) (-2733 (((-952 |#1|) (-952 |#1|)) 27)) (-1518 (((-952 |#1|) (-952 |#1|)) 26)) (-3766 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 35)) (-1996 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 33)) (-1413 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 32)) (-2752 (((-952 |#1|) (-952 |#1|)) 21)) (-3897 (((-1 (-952 |#1|) (-952 |#1|)) |#1| |#1|) 41)) (-3685 (((-952 |#1|) (-952 |#1|)) 8)) (-1807 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 37)) (-4388 (((-1 (-952 |#1|) (-952 |#1|)) |#1|) 36)))
+(((-178 |#1|) (-10 -7 (-15 -3685 ((-952 |#1|) (-952 |#1|))) (-15 -2797 ((-952 |#1|) (-952 |#1|))) (-15 -2752 ((-952 |#1|) (-952 |#1|))) (-15 -2015 ((-952 |#1|) (-952 |#1|))) (-15 -1518 ((-952 |#1|) (-952 |#1|))) (-15 -2733 ((-952 |#1|) (-952 |#1|))) (-15 -2442 ((-952 |#1|) (-952 |#1|))) (-15 -1413 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1996 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1794 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3766 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -4388 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1807 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -2102 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3897 ((-1 (-952 |#1|) (-952 |#1|)) |#1| |#1|))) (-13 (-370) (-1214) (-1013))) (T -178))
+((-3897 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-2102 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1807 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-4388 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-3766 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1794 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1996 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-1413 (*1 *2 *3) (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-2797 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013))) (-5 *1 (-178 *3)))))
+(-10 -7 (-15 -3685 ((-952 |#1|) (-952 |#1|))) (-15 -2797 ((-952 |#1|) (-952 |#1|))) (-15 -2752 ((-952 |#1|) (-952 |#1|))) (-15 -2015 ((-952 |#1|) (-952 |#1|))) (-15 -1518 ((-952 |#1|) (-952 |#1|))) (-15 -2733 ((-952 |#1|) (-952 |#1|))) (-15 -2442 ((-952 |#1|) (-952 |#1|))) (-15 -1413 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1996 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1794 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3766 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -4388 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -1807 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -2102 ((-1 (-952 |#1|) (-952 |#1|)) |#1|)) (-15 -3897 ((-1 (-952 |#1|) (-952 |#1|)) |#1| |#1|)))
+((-3245 ((|#2| |#3|) 28)))
+(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -3245 (|#2| |#3|))) (-174) (-1255 |#1|) (-732 |#1| |#2|)) (T -179))
+((-3245 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1255 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-732 *4 *2)))))
+(-10 -7 (-15 -3245 (|#2| |#3|)))
+((-4034 (((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)) 44 (|has| (-961 |#2|) (-895 |#1|)))))
+(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-961 |#2|) (-895 |#1|)) (-15 -4034 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) |%noBranch|)) (-1111) (-13 (-895 |#1|) (-174)) (-167 |#2|)) (T -180))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *3 (-167 *6)) (-4 (-961 *6) (-895 *5)) (-4 *6 (-13 (-895 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-961 |#2|) (-895 |#1|)) (-15 -4034 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) |%noBranch|))
+((-4228 (((-652 |#1|) (-652 |#1|) |#1|) 41)) (-2381 (((-652 |#1|) |#1| (-652 |#1|)) 20)) (-2739 (((-652 |#1|) (-652 (-652 |#1|)) (-652 |#1|)) 36) ((|#1| (-652 |#1|) (-652 |#1|)) 32)))
+(((-181 |#1|) (-10 -7 (-15 -2381 ((-652 |#1|) |#1| (-652 |#1|))) (-15 -2739 (|#1| (-652 |#1|) (-652 |#1|))) (-15 -2739 ((-652 |#1|) (-652 (-652 |#1|)) (-652 |#1|))) (-15 -4228 ((-652 |#1|) (-652 |#1|) |#1|))) (-313)) (T -181))
+((-4228 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))) (-2739 (*1 *2 *3 *2) (-12 (-5 *3 (-652 (-652 *4))) (-5 *2 (-652 *4)) (-4 *4 (-313)) (-5 *1 (-181 *4)))) (-2739 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-181 *2)) (-4 *2 (-313)))) (-2381 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))))
+(-10 -7 (-15 -2381 ((-652 |#1|) |#1| (-652 |#1|))) (-15 -2739 (|#1| (-652 |#1|) (-652 |#1|))) (-15 -2739 ((-652 |#1|) (-652 (-652 |#1|)) (-652 |#1|))) (-15 -4228 ((-652 |#1|) (-652 |#1|) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3550 (((-1228) $) 13)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4410 (((-1146) $) 10)) (-3491 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-182) (-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3550 ((-1228) $))))) (T -182))
+((-4410 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-182)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-182)))))
+(-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3550 ((-1228) $))))
+((-1696 (((-2 (|:| |start| |#2|) (|:| -1591 (-426 |#2|))) |#2|) 66)) (-3429 ((|#1| |#1|) 58)) (-1521 (((-171 |#1|) |#2|) 93)) (-2586 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-1584 ((|#2| |#2|) 91)) (-3193 (((-426 |#2|) |#2| |#1|) 118) (((-426 |#2|) |#2| |#1| (-112)) 88)) (-2140 ((|#1| |#2|) 117)) (-1334 ((|#2| |#2|) 130)) (-2972 (((-426 |#2|) |#2|) 153) (((-426 |#2|) |#2| |#1|) 33) (((-426 |#2|) |#2| |#1| (-112)) 152)) (-3006 (((-652 (-2 (|:| -1591 (-652 |#2|)) (|:| -3684 |#1|))) |#2| |#2|) 151) (((-652 (-2 (|:| -1591 (-652 |#2|)) (|:| -3684 |#1|))) |#2| |#2| (-112)) 81)) (-4128 (((-652 (-171 |#1|)) |#2| |#1|) 42) (((-652 (-171 |#1|)) |#2|) 43)))
+(((-183 |#1| |#2|) (-10 -7 (-15 -4128 ((-652 (-171 |#1|)) |#2|)) (-15 -4128 ((-652 (-171 |#1|)) |#2| |#1|)) (-15 -3006 ((-652 (-2 (|:| -1591 (-652 |#2|)) (|:| -3684 |#1|))) |#2| |#2| (-112))) (-15 -3006 ((-652 (-2 (|:| -1591 (-652 |#2|)) (|:| -3684 |#1|))) |#2| |#2|)) (-15 -2972 ((-426 |#2|) |#2| |#1| (-112))) (-15 -2972 ((-426 |#2|) |#2| |#1|)) (-15 -2972 ((-426 |#2|) |#2|)) (-15 -1334 (|#2| |#2|)) (-15 -2140 (|#1| |#2|)) (-15 -3193 ((-426 |#2|) |#2| |#1| (-112))) (-15 -3193 ((-426 |#2|) |#2| |#1|)) (-15 -1584 (|#2| |#2|)) (-15 -2586 (|#1| |#2| |#1|)) (-15 -2586 (|#1| |#2|)) (-15 -1521 ((-171 |#1|) |#2|)) (-15 -3429 (|#1| |#1|)) (-15 -1696 ((-2 (|:| |start| |#2|) (|:| -1591 (-426 |#2|))) |#2|))) (-13 (-370) (-856)) (-1255 (-171 |#1|))) (T -183))
+((-1696 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-2 (|:| |start| *3) (|:| -1591 (-426 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-3429 (*1 *2 *2) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-1521 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-370) (-856))) (-4 *3 (-1255 *2)))) (-2586 (*1 *2 *3) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-2586 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1255 (-171 *3))))) (-3193 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-3193 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-2140 (*1 *2 *3) (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1255 (-171 *2))))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1255 (-171 *3))))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-2972 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-2972 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-3006 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-2 (|:| -1591 (-652 *3)) (|:| -3684 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-3006 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-370) (-856))) (-5 *2 (-652 (-2 (|:| -1591 (-652 *3)) (|:| -3684 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1255 (-171 *5))))) (-4128 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))) (-4128 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
+(-10 -7 (-15 -4128 ((-652 (-171 |#1|)) |#2|)) (-15 -4128 ((-652 (-171 |#1|)) |#2| |#1|)) (-15 -3006 ((-652 (-2 (|:| -1591 (-652 |#2|)) (|:| -3684 |#1|))) |#2| |#2| (-112))) (-15 -3006 ((-652 (-2 (|:| -1591 (-652 |#2|)) (|:| -3684 |#1|))) |#2| |#2|)) (-15 -2972 ((-426 |#2|) |#2| |#1| (-112))) (-15 -2972 ((-426 |#2|) |#2| |#1|)) (-15 -2972 ((-426 |#2|) |#2|)) (-15 -1334 (|#2| |#2|)) (-15 -2140 (|#1| |#2|)) (-15 -3193 ((-426 |#2|) |#2| |#1| (-112))) (-15 -3193 ((-426 |#2|) |#2| |#1|)) (-15 -1584 (|#2| |#2|)) (-15 -2586 (|#1| |#2| |#1|)) (-15 -2586 (|#1| |#2|)) (-15 -1521 ((-171 |#1|) |#2|)) (-15 -3429 (|#1| |#1|)) (-15 -1696 ((-2 (|:| |start| |#2|) (|:| -1591 (-426 |#2|))) |#2|)))
+((-3840 (((-3 |#2| "failed") |#2|) 16)) (-2689 (((-779) |#2|) 18)) (-3118 ((|#2| |#2| |#2|) 20)))
+(((-184 |#1| |#2|) (-10 -7 (-15 -3840 ((-3 |#2| "failed") |#2|)) (-15 -2689 ((-779) |#2|)) (-15 -3118 (|#2| |#2| |#2|))) (-1229) (-682 |#1|)) (T -184))
+((-3118 (*1 *2 *2 *2) (-12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2)) (-4 *2 (-682 *3)))) (-2689 (*1 *2 *3) (-12 (-4 *4 (-1229)) (-5 *2 (-779)) (-5 *1 (-184 *4 *3)) (-4 *3 (-682 *4)))) (-3840 (*1 *2 *2) (|partial| -12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2)) (-4 *2 (-682 *3)))))
+(-10 -7 (-15 -3840 ((-3 |#2| "failed") |#2|)) (-15 -2689 ((-779) |#2|)) (-15 -3118 (|#2| |#2| |#2|)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4343 ((|#1| $) 7)) (-3491 (((-870) $) 14)) (-3424 (((-112) $ $) NIL)) (-1701 (((-652 (-1193)) $) 10)) (-3921 (((-112) $ $) 12)))
+(((-185 |#1|) (-13 (-1111) (-10 -8 (-15 -4343 (|#1| $)) (-15 -1701 ((-652 (-1193)) $)))) (-187)) (T -185))
+((-4343 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+(-13 (-1111) (-10 -8 (-15 -4343 (|#1| $)) (-15 -1701 ((-652 (-1193)) $))))
+((-3627 (((-652 (-873)) $) 16)) (-2734 (((-188) $) 8)) (-1430 (((-652 (-112)) $) 13)) (-3586 (((-55) $) 10)))
+(((-186 |#1|) (-10 -8 (-15 -3627 ((-652 (-873)) |#1|)) (-15 -1430 ((-652 (-112)) |#1|)) (-15 -2734 ((-188) |#1|)) (-15 -3586 ((-55) |#1|))) (-187)) (T -186))
+NIL
+(-10 -8 (-15 -3627 ((-652 (-873)) |#1|)) (-15 -1430 ((-652 (-112)) |#1|)) (-15 -2734 ((-188) |#1|)) (-15 -3586 ((-55) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3627 (((-652 (-873)) $) 19)) (-2402 (((-514) $) 16)) (-3618 (((-1170) $) 10)) (-2734 (((-188) $) 21)) (-2685 (((-112) $ (-514)) 14)) (-2614 (((-1131) $) 11)) (-1430 (((-652 (-112)) $) 20)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3586 (((-55) $) 15)) (-3921 (((-112) $ $) 6)))
(((-187) (-141)) (T -187))
-((-1551 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1435 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-112))))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-871))))))
-(-13 (-841 (-512)) (-10 -8 (-15 -1551 ((-188) $)) (-15 -1435 ((-650 (-112)) $)) (-15 -3008 ((-650 (-871)) $))))
-(((-102) . T) ((-619 (-868)) . T) ((-841 (-512)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-8 (($) 7 T CONST)) (-2869 (((-868) $) 12)) (-9 (($) 6 T CONST)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 10)))
-(((-188) (-13 (-1109) (-10 -8 (-15 -9 ($) -3722) (-15 -8 ($) -3722) (-15 -7 ($) -3722)))) (T -188))
+((-2734 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-112))))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-873))))))
+(-13 (-843 (-514)) (-10 -8 (-15 -2734 ((-188) $)) (-15 -1430 ((-652 (-112)) $)) (-15 -3627 ((-652 (-873)) $))))
+(((-102) . T) ((-621 (-870)) . T) ((-843 (-514)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-8 (($) 7 T CONST)) (-3491 (((-870) $) 12)) (-9 (($) 6 T CONST)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 10)))
+(((-188) (-13 (-1111) (-10 -8 (-15 -9 ($) -4338) (-15 -8 ($) -4338) (-15 -7 ($) -4338)))) (T -188))
((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188))))
-(-13 (-1109) (-10 -8 (-15 -9 ($) -3722) (-15 -8 ($) -3722) (-15 -7 ($) -3722)))
-((-2847 (((-112) $ $) NIL)) (-3008 (((-650 (-871)) $) NIL)) (-1770 (((-512) $) 8)) (-3240 (((-1168) $) NIL)) (-1551 (((-188) $) 10)) (-3917 (((-112) $ (-512)) NIL)) (-3891 (((-1129) $) NIL)) (-1601 (((-697 $) (-512)) 17)) (-1435 (((-650 (-112)) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-4196 (((-55) $) 12)) (-3892 (((-112) $ $) NIL)))
-(((-189) (-13 (-187) (-10 -8 (-15 -1601 ((-697 $) (-512)))))) (T -189))
-((-1601 (*1 *2 *3) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-189))) (-5 *1 (-189)))))
-(-13 (-187) (-10 -8 (-15 -1601 ((-697 $) (-512)))))
-((-4264 ((|#2| |#2|) 28)) (-3736 (((-112) |#2|) 19)) (-2473 (((-320 |#1|) |#2|) 12)) (-1959 (((-320 |#1|) |#2|) 14)) (-3474 ((|#2| |#2| (-1186)) 69) ((|#2| |#2|) 70)) (-3635 (((-171 (-320 |#1|)) |#2|) 10)) (-1434 ((|#2| |#2| (-1186)) 66) ((|#2| |#2|) 60)))
-(((-190 |#1| |#2|) (-10 -7 (-15 -3474 (|#2| |#2|)) (-15 -3474 (|#2| |#2| (-1186))) (-15 -1434 (|#2| |#2|)) (-15 -1434 (|#2| |#2| (-1186))) (-15 -2473 ((-320 |#1|) |#2|)) (-15 -1959 ((-320 |#1|) |#2|)) (-15 -3736 ((-112) |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3635 ((-171 (-320 |#1|)) |#2|))) (-13 (-562) (-1047 (-570))) (-13 (-27) (-1212) (-436 (-171 |#1|)))) (T -190))
-((-3635 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-171 (-320 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4)))))) (-4264 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 (-171 *3)))))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4)))))) (-1959 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4)))))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4)))))) (-1434 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 (-171 *4)))))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 (-171 *3)))))) (-3474 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 (-171 *4)))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 (-171 *3)))))))
-(-10 -7 (-15 -3474 (|#2| |#2|)) (-15 -3474 (|#2| |#2| (-1186))) (-15 -1434 (|#2| |#2|)) (-15 -1434 (|#2| |#2| (-1186))) (-15 -2473 ((-320 |#1|) |#2|)) (-15 -1959 ((-320 |#1|) |#2|)) (-15 -3736 ((-112) |#2|)) (-15 -4264 (|#2| |#2|)) (-15 -3635 ((-171 (-320 |#1|)) |#2|)))
-((-1382 (((-1277 (-695 (-959 |#1|))) (-1277 (-695 |#1|))) 26)) (-2869 (((-1277 (-695 (-413 (-959 |#1|)))) (-1277 (-695 |#1|))) 37)))
-(((-191 |#1|) (-10 -7 (-15 -1382 ((-1277 (-695 (-959 |#1|))) (-1277 (-695 |#1|)))) (-15 -2869 ((-1277 (-695 (-413 (-959 |#1|)))) (-1277 (-695 |#1|))))) (-174)) (T -191))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-1277 (-695 *4))) (-4 *4 (-174)) (-5 *2 (-1277 (-695 (-413 (-959 *4))))) (-5 *1 (-191 *4)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-1277 (-695 *4))) (-4 *4 (-174)) (-5 *2 (-1277 (-695 (-959 *4)))) (-5 *1 (-191 *4)))))
-(-10 -7 (-15 -1382 ((-1277 (-695 (-959 |#1|))) (-1277 (-695 |#1|)))) (-15 -2869 ((-1277 (-695 (-413 (-959 |#1|)))) (-1277 (-695 |#1|)))))
-((-2147 (((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570)))) 93)) (-2618 (((-1188 (-413 (-570))) (-650 (-570)) (-650 (-570))) 107)) (-4034 (((-1188 (-413 (-570))) (-928)) 54)) (-2022 (((-1188 (-413 (-570))) (-928)) 79)) (-3034 (((-413 (-570)) (-1188 (-413 (-570)))) 89)) (-4209 (((-1188 (-413 (-570))) (-928)) 37)) (-3280 (((-1188 (-413 (-570))) (-928)) 66)) (-2947 (((-1188 (-413 (-570))) (-928)) 61)) (-1729 (((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570)))) 87)) (-2161 (((-1188 (-413 (-570))) (-928)) 29)) (-4210 (((-413 (-570)) (-1188 (-413 (-570))) (-1188 (-413 (-570)))) 91)) (-1946 (((-1188 (-413 (-570))) (-928)) 35)) (-2385 (((-1188 (-413 (-570))) (-650 (-928))) 100)))
-(((-192) (-10 -7 (-15 -2161 ((-1188 (-413 (-570))) (-928))) (-15 -4034 ((-1188 (-413 (-570))) (-928))) (-15 -4209 ((-1188 (-413 (-570))) (-928))) (-15 -1946 ((-1188 (-413 (-570))) (-928))) (-15 -2947 ((-1188 (-413 (-570))) (-928))) (-15 -3280 ((-1188 (-413 (-570))) (-928))) (-15 -2022 ((-1188 (-413 (-570))) (-928))) (-15 -4210 ((-413 (-570)) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -1729 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -3034 ((-413 (-570)) (-1188 (-413 (-570))))) (-15 -2147 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -2385 ((-1188 (-413 (-570))) (-650 (-928)))) (-15 -2618 ((-1188 (-413 (-570))) (-650 (-570)) (-650 (-570)))))) (T -192))
-((-2618 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-2147 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570))) (-5 *1 (-192)))) (-1729 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-4210 (*1 *2 *3 *3) (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570))) (-5 *1 (-192)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
-(-10 -7 (-15 -2161 ((-1188 (-413 (-570))) (-928))) (-15 -4034 ((-1188 (-413 (-570))) (-928))) (-15 -4209 ((-1188 (-413 (-570))) (-928))) (-15 -1946 ((-1188 (-413 (-570))) (-928))) (-15 -2947 ((-1188 (-413 (-570))) (-928))) (-15 -3280 ((-1188 (-413 (-570))) (-928))) (-15 -2022 ((-1188 (-413 (-570))) (-928))) (-15 -4210 ((-413 (-570)) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -1729 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -3034 ((-413 (-570)) (-1188 (-413 (-570))))) (-15 -2147 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -2385 ((-1188 (-413 (-570))) (-650 (-928)))) (-15 -2618 ((-1188 (-413 (-570))) (-650 (-570)) (-650 (-570)))))
-((-3475 (((-424 (-1182 (-570))) (-570)) 38)) (-1732 (((-650 (-1182 (-570))) (-570)) 33)) (-1457 (((-1182 (-570)) (-570)) 28)))
-(((-193) (-10 -7 (-15 -1732 ((-650 (-1182 (-570))) (-570))) (-15 -1457 ((-1182 (-570)) (-570))) (-15 -3475 ((-424 (-1182 (-570))) (-570))))) (T -193))
-((-3475 (*1 *2 *3) (-12 (-5 *2 (-424 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570)))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-193)) (-5 *3 (-570)))) (-1732 (*1 *2 *3) (-12 (-5 *2 (-650 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570)))))
-(-10 -7 (-15 -1732 ((-650 (-1182 (-570))) (-570))) (-15 -1457 ((-1182 (-570)) (-570))) (-15 -3475 ((-424 (-1182 (-570))) (-570))))
-((-4090 (((-1166 (-227)) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-4336 (((-650 (-1168)) (-1166 (-227))) NIL)) (-1787 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2456 (((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227)))) NIL)) (-2173 (((-650 (-1168)) (-650 (-227))) NIL)) (-1886 (((-227) (-1103 (-849 (-227)))) 31)) (-2322 (((-227) (-1103 (-849 (-227)))) 32)) (-2530 (((-384) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2073 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-2832 (((-1168) (-227)) NIL)) (-3638 (((-1168) (-650 (-1168))) 27)) (-1784 (((-1044) (-1186) (-1186) (-1044)) 13)))
-(((-194) (-10 -7 (-15 -1787 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2073 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1886 ((-227) (-1103 (-849 (-227))))) (-15 -2322 ((-227) (-1103 (-849 (-227))))) (-15 -2530 ((-384) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2456 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -4090 ((-1166 (-227)) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2832 ((-1168) (-227))) (-15 -2173 ((-650 (-1168)) (-650 (-227)))) (-15 -4336 ((-650 (-1168)) (-1166 (-227)))) (-15 -3638 ((-1168) (-650 (-1168)))) (-15 -1784 ((-1044) (-1186) (-1186) (-1044))))) (T -194))
-((-1784 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-194)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-194)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-194)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-194)))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186)) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-194)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-194)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
-(-10 -7 (-15 -1787 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2073 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1886 ((-227) (-1103 (-849 (-227))))) (-15 -2322 ((-227) (-1103 (-849 (-227))))) (-15 -2530 ((-384) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2456 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -4090 ((-1166 (-227)) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2832 ((-1168) (-227))) (-15 -2173 ((-650 (-1168)) (-650 (-227)))) (-15 -4336 ((-650 (-1168)) (-1166 (-227)))) (-15 -3638 ((-1168) (-650 (-1168)))) (-15 -1784 ((-1044) (-1186) (-1186) (-1044))))
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 61) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-195) (-793)) (T -195))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 66) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-196) (-793)) (T -196))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 81) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-197) (-793)) (T -197))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 63) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-198) (-793)) (T -198))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 75) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-199) (-793)) (T -199))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 90) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-200) (-793)) (T -200))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 90) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-201) (-793)) (T -201))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 77) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-202) (-793)) (T -202))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 76)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-203) (-793)) (T -203))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 77)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-204) (-793)) (T -204))
-NIL
-(-793)
-((-2847 (((-112) $ $) NIL)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 105) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-205) (-793)) (T -205))
-NIL
-(-793)
-((-3950 (((-3 (-2 (|:| -1567 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1460 (((-570) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-2412 (((-3 (-650 (-227)) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
-(((-206) (-10 -7 (-15 -3950 ((-3 (-2 (|:| -1567 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2412 ((-3 (-650 (-227)) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1460 ((-570) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
-((-1460 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-570)) (-5 *1 (-206)))) (-2412 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-206)))) (-3950 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1567 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(-10 -7 (-15 -3950 ((-3 (-2 (|:| -1567 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2412 ((-3 (-650 (-227)) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1460 ((-570) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2649 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3376 (((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-4213 (((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-695 (-320 (-227)))) 112)) (-2274 (((-384) (-695 (-320 (-227)))) 140)) (-1385 (((-695 (-320 (-227))) (-1277 (-320 (-227))) (-650 (-1186))) 136)) (-4320 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-2795 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3034 (((-695 (-320 (-227))) (-695 (-320 (-227))) (-650 (-1186)) (-1277 (-320 (-227)))) 125)) (-3988 (((-384) (-384) (-650 (-384))) 133) (((-384) (-384) (-384)) 128)) (-1824 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
-(((-207) (-10 -7 (-15 -3988 ((-384) (-384) (-384))) (-15 -3988 ((-384) (-384) (-650 (-384)))) (-15 -2274 ((-384) (-695 (-320 (-227))))) (-15 -1385 ((-695 (-320 (-227))) (-1277 (-320 (-227))) (-650 (-1186)))) (-15 -3034 ((-695 (-320 (-227))) (-695 (-320 (-227))) (-650 (-1186)) (-1277 (-320 (-227))))) (-15 -4213 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-695 (-320 (-227))))) (-15 -3376 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2649 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2795 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1824 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4320 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
-((-4320 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384)))) (-5 *1 (-207)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-695 (-320 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384)))) (-5 *1 (-207)))) (-3034 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-695 (-320 (-227)))) (-5 *3 (-650 (-1186))) (-5 *4 (-1277 (-320 (-227)))) (-5 *1 (-207)))) (-1385 (*1 *2 *3 *4) (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *4 (-650 (-1186))) (-5 *2 (-695 (-320 (-227)))) (-5 *1 (-207)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-695 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-3988 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-384))) (-5 *2 (-384)) (-5 *1 (-207)))) (-3988 (*1 *2 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-207)))))
-(-10 -7 (-15 -3988 ((-384) (-384) (-384))) (-15 -3988 ((-384) (-384) (-650 (-384)))) (-15 -2274 ((-384) (-695 (-320 (-227))))) (-15 -1385 ((-695 (-320 (-227))) (-1277 (-320 (-227))) (-650 (-1186)))) (-15 -3034 ((-695 (-320 (-227))) (-695 (-320 (-227))) (-650 (-1186)) (-1277 (-320 (-227))))) (-15 -4213 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-695 (-320 (-227))))) (-15 -3376 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2649 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2795 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1824 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4320 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2847 (((-112) $ $) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3679 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3892 (((-112) $ $) NIL)))
-(((-208) (-806)) (T -208))
-NIL
-(-806)
-((-2847 (((-112) $ $) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3679 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3892 (((-112) $ $) NIL)))
-(((-209) (-806)) (T -209))
-NIL
-(-806)
-((-2847 (((-112) $ $) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3679 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3892 (((-112) $ $) NIL)))
-(((-210) (-806)) (T -210))
-NIL
-(-806)
-((-2847 (((-112) $ $) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3679 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3892 (((-112) $ $) NIL)))
-(((-211) (-806)) (T -211))
-NIL
-(-806)
-((-3473 (((-650 (-1186)) (-1186) (-777)) 26)) (-3588 (((-320 (-227)) (-320 (-227))) 35)) (-1522 (((-112) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 87)) (-1554 (((-112) (-227) (-227) (-650 (-320 (-227)))) 47)))
-(((-212) (-10 -7 (-15 -3473 ((-650 (-1186)) (-1186) (-777))) (-15 -3588 ((-320 (-227)) (-320 (-227)))) (-15 -1554 ((-112) (-227) (-227) (-650 (-320 (-227))))) (-15 -1522 ((-112) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))))) (T -212))
-((-1522 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-1554 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-650 (-320 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-212)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-650 (-1186))) (-5 *1 (-212)) (-5 *3 (-1186)))))
-(-10 -7 (-15 -3473 ((-650 (-1186)) (-1186) (-777))) (-15 -3588 ((-320 (-227)) (-320 (-227)))) (-15 -1554 ((-112) (-227) (-227) (-650 (-320 (-227))))) (-15 -1522 ((-112) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))))
-((-2847 (((-112) $ $) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 28)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-2971 (((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 70)) (-3892 (((-112) $ $) NIL)))
-(((-213) (-902)) (T -213))
-NIL
-(-902)
-((-2847 (((-112) $ $) NIL)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 24)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-2971 (((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-214) (-902)) (T -214))
-NIL
-(-902)
-((-2847 (((-112) $ $) NIL)) (-2781 ((|#2| $ (-777) |#2|) 11)) (-2774 ((|#2| $ (-777)) 10)) (-2296 (($) 8)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 23)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 13)))
-(((-215 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -2296 ($)) (-15 -2774 (|#2| $ (-777))) (-15 -2781 (|#2| $ (-777) |#2|)))) (-928) (-1109)) (T -215))
-((-2296 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1109)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *2 (-1109)) (-5 *1 (-215 *4 *2)) (-14 *4 (-928)))) (-2781 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-215 *4 *2)) (-14 *4 (-928)) (-4 *2 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -2296 ($)) (-15 -2774 (|#2| $ (-777))) (-15 -2781 (|#2| $ (-777) |#2|))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1919 (((-1282) $) 37) (((-1282) $ (-928) (-928)) 41)) (-2057 (($ $ (-998)) 19) (((-247 (-1168)) $ (-1186)) 15)) (-2467 (((-1282) $) 35)) (-2869 (((-868) $) 32) (($ (-650 |#1|)) 8)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $ $) 27)) (-3992 (($ $ $) 22)))
-(((-216 |#1|) (-13 (-1109) (-622 (-650 |#1|)) (-10 -8 (-15 -2057 ($ $ (-998))) (-15 -2057 ((-247 (-1168)) $ (-1186))) (-15 -3992 ($ $ $)) (-15 -4003 ($ $ $)) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $)) (-15 -1919 ((-1282) $ (-928) (-928))))) (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $))))) (T -216))
-((-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-998)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $))))))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-247 (-1168))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ *3)) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $))))))) (-3992 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $))))))) (-4003 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $))))))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 (*2 $)) (-15 -1919 (*2 $))))))) (-1919 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 (*2 $)) (-15 -1919 (*2 $))))))) (-1919 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1282)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 (*2 $)) (-15 -1919 (*2 $))))))))
-(-13 (-1109) (-622 (-650 |#1|)) (-10 -8 (-15 -2057 ($ $ (-998))) (-15 -2057 ((-247 (-1168)) $ (-1186))) (-15 -3992 ($ $ $)) (-15 -4003 ($ $ $)) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $)) (-15 -1919 ((-1282) $ (-928) (-928)))))
-((-3281 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3281 (|#2| |#4| (-1 |#2| |#2|)))) (-368) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -217))
-((-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-368)) (-4 *6 (-1253 (-413 *2))) (-4 *2 (-1253 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-347 *5 *2 *6)))))
-(-10 -7 (-15 -3281 (|#2| |#4| (-1 |#2| |#2|))))
-((-3482 ((|#2| |#2| (-777) |#2|) 55)) (-3760 ((|#2| |#2| (-777) |#2|) 51)) (-1896 (((-650 |#2|) (-650 (-2 (|:| |deg| (-777)) (|:| -2532 |#2|)))) 79)) (-1873 (((-650 (-2 (|:| |deg| (-777)) (|:| -2532 |#2|))) |#2|) 73)) (-3076 (((-112) |#2|) 71)) (-3644 (((-424 |#2|) |#2|) 91)) (-2340 (((-424 |#2|) |#2|) 90)) (-2078 ((|#2| |#2| (-777) |#2|) 49)) (-4045 (((-2 (|:| |cont| |#1|) (|:| -2660 (-650 (-2 (|:| |irr| |#2|) (|:| -3634 (-570)))))) |#2| (-112)) 85)))
-(((-218 |#1| |#2|) (-10 -7 (-15 -2340 ((-424 |#2|) |#2|)) (-15 -3644 ((-424 |#2|) |#2|)) (-15 -4045 ((-2 (|:| |cont| |#1|) (|:| -2660 (-650 (-2 (|:| |irr| |#2|) (|:| -3634 (-570)))))) |#2| (-112))) (-15 -1873 ((-650 (-2 (|:| |deg| (-777)) (|:| -2532 |#2|))) |#2|)) (-15 -1896 ((-650 |#2|) (-650 (-2 (|:| |deg| (-777)) (|:| -2532 |#2|))))) (-15 -2078 (|#2| |#2| (-777) |#2|)) (-15 -3760 (|#2| |#2| (-777) |#2|)) (-15 -3482 (|#2| |#2| (-777) |#2|)) (-15 -3076 ((-112) |#2|))) (-354) (-1253 |#1|)) (T -218))
-((-3076 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1253 *4)))) (-3482 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1253 *4)))) (-3760 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1253 *4)))) (-2078 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1253 *4)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |deg| (-777)) (|:| -2532 *5)))) (-4 *5 (-1253 *4)) (-4 *4 (-354)) (-5 *2 (-650 *5)) (-5 *1 (-218 *4 *5)))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -2532 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1253 *4)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1253 *5)))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1253 *4)))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -2340 ((-424 |#2|) |#2|)) (-15 -3644 ((-424 |#2|) |#2|)) (-15 -4045 ((-2 (|:| |cont| |#1|) (|:| -2660 (-650 (-2 (|:| |irr| |#2|) (|:| -3634 (-570)))))) |#2| (-112))) (-15 -1873 ((-650 (-2 (|:| |deg| (-777)) (|:| -2532 |#2|))) |#2|)) (-15 -1896 ((-650 |#2|) (-650 (-2 (|:| |deg| (-777)) (|:| -2532 |#2|))))) (-15 -2078 (|#2| |#2| (-777) |#2|)) (-15 -3760 (|#2| |#2| (-777) |#2|)) (-15 -3482 (|#2| |#2| (-777) |#2|)) (-15 -3076 ((-112) |#2|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 (((-570) $) NIL (|has| (-570) (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| (-570) (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-570) (-1047 (-570))))) (-4387 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-570) (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| (-570) (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 (((-570) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-2746 (((-112) $) NIL (|has| (-570) (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-570) (-856)))) (-2536 (($ (-1 (-570) (-570)) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-570) (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) NIL)) (-2037 (((-570) $) NIL (|has| (-570) (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-2002 (((-777) $) NIL)) (-2057 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-4424 (($ $) NIL)) (-1599 (((-570) $) NIL)) (-3680 (($ (-413 (-570))) 9)) (-2601 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 8) (($ (-570)) NIL) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL) (((-1013 10) $) 10)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2294 (((-777)) NIL T CONST)) (-3850 (((-570) $) NIL (|has| (-570) (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| (-570) (-826)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-3959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-570) (-856)))) (-4013 (($ $ $) NIL) (($ (-570) (-570)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL)))
-(((-219) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 10)) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -3680 ($ (-413 (-570))))))) (T -219))
-((-4113 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219)))))
-(-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 10)) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -3680 ($ (-413 (-570))))))
-((-2847 (((-112) $ $) NIL)) (-1372 (((-1127) $) 13)) (-3240 (((-1168) $) NIL)) (-2657 (((-489) $) 10)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 23) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-1144) $) 15)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-220) (-13 (-1092) (-10 -8 (-15 -2657 ((-489) $)) (-15 -1372 ((-1127) $)) (-15 -1781 ((-1144) $))))) (T -220))
-((-2657 (*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-220)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-220)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-220)))))
-(-13 (-1092) (-10 -8 (-15 -2657 ((-489) $)) (-15 -1372 ((-1127) $)) (-15 -1781 ((-1144) $))))
-((-1363 (((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)) (-1168)) 29) (((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|))) 25)) (-3657 (((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1186) (-849 |#2|) (-849 |#2|) (-112)) 17)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -1363 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)))) (-15 -1363 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)) (-1168))) (-15 -3657 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1186) (-849 |#2|) (-849 |#2|) (-112)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-966) (-29 |#1|))) (T -221))
-((-3657 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1186)) (-5 *6 (-112)) (-4 *7 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-4 *3 (-13 (-1212) (-966) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-849 *3)))) (-1363 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1101 (-849 *3))) (-5 *5 (-1168)) (-4 *3 (-13 (-1212) (-966) (-29 *6))) (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-849 *3))) (-4 *3 (-13 (-1212) (-966) (-29 *5))) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
-(-10 -7 (-15 -1363 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)))) (-15 -1363 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)) (-1168))) (-15 -3657 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1186) (-849 |#2|) (-849 |#2|) (-112))))
-((-1363 (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))) (-1168)) 49) (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|))))) 46) (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))) (-1168)) 50) (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|)))) 22)))
-(((-222 |#1|) (-10 -7 (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))))) (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))) (-1168))) (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))))) (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))) (-1168)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (T -222))
-((-1363 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1101 (-849 (-413 (-959 *6))))) (-5 *5 (-1168)) (-5 *3 (-413 (-959 *6))) (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-849 (-413 (-959 *5))))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1363 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1101 (-849 (-320 *6)))) (-5 *5 (-1168)) (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1101 (-849 (-320 *5)))) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
-(-10 -7 (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))))) (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))) (-1168))) (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))))) (-15 -1363 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))) (-1168))))
-((-2295 (((-2 (|:| -3147 (-1182 |#1|)) (|:| |deg| (-928))) (-1182 |#1|)) 26)) (-3920 (((-650 (-320 |#2|)) (-320 |#2|) (-928)) 51)))
-(((-223 |#1| |#2|) (-10 -7 (-15 -2295 ((-2 (|:| -3147 (-1182 |#1|)) (|:| |deg| (-928))) (-1182 |#1|))) (-15 -3920 ((-650 (-320 |#2|)) (-320 |#2|) (-928)))) (-1058) (-562)) (T -223))
-((-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *6 (-562)) (-5 *2 (-650 (-320 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-320 *6)) (-4 *5 (-1058)))) (-2295 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-2 (|:| -3147 (-1182 *4)) (|:| |deg| (-928)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1182 *4)) (-4 *5 (-562)))))
-(-10 -7 (-15 -2295 ((-2 (|:| -3147 (-1182 |#1|)) (|:| |deg| (-928))) (-1182 |#1|))) (-15 -3920 ((-650 (-320 |#2|)) (-320 |#2|) (-928))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1947 ((|#1| $) NIL)) (-1999 ((|#1| $) 30)) (-2855 (((-112) $ (-777)) NIL)) (-2333 (($) NIL T CONST)) (-3420 (($ $) NIL)) (-4125 (($ $) 39)) (-4191 ((|#1| |#1| $) NIL)) (-3940 ((|#1| $) NIL)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-1831 (((-777) $) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3398 ((|#1| $) NIL)) (-2927 ((|#1| |#1| $) 35)) (-1923 ((|#1| |#1| $) 37)) (-2801 (($ |#1| $) NIL)) (-3326 (((-777) $) 33)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2421 ((|#1| $) NIL)) (-3600 ((|#1| $) 31)) (-1802 ((|#1| $) 29)) (-4126 ((|#1| $) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-3043 ((|#1| |#1| $) NIL)) (-2171 (((-112) $) 9)) (-1698 (($) NIL)) (-3908 ((|#1| $) NIL)) (-3347 (($) NIL) (($ (-650 |#1|)) 16)) (-3307 (((-777) $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1313 ((|#1| $) 13)) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) NIL)) (-2636 ((|#1| $) NIL)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-224 |#1|) (-13 (-257 |#1|) (-10 -8 (-15 -3347 ($ (-650 |#1|))))) (-1109)) (T -224))
-((-3347 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-224 *3)))))
-(-13 (-257 |#1|) (-10 -8 (-15 -3347 ($ (-650 |#1|)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2126 (($ (-320 |#1|)) 24)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-4082 (((-112) $) NIL)) (-2435 (((-3 (-320 |#1|) "failed") $) NIL)) (-4387 (((-320 |#1|) $) NIL)) (-4394 (($ $) 32)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-2536 (($ (-1 (-320 |#1|) (-320 |#1|)) $) NIL)) (-4369 (((-320 |#1|) $) NIL)) (-2880 (($ $) 31)) (-3240 (((-1168) $) NIL)) (-1638 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-3643 (($ (-777)) NIL)) (-2217 (($ $) 33)) (-2650 (((-570) $) NIL)) (-2869 (((-868) $) 65) (($ (-570)) NIL) (($ (-320 |#1|)) NIL)) (-3481 (((-320 |#1|) $ $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 26 T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) 29)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 20)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 25) (($ (-320 |#1|) $) 19)))
-(((-225 |#1| |#2|) (-13 (-626 (-320 |#1|)) (-1047 (-320 |#1|)) (-10 -8 (-15 -4369 ((-320 |#1|) $)) (-15 -2880 ($ $)) (-15 -4394 ($ $)) (-15 -3481 ((-320 |#1|) $ $)) (-15 -3643 ($ (-777))) (-15 -1638 ((-112) $)) (-15 -4082 ((-112) $)) (-15 -2650 ((-570) $)) (-15 -2536 ($ (-1 (-320 |#1|) (-320 |#1|)) $)) (-15 -2126 ($ (-320 |#1|))) (-15 -2217 ($ $)))) (-13 (-1058) (-856)) (-650 (-1186))) (T -225))
-((-4369 (*1 *2 *1) (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-2880 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) (-14 *3 (-650 (-1186))))) (-4394 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) (-14 *3 (-650 (-1186))))) (-3481 (*1 *2 *1 *1) (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-320 *3) (-320 *3))) (-4 *3 (-13 (-1058) (-856))) (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186))))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-320 *3)) (-4 *3 (-13 (-1058) (-856))) (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186))))) (-2217 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) (-14 *3 (-650 (-1186))))))
-(-13 (-626 (-320 |#1|)) (-1047 (-320 |#1|)) (-10 -8 (-15 -4369 ((-320 |#1|) $)) (-15 -2880 ($ $)) (-15 -4394 ($ $)) (-15 -3481 ((-320 |#1|) $ $)) (-15 -3643 ($ (-777))) (-15 -1638 ((-112) $)) (-15 -4082 ((-112) $)) (-15 -2650 ((-570) $)) (-15 -2536 ($ (-1 (-320 |#1|) (-320 |#1|)) $)) (-15 -2126 ($ (-320 |#1|))) (-15 -2217 ($ $))))
-((-2124 (((-112) (-1168)) 26)) (-4312 (((-3 (-849 |#2|) "failed") (-618 |#2|) |#2| (-849 |#2|) (-849 |#2|) (-112)) 35)) (-1777 (((-3 (-112) "failed") (-1182 |#2|) (-849 |#2|) (-849 |#2|) (-112)) 84) (((-3 (-112) "failed") (-959 |#1|) (-1186) (-849 |#2|) (-849 |#2|) (-112)) 85)))
-(((-226 |#1| |#2|) (-10 -7 (-15 -2124 ((-112) (-1168))) (-15 -4312 ((-3 (-849 |#2|) "failed") (-618 |#2|) |#2| (-849 |#2|) (-849 |#2|) (-112))) (-15 -1777 ((-3 (-112) "failed") (-959 |#1|) (-1186) (-849 |#2|) (-849 |#2|) (-112))) (-15 -1777 ((-3 (-112) "failed") (-1182 |#2|) (-849 |#2|) (-849 |#2|) (-112)))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-29 |#1|))) (T -226))
-((-1777 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1182 *6)) (-5 *4 (-849 *6)) (-4 *6 (-13 (-1212) (-29 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-226 *5 *6)))) (-1777 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-959 *6)) (-5 *4 (-1186)) (-5 *5 (-849 *7)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *7 (-13 (-1212) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-4312 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-849 *4)) (-5 *3 (-618 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1212) (-29 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-226 *6 *4)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1212) (-29 *4))))))
-(-10 -7 (-15 -2124 ((-112) (-1168))) (-15 -4312 ((-3 (-849 |#2|) "failed") (-618 |#2|) |#2| (-849 |#2|) (-849 |#2|) (-112))) (-15 -1777 ((-3 (-112) "failed") (-959 |#1|) (-1186) (-849 |#2|) (-849 |#2|) (-112))) (-15 -1777 ((-3 (-112) "failed") (-1182 |#2|) (-849 |#2|) (-849 |#2|) (-112))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 98)) (-3150 (((-570) $) 35)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3025 (($ $) NIL)) (-3900 (($ $) 87)) (-3770 (($ $) 75)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-2459 (($ $) 66)) (-1799 (((-112) $ $) NIL)) (-3876 (($ $) 85)) (-3745 (($ $) 73)) (-2419 (((-570) $) 128)) (-1513 (($ $) 90)) (-3791 (($ $) 77)) (-2333 (($) NIL T CONST)) (-3325 (($ $) NIL)) (-2435 (((-3 (-570) "failed") $) 127) (((-3 (-413 (-570)) "failed") $) 124)) (-4387 (((-570) $) 125) (((-413 (-570)) $) 122)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) 103)) (-4353 (((-413 (-570)) $ (-777)) 117) (((-413 (-570)) $ (-777) (-777)) 116)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-1492 (((-928)) 29) (((-928) (-928)) NIL (|has| $ (-6 -4443)))) (-2811 (((-112) $) NIL)) (-1625 (($) 46)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL)) (-3995 (((-570) $) 42)) (-2005 (((-112) $) 99)) (-3035 (($ $ (-570)) NIL)) (-3046 (($ $) NIL)) (-2746 (((-112) $) 97)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) 63) (($) 38 (-12 (-3201 (|has| $ (-6 -4435))) (-3201 (|has| $ (-6 -4443)))))) (-1764 (($ $ $) 62) (($) 37 (-12 (-3201 (|has| $ (-6 -4435))) (-3201 (|has| $ (-6 -4443)))))) (-3646 (((-570) $) 27)) (-3483 (($ $) 33)) (-3356 (($ $) 67)) (-3447 (($ $) 72)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-2083 (((-928) (-570)) NIL (|has| $ (-6 -4443)))) (-3891 (((-1129) $) 101)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL)) (-2037 (($ $) NIL)) (-1531 (($ (-570) (-570)) NIL) (($ (-570) (-570) (-928)) 110)) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2940 (((-570) $) 28)) (-2183 (($) 45)) (-2651 (($ $) 71)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3961 (((-928)) NIL) (((-928) (-928)) NIL (|has| $ (-6 -4443)))) (-2375 (($ $ (-777)) NIL) (($ $) 104)) (-4060 (((-928) (-570)) NIL (|has| $ (-6 -4443)))) (-1523 (($ $) 88)) (-3801 (($ $) 78)) (-3913 (($ $) 89)) (-3781 (($ $) 76)) (-3887 (($ $) 86)) (-3758 (($ $) 74)) (-2601 (((-384) $) 113) (((-227) $) 14) (((-899 (-384)) $) NIL) (((-542) $) 52)) (-2869 (((-868) $) 49) (($ (-570)) 70) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-570)) 70) (($ (-413 (-570))) NIL)) (-2294 (((-777)) NIL T CONST)) (-3850 (($ $) NIL)) (-3529 (((-928)) 36) (((-928) (-928)) NIL (|has| $ (-6 -4443)))) (-1344 (((-112) $ $) NIL)) (-1540 (((-928)) 25)) (-1561 (($ $) 93)) (-3833 (($ $) 81) (($ $ $) 120)) (-2939 (((-112) $ $) NIL)) (-1536 (($ $) 91)) (-3811 (($ $) 79)) (-1585 (($ $) 96)) (-3853 (($ $) 84)) (-2900 (($ $) 94)) (-3864 (($ $) 82)) (-1575 (($ $) 95)) (-3844 (($ $) 83)) (-1546 (($ $) 92)) (-3821 (($ $) 80)) (-2521 (($ $) 119)) (-1981 (($) 23 T CONST)) (-1998 (($) 43 T CONST)) (-4245 (((-1168) $) 18) (((-1168) $ (-112)) 20) (((-1282) (-828) $) 21) (((-1282) (-828) $ (-112)) 22)) (-4285 (($ $) 107)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-4036 (($ $ $) 109)) (-3959 (((-112) $ $) 56)) (-3933 (((-112) $ $) 54)) (-3892 (((-112) $ $) 64)) (-3945 (((-112) $ $) 55)) (-3918 (((-112) $ $) 53)) (-4013 (($ $ $) 44) (($ $ (-570)) 65)) (-4003 (($ $) 57) (($ $ $) 59)) (-3992 (($ $ $) 58)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 68) (($ $ (-413 (-570))) 152) (($ $ $) 69)) (* (($ (-928) $) 34) (($ (-777) $) NIL) (($ (-570) $) 61) (($ $ $) 60) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-227) (-13 (-410) (-235) (-834) (-1212) (-620 (-542)) (-10 -8 (-15 -4013 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -2183 ($)) (-15 -3483 ($ $)) (-15 -3356 ($ $)) (-15 -3833 ($ $ $)) (-15 -4285 ($ $)) (-15 -4036 ($ $ $)) (-15 -4353 ((-413 (-570)) $ (-777))) (-15 -4353 ((-413 (-570)) $ (-777) (-777)))))) (T -227))
-((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-227)))) (-2183 (*1 *1) (-5 *1 (-227))) (-3483 (*1 *1 *1) (-5 *1 (-227))) (-3356 (*1 *1 *1) (-5 *1 (-227))) (-3833 (*1 *1 *1 *1) (-5 *1 (-227))) (-4285 (*1 *1 *1) (-5 *1 (-227))) (-4036 (*1 *1 *1 *1) (-5 *1 (-227))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227)))) (-4353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227)))))
-(-13 (-410) (-235) (-834) (-1212) (-620 (-542)) (-10 -8 (-15 -4013 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -2183 ($)) (-15 -3483 ($ $)) (-15 -3356 ($ $)) (-15 -3833 ($ $ $)) (-15 -4285 ($ $)) (-15 -4036 ($ $ $)) (-15 -4353 ((-413 (-570)) $ (-777))) (-15 -4353 ((-413 (-570)) $ (-777) (-777)))))
-((-2133 (((-171 (-227)) (-777) (-171 (-227))) 11) (((-227) (-777) (-227)) 12)) (-2732 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2537 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2550 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-2742 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-3471 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-2786 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2413 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3937 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-4386 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-4285 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-4036 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
-(((-228) (-10 -7 (-15 -4285 ((-227) (-227))) (-15 -4285 ((-171 (-227)) (-171 (-227)))) (-15 -4036 ((-227) (-227) (-227))) (-15 -4036 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2732 ((-227) (-227))) (-15 -2732 ((-171 (-227)) (-171 (-227)))) (-15 -2550 ((-227) (-227))) (-15 -2550 ((-171 (-227)) (-171 (-227)))) (-15 -2133 ((-227) (-777) (-227))) (-15 -2133 ((-171 (-227)) (-777) (-171 (-227)))) (-15 -2786 ((-227) (-227) (-227))) (-15 -2786 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2742 ((-227) (-227) (-227))) (-15 -2742 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2413 ((-227) (-227) (-227))) (-15 -2413 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3471 ((-227) (-227) (-227))) (-15 -3471 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4386 ((-171 (-227)) (-171 (-227)))) (-15 -4386 ((-227) (-227))) (-15 -3937 ((-227) (-227))) (-15 -3937 ((-171 (-227)) (-171 (-227)))) (-15 -2537 ((-227) (-227) (-227))) (-15 -2537 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
-((-2537 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2537 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4386 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2413 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2413 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2742 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2742 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2786 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2786 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2133 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-777)) (-5 *1 (-228)))) (-2133 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-777)) (-5 *1 (-228)))) (-2550 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2550 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4036 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4036 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
-(-10 -7 (-15 -4285 ((-227) (-227))) (-15 -4285 ((-171 (-227)) (-171 (-227)))) (-15 -4036 ((-227) (-227) (-227))) (-15 -4036 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2732 ((-227) (-227))) (-15 -2732 ((-171 (-227)) (-171 (-227)))) (-15 -2550 ((-227) (-227))) (-15 -2550 ((-171 (-227)) (-171 (-227)))) (-15 -2133 ((-227) (-777) (-227))) (-15 -2133 ((-171 (-227)) (-777) (-171 (-227)))) (-15 -2786 ((-227) (-227) (-227))) (-15 -2786 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2742 ((-227) (-227) (-227))) (-15 -2742 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2413 ((-227) (-227) (-227))) (-15 -2413 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3471 ((-227) (-227) (-227))) (-15 -3471 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4386 ((-171 (-227)) (-171 (-227)))) (-15 -4386 ((-227) (-227))) (-15 -3937 ((-227) (-227))) (-15 -3937 ((-171 (-227)) (-171 (-227)))) (-15 -2537 ((-227) (-227) (-227))) (-15 -2537 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2866 (($ (-777) (-777)) NIL)) (-2077 (($ $ $) NIL)) (-3412 (($ (-1277 |#1|)) NIL) (($ $) NIL)) (-3517 (($ |#1| |#1| |#1|) 33)) (-3919 (((-112) $) NIL)) (-2695 (($ $ (-570) (-570)) NIL)) (-1479 (($ $ (-570) (-570)) NIL)) (-3533 (($ $ (-570) (-570) (-570) (-570)) NIL)) (-4106 (($ $) NIL)) (-3206 (((-112) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3039 (($ $ (-570) (-570) $) NIL)) (-3040 ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) NIL)) (-2951 (($ $ (-570) (-1277 |#1|)) NIL)) (-2605 (($ $ (-570) (-1277 |#1|)) NIL)) (-2768 (($ |#1| |#1| |#1|) 32)) (-1990 (($ (-777) |#1|) NIL)) (-2333 (($) NIL T CONST)) (-4085 (($ $) NIL (|has| |#1| (-311)))) (-3598 (((-1277 |#1|) $ (-570)) NIL)) (-3466 (($ |#1|) 31)) (-1627 (($ |#1|) 30)) (-2669 (($ |#1|) 29)) (-4412 (((-777) $) NIL (|has| |#1| (-562)))) (-2845 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2774 ((|#1| $ (-570) (-570)) NIL)) (-3976 (((-650 |#1|) $) NIL)) (-2020 (((-777) $) NIL (|has| |#1| (-562)))) (-2244 (((-650 (-1277 |#1|)) $) NIL (|has| |#1| (-562)))) (-4218 (((-777) $) NIL)) (-2296 (($ (-777) (-777) |#1|) NIL)) (-4230 (((-777) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-2728 ((|#1| $) NIL (|has| |#1| (-6 (-4454 "*"))))) (-1863 (((-570) $) NIL)) (-2554 (((-570) $) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2163 (((-570) $) NIL)) (-1448 (((-570) $) NIL)) (-4297 (($ (-650 (-650 |#1|))) 11)) (-2833 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2247 (((-650 (-650 |#1|)) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4066 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-3495 (($) 12)) (-2491 (($ $ $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570))) NIL)) (-2776 (($ (-650 |#1|)) NIL) (($ (-650 $)) NIL)) (-2445 (((-112) $) NIL)) (-2439 ((|#1| $) NIL (|has| |#1| (-6 (-4454 "*"))))) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-4101 (((-1277 |#1|) $ (-570)) NIL)) (-2869 (($ (-1277 |#1|)) NIL) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2074 (((-112) $) NIL)) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-570) $) NIL) (((-1277 |#1|) $ (-1277 |#1|)) 15) (((-1277 |#1|) (-1277 |#1|) $) NIL) (((-950 |#1|) $ (-950 |#1|)) 21)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-229 |#1|) (-13 (-693 |#1| (-1277 |#1|) (-1277 |#1|)) (-10 -8 (-15 * ((-950 |#1|) $ (-950 |#1|))) (-15 -3495 ($)) (-15 -2669 ($ |#1|)) (-15 -1627 ($ |#1|)) (-15 -3466 ($ |#1|)) (-15 -2768 ($ |#1| |#1| |#1|)) (-15 -3517 ($ |#1| |#1| |#1|)))) (-13 (-368) (-1212))) (T -229))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212))) (-5 *1 (-229 *3)))) (-3495 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))) (-2669 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))) (-1627 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))) (-3466 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))) (-2768 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))) (-3517 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))))
-(-13 (-693 |#1| (-1277 |#1|) (-1277 |#1|)) (-10 -8 (-15 * ((-950 |#1|) $ (-950 |#1|))) (-15 -3495 ($)) (-15 -2669 ($ |#1|)) (-15 -1627 ($ |#1|)) (-15 -3466 ($ |#1|)) (-15 -2768 ($ |#1| |#1| |#1|)) (-15 -3517 ($ |#1| |#1| |#1|))))
-((-3350 (($ (-1 (-112) |#2|) $) 16)) (-3614 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2910 (($) NIL) (($ (-650 |#2|)) 11)) (-3892 (((-112) $ $) 26)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3614 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3614 (|#1| |#2| |#1|)) (-15 -2910 (|#1| (-650 |#2|))) (-15 -2910 (|#1|)) (-15 -3892 ((-112) |#1| |#1|))) (-231 |#2|) (-1109)) (T -230))
-NIL
-(-10 -8 (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3614 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3614 (|#1| |#2| |#1|)) (-15 -2910 (|#1| (-650 |#2|))) (-15 -2910 (|#1|)) (-15 -3892 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-3350 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-3153 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ |#1| $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2910 (($) 50) (($ (-650 |#1|)) 49)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 51)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-231 |#1|) (-141) (-1109)) (T -231))
-NIL
-(-13 (-237 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2375 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) 11) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) 19) (($ $ (-777)) NIL) (($ $) 16)) (-3414 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-777)) 14) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)))
-(((-232 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -3414 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3414 (|#1| |#1| (-1186))) (-15 -3414 (|#1| |#1| (-650 (-1186)))) (-15 -3414 (|#1| |#1| (-1186) (-777))) (-15 -3414 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3414 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3414 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1058)) (T -232))
-NIL
-(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -3414 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3414 (|#1| |#1| (-1186))) (-15 -3414 (|#1| |#1| (-650 (-1186)))) (-15 -3414 (|#1| |#1| (-1186) (-777))) (-15 -3414 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3414 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3414 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2375 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-777)) 55) (($ $ (-650 (-1186)) (-650 (-777))) 48 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 47 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 46 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 45 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 43 (|has| |#1| (-235))) (($ $) 41 (|has| |#1| (-235)))) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-777)) 53) (($ $ (-650 (-1186)) (-650 (-777))) 52 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 51 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 50 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 49 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 44 (|has| |#1| (-235))) (($ $) 42 (|has| |#1| (-235)))) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-233 |#1|) (-141) (-1058)) (T -233))
-((-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058)))) (-2375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4)) (-4 *4 (-1058)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058)))) (-3414 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4)) (-4 *4 (-1058)))))
-(-13 (-1058) (-10 -8 (-15 -2375 ($ $ (-1 |t#1| |t#1|))) (-15 -2375 ($ $ (-1 |t#1| |t#1|) (-777))) (-15 -3414 ($ $ (-1 |t#1| |t#1|))) (-15 -3414 ($ $ (-1 |t#1| |t#1|) (-777))) (IF (|has| |t#1| (-235)) (-6 (-235)) |%noBranch|) (IF (|has| |t#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-235) |has| |#1| (-235)) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2375 (($ $) NIL) (($ $ (-777)) 10)) (-3414 (($ $) 8) (($ $ (-777)) 12)))
-(((-234 |#1|) (-10 -8 (-15 -3414 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-777))) (-15 -3414 (|#1| |#1|)) (-15 -2375 (|#1| |#1|))) (-235)) (T -234))
-NIL
-(-10 -8 (-15 -3414 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-777))) (-15 -3414 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2375 (($ $) 42) (($ $ (-777)) 40)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $) 41) (($ $ (-777)) 39)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-235) (-141)) (T -235))
-((-2375 (*1 *1 *1) (-4 *1 (-235))) (-3414 (*1 *1 *1) (-4 *1 (-235))) (-2375 (*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777)))))
-(-13 (-1058) (-10 -8 (-15 -2375 ($ $)) (-15 -3414 ($ $)) (-15 -2375 ($ $ (-777))) (-15 -3414 ($ $ (-777)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2910 (($) 12) (($ (-650 |#2|)) NIL)) (-3064 (($ $) 14)) (-2881 (($ (-650 |#2|)) 10)) (-2869 (((-868) $) 21)))
-(((-236 |#1| |#2|) (-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -2910 (|#1| (-650 |#2|))) (-15 -2910 (|#1|)) (-15 -2881 (|#1| (-650 |#2|))) (-15 -3064 (|#1| |#1|))) (-237 |#2|) (-1109)) (T -236))
-NIL
-(-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -2910 (|#1| (-650 |#2|))) (-15 -2910 (|#1|)) (-15 -2881 (|#1| (-650 |#2|))) (-15 -3064 (|#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-3350 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-3153 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ |#1| $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2910 (($) 50) (($ (-650 |#1|)) 49)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 51)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-237 |#1|) (-141) (-1109)) (T -237))
-((-2910 (*1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1109)))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-237 *3)))) (-3614 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-237 *2)) (-4 *2 (-1109)))) (-3614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-237 *3)) (-4 *3 (-1109)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-237 *3)) (-4 *3 (-1109)))))
-(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2910 ($)) (-15 -2910 ($ (-650 |t#1|))) (IF (|has| $ (-6 -4452)) (PROGN (-15 -3614 ($ |t#1| $)) (-15 -3614 ($ (-1 (-112) |t#1|) $)) (-15 -3350 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-3911 (((-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1277 (-777))) "failed")) (|:| |hom| (-650 (-1277 (-777))))) (-298 (-959 (-570)))) 42)))
-(((-238) (-10 -7 (-15 -3911 ((-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1277 (-777))) "failed")) (|:| |hom| (-650 (-1277 (-777))))) (-298 (-959 (-570))))))) (T -238))
-((-3911 (*1 *2 *3) (-12 (-5 *3 (-298 (-959 (-570)))) (-5 *2 (-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1277 (-777))) "failed")) (|:| |hom| (-650 (-1277 (-777)))))) (-5 *1 (-238)))))
-(-10 -7 (-15 -3911 ((-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1277 (-777))) "failed")) (|:| |hom| (-650 (-1277 (-777))))) (-298 (-959 (-570))))))
-((-2401 (((-777)) 56)) (-3054 (((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 $) (-1277 $)) 53) (((-695 |#3|) (-695 $)) 44) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-4388 (((-135)) 62)) (-2375 (($ $ (-1 |#3| |#3|) (-777)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-2869 (((-1277 |#3|) $) NIL) (($ |#3|) NIL) (((-868) $) NIL) (($ (-570)) 12) (($ (-413 (-570))) NIL)) (-2294 (((-777)) 15)) (-4013 (($ $ |#3|) 59)))
-(((-239 |#1| |#2| |#3|) (-10 -8 (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)) (-15 -2294 ((-777))) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -2869 (|#1| |#3|)) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -3054 ((-695 |#3|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 |#1|) (-1277 |#1|))) (-15 -2401 ((-777))) (-15 -4013 (|#1| |#1| |#3|)) (-15 -4388 ((-135))) (-15 -2869 ((-1277 |#3|) |#1|))) (-240 |#2| |#3|) (-777) (-1227)) (T -239))
-((-4388 (*1 *2) (-12 (-14 *4 (-777)) (-4 *5 (-1227)) (-5 *2 (-135)) (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))) (-2401 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1227)) (-5 *2 (-777)) (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))) (-2294 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1227)) (-5 *2 (-777)) (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))))
-(-10 -8 (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)) (-15 -2294 ((-777))) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -2869 (|#1| |#3|)) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -3054 ((-695 |#3|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 |#1|) (-1277 |#1|))) (-15 -2401 ((-777))) (-15 -4013 (|#1| |#1| |#3|)) (-15 -4388 ((-135))) (-15 -2869 ((-1277 |#3|) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#2| (-1109)))) (-2564 (((-112) $) 73 (|has| |#2| (-132)))) (-3720 (($ (-928)) 126 (|has| |#2| (-1058)))) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-1548 (($ $ $) 122 (|has| |#2| (-799)))) (-3997 (((-3 $ "failed") $ $) 75 (|has| |#2| (-132)))) (-2855 (((-112) $ (-777)) 8)) (-2401 (((-777)) 108 (|has| |#2| (-373)))) (-2419 (((-570) $) 120 (|has| |#2| (-854)))) (-3040 ((|#2| $ (-570) |#2|) 53 (|has| $ (-6 -4453)))) (-2333 (($) 7 T CONST)) (-2435 (((-3 (-570) "failed") $) 68 (-3212 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) 65 (-3212 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1109)))) (-4387 (((-570) $) 67 (-3212 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) 64 (-3212 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) 63 (|has| |#2| (-1109)))) (-3054 (((-695 (-570)) (-695 $)) 107 (-3212 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 106 (-3212 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) 105 (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) 104 (|has| |#2| (-1058)))) (-3957 (((-3 $ "failed") $) 80 (|has| |#2| (-732)))) (-2066 (($) 111 (|has| |#2| (-373)))) (-2845 ((|#2| $ (-570) |#2|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#2| $ (-570)) 52)) (-2811 (((-112) $) 118 (|has| |#2| (-854)))) (-3976 (((-650 |#2|) $) 31 (|has| $ (-6 -4452)))) (-2005 (((-112) $) 82 (|has| |#2| (-732)))) (-2746 (((-112) $) 119 (|has| |#2| (-854)))) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-1908 (($ $ $) 117 (-3749 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-3069 (((-650 |#2|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-1764 (($ $ $) 116 (-3749 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-2833 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2|) $) 36)) (-1997 (((-928) $) 110 (|has| |#2| (-373)))) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#2| (-1109)))) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-4298 (($ (-928)) 109 (|has| |#2| (-373)))) (-3891 (((-1129) $) 21 (|has| |#2| (-1109)))) (-1948 ((|#2| $) 43 (|has| (-570) (-856)))) (-4222 (($ $ |#2|) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) 27 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 26 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 24 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#2| $ (-570) |#2|) 51) ((|#2| $ (-570)) 50)) (-3407 ((|#2| $ $) 125 (|has| |#2| (-1058)))) (-1968 (($ (-1277 |#2|)) 127)) (-4388 (((-135)) 124 (|has| |#2| (-368)))) (-2375 (($ $) 99 (-3212 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) 97 (-3212 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) 95 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) 94 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) 93 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) 92 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) 85 (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1058)))) (-3901 (((-777) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4452))) (((-777) |#2| $) 29 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-1277 |#2|) $) 128) (($ (-570)) 69 (-3749 (-3212 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) 66 (-3212 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) 61 (|has| |#2| (-1109))) (((-868) $) 18 (|has| |#2| (-619 (-868))))) (-2294 (((-777)) 103 (|has| |#2| (-1058)) CONST)) (-1344 (((-112) $ $) 23 (|has| |#2| (-1109)))) (-2061 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4452)))) (-2521 (($ $) 121 (|has| |#2| (-854)))) (-1981 (($) 72 (|has| |#2| (-132)) CONST)) (-1998 (($) 83 (|has| |#2| (-732)) CONST)) (-3414 (($ $) 98 (-3212 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) 96 (-3212 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) 91 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) 90 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) 89 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) 88 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) 87 (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1058)))) (-3959 (((-112) $ $) 114 (-3749 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-3933 (((-112) $ $) 113 (-3749 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-3892 (((-112) $ $) 20 (|has| |#2| (-1109)))) (-3945 (((-112) $ $) 115 (-3749 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-3918 (((-112) $ $) 112 (-3749 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-4013 (($ $ |#2|) 123 (|has| |#2| (-368)))) (-4003 (($ $ $) 102 (|has| |#2| (-1058))) (($ $) 101 (|has| |#2| (-1058)))) (-3992 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-777)) 81 (|has| |#2| (-732))) (($ $ (-928)) 78 (|has| |#2| (-732)))) (* (($ (-570) $) 100 (|has| |#2| (-1058))) (($ $ $) 79 (|has| |#2| (-732))) (($ $ |#2|) 77 (|has| |#2| (-732))) (($ |#2| $) 76 (|has| |#2| (-732))) (($ (-777) $) 74 (|has| |#2| (-132))) (($ (-928) $) 71 (|has| |#2| (-25)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-240 |#1| |#2|) (-141) (-777) (-1227)) (T -240))
-((-1968 (*1 *1 *2) (-12 (-5 *2 (-1277 *4)) (-4 *4 (-1227)) (-4 *1 (-240 *3 *4)))) (-3720 (*1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-240 *3 *4)) (-4 *4 (-1058)) (-4 *4 (-1227)))) (-3407 (*1 *2 *1 *1) (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1227)) (-4 *2 (-1058)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1227)) (-4 *2 (-732)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1227)) (-4 *2 (-732)))))
-(-13 (-610 (-570) |t#2|) (-619 (-1277 |t#2|)) (-10 -8 (-6 -4452) (-15 -1968 ($ (-1277 |t#2|))) (IF (|has| |t#2| (-1109)) (-6 (-417 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1058)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-382 |t#2|)) (-15 -3720 ($ (-928))) (-15 -3407 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-732)) (PROGN (-6 (-732)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4449)) (-6 -4449) |%noBranch|) (IF (|has| |t#2| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |t#2| (-799)) (-6 (-799)) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-1284 |t#2|)) |%noBranch|)))
-(((-21) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-23) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -3749 (|has| |#2| (-1109)) (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-732)) (|has| |#2| (-373)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3749 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-622 #0=(-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))) ((-622 (-570)) -3749 (|has| |#2| (-1058)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-622 |#2|) -3749 (|has| |#2| (-1109)) (|has| |#2| (-174))) ((-619 (-868)) -3749 (|has| |#2| (-1109)) (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-732)) (|has| |#2| (-373)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-619 (-868))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-619 (-1277 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-233 |#2|) |has| |#2| (-1058)) ((-235) -12 (|has| |#2| (-235)) (|has| |#2| (-1058))) ((-290 #1=(-570) |#2|) . T) ((-292 #1# |#2|) . T) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-373) |has| |#2| (-373)) ((-382 |#2|) |has| |#2| (-1058)) ((-417 |#2|) |has| |#2| (-1109)) ((-495 |#2|) . T) ((-610 #1# |#2|) . T) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-652 (-570)) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-652 |#2|) -3749 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-652 $) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-654 |#2|) -3749 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-654 $) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-646 |#2|) -3749 (|has| |#2| (-368)) (|has| |#2| (-174))) ((-645 (-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058))) ((-645 |#2|) |has| |#2| (-1058)) ((-723 |#2|) -3749 (|has| |#2| (-368)) (|has| |#2| (-174))) ((-732) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-732)) (|has| |#2| (-174))) ((-797) |has| |#2| (-854)) ((-798) -3749 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-799) |has| |#2| (-799)) ((-800) -3749 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-801) -3749 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-854) |has| |#2| (-854)) ((-856) -3749 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-907 (-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058))) ((-1047 #0#) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))) ((-1047 (-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) ((-1047 |#2|) |has| |#2| (-1109)) ((-1060 |#2|) -3749 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-1060 $) |has| |#2| (-174)) ((-1065 |#2|) -3749 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-1065 $) |has| |#2| (-174)) ((-1058) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-1067) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-1121) -3749 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-732)) (|has| |#2| (-174))) ((-1109) -3749 (|has| |#2| (-1109)) (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-732)) (|has| |#2| (-373)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1227) . T) ((-1284 |#2|) |has| |#2| (-368)))
-((-3693 (((-242 |#1| |#3|) (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|) 21)) (-2295 ((|#3| (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|) 23)) (-2536 (((-242 |#1| |#3|) (-1 |#3| |#2|) (-242 |#1| |#2|)) 18)))
-(((-241 |#1| |#2| |#3|) (-10 -7 (-15 -3693 ((-242 |#1| |#3|) (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -2295 (|#3| (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -2536 ((-242 |#1| |#3|) (-1 |#3| |#2|) (-242 |#1| |#2|)))) (-777) (-1227) (-1227)) (T -241))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777)) (-4 *6 (-1227)) (-4 *7 (-1227)) (-5 *2 (-242 *5 *7)) (-5 *1 (-241 *5 *6 *7)))) (-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777)) (-4 *6 (-1227)) (-4 *2 (-1227)) (-5 *1 (-241 *5 *6 *2)))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-242 *6 *7)) (-14 *6 (-777)) (-4 *7 (-1227)) (-4 *5 (-1227)) (-5 *2 (-242 *6 *5)) (-5 *1 (-241 *6 *7 *5)))))
-(-10 -7 (-15 -3693 ((-242 |#1| |#3|) (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -2295 (|#3| (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -2536 ((-242 |#1| |#3|) (-1 |#3| |#2|) (-242 |#1| |#2|))))
-((-2847 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2564 (((-112) $) NIL (|has| |#2| (-132)))) (-3720 (($ (-928)) 62 (|has| |#2| (-1058)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-1548 (($ $ $) 68 (|has| |#2| (-799)))) (-3997 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| |#2| (-373)))) (-2419 (((-570) $) NIL (|has| |#2| (-854)))) (-3040 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1109)))) (-4387 (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) 28 (|has| |#2| (-1109)))) (-3054 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) NIL (|has| |#2| (-1058)))) (-3957 (((-3 $ "failed") $) 58 (|has| |#2| (-732)))) (-2066 (($) NIL (|has| |#2| (-373)))) (-2845 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ (-570)) 56)) (-2811 (((-112) $) NIL (|has| |#2| (-854)))) (-3976 (((-650 |#2|) $) 14 (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL (|has| |#2| (-732)))) (-2746 (((-112) $) NIL (|has| |#2| (-854)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 19 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3069 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#2| (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#2| (-1109)))) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-4298 (($ (-928)) NIL (|has| |#2| (-373)))) (-3891 (((-1129) $) NIL (|has| |#2| (-1109)))) (-1948 ((|#2| $) NIL (|has| (-570) (-856)))) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) 20)) (-3407 ((|#2| $ $) NIL (|has| |#2| (-1058)))) (-1968 (($ (-1277 |#2|)) 17)) (-4388 (((-135)) NIL (|has| |#2| (-368)))) (-2375 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3901 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-1277 |#2|) $) 9) (($ (-570)) NIL (-3749 (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) 12 (|has| |#2| (-1109))) (((-868) $) NIL (|has| |#2| (-619 (-868))))) (-2294 (((-777)) NIL (|has| |#2| (-1058)) CONST)) (-1344 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2061 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-2521 (($ $) NIL (|has| |#2| (-854)))) (-1981 (($) 36 (|has| |#2| (-132)) CONST)) (-1998 (($) 40 (|has| |#2| (-732)) CONST)) (-3414 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3959 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3933 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3892 (((-112) $ $) 27 (|has| |#2| (-1109)))) (-3945 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3918 (((-112) $ $) 66 (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $ $) NIL (|has| |#2| (-1058))) (($ $) NIL (|has| |#2| (-1058)))) (-3992 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-777)) NIL (|has| |#2| (-732))) (($ $ (-928)) NIL (|has| |#2| (-732)))) (* (($ (-570) $) NIL (|has| |#2| (-1058))) (($ $ $) 46 (|has| |#2| (-732))) (($ $ |#2|) 44 (|has| |#2| (-732))) (($ |#2| $) 45 (|has| |#2| (-732))) (($ (-777) $) NIL (|has| |#2| (-132))) (($ (-928) $) NIL (|has| |#2| (-25)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-242 |#1| |#2|) (-240 |#1| |#2|) (-777) (-1227)) (T -242))
-NIL
-(-240 |#1| |#2|)
-((-1407 (((-570) (-650 (-1168))) 36) (((-570) (-1168)) 29)) (-3573 (((-1282) (-650 (-1168))) 40) (((-1282) (-1168)) 39)) (-2793 (((-1168)) 16)) (-1494 (((-1168) (-570) (-1168)) 23)) (-1744 (((-650 (-1168)) (-650 (-1168)) (-570) (-1168)) 37) (((-1168) (-1168) (-570) (-1168)) 35)) (-3007 (((-650 (-1168)) (-650 (-1168))) 15) (((-650 (-1168)) (-1168)) 11)))
-(((-243) (-10 -7 (-15 -3007 ((-650 (-1168)) (-1168))) (-15 -3007 ((-650 (-1168)) (-650 (-1168)))) (-15 -2793 ((-1168))) (-15 -1494 ((-1168) (-570) (-1168))) (-15 -1744 ((-1168) (-1168) (-570) (-1168))) (-15 -1744 ((-650 (-1168)) (-650 (-1168)) (-570) (-1168))) (-15 -3573 ((-1282) (-1168))) (-15 -3573 ((-1282) (-650 (-1168)))) (-15 -1407 ((-570) (-1168))) (-15 -1407 ((-570) (-650 (-1168)))))) (T -243))
-((-1407 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-570)) (-5 *1 (-243)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-243)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1282)) (-5 *1 (-243)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-243)))) (-1744 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-650 (-1168))) (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *1 (-243)))) (-1744 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243)))) (-1494 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243)))) (-2793 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-243)))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243)))) (-3007 (*1 *2 *3) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243)) (-5 *3 (-1168)))))
-(-10 -7 (-15 -3007 ((-650 (-1168)) (-1168))) (-15 -3007 ((-650 (-1168)) (-650 (-1168)))) (-15 -2793 ((-1168))) (-15 -1494 ((-1168) (-570) (-1168))) (-15 -1744 ((-1168) (-1168) (-570) (-1168))) (-15 -1744 ((-650 (-1168)) (-650 (-1168)) (-570) (-1168))) (-15 -3573 ((-1282) (-1168))) (-15 -3573 ((-1282) (-650 (-1168)))) (-15 -1407 ((-570) (-1168))) (-15 -1407 ((-570) (-650 (-1168)))))
-((** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 20)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ (-413 (-570)) $) 27) (($ $ (-413 (-570))) NIL)))
-(((-244 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-245)) (T -244))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 47)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 51)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 48)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ (-413 (-570)) $) 50) (($ $ (-413 (-570))) 49)))
-(((-245) (-141)) (T -245))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-245)) (-5 *2 (-570)))) (-4315 (*1 *1 *1) (-4 *1 (-245))))
-(-13 (-294) (-38 (-413 (-570))) (-10 -8 (-15 ** ($ $ (-570))) (-15 -4315 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-294) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-723 #0#) . T) ((-732) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-3446 (($ $) 58)) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-1841 (($ $ $) 54 (|has| $ (-6 -4453)))) (-3546 (($ $ $) 53 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-2333 (($) 7 T CONST)) (-1666 (($ $) 57)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2072 (($ $) 56)) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3637 ((|#1| $) 60)) (-2657 (($ $) 59)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48)) (-2352 (((-570) $ $) 45)) (-1355 (((-112) $) 47)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-1674 (($ $ $) 55 (|has| $ (-6 -4453)))) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-246 |#1|) (-141) (-1227)) (T -246))
-((-3637 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227)))) (-2657 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227)))) (-1666 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227)))) (-1674 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-246 *2)) (-4 *2 (-1227)))) (-1841 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-246 *2)) (-4 *2 (-1227)))) (-3546 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-246 *2)) (-4 *2 (-1227)))))
-(-13 (-1019 |t#1|) (-10 -8 (-15 -3637 (|t#1| $)) (-15 -2657 ($ $)) (-15 -3446 ($ $)) (-15 -1666 ($ $)) (-15 -2072 ($ $)) (IF (|has| $ (-6 -4453)) (PROGN (-15 -1674 ($ $ $)) (-15 -1841 ($ $ $)) (-15 -3546 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) NIL)) (-2975 ((|#1| $) NIL)) (-3446 (($ $) NIL)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) $) NIL (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2778 (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2018 (($ $) 10 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-2364 (($ $ $) NIL (|has| $ (-6 -4453)))) (-1639 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4453))) (($ $ "rest" $) NIL (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) |#1|) $) NIL)) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2963 ((|#1| $) NIL)) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-1962 (($ $) NIL) (($ $ (-777)) NIL)) (-1381 (($ $) NIL (|has| |#1| (-1109)))) (-3153 (($ $) 7 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-3617 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2836 (((-112) $) NIL)) (-2619 (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109))) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) NIL)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-3675 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4356 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1677 (($ |#1|) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3637 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2801 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2119 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-2655 (((-112) $) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1244 (-570))) NIL) ((|#1| $ (-570)) NIL) ((|#1| $ (-570) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-777) $ "count") 16)) (-2352 (((-570) $ $) NIL)) (-3332 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-3225 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-1455 (($ (-650 |#1|)) 22)) (-1355 (((-112) $) NIL)) (-2288 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4453)))) (-2846 (((-777) $) NIL)) (-3522 (($ $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) NIL)) (-1674 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1505 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-650 $)) NIL) (($ $ |#1|) NIL)) (-2869 (($ (-650 |#1|)) 17) (((-650 |#1|) $) 18) (((-868) $) 21 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) 14 (|has| $ (-6 -4452)))))
-(((-247 |#1|) (-13 (-672 |#1|) (-496 (-650 |#1|)) (-10 -8 (-15 -1455 ($ (-650 |#1|))) (-15 -2057 ($ $ "unique")) (-15 -2057 ($ $ "sort")) (-15 -2057 ((-777) $ "count")))) (-856)) (T -247))
-((-1455 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-247 *3)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-247 *3)) (-4 *3 (-856)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-247 *3)) (-4 *3 (-856)))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-777)) (-5 *1 (-247 *4)) (-4 *4 (-856)))))
-(-13 (-672 |#1|) (-496 (-650 |#1|)) (-10 -8 (-15 -1455 ($ (-650 |#1|))) (-15 -2057 ($ $ "unique")) (-15 -2057 ($ $ "sort")) (-15 -2057 ((-777) $ "count"))))
-((-2702 (((-3 (-777) "failed") |#1| |#1| (-777)) 40)))
-(((-248 |#1|) (-10 -7 (-15 -2702 ((-3 (-777) "failed") |#1| |#1| (-777)))) (-13 (-732) (-373) (-10 -7 (-15 ** (|#1| |#1| (-570)))))) (T -248))
-((-2702 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-777)) (-4 *3 (-13 (-732) (-373) (-10 -7 (-15 ** (*3 *3 (-570)))))) (-5 *1 (-248 *3)))))
-(-10 -7 (-15 -2702 ((-3 (-777) "failed") |#1| |#1| (-777))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-870 |#1|)) $) NIL)) (-3449 (((-1182 $) $ (-870 |#1|)) NIL) (((-1182 |#2|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2046 (($ $) NIL (|has| |#2| (-562)))) (-3426 (((-112) $) NIL (|has| |#2| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-870 |#1|))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3312 (($ $) NIL (|has| |#2| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#2| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-4387 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2067 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-3652 (($ $ (-650 (-570))) NIL)) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#2| (-916)))) (-2425 (($ $ |#2| (-242 (-2857 |#1|) (-777)) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-2417 (($ (-1182 |#2|) (-870 |#1|)) NIL) (($ (-1182 $) (-870 |#1|)) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#2| (-242 (-2857 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-870 |#1|)) NIL)) (-2689 (((-242 (-2857 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-3989 (($ (-1 (-242 (-2857 |#1|) (-777)) (-242 (-2857 |#1|) (-777))) $) NIL)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-3168 (((-3 (-870 |#1|) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#2| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3240 (((-1168) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -2940 (-777))) "failed") $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#2| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) NIL) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) NIL) (($ $ (-870 |#1|) $) NIL) (($ $ (-650 (-870 |#1|)) (-650 $)) NIL)) (-2896 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-2375 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2650 (((-242 (-2857 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-2128 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-870 |#1|)) NIL) (($ (-413 (-570))) NIL (-3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-242 (-2857 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-249 |#1| |#2|) (-13 (-956 |#2| (-242 (-2857 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -3652 ($ $ (-650 (-570)))))) (-650 (-1186)) (-1058)) (T -249))
-((-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-249 *3 *4)) (-14 *3 (-650 (-1186))) (-4 *4 (-1058)))))
-(-13 (-956 |#2| (-242 (-2857 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -3652 ($ $ (-650 (-570))))))
-((-2847 (((-112) $ $) NIL)) (-2563 (((-1282) $) 17)) (-3973 (((-185 (-251)) $) 11)) (-2704 (($ (-185 (-251))) 12)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3727 (((-251) $) 7)) (-2869 (((-868) $) 9)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 15)))
-(((-250) (-13 (-1109) (-10 -8 (-15 -3727 ((-251) $)) (-15 -3973 ((-185 (-251)) $)) (-15 -2704 ($ (-185 (-251)))) (-15 -2563 ((-1282) $))))) (T -250))
-((-3727 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-250)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250)))) (-2704 (*1 *1 *2) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-250)))))
-(-13 (-1109) (-10 -8 (-15 -3727 ((-251) $)) (-15 -3973 ((-185 (-251)) $)) (-15 -2704 ($ (-185 (-251)))) (-15 -2563 ((-1282) $))))
-((-2847 (((-112) $ $) NIL)) (-3008 (((-650 (-871)) $) NIL)) (-1770 (((-512) $) NIL)) (-3240 (((-1168) $) NIL)) (-1551 (((-188) $) NIL)) (-3917 (((-112) $ (-512)) NIL)) (-3891 (((-1129) $) NIL)) (-1528 (((-337) $) 7)) (-1435 (((-650 (-112)) $) NIL)) (-2869 (((-868) $) NIL) (((-189) $) 8)) (-1344 (((-112) $ $) NIL)) (-4196 (((-55) $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-251) (-13 (-187) (-619 (-189)) (-10 -8 (-15 -1528 ((-337) $))))) (T -251))
-((-1528 (*1 *2 *1) (-12 (-5 *2 (-337)) (-5 *1 (-251)))))
-(-13 (-187) (-619 (-189)) (-10 -8 (-15 -1528 ((-337) $))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2057 (((-1191) $ (-777)) 13)) (-2869 (((-868) $) 20)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 16)) (-2857 (((-777) $) 9)))
-(((-252) (-13 (-1109) (-290 (-777) (-1191)) (-10 -8 (-15 -2857 ((-777) $))))) (T -252))
-((-2857 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-252)))))
-(-13 (-1109) (-290 (-777) (-1191)) (-10 -8 (-15 -2857 ((-777) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3720 (($ (-928)) NIL (|has| |#4| (-1058)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-1548 (($ $ $) NIL (|has| |#4| (-799)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| |#4| (-373)))) (-2419 (((-570) $) NIL (|has| |#4| (-854)))) (-3040 ((|#4| $ (-570) |#4|) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1109))) (((-3 (-570) "failed") $) NIL (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))) (-4387 ((|#4| $) NIL (|has| |#4| (-1109))) (((-570) $) NIL (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))) (-3054 (((-2 (|:| -2565 (-695 |#4|)) (|:| |vec| (-1277 |#4|))) (-695 $) (-1277 $)) NIL (|has| |#4| (-1058))) (((-695 |#4|) (-695 $)) NIL (|has| |#4| (-1058))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))))) (-3957 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (-2066 (($) NIL (|has| |#4| (-373)))) (-2845 ((|#4| $ (-570) |#4|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#4| $ (-570)) NIL)) (-2811 (((-112) $) NIL (|has| |#4| (-854)))) (-3976 (((-650 |#4|) $) NIL (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL (-3749 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (-2746 (((-112) $) NIL (|has| |#4| (-854)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (-3749 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-3069 (((-650 |#4|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (-3749 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-2833 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#4| (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-4298 (($ (-928)) NIL (|has| |#4| (-373)))) (-3891 (((-1129) $) NIL)) (-1948 ((|#4| $) NIL (|has| (-570) (-856)))) (-4222 (($ $ |#4|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-2856 (((-650 |#4|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#4| $ (-570) |#4|) NIL) ((|#4| $ (-570)) 12)) (-3407 ((|#4| $ $) NIL (|has| |#4| (-1058)))) (-1968 (($ (-1277 |#4|)) NIL)) (-4388 (((-135)) NIL (|has| |#4| (-368)))) (-2375 (($ $ (-1 |#4| |#4|) (-777)) NIL (|has| |#4| (-1058))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058)))) (($ $) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))))) (-3901 (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452))) (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-1277 |#4|) $) NIL) (((-868) $) NIL) (($ |#4|) NIL (|has| |#4| (-1109))) (($ (-570)) NIL (-3749 (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109))) (|has| |#4| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))) (-2294 (((-777)) NIL (|has| |#4| (-1058)) CONST)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-2521 (($ $) NIL (|has| |#4| (-854)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL (-3749 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) CONST)) (-3414 (($ $ (-1 |#4| |#4|) (-777)) NIL (|has| |#4| (-1058))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058)))) (($ $) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))))) (-3959 (((-112) $ $) NIL (-3749 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-3933 (((-112) $ $) NIL (-3749 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (-3749 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-3918 (((-112) $ $) NIL (-3749 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-4013 (($ $ |#4|) NIL (|has| |#4| (-368)))) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL (-3749 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058))))) (($ $ (-928)) NIL (-3749 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (* (($ |#2| $) 14) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-732))) (($ |#4| $) NIL (|has| |#4| (-732))) (($ $ $) NIL (-3749 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-253 |#1| |#2| |#3| |#4|) (-13 (-240 |#1| |#4|) (-654 |#2|) (-654 |#3|)) (-928) (-1058) (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-654 |#2|)) (T -253))
-NIL
-(-13 (-240 |#1| |#4|) (-654 |#2|) (-654 |#3|))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3720 (($ (-928)) NIL (|has| |#3| (-1058)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-1548 (($ $ $) NIL (|has| |#3| (-799)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| |#3| (-373)))) (-2419 (((-570) $) NIL (|has| |#3| (-854)))) (-3040 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1109))) (((-3 (-570) "failed") $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))) (-4387 ((|#3| $) NIL (|has| |#3| (-1109))) (((-570) $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))) (-3054 (((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 $) (-1277 $)) NIL (|has| |#3| (-1058))) (((-695 |#3|) (-695 $)) NIL (|has| |#3| (-1058))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))))) (-3957 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (-2066 (($) NIL (|has| |#3| (-373)))) (-2845 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#3| $ (-570)) NIL)) (-2811 (((-112) $) NIL (|has| |#3| (-854)))) (-3976 (((-650 |#3|) $) NIL (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL (-3749 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (-2746 (((-112) $) NIL (|has| |#3| (-854)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3069 (((-650 |#3|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#3| |#3|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#3| (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-4298 (($ (-928)) NIL (|has| |#3| (-373)))) (-3891 (((-1129) $) NIL)) (-1948 ((|#3| $) NIL (|has| (-570) (-856)))) (-4222 (($ $ |#3|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#3|))) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 |#3|) (-650 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109))))) (-2856 (((-650 |#3|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#3| $ (-570) |#3|) NIL) ((|#3| $ (-570)) 11)) (-3407 ((|#3| $ $) NIL (|has| |#3| (-1058)))) (-1968 (($ (-1277 |#3|)) NIL)) (-4388 (((-135)) NIL (|has| |#3| (-368)))) (-2375 (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))))) (-3901 (((-777) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452))) (((-777) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-1277 |#3|) $) NIL) (((-868) $) NIL) (($ |#3|) NIL (|has| |#3| (-1109))) (($ (-570)) NIL (-3749 (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))) (-2294 (((-777)) NIL (|has| |#3| (-1058)) CONST)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452)))) (-2521 (($ $) NIL (|has| |#3| (-854)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL (-3749 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) CONST)) (-3414 (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))))) (-3959 (((-112) $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3933 (((-112) $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3918 (((-112) $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-4013 (($ $ |#3|) NIL (|has| |#3| (-368)))) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL (-3749 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058))))) (($ $ (-928)) NIL (-3749 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (* (($ |#2| $) 13) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-732))) (($ |#3| $) NIL (|has| |#3| (-732))) (($ $ $) NIL (-3749 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-254 |#1| |#2| |#3|) (-13 (-240 |#1| |#3|) (-654 |#2|)) (-777) (-1058) (-654 |#2|)) (T -254))
-NIL
-(-13 (-240 |#1| |#3|) (-654 |#2|))
-((-2603 (((-650 (-777)) $) 56) (((-650 (-777)) $ |#3|) 59)) (-2023 (((-777) $) 58) (((-777) $ |#3|) 61)) (-3285 (($ $) 76)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3995 (((-777) $ |#3|) 43) (((-777) $) 38)) (-2299 (((-1 $ (-777)) |#3|) 15) (((-1 $ (-777)) $) 88)) (-2134 ((|#4| $) 69)) (-1386 (((-112) $) 67)) (-2803 (($ $) 75)) (-3034 (($ $ (-650 (-298 $))) 111) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-650 |#4|) (-650 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-650 |#4|) (-650 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-650 |#3|) (-650 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-650 |#3|) (-650 |#2|)) 97)) (-2375 (($ $ |#4|) NIL) (($ $ (-650 |#4|)) NIL) (($ $ |#4| (-777)) NIL) (($ $ (-650 |#4|) (-650 (-777))) NIL) (($ $) NIL) (($ $ (-777)) NIL) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2753 (((-650 |#3|) $) 86)) (-2650 ((|#5| $) NIL) (((-777) $ |#4|) NIL) (((-650 (-777)) $ (-650 |#4|)) NIL) (((-777) $ |#3|) 49)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-413 (-570))) NIL) (($ $) NIL)))
-(((-255 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -3034 (|#1| |#1| (-650 |#3|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#3| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#3|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#3| |#1|)) (-15 -2299 ((-1 |#1| (-777)) |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -2134 (|#4| |#1|)) (-15 -1386 ((-112) |#1|)) (-15 -2023 ((-777) |#1| |#3|)) (-15 -2603 ((-650 (-777)) |#1| |#3|)) (-15 -2023 ((-777) |#1|)) (-15 -2603 ((-650 (-777)) |#1|)) (-15 -2650 ((-777) |#1| |#3|)) (-15 -3995 ((-777) |#1|)) (-15 -3995 ((-777) |#1| |#3|)) (-15 -2753 ((-650 |#3|) |#1|)) (-15 -2299 ((-1 |#1| (-777)) |#3|)) (-15 -2869 (|#1| |#3|)) (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2650 ((-650 (-777)) |#1| (-650 |#4|))) (-15 -2650 ((-777) |#1| |#4|)) (-15 -2869 (|#1| |#4|)) (-15 -2435 ((-3 |#4| "failed") |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#4| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#4| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -2650 (|#5| |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2375 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -2375 (|#1| |#1| |#4| (-777))) (-15 -2375 (|#1| |#1| (-650 |#4|))) (-15 -2375 (|#1| |#1| |#4|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-256 |#2| |#3| |#4| |#5|) (-1058) (-856) (-269 |#3|) (-799)) (T -255))
-NIL
-(-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -3034 (|#1| |#1| (-650 |#3|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#3| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#3|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#3| |#1|)) (-15 -2299 ((-1 |#1| (-777)) |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -2134 (|#4| |#1|)) (-15 -1386 ((-112) |#1|)) (-15 -2023 ((-777) |#1| |#3|)) (-15 -2603 ((-650 (-777)) |#1| |#3|)) (-15 -2023 ((-777) |#1|)) (-15 -2603 ((-650 (-777)) |#1|)) (-15 -2650 ((-777) |#1| |#3|)) (-15 -3995 ((-777) |#1|)) (-15 -3995 ((-777) |#1| |#3|)) (-15 -2753 ((-650 |#3|) |#1|)) (-15 -2299 ((-1 |#1| (-777)) |#3|)) (-15 -2869 (|#1| |#3|)) (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2650 ((-650 (-777)) |#1| (-650 |#4|))) (-15 -2650 ((-777) |#1| |#4|)) (-15 -2869 (|#1| |#4|)) (-15 -2435 ((-3 |#4| "failed") |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#4| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#4| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -2650 (|#5| |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2375 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -2375 (|#1| |#1| |#4| (-777))) (-15 -2375 (|#1| |#1| (-650 |#4|))) (-15 -2375 (|#1| |#1| |#4|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-2603 (((-650 (-777)) $) 216) (((-650 (-777)) $ |#2|) 214)) (-2023 (((-777) $) 215) (((-777) $ |#2|) 213)) (-1598 (((-650 |#3|) $) 112)) (-3449 (((-1182 $) $ |#3|) 127) (((-1182 |#1|) $) 126)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2046 (($ $) 90 (|has| |#1| (-562)))) (-3426 (((-112) $) 92 (|has| |#1| (-562)))) (-4205 (((-777) $) 114) (((-777) $ (-650 |#3|)) 113)) (-3997 (((-3 $ "failed") $ $) 20)) (-3585 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3312 (($ $) 100 (|has| |#1| (-458)))) (-2929 (((-424 $) $) 99 (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-3285 (($ $) 209)) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-4387 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) ((|#3| $) 139) ((|#2| $) 224)) (-2067 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-4394 (($ $) 156)) (-3054 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-3957 (((-3 $ "failed") $) 37)) (-2211 (($ $) 178 (|has| |#1| (-458))) (($ $ |#3|) 107 (|has| |#1| (-458)))) (-4381 (((-650 $) $) 111)) (-2145 (((-112) $) 98 (|has| |#1| (-916)))) (-2425 (($ $ |#1| |#4| $) 174)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| |#3| (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| |#3| (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-3995 (((-777) $ |#2|) 219) (((-777) $) 218)) (-2005 (((-112) $) 35)) (-2928 (((-777) $) 171)) (-2417 (($ (-1182 |#1|) |#3|) 119) (($ (-1182 $) |#3|) 118)) (-1739 (((-650 $) $) 128)) (-1338 (((-112) $) 154)) (-2402 (($ |#1| |#4|) 155) (($ $ |#3| (-777)) 121) (($ $ (-650 |#3|) (-650 (-777))) 120)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |#3|) 122)) (-2689 ((|#4| $) 172) (((-777) $ |#3|) 124) (((-650 (-777)) $ (-650 |#3|)) 123)) (-3989 (($ (-1 |#4| |#4|) $) 173)) (-2536 (($ (-1 |#1| |#1|) $) 153)) (-2299 (((-1 $ (-777)) |#2|) 221) (((-1 $ (-777)) $) 208 (|has| |#1| (-235)))) (-3168 (((-3 |#3| "failed") $) 125)) (-4355 (($ $) 151)) (-4369 ((|#1| $) 150)) (-2134 ((|#3| $) 211)) (-3867 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-3240 (((-1168) $) 10)) (-1386 (((-112) $) 212)) (-3235 (((-3 (-650 $) "failed") $) 116)) (-3055 (((-3 (-650 $) "failed") $) 117)) (-3353 (((-3 (-2 (|:| |var| |#3|) (|:| -2940 (-777))) "failed") $) 115)) (-2803 (($ $) 210)) (-3891 (((-1129) $) 11)) (-4326 (((-112) $) 168)) (-4337 ((|#1| $) 169)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-3903 (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-2340 (((-424 $) $) 101 (|has| |#1| (-916)))) (-2837 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-650 |#3|) (-650 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-650 |#3|) (-650 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 $)) 206 (|has| |#1| (-235))) (($ $ |#2| |#1|) 205 (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 |#1|)) 204 (|has| |#1| (-235)))) (-2896 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-2375 (($ $ |#3|) 46) (($ $ (-650 |#3|)) 45) (($ $ |#3| (-777)) 44) (($ $ (-650 |#3|) (-650 (-777))) 43) (($ $) 240 (|has| |#1| (-235))) (($ $ (-777)) 238 (|has| |#1| (-235))) (($ $ (-1186)) 236 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 235 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 234 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 233 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2753 (((-650 |#2|) $) 220)) (-2650 ((|#4| $) 152) (((-777) $ |#3|) 132) (((-650 (-777)) $ (-650 |#3|)) 131) (((-777) $ |#2|) 217)) (-2601 (((-899 (-384)) $) 84 (-12 (|has| |#3| (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| |#3| (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| |#3| (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ |#3|) 108 (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 106 (-3212 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-413 (-570))) 80 (-3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570)))))) (($ $) 87 (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) 170)) (-3481 ((|#1| $ |#4|) 157) (($ $ |#3| (-777)) 130) (($ $ (-650 |#3|) (-650 (-777))) 129)) (-1660 (((-3 $ "failed") $) 81 (-3749 (-3212 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) 32 T CONST)) (-2109 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ |#3|) 42) (($ $ (-650 |#3|)) 41) (($ $ |#3| (-777)) 40) (($ $ (-650 |#3|) (-650 (-777))) 39) (($ $) 239 (|has| |#1| (-235))) (($ $ (-777)) 237 (|has| |#1| (-235))) (($ $ (-1186)) 232 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 231 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 230 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 229 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-256 |#1| |#2| |#3| |#4|) (-141) (-1058) (-856) (-269 |t#2|) (-799)) (T -256))
-((-2299 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *4 *3 *5 *6)))) (-2753 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 *4)))) (-3995 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777)))) (-2650 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 (-777))))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777)))) (-2603 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-650 (-777))))) (-2023 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-112)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-799)) (-4 *2 (-269 *4)))) (-2803 (*1 *1 *1) (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856)) (-4 *4 (-269 *3)) (-4 *5 (-799)))) (-3285 (*1 *1 *1) (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856)) (-4 *4 (-269 *3)) (-4 *5 (-799)))) (-2299 (*1 *2 *1) (-12 (-4 *3 (-235)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *3 *4 *5 *6)))))
-(-13 (-956 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1047 |t#2|) (-10 -8 (-15 -2299 ((-1 $ (-777)) |t#2|)) (-15 -2753 ((-650 |t#2|) $)) (-15 -3995 ((-777) $ |t#2|)) (-15 -3995 ((-777) $)) (-15 -2650 ((-777) $ |t#2|)) (-15 -2603 ((-650 (-777)) $)) (-15 -2023 ((-777) $)) (-15 -2603 ((-650 (-777)) $ |t#2|)) (-15 -2023 ((-777) $ |t#2|)) (-15 -1386 ((-112) $)) (-15 -2134 (|t#3| $)) (-15 -2803 ($ $)) (-15 -3285 ($ $)) (IF (|has| |t#1| (-235)) (PROGN (-6 (-520 |t#2| |t#1|)) (-6 (-520 |t#2| $)) (-6 (-313 $)) (-15 -2299 ((-1 $ (-777)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 |#2|) . T) ((-622 |#3|) . T) ((-622 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) ((-233 |#1|) . T) ((-235) |has| |#1| (-235)) ((-294) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-313 $) . T) ((-330 |#1| |#4|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -3749 (|has| |#1| (-916)) (|has| |#1| (-458))) ((-520 |#2| |#1|) |has| |#1| (-235)) ((-520 |#2| $) |has| |#1| (-235)) ((-520 |#3| |#1|) . T) ((-520 |#3| $) . T) ((-520 $ $) . T) ((-562) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-732) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-907 |#3|) . T) ((-893 (-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) ((-956 |#1| |#4| |#3|) . T) ((-916) |has| |#1| (-916)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1047 |#2|) . T) ((-1047 |#3|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) |has| |#1| (-916)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-1947 ((|#1| $) 55)) (-1999 ((|#1| $) 45)) (-2855 (((-112) $ (-777)) 8)) (-2333 (($) 7 T CONST)) (-3420 (($ $) 61)) (-4125 (($ $) 49)) (-4191 ((|#1| |#1| $) 47)) (-3940 ((|#1| $) 46)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-1831 (((-777) $) 62)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2927 ((|#1| |#1| $) 53)) (-1923 ((|#1| |#1| $) 52)) (-2801 (($ |#1| $) 41)) (-3326 (((-777) $) 56)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2421 ((|#1| $) 63)) (-3600 ((|#1| $) 51)) (-1802 ((|#1| $) 50)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-3043 ((|#1| |#1| $) 59)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3908 ((|#1| $) 60)) (-3347 (($) 58) (($ (-650 |#1|)) 57)) (-3307 (((-777) $) 44)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1313 ((|#1| $) 54)) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2636 ((|#1| $) 64)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-257 |#1|) (-141) (-1227)) (T -257))
-((-3347 (*1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))) (-3347 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-4 *1 (-257 *3)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))) (-2927 (*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))) (-1923 (*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))) (-4125 (*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
-(-13 (-1130 |t#1|) (-1004 |t#1|) (-10 -8 (-15 -3347 ($)) (-15 -3347 ($ (-650 |t#1|))) (-15 -3326 ((-777) $)) (-15 -1947 (|t#1| $)) (-15 -1313 (|t#1| $)) (-15 -2927 (|t#1| |t#1| $)) (-15 -1923 (|t#1| |t#1| $)) (-15 -3600 (|t#1| $)) (-15 -1802 (|t#1| $)) (-15 -4125 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1004 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1130 |#1|) . T) ((-1227) . T))
-((-2450 (((-1 (-950 (-227)) (-227) (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1734 (((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384))) 173) (((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 171) (((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 176) (((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 172) (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 164) (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 163) (((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384))) 145) (((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266))) 143) (((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384))) 144) (((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266))) 141)) (-1691 (((-1279) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384))) 175) (((-1279) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 174) (((-1279) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 178) (((-1279) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 177) (((-1279) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 166) (((-1279) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 165) (((-1279) (-1 (-950 (-227)) (-227)) (-1103 (-384))) 151) (((-1279) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266))) 150) (((-1279) (-886 (-1 (-227) (-227))) (-1103 (-384))) 149) (((-1279) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266))) 148) (((-1278) (-884 (-1 (-227) (-227))) (-1103 (-384))) 113) (((-1278) (-884 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266))) 112) (((-1278) (-1 (-227) (-227)) (-1103 (-384))) 107) (((-1278) (-1 (-227) (-227)) (-1103 (-384)) (-650 (-266))) 105)))
-(((-258) (-10 -7 (-15 -1691 ((-1278) (-1 (-227) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) (-1 (-227) (-227)) (-1103 (-384)))) (-15 -1691 ((-1278) (-884 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) (-884 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1691 ((-1279) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1691 ((-1279) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1691 ((-1279) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -2450 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -258))
-((-2450 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1734 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))))
-(-10 -7 (-15 -1691 ((-1278) (-1 (-227) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) (-1 (-227) (-227)) (-1103 (-384)))) (-15 -1691 ((-1278) (-884 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) (-884 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1691 ((-1279) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1691 ((-1279) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1691 ((-1279) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -1734 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -2450 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-1691 (((-1278) (-298 |#2|) (-1186) (-1186) (-650 (-266))) 101)))
-(((-259 |#1| |#2|) (-10 -7 (-15 -1691 ((-1278) (-298 |#2|) (-1186) (-1186) (-650 (-266))))) (-13 (-562) (-856) (-1047 (-570))) (-436 |#1|)) (T -259))
-((-1691 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-298 *7)) (-5 *4 (-1186)) (-5 *5 (-650 (-266))) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-856) (-1047 (-570)))) (-5 *2 (-1278)) (-5 *1 (-259 *6 *7)))))
-(-10 -7 (-15 -1691 ((-1278) (-298 |#2|) (-1186) (-1186) (-650 (-266)))))
-((-1980 (((-570) (-570)) 71)) (-3136 (((-570) (-570)) 72)) (-4140 (((-227) (-227)) 73)) (-2004 (((-1279) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227))) 70)) (-3543 (((-1279) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)) (-112)) 68)))
-(((-260) (-10 -7 (-15 -3543 ((-1279) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)) (-112))) (-15 -2004 ((-1279) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -1980 ((-570) (-570))) (-15 -3136 ((-570) (-570))) (-15 -4140 ((-227) (-227))))) (T -260))
-((-4140 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-260)))) (-3136 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260)))) (-2004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227))) (-5 *2 (-1279)) (-5 *1 (-260)))) (-3543 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227))) (-5 *5 (-112)) (-5 *2 (-1279)) (-5 *1 (-260)))))
-(-10 -7 (-15 -3543 ((-1279) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)) (-112))) (-15 -2004 ((-1279) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -1980 ((-570) (-570))) (-15 -3136 ((-570) (-570))) (-15 -4140 ((-227) (-227))))
-((-2869 (((-1101 (-384)) (-1101 (-320 |#1|))) 16)))
-(((-261 |#1|) (-10 -7 (-15 -2869 ((-1101 (-384)) (-1101 (-320 |#1|))))) (-13 (-856) (-562) (-620 (-384)))) (T -261))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-1101 (-320 *4))) (-4 *4 (-13 (-856) (-562) (-620 (-384)))) (-5 *2 (-1101 (-384))) (-5 *1 (-261 *4)))))
-(-10 -7 (-15 -2869 ((-1101 (-384)) (-1101 (-320 |#1|)))))
-((-1734 (((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384))) 75) (((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 74) (((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384))) 65) (((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 64) (((-1142 (-227)) (-886 |#1|) (-1101 (-384))) 56) (((-1142 (-227)) (-886 |#1|) (-1101 (-384)) (-650 (-266))) 55)) (-1691 (((-1279) (-889 |#1|) (-1101 (-384)) (-1101 (-384))) 78) (((-1279) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 77) (((-1279) |#1| (-1101 (-384)) (-1101 (-384))) 68) (((-1279) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 67) (((-1279) (-886 |#1|) (-1101 (-384))) 60) (((-1279) (-886 |#1|) (-1101 (-384)) (-650 (-266))) 59) (((-1278) (-884 |#1|) (-1101 (-384))) 47) (((-1278) (-884 |#1|) (-1101 (-384)) (-650 (-266))) 46) (((-1278) |#1| (-1101 (-384))) 38) (((-1278) |#1| (-1101 (-384)) (-650 (-266))) 36)))
-(((-262 |#1|) (-10 -7 (-15 -1691 ((-1278) |#1| (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) |#1| (-1101 (-384)))) (-15 -1691 ((-1278) (-884 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) (-884 |#1|) (-1101 (-384)))) (-15 -1691 ((-1279) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-886 |#1|) (-1101 (-384)))) (-15 -1734 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)))) (-15 -1691 ((-1279) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1734 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1691 ((-1279) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-889 |#1|) (-1101 (-384)) (-1101 (-384)))) (-15 -1734 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384))))) (-13 (-620 (-542)) (-1109))) (T -262))
-((-1734 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *5)))) (-1734 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *6)))) (-1691 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279)) (-5 *1 (-262 *5)))) (-1691 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279)) (-5 *1 (-262 *6)))) (-1734 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1734 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1691 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1279)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1691 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *5)))) (-1734 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *6)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279)) (-5 *1 (-262 *5)))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279)) (-5 *1 (-262 *6)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) (-5 *1 (-262 *5)))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) (-5 *1 (-262 *6)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1278)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1691 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))))
-(-10 -7 (-15 -1691 ((-1278) |#1| (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) |#1| (-1101 (-384)))) (-15 -1691 ((-1278) (-884 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1278) (-884 |#1|) (-1101 (-384)))) (-15 -1691 ((-1279) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-886 |#1|) (-1101 (-384)))) (-15 -1734 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)))) (-15 -1691 ((-1279) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1734 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1691 ((-1279) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1691 ((-1279) (-889 |#1|) (-1101 (-384)) (-1101 (-384)))) (-15 -1734 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1734 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384)))))
-((-1691 (((-1279) (-650 (-227)) (-650 (-227)) (-650 (-227)) (-650 (-266))) 23) (((-1279) (-650 (-227)) (-650 (-227)) (-650 (-227))) 24) (((-1278) (-650 (-950 (-227))) (-650 (-266))) 16) (((-1278) (-650 (-950 (-227)))) 17) (((-1278) (-650 (-227)) (-650 (-227)) (-650 (-266))) 20) (((-1278) (-650 (-227)) (-650 (-227))) 21)))
-(((-263) (-10 -7 (-15 -1691 ((-1278) (-650 (-227)) (-650 (-227)))) (-15 -1691 ((-1278) (-650 (-227)) (-650 (-227)) (-650 (-266)))) (-15 -1691 ((-1278) (-650 (-950 (-227))))) (-15 -1691 ((-1278) (-650 (-950 (-227))) (-650 (-266)))) (-15 -1691 ((-1279) (-650 (-227)) (-650 (-227)) (-650 (-227)))) (-15 -1691 ((-1279) (-650 (-227)) (-650 (-227)) (-650 (-227)) (-650 (-266)))))) (T -263))
-((-1691 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-263)))) (-1691 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1279)) (-5 *1 (-263)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-263)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *2 (-1278)) (-5 *1 (-263)))) (-1691 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-263)))) (-1691 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1278)) (-5 *1 (-263)))))
-(-10 -7 (-15 -1691 ((-1278) (-650 (-227)) (-650 (-227)))) (-15 -1691 ((-1278) (-650 (-227)) (-650 (-227)) (-650 (-266)))) (-15 -1691 ((-1278) (-650 (-950 (-227))))) (-15 -1691 ((-1278) (-650 (-950 (-227))) (-650 (-266)))) (-15 -1691 ((-1279) (-650 (-227)) (-650 (-227)) (-650 (-227)))) (-15 -1691 ((-1279) (-650 (-227)) (-650 (-227)) (-650 (-227)) (-650 (-266)))))
-((-1461 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-650 (-266)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2313 (((-928) (-650 (-266)) (-928)) 52)) (-2358 (((-928) (-650 (-266)) (-928)) 51)) (-2482 (((-650 (-384)) (-650 (-266)) (-650 (-384))) 68)) (-2234 (((-384) (-650 (-266)) (-384)) 57)) (-2378 (((-928) (-650 (-266)) (-928)) 53)) (-3705 (((-112) (-650 (-266)) (-112)) 27)) (-2474 (((-1168) (-650 (-266)) (-1168)) 19)) (-4211 (((-1168) (-650 (-266)) (-1168)) 26)) (-3219 (((-1142 (-227)) (-650 (-266))) 46)) (-2130 (((-650 (-1103 (-384))) (-650 (-266)) (-650 (-1103 (-384)))) 40)) (-2626 (((-880) (-650 (-266)) (-880)) 32)) (-3123 (((-880) (-650 (-266)) (-880)) 33)) (-2219 (((-1 (-950 (-227)) (-950 (-227))) (-650 (-266)) (-1 (-950 (-227)) (-950 (-227)))) 63)) (-4224 (((-112) (-650 (-266)) (-112)) 14)) (-4301 (((-112) (-650 (-266)) (-112)) 13)))
-(((-264) (-10 -7 (-15 -4301 ((-112) (-650 (-266)) (-112))) (-15 -4224 ((-112) (-650 (-266)) (-112))) (-15 -1461 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-650 (-266)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2474 ((-1168) (-650 (-266)) (-1168))) (-15 -4211 ((-1168) (-650 (-266)) (-1168))) (-15 -3705 ((-112) (-650 (-266)) (-112))) (-15 -2626 ((-880) (-650 (-266)) (-880))) (-15 -3123 ((-880) (-650 (-266)) (-880))) (-15 -2130 ((-650 (-1103 (-384))) (-650 (-266)) (-650 (-1103 (-384))))) (-15 -2358 ((-928) (-650 (-266)) (-928))) (-15 -2313 ((-928) (-650 (-266)) (-928))) (-15 -3219 ((-1142 (-227)) (-650 (-266)))) (-15 -2378 ((-928) (-650 (-266)) (-928))) (-15 -2234 ((-384) (-650 (-266)) (-384))) (-15 -2219 ((-1 (-950 (-227)) (-950 (-227))) (-650 (-266)) (-1 (-950 (-227)) (-950 (-227))))) (-15 -2482 ((-650 (-384)) (-650 (-266)) (-650 (-384)))))) (T -264))
-((-2482 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-384))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2219 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2234 (*1 *2 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2378 (*1 *2 *3 *2) (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-264)))) (-2313 (*1 *2 *3 *2) (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2358 (*1 *2 *3 *2) (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2130 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3123 (*1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2626 (*1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3705 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-4211 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2474 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-1461 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-4224 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-4301 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))))
-(-10 -7 (-15 -4301 ((-112) (-650 (-266)) (-112))) (-15 -4224 ((-112) (-650 (-266)) (-112))) (-15 -1461 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-650 (-266)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2474 ((-1168) (-650 (-266)) (-1168))) (-15 -4211 ((-1168) (-650 (-266)) (-1168))) (-15 -3705 ((-112) (-650 (-266)) (-112))) (-15 -2626 ((-880) (-650 (-266)) (-880))) (-15 -3123 ((-880) (-650 (-266)) (-880))) (-15 -2130 ((-650 (-1103 (-384))) (-650 (-266)) (-650 (-1103 (-384))))) (-15 -2358 ((-928) (-650 (-266)) (-928))) (-15 -2313 ((-928) (-650 (-266)) (-928))) (-15 -3219 ((-1142 (-227)) (-650 (-266)))) (-15 -2378 ((-928) (-650 (-266)) (-928))) (-15 -2234 ((-384) (-650 (-266)) (-384))) (-15 -2219 ((-1 (-950 (-227)) (-950 (-227))) (-650 (-266)) (-1 (-950 (-227)) (-950 (-227))))) (-15 -2482 ((-650 (-384)) (-650 (-266)) (-650 (-384)))))
-((-1842 (((-3 |#1| "failed") (-650 (-266)) (-1186)) 17)))
-(((-265 |#1|) (-10 -7 (-15 -1842 ((-3 |#1| "failed") (-650 (-266)) (-1186)))) (-1227)) (T -265))
-((-1842 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *1 (-265 *2)) (-4 *2 (-1227)))))
-(-10 -7 (-15 -1842 ((-3 |#1| "failed") (-650 (-266)) (-1186))))
-((-2847 (((-112) $ $) NIL)) (-1461 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2313 (($ (-928)) 81)) (-2358 (($ (-928)) 80)) (-1347 (($ (-650 (-384))) 87)) (-2234 (($ (-384)) 66)) (-2378 (($ (-928)) 82)) (-3705 (($ (-112)) 33)) (-2474 (($ (-1168)) 28)) (-4211 (($ (-1168)) 29)) (-3219 (($ (-1142 (-227))) 76)) (-2130 (($ (-650 (-1103 (-384)))) 72)) (-2744 (($ (-650 (-1103 (-384)))) 68) (($ (-650 (-1103 (-413 (-570))))) 71)) (-4010 (($ (-384)) 38) (($ (-880)) 42)) (-4292 (((-112) (-650 $) (-1186)) 100)) (-1842 (((-3 (-52) "failed") (-650 $) (-1186)) 102)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1376 (($ (-384)) 43) (($ (-880)) 44)) (-2987 (($ (-1 (-950 (-227)) (-950 (-227)))) 65)) (-2219 (($ (-1 (-950 (-227)) (-950 (-227)))) 83)) (-3865 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2869 (((-868) $) 93)) (-2488 (($ (-112)) 34) (($ (-650 (-1103 (-384)))) 60)) (-1344 (((-112) $ $) NIL)) (-4301 (($ (-112)) 35)) (-3892 (((-112) $ $) 97)))
-(((-266) (-13 (-1109) (-10 -8 (-15 -4301 ($ (-112))) (-15 -2488 ($ (-112))) (-15 -1461 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2474 ($ (-1168))) (-15 -4211 ($ (-1168))) (-15 -3705 ($ (-112))) (-15 -2488 ($ (-650 (-1103 (-384))))) (-15 -2987 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -4010 ($ (-384))) (-15 -4010 ($ (-880))) (-15 -1376 ($ (-384))) (-15 -1376 ($ (-880))) (-15 -3865 ($ (-1 (-227) (-227)))) (-15 -3865 ($ (-1 (-227) (-227) (-227)))) (-15 -3865 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2234 ($ (-384))) (-15 -2744 ($ (-650 (-1103 (-384))))) (-15 -2744 ($ (-650 (-1103 (-413 (-570)))))) (-15 -2130 ($ (-650 (-1103 (-384))))) (-15 -3219 ($ (-1142 (-227)))) (-15 -2358 ($ (-928))) (-15 -2313 ($ (-928))) (-15 -2378 ($ (-928))) (-15 -2219 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -1347 ($ (-650 (-384)))) (-15 -1842 ((-3 (-52) "failed") (-650 $) (-1186))) (-15 -4292 ((-112) (-650 $) (-1186)))))) (T -266))
-((-4301 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))) (-1461 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-266)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) (-2987 (*1 *1 *2) (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266)))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266)))) (-1376 (*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))) (-1376 (*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-266)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-266)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-266)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-413 (-570))))) (-5 *1 (-266)))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-266)))) (-2358 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))) (-2313 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-266)))) (-1842 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-52)) (-5 *1 (-266)))) (-4292 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-112)) (-5 *1 (-266)))))
-(-13 (-1109) (-10 -8 (-15 -4301 ($ (-112))) (-15 -2488 ($ (-112))) (-15 -1461 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2474 ($ (-1168))) (-15 -4211 ($ (-1168))) (-15 -3705 ($ (-112))) (-15 -2488 ($ (-650 (-1103 (-384))))) (-15 -2987 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -4010 ($ (-384))) (-15 -4010 ($ (-880))) (-15 -1376 ($ (-384))) (-15 -1376 ($ (-880))) (-15 -3865 ($ (-1 (-227) (-227)))) (-15 -3865 ($ (-1 (-227) (-227) (-227)))) (-15 -3865 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2234 ($ (-384))) (-15 -2744 ($ (-650 (-1103 (-384))))) (-15 -2744 ($ (-650 (-1103 (-413 (-570)))))) (-15 -2130 ($ (-650 (-1103 (-384))))) (-15 -3219 ($ (-1142 (-227)))) (-15 -2358 ($ (-928))) (-15 -2313 ($ (-928))) (-15 -2378 ($ (-928))) (-15 -2219 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -1347 ($ (-650 (-384)))) (-15 -1842 ((-3 (-52) "failed") (-650 $) (-1186))) (-15 -4292 ((-112) (-650 $) (-1186)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2603 (((-650 (-777)) $) NIL) (((-650 (-777)) $ |#2|) NIL)) (-2023 (((-777) $) NIL) (((-777) $ |#2|) NIL)) (-1598 (((-650 |#3|) $) NIL)) (-3449 (((-1182 $) $ |#3|) NIL) (((-1182 |#1|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 |#3|)) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3285 (($ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1134 |#1| |#2|) "failed") $) 23)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1134 |#1| |#2|) $) NIL)) (-2067 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ |#3|) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-537 |#3|) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))))) (-3995 (((-777) $ |#2|) NIL) (((-777) $) 10)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-2417 (($ (-1182 |#1|) |#3|) NIL) (($ (-1182 $) |#3|) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-537 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |#3|) NIL)) (-2689 (((-537 |#3|) $) NIL) (((-777) $ |#3|) NIL) (((-650 (-777)) $ (-650 |#3|)) NIL)) (-3989 (($ (-1 (-537 |#3|) (-537 |#3|)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2299 (((-1 $ (-777)) |#2|) NIL) (((-1 $ (-777)) $) NIL (|has| |#1| (-235)))) (-3168 (((-3 |#3| "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-2134 ((|#3| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-1386 (((-112) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| |#3|) (|:| -2940 (-777))) "failed") $) NIL)) (-2803 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-650 |#3|) (-650 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-650 |#3|) (-650 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 $)) NIL (|has| |#1| (-235))) (($ $ |#2| |#1|) NIL (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 |#1|)) NIL (|has| |#1| (-235)))) (-2896 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2375 (($ $ |#3|) NIL) (($ $ (-650 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2753 (((-650 |#2|) $) NIL)) (-2650 (((-537 |#3|) $) NIL) (((-777) $ |#3|) NIL) (((-650 (-777)) $ (-650 |#3|)) NIL) (((-777) $ |#2|) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))))) (-2128 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ |#3|) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1134 |#1| |#2|)) 32) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-537 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ |#3|) NIL) (($ $ (-650 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-267 |#1| |#2| |#3|) (-13 (-256 |#1| |#2| |#3| (-537 |#3|)) (-1047 (-1134 |#1| |#2|))) (-1058) (-856) (-269 |#2|)) (T -267))
-NIL
-(-13 (-256 |#1| |#2| |#3| (-537 |#3|)) (-1047 (-1134 |#1| |#2|)))
-((-2023 (((-777) $) 37)) (-2435 (((-3 |#2| "failed") $) 22)) (-4387 ((|#2| $) 33)) (-2375 (($ $) 14) (($ $ (-777)) 18)) (-2869 (((-868) $) 32) (($ |#2|) 11)) (-3892 (((-112) $ $) 26)) (-3918 (((-112) $ $) 36)))
-(((-268 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2023 ((-777) |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -3918 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|))) (-269 |#2|) (-856)) (T -268))
-NIL
-(-10 -8 (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2023 ((-777) |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -3918 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2023 (((-777) $) 23)) (-1433 ((|#1| $) 24)) (-2435 (((-3 |#1| "failed") $) 28)) (-4387 ((|#1| $) 29)) (-3995 (((-777) $) 25)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-2299 (($ |#1| (-777)) 26)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2375 (($ $) 22) (($ $ (-777)) 21)) (-2869 (((-868) $) 12) (($ |#1|) 27)) (-1344 (((-112) $ $) 9)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)))
-(((-269 |#1|) (-141) (-856)) (T -269))
-((-2869 (*1 *1 *2) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-2299 (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777)))) (-2375 (*1 *1 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-269 *3)) (-4 *3 (-856)))))
-(-13 (-856) (-1047 |t#1|) (-10 -8 (-15 -2299 ($ |t#1| (-777))) (-15 -3995 ((-777) $)) (-15 -1433 (|t#1| $)) (-15 -2023 ((-777) $)) (-15 -2375 ($ $)) (-15 -2375 ($ $ (-777))) (-15 -2869 ($ |t#1|))))
-(((-102) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-856) . T) ((-1047 |#1|) . T) ((-1109) . T))
-((-1598 (((-650 (-1186)) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 53)) (-3473 (((-650 (-1186)) (-320 (-227)) (-777)) 94)) (-1514 (((-3 (-320 (-227)) "failed") (-320 (-227))) 63)) (-1590 (((-320 (-227)) (-320 (-227))) 79)) (-4176 (((-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 38)) (-3718 (((-112) (-650 (-320 (-227)))) 104)) (-3082 (((-112) (-320 (-227))) 36)) (-2308 (((-650 (-1168)) (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))))) 132)) (-2630 (((-650 (-320 (-227))) (-650 (-320 (-227)))) 108)) (-2481 (((-650 (-320 (-227))) (-650 (-320 (-227)))) 106)) (-3394 (((-695 (-227)) (-650 (-320 (-227))) (-777)) 120)) (-3943 (((-112) (-320 (-227))) 31) (((-112) (-650 (-320 (-227)))) 105)) (-4037 (((-650 (-227)) (-650 (-849 (-227))) (-227)) 15)) (-2999 (((-384) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 126)) (-3597 (((-1044) (-1186) (-1044)) 46)))
-(((-270) (-10 -7 (-15 -4037 ((-650 (-227)) (-650 (-849 (-227))) (-227))) (-15 -4176 ((-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -1514 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -1590 ((-320 (-227)) (-320 (-227)))) (-15 -3718 ((-112) (-650 (-320 (-227))))) (-15 -3943 ((-112) (-650 (-320 (-227))))) (-15 -3943 ((-112) (-320 (-227)))) (-15 -3394 ((-695 (-227)) (-650 (-320 (-227))) (-777))) (-15 -2481 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -2630 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -3082 ((-112) (-320 (-227)))) (-15 -1598 ((-650 (-1186)) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -3473 ((-650 (-1186)) (-320 (-227)) (-777))) (-15 -3597 ((-1044) (-1186) (-1044))) (-15 -2999 ((-384) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -2308 ((-650 (-1168)) (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))))))) (T -270))
-((-2308 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))))) (-5 *2 (-650 (-1168))) (-5 *1 (-270)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) (-5 *2 (-384)) (-5 *1 (-270)))) (-3597 (*1 *2 *3 *2) (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-270)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-777)) (-5 *2 (-650 (-1186))) (-5 *1 (-270)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) (-5 *2 (-650 (-1186))) (-5 *1 (-270)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *4 (-777)) (-5 *2 (-695 (-227))) (-5 *1 (-270)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270)))) (-1590 (*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-270)))) (-1514 (*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-270)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *1 (-270)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-849 (-227)))) (-5 *4 (-227)) (-5 *2 (-650 *4)) (-5 *1 (-270)))))
-(-10 -7 (-15 -4037 ((-650 (-227)) (-650 (-849 (-227))) (-227))) (-15 -4176 ((-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -1514 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -1590 ((-320 (-227)) (-320 (-227)))) (-15 -3718 ((-112) (-650 (-320 (-227))))) (-15 -3943 ((-112) (-650 (-320 (-227))))) (-15 -3943 ((-112) (-320 (-227)))) (-15 -3394 ((-695 (-227)) (-650 (-320 (-227))) (-777))) (-15 -2481 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -2630 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -3082 ((-112) (-320 (-227)))) (-15 -1598 ((-650 (-1186)) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -3473 ((-650 (-1186)) (-320 (-227)) (-777))) (-15 -3597 ((-1044) (-1186) (-1044))) (-15 -2999 ((-384) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -2308 ((-650 (-1168)) (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))))))
-((-2847 (((-112) $ $) NIL)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 56)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 32) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-271) (-845)) (T -271))
-NIL
-(-845)
-((-2847 (((-112) $ $) NIL)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 72) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 63)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 41) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 43)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-272) (-845)) (T -272))
-NIL
-(-845)
-((-2847 (((-112) $ $) NIL)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 90) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 85)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 52) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 65)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-273) (-845)) (T -273))
-NIL
-(-845)
-((-2847 (((-112) $ $) NIL)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 73)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 45) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-274) (-845)) (T -274))
-NIL
-(-845)
-((-2847 (((-112) $ $) NIL)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 65)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 31) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-275) (-845)) (T -275))
-NIL
-(-845)
-((-2847 (((-112) $ $) NIL)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 90)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 33) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-276) (-845)) (T -276))
-NIL
-(-845)
-((-2847 (((-112) $ $) NIL)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 87)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 32) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-277) (-845)) (T -277))
-NIL
-(-845)
-((-2847 (((-112) $ $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3477 (((-650 (-570)) $) 29)) (-2650 (((-777) $) 27)) (-2869 (((-868) $) 33) (($ (-650 (-570))) 23)) (-1344 (((-112) $ $) NIL)) (-2372 (($ (-777)) 30)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 9)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 17)))
-(((-278) (-13 (-856) (-10 -8 (-15 -2869 ($ (-650 (-570)))) (-15 -2650 ((-777) $)) (-15 -3477 ((-650 (-570)) $)) (-15 -2372 ($ (-777)))))) (T -278))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-278)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278)))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-278)))))
-(-13 (-856) (-10 -8 (-15 -2869 ($ (-650 (-570)))) (-15 -2650 ((-777) $)) (-15 -3477 ((-650 (-570)) $)) (-15 -2372 ($ (-777)))))
-((-3900 ((|#2| |#2|) 77)) (-3770 ((|#2| |#2|) 65)) (-1541 (((-3 |#2| "failed") |#2| (-650 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3876 ((|#2| |#2|) 75)) (-3745 ((|#2| |#2|) 63)) (-1513 ((|#2| |#2|) 79)) (-3791 ((|#2| |#2|) 67)) (-1625 ((|#2|) 46)) (-2558 (((-115) (-115)) 100)) (-3447 ((|#2| |#2|) 61)) (-3065 (((-112) |#2|) 147)) (-4269 ((|#2| |#2|) 195)) (-1417 ((|#2| |#2|) 171)) (-3501 ((|#2|) 59)) (-4212 ((|#2|) 58)) (-4164 ((|#2| |#2|) 191)) (-3024 ((|#2| |#2|) 167)) (-4421 ((|#2| |#2|) 199)) (-3379 ((|#2| |#2|) 175)) (-3783 ((|#2| |#2|) 163)) (-1339 ((|#2| |#2|) 165)) (-1472 ((|#2| |#2|) 201)) (-2099 ((|#2| |#2|) 177)) (-2400 ((|#2| |#2|) 197)) (-2226 ((|#2| |#2|) 173)) (-4147 ((|#2| |#2|) 193)) (-3972 ((|#2| |#2|) 169)) (-2302 ((|#2| |#2|) 207)) (-2081 ((|#2| |#2|) 183)) (-3100 ((|#2| |#2|) 203)) (-1857 ((|#2| |#2|) 179)) (-3333 ((|#2| |#2|) 211)) (-4273 ((|#2| |#2|) 187)) (-1708 ((|#2| |#2|) 213)) (-2034 ((|#2| |#2|) 189)) (-3664 ((|#2| |#2|) 209)) (-2396 ((|#2| |#2|) 185)) (-1689 ((|#2| |#2|) 205)) (-3295 ((|#2| |#2|) 181)) (-2651 ((|#2| |#2|) 62)) (-1523 ((|#2| |#2|) 80)) (-3801 ((|#2| |#2|) 68)) (-3913 ((|#2| |#2|) 78)) (-3781 ((|#2| |#2|) 66)) (-3887 ((|#2| |#2|) 76)) (-3758 ((|#2| |#2|) 64)) (-1475 (((-112) (-115)) 98)) (-1561 ((|#2| |#2|) 83)) (-3833 ((|#2| |#2|) 71)) (-1536 ((|#2| |#2|) 81)) (-3811 ((|#2| |#2|) 69)) (-1585 ((|#2| |#2|) 85)) (-3853 ((|#2| |#2|) 73)) (-2900 ((|#2| |#2|) 86)) (-3864 ((|#2| |#2|) 74)) (-1575 ((|#2| |#2|) 84)) (-3844 ((|#2| |#2|) 72)) (-1546 ((|#2| |#2|) 82)) (-3821 ((|#2| |#2|) 70)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -2651 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -1625 (|#2|)) (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -4212 (|#2|)) (-15 -3501 (|#2|)) (-15 -1339 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -3024 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -2099 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -3295 (|#2| |#2|)) (-15 -2081 (|#2| |#2|)) (-15 -2396 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -2034 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4269 (|#2| |#2|)) (-15 -2400 (|#2| |#2|)) (-15 -4421 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3333 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1541 ((-3 |#2| "failed") |#2| (-650 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3065 ((-112) |#2|))) (-562) (-13 (-436 |#1|) (-1011))) (T -279))
-((-3065 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-279 *4 *3)) (-4 *3 (-13 (-436 *4) (-1011))))) (-1541 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-650 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-436 *4) (-1011))) (-4 *4 (-562)) (-5 *1 (-279 *4 *2)))) (-1708 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3333 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4421 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2400 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4269 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2034 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4273 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2396 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2081 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3295 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1857 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2099 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3972 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3024 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3783 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1339 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3501 (*1 *2) (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) (-4 *3 (-562)))) (-4212 (*1 *2) (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) (-4 *3 (-562)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-279 *3 *4)) (-4 *4 (-13 (-436 *3) (-1011))))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-279 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011))))) (-1625 (*1 *2) (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) (-4 *3 (-562)))) (-2900 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))))
-(-10 -7 (-15 -2651 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -3758 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3821 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1585 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -1625 (|#2|)) (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -4212 (|#2|)) (-15 -3501 (|#2|)) (-15 -1339 (|#2| |#2|)) (-15 -3783 (|#2| |#2|)) (-15 -3024 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -1417 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -2099 (|#2| |#2|)) (-15 -1857 (|#2| |#2|)) (-15 -3295 (|#2| |#2|)) (-15 -2081 (|#2| |#2|)) (-15 -2396 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -2034 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -4269 (|#2| |#2|)) (-15 -2400 (|#2| |#2|)) (-15 -4421 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3333 (|#2| |#2|)) (-15 -1708 (|#2| |#2|)) (-15 -1541 ((-3 |#2| "failed") |#2| (-650 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3065 ((-112) |#2|)))
-((-1424 (((-3 |#2| "failed") (-650 (-618 |#2|)) |#2| (-1186)) 151)) (-2440 ((|#2| (-413 (-570)) |#2|) 49)) (-1931 ((|#2| |#2| (-618 |#2|)) 144)) (-2297 (((-2 (|:| |func| |#2|) (|:| |kers| (-650 (-618 |#2|))) (|:| |vals| (-650 |#2|))) |#2| (-1186)) 143)) (-1723 ((|#2| |#2| (-1186)) 20) ((|#2| |#2|) 23)) (-2236 ((|#2| |#2| (-1186)) 157) ((|#2| |#2|) 155)))
-(((-280 |#1| |#2|) (-10 -7 (-15 -2236 (|#2| |#2|)) (-15 -2236 (|#2| |#2| (-1186))) (-15 -2297 ((-2 (|:| |func| |#2|) (|:| |kers| (-650 (-618 |#2|))) (|:| |vals| (-650 |#2|))) |#2| (-1186))) (-15 -1723 (|#2| |#2|)) (-15 -1723 (|#2| |#2| (-1186))) (-15 -1424 ((-3 |#2| "failed") (-650 (-618 |#2|)) |#2| (-1186))) (-15 -1931 (|#2| |#2| (-618 |#2|))) (-15 -2440 (|#2| (-413 (-570)) |#2|))) (-13 (-562) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|))) (T -280))
-((-2440 (*1 *2 *3 *2) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))) (-1931 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)))) (-1424 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-1186)) (-4 *2 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *5 *2)))) (-1723 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))) (-1723 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))) (-2297 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-650 (-618 *3))) (|:| |vals| (-650 *3)))) (-5 *1 (-280 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-2236 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))))
-(-10 -7 (-15 -2236 (|#2| |#2|)) (-15 -2236 (|#2| |#2| (-1186))) (-15 -2297 ((-2 (|:| |func| |#2|) (|:| |kers| (-650 (-618 |#2|))) (|:| |vals| (-650 |#2|))) |#2| (-1186))) (-15 -1723 (|#2| |#2|)) (-15 -1723 (|#2| |#2| (-1186))) (-15 -1424 ((-3 |#2| "failed") (-650 (-618 |#2|)) |#2| (-1186))) (-15 -1931 (|#2| |#2| (-618 |#2|))) (-15 -2440 (|#2| (-413 (-570)) |#2|)))
-((-2780 (((-3 |#3| "failed") |#3|) 120)) (-3900 ((|#3| |#3|) 142)) (-4049 (((-3 |#3| "failed") |#3|) 89)) (-3770 ((|#3| |#3|) 132)) (-1482 (((-3 |#3| "failed") |#3|) 65)) (-3876 ((|#3| |#3|) 140)) (-3190 (((-3 |#3| "failed") |#3|) 53)) (-3745 ((|#3| |#3|) 130)) (-3453 (((-3 |#3| "failed") |#3|) 122)) (-1513 ((|#3| |#3|) 144)) (-3910 (((-3 |#3| "failed") |#3|) 91)) (-3791 ((|#3| |#3|) 134)) (-4342 (((-3 |#3| "failed") |#3| (-777)) 41)) (-3807 (((-3 |#3| "failed") |#3|) 81)) (-3447 ((|#3| |#3|) 129)) (-1817 (((-3 |#3| "failed") |#3|) 51)) (-2651 ((|#3| |#3|) 128)) (-3090 (((-3 |#3| "failed") |#3|) 123)) (-1523 ((|#3| |#3|) 145)) (-3267 (((-3 |#3| "failed") |#3|) 92)) (-3801 ((|#3| |#3|) 135)) (-2040 (((-3 |#3| "failed") |#3|) 121)) (-3913 ((|#3| |#3|) 143)) (-1611 (((-3 |#3| "failed") |#3|) 90)) (-3781 ((|#3| |#3|) 133)) (-2576 (((-3 |#3| "failed") |#3|) 67)) (-3887 ((|#3| |#3|) 141)) (-1371 (((-3 |#3| "failed") |#3|) 55)) (-3758 ((|#3| |#3|) 131)) (-2221 (((-3 |#3| "failed") |#3|) 73)) (-1561 ((|#3| |#3|) 148)) (-1454 (((-3 |#3| "failed") |#3|) 114)) (-3833 ((|#3| |#3|) 152)) (-2038 (((-3 |#3| "failed") |#3|) 69)) (-1536 ((|#3| |#3|) 146)) (-2664 (((-3 |#3| "failed") |#3|) 57)) (-3811 ((|#3| |#3|) 136)) (-2305 (((-3 |#3| "failed") |#3|) 77)) (-1585 ((|#3| |#3|) 150)) (-3647 (((-3 |#3| "failed") |#3|) 61)) (-3853 ((|#3| |#3|) 138)) (-3772 (((-3 |#3| "failed") |#3|) 79)) (-2900 ((|#3| |#3|) 151)) (-3265 (((-3 |#3| "failed") |#3|) 63)) (-3864 ((|#3| |#3|) 139)) (-3875 (((-3 |#3| "failed") |#3|) 75)) (-1575 ((|#3| |#3|) 149)) (-3874 (((-3 |#3| "failed") |#3|) 117)) (-3844 ((|#3| |#3|) 153)) (-2003 (((-3 |#3| "failed") |#3|) 71)) (-1546 ((|#3| |#3|) 147)) (-3037 (((-3 |#3| "failed") |#3|) 59)) (-3821 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-413 (-570))) 47 (|has| |#1| (-368)))))
-(((-281 |#1| |#2| |#3|) (-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -2651 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1523 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1546 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -2900 (|#3| |#3|)))) (-38 (-413 (-570))) (-1268 |#1|) (-1239 |#1| |#2|)) (T -281))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3)) (-4 *5 (-1268 *4)) (-5 *1 (-281 *4 *5 *2)) (-4 *2 (-1239 *4 *5)))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))) (-2900 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4)))))
-(-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -2651 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1523 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1546 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -2900 (|#3| |#3|))))
-((-2780 (((-3 |#3| "failed") |#3|) 70)) (-3900 ((|#3| |#3|) 137)) (-4049 (((-3 |#3| "failed") |#3|) 54)) (-3770 ((|#3| |#3|) 125)) (-1482 (((-3 |#3| "failed") |#3|) 66)) (-3876 ((|#3| |#3|) 135)) (-3190 (((-3 |#3| "failed") |#3|) 50)) (-3745 ((|#3| |#3|) 123)) (-3453 (((-3 |#3| "failed") |#3|) 74)) (-1513 ((|#3| |#3|) 139)) (-3910 (((-3 |#3| "failed") |#3|) 58)) (-3791 ((|#3| |#3|) 127)) (-4342 (((-3 |#3| "failed") |#3| (-777)) 38)) (-3807 (((-3 |#3| "failed") |#3|) 48)) (-3447 ((|#3| |#3|) 111)) (-1817 (((-3 |#3| "failed") |#3|) 46)) (-2651 ((|#3| |#3|) 122)) (-3090 (((-3 |#3| "failed") |#3|) 76)) (-1523 ((|#3| |#3|) 140)) (-3267 (((-3 |#3| "failed") |#3|) 60)) (-3801 ((|#3| |#3|) 128)) (-2040 (((-3 |#3| "failed") |#3|) 72)) (-3913 ((|#3| |#3|) 138)) (-1611 (((-3 |#3| "failed") |#3|) 56)) (-3781 ((|#3| |#3|) 126)) (-2576 (((-3 |#3| "failed") |#3|) 68)) (-3887 ((|#3| |#3|) 136)) (-1371 (((-3 |#3| "failed") |#3|) 52)) (-3758 ((|#3| |#3|) 124)) (-2221 (((-3 |#3| "failed") |#3|) 78)) (-1561 ((|#3| |#3|) 143)) (-1454 (((-3 |#3| "failed") |#3|) 62)) (-3833 ((|#3| |#3|) 131)) (-2038 (((-3 |#3| "failed") |#3|) 112)) (-1536 ((|#3| |#3|) 141)) (-2664 (((-3 |#3| "failed") |#3|) 100)) (-3811 ((|#3| |#3|) 129)) (-2305 (((-3 |#3| "failed") |#3|) 116)) (-1585 ((|#3| |#3|) 145)) (-3647 (((-3 |#3| "failed") |#3|) 107)) (-3853 ((|#3| |#3|) 133)) (-3772 (((-3 |#3| "failed") |#3|) 117)) (-2900 ((|#3| |#3|) 146)) (-3265 (((-3 |#3| "failed") |#3|) 109)) (-3864 ((|#3| |#3|) 134)) (-3875 (((-3 |#3| "failed") |#3|) 80)) (-1575 ((|#3| |#3|) 144)) (-3874 (((-3 |#3| "failed") |#3|) 64)) (-3844 ((|#3| |#3|) 132)) (-2003 (((-3 |#3| "failed") |#3|) 113)) (-1546 ((|#3| |#3|) 142)) (-3037 (((-3 |#3| "failed") |#3|) 103)) (-3821 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-413 (-570))) 44 (|has| |#1| (-368)))))
-(((-282 |#1| |#2| |#3| |#4|) (-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -2651 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1523 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1546 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -2900 (|#3| |#3|)))) (-38 (-413 (-570))) (-1237 |#1|) (-1260 |#1| |#2|) (-992 |#2|)) (T -282))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3)) (-4 *5 (-1237 *4)) (-5 *1 (-282 *4 *5 *2 *6)) (-4 *2 (-1260 *4 *5)) (-4 *6 (-992 *5)))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3821 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-1585 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))) (-2900 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4)))))
-(-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -2651 (|#3| |#3|)) (-15 -3447 (|#3| |#3|)) (-15 -3745 (|#3| |#3|)) (-15 -3758 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3801 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3821 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -3876 (|#3| |#3|)) (-15 -3887 (|#3| |#3|)) (-15 -3900 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1523 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1546 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1585 (|#3| |#3|)) (-15 -2900 (|#3| |#3|))))
-((-3178 (((-112) $) 20)) (-2782 (((-1191) $) 7)) (-2580 (((-3 (-512) "failed") $) 14)) (-2353 (((-3 (-650 $) "failed") $) NIL)) (-2567 (((-3 (-512) "failed") $) 21)) (-3837 (((-3 (-1113) "failed") $) 18)) (-3839 (((-112) $) 16)) (-2869 (((-868) $) NIL)) (-2260 (((-112) $) 9)))
-(((-283) (-13 (-619 (-868)) (-10 -8 (-15 -2782 ((-1191) $)) (-15 -3839 ((-112) $)) (-15 -3837 ((-3 (-1113) "failed") $)) (-15 -3178 ((-112) $)) (-15 -2567 ((-3 (-512) "failed") $)) (-15 -2260 ((-112) $)) (-15 -2580 ((-3 (-512) "failed") $)) (-15 -2353 ((-3 (-650 $) "failed") $))))) (T -283))
-((-2782 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-283)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))) (-3837 (*1 *2 *1) (|partial| -12 (-5 *2 (-1113)) (-5 *1 (-283)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))) (-2567 (*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))) (-2580 (*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283)))) (-2353 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-283))) (-5 *1 (-283)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2782 ((-1191) $)) (-15 -3839 ((-112) $)) (-15 -3837 ((-3 (-1113) "failed") $)) (-15 -3178 ((-112) $)) (-15 -2567 ((-3 (-512) "failed") $)) (-15 -2260 ((-112) $)) (-15 -2580 ((-3 (-512) "failed") $)) (-15 -2353 ((-3 (-650 $) "failed") $))))
-((-1789 (((-603) $) 10)) (-4116 (((-591) $) 8)) (-2248 (((-295) $) 12)) (-2266 (($ (-591) (-603) (-295)) NIL)) (-2869 (((-868) $) 19)))
-(((-284) (-13 (-619 (-868)) (-10 -8 (-15 -2266 ($ (-591) (-603) (-295))) (-15 -4116 ((-591) $)) (-15 -1789 ((-603) $)) (-15 -2248 ((-295) $))))) (T -284))
-((-2266 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-591)) (-5 *3 (-603)) (-5 *4 (-295)) (-5 *1 (-284)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-591)) (-5 *1 (-284)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-603)) (-5 *1 (-284)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-295)) (-5 *1 (-284)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2266 ($ (-591) (-603) (-295))) (-15 -4116 ((-591) $)) (-15 -1789 ((-603) $)) (-15 -2248 ((-295) $))))
-((-3960 (($ (-1 (-112) |#2|) $) 24)) (-3153 (($ $) 38)) (-3614 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3617 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3675 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2119 (($ |#2| $ (-570)) 20) (($ $ $ (-570)) 22)) (-3225 (($ $ (-570)) 11) (($ $ (-1244 (-570))) 14)) (-1674 (($ $ |#2|) 32) (($ $ $) NIL)) (-1505 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-650 $)) NIL)))
-(((-285 |#1| |#2|) (-10 -8 (-15 -3675 (|#1| |#1| |#1|)) (-15 -3614 (|#1| |#2| |#1|)) (-15 -3675 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3614 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -3225 (|#1| |#1| (-1244 (-570)))) (-15 -3225 (|#1| |#1| (-570))) (-15 -1505 (|#1| (-650 |#1|))) (-15 -1505 (|#1| |#1| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#2|)) (-15 -3617 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3617 (|#1| |#2| |#1|)) (-15 -3153 (|#1| |#1|))) (-286 |#2|) (-1227)) (T -285))
-NIL
-(-10 -8 (-15 -3675 (|#1| |#1| |#1|)) (-15 -3614 (|#1| |#2| |#1|)) (-15 -3675 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3614 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -3225 (|#1| |#1| (-1244 (-570)))) (-15 -3225 (|#1| |#1| (-570))) (-15 -1505 (|#1| (-650 |#1|))) (-15 -1505 (|#1| |#1| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#2|)) (-15 -3617 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3960 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3617 (|#1| |#2| |#1|)) (-15 -3153 (|#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 60 (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) |#1|) $) 88)) (-3960 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-1381 (($ $) 86 (|has| |#1| (-1109)))) (-3153 (($ $) 80 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1109)))) (-3617 (($ |#1| $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 52)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-3675 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-2801 (($ |#1| $ (-570)) 91) (($ $ $ (-570)) 90)) (-2119 (($ |#1| $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 43 (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4222 (($ $ |#1|) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1244 (-570))) 71)) (-3332 (($ $ (-570)) 94) (($ $ (-1244 (-570))) 93)) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 72)) (-1674 (($ $ |#1|) 96) (($ $ $) 95)) (-1505 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-286 |#1|) (-141) (-1227)) (T -286))
-((-1674 (*1 *1 *1 *2) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)))) (-1674 (*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1227)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-1244 (-570))) (-4 *1 (-286 *3)) (-4 *3 (-1227)))) (-3614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1227)))) (-2801 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-286 *2)) (-4 *2 (-1227)))) (-2801 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1227)))) (-3675 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1227)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1227)))) (-3614 (*1 *1 *2 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)) (-4 *2 (-1109)))) (-1381 (*1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)) (-4 *2 (-1109)))) (-3675 (*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)) (-4 *2 (-856)))))
-(-13 (-657 |t#1|) (-10 -8 (-6 -4453) (-15 -1674 ($ $ |t#1|)) (-15 -1674 ($ $ $)) (-15 -3332 ($ $ (-570))) (-15 -3332 ($ $ (-1244 (-570)))) (-15 -3614 ($ (-1 (-112) |t#1|) $)) (-15 -2801 ($ |t#1| $ (-570))) (-15 -2801 ($ $ $ (-570))) (-15 -3675 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3350 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -3614 ($ |t#1| $)) (-15 -1381 ($ $))) |%noBranch|) (IF (|has| |t#1| (-856)) (-15 -3675 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
+(-13 (-1111) (-10 -8 (-15 -9 ($) -4338) (-15 -8 ($) -4338) (-15 -7 ($) -4338)))
+((-3464 (((-112) $ $) NIL)) (-3627 (((-652 (-873)) $) NIL)) (-2402 (((-514) $) 8)) (-3618 (((-1170) $) NIL)) (-2734 (((-188) $) 10)) (-2685 (((-112) $ (-514)) NIL)) (-2614 (((-1131) $) NIL)) (-2957 (((-699 $) (-514)) 17)) (-1430 (((-652 (-112)) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3586 (((-55) $) 12)) (-3921 (((-112) $ $) NIL)))
+(((-189) (-13 (-187) (-10 -8 (-15 -2957 ((-699 $) (-514)))))) (T -189))
+((-2957 (*1 *2 *3) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-189))) (-5 *1 (-189)))))
+(-13 (-187) (-10 -8 (-15 -2957 ((-699 $) (-514)))))
+((-3012 ((|#2| |#2|) 28)) (-1688 (((-112) |#2|) 19)) (-3106 (((-322 |#1|) |#2|) 12)) (-2592 (((-322 |#1|) |#2|) 14)) (-4144 ((|#2| |#2| (-1188)) 69) ((|#2| |#2|) 70)) (-1959 (((-171 (-322 |#1|)) |#2|) 10)) (-1830 ((|#2| |#2| (-1188)) 66) ((|#2| |#2|) 60)))
+(((-190 |#1| |#2|) (-10 -7 (-15 -4144 (|#2| |#2|)) (-15 -4144 (|#2| |#2| (-1188))) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1188))) (-15 -3106 ((-322 |#1|) |#2|)) (-15 -2592 ((-322 |#1|) |#2|)) (-15 -1688 ((-112) |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -1959 ((-171 (-322 |#1|)) |#2|))) (-13 (-564) (-1049 (-572))) (-13 (-27) (-1214) (-438 (-171 |#1|)))) (T -190))
+((-1959 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-171 (-322 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3)))))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-2592 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-1830 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3)))))) (-4144 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4)))))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3)))))))
+(-10 -7 (-15 -4144 (|#2| |#2|)) (-15 -4144 (|#2| |#2| (-1188))) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1188))) (-15 -3106 ((-322 |#1|) |#2|)) (-15 -2592 ((-322 |#1|) |#2|)) (-15 -1688 ((-112) |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -1959 ((-171 (-322 |#1|)) |#2|)))
+((-4040 (((-1279 (-697 (-961 |#1|))) (-1279 (-697 |#1|))) 26)) (-3491 (((-1279 (-697 (-415 (-961 |#1|)))) (-1279 (-697 |#1|))) 37)))
+(((-191 |#1|) (-10 -7 (-15 -4040 ((-1279 (-697 (-961 |#1|))) (-1279 (-697 |#1|)))) (-15 -3491 ((-1279 (-697 (-415 (-961 |#1|)))) (-1279 (-697 |#1|))))) (-174)) (T -191))
+((-3491 (*1 *2 *3) (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174)) (-5 *2 (-1279 (-697 (-415 (-961 *4))))) (-5 *1 (-191 *4)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174)) (-5 *2 (-1279 (-697 (-961 *4)))) (-5 *1 (-191 *4)))))
+(-10 -7 (-15 -4040 ((-1279 (-697 (-961 |#1|))) (-1279 (-697 |#1|)))) (-15 -3491 ((-1279 (-697 (-415 (-961 |#1|)))) (-1279 (-697 |#1|)))))
+((-3460 (((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572)))) 93)) (-2409 (((-1190 (-415 (-572))) (-652 (-572)) (-652 (-572))) 107)) (-2456 (((-1190 (-415 (-572))) (-930)) 54)) (-1460 (((-1190 (-415 (-572))) (-930)) 79)) (-3654 (((-415 (-572)) (-1190 (-415 (-572)))) 89)) (-3700 (((-1190 (-415 (-572))) (-930)) 37)) (-2790 (((-1190 (-415 (-572))) (-930)) 66)) (-2447 (((-1190 (-415 (-572))) (-930)) 61)) (-1661 (((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572)))) 87)) (-3610 (((-1190 (-415 (-572))) (-930)) 29)) (-3709 (((-415 (-572)) (-1190 (-415 (-572))) (-1190 (-415 (-572)))) 91)) (-2010 (((-1190 (-415 (-572))) (-930)) 35)) (-4036 (((-1190 (-415 (-572))) (-652 (-930))) 100)))
+(((-192) (-10 -7 (-15 -3610 ((-1190 (-415 (-572))) (-930))) (-15 -2456 ((-1190 (-415 (-572))) (-930))) (-15 -3700 ((-1190 (-415 (-572))) (-930))) (-15 -2010 ((-1190 (-415 (-572))) (-930))) (-15 -2447 ((-1190 (-415 (-572))) (-930))) (-15 -2790 ((-1190 (-415 (-572))) (-930))) (-15 -1460 ((-1190 (-415 (-572))) (-930))) (-15 -3709 ((-415 (-572)) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -1661 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -3654 ((-415 (-572)) (-1190 (-415 (-572))))) (-15 -3460 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -4036 ((-1190 (-415 (-572))) (-652 (-930)))) (-15 -2409 ((-1190 (-415 (-572))) (-652 (-572)) (-652 (-572)))))) (T -192))
+((-2409 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3460 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572))) (-5 *1 (-192)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3709 (*1 *2 *3 *3) (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572))) (-5 *1 (-192)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+(-10 -7 (-15 -3610 ((-1190 (-415 (-572))) (-930))) (-15 -2456 ((-1190 (-415 (-572))) (-930))) (-15 -3700 ((-1190 (-415 (-572))) (-930))) (-15 -2010 ((-1190 (-415 (-572))) (-930))) (-15 -2447 ((-1190 (-415 (-572))) (-930))) (-15 -2790 ((-1190 (-415 (-572))) (-930))) (-15 -1460 ((-1190 (-415 (-572))) (-930))) (-15 -3709 ((-415 (-572)) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -1661 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -3654 ((-415 (-572)) (-1190 (-415 (-572))))) (-15 -3460 ((-1190 (-415 (-572))) (-1190 (-415 (-572))) (-1190 (-415 (-572))))) (-15 -4036 ((-1190 (-415 (-572))) (-652 (-930)))) (-15 -2409 ((-1190 (-415 (-572))) (-652 (-572)) (-652 (-572)))))
+((-4152 (((-426 (-1184 (-572))) (-572)) 38)) (-1691 (((-652 (-1184 (-572))) (-572)) 33)) (-1458 (((-1184 (-572)) (-572)) 28)))
+(((-193) (-10 -7 (-15 -1691 ((-652 (-1184 (-572))) (-572))) (-15 -1458 ((-1184 (-572)) (-572))) (-15 -4152 ((-426 (-1184 (-572))) (-572))))) (T -193))
+((-4152 (*1 *2 *3) (-12 (-5 *2 (-426 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-193)) (-5 *3 (-572)))) (-1691 (*1 *2 *3) (-12 (-5 *2 (-652 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))))
+(-10 -7 (-15 -1691 ((-652 (-1184 (-572))) (-572))) (-15 -1458 ((-1184 (-572)) (-572))) (-15 -4152 ((-426 (-1184 (-572))) (-572))))
+((-1776 (((-1168 (-227)) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2441 (((-652 (-1170)) (-1168 (-227))) NIL)) (-4151 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3479 (((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227)))) NIL)) (-2475 (((-652 (-1170)) (-652 (-227))) NIL)) (-2662 (((-227) (-1105 (-851 (-227)))) 31)) (-1466 (((-227) (-1105 (-851 (-227)))) 32)) (-2875 (((-386) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3876 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-2726 (((-1170) (-227)) NIL)) (-1979 (((-1170) (-652 (-1170))) 27)) (-4120 (((-1046) (-1188) (-1188) (-1046)) 13)))
+(((-194) (-10 -7 (-15 -4151 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3876 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2662 ((-227) (-1105 (-851 (-227))))) (-15 -1466 ((-227) (-1105 (-851 (-227))))) (-15 -2875 ((-386) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3479 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -1776 ((-1168 (-227)) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2726 ((-1170) (-227))) (-15 -2475 ((-652 (-1170)) (-652 (-227)))) (-15 -2441 ((-652 (-1170)) (-1168 (-227)))) (-15 -1979 ((-1170) (-652 (-1170)))) (-15 -4120 ((-1046) (-1188) (-1188) (-1046))))) (T -194))
+((-4120 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-194)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-194)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-194)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-194)))) (-3479 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188)) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-194)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-194)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
+(-10 -7 (-15 -4151 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3876 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2662 ((-227) (-1105 (-851 (-227))))) (-15 -1466 ((-227) (-1105 (-851 (-227))))) (-15 -2875 ((-386) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3479 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -1776 ((-1168 (-227)) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2726 ((-1170) (-227))) (-15 -2475 ((-652 (-1170)) (-652 (-227)))) (-15 -2441 ((-652 (-1170)) (-1168 (-227)))) (-15 -1979 ((-1170) (-652 (-1170)))) (-15 -4120 ((-1046) (-1188) (-1188) (-1046))))
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 61) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-195) (-795)) (T -195))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 66) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-196) (-795)) (T -196))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 81) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-197) (-795)) (T -197))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 63) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-198) (-795)) (T -198))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 75) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-199) (-795)) (T -199))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 90) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-200) (-795)) (T -200))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 90) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-201) (-795)) (T -201))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 77) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-202) (-795)) (T -202))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 76)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-203) (-795)) (T -203))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 77)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-204) (-795)) (T -204))
+NIL
+(-795)
+((-3464 (((-112) $ $) NIL)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 105) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-205) (-795)) (T -205))
+NIL
+(-795)
+((-2914 (((-3 (-2 (|:| -2185 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1476 (((-572) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-4253 (((-3 (-652 (-227)) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
+(((-206) (-10 -7 (-15 -2914 ((-3 (-2 (|:| -2185 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4253 ((-3 (-652 (-227)) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1476 ((-572) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
+((-1476 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-572)) (-5 *1 (-206)))) (-4253 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-206)))) (-2914 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2185 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
+(-10 -7 (-15 -2914 ((-3 (-2 (|:| -2185 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4253 ((-3 (-652 (-227)) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1476 ((-572) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-1484 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-4407 (((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3737 (((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-697 (-322 (-227)))) 112)) (-2263 (((-386) (-697 (-322 (-227)))) 140)) (-4147 (((-697 (-322 (-227))) (-1279 (-322 (-227))) (-652 (-1188))) 136)) (-2285 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3668 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3654 (((-697 (-322 (-227))) (-697 (-322 (-227))) (-652 (-1188)) (-1279 (-322 (-227)))) 125)) (-1997 (((-386) (-386) (-652 (-386))) 133) (((-386) (-386) (-386)) 128)) (-3332 (((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
+(((-207) (-10 -7 (-15 -1997 ((-386) (-386) (-386))) (-15 -1997 ((-386) (-386) (-652 (-386)))) (-15 -2263 ((-386) (-697 (-322 (-227))))) (-15 -4147 ((-697 (-322 (-227))) (-1279 (-322 (-227))) (-652 (-1188)))) (-15 -3654 ((-697 (-322 (-227))) (-697 (-322 (-227))) (-652 (-1188)) (-1279 (-322 (-227))))) (-15 -3737 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-697 (-322 (-227))))) (-15 -4407 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1484 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3668 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3332 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2285 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
+((-2285 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-4407 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386)))) (-5 *1 (-207)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-697 (-322 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386)))) (-5 *1 (-207)))) (-3654 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-697 (-322 (-227)))) (-5 *3 (-652 (-1188))) (-5 *4 (-1279 (-322 (-227)))) (-5 *1 (-207)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188))) (-5 *2 (-697 (-322 (-227)))) (-5 *1 (-207)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-697 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))) (-1997 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-386))) (-5 *2 (-386)) (-5 *1 (-207)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-207)))))
+(-10 -7 (-15 -1997 ((-386) (-386) (-386))) (-15 -1997 ((-386) (-386) (-652 (-386)))) (-15 -2263 ((-386) (-697 (-322 (-227))))) (-15 -4147 ((-697 (-322 (-227))) (-1279 (-322 (-227))) (-652 (-1188)))) (-15 -3654 ((-697 (-322 (-227))) (-697 (-322 (-227))) (-652 (-1188)) (-1279 (-322 (-227))))) (-15 -3737 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-697 (-322 (-227))))) (-15 -4407 ((-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1484 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3668 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3332 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2285 ((-386) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-3464 (((-112) $ $) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2398 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3921 (((-112) $ $) NIL)))
+(((-208) (-808)) (T -208))
+NIL
+(-808)
+((-3464 (((-112) $ $) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2398 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3921 (((-112) $ $) NIL)))
+(((-209) (-808)) (T -209))
+NIL
+(-808)
+((-3464 (((-112) $ $) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2398 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3921 (((-112) $ $) NIL)))
+(((-210) (-808)) (T -210))
+NIL
+(-808)
+((-3464 (((-112) $ $) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2398 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3921 (((-112) $ $) NIL)))
+(((-211) (-808)) (T -211))
+NIL
+(-808)
+((-4084 (((-652 (-1188)) (-1188) (-779)) 26)) (-2764 (((-322 (-227)) (-322 (-227))) 35)) (-3551 (((-112) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 87)) (-2538 (((-112) (-227) (-227) (-652 (-322 (-227)))) 47)))
+(((-212) (-10 -7 (-15 -4084 ((-652 (-1188)) (-1188) (-779))) (-15 -2764 ((-322 (-227)) (-322 (-227)))) (-15 -2538 ((-112) (-227) (-227) (-652 (-322 (-227))))) (-15 -3551 ((-112) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))))) (T -212))
+((-3551 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2538 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-652 (-322 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-212)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-652 (-1188))) (-5 *1 (-212)) (-5 *3 (-1188)))))
+(-10 -7 (-15 -4084 ((-652 (-1188)) (-1188) (-779))) (-15 -2764 ((-322 (-227)) (-322 (-227)))) (-15 -2538 ((-112) (-227) (-227) (-652 (-322 (-227))))) (-15 -3551 ((-112) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))))
+((-3464 (((-112) $ $) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 28)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2698 (((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 70)) (-3921 (((-112) $ $) NIL)))
+(((-213) (-904)) (T -213))
+NIL
+(-904)
+((-3464 (((-112) $ $) NIL)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 24)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2698 (((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-214) (-904)) (T -214))
+NIL
+(-904)
+((-3464 (((-112) $ $) NIL)) (-2994 ((|#2| $ (-779) |#2|) 11)) (-2986 ((|#2| $ (-779)) 10)) (-2924 (($) 8)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 23)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 13)))
+(((-215 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -2924 ($)) (-15 -2986 (|#2| $ (-779))) (-15 -2994 (|#2| $ (-779) |#2|)))) (-930) (-1111)) (T -215))
+((-2924 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1111)))) (-2986 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *2 (-1111)) (-5 *1 (-215 *4 *2)) (-14 *4 (-930)))) (-2994 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-215 *4 *2)) (-14 *4 (-930)) (-4 *2 (-1111)))))
+(-13 (-1111) (-10 -8 (-15 -2924 ($)) (-15 -2986 (|#2| $ (-779))) (-15 -2994 (|#2| $ (-779) |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3019 (((-1284) $) 37) (((-1284) $ (-930) (-930)) 41)) (-2679 (($ $ (-1000)) 19) (((-249 (-1170)) $ (-1188)) 15)) (-3105 (((-1284) $) 35)) (-3491 (((-870) $) 32) (($ (-652 |#1|)) 8)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $ $) 27)) (-4005 (($ $ $) 22)))
+(((-216 |#1|) (-13 (-1111) (-624 (-652 |#1|)) (-10 -8 (-15 -2679 ($ $ (-1000))) (-15 -2679 ((-249 (-1170)) $ (-1188))) (-15 -4005 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $)) (-15 -3019 ((-1284) $ (-930) (-930))))) (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $))))) (T -216))
+((-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-1000)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $))))))) (-2679 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-249 (-1170))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ *3)) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $))))))) (-4005 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $))))))) (-4018 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $))))))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 (*2 $)) (-15 -3019 (*2 $))))))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 (*2 $)) (-15 -3019 (*2 $))))))) (-3019 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 (*2 $)) (-15 -3019 (*2 $))))))))
+(-13 (-1111) (-624 (-652 |#1|)) (-10 -8 (-15 -2679 ($ $ (-1000))) (-15 -2679 ((-249 (-1170)) $ (-1188))) (-15 -4005 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $)) (-15 -3019 ((-1284) $ (-930) (-930)))))
+((-2801 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2801 (|#2| |#4| (-1 |#2| |#2|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -217))
+((-2801 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-370)) (-4 *6 (-1255 (-415 *2))) (-4 *2 (-1255 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-349 *5 *2 *6)))))
+(-10 -7 (-15 -2801 (|#2| |#4| (-1 |#2| |#2|))))
+((-4214 ((|#2| |#2| (-779) |#2|) 55)) (-3830 ((|#2| |#2| (-779) |#2|) 51)) (-2773 (((-652 |#2|) (-652 (-2 (|:| |deg| (-779)) (|:| -2896 |#2|)))) 79)) (-2521 (((-652 (-2 (|:| |deg| (-779)) (|:| -2896 |#2|))) |#2|) 73)) (-4351 (((-112) |#2|) 71)) (-2035 (((-426 |#2|) |#2|) 91)) (-2972 (((-426 |#2|) |#2|) 90)) (-3933 ((|#2| |#2| (-779) |#2|) 49)) (-1316 (((-2 (|:| |cont| |#1|) (|:| -1591 (-652 (-2 (|:| |irr| |#2|) (|:| -1948 (-572)))))) |#2| (-112)) 85)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -2972 ((-426 |#2|) |#2|)) (-15 -2035 ((-426 |#2|) |#2|)) (-15 -1316 ((-2 (|:| |cont| |#1|) (|:| -1591 (-652 (-2 (|:| |irr| |#2|) (|:| -1948 (-572)))))) |#2| (-112))) (-15 -2521 ((-652 (-2 (|:| |deg| (-779)) (|:| -2896 |#2|))) |#2|)) (-15 -2773 ((-652 |#2|) (-652 (-2 (|:| |deg| (-779)) (|:| -2896 |#2|))))) (-15 -3933 (|#2| |#2| (-779) |#2|)) (-15 -3830 (|#2| |#2| (-779) |#2|)) (-15 -4214 (|#2| |#2| (-779) |#2|)) (-15 -4351 ((-112) |#2|))) (-356) (-1255 |#1|)) (T -218))
+((-4351 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))) (-4214 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1255 *4)))) (-3830 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1255 *4)))) (-3933 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1255 *4)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |deg| (-779)) (|:| -2896 *5)))) (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *2 (-652 *5)) (-5 *1 (-218 *4 *5)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -2896 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1255 *5)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -2972 ((-426 |#2|) |#2|)) (-15 -2035 ((-426 |#2|) |#2|)) (-15 -1316 ((-2 (|:| |cont| |#1|) (|:| -1591 (-652 (-2 (|:| |irr| |#2|) (|:| -1948 (-572)))))) |#2| (-112))) (-15 -2521 ((-652 (-2 (|:| |deg| (-779)) (|:| -2896 |#2|))) |#2|)) (-15 -2773 ((-652 |#2|) (-652 (-2 (|:| |deg| (-779)) (|:| -2896 |#2|))))) (-15 -3933 (|#2| |#2| (-779) |#2|)) (-15 -3830 (|#2| |#2| (-779) |#2|)) (-15 -4214 (|#2| |#2| (-779) |#2|)) (-15 -4351 ((-112) |#2|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 (((-572) $) NIL (|has| (-572) (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| (-572) (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-572) (-1049 (-572))))) (-1869 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-572) (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| (-572) (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 (((-572) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-4354 (((-112) $) NIL (|has| (-572) (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-572) (-858)))) (-3161 (($ (-1 (-572) (-572)) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-572) (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) NIL)) (-1609 (((-572) $) NIL (|has| (-572) (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-4395 (((-779) $) NIL)) (-2679 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3982 (($ $) NIL)) (-2224 (((-572) $) NIL)) (-2410 (($ (-415 (-572))) 9)) (-3222 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 8) (($ (-572)) NIL) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL) (((-1015 10) $) 10)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-2455 (((-779)) NIL T CONST)) (-3441 (((-572) $) NIL (|has| (-572) (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| (-572) (-828)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3976 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-572) (-858)))) (-4029 (($ $ $) NIL) (($ (-572) (-572)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL)))
+(((-219) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 10)) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -2410 ($ (-415 (-572))))))) (T -219))
+((-3964 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219)))))
+(-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 10)) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -2410 ($ (-415 (-572))))))
+((-3464 (((-112) $ $) NIL)) (-1980 (((-1129) $) 13)) (-3618 (((-1170) $) NIL)) (-1563 (((-491) $) 10)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 23) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-1146) $) 15)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-220) (-13 (-1094) (-10 -8 (-15 -1563 ((-491) $)) (-15 -1980 ((-1129) $)) (-15 -2414 ((-1146) $))))) (T -220))
+((-1563 (*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-220)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-220)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-220)))))
+(-13 (-1094) (-10 -8 (-15 -1563 ((-491) $)) (-15 -1980 ((-1129) $)) (-15 -2414 ((-1146) $))))
+((-4161 (((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)) (-1170)) 29) (((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|))) 25)) (-2165 (((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1188) (-851 |#2|) (-851 |#2|) (-112)) 17)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -4161 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)))) (-15 -4161 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)) (-1170))) (-15 -2165 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1188) (-851 |#2|) (-851 |#2|) (-112)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-29 |#1|))) (T -221))
+((-2165 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1188)) (-5 *6 (-112)) (-4 *7 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-4 *3 (-13 (-1214) (-968) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-851 *3)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1103 (-851 *3))) (-5 *5 (-1170)) (-4 *3 (-13 (-1214) (-968) (-29 *6))) (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-851 *3))) (-4 *3 (-13 (-1214) (-968) (-29 *5))) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
+(-10 -7 (-15 -4161 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)))) (-15 -4161 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1103 (-851 |#2|)) (-1170))) (-15 -2165 ((-3 (|:| |f1| (-851 |#2|)) (|:| |f2| (-652 (-851 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1188) (-851 |#2|) (-851 |#2|) (-112))))
+((-4161 (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))) (-1170)) 49) (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|))))) 46) (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))) (-1170)) 50) (((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|)))) 22)))
+(((-222 |#1|) (-10 -7 (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))))) (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))) (-1170))) (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))))) (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))) (-1170)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (T -222))
+((-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1103 (-851 (-415 (-961 *6))))) (-5 *5 (-1170)) (-5 *3 (-415 (-961 *6))) (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-851 (-415 (-961 *5))))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1103 (-851 (-322 *6)))) (-5 *5 (-1170)) (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1103 (-851 (-322 *5)))) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
+(-10 -7 (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))))) (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-322 |#1|))) (-1170))) (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))))) (-15 -4161 ((-3 (|:| |f1| (-851 (-322 |#1|))) (|:| |f2| (-652 (-851 (-322 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-415 (-961 |#1|)) (-1103 (-851 (-415 (-961 |#1|)))) (-1170))))
+((-2925 (((-2 (|:| -3888 (-1184 |#1|)) (|:| |deg| (-930))) (-1184 |#1|)) 26)) (-1386 (((-652 (-322 |#2|)) (-322 |#2|) (-930)) 51)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -2925 ((-2 (|:| -3888 (-1184 |#1|)) (|:| |deg| (-930))) (-1184 |#1|))) (-15 -1386 ((-652 (-322 |#2|)) (-322 |#2|) (-930)))) (-1060) (-564)) (T -223))
+((-1386 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *6 (-564)) (-5 *2 (-652 (-322 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-322 *6)) (-4 *5 (-1060)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-2 (|:| -3888 (-1184 *4)) (|:| |deg| (-930)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1184 *4)) (-4 *5 (-564)))))
+(-10 -7 (-15 -2925 ((-2 (|:| -3888 (-1184 |#1|)) (|:| |deg| (-930))) (-1184 |#1|))) (-15 -1386 ((-652 (-322 |#2|)) (-322 |#2|) (-930))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2021 ((|#1| $) NIL)) (-2620 ((|#1| $) 30)) (-2938 (((-112) $ (-779)) NIL)) (-1586 (($) NIL T CONST)) (-1713 (($ $) NIL)) (-4095 (($ $) 39)) (-3540 ((|#1| |#1| $) NIL)) (-2836 ((|#1| $) NIL)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-2040 (((-779) $) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1533 ((|#1| $) NIL)) (-2337 ((|#1| |#1| $) 35)) (-1788 ((|#1| |#1| $) 37)) (-3704 (($ |#1| $) NIL)) (-3920 (((-779) $) 33)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-4314 ((|#1| $) NIL)) (-2885 ((|#1| $) 31)) (-3084 ((|#1| $) 29)) (-4105 ((|#1| $) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2106 ((|#1| |#1| $) NIL)) (-3712 (((-112) $) 9)) (-1321 (($) NIL)) (-2610 ((|#1| $) NIL)) (-2226 (($) NIL) (($ (-652 |#1|)) 16)) (-3900 (((-779) $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-4197 ((|#1| $) 13)) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) NIL)) (-1340 ((|#1| $) NIL)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-224 |#1|) (-13 (-259 |#1|) (-10 -8 (-15 -2226 ($ (-652 |#1|))))) (-1111)) (T -224))
+((-2226 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-224 *3)))))
+(-13 (-259 |#1|) (-10 -8 (-15 -2226 ($ (-652 |#1|)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3241 (($ (-322 |#1|)) 24)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-1695 (((-112) $) NIL)) (-3072 (((-3 (-322 |#1|) "failed") $) NIL)) (-1869 (((-322 |#1|) $) NIL)) (-1874 (($ $) 32)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-3161 (($ (-1 (-322 |#1|) (-322 |#1|)) $) NIL)) (-1853 (((-322 |#1|) $) NIL)) (-3171 (($ $) 31)) (-3618 (((-1170) $) NIL)) (-1982 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-4267 (($ (-779)) NIL)) (-2949 (($ $) 33)) (-1497 (((-572) $) NIL)) (-3491 (((-870) $) 65) (($ (-572)) NIL) (($ (-322 |#1|)) NIL)) (-4206 (((-322 |#1|) $ $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 26 T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) 29)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 20)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 25) (($ (-322 |#1|) $) 19)))
+(((-225 |#1| |#2|) (-13 (-628 (-322 |#1|)) (-1049 (-322 |#1|)) (-10 -8 (-15 -1853 ((-322 |#1|) $)) (-15 -3171 ($ $)) (-15 -1874 ($ $)) (-15 -4206 ((-322 |#1|) $ $)) (-15 -4267 ($ (-779))) (-15 -1982 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -1497 ((-572) $)) (-15 -3161 ($ (-1 (-322 |#1|) (-322 |#1|)) $)) (-15 -3241 ($ (-322 |#1|))) (-15 -2949 ($ $)))) (-13 (-1060) (-858)) (-652 (-1188))) (T -225))
+((-1853 (*1 *2 *1) (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-3171 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858))) (-14 *3 (-652 (-1188))))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858))) (-14 *3 (-652 (-1188))))) (-4206 (*1 *2 *1 *1) (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188))))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-322 *3) (-322 *3))) (-4 *3 (-13 (-1060) (-858))) (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188))))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-322 *3)) (-4 *3 (-13 (-1060) (-858))) (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188))))) (-2949 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858))) (-14 *3 (-652 (-1188))))))
+(-13 (-628 (-322 |#1|)) (-1049 (-322 |#1|)) (-10 -8 (-15 -1853 ((-322 |#1|) $)) (-15 -3171 ($ $)) (-15 -1874 ($ $)) (-15 -4206 ((-322 |#1|) $ $)) (-15 -4267 ($ (-779))) (-15 -1982 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -1497 ((-572) $)) (-15 -3161 ($ (-1 (-322 |#1|) (-322 |#1|)) $)) (-15 -3241 ($ (-322 |#1|))) (-15 -2949 ($ $))))
+((-3218 (((-112) (-1170)) 26)) (-2207 (((-3 (-851 |#2|) "failed") (-620 |#2|) |#2| (-851 |#2|) (-851 |#2|) (-112)) 35)) (-4059 (((-3 (-112) "failed") (-1184 |#2|) (-851 |#2|) (-851 |#2|) (-112)) 84) (((-3 (-112) "failed") (-961 |#1|) (-1188) (-851 |#2|) (-851 |#2|) (-112)) 85)))
+(((-226 |#1| |#2|) (-10 -7 (-15 -3218 ((-112) (-1170))) (-15 -2207 ((-3 (-851 |#2|) "failed") (-620 |#2|) |#2| (-851 |#2|) (-851 |#2|) (-112))) (-15 -4059 ((-3 (-112) "failed") (-961 |#1|) (-1188) (-851 |#2|) (-851 |#2|) (-112))) (-15 -4059 ((-3 (-112) "failed") (-1184 |#2|) (-851 |#2|) (-851 |#2|) (-112)))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-29 |#1|))) (T -226))
+((-4059 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1184 *6)) (-5 *4 (-851 *6)) (-4 *6 (-13 (-1214) (-29 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-226 *5 *6)))) (-4059 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-961 *6)) (-5 *4 (-1188)) (-5 *5 (-851 *7)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *7 (-13 (-1214) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2207 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-851 *4)) (-5 *3 (-620 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1214) (-29 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-226 *6 *4)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1214) (-29 *4))))))
+(-10 -7 (-15 -3218 ((-112) (-1170))) (-15 -2207 ((-3 (-851 |#2|) "failed") (-620 |#2|) |#2| (-851 |#2|) (-851 |#2|) (-112))) (-15 -4059 ((-3 (-112) "failed") (-961 |#1|) (-1188) (-851 |#2|) (-851 |#2|) (-112))) (-15 -4059 ((-3 (-112) "failed") (-1184 |#2|) (-851 |#2|) (-851 |#2|) (-112))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 98)) (-3923 (((-572) $) 35)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-3915 (($ $) 87)) (-3790 (($ $) 75)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3093 (($ $) 66)) (-4252 (((-112) $ $) NIL)) (-3893 (($ $) 85)) (-3770 (($ $) 73)) (-4304 (((-572) $) 128)) (-3939 (($ $) 90)) (-3811 (($ $) 77)) (-1586 (($) NIL T CONST)) (-1984 (($ $) NIL)) (-3072 (((-3 (-572) "failed") $) 127) (((-3 (-415 (-572)) "failed") $) 124)) (-1869 (((-572) $) 125) (((-415 (-572)) $) 122)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 103)) (-1352 (((-415 (-572)) $ (-779)) 117) (((-415 (-572)) $ (-779) (-779)) 116)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-1722 (((-930)) 29) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-3778 (((-112) $) NIL)) (-2250 (($) 46)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL)) (-2068 (((-572) $) 42)) (-4422 (((-112) $) 99)) (-2033 (($ $ (-572)) NIL)) (-2140 (($ $) NIL)) (-4354 (((-112) $) 97)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) 63) (($) 38 (-12 (-3795 (|has| $ (-6 -4437))) (-3795 (|has| $ (-6 -4445)))))) (-3928 (($ $ $) 62) (($) 37 (-12 (-3795 (|has| $ (-6 -4437))) (-3795 (|has| $ (-6 -4445)))))) (-4269 (((-572) $) 27)) (-4224 (($ $) 33)) (-3956 (($ $) 67)) (-4057 (($ $) 72)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3987 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-2614 (((-1131) $) 101)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL)) (-1609 (($ $) NIL)) (-2150 (($ (-572) (-572)) NIL) (($ (-572) (-572) (-930)) 110)) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2477 (((-572) $) 28)) (-2582 (($) 45)) (-3272 (($ $) 71)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3005 (((-930)) NIL) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-3011 (($ $ (-779)) NIL) (($ $) 104)) (-1491 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-2139 (($ $) 88)) (-3822 (($ $) 78)) (-3927 (($ $) 89)) (-3800 (($ $) 76)) (-3905 (($ $) 86)) (-3780 (($ $) 74)) (-3222 (((-386) $) 113) (((-227) $) 14) (((-901 (-386)) $) NIL) (((-544) $) 52)) (-3491 (((-870) $) 49) (($ (-572)) 70) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-572)) 70) (($ (-415 (-572))) NIL)) (-2455 (((-779)) NIL T CONST)) (-3441 (($ $) NIL)) (-3444 (((-930)) 36) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-3424 (((-112) $ $) NIL)) (-1556 (((-930)) 25)) (-2176 (($ $) 93)) (-3852 (($ $) 81) (($ $ $) 120)) (-2466 (((-112) $ $) NIL)) (-2152 (($ $) 91)) (-3833 (($ $) 79)) (-2204 (($ $) 96)) (-3871 (($ $) 84)) (-3120 (($ $) 94)) (-3883 (($ $) 82)) (-2193 (($ $) 95)) (-3861 (($ $) 83)) (-2162 (($ $) 92)) (-3842 (($ $) 80)) (-2775 (($ $) 119)) (-2602 (($) 23 T CONST)) (-2619 (($) 43 T CONST)) (-2810 (((-1170) $) 18) (((-1170) $ (-112)) 20) (((-1284) (-830) $) 21) (((-1284) (-830) $ (-112)) 22)) (-3227 (($ $) 107)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-2478 (($ $ $) 109)) (-3976 (((-112) $ $) 56)) (-3954 (((-112) $ $) 54)) (-3921 (((-112) $ $) 64)) (-3965 (((-112) $ $) 55)) (-3943 (((-112) $ $) 53)) (-4029 (($ $ $) 44) (($ $ (-572)) 65)) (-4018 (($ $) 57) (($ $ $) 59)) (-4005 (($ $ $) 58)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 68) (($ $ (-415 (-572))) 152) (($ $ $) 69)) (* (($ (-930) $) 34) (($ (-779) $) NIL) (($ (-572) $) 61) (($ $ $) 60) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-227) (-13 (-412) (-237) (-836) (-1214) (-622 (-544)) (-10 -8 (-15 -4029 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -2582 ($)) (-15 -4224 ($ $)) (-15 -3956 ($ $)) (-15 -3852 ($ $ $)) (-15 -3227 ($ $)) (-15 -2478 ($ $ $)) (-15 -1352 ((-415 (-572)) $ (-779))) (-15 -1352 ((-415 (-572)) $ (-779) (-779)))))) (T -227))
+((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-227)))) (-2582 (*1 *1) (-5 *1 (-227))) (-4224 (*1 *1 *1) (-5 *1 (-227))) (-3956 (*1 *1 *1) (-5 *1 (-227))) (-3852 (*1 *1 *1 *1) (-5 *1 (-227))) (-3227 (*1 *1 *1) (-5 *1 (-227))) (-2478 (*1 *1 *1 *1) (-5 *1 (-227))) (-1352 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227)))) (-1352 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227)))))
+(-13 (-412) (-237) (-836) (-1214) (-622 (-544)) (-10 -8 (-15 -4029 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -2582 ($)) (-15 -4224 ($ $)) (-15 -3956 ($ $)) (-15 -3852 ($ $ $)) (-15 -3227 ($ $)) (-15 -2478 ($ $ $)) (-15 -1352 ((-415 (-572)) $ (-779))) (-15 -1352 ((-415 (-572)) $ (-779) (-779)))))
+((-3318 (((-171 (-227)) (-779) (-171 (-227))) 11) (((-227) (-779) (-227)) 12)) (-4231 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2931 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3032 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-4317 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-4122 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3582 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-4264 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-2815 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-1659 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-3227 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-2478 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
+(((-228) (-10 -7 (-15 -3227 ((-227) (-227))) (-15 -3227 ((-171 (-227)) (-171 (-227)))) (-15 -2478 ((-227) (-227) (-227))) (-15 -2478 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4231 ((-227) (-227))) (-15 -4231 ((-171 (-227)) (-171 (-227)))) (-15 -3032 ((-227) (-227))) (-15 -3032 ((-171 (-227)) (-171 (-227)))) (-15 -3318 ((-227) (-779) (-227))) (-15 -3318 ((-171 (-227)) (-779) (-171 (-227)))) (-15 -3582 ((-227) (-227) (-227))) (-15 -3582 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4317 ((-227) (-227) (-227))) (-15 -4317 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4264 ((-227) (-227) (-227))) (-15 -4264 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4122 ((-227) (-227) (-227))) (-15 -4122 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1659 ((-171 (-227)) (-171 (-227)))) (-15 -1659 ((-227) (-227))) (-15 -2815 ((-227) (-227))) (-15 -2815 ((-171 (-227)) (-171 (-227)))) (-15 -2931 ((-227) (-227) (-227))) (-15 -2931 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
+((-2931 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2931 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4122 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4122 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4264 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4264 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4317 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4317 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3582 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3582 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3318 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-779)) (-5 *1 (-228)))) (-3318 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-779)) (-5 *1 (-228)))) (-3032 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3032 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4231 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4231 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2478 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2478 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
+(-10 -7 (-15 -3227 ((-227) (-227))) (-15 -3227 ((-171 (-227)) (-171 (-227)))) (-15 -2478 ((-227) (-227) (-227))) (-15 -2478 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4231 ((-227) (-227))) (-15 -4231 ((-171 (-227)) (-171 (-227)))) (-15 -3032 ((-227) (-227))) (-15 -3032 ((-171 (-227)) (-171 (-227)))) (-15 -3318 ((-227) (-779) (-227))) (-15 -3318 ((-171 (-227)) (-779) (-171 (-227)))) (-15 -3582 ((-227) (-227) (-227))) (-15 -3582 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4317 ((-227) (-227) (-227))) (-15 -4317 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4264 ((-227) (-227) (-227))) (-15 -4264 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4122 ((-227) (-227) (-227))) (-15 -4122 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1659 ((-171 (-227)) (-171 (-227)))) (-15 -1659 ((-227) (-227))) (-15 -2815 ((-227) (-227))) (-15 -2815 ((-171 (-227)) (-171 (-227)))) (-15 -2931 ((-227) (-227) (-227))) (-15 -2931 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3488 (($ (-779) (-779)) NIL)) (-3922 (($ $ $) NIL)) (-1652 (($ (-1279 |#1|)) NIL) (($ $) NIL)) (-4131 (($ |#1| |#1| |#1|) 33)) (-2696 (((-112) $) NIL)) (-3869 (($ $ (-572) (-572)) NIL)) (-3123 (($ $ (-572) (-572)) NIL)) (-3493 (($ $ (-572) (-572) (-572) (-572)) NIL)) (-3886 (($ $) NIL)) (-3295 (((-112) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2085 (($ $ (-572) (-572) $) NIL)) (-3659 ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) NIL)) (-2491 (($ $ (-572) (-1279 |#1|)) NIL)) (-2283 (($ $ (-572) (-1279 |#1|)) NIL)) (-3417 (($ |#1| |#1| |#1|) 32)) (-2420 (($ (-779) |#1|) NIL)) (-1586 (($) NIL T CONST)) (-1728 (($ $) NIL (|has| |#1| (-313)))) (-2863 (((-1279 |#1|) $ (-572)) NIL)) (-4071 (($ |#1|) 31)) (-1892 (($ |#1|) 30)) (-1657 (($ |#1|) 29)) (-1526 (((-779) $) NIL (|has| |#1| (-564)))) (-3061 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2986 ((|#1| $ (-572) (-572)) NIL)) (-1442 (((-652 |#1|) $) NIL)) (-1438 (((-779) $) NIL (|has| |#1| (-564)))) (-1924 (((-652 (-1279 |#1|)) $) NIL (|has| |#1| (-564)))) (-2366 (((-779) $) NIL)) (-2924 (($ (-779) (-779) |#1|) NIL)) (-2378 (((-779) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-4202 ((|#1| $) NIL (|has| |#1| (-6 (-4456 "*"))))) (-3689 (((-572) $) NIL)) (-3086 (((-572) $) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3631 (((-572) $) NIL)) (-3652 (((-572) $) NIL)) (-1793 (($ (-652 (-652 |#1|))) 11)) (-3049 (($ (-1 |#1| |#1|) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1942 (((-652 (-652 |#1|)) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1558 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-4331 (($) 12)) (-3744 (($ $ $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) NIL)) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572))) NIL)) (-3502 (($ (-652 |#1|)) NIL) (($ (-652 $)) NIL)) (-3365 (((-112) $) NIL)) (-3312 ((|#1| $) NIL (|has| |#1| (-6 (-4456 "*"))))) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3845 (((-1279 |#1|) $ (-572)) NIL)) (-3491 (($ (-1279 |#1|)) NIL) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3889 (((-112) $) NIL)) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-572) $) NIL) (((-1279 |#1|) $ (-1279 |#1|)) 15) (((-1279 |#1|) (-1279 |#1|) $) NIL) (((-952 |#1|) $ (-952 |#1|)) 21)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-229 |#1|) (-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 * ((-952 |#1|) $ (-952 |#1|))) (-15 -4331 ($)) (-15 -1657 ($ |#1|)) (-15 -1892 ($ |#1|)) (-15 -4071 ($ |#1|)) (-15 -3417 ($ |#1| |#1| |#1|)) (-15 -4131 ($ |#1| |#1| |#1|)))) (-13 (-370) (-1214))) (T -229))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214))) (-5 *1 (-229 *3)))) (-4331 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-1657 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-1892 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-4071 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-3417 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))) (-4131 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
+(-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 * ((-952 |#1|) $ (-952 |#1|))) (-15 -4331 ($)) (-15 -1657 ($ |#1|)) (-15 -1892 ($ |#1|)) (-15 -4071 ($ |#1|)) (-15 -3417 ($ |#1| |#1| |#1|)) (-15 -4131 ($ |#1| |#1| |#1|))))
+((-2265 (($ (-1 (-112) |#2|) $) 16)) (-3033 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2145 (($) NIL) (($ (-652 |#2|)) 11)) (-3921 (((-112) $ $) 26)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3033 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -2145 (|#1| (-652 |#2|))) (-15 -2145 (|#1|)) (-15 -3921 ((-112) |#1| |#1|))) (-231 |#2|) (-1111)) (T -230))
+NIL
+(-10 -8 (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3033 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -2145 (|#1| (-652 |#2|))) (-15 -2145 (|#1|)) (-15 -3921 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-2265 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-3955 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2145 (($) 50) (($ (-652 |#1|)) 49)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 51)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-231 |#1|) (-141) (-1111)) (T -231))
+NIL
+(-13 (-239 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3011 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) 11) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) 19) (($ $ (-779)) NIL) (($ $) 16)) (-4019 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-779)) 14) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)))
+(((-232 |#1| |#2|) (-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -4019 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -4019 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -4019 (|#1| |#1| (-1188))) (-15 -4019 (|#1| |#1| (-652 (-1188)))) (-15 -4019 (|#1| |#1| (-1188) (-779))) (-15 -4019 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -4019 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -4019 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1060)) (T -232))
+NIL
+(-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -4019 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -4019 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -4019 (|#1| |#1| (-1188))) (-15 -4019 (|#1| |#1| (-652 (-1188)))) (-15 -4019 (|#1| |#1| (-1188) (-779))) (-15 -4019 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -4019 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -4019 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3011 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-779)) 55) (($ $ (-652 (-1188)) (-652 (-779))) 48 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 47 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 46 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 45 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 43 (|has| |#1| (-237))) (($ $) 41 (|has| |#1| (-237)))) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-779)) 53) (($ $ (-652 (-1188)) (-652 (-779))) 52 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 51 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 50 (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 49 (|has| |#1| (-909 (-1188)))) (($ $ (-779)) 44 (|has| |#1| (-237))) (($ $) 42 (|has| |#1| (-237)))) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-233 |#1|) (-141) (-1060)) (T -233))
+((-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060)))) (-3011 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4)) (-4 *4 (-1060)))) (-4019 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060)))) (-4019 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4)) (-4 *4 (-1060)))))
+(-13 (-1060) (-10 -8 (-15 -3011 ($ $ (-1 |t#1| |t#1|))) (-15 -3011 ($ $ (-1 |t#1| |t#1|) (-779))) (-15 -4019 ($ $ (-1 |t#1| |t#1|))) (-15 -4019 ($ $ (-1 |t#1| |t#1|) (-779))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-237) |has| |#1| (-237)) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-4019 ((|#2| $) 9)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -4019 (|#2| |#1|))) (-235 |#2|) (-1229)) (T -234))
+NIL
+(-10 -8 (-15 -4019 (|#2| |#1|)))
+((-3011 ((|#1| $) 7)) (-4019 ((|#1| $) 6)))
+(((-235 |#1|) (-141) (-1229)) (T -235))
+((-3011 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229)))))
+(-13 (-1229) (-10 -8 (-15 -3011 (|t#1| $)) (-15 -4019 (|t#1| $))))
+(((-1229) . T))
+((-3011 (($ $) NIL) (($ $ (-779)) 10)) (-4019 (($ $) 8) (($ $ (-779)) 12)))
+(((-236 |#1|) (-10 -8 (-15 -4019 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-779))) (-15 -4019 (|#1| |#1|)) (-15 -3011 (|#1| |#1|))) (-237)) (T -236))
+NIL
+(-10 -8 (-15 -4019 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-779))) (-15 -4019 (|#1| |#1|)) (-15 -3011 (|#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3011 (($ $) 42) (($ $ (-779)) 40)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $) 41) (($ $ (-779)) 39)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-237) (-141)) (T -237))
+((-3011 (*1 *1 *1) (-4 *1 (-237))) (-4019 (*1 *1 *1) (-4 *1 (-237))) (-3011 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779)))) (-4019 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779)))))
+(-13 (-1060) (-10 -8 (-15 -3011 ($ $)) (-15 -4019 ($ $)) (-15 -3011 ($ $ (-779))) (-15 -4019 ($ $ (-779)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-2145 (($) 12) (($ (-652 |#2|)) NIL)) (-3679 (($ $) 14)) (-3503 (($ (-652 |#2|)) 10)) (-3491 (((-870) $) 21)))
+(((-238 |#1| |#2|) (-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -2145 (|#1| (-652 |#2|))) (-15 -2145 (|#1|)) (-15 -3503 (|#1| (-652 |#2|))) (-15 -3679 (|#1| |#1|))) (-239 |#2|) (-1111)) (T -238))
+NIL
+(-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -2145 (|#1| (-652 |#2|))) (-15 -2145 (|#1|)) (-15 -3503 (|#1| (-652 |#2|))) (-15 -3679 (|#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-2265 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-3955 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2145 (($) 50) (($ (-652 |#1|)) 49)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 51)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-239 |#1|) (-141) (-1111)) (T -239))
+((-2145 (*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1111)))) (-2145 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-239 *3)))) (-3033 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-239 *2)) (-4 *2 (-1111)))) (-3033 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3)) (-4 *3 (-1111)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3)) (-4 *3 (-1111)))))
+(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2145 ($)) (-15 -2145 ($ (-652 |t#1|))) (IF (|has| $ (-6 -4454)) (PROGN (-15 -3033 ($ |t#1| $)) (-15 -3033 ($ (-1 (-112) |t#1|) $)) (-15 -2265 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-2648 (((-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779))))) (-300 (-961 (-572)))) 42)))
+(((-240) (-10 -7 (-15 -2648 ((-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779))))) (-300 (-961 (-572))))))) (T -240))
+((-2648 (*1 *2 *3) (-12 (-5 *3 (-300 (-961 (-572)))) (-5 *2 (-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779)))))) (-5 *1 (-240)))))
+(-10 -7 (-15 -2648 ((-2 (|:| |varOrder| (-652 (-1188))) (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed")) (|:| |hom| (-652 (-1279 (-779))))) (-300 (-961 (-572))))))
+((-3037 (((-779)) 56)) (-2245 (((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) 53) (((-697 |#3|) (-697 $)) 44) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL)) (-1670 (((-135)) 62)) (-3011 (($ $ (-1 |#3| |#3|) (-779)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-3491 (((-1279 |#3|) $) NIL) (($ |#3|) NIL) (((-870) $) NIL) (($ (-572)) 12) (($ (-415 (-572))) NIL)) (-2455 (((-779)) 15)) (-4029 (($ $ |#3|) 59)))
+(((-241 |#1| |#2| |#3|) (-10 -8 (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)) (-15 -2455 ((-779))) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -3491 (|#1| |#3|)) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -2245 ((-697 |#3|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -3037 ((-779))) (-15 -4029 (|#1| |#1| |#3|)) (-15 -1670 ((-135))) (-15 -3491 ((-1279 |#3|) |#1|))) (-242 |#2| |#3|) (-779) (-1229)) (T -241))
+((-1670 (*1 *2) (-12 (-14 *4 (-779)) (-4 *5 (-1229)) (-5 *2 (-135)) (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5)))) (-3037 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779)) (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5)))) (-2455 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779)) (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5)))))
+(-10 -8 (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)) (-15 -2455 ((-779))) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -3491 (|#1| |#3|)) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -2245 ((-697 |#3|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -3037 ((-779))) (-15 -4029 (|#1| |#1| |#3|)) (-15 -1670 ((-135))) (-15 -3491 ((-1279 |#3|) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#2| (-1111)))) (-3143 (((-112) $) 73 (|has| |#2| (-132)))) (-1572 (($ (-930)) 126 (|has| |#2| (-1060)))) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-2486 (($ $ $) 122 (|has| |#2| (-801)))) (-2092 (((-3 $ "failed") $ $) 75 (|has| |#2| (-132)))) (-2938 (((-112) $ (-779)) 8)) (-3037 (((-779)) 108 (|has| |#2| (-375)))) (-4304 (((-572) $) 120 (|has| |#2| (-856)))) (-3659 ((|#2| $ (-572) |#2|) 53 (|has| $ (-6 -4455)))) (-1586 (($) 7 T CONST)) (-3072 (((-3 (-572) "failed") $) 68 (-3804 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) 65 (-3804 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1111)))) (-1869 (((-572) $) 67 (-3804 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) 64 (-3804 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) 63 (|has| |#2| (-1111)))) (-2245 (((-697 (-572)) (-697 $)) 107 (-3804 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 106 (-3804 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 105 (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) 104 (|has| |#2| (-1060)))) (-2982 (((-3 $ "failed") $) 80 (|has| |#2| (-734)))) (-2688 (($) 111 (|has| |#2| (-375)))) (-3061 ((|#2| $ (-572) |#2|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#2| $ (-572)) 52)) (-3778 (((-112) $) 118 (|has| |#2| (-856)))) (-1442 (((-652 |#2|) $) 31 (|has| $ (-6 -4454)))) (-4422 (((-112) $) 82 (|has| |#2| (-734)))) (-4354 (((-112) $) 119 (|has| |#2| (-856)))) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2536 (($ $ $) 117 (-3783 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-2396 (((-652 |#2|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3928 (($ $ $) 116 (-3783 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-3049 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2|) $) 36)) (-4370 (((-930) $) 110 (|has| |#2| (-375)))) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#2| (-1111)))) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-1795 (($ (-930)) 109 (|has| |#2| (-375)))) (-2614 (((-1131) $) 21 (|has| |#2| (-1111)))) (-2570 ((|#2| $) 43 (|has| (-572) (-858)))) (-3803 (($ $ |#2|) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) 27 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 26 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 24 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#2| $ (-572) |#2|) 51) ((|#2| $ (-572)) 50)) (-1606 ((|#2| $ $) 125 (|has| |#2| (-1060)))) (-3153 (($ (-1279 |#2|)) 127)) (-1670 (((-135)) 124 (|has| |#2| (-370)))) (-3011 (($ $) 99 (-3804 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) 97 (-3804 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) 95 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) 94 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) 93 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) 92 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) 85 (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1060)))) (-1371 (((-779) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4454))) (((-779) |#2| $) 29 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-1279 |#2|) $) 128) (($ (-572)) 69 (-3783 (-3804 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) 66 (-3804 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) 61 (|has| |#2| (-1111))) (((-870) $) 18 (|has| |#2| (-621 (-870))))) (-2455 (((-779)) 103 (|has| |#2| (-1060)) CONST)) (-3424 (((-112) $ $) 23 (|has| |#2| (-1111)))) (-3776 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4454)))) (-2775 (($ $) 121 (|has| |#2| (-856)))) (-2602 (($) 72 (|has| |#2| (-132)) CONST)) (-2619 (($) 83 (|has| |#2| (-734)) CONST)) (-4019 (($ $) 98 (-3804 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) 96 (-3804 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) 91 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) 90 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) 89 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) 88 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) 87 (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1060)))) (-3976 (((-112) $ $) 114 (-3783 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-3954 (((-112) $ $) 113 (-3783 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-3921 (((-112) $ $) 20 (|has| |#2| (-1111)))) (-3965 (((-112) $ $) 115 (-3783 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-3943 (((-112) $ $) 112 (-3783 (|has| |#2| (-856)) (|has| |#2| (-801))))) (-4029 (($ $ |#2|) 123 (|has| |#2| (-370)))) (-4018 (($ $ $) 102 (|has| |#2| (-1060))) (($ $) 101 (|has| |#2| (-1060)))) (-4005 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-779)) 81 (|has| |#2| (-734))) (($ $ (-930)) 78 (|has| |#2| (-734)))) (* (($ (-572) $) 100 (|has| |#2| (-1060))) (($ $ $) 79 (|has| |#2| (-734))) (($ $ |#2|) 77 (|has| |#2| (-734))) (($ |#2| $) 76 (|has| |#2| (-734))) (($ (-779) $) 74 (|has| |#2| (-132))) (($ (-930) $) 71 (|has| |#2| (-25)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-242 |#1| |#2|) (-141) (-779) (-1229)) (T -242))
+((-3153 (*1 *1 *2) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1229)) (-4 *1 (-242 *3 *4)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-242 *3 *4)) (-4 *4 (-1060)) (-4 *4 (-1229)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))))
+(-13 (-612 (-572) |t#2|) (-621 (-1279 |t#2|)) (-10 -8 (-6 -4454) (-15 -3153 ($ (-1279 |t#2|))) (IF (|has| |t#2| (-1111)) (-6 (-419 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1060)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-384 |t#2|)) (-15 -1572 ($ (-930))) (-15 -1606 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-734)) (PROGN (-6 (-734)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |t#2| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#2| (-801)) (-6 (-801)) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-1286 |t#2|)) |%noBranch|)))
+(((-21) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-23) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -3783 (|has| |#2| (-1111)) (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-734)) (|has| |#2| (-375)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3783 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-624 #0=(-415 (-572))) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))) ((-624 (-572)) -3783 (|has| |#2| (-1060)) (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-624 |#2|) -3783 (|has| |#2| (-1111)) (|has| |#2| (-174))) ((-621 (-870)) -3783 (|has| |#2| (-1111)) (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-734)) (|has| |#2| (-375)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-621 (-870))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-621 (-1279 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-233 |#2|) |has| |#2| (-1060)) ((-237) -12 (|has| |#2| (-237)) (|has| |#2| (-1060))) ((-292 #1=(-572) |#2|) . T) ((-294 #1# |#2|) . T) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-375) |has| |#2| (-375)) ((-384 |#2|) |has| |#2| (-1060)) ((-419 |#2|) |has| |#2| (-1111)) ((-497 |#2|) . T) ((-612 #1# |#2|) . T) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-654 (-572)) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-654 |#2|) -3783 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-654 $) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-656 |#2|) -3783 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-656 $) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-648 |#2|) -3783 (|has| |#2| (-370)) (|has| |#2| (-174))) ((-647 (-572)) -12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060))) ((-647 |#2|) |has| |#2| (-1060)) ((-725 |#2|) -3783 (|has| |#2| (-370)) (|has| |#2| (-174))) ((-734) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-734)) (|has| |#2| (-174))) ((-799) |has| |#2| (-856)) ((-800) -3783 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-801) |has| |#2| (-801)) ((-802) -3783 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-803) -3783 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-856) |has| |#2| (-856)) ((-858) -3783 (|has| |#2| (-856)) (|has| |#2| (-801))) ((-909 (-1188)) -12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060))) ((-1049 #0#) -12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111))) ((-1049 (-572)) -12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) ((-1049 |#2|) |has| |#2| (-1111)) ((-1062 |#2|) -3783 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-1062 $) |has| |#2| (-174)) ((-1067 |#2|) -3783 (|has| |#2| (-1060)) (|has| |#2| (-370)) (|has| |#2| (-174))) ((-1067 $) |has| |#2| (-174)) ((-1060) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-1069) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-174))) ((-1123) -3783 (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-734)) (|has| |#2| (-174))) ((-1111) -3783 (|has| |#2| (-1111)) (|has| |#2| (-1060)) (|has| |#2| (-856)) (|has| |#2| (-801)) (|has| |#2| (-734)) (|has| |#2| (-375)) (|has| |#2| (-370)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1229) . T) ((-1286 |#2|) |has| |#2| (-370)))
+((-4424 (((-244 |#1| |#3|) (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|) 21)) (-2925 ((|#3| (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|) 23)) (-3161 (((-244 |#1| |#3|) (-1 |#3| |#2|) (-244 |#1| |#2|)) 18)))
+(((-243 |#1| |#2| |#3|) (-10 -7 (-15 -4424 ((-244 |#1| |#3|) (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -2925 (|#3| (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -3161 ((-244 |#1| |#3|) (-1 |#3| |#2|) (-244 |#1| |#2|)))) (-779) (-1229) (-1229)) (T -243))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-5 *2 (-244 *5 *7)) (-5 *1 (-243 *5 *6 *7)))) (-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779)) (-4 *6 (-1229)) (-4 *2 (-1229)) (-5 *1 (-243 *5 *6 *2)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-244 *6 *7)) (-14 *6 (-779)) (-4 *7 (-1229)) (-4 *5 (-1229)) (-5 *2 (-244 *6 *5)) (-5 *1 (-243 *6 *7 *5)))))
+(-10 -7 (-15 -4424 ((-244 |#1| |#3|) (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -2925 (|#3| (-1 |#3| |#2| |#3|) (-244 |#1| |#2|) |#3|)) (-15 -3161 ((-244 |#1| |#3|) (-1 |#3| |#2|) (-244 |#1| |#2|))))
+((-3464 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3143 (((-112) $) NIL (|has| |#2| (-132)))) (-1572 (($ (-930)) 62 (|has| |#2| (-1060)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2486 (($ $ $) 68 (|has| |#2| (-801)))) (-2092 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| |#2| (-375)))) (-4304 (((-572) $) NIL (|has| |#2| (-856)))) (-3659 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1111)))) (-1869 (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) 28 (|has| |#2| (-1111)))) (-2245 (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) NIL (|has| |#2| (-1060)))) (-2982 (((-3 $ "failed") $) 58 (|has| |#2| (-734)))) (-2688 (($) NIL (|has| |#2| (-375)))) (-3061 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ (-572)) 56)) (-3778 (((-112) $) NIL (|has| |#2| (-856)))) (-1442 (((-652 |#2|) $) 14 (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL (|has| |#2| (-734)))) (-4354 (((-112) $) NIL (|has| |#2| (-856)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 19 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2396 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3049 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#2| (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#2| (-1111)))) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-1795 (($ (-930)) NIL (|has| |#2| (-375)))) (-2614 (((-1131) $) NIL (|has| |#2| (-1111)))) (-2570 ((|#2| $) NIL (|has| (-572) (-858)))) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) 20)) (-1606 ((|#2| $ $) NIL (|has| |#2| (-1060)))) (-3153 (($ (-1279 |#2|)) 17)) (-1670 (((-135)) NIL (|has| |#2| (-370)))) (-3011 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-1371 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-1279 |#2|) $) 9) (($ (-572)) NIL (-3783 (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) 12 (|has| |#2| (-1111))) (((-870) $) NIL (|has| |#2| (-621 (-870))))) (-2455 (((-779)) NIL (|has| |#2| (-1060)) CONST)) (-3424 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3776 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2775 (($ $) NIL (|has| |#2| (-856)))) (-2602 (($) 36 (|has| |#2| (-132)) CONST)) (-2619 (($) 40 (|has| |#2| (-734)) CONST)) (-4019 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3976 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3954 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3921 (((-112) $ $) 27 (|has| |#2| (-1111)))) (-3965 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3943 (((-112) $ $) 66 (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $ $) NIL (|has| |#2| (-1060))) (($ $) NIL (|has| |#2| (-1060)))) (-4005 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-779)) NIL (|has| |#2| (-734))) (($ $ (-930)) NIL (|has| |#2| (-734)))) (* (($ (-572) $) NIL (|has| |#2| (-1060))) (($ $ $) 46 (|has| |#2| (-734))) (($ $ |#2|) 44 (|has| |#2| (-734))) (($ |#2| $) 45 (|has| |#2| (-734))) (($ (-779) $) NIL (|has| |#2| (-132))) (($ (-930) $) NIL (|has| |#2| (-25)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-244 |#1| |#2|) (-242 |#1| |#2|) (-779) (-1229)) (T -244))
+NIL
+(-242 |#1| |#2|)
+((-2058 (((-572) (-652 (-1170))) 36) (((-572) (-1170)) 29)) (-4195 (((-1284) (-652 (-1170))) 40) (((-1284) (-1170)) 39)) (-3644 (((-1170)) 16)) (-3271 (((-1170) (-572) (-1170)) 23)) (-2376 (((-652 (-1170)) (-652 (-1170)) (-572) (-1170)) 37) (((-1170) (-1170) (-572) (-1170)) 35)) (-3629 (((-652 (-1170)) (-652 (-1170))) 15) (((-652 (-1170)) (-1170)) 11)))
+(((-245) (-10 -7 (-15 -3629 ((-652 (-1170)) (-1170))) (-15 -3629 ((-652 (-1170)) (-652 (-1170)))) (-15 -3644 ((-1170))) (-15 -3271 ((-1170) (-572) (-1170))) (-15 -2376 ((-1170) (-1170) (-572) (-1170))) (-15 -2376 ((-652 (-1170)) (-652 (-1170)) (-572) (-1170))) (-15 -4195 ((-1284) (-1170))) (-15 -4195 ((-1284) (-652 (-1170)))) (-15 -2058 ((-572) (-1170))) (-15 -2058 ((-572) (-652 (-1170)))))) (T -245))
+((-2058 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-572)) (-5 *1 (-245)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-245)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1284)) (-5 *1 (-245)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-245)))) (-2376 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-652 (-1170))) (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *1 (-245)))) (-2376 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245)))) (-3271 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245)))) (-3644 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-245)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245)))) (-3629 (*1 *2 *3) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245)) (-5 *3 (-1170)))))
+(-10 -7 (-15 -3629 ((-652 (-1170)) (-1170))) (-15 -3629 ((-652 (-1170)) (-652 (-1170)))) (-15 -3644 ((-1170))) (-15 -3271 ((-1170) (-572) (-1170))) (-15 -2376 ((-1170) (-1170) (-572) (-1170))) (-15 -2376 ((-652 (-1170)) (-652 (-1170)) (-572) (-1170))) (-15 -4195 ((-1284) (-1170))) (-15 -4195 ((-1284) (-652 (-1170)))) (-15 -2058 ((-572) (-1170))) (-15 -2058 ((-572) (-652 (-1170)))))
+((** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 20)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ (-415 (-572)) $) 27) (($ $ (-415 (-572))) NIL)))
+(((-246 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-247)) (T -246))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 47)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 51)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 48)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ (-415 (-572)) $) 50) (($ $ (-415 (-572))) 49)))
+(((-247) (-141)) (T -247))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-247)) (-5 *2 (-572)))) (-1809 (*1 *1 *1) (-4 *1 (-247))))
+(-13 (-296) (-38 (-415 (-572))) (-10 -8 (-15 ** ($ $ (-572))) (-15 -1809 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-296) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-725 #0#) . T) ((-734) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-4058 (($ $) 58)) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3504 (($ $ $) 54 (|has| $ (-6 -4455)))) (-3622 (($ $ $) 53 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-1586 (($) 7 T CONST)) (-1665 (($ $) 57)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-2692 (($ $) 56)) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-4261 ((|#1| $) 60)) (-1563 (($ $) 59)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48)) (-1762 (((-572) $ $) 45)) (-3727 (((-112) $) 47)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-2355 (($ $ $) 55 (|has| $ (-6 -4455)))) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-248 |#1|) (-141) (-1229)) (T -248))
+((-4261 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-1563 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-4058 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-1665 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-2692 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-2355 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-3504 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))) (-3622 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
+(-13 (-1021 |t#1|) (-10 -8 (-15 -4261 (|t#1| $)) (-15 -1563 ($ $)) (-15 -4058 ($ $)) (-15 -1665 ($ $)) (-15 -2692 ($ $)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2355 ($ $ $)) (-15 -3504 ($ $ $)) (-15 -3622 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) NIL)) (-3598 ((|#1| $) NIL)) (-4058 (($ $) NIL)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) $) NIL (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2641 (($ $) 10 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3835 (($ $ $) NIL (|has| $ (-6 -4455)))) (-1993 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "rest" $) NIL (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) |#1|) $) NIL)) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3587 ((|#1| $) NIL)) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-2581 (($ $) NIL) (($ $ (-779)) NIL)) (-1727 (($ $) NIL (|has| |#1| (-1111)))) (-3955 (($ $) 7 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-4243 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-2760 (((-112) $) NIL)) (-3239 (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111))) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) NIL)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-2363 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1377 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2307 (($ |#1|) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-4261 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-3704 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-2744 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-1540 (((-112) $) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) NIL) ((|#1| $ (-572) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-779) $ "count") 16)) (-1762 (((-572) $ $) NIL)) (-2049 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3817 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-1689 (($ (-652 |#1|)) 22)) (-3727 (((-112) $) NIL)) (-2393 (($ $) NIL)) (-2770 (($ $) NIL (|has| $ (-6 -4455)))) (-2847 (((-779) $) NIL)) (-3376 (($ $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) NIL)) (-2355 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2121 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-652 $)) NIL) (($ $ |#1|) NIL)) (-3491 (($ (-652 |#1|)) 17) (((-652 |#1|) $) 18) (((-870) $) 21 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) 14 (|has| $ (-6 -4454)))))
+(((-249 |#1|) (-13 (-674 |#1|) (-498 (-652 |#1|)) (-10 -8 (-15 -1689 ($ (-652 |#1|))) (-15 -2679 ($ $ "unique")) (-15 -2679 ($ $ "sort")) (-15 -2679 ((-779) $ "count")))) (-858)) (T -249))
+((-1689 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-249 *3)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-249 *3)) (-4 *3 (-858)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-249 *3)) (-4 *3 (-858)))) (-2679 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-779)) (-5 *1 (-249 *4)) (-4 *4 (-858)))))
+(-13 (-674 |#1|) (-498 (-652 |#1|)) (-10 -8 (-15 -1689 ($ (-652 |#1|))) (-15 -2679 ($ $ "unique")) (-15 -2679 ($ $ "sort")) (-15 -2679 ((-779) $ "count"))))
+((-3932 (((-3 (-779) "failed") |#1| |#1| (-779)) 40)))
+(((-250 |#1|) (-10 -7 (-15 -3932 ((-3 (-779) "failed") |#1| |#1| (-779)))) (-13 (-734) (-375) (-10 -7 (-15 ** (|#1| |#1| (-572)))))) (T -250))
+((-3932 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-779)) (-4 *3 (-13 (-734) (-375) (-10 -7 (-15 ** (*3 *3 (-572)))))) (-5 *1 (-250 *3)))))
+(-10 -7 (-15 -3932 ((-3 (-779) "failed") |#1| |#1| (-779))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-872 |#1|)) $) NIL)) (-4063 (((-1184 $) $ (-872 |#1|)) NIL) (((-1184 |#2|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-1697 (($ $) NIL (|has| |#2| (-564)))) (-1774 (((-112) $) NIL (|has| |#2| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-872 |#1|))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1861 (($ $) NIL (|has| |#2| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-1869 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-3829 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-2105 (($ $ (-652 (-572))) NIL)) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#2| (-918)))) (-3163 (($ $ |#2| (-244 (-3475 |#1|) (-779)) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3060 (($ (-1184 |#2|) (-872 |#1|)) NIL) (($ (-1184 $) (-872 |#1|)) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#2| (-244 (-3475 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-872 |#1|)) NIL)) (-3808 (((-244 (-3475 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-2008 (($ (-1 (-244 (-3475 |#1|) (-779)) (-244 (-3475 |#1|) (-779))) $) NIL)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-4107 (((-3 (-872 |#1|) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#2| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3618 (((-1170) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -2477 (-779))) "failed") $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#2| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#2| (-918)))) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) NIL) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) NIL) (($ $ (-872 |#1|) $) NIL) (($ $ (-652 (-872 |#1|)) (-652 $)) NIL)) (-2020 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3011 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1497 (((-244 (-3475 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-3262 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-872 |#1|)) NIL) (($ (-415 (-572))) NIL (-3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-244 (-3475 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-251 |#1| |#2|) (-13 (-958 |#2| (-244 (-3475 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -2105 ($ $ (-652 (-572)))))) (-652 (-1188)) (-1060)) (T -251))
+((-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-251 *3 *4)) (-14 *3 (-652 (-1188))) (-4 *4 (-1060)))))
+(-13 (-958 |#2| (-244 (-3475 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -2105 ($ $ (-652 (-572))))))
+((-3464 (((-112) $ $) NIL)) (-3188 (((-1284) $) 17)) (-3136 (((-185 (-253)) $) 11)) (-3958 (($ (-185 (-253))) 12)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4343 (((-253) $) 7)) (-3491 (((-870) $) 9)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 15)))
+(((-252) (-13 (-1111) (-10 -8 (-15 -4343 ((-253) $)) (-15 -3136 ((-185 (-253)) $)) (-15 -3958 ($ (-185 (-253)))) (-15 -3188 ((-1284) $))))) (T -252))
+((-4343 (*1 *2 *1) (-12 (-5 *2 (-253)) (-5 *1 (-252)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-252)))))
+(-13 (-1111) (-10 -8 (-15 -4343 ((-253) $)) (-15 -3136 ((-185 (-253)) $)) (-15 -3958 ($ (-185 (-253)))) (-15 -3188 ((-1284) $))))
+((-3464 (((-112) $ $) NIL)) (-3627 (((-652 (-873)) $) NIL)) (-2402 (((-514) $) NIL)) (-3618 (((-1170) $) NIL)) (-2734 (((-188) $) NIL)) (-2685 (((-112) $ (-514)) NIL)) (-2614 (((-1131) $) NIL)) (-3588 (((-339) $) 7)) (-1430 (((-652 (-112)) $) NIL)) (-3491 (((-870) $) NIL) (((-189) $) 8)) (-3424 (((-112) $ $) NIL)) (-3586 (((-55) $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-253) (-13 (-187) (-621 (-189)) (-10 -8 (-15 -3588 ((-339) $))))) (T -253))
+((-3588 (*1 *2 *1) (-12 (-5 *2 (-339)) (-5 *1 (-253)))))
+(-13 (-187) (-621 (-189)) (-10 -8 (-15 -3588 ((-339) $))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2679 (((-1193) $ (-779)) 13)) (-3491 (((-870) $) 20)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 16)) (-3475 (((-779) $) 9)))
+(((-254) (-13 (-1111) (-292 (-779) (-1193)) (-10 -8 (-15 -3475 ((-779) $))))) (T -254))
+((-3475 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-254)))))
+(-13 (-1111) (-292 (-779) (-1193)) (-10 -8 (-15 -3475 ((-779) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-1572 (($ (-930)) NIL (|has| |#4| (-1060)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2486 (($ $ $) NIL (|has| |#4| (-801)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| |#4| (-375)))) (-4304 (((-572) $) NIL (|has| |#4| (-856)))) (-3659 ((|#4| $ (-572) |#4|) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1111))) (((-3 (-572) "failed") $) NIL (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))) (-1869 ((|#4| $) NIL (|has| |#4| (-1111))) (((-572) $) NIL (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))) (-2245 (((-2 (|:| -1866 (-697 |#4|)) (|:| |vec| (-1279 |#4|))) (-697 $) (-1279 $)) NIL (|has| |#4| (-1060))) (((-697 |#4|) (-697 $)) NIL (|has| |#4| (-1060))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))))) (-2982 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (-2688 (($) NIL (|has| |#4| (-375)))) (-3061 ((|#4| $ (-572) |#4|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#4| $ (-572)) NIL)) (-3778 (((-112) $) NIL (|has| |#4| (-856)))) (-1442 (((-652 |#4|) $) NIL (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL (-3783 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (-4354 (((-112) $) NIL (|has| |#4| (-856)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (-3783 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-2396 (((-652 |#4|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (-3783 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-3049 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#4| (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-1795 (($ (-930)) NIL (|has| |#4| (-375)))) (-2614 (((-1131) $) NIL)) (-2570 ((|#4| $) NIL (|has| (-572) (-858)))) (-3803 (($ $ |#4|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-2950 (((-652 |#4|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#4| $ (-572) |#4|) NIL) ((|#4| $ (-572)) 12)) (-1606 ((|#4| $ $) NIL (|has| |#4| (-1060)))) (-3153 (($ (-1279 |#4|)) NIL)) (-1670 (((-135)) NIL (|has| |#4| (-370)))) (-3011 (($ $ (-1 |#4| |#4|) (-779)) NIL (|has| |#4| (-1060))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060)))) (($ $) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))))) (-1371 (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-1279 |#4|) $) NIL) (((-870) $) NIL) (($ |#4|) NIL (|has| |#4| (-1111))) (($ (-572)) NIL (-3783 (-12 (|has| |#4| (-1049 (-572))) (|has| |#4| (-1111))) (|has| |#4| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#4| (-1049 (-415 (-572)))) (|has| |#4| (-1111))))) (-2455 (((-779)) NIL (|has| |#4| (-1060)) CONST)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2775 (($ $) NIL (|has| |#4| (-856)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL (-3783 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) CONST)) (-4019 (($ $ (-1 |#4| |#4|) (-779)) NIL (|has| |#4| (-1060))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060)))) (($ $) NIL (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))))) (-3976 (((-112) $ $) NIL (-3783 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-3954 (((-112) $ $) NIL (-3783 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (-3783 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-3943 (((-112) $ $) NIL (-3783 (|has| |#4| (-801)) (|has| |#4| (-856))))) (-4029 (($ $ |#4|) NIL (|has| |#4| (-370)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL (-3783 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060))))) (($ $ (-930)) NIL (-3783 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (* (($ |#2| $) 14) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-734))) (($ |#4| $) NIL (|has| |#4| (-734))) (($ $ $) NIL (-3783 (-12 (|has| |#4| (-237)) (|has| |#4| (-1060))) (-12 (|has| |#4| (-647 (-572))) (|has| |#4| (-1060))) (|has| |#4| (-734)) (-12 (|has| |#4| (-909 (-1188))) (|has| |#4| (-1060)))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-255 |#1| |#2| |#3| |#4|) (-13 (-242 |#1| |#4|) (-656 |#2|) (-656 |#3|)) (-930) (-1060) (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-656 |#2|)) (T -255))
+NIL
+(-13 (-242 |#1| |#4|) (-656 |#2|) (-656 |#3|))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-1572 (($ (-930)) NIL (|has| |#3| (-1060)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2486 (($ $ $) NIL (|has| |#3| (-801)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| |#3| (-375)))) (-4304 (((-572) $) NIL (|has| |#3| (-856)))) (-3659 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1111))) (((-3 (-572) "failed") $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))) (-1869 ((|#3| $) NIL (|has| |#3| (-1111))) (((-572) $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))) (-2245 (((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) NIL (|has| |#3| (-1060))) (((-697 |#3|) (-697 $)) NIL (|has| |#3| (-1060))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))))) (-2982 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (-2688 (($) NIL (|has| |#3| (-375)))) (-3061 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#3| $ (-572)) NIL)) (-3778 (((-112) $) NIL (|has| |#3| (-856)))) (-1442 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL (-3783 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (-4354 (((-112) $) NIL (|has| |#3| (-856)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-2396 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3049 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#3| |#3|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#3| (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-1795 (($ (-930)) NIL (|has| |#3| (-375)))) (-2614 (((-1131) $) NIL)) (-2570 ((|#3| $) NIL (|has| (-572) (-858)))) (-3803 (($ $ |#3|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#3|))) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 |#3|) (-652 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-2950 (((-652 |#3|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#3| $ (-572) |#3|) NIL) ((|#3| $ (-572)) 11)) (-1606 ((|#3| $ $) NIL (|has| |#3| (-1060)))) (-3153 (($ (-1279 |#3|)) NIL)) (-1670 (((-135)) NIL (|has| |#3| (-370)))) (-3011 (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))))) (-1371 (((-779) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454))) (((-779) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-1279 |#3|) $) NIL) (((-870) $) NIL) (($ |#3|) NIL (|has| |#3| (-1111))) (($ (-572)) NIL (-3783 (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111))))) (-2455 (((-779)) NIL (|has| |#3| (-1060)) CONST)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-2775 (($ $) NIL (|has| |#3| (-856)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL (-3783 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) CONST)) (-4019 (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))))) (-3976 (((-112) $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3954 (((-112) $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3943 (((-112) $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-4029 (($ $ |#3|) NIL (|has| |#3| (-370)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL (-3783 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060))))) (($ $ (-930)) NIL (-3783 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (* (($ |#2| $) 13) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-734))) (($ |#3| $) NIL (|has| |#3| (-734))) (($ $ $) NIL (-3783 (-12 (|has| |#3| (-237)) (|has| |#3| (-1060))) (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060))) (|has| |#3| (-734)) (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-256 |#1| |#2| |#3|) (-13 (-242 |#1| |#3|) (-656 |#2|)) (-779) (-1060) (-656 |#2|)) (T -256))
+NIL
+(-13 (-242 |#1| |#3|) (-656 |#2|))
+((-2259 (((-652 (-779)) $) 56) (((-652 (-779)) $ |#3|) 59)) (-1470 (((-779) $) 58) (((-779) $ |#3|) 61)) (-2844 (($ $) 76)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2068 (((-779) $ |#3|) 43) (((-779) $) 38)) (-4376 (((-1 $ (-779)) |#3|) 15) (((-1 $ (-779)) $) 88)) (-2755 ((|#4| $) 69)) (-3740 (((-112) $) 67)) (-3419 (($ $) 75)) (-3654 (($ $ (-652 (-300 $))) 111) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-652 |#4|) (-652 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-652 |#4|) (-652 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-652 |#3|) (-652 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-652 |#3|) (-652 |#2|)) 97)) (-3011 (($ $ |#4|) NIL) (($ $ (-652 |#4|)) NIL) (($ $ |#4| (-779)) NIL) (($ $ (-652 |#4|) (-652 (-779))) NIL) (($ $) NIL) (($ $ (-779)) NIL) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3253 (((-652 |#3|) $) 86)) (-1497 ((|#5| $) NIL) (((-779) $ |#4|) NIL) (((-652 (-779)) $ (-652 |#4|)) NIL) (((-779) $ |#3|) 49)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-415 (-572))) NIL) (($ $) NIL)))
+(((-257 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3654 (|#1| |#1| (-652 |#3|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#3| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#3|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#3| |#1|)) (-15 -4376 ((-1 |#1| (-779)) |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2755 (|#4| |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -1470 ((-779) |#1| |#3|)) (-15 -2259 ((-652 (-779)) |#1| |#3|)) (-15 -1470 ((-779) |#1|)) (-15 -2259 ((-652 (-779)) |#1|)) (-15 -1497 ((-779) |#1| |#3|)) (-15 -2068 ((-779) |#1|)) (-15 -2068 ((-779) |#1| |#3|)) (-15 -3253 ((-652 |#3|) |#1|)) (-15 -4376 ((-1 |#1| (-779)) |#3|)) (-15 -3491 (|#1| |#3|)) (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -1497 ((-652 (-779)) |#1| (-652 |#4|))) (-15 -1497 ((-779) |#1| |#4|)) (-15 -3491 (|#1| |#4|)) (-15 -3072 ((-3 |#4| "failed") |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#4| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#4| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1497 (|#5| |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3011 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3011 (|#1| |#1| |#4| (-779))) (-15 -3011 (|#1| |#1| (-652 |#4|))) (-15 -3011 (|#1| |#1| |#4|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-258 |#2| |#3| |#4| |#5|) (-1060) (-858) (-271 |#3|) (-801)) (T -257))
+NIL
+(-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3654 (|#1| |#1| (-652 |#3|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#3| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#3|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#3| |#1|)) (-15 -4376 ((-1 |#1| (-779)) |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2755 (|#4| |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -1470 ((-779) |#1| |#3|)) (-15 -2259 ((-652 (-779)) |#1| |#3|)) (-15 -1470 ((-779) |#1|)) (-15 -2259 ((-652 (-779)) |#1|)) (-15 -1497 ((-779) |#1| |#3|)) (-15 -2068 ((-779) |#1|)) (-15 -2068 ((-779) |#1| |#3|)) (-15 -3253 ((-652 |#3|) |#1|)) (-15 -4376 ((-1 |#1| (-779)) |#3|)) (-15 -3491 (|#1| |#3|)) (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -1497 ((-652 (-779)) |#1| (-652 |#4|))) (-15 -1497 ((-779) |#1| |#4|)) (-15 -3491 (|#1| |#4|)) (-15 -3072 ((-3 |#4| "failed") |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#4| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#4| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1497 (|#5| |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3011 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3011 (|#1| |#1| |#4| (-779))) (-15 -3011 (|#1| |#1| (-652 |#4|))) (-15 -3011 (|#1| |#1| |#4|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2259 (((-652 (-779)) $) 216) (((-652 (-779)) $ |#2|) 214)) (-1470 (((-779) $) 215) (((-779) $ |#2|) 213)) (-2220 (((-652 |#3|) $) 112)) (-4063 (((-1184 $) $ |#3|) 127) (((-1184 |#1|) $) 126)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-1697 (($ $) 90 (|has| |#1| (-564)))) (-1774 (((-112) $) 92 (|has| |#1| (-564)))) (-3664 (((-779) $) 114) (((-779) $ (-652 |#3|)) 113)) (-2092 (((-3 $ "failed") $ $) 20)) (-2730 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-1861 (($ $) 100 (|has| |#1| (-460)))) (-2359 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-2844 (($ $) 209)) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 166) (((-3 (-415 (-572)) "failed") $) 163 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 161 (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-1869 ((|#1| $) 165) (((-415 (-572)) $) 164 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 162 (|has| |#1| (-1049 (-572)))) ((|#3| $) 139) ((|#2| $) 224)) (-3829 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1874 (($ $) 156)) (-2245 (((-697 (-572)) (-697 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 135 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 134) (((-697 |#1|) (-697 $)) 133)) (-2982 (((-3 $ "failed") $) 37)) (-2889 (($ $) 178 (|has| |#1| (-460))) (($ $ |#3|) 107 (|has| |#1| (-460)))) (-1863 (((-652 $) $) 111)) (-3439 (((-112) $) 98 (|has| |#1| (-918)))) (-3163 (($ $ |#1| |#4| $) 174)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| |#3| (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| |#3| (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2068 (((-779) $ |#2|) 219) (((-779) $) 218)) (-4422 (((-112) $) 35)) (-2348 (((-779) $) 171)) (-3060 (($ (-1184 |#1|) |#3|) 119) (($ (-1184 $) |#3|) 118)) (-3715 (((-652 $) $) 128)) (-3357 (((-112) $) 154)) (-3042 (($ |#1| |#4|) 155) (($ $ |#3| (-779)) 121) (($ $ (-652 |#3|) (-652 (-779))) 120)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |#3|) 122)) (-3808 ((|#4| $) 172) (((-779) $ |#3|) 124) (((-652 (-779)) $ (-652 |#3|)) 123)) (-2008 (($ (-1 |#4| |#4|) $) 173)) (-3161 (($ (-1 |#1| |#1|) $) 153)) (-4376 (((-1 $ (-779)) |#2|) 221) (((-1 $ (-779)) $) 208 (|has| |#1| (-237)))) (-4107 (((-3 |#3| "failed") $) 125)) (-1840 (($ $) 151)) (-1853 ((|#1| $) 150)) (-2755 ((|#3| $) 211)) (-1335 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-3618 (((-1170) $) 10)) (-3740 (((-112) $) 212)) (-3570 (((-3 (-652 $) "failed") $) 116)) (-2257 (((-3 (-652 $) "failed") $) 117)) (-2298 (((-3 (-2 (|:| |var| |#3|) (|:| -2477 (-779))) "failed") $) 115)) (-3419 (($ $) 210)) (-2614 (((-1131) $) 11)) (-1817 (((-112) $) 168)) (-1829 ((|#1| $) 169)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-1370 (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-2972 (((-426 $) $) 101 (|has| |#1| (-918)))) (-3453 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) 147) (($ $ (-300 $)) 146) (($ $ $ $) 145) (($ $ (-652 $) (-652 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-652 |#3|) (-652 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-652 |#3|) (-652 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 $)) 206 (|has| |#1| (-237))) (($ $ |#2| |#1|) 205 (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 |#1|)) 204 (|has| |#1| (-237)))) (-2020 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3011 (($ $ |#3|) 46) (($ $ (-652 |#3|)) 45) (($ $ |#3| (-779)) 44) (($ $ (-652 |#3|) (-652 (-779))) 43) (($ $) 240 (|has| |#1| (-237))) (($ $ (-779)) 238 (|has| |#1| (-237))) (($ $ (-1188)) 236 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 235 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 234 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 233 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3253 (((-652 |#2|) $) 220)) (-1497 ((|#4| $) 152) (((-779) $ |#3|) 132) (((-652 (-779)) $ (-652 |#3|)) 131) (((-779) $ |#2|) 217)) (-3222 (((-901 (-386)) $) 84 (-12 (|has| |#3| (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| |#3| (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| |#3| (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) 177 (|has| |#1| (-460))) (($ $ |#3|) 108 (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 106 (-3804 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-415 (-572))) 80 (-3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572)))))) (($ $) 87 (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) 170)) (-4206 ((|#1| $ |#4|) 157) (($ $ |#3| (-779)) 130) (($ $ (-652 |#3|) (-652 (-779))) 129)) (-2210 (((-3 $ "failed") $) 81 (-3783 (-3804 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) 32 T CONST)) (-4257 (($ $ $ (-779)) 175 (|has| |#1| (-174)))) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ |#3|) 42) (($ $ (-652 |#3|)) 41) (($ $ |#3| (-779)) 40) (($ $ (-652 |#3|) (-652 (-779))) 39) (($ $) 239 (|has| |#1| (-237))) (($ $ (-779)) 237 (|has| |#1| (-237))) (($ $ (-1188)) 232 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 231 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 230 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 229 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 158 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 160 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 159 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-258 |#1| |#2| |#3| |#4|) (-141) (-1060) (-858) (-271 |t#2|) (-801)) (T -258))
+((-4376 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *4 *3 *5 *6)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 *4)))) (-2068 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779)))) (-1497 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 (-779))))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779)))) (-2259 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-652 (-779))))) (-1470 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-112)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-258 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-801)) (-4 *2 (-271 *4)))) (-3419 (*1 *1 *1) (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858)) (-4 *4 (-271 *3)) (-4 *5 (-801)))) (-2844 (*1 *1 *1) (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858)) (-4 *4 (-271 *3)) (-4 *5 (-801)))) (-4376 (*1 *2 *1) (-12 (-4 *3 (-237)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *3 *4 *5 *6)))))
+(-13 (-958 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1049 |t#2|) (-10 -8 (-15 -4376 ((-1 $ (-779)) |t#2|)) (-15 -3253 ((-652 |t#2|) $)) (-15 -2068 ((-779) $ |t#2|)) (-15 -2068 ((-779) $)) (-15 -1497 ((-779) $ |t#2|)) (-15 -2259 ((-652 (-779)) $)) (-15 -1470 ((-779) $)) (-15 -2259 ((-652 (-779)) $ |t#2|)) (-15 -1470 ((-779) $ |t#2|)) (-15 -3740 ((-112) $)) (-15 -2755 (|t#3| $)) (-15 -3419 ($ $)) (-15 -2844 ($ $)) (IF (|has| |t#1| (-237)) (PROGN (-6 (-522 |t#2| |t#1|)) (-6 (-522 |t#2| $)) (-6 (-315 $)) (-15 -4376 ((-1 $ (-779)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 |#2|) . T) ((-624 |#3|) . T) ((-624 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) ((-233 |#1|) . T) ((-237) |has| |#1| (-237)) ((-296) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-315 $) . T) ((-332 |#1| |#4|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -3783 (|has| |#1| (-918)) (|has| |#1| (-460))) ((-522 |#2| |#1|) |has| |#1| (-237)) ((-522 |#2| $) |has| |#1| (-237)) ((-522 |#3| |#1|) . T) ((-522 |#3| $) . T) ((-522 $ $) . T) ((-564) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-734) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-909 |#3|) . T) ((-895 (-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) ((-958 |#1| |#4| |#3|) . T) ((-918) |has| |#1| (-918)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1049 |#2|) . T) ((-1049 |#3|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) |has| |#1| (-918)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2021 ((|#1| $) 55)) (-2620 ((|#1| $) 45)) (-2938 (((-112) $ (-779)) 8)) (-1586 (($) 7 T CONST)) (-1713 (($ $) 61)) (-4095 (($ $) 49)) (-3540 ((|#1| |#1| $) 47)) (-2836 ((|#1| $) 46)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-2040 (((-779) $) 62)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-2337 ((|#1| |#1| $) 53)) (-1788 ((|#1| |#1| $) 52)) (-3704 (($ |#1| $) 41)) (-3920 (((-779) $) 56)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-4314 ((|#1| $) 63)) (-2885 ((|#1| $) 51)) (-3084 ((|#1| $) 50)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2106 ((|#1| |#1| $) 59)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2610 ((|#1| $) 60)) (-2226 (($) 58) (($ (-652 |#1|)) 57)) (-3900 (((-779) $) 44)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-4197 ((|#1| $) 54)) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-1340 ((|#1| $) 64)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-259 |#1|) (-141) (-1229)) (T -259))
+((-2226 (*1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-259 *3)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-2337 (*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-1788 (*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))) (-4095 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+(-13 (-1132 |t#1|) (-1006 |t#1|) (-10 -8 (-15 -2226 ($)) (-15 -2226 ($ (-652 |t#1|))) (-15 -3920 ((-779) $)) (-15 -2021 (|t#1| $)) (-15 -4197 (|t#1| $)) (-15 -2337 (|t#1| |t#1| $)) (-15 -1788 (|t#1| |t#1| $)) (-15 -2885 (|t#1| $)) (-15 -3084 (|t#1| $)) (-15 -4095 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1006 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1132 |#1|) . T) ((-1229) . T))
+((-3409 (((-1 (-952 (-227)) (-227) (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-2365 (((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386))) 173) (((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 171) (((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 176) (((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 172) (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 164) (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 163) (((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386))) 145) (((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268))) 143) (((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386))) 144) (((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268))) 141)) (-2321 (((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386))) 175) (((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 174) (((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 178) (((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 177) (((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386))) 166) (((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268))) 165) (((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386))) 151) (((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268))) 150) (((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386))) 149) (((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268))) 148) (((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386))) 113) (((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268))) 112) (((-1280) (-1 (-227) (-227)) (-1105 (-386))) 107) (((-1280) (-1 (-227) (-227)) (-1105 (-386)) (-652 (-268))) 105)))
+(((-260) (-10 -7 (-15 -2321 ((-1280) (-1 (-227) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) (-1 (-227) (-227)) (-1105 (-386)))) (-15 -2321 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -2321 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -2321 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2321 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -3409 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -260))
+((-3409 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *2 (-1280)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *2 (-1280)) (-5 *1 (-260)))) (-2321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260)))))
+(-10 -7 (-15 -2321 ((-1280) (-1 (-227) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) (-1 (-227) (-227)) (-1105 (-386)))) (-15 -2321 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) (-886 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -2321 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-888 (-1 (-227) (-227))) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227)) (-1105 (-386)))) (-15 -2321 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-386)) (-1105 (-386)))) (-15 -2321 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -2365 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-891 (-1 (-227) (-227) (-227))) (-1105 (-386)) (-1105 (-386)))) (-15 -3409 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-2321 (((-1280) (-300 |#2|) (-1188) (-1188) (-652 (-268))) 101)))
+(((-261 |#1| |#2|) (-10 -7 (-15 -2321 ((-1280) (-300 |#2|) (-1188) (-1188) (-652 (-268))))) (-13 (-564) (-858) (-1049 (-572))) (-438 |#1|)) (T -261))
+((-2321 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-300 *7)) (-5 *4 (-1188)) (-5 *5 (-652 (-268))) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-858) (-1049 (-572)))) (-5 *2 (-1280)) (-5 *1 (-261 *6 *7)))))
+(-10 -7 (-15 -2321 ((-1280) (-300 |#2|) (-1188) (-1188) (-652 (-268)))))
+((-2350 (((-572) (-572)) 71)) (-3775 (((-572) (-572)) 72)) (-4247 (((-227) (-227)) 73)) (-4411 (((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227))) 70)) (-3595 (((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)) (-112)) 68)))
+(((-262) (-10 -7 (-15 -3595 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)) (-112))) (-15 -4411 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -2350 ((-572) (-572))) (-15 -3775 ((-572) (-572))) (-15 -4247 ((-227) (-227))))) (T -262))
+((-4247 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-262)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))) (-2350 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))) (-4411 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227))) (-5 *2 (-1281)) (-5 *1 (-262)))) (-3595 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227))) (-5 *5 (-112)) (-5 *2 (-1281)) (-5 *1 (-262)))))
+(-10 -7 (-15 -3595 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)) (-112))) (-15 -4411 ((-1281) (-1 (-171 (-227)) (-171 (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -2350 ((-572) (-572))) (-15 -3775 ((-572) (-572))) (-15 -4247 ((-227) (-227))))
+((-3491 (((-1103 (-386)) (-1103 (-322 |#1|))) 16)))
+(((-263 |#1|) (-10 -7 (-15 -3491 ((-1103 (-386)) (-1103 (-322 |#1|))))) (-13 (-858) (-564) (-622 (-386)))) (T -263))
+((-3491 (*1 *2 *3) (-12 (-5 *3 (-1103 (-322 *4))) (-4 *4 (-13 (-858) (-564) (-622 (-386)))) (-5 *2 (-1103 (-386))) (-5 *1 (-263 *4)))))
+(-10 -7 (-15 -3491 ((-1103 (-386)) (-1103 (-322 |#1|)))))
+((-2365 (((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386))) 75) (((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 74) (((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386))) 65) (((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 64) (((-1144 (-227)) (-888 |#1|) (-1103 (-386))) 56) (((-1144 (-227)) (-888 |#1|) (-1103 (-386)) (-652 (-268))) 55)) (-2321 (((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386))) 78) (((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 77) (((-1281) |#1| (-1103 (-386)) (-1103 (-386))) 68) (((-1281) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268))) 67) (((-1281) (-888 |#1|) (-1103 (-386))) 60) (((-1281) (-888 |#1|) (-1103 (-386)) (-652 (-268))) 59) (((-1280) (-886 |#1|) (-1103 (-386))) 47) (((-1280) (-886 |#1|) (-1103 (-386)) (-652 (-268))) 46) (((-1280) |#1| (-1103 (-386))) 38) (((-1280) |#1| (-1103 (-386)) (-652 (-268))) 36)))
+(((-264 |#1|) (-10 -7 (-15 -2321 ((-1280) |#1| (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) |#1| (-1103 (-386)))) (-15 -2321 ((-1280) (-886 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) (-886 |#1|) (-1103 (-386)))) (-15 -2321 ((-1281) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-888 |#1|) (-1103 (-386)))) (-15 -2365 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)))) (-15 -2321 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -2365 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -2321 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)))) (-15 -2365 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386))))) (-13 (-622 (-544)) (-1111))) (T -264))
+((-2365 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *5)))) (-2365 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *6)))) (-2321 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *5)))) (-2321 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *6)))) (-2365 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-2365 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-2321 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1281)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-2321 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *5)))) (-2365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *6)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *5)))) (-2321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281)) (-5 *1 (-264 *6)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1103 (-386))) (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280)) (-5 *1 (-264 *5)))) (-2321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280)) (-5 *1 (-264 *6)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1280)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))) (-2321 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111))))))
+(-10 -7 (-15 -2321 ((-1280) |#1| (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) |#1| (-1103 (-386)))) (-15 -2321 ((-1280) (-886 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1280) (-886 |#1|) (-1103 (-386)))) (-15 -2321 ((-1281) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-888 |#1|) (-1103 (-386)))) (-15 -2365 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-888 |#1|) (-1103 (-386)))) (-15 -2321 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -2365 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) |#1| (-1103 (-386)) (-1103 (-386)))) (-15 -2321 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2321 ((-1281) (-891 |#1|) (-1103 (-386)) (-1103 (-386)))) (-15 -2365 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)) (-652 (-268)))) (-15 -2365 ((-1144 (-227)) (-891 |#1|) (-1103 (-386)) (-1103 (-386)))))
+((-2321 (((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)) (-652 (-268))) 23) (((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227))) 24) (((-1280) (-652 (-952 (-227))) (-652 (-268))) 16) (((-1280) (-652 (-952 (-227)))) 17) (((-1280) (-652 (-227)) (-652 (-227)) (-652 (-268))) 20) (((-1280) (-652 (-227)) (-652 (-227))) 21)))
+(((-265) (-10 -7 (-15 -2321 ((-1280) (-652 (-227)) (-652 (-227)))) (-15 -2321 ((-1280) (-652 (-227)) (-652 (-227)) (-652 (-268)))) (-15 -2321 ((-1280) (-652 (-952 (-227))))) (-15 -2321 ((-1280) (-652 (-952 (-227))) (-652 (-268)))) (-15 -2321 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)))) (-15 -2321 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)) (-652 (-268)))))) (T -265))
+((-2321 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-265)))) (-2321 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1281)) (-5 *1 (-265)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-265)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *2 (-1280)) (-5 *1 (-265)))) (-2321 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-265)))) (-2321 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1280)) (-5 *1 (-265)))))
+(-10 -7 (-15 -2321 ((-1280) (-652 (-227)) (-652 (-227)))) (-15 -2321 ((-1280) (-652 (-227)) (-652 (-227)) (-652 (-268)))) (-15 -2321 ((-1280) (-652 (-952 (-227))))) (-15 -2321 ((-1280) (-652 (-952 (-227))) (-652 (-268)))) (-15 -2321 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)))) (-15 -2321 ((-1281) (-652 (-227)) (-652 (-227)) (-652 (-227)) (-652 (-268)))))
+((-1492 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-652 (-268)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-1367 (((-930) (-652 (-268)) (-930)) 52)) (-3781 (((-930) (-652 (-268)) (-930)) 51)) (-4309 (((-652 (-386)) (-652 (-268)) (-652 (-386))) 68)) (-1826 (((-386) (-652 (-268)) (-386)) 57)) (-3974 (((-930) (-652 (-268)) (-930)) 53)) (-1427 (((-112) (-652 (-268)) (-112)) 27)) (-3108 (((-1170) (-652 (-268)) (-1170)) 19)) (-3719 (((-1170) (-652 (-268)) (-1170)) 26)) (-3414 (((-1144 (-227)) (-652 (-268))) 46)) (-3284 (((-652 (-1105 (-386))) (-652 (-268)) (-652 (-1105 (-386)))) 40)) (-2482 (((-882) (-652 (-268)) (-882)) 32)) (-1685 (((-882) (-652 (-268)) (-882)) 33)) (-2968 (((-1 (-952 (-227)) (-952 (-227))) (-652 (-268)) (-1 (-952 (-227)) (-952 (-227)))) 63)) (-3825 (((-112) (-652 (-268)) (-112)) 14)) (-2075 (((-112) (-652 (-268)) (-112)) 13)))
+(((-266) (-10 -7 (-15 -2075 ((-112) (-652 (-268)) (-112))) (-15 -3825 ((-112) (-652 (-268)) (-112))) (-15 -1492 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-652 (-268)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3108 ((-1170) (-652 (-268)) (-1170))) (-15 -3719 ((-1170) (-652 (-268)) (-1170))) (-15 -1427 ((-112) (-652 (-268)) (-112))) (-15 -2482 ((-882) (-652 (-268)) (-882))) (-15 -1685 ((-882) (-652 (-268)) (-882))) (-15 -3284 ((-652 (-1105 (-386))) (-652 (-268)) (-652 (-1105 (-386))))) (-15 -3781 ((-930) (-652 (-268)) (-930))) (-15 -1367 ((-930) (-652 (-268)) (-930))) (-15 -3414 ((-1144 (-227)) (-652 (-268)))) (-15 -3974 ((-930) (-652 (-268)) (-930))) (-15 -1826 ((-386) (-652 (-268)) (-386))) (-15 -2968 ((-1 (-952 (-227)) (-952 (-227))) (-652 (-268)) (-1 (-952 (-227)) (-952 (-227))))) (-15 -4309 ((-652 (-386)) (-652 (-268)) (-652 (-386)))))) (T -266))
+((-4309 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-386))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2968 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1826 (*1 *2 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3974 (*1 *2 *3 *2) (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-266)))) (-1367 (*1 *2 *3 *2) (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3781 (*1 *2 *3 *2) (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3284 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1685 (*1 *2 *3 *2) (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2482 (*1 *2 *3 *2) (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1427 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3719 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3108 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-1492 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-3825 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))) (-2075 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
+(-10 -7 (-15 -2075 ((-112) (-652 (-268)) (-112))) (-15 -3825 ((-112) (-652 (-268)) (-112))) (-15 -1492 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-652 (-268)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3108 ((-1170) (-652 (-268)) (-1170))) (-15 -3719 ((-1170) (-652 (-268)) (-1170))) (-15 -1427 ((-112) (-652 (-268)) (-112))) (-15 -2482 ((-882) (-652 (-268)) (-882))) (-15 -1685 ((-882) (-652 (-268)) (-882))) (-15 -3284 ((-652 (-1105 (-386))) (-652 (-268)) (-652 (-1105 (-386))))) (-15 -3781 ((-930) (-652 (-268)) (-930))) (-15 -1367 ((-930) (-652 (-268)) (-930))) (-15 -3414 ((-1144 (-227)) (-652 (-268)))) (-15 -3974 ((-930) (-652 (-268)) (-930))) (-15 -1826 ((-386) (-652 (-268)) (-386))) (-15 -2968 ((-1 (-952 (-227)) (-952 (-227))) (-652 (-268)) (-1 (-952 (-227)) (-952 (-227))))) (-15 -4309 ((-652 (-386)) (-652 (-268)) (-652 (-386)))))
+((-2472 (((-3 |#1| "failed") (-652 (-268)) (-1188)) 17)))
+(((-267 |#1|) (-10 -7 (-15 -2472 ((-3 |#1| "failed") (-652 (-268)) (-1188)))) (-1229)) (T -267))
+((-2472 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *1 (-267 *2)) (-4 *2 (-1229)))))
+(-10 -7 (-15 -2472 ((-3 |#1| "failed") (-652 (-268)) (-1188))))
+((-3464 (((-112) $ $) NIL)) (-1492 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-1367 (($ (-930)) 81)) (-3781 (($ (-930)) 80)) (-3457 (($ (-652 (-386))) 87)) (-1826 (($ (-386)) 66)) (-3974 (($ (-930)) 82)) (-1427 (($ (-112)) 33)) (-3108 (($ (-1170)) 28)) (-3719 (($ (-1170)) 29)) (-3414 (($ (-1144 (-227))) 76)) (-3284 (($ (-652 (-1105 (-386)))) 72)) (-4336 (($ (-652 (-1105 (-386)))) 68) (($ (-652 (-1105 (-415 (-572))))) 71)) (-2228 (($ (-386)) 38) (($ (-882)) 42)) (-1991 (((-112) (-652 $) (-1188)) 100)) (-2472 (((-3 (-52) "failed") (-652 $) (-1188)) 102)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2208 (($ (-386)) 43) (($ (-882)) 44)) (-2862 (($ (-1 (-952 (-227)) (-952 (-227)))) 65)) (-2968 (($ (-1 (-952 (-227)) (-952 (-227)))) 83)) (-3563 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3491 (((-870) $) 93)) (-3717 (($ (-112)) 34) (($ (-652 (-1105 (-386)))) 60)) (-3424 (((-112) $ $) NIL)) (-2075 (($ (-112)) 35)) (-3921 (((-112) $ $) 97)))
+(((-268) (-13 (-1111) (-10 -8 (-15 -2075 ($ (-112))) (-15 -3717 ($ (-112))) (-15 -1492 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3108 ($ (-1170))) (-15 -3719 ($ (-1170))) (-15 -1427 ($ (-112))) (-15 -3717 ($ (-652 (-1105 (-386))))) (-15 -2862 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -2228 ($ (-386))) (-15 -2228 ($ (-882))) (-15 -2208 ($ (-386))) (-15 -2208 ($ (-882))) (-15 -3563 ($ (-1 (-227) (-227)))) (-15 -3563 ($ (-1 (-227) (-227) (-227)))) (-15 -3563 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1826 ($ (-386))) (-15 -4336 ($ (-652 (-1105 (-386))))) (-15 -4336 ($ (-652 (-1105 (-415 (-572)))))) (-15 -3284 ($ (-652 (-1105 (-386))))) (-15 -3414 ($ (-1144 (-227)))) (-15 -3781 ($ (-930))) (-15 -1367 ($ (-930))) (-15 -3974 ($ (-930))) (-15 -2968 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -3457 ($ (-652 (-386)))) (-15 -2472 ((-3 (-52) "failed") (-652 $) (-1188))) (-15 -1991 ((-112) (-652 $) (-1188)))))) (T -268))
+((-2075 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-268)))) (-3108 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))) (-2862 (*1 *1 *2) (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268)))) (-2208 (*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))) (-2208 (*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-268)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-268)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-268)))) (-1826 (*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))) (-4336 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))) (-4336 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-415 (-572))))) (-5 *1 (-268)))) (-3284 (*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-268)))) (-3781 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))) (-1367 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-268)))) (-2472 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-52)) (-5 *1 (-268)))) (-1991 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-112)) (-5 *1 (-268)))))
+(-13 (-1111) (-10 -8 (-15 -2075 ($ (-112))) (-15 -3717 ($ (-112))) (-15 -1492 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3108 ($ (-1170))) (-15 -3719 ($ (-1170))) (-15 -1427 ($ (-112))) (-15 -3717 ($ (-652 (-1105 (-386))))) (-15 -2862 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -2228 ($ (-386))) (-15 -2228 ($ (-882))) (-15 -2208 ($ (-386))) (-15 -2208 ($ (-882))) (-15 -3563 ($ (-1 (-227) (-227)))) (-15 -3563 ($ (-1 (-227) (-227) (-227)))) (-15 -3563 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1826 ($ (-386))) (-15 -4336 ($ (-652 (-1105 (-386))))) (-15 -4336 ($ (-652 (-1105 (-415 (-572)))))) (-15 -3284 ($ (-652 (-1105 (-386))))) (-15 -3414 ($ (-1144 (-227)))) (-15 -3781 ($ (-930))) (-15 -1367 ($ (-930))) (-15 -3974 ($ (-930))) (-15 -2968 ($ (-1 (-952 (-227)) (-952 (-227))))) (-15 -3457 ($ (-652 (-386)))) (-15 -2472 ((-3 (-52) "failed") (-652 $) (-1188))) (-15 -1991 ((-112) (-652 $) (-1188)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2259 (((-652 (-779)) $) NIL) (((-652 (-779)) $ |#2|) NIL)) (-1470 (((-779) $) NIL) (((-779) $ |#2|) NIL)) (-2220 (((-652 |#3|) $) NIL)) (-4063 (((-1184 $) $ |#3|) NIL) (((-1184 |#1|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 |#3|)) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2844 (($ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1136 |#1| |#2|) "failed") $) 23)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1136 |#1| |#2|) $) NIL)) (-3829 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ |#3|) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-539 |#3|) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))))) (-2068 (((-779) $ |#2|) NIL) (((-779) $) 10)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3060 (($ (-1184 |#1|) |#3|) NIL) (($ (-1184 $) |#3|) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-539 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |#3|) NIL)) (-3808 (((-539 |#3|) $) NIL) (((-779) $ |#3|) NIL) (((-652 (-779)) $ (-652 |#3|)) NIL)) (-2008 (($ (-1 (-539 |#3|) (-539 |#3|)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (((-1 $ (-779)) |#2|) NIL) (((-1 $ (-779)) $) NIL (|has| |#1| (-237)))) (-4107 (((-3 |#3| "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-2755 ((|#3| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-3740 (((-112) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| |#3|) (|:| -2477 (-779))) "failed") $) NIL)) (-3419 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-652 |#3|) (-652 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-652 |#3|) (-652 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 $)) NIL (|has| |#1| (-237))) (($ $ |#2| |#1|) NIL (|has| |#1| (-237))) (($ $ (-652 |#2|) (-652 |#1|)) NIL (|has| |#1| (-237)))) (-2020 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3011 (($ $ |#3|) NIL) (($ $ (-652 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3253 (((-652 |#2|) $) NIL)) (-1497 (((-539 |#3|) $) NIL) (((-779) $ |#3|) NIL) (((-652 (-779)) $ (-652 |#3|)) NIL) (((-779) $ |#2|) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))))) (-3262 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ |#3|) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1136 |#1| |#2|)) 32) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-539 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ |#3|) NIL) (($ $ (-652 |#3|)) NIL) (($ $ |#3| (-779)) NIL) (($ $ (-652 |#3|) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-269 |#1| |#2| |#3|) (-13 (-258 |#1| |#2| |#3| (-539 |#3|)) (-1049 (-1136 |#1| |#2|))) (-1060) (-858) (-271 |#2|)) (T -269))
+NIL
+(-13 (-258 |#1| |#2| |#3| (-539 |#3|)) (-1049 (-1136 |#1| |#2|)))
+((-1470 (((-779) $) 37)) (-3072 (((-3 |#2| "failed") $) 22)) (-1869 ((|#2| $) 33)) (-3011 (($ $) 14) (($ $ (-779)) 18)) (-3491 (((-870) $) 32) (($ |#2|) 11)) (-3921 (((-112) $ $) 26)) (-3943 (((-112) $ $) 36)))
+(((-270 |#1| |#2|) (-10 -8 (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -1470 ((-779) |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|))) (-271 |#2|) (-858)) (T -270))
+NIL
+(-10 -8 (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -1470 ((-779) |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-1470 (((-779) $) 23)) (-2043 ((|#1| $) 24)) (-3072 (((-3 |#1| "failed") $) 28)) (-1869 ((|#1| $) 29)) (-2068 (((-779) $) 25)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-4376 (($ |#1| (-779)) 26)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3011 (($ $) 22) (($ $ (-779)) 21)) (-3491 (((-870) $) 12) (($ |#1|) 27)) (-3424 (((-112) $ $) 9)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)))
+(((-271 |#1|) (-141) (-858)) (T -271))
+((-3491 (*1 *1 *2) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-4376 (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779)))) (-3011 (*1 *1 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-271 *3)) (-4 *3 (-858)))))
+(-13 (-858) (-1049 |t#1|) (-10 -8 (-15 -4376 ($ |t#1| (-779))) (-15 -2068 ((-779) $)) (-15 -2043 (|t#1| $)) (-15 -1470 ((-779) $)) (-15 -3011 ($ $)) (-15 -3011 ($ $ (-779))) (-15 -3491 ($ |t#1|))))
+(((-102) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-858) . T) ((-1049 |#1|) . T) ((-1111) . T))
+((-2220 (((-652 (-1188)) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 53)) (-4084 (((-652 (-1188)) (-322 (-227)) (-779)) 94)) (-3459 (((-3 (-322 (-227)) "failed") (-322 (-227))) 63)) (-2867 (((-322 (-227)) (-322 (-227))) 79)) (-3398 (((-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 38)) (-1551 (((-112) (-652 (-322 (-227)))) 104)) (-4394 (((-112) (-322 (-227))) 36)) (-1322 (((-652 (-1170)) (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))))) 132)) (-4405 (((-652 (-322 (-227))) (-652 (-322 (-227)))) 108)) (-3671 (((-652 (-322 (-227))) (-652 (-322 (-227)))) 106)) (-1489 (((-697 (-227)) (-652 (-322 (-227))) (-779)) 120)) (-2871 (((-112) (-322 (-227))) 31) (((-112) (-652 (-322 (-227)))) 105)) (-2489 (((-652 (-227)) (-652 (-851 (-227))) (-227)) 15)) (-2995 (((-386) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 126)) (-2848 (((-1046) (-1188) (-1046)) 46)))
+(((-272) (-10 -7 (-15 -2489 ((-652 (-227)) (-652 (-851 (-227))) (-227))) (-15 -3398 ((-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -3459 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2867 ((-322 (-227)) (-322 (-227)))) (-15 -1551 ((-112) (-652 (-322 (-227))))) (-15 -2871 ((-112) (-652 (-322 (-227))))) (-15 -2871 ((-112) (-322 (-227)))) (-15 -1489 ((-697 (-227)) (-652 (-322 (-227))) (-779))) (-15 -3671 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -4405 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -4394 ((-112) (-322 (-227)))) (-15 -2220 ((-652 (-1188)) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -4084 ((-652 (-1188)) (-322 (-227)) (-779))) (-15 -2848 ((-1046) (-1188) (-1046))) (-15 -2995 ((-386) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -1322 ((-652 (-1170)) (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))))))) (T -272))
+((-1322 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))))) (-5 *2 (-652 (-1170))) (-5 *1 (-272)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) (-5 *2 (-386)) (-5 *1 (-272)))) (-2848 (*1 *2 *3 *2) (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-272)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-779)) (-5 *2 (-652 (-1188))) (-5 *1 (-272)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) (-5 *2 (-652 (-1188))) (-5 *1 (-272)))) (-4394 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272)))) (-4405 (*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))) (-3671 (*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *4 (-779)) (-5 *2 (-697 (-227))) (-5 *1 (-272)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272)))) (-2867 (*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))) (-3459 (*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))) (-3398 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *1 (-272)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-851 (-227)))) (-5 *4 (-227)) (-5 *2 (-652 *4)) (-5 *1 (-272)))))
+(-10 -7 (-15 -2489 ((-652 (-227)) (-652 (-851 (-227))) (-227))) (-15 -3398 ((-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -3459 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2867 ((-322 (-227)) (-322 (-227)))) (-15 -1551 ((-112) (-652 (-322 (-227))))) (-15 -2871 ((-112) (-652 (-322 (-227))))) (-15 -2871 ((-112) (-322 (-227)))) (-15 -1489 ((-697 (-227)) (-652 (-322 (-227))) (-779))) (-15 -3671 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -4405 ((-652 (-322 (-227))) (-652 (-322 (-227))))) (-15 -4394 ((-112) (-322 (-227)))) (-15 -2220 ((-652 (-1188)) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -4084 ((-652 (-1188)) (-322 (-227)) (-779))) (-15 -2848 ((-1046) (-1188) (-1046))) (-15 -2995 ((-386) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -1322 ((-652 (-1170)) (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))))))
+((-3464 (((-112) $ $) NIL)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 56)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 32) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-273) (-847)) (T -273))
+NIL
+(-847)
+((-3464 (((-112) $ $) NIL)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 72) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 63)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 41) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 43)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-274) (-847)) (T -274))
+NIL
+(-847)
+((-3464 (((-112) $ $) NIL)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 90) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 85)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 52) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 65)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-275) (-847)) (T -275))
+NIL
+(-847)
+((-3464 (((-112) $ $) NIL)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 73)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 45) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-276) (-847)) (T -276))
+NIL
+(-847)
+((-3464 (((-112) $ $) NIL)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 65)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 31) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-277) (-847)) (T -277))
+NIL
+(-847)
+((-3464 (((-112) $ $) NIL)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 90)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 33) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-278) (-847)) (T -278))
+NIL
+(-847)
+((-3464 (((-112) $ $) NIL)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 87)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 32) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-279) (-847)) (T -279))
+NIL
+(-847)
+((-3464 (((-112) $ $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4169 (((-652 (-572)) $) 29)) (-1497 (((-779) $) 27)) (-3491 (((-870) $) 33) (($ (-652 (-572))) 23)) (-3424 (((-112) $ $) NIL)) (-3917 (($ (-779)) 30)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 9)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 17)))
+(((-280) (-13 (-858) (-10 -8 (-15 -3491 ($ (-652 (-572)))) (-15 -1497 ((-779) $)) (-15 -4169 ((-652 (-572)) $)) (-15 -3917 ($ (-779)))))) (T -280))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-280)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280)))) (-3917 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-280)))))
+(-13 (-858) (-10 -8 (-15 -3491 ($ (-652 (-572)))) (-15 -1497 ((-779) $)) (-15 -4169 ((-652 (-572)) $)) (-15 -3917 ($ (-779)))))
+((-3915 ((|#2| |#2|) 77)) (-3790 ((|#2| |#2|) 65)) (-2424 (((-3 |#2| "failed") |#2| (-652 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3893 ((|#2| |#2|) 75)) (-3770 ((|#2| |#2|) 63)) (-3939 ((|#2| |#2|) 79)) (-3811 ((|#2| |#2|) 67)) (-2250 ((|#2|) 46)) (-3181 (((-115) (-115)) 100)) (-4057 ((|#2| |#2|) 61)) (-2351 (((-112) |#2|) 147)) (-3066 ((|#2| |#2|) 195)) (-4262 ((|#2| |#2|) 171)) (-3212 ((|#2|) 59)) (-3730 ((|#2|) 58)) (-3280 ((|#2| |#2|) 191)) (-1946 ((|#2| |#2|) 167)) (-3948 ((|#2| |#2|) 199)) (-1314 ((|#2| |#2|) 175)) (-4022 ((|#2| |#2|) 163)) (-3368 ((|#2| |#2|) 165)) (-3053 ((|#2| |#2|) 201)) (-4155 ((|#2| |#2|) 177)) (-4191 ((|#2| |#2|) 197)) (-3034 ((|#2| |#2|) 173)) (-4306 ((|#2| |#2|) 193)) (-3126 ((|#2| |#2|) 169)) (-4391 ((|#2| |#2|) 207)) (-3966 ((|#2| |#2|) 183)) (-1471 ((|#2| |#2|) 203)) (-3635 ((|#2| |#2|) 179)) (-2065 ((|#2| |#2|) 211)) (-3097 ((|#2| |#2|) 187)) (-1443 ((|#2| |#2|) 213)) (-1580 ((|#2| |#2|) 189)) (-2260 ((|#2| |#2|) 209)) (-4153 ((|#2| |#2|) 185)) (-4375 ((|#2| |#2|) 205)) (-2958 ((|#2| |#2|) 181)) (-3272 ((|#2| |#2|) 62)) (-2139 ((|#2| |#2|) 80)) (-3822 ((|#2| |#2|) 68)) (-3927 ((|#2| |#2|) 78)) (-3800 ((|#2| |#2|) 66)) (-3905 ((|#2| |#2|) 76)) (-3780 ((|#2| |#2|) 64)) (-3088 (((-112) (-115)) 98)) (-2176 ((|#2| |#2|) 83)) (-3852 ((|#2| |#2|) 71)) (-2152 ((|#2| |#2|) 81)) (-3833 ((|#2| |#2|) 69)) (-2204 ((|#2| |#2|) 85)) (-3871 ((|#2| |#2|) 73)) (-3120 ((|#2| |#2|) 86)) (-3883 ((|#2| |#2|) 74)) (-2193 ((|#2| |#2|) 84)) (-3861 ((|#2| |#2|) 72)) (-2162 ((|#2| |#2|) 82)) (-3842 ((|#2| |#2|) 70)))
+(((-281 |#1| |#2|) (-10 -7 (-15 -3272 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -2152 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -2176 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -2204 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -2250 (|#2|)) (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -3730 (|#2|)) (-15 -3212 (|#2|)) (-15 -3368 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -3034 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -3097 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -4306 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -4191 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -4375 (|#2| |#2|)) (-15 -4391 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -1443 (|#2| |#2|)) (-15 -2424 ((-3 |#2| "failed") |#2| (-652 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2351 ((-112) |#2|))) (-564) (-13 (-438 |#1|) (-1013))) (T -281))
+((-2351 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-281 *4 *3)) (-4 *3 (-13 (-438 *4) (-1013))))) (-2424 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-652 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-438 *4) (-1013))) (-4 *4 (-564)) (-5 *1 (-281 *4 *2)))) (-1443 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4391 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4375 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4191 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4306 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1580 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3097 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3034 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4262 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4022 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3368 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3212 (*1 *2) (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2)) (-4 *3 (-564)))) (-3730 (*1 *2) (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2)) (-4 *3 (-564)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-281 *3 *4)) (-4 *4 (-13 (-438 *3) (-1013))))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-281 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013))))) (-2250 (*1 *2) (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2)) (-4 *3 (-564)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2204 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))) (-3272 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013))))))
+(-10 -7 (-15 -3272 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3780 (|#2| |#2|)) (-15 -3790 (|#2| |#2|)) (-15 -3800 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3822 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3927 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -2139 (|#2| |#2|)) (-15 -2152 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -2176 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -2204 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -2250 (|#2|)) (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -3730 (|#2|)) (-15 -3212 (|#2|)) (-15 -3368 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -3034 (|#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -3097 (|#2| |#2|)) (-15 -1580 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -4306 (|#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -4191 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -4375 (|#2| |#2|)) (-15 -4391 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -1443 (|#2| |#2|)) (-15 -2424 ((-3 |#2| "failed") |#2| (-652 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2351 ((-112) |#2|)))
+((-4091 (((-3 |#2| "failed") (-652 (-620 |#2|)) |#2| (-1188)) 151)) (-3322 ((|#2| (-415 (-572)) |#2|) 49)) (-1875 ((|#2| |#2| (-620 |#2|)) 144)) (-4356 (((-2 (|:| |func| |#2|) (|:| |kers| (-652 (-620 |#2|))) (|:| |vals| (-652 |#2|))) |#2| (-1188)) 143)) (-1604 ((|#2| |#2| (-1188)) 20) ((|#2| |#2|) 23)) (-1849 ((|#2| |#2| (-1188)) 157) ((|#2| |#2|) 155)))
+(((-282 |#1| |#2|) (-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -1849 (|#2| |#2| (-1188))) (-15 -4356 ((-2 (|:| |func| |#2|) (|:| |kers| (-652 (-620 |#2|))) (|:| |vals| (-652 |#2|))) |#2| (-1188))) (-15 -1604 (|#2| |#2|)) (-15 -1604 (|#2| |#2| (-1188))) (-15 -4091 ((-3 |#2| "failed") (-652 (-620 |#2|)) |#2| (-1188))) (-15 -1875 (|#2| |#2| (-620 |#2|))) (-15 -3322 (|#2| (-415 (-572)) |#2|))) (-13 (-564) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -282))
+((-3322 (*1 *2 *3 *2) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)))) (-4091 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-1188)) (-4 *2 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *5 *2)))) (-1604 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-4356 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-652 (-620 *3))) (|:| |vals| (-652 *3)))) (-5 *1 (-282 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-1849 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
+(-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -1849 (|#2| |#2| (-1188))) (-15 -4356 ((-2 (|:| |func| |#2|) (|:| |kers| (-652 (-620 |#2|))) (|:| |vals| (-652 |#2|))) |#2| (-1188))) (-15 -1604 (|#2| |#2|)) (-15 -1604 (|#2| |#2| (-1188))) (-15 -4091 ((-3 |#2| "failed") (-652 (-620 |#2|)) |#2| (-1188))) (-15 -1875 (|#2| |#2| (-620 |#2|))) (-15 -3322 (|#2| (-415 (-572)) |#2|)))
+((-3544 (((-3 |#3| "failed") |#3|) 120)) (-3915 ((|#3| |#3|) 142)) (-1358 (((-3 |#3| "failed") |#3|) 89)) (-3790 ((|#3| |#3|) 132)) (-3155 (((-3 |#3| "failed") |#3|) 65)) (-3893 ((|#3| |#3|) 140)) (-3125 (((-3 |#3| "failed") |#3|) 53)) (-3770 ((|#3| |#3|) 130)) (-3952 (((-3 |#3| "failed") |#3|) 122)) (-3939 ((|#3| |#3|) 144)) (-2636 (((-3 |#3| "failed") |#3|) 91)) (-3811 ((|#3| |#3|) 134)) (-2496 (((-3 |#3| "failed") |#3| (-779)) 41)) (-4241 (((-3 |#3| "failed") |#3|) 81)) (-4057 ((|#3| |#3|) 129)) (-3255 (((-3 |#3| "failed") |#3|) 51)) (-3272 ((|#3| |#3|) 128)) (-1348 (((-3 |#3| "failed") |#3|) 123)) (-2139 ((|#3| |#3|) 145)) (-2659 (((-3 |#3| "failed") |#3|) 92)) (-3822 ((|#3| |#3|) 135)) (-1636 (((-3 |#3| "failed") |#3|) 121)) (-3927 ((|#3| |#3|) 143)) (-1761 (((-3 |#3| "failed") |#3|) 90)) (-3800 ((|#3| |#3|) 133)) (-1958 (((-3 |#3| "failed") |#3|) 67)) (-3905 ((|#3| |#3|) 141)) (-3040 (((-3 |#3| "failed") |#3|) 55)) (-3780 ((|#3| |#3|) 131)) (-2990 (((-3 |#3| "failed") |#3|) 73)) (-2176 ((|#3| |#3|) 148)) (-1435 (((-3 |#3| "failed") |#3|) 114)) (-3852 ((|#3| |#3|) 152)) (-1617 (((-3 |#3| "failed") |#3|) 69)) (-2152 ((|#3| |#3|) 146)) (-1620 (((-3 |#3| "failed") |#3|) 57)) (-3833 ((|#3| |#3|) 136)) (-4417 (((-3 |#3| "failed") |#3|) 77)) (-2204 ((|#3| |#3|) 150)) (-2061 (((-3 |#3| "failed") |#3|) 61)) (-3871 ((|#3| |#3|) 138)) (-3925 (((-3 |#3| "failed") |#3|) 79)) (-3120 ((|#3| |#3|) 151)) (-2635 (((-3 |#3| "failed") |#3|) 63)) (-3883 ((|#3| |#3|) 139)) (-3645 (((-3 |#3| "failed") |#3|) 75)) (-2193 ((|#3| |#3|) 149)) (-3633 (((-3 |#3| "failed") |#3|) 117)) (-3861 ((|#3| |#3|) 153)) (-4404 (((-3 |#3| "failed") |#3|) 71)) (-2162 ((|#3| |#3|) 147)) (-2059 (((-3 |#3| "failed") |#3|) 59)) (-3842 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-415 (-572))) 47 (|has| |#1| (-370)))))
+(((-283 |#1| |#2| |#3|) (-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -3272 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3790 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -2139 (|#3| |#3|)) (-15 -2152 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2204 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)))) (-38 (-415 (-572))) (-1270 |#1|) (-1241 |#1| |#2|)) (T -283))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3)) (-4 *5 (-1270 *4)) (-5 *1 (-283 *4 *5 *2)) (-4 *2 (-1241 *4 *5)))) (-3272 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-2204 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3)) (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4)))))
+(-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -3272 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3790 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -2139 (|#3| |#3|)) (-15 -2152 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2204 (|#3| |#3|)) (-15 -3120 (|#3| |#3|))))
+((-3544 (((-3 |#3| "failed") |#3|) 70)) (-3915 ((|#3| |#3|) 137)) (-1358 (((-3 |#3| "failed") |#3|) 54)) (-3790 ((|#3| |#3|) 125)) (-3155 (((-3 |#3| "failed") |#3|) 66)) (-3893 ((|#3| |#3|) 135)) (-3125 (((-3 |#3| "failed") |#3|) 50)) (-3770 ((|#3| |#3|) 123)) (-3952 (((-3 |#3| "failed") |#3|) 74)) (-3939 ((|#3| |#3|) 139)) (-2636 (((-3 |#3| "failed") |#3|) 58)) (-3811 ((|#3| |#3|) 127)) (-2496 (((-3 |#3| "failed") |#3| (-779)) 38)) (-4241 (((-3 |#3| "failed") |#3|) 48)) (-4057 ((|#3| |#3|) 111)) (-3255 (((-3 |#3| "failed") |#3|) 46)) (-3272 ((|#3| |#3|) 122)) (-1348 (((-3 |#3| "failed") |#3|) 76)) (-2139 ((|#3| |#3|) 140)) (-2659 (((-3 |#3| "failed") |#3|) 60)) (-3822 ((|#3| |#3|) 128)) (-1636 (((-3 |#3| "failed") |#3|) 72)) (-3927 ((|#3| |#3|) 138)) (-1761 (((-3 |#3| "failed") |#3|) 56)) (-3800 ((|#3| |#3|) 126)) (-1958 (((-3 |#3| "failed") |#3|) 68)) (-3905 ((|#3| |#3|) 136)) (-3040 (((-3 |#3| "failed") |#3|) 52)) (-3780 ((|#3| |#3|) 124)) (-2990 (((-3 |#3| "failed") |#3|) 78)) (-2176 ((|#3| |#3|) 143)) (-1435 (((-3 |#3| "failed") |#3|) 62)) (-3852 ((|#3| |#3|) 131)) (-1617 (((-3 |#3| "failed") |#3|) 112)) (-2152 ((|#3| |#3|) 141)) (-1620 (((-3 |#3| "failed") |#3|) 100)) (-3833 ((|#3| |#3|) 129)) (-4417 (((-3 |#3| "failed") |#3|) 116)) (-2204 ((|#3| |#3|) 145)) (-2061 (((-3 |#3| "failed") |#3|) 107)) (-3871 ((|#3| |#3|) 133)) (-3925 (((-3 |#3| "failed") |#3|) 117)) (-3120 ((|#3| |#3|) 146)) (-2635 (((-3 |#3| "failed") |#3|) 109)) (-3883 ((|#3| |#3|) 134)) (-3645 (((-3 |#3| "failed") |#3|) 80)) (-2193 ((|#3| |#3|) 144)) (-3633 (((-3 |#3| "failed") |#3|) 64)) (-3861 ((|#3| |#3|) 132)) (-4404 (((-3 |#3| "failed") |#3|) 113)) (-2162 ((|#3| |#3|) 142)) (-2059 (((-3 |#3| "failed") |#3|) 103)) (-3842 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-415 (-572))) 44 (|has| |#1| (-370)))))
+(((-284 |#1| |#2| |#3| |#4|) (-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -3272 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3790 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -2139 (|#3| |#3|)) (-15 -2152 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2204 (|#3| |#3|)) (-15 -3120 (|#3| |#3|)))) (-38 (-415 (-572))) (-1239 |#1|) (-1262 |#1| |#2|) (-994 |#2|)) (T -284))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3)) (-4 *5 (-1239 *4)) (-5 *1 (-284 *4 *5 *2 *6)) (-4 *2 (-1262 *4 *5)) (-4 *6 (-994 *5)))) (-3272 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3780 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3790 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3822 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3927 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2139 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-2204 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3)) (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4)))))
+(-13 (-994 |#3|) (-10 -7 (IF (|has| |#1| (-370)) (-15 ** (|#3| |#3| (-415 (-572)))) |%noBranch|) (-15 -3272 (|#3| |#3|)) (-15 -4057 (|#3| |#3|)) (-15 -3770 (|#3| |#3|)) (-15 -3780 (|#3| |#3|)) (-15 -3790 (|#3| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3811 (|#3| |#3|)) (-15 -3822 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3893 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3927 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -2139 (|#3| |#3|)) (-15 -2152 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2204 (|#3| |#3|)) (-15 -3120 (|#3| |#3|))))
+((-4208 (((-112) $) 20)) (-3401 (((-1193) $) 7)) (-2003 (((-3 (-514) "failed") $) 14)) (-1775 (((-3 (-652 $) "failed") $) NIL)) (-1888 (((-3 (-514) "failed") $) 21)) (-3308 (((-3 (-1115) "failed") $) 18)) (-3331 (((-112) $) 16)) (-3491 (((-870) $) NIL)) (-2090 (((-112) $) 9)))
+(((-285) (-13 (-621 (-870)) (-10 -8 (-15 -3401 ((-1193) $)) (-15 -3331 ((-112) $)) (-15 -3308 ((-3 (-1115) "failed") $)) (-15 -4208 ((-112) $)) (-15 -1888 ((-3 (-514) "failed") $)) (-15 -2090 ((-112) $)) (-15 -2003 ((-3 (-514) "failed") $)) (-15 -1775 ((-3 (-652 $) "failed") $))))) (T -285))
+((-3401 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-285)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))) (-3308 (*1 *2 *1) (|partial| -12 (-5 *2 (-1115)) (-5 *1 (-285)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))) (-1888 (*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))) (-2003 (*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285)))) (-1775 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-285))) (-5 *1 (-285)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -3401 ((-1193) $)) (-15 -3331 ((-112) $)) (-15 -3308 ((-3 (-1115) "failed") $)) (-15 -4208 ((-112) $)) (-15 -1888 ((-3 (-514) "failed") $)) (-15 -2090 ((-112) $)) (-15 -2003 ((-3 (-514) "failed") $)) (-15 -1775 ((-3 (-652 $) "failed") $))))
+((-1992 (((-605) $) 10)) (-3995 (((-593) $) 8)) (-1953 (((-297) $) 12)) (-2158 (($ (-593) (-605) (-297)) NIL)) (-3491 (((-870) $) 19)))
+(((-286) (-13 (-621 (-870)) (-10 -8 (-15 -2158 ($ (-593) (-605) (-297))) (-15 -3995 ((-593) $)) (-15 -1992 ((-605) $)) (-15 -1953 ((-297) $))))) (T -286))
+((-2158 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-593)) (-5 *3 (-605)) (-5 *4 (-297)) (-5 *1 (-286)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-593)) (-5 *1 (-286)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-605)) (-5 *1 (-286)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-297)) (-5 *1 (-286)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -2158 ($ (-593) (-605) (-297))) (-15 -3995 ((-593) $)) (-15 -1992 ((-605) $)) (-15 -1953 ((-297) $))))
+((-1424 (($ (-1 (-112) |#2|) $) 24)) (-3955 (($ $) 38)) (-3033 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-4243 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2363 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2744 (($ |#2| $ (-572)) 20) (($ $ $ (-572)) 22)) (-3817 (($ $ (-572)) 11) (($ $ (-1246 (-572))) 14)) (-2355 (($ $ |#2|) 32) (($ $ $) NIL)) (-2121 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-652 $)) NIL)))
+(((-287 |#1| |#2|) (-10 -8 (-15 -2363 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -2363 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3033 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| |#2|)) (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -3817 (|#1| |#1| (-1246 (-572)))) (-15 -3817 (|#1| |#1| (-572))) (-15 -2121 (|#1| (-652 |#1|))) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#2|)) (-15 -4243 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4243 (|#1| |#2| |#1|)) (-15 -3955 (|#1| |#1|))) (-288 |#2|) (-1229)) (T -287))
+NIL
+(-10 -8 (-15 -2363 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -2363 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3033 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2355 (|#1| |#1| |#2|)) (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -3817 (|#1| |#1| (-1246 (-572)))) (-15 -3817 (|#1| |#1| (-572))) (-15 -2121 (|#1| (-652 |#1|))) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#2|)) (-15 -4243 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1424 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4243 (|#1| |#2| |#1|)) (-15 -3955 (|#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) |#1|) $) 88)) (-1424 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-1727 (($ $) 86 (|has| |#1| (-1111)))) (-3955 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1111)))) (-4243 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 52)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2363 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-3704 (($ |#1| $ (-572)) 91) (($ $ $ (-572)) 90)) (-2744 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 43 (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3803 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-2049 (($ $ (-572)) 94) (($ $ (-1246 (-572))) 93)) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 72)) (-2355 (($ $ |#1|) 96) (($ $ $) 95)) (-2121 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-288 |#1|) (-141) (-1229)) (T -288))
+((-2355 (*1 *1 *1 *2) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)))) (-2355 (*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-3033 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-3704 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-288 *2)) (-4 *2 (-1229)))) (-3704 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-2363 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))) (-3033 (*1 *1 *2 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))) (-1727 (*1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111)))) (-2363 (*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))))
+(-13 (-659 |t#1|) (-10 -8 (-6 -4455) (-15 -2355 ($ $ |t#1|)) (-15 -2355 ($ $ $)) (-15 -2049 ($ $ (-572))) (-15 -2049 ($ $ (-1246 (-572)))) (-15 -3033 ($ (-1 (-112) |t#1|) $)) (-15 -3704 ($ |t#1| $ (-572))) (-15 -3704 ($ $ $ (-572))) (-15 -2363 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2265 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -3033 ($ |t#1| $)) (-15 -1727 ($ $))) |%noBranch|) (IF (|has| |t#1| (-858)) (-15 -2363 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
((** (($ $ $) 10)))
-(((-287 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-288)) (T -287))
+(((-289 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-290)) (T -289))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3447 (($ $) 6)) (-2651 (($ $) 7)) (** (($ $ $) 8)))
-(((-288) (-141)) (T -288))
-((** (*1 *1 *1 *1) (-4 *1 (-288))) (-2651 (*1 *1 *1) (-4 *1 (-288))) (-3447 (*1 *1 *1) (-4 *1 (-288))))
-(-13 (-10 -8 (-15 -3447 ($ $)) (-15 -2651 ($ $)) (-15 ** ($ $ $))))
-((-4261 (((-650 (-1166 |#1|)) (-1166 |#1|) |#1|) 35)) (-3060 ((|#2| |#2| |#1|) 39)) (-1875 ((|#2| |#2| |#1|) 41)) (-3317 ((|#2| |#2| |#1|) 40)))
-(((-289 |#1| |#2|) (-10 -7 (-15 -3060 (|#2| |#2| |#1|)) (-15 -3317 (|#2| |#2| |#1|)) (-15 -1875 (|#2| |#2| |#1|)) (-15 -4261 ((-650 (-1166 |#1|)) (-1166 |#1|) |#1|))) (-368) (-1268 |#1|)) (T -289))
-((-4261 (*1 *2 *3 *4) (-12 (-4 *4 (-368)) (-5 *2 (-650 (-1166 *4))) (-5 *1 (-289 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-1268 *4)))) (-1875 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1268 *3)))) (-3317 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1268 *3)))) (-3060 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1268 *3)))))
-(-10 -7 (-15 -3060 (|#2| |#2| |#1|)) (-15 -3317 (|#2| |#2| |#1|)) (-15 -1875 (|#2| |#2| |#1|)) (-15 -4261 ((-650 (-1166 |#1|)) (-1166 |#1|) |#1|)))
-((-2057 ((|#2| $ |#1|) 6)))
-(((-290 |#1| |#2|) (-141) (-1227) (-1227)) (T -290))
-((-2057 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1227)) (-4 *2 (-1227)))))
-(-13 (-1227) (-10 -8 (-15 -2057 (|t#2| $ |t#1|))))
-(((-1227) . T))
-((-2845 ((|#3| $ |#2| |#3|) 12)) (-2774 ((|#3| $ |#2|) 10)))
-(((-291 |#1| |#2| |#3|) (-10 -8 (-15 -2845 (|#3| |#1| |#2| |#3|)) (-15 -2774 (|#3| |#1| |#2|))) (-292 |#2| |#3|) (-1109) (-1227)) (T -291))
-NIL
-(-10 -8 (-15 -2845 (|#3| |#1| |#2| |#3|)) (-15 -2774 (|#3| |#1| |#2|)))
-((-3040 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4453)))) (-2845 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) 11)) (-2057 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-292 |#1| |#2|) (-141) (-1109) (-1227)) (T -292))
-((-2057 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1227)))) (-2774 (*1 *2 *1 *3) (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1227)))) (-3040 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1227)))) (-2845 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1227)))))
-(-13 (-290 |t#1| |t#2|) (-10 -8 (-15 -2057 (|t#2| $ |t#1| |t#2|)) (-15 -2774 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4453)) (PROGN (-15 -3040 (|t#2| $ |t#1| |t#2|)) (-15 -2845 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-290 |#1| |#2|) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 37)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 44)) (-2046 (($ $) 41)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) 35)) (-2295 (($ |#2| |#3|) 18)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2291 ((|#3| $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 19)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2282 (((-3 $ "failed") $ $) NIL)) (-2002 (((-777) $) 36)) (-2057 ((|#2| $ |#2|) 46)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 23)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) 31 T CONST)) (-1998 (($) 39 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 40)))
-(((-293 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-311) (-290 |#2| |#2|) (-10 -8 (-15 -2291 (|#3| $)) (-15 -2869 (|#2| $)) (-15 -2295 ($ |#2| |#3|)) (-15 -2282 ((-3 $ "failed") $ $)) (-15 -3957 ((-3 $ "failed") $)) (-15 -4315 ($ $)))) (-174) (-1253 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -293))
-((-3957 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1253 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2291 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-293 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1253 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-1253 *3)) (-5 *1 (-293 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2295 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-293 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1253 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2282 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1253 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4315 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1253 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
-(-13 (-311) (-290 |#2| |#2|) (-10 -8 (-15 -2291 (|#3| $)) (-15 -2869 (|#2| $)) (-15 -2295 ($ |#2| |#3|)) (-15 -2282 ((-3 $ "failed") $ $)) (-15 -3957 ((-3 $ "failed") $)) (-15 -4315 ($ $))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-294) (-141)) (T -294))
-NIL
-(-13 (-1058) (-111 $ $) (-10 -7 (-6 -4445)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-3232 (((-650 (-1094)) $) 10)) (-3511 (($ (-512) (-512) (-1113) $) 19)) (-1927 (($ (-512) (-650 (-972)) $) 23)) (-2068 (($) 25)) (-2107 (((-697 (-1113)) (-512) (-512) $) 18)) (-2261 (((-650 (-972)) (-512) $) 22)) (-1698 (($) 7)) (-3894 (($) 24)) (-2869 (((-868) $) 29)) (-1555 (($) 26)))
-(((-295) (-13 (-619 (-868)) (-10 -8 (-15 -1698 ($)) (-15 -3232 ((-650 (-1094)) $)) (-15 -2107 ((-697 (-1113)) (-512) (-512) $)) (-15 -3511 ($ (-512) (-512) (-1113) $)) (-15 -2261 ((-650 (-972)) (-512) $)) (-15 -1927 ($ (-512) (-650 (-972)) $)) (-15 -3894 ($)) (-15 -2068 ($)) (-15 -1555 ($))))) (T -295))
-((-1698 (*1 *1) (-5 *1 (-295))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-650 (-1094))) (-5 *1 (-295)))) (-2107 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-1113))) (-5 *1 (-295)))) (-3511 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-295)))) (-2261 (*1 *2 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-650 (-972))) (-5 *1 (-295)))) (-1927 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-295)))) (-3894 (*1 *1) (-5 *1 (-295))) (-2068 (*1 *1) (-5 *1 (-295))) (-1555 (*1 *1) (-5 *1 (-295))))
-(-13 (-619 (-868)) (-10 -8 (-15 -1698 ($)) (-15 -3232 ((-650 (-1094)) $)) (-15 -2107 ((-697 (-1113)) (-512) (-512) $)) (-15 -3511 ($ (-512) (-512) (-1113) $)) (-15 -2261 ((-650 (-972)) (-512) $)) (-15 -1927 ($ (-512) (-650 (-972)) $)) (-15 -3894 ($)) (-15 -2068 ($)) (-15 -1555 ($))))
-((-4027 (((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|)))) 102)) (-3129 (((-650 (-695 (-413 (-959 |#1|)))) (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|)))))) (-695 (-413 (-959 |#1|)))) 97) (((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))) (-777) (-777)) 41)) (-1860 (((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|)))) 99)) (-3974 (((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|)))) 75)) (-2958 (((-650 (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (-695 (-413 (-959 |#1|)))) 74)) (-1816 (((-959 |#1|) (-695 (-413 (-959 |#1|)))) 55) (((-959 |#1|) (-695 (-413 (-959 |#1|))) (-1186)) 56)))
-(((-296 |#1|) (-10 -7 (-15 -1816 ((-959 |#1|) (-695 (-413 (-959 |#1|))) (-1186))) (-15 -1816 ((-959 |#1|) (-695 (-413 (-959 |#1|))))) (-15 -2958 ((-650 (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (-695 (-413 (-959 |#1|))))) (-15 -3974 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))))) (-15 -3129 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))) (-777) (-777))) (-15 -3129 ((-650 (-695 (-413 (-959 |#1|)))) (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|)))))) (-695 (-413 (-959 |#1|))))) (-15 -4027 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|))))) (-15 -1860 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|)))))) (-458)) (T -296))
-((-1860 (*1 *2 *3) (-12 (-4 *4 (-458)) (-5 *2 (-650 (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 *4)))))))) (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4)))))) (-4027 (*1 *2 *3) (-12 (-4 *4 (-458)) (-5 *2 (-650 (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 *4)))))))) (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4)))))) (-3129 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 *4)))) (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5))))) (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5)))))) (-3129 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-413 (-959 *6)) (-1175 (-1186) (-959 *6)))) (-5 *5 (-777)) (-4 *6 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *6))))) (-5 *1 (-296 *6)) (-5 *4 (-695 (-413 (-959 *6)))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5)))) (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5))))) (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5)))))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-4 *4 (-458)) (-5 *2 (-650 (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4))))) (-5 *1 (-296 *4)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-5 *2 (-959 *4)) (-5 *1 (-296 *4)) (-4 *4 (-458)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-959 *5)))) (-5 *4 (-1186)) (-5 *2 (-959 *5)) (-5 *1 (-296 *5)) (-4 *5 (-458)))))
-(-10 -7 (-15 -1816 ((-959 |#1|) (-695 (-413 (-959 |#1|))) (-1186))) (-15 -1816 ((-959 |#1|) (-695 (-413 (-959 |#1|))))) (-15 -2958 ((-650 (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (-695 (-413 (-959 |#1|))))) (-15 -3974 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))))) (-15 -3129 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))) (-777) (-777))) (-15 -3129 ((-650 (-695 (-413 (-959 |#1|)))) (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|)))))) (-695 (-413 (-959 |#1|))))) (-15 -4027 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|))))) (-15 -1860 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|))))))
-((-2536 (((-298 |#2|) (-1 |#2| |#1|) (-298 |#1|)) 14)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -2536 ((-298 |#2|) (-1 |#2| |#1|) (-298 |#1|)))) (-1227) (-1227)) (T -297))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-298 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-298 *6)) (-5 *1 (-297 *5 *6)))))
-(-10 -7 (-15 -2536 ((-298 |#2|) (-1 |#2| |#1|) (-298 |#1|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2564 (((-112) $) NIL (|has| |#1| (-21)))) (-1953 (($ $) 12)) (-3997 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1465 (($ $ $) 95 (|has| |#1| (-306)))) (-2333 (($) NIL (-3749 (|has| |#1| (-21)) (|has| |#1| (-732))) CONST)) (-2154 (($ $) 51 (|has| |#1| (-21)))) (-4174 (((-3 $ "failed") $) 62 (|has| |#1| (-732)))) (-3871 ((|#1| $) 11)) (-3957 (((-3 $ "failed") $) 60 (|has| |#1| (-732)))) (-2005 (((-112) $) NIL (|has| |#1| (-732)))) (-2536 (($ (-1 |#1| |#1|) $) 14)) (-3859 ((|#1| $) 10)) (-2334 (($ $) 50 (|has| |#1| (-21)))) (-1694 (((-3 $ "failed") $) 61 (|has| |#1| (-732)))) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4315 (($ $) 64 (-3749 (|has| |#1| (-368)) (|has| |#1| (-479))))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3928 (((-650 $) $) 85 (|has| |#1| (-562)))) (-3034 (($ $ $) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 $)) 28 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-1186) |#1|) 17 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 21 (|has| |#1| (-520 (-1186) |#1|)))) (-2662 (($ |#1| |#1|) 9)) (-4388 (((-135)) 90 (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 87 (|has| |#1| (-907 (-1186))))) (-2733 (($ $ $) NIL (|has| |#1| (-479)))) (-2319 (($ $ $) NIL (|has| |#1| (-479)))) (-2869 (($ (-570)) NIL (|has| |#1| (-1058))) (((-112) $) 37 (|has| |#1| (-1109))) (((-868) $) 36 (|has| |#1| (-1109)))) (-2294 (((-777)) 67 (|has| |#1| (-1058)) CONST)) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1981 (($) 47 (|has| |#1| (-21)) CONST)) (-1998 (($) 57 (|has| |#1| (-732)) CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186))))) (-3892 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1109)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 92 (-3749 (|has| |#1| (-368)) (|has| |#1| (-479))))) (-4003 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3992 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-570)) NIL (|has| |#1| (-479))) (($ $ (-777)) NIL (|has| |#1| (-732))) (($ $ (-928)) NIL (|has| |#1| (-1121)))) (* (($ $ |#1|) 55 (|has| |#1| (-1121))) (($ |#1| $) 54 (|has| |#1| (-1121))) (($ $ $) 53 (|has| |#1| (-1121))) (($ (-570) $) 70 (|has| |#1| (-21))) (($ (-777) $) NIL (|has| |#1| (-21))) (($ (-928) $) NIL (|has| |#1| (-25)))))
-(((-298 |#1|) (-13 (-1227) (-10 -8 (-15 -3892 ($ |#1| |#1|)) (-15 -2662 ($ |#1| |#1|)) (-15 -1953 ($ $)) (-15 -3859 (|#1| $)) (-15 -3871 (|#1| $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-520 (-1186) |#1|)) (-6 (-520 (-1186) |#1|)) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-6 (-619 (-112))) (IF (|has| |#1| (-313 |#1|)) (PROGN (-15 -3034 ($ $ $)) (-15 -3034 ($ $ (-650 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3992 ($ |#1| $)) (-15 -3992 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2334 ($ $)) (-15 -2154 ($ $)) (-15 -4003 ($ |#1| $)) (-15 -4003 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-732)) (PROGN (-6 (-732)) (-15 -1694 ((-3 $ "failed") $)) (-15 -4174 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-479)) (PROGN (-6 (-479)) (-15 -1694 ((-3 $ "failed") $)) (-15 -4174 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-6 (-1058)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|) (IF (|has| |#1| (-562)) (-15 -3928 ((-650 $) $)) |%noBranch|) (IF (|has| |#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-1284 |#1|)) (-15 -4013 ($ $ $)) (-15 -4315 ($ $))) |%noBranch|) (IF (|has| |#1| (-306)) (-15 -1465 ($ $ $)) |%noBranch|))) (-1227)) (T -298))
-((-3892 (*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227)))) (-2662 (*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227)))) (-1953 (*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227)))) (-3859 (*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227)))) (-3871 (*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-298 *3)))) (-3034 (*1 *1 *1 *1) (-12 (-4 *2 (-313 *2)) (-4 *2 (-1109)) (-4 *2 (-1227)) (-5 *1 (-298 *2)))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *3))) (-4 *3 (-313 *3)) (-4 *3 (-1109)) (-4 *3 (-1227)) (-5 *1 (-298 *3)))) (-3992 (*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1227)))) (-3992 (*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1227)))) (-2334 (*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227)))) (-4003 (*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227)))) (-4003 (*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227)))) (-1694 (*1 *1 *1) (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1227)))) (-4174 (*1 *1 *1) (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1227)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-650 (-298 *3))) (-5 *1 (-298 *3)) (-4 *3 (-562)) (-4 *3 (-1227)))) (-1465 (*1 *1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-306)) (-4 *2 (-1227)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1227)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1227)))) (-4013 (*1 *1 *1 *1) (-3749 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1227))) (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1227))))) (-4315 (*1 *1 *1) (-3749 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1227))) (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1227))))))
-(-13 (-1227) (-10 -8 (-15 -3892 ($ |#1| |#1|)) (-15 -2662 ($ |#1| |#1|)) (-15 -1953 ($ $)) (-15 -3859 (|#1| $)) (-15 -3871 (|#1| $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-520 (-1186) |#1|)) (-6 (-520 (-1186) |#1|)) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-6 (-619 (-112))) (IF (|has| |#1| (-313 |#1|)) (PROGN (-15 -3034 ($ $ $)) (-15 -3034 ($ $ (-650 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3992 ($ |#1| $)) (-15 -3992 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2334 ($ $)) (-15 -2154 ($ $)) (-15 -4003 ($ |#1| $)) (-15 -4003 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-732)) (PROGN (-6 (-732)) (-15 -1694 ((-3 $ "failed") $)) (-15 -4174 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-479)) (PROGN (-6 (-479)) (-15 -1694 ((-3 $ "failed") $)) (-15 -4174 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-6 (-1058)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|) (IF (|has| |#1| (-562)) (-15 -3928 ((-650 $) $)) |%noBranch|) (IF (|has| |#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-1284 |#1|)) (-15 -4013 ($ $ $)) (-15 -4315 ($ $))) |%noBranch|) (IF (|has| |#1| (-306)) (-15 -1465 ($ $ $)) |%noBranch|)))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2204 (((-1282) $ |#1| |#1|) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#2| $ |#1| |#2|) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) NIL)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) NIL)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) NIL)) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 ((|#1| $) NIL (|has| |#1| (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 ((|#1| $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1988 (((-650 |#1|) $) NIL)) (-2093 (((-112) |#1| $) NIL)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-4075 (((-650 |#1|) $) NIL)) (-4276 (((-112) |#1| $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#2| $) NIL (|has| |#1| (-856)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-299 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452))) (-1109) (-1109)) (T -299))
-NIL
-(-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452)))
-((-3070 (((-316) (-1168) (-650 (-1168))) 17) (((-316) (-1168) (-1168)) 16) (((-316) (-650 (-1168))) 15) (((-316) (-1168)) 14)))
-(((-300) (-10 -7 (-15 -3070 ((-316) (-1168))) (-15 -3070 ((-316) (-650 (-1168)))) (-15 -3070 ((-316) (-1168) (-1168))) (-15 -3070 ((-316) (-1168) (-650 (-1168)))))) (T -300))
-((-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1168))) (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300)))) (-3070 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-316)) (-5 *1 (-300)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300)))))
-(-10 -7 (-15 -3070 ((-316) (-1168))) (-15 -3070 ((-316) (-650 (-1168)))) (-15 -3070 ((-316) (-1168) (-1168))) (-15 -3070 ((-316) (-1168) (-650 (-1168)))))
-((-2536 ((|#2| (-1 |#2| |#1|) (-1168) (-618 |#1|)) 18)))
-(((-301 |#1| |#2|) (-10 -7 (-15 -2536 (|#2| (-1 |#2| |#1|) (-1168) (-618 |#1|)))) (-306) (-1227)) (T -301))
-((-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1168)) (-5 *5 (-618 *6)) (-4 *6 (-306)) (-4 *2 (-1227)) (-5 *1 (-301 *6 *2)))))
-(-10 -7 (-15 -2536 (|#2| (-1 |#2| |#1|) (-1168) (-618 |#1|))))
-((-2536 ((|#2| (-1 |#2| |#1|) (-618 |#1|)) 17)))
-(((-302 |#1| |#2|) (-10 -7 (-15 -2536 (|#2| (-1 |#2| |#1|) (-618 |#1|)))) (-306) (-306)) (T -302))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-618 *5)) (-4 *5 (-306)) (-4 *2 (-306)) (-5 *1 (-302 *5 *2)))))
-(-10 -7 (-15 -2536 (|#2| (-1 |#2| |#1|) (-618 |#1|))))
-((-1593 (((-112) (-227)) 12)))
-(((-303 |#1| |#2|) (-10 -7 (-15 -1593 ((-112) (-227)))) (-227) (-227)) (T -303))
-((-1593 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1593 ((-112) (-227))))
-((-2842 (((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227)))) 118)) (-4090 (((-1166 (-227)) (-1277 (-320 (-227))) (-650 (-1186)) (-1103 (-849 (-227)))) 135) (((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227)))) 72)) (-4336 (((-650 (-1168)) (-1166 (-227))) NIL)) (-2456 (((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227)))) 69)) (-1348 (((-650 (-227)) (-959 (-413 (-570))) (-1186) (-1103 (-849 (-227)))) 59)) (-2173 (((-650 (-1168)) (-650 (-227))) NIL)) (-1886 (((-227) (-1103 (-849 (-227)))) 29)) (-2322 (((-227) (-1103 (-849 (-227)))) 30)) (-4363 (((-112) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-2832 (((-1168) (-227)) NIL)))
-(((-304) (-10 -7 (-15 -1886 ((-227) (-1103 (-849 (-227))))) (-15 -2322 ((-227) (-1103 (-849 (-227))))) (-15 -4363 ((-112) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2456 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -2842 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -4090 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -4090 ((-1166 (-227)) (-1277 (-320 (-227))) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -1348 ((-650 (-227)) (-959 (-413 (-570))) (-1186) (-1103 (-849 (-227))))) (-15 -2832 ((-1168) (-227))) (-15 -2173 ((-650 (-1168)) (-650 (-227)))) (-15 -4336 ((-650 (-1168)) (-1166 (-227)))))) (T -304))
-((-4336 (*1 *2 *3) (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-304)))) (-1348 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *4 (-1186)) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304)))) (-4090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *4 (-650 (-1186))) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))) (-4090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186))) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))) (-2842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186))) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186)) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-304)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304)))))
-(-10 -7 (-15 -1886 ((-227) (-1103 (-849 (-227))))) (-15 -2322 ((-227) (-1103 (-849 (-227))))) (-15 -4363 ((-112) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2456 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -2842 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -4090 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -4090 ((-1166 (-227)) (-1277 (-320 (-227))) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -1348 ((-650 (-227)) (-959 (-413 (-570))) (-1186) (-1103 (-849 (-227))))) (-15 -2832 ((-1168) (-227))) (-15 -2173 ((-650 (-1168)) (-650 (-227)))) (-15 -4336 ((-650 (-1168)) (-1166 (-227)))))
-((-4246 (((-650 (-618 $)) $) 27)) (-1465 (($ $ (-298 $)) 78) (($ $ (-650 (-298 $))) 139) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-2435 (((-3 (-618 $) "failed") $) 127)) (-4387 (((-618 $) $) 126)) (-3244 (($ $) 17) (($ (-650 $)) 54)) (-3380 (((-650 (-115)) $) 35)) (-2558 (((-115) (-115)) 88)) (-1973 (((-112) $) 150)) (-2536 (($ (-1 $ $) (-618 $)) 86)) (-1954 (((-3 (-618 $) "failed") $) 94)) (-1665 (($ (-115) $) 59) (($ (-115) (-650 $)) 110)) (-3917 (((-112) $ (-115)) 132) (((-112) $ (-1186)) 131)) (-3326 (((-777) $) 44)) (-2483 (((-112) $ $) 57) (((-112) $ (-1186)) 49)) (-2160 (((-112) $) 148)) (-3034 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) 137) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 81) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) 67) (($ $ (-1186) (-1 $ $)) 72) (($ $ (-650 (-115)) (-650 (-1 $ $))) 80) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 82) (($ $ (-115) (-1 $ (-650 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2057 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-650 $)) 123)) (-3047 (($ $) 51) (($ $ $) 135)) (-1613 (($ $) 15) (($ (-650 $)) 53)) (-1475 (((-112) (-115)) 21)))
-(((-305 |#1|) (-10 -8 (-15 -1973 ((-112) |#1|)) (-15 -2160 ((-112) |#1|)) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -2483 ((-112) |#1| (-1186))) (-15 -2483 ((-112) |#1| |#1|)) (-15 -2536 (|#1| (-1 |#1| |#1|) (-618 |#1|))) (-15 -1665 (|#1| (-115) (-650 |#1|))) (-15 -1665 (|#1| (-115) |#1|)) (-15 -3917 ((-112) |#1| (-1186))) (-15 -3917 ((-112) |#1| (-115))) (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -3380 ((-650 (-115)) |#1|)) (-15 -4246 ((-650 (-618 |#1|)) |#1|)) (-15 -1954 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3326 ((-777) |#1|)) (-15 -3047 (|#1| |#1| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -3244 (|#1| (-650 |#1|))) (-15 -3244 (|#1| |#1|)) (-15 -1613 (|#1| (-650 |#1|))) (-15 -1613 (|#1| |#1|)) (-15 -1465 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1465 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1465 (|#1| |#1| (-298 |#1|))) (-15 -2057 (|#1| (-115) (-650 |#1|))) (-15 -2057 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -3034 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -2435 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4387 ((-618 |#1|) |#1|))) (-306)) (T -305))
-((-2558 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-305 *3)) (-4 *3 (-306)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-305 *4)) (-4 *4 (-306)))))
-(-10 -8 (-15 -1973 ((-112) |#1|)) (-15 -2160 ((-112) |#1|)) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -2483 ((-112) |#1| (-1186))) (-15 -2483 ((-112) |#1| |#1|)) (-15 -2536 (|#1| (-1 |#1| |#1|) (-618 |#1|))) (-15 -1665 (|#1| (-115) (-650 |#1|))) (-15 -1665 (|#1| (-115) |#1|)) (-15 -3917 ((-112) |#1| (-1186))) (-15 -3917 ((-112) |#1| (-115))) (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -3380 ((-650 (-115)) |#1|)) (-15 -4246 ((-650 (-618 |#1|)) |#1|)) (-15 -1954 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3326 ((-777) |#1|)) (-15 -3047 (|#1| |#1| |#1|)) (-15 -3047 (|#1| |#1|)) (-15 -3244 (|#1| (-650 |#1|))) (-15 -3244 (|#1| |#1|)) (-15 -1613 (|#1| (-650 |#1|))) (-15 -1613 (|#1| |#1|)) (-15 -1465 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1465 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1465 (|#1| |#1| (-298 |#1|))) (-15 -2057 (|#1| (-115) (-650 |#1|))) (-15 -2057 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -3034 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -2435 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4387 ((-618 |#1|) |#1|)))
-((-2847 (((-112) $ $) 7)) (-4246 (((-650 (-618 $)) $) 39)) (-1465 (($ $ (-298 $)) 51) (($ $ (-650 (-298 $))) 50) (($ $ (-650 (-618 $)) (-650 $)) 49)) (-2435 (((-3 (-618 $) "failed") $) 64)) (-4387 (((-618 $) $) 65)) (-3244 (($ $) 46) (($ (-650 $)) 45)) (-3380 (((-650 (-115)) $) 38)) (-2558 (((-115) (-115)) 37)) (-1973 (((-112) $) 17 (|has| $ (-1047 (-570))))) (-1413 (((-1182 $) (-618 $)) 20 (|has| $ (-1058)))) (-2536 (($ (-1 $ $) (-618 $)) 31)) (-1954 (((-3 (-618 $) "failed") $) 41)) (-3240 (((-1168) $) 10)) (-2543 (((-650 (-618 $)) $) 40)) (-1665 (($ (-115) $) 33) (($ (-115) (-650 $)) 32)) (-3917 (((-112) $ (-115)) 35) (((-112) $ (-1186)) 34)) (-3326 (((-777) $) 42)) (-3891 (((-1129) $) 11)) (-2483 (((-112) $ $) 30) (((-112) $ (-1186)) 29)) (-2160 (((-112) $) 18 (|has| $ (-1047 (-570))))) (-3034 (($ $ (-618 $) $) 62) (($ $ (-650 (-618 $)) (-650 $)) 61) (($ $ (-650 (-298 $))) 60) (($ $ (-298 $)) 59) (($ $ $ $) 58) (($ $ (-650 $) (-650 $)) 57) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 28) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 27) (($ $ (-1186) (-1 $ (-650 $))) 26) (($ $ (-1186) (-1 $ $)) 25) (($ $ (-650 (-115)) (-650 (-1 $ $))) 24) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 23) (($ $ (-115) (-1 $ (-650 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2057 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-650 $)) 52)) (-3047 (($ $) 44) (($ $ $) 43)) (-3144 (($ $) 19 (|has| $ (-1058)))) (-2869 (((-868) $) 12) (($ (-618 $)) 63)) (-1613 (($ $) 48) (($ (-650 $)) 47)) (-1475 (((-112) (-115)) 36)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-306) (-141)) (T -306))
-((-2057 (*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-2057 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-2057 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-2057 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-2057 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306)))) (-1465 (*1 *1 *1 *2) (-12 (-5 *2 (-298 *1)) (-4 *1 (-306)))) (-1465 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *1))) (-4 *1 (-306)))) (-1465 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-618 *1))) (-5 *3 (-650 *1)) (-4 *1 (-306)))) (-1613 (*1 *1 *1) (-4 *1 (-306))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306)))) (-3244 (*1 *1 *1) (-4 *1 (-306))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306)))) (-3047 (*1 *1 *1) (-4 *1 (-306))) (-3047 (*1 *1 *1 *1) (-4 *1 (-306))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-777)))) (-1954 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-306)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-650 (-115))))) (-2558 (*1 *2 *2) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-1475 (*1 *2 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3917 (*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3917 (*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112)))) (-1665 (*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-1665 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306)))) (-2536 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-618 *1)) (-4 *1 (-306)))) (-2483 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-2483 (*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-306)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-306)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1058)) (-4 *1 (-306)) (-5 *2 (-1182 *1)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-1058)) (-4 *1 (-306)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112)))))
-(-13 (-1109) (-1047 (-618 $)) (-520 (-618 $) $) (-313 $) (-10 -8 (-15 -2057 ($ (-115) $)) (-15 -2057 ($ (-115) $ $)) (-15 -2057 ($ (-115) $ $ $)) (-15 -2057 ($ (-115) $ $ $ $)) (-15 -2057 ($ (-115) (-650 $))) (-15 -1465 ($ $ (-298 $))) (-15 -1465 ($ $ (-650 (-298 $)))) (-15 -1465 ($ $ (-650 (-618 $)) (-650 $))) (-15 -1613 ($ $)) (-15 -1613 ($ (-650 $))) (-15 -3244 ($ $)) (-15 -3244 ($ (-650 $))) (-15 -3047 ($ $)) (-15 -3047 ($ $ $)) (-15 -3326 ((-777) $)) (-15 -1954 ((-3 (-618 $) "failed") $)) (-15 -2543 ((-650 (-618 $)) $)) (-15 -4246 ((-650 (-618 $)) $)) (-15 -3380 ((-650 (-115)) $)) (-15 -2558 ((-115) (-115))) (-15 -1475 ((-112) (-115))) (-15 -3917 ((-112) $ (-115))) (-15 -3917 ((-112) $ (-1186))) (-15 -1665 ($ (-115) $)) (-15 -1665 ($ (-115) (-650 $))) (-15 -2536 ($ (-1 $ $) (-618 $))) (-15 -2483 ((-112) $ $)) (-15 -2483 ((-112) $ (-1186))) (-15 -3034 ($ $ (-650 (-1186)) (-650 (-1 $ $)))) (-15 -3034 ($ $ (-650 (-1186)) (-650 (-1 $ (-650 $))))) (-15 -3034 ($ $ (-1186) (-1 $ (-650 $)))) (-15 -3034 ($ $ (-1186) (-1 $ $))) (-15 -3034 ($ $ (-650 (-115)) (-650 (-1 $ $)))) (-15 -3034 ($ $ (-650 (-115)) (-650 (-1 $ (-650 $))))) (-15 -3034 ($ $ (-115) (-1 $ (-650 $)))) (-15 -3034 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1058)) (PROGN (-15 -1413 ((-1182 $) (-618 $))) (-15 -3144 ($ $))) |%noBranch|) (IF (|has| $ (-1047 (-570))) (PROGN (-15 -2160 ((-112) $)) (-15 -1973 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-622 #0=(-618 $)) . T) ((-619 (-868)) . T) ((-313 $) . T) ((-520 (-618 $) $) . T) ((-520 $ $) . T) ((-1047 #0#) . T) ((-1109) . T))
-((-2250 (((-650 |#1|) (-650 |#1|)) 10)))
-(((-307 |#1|) (-10 -7 (-15 -2250 ((-650 |#1|) (-650 |#1|)))) (-854)) (T -307))
-((-2250 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-854)) (-5 *1 (-307 *3)))))
-(-10 -7 (-15 -2250 ((-650 |#1|) (-650 |#1|))))
-((-2536 (((-695 |#2|) (-1 |#2| |#1|) (-695 |#1|)) 17)))
-(((-308 |#1| |#2|) (-10 -7 (-15 -2536 ((-695 |#2|) (-1 |#2| |#1|) (-695 |#1|)))) (-1058) (-1058)) (T -308))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-695 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-695 *6)) (-5 *1 (-308 *5 *6)))))
-(-10 -7 (-15 -2536 ((-695 |#2|) (-1 |#2| |#1|) (-695 |#1|))))
-((-1696 (((-1277 (-320 (-384))) (-1277 (-320 (-227)))) 110)) (-1486 (((-1103 (-849 (-227))) (-1103 (-849 (-384)))) 43)) (-4336 (((-650 (-1168)) (-1166 (-227))) 92)) (-2029 (((-320 (-384)) (-959 (-227))) 53)) (-4178 (((-227) (-959 (-227))) 49)) (-1602 (((-1168) (-384)) 195)) (-1388 (((-849 (-227)) (-849 (-384))) 37)) (-4168 (((-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570))) (-1277 (-320 (-227)))) 165)) (-2082 (((-1044) (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) 207) (((-1044) (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) 205)) (-2565 (((-695 (-227)) (-650 (-227)) (-777)) 19)) (-1583 (((-1277 (-705)) (-650 (-227))) 99)) (-2173 (((-650 (-1168)) (-650 (-227))) 79)) (-3278 (((-3 (-320 (-227)) "failed") (-320 (-227))) 128)) (-1593 (((-112) (-227) (-1103 (-849 (-227)))) 117)) (-1345 (((-1044) (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))) 224)) (-1886 (((-227) (-1103 (-849 (-227)))) 112)) (-2322 (((-227) (-1103 (-849 (-227)))) 113)) (-1591 (((-227) (-413 (-570))) 31)) (-3803 (((-1168) (-384)) 77)) (-1529 (((-227) (-384)) 22)) (-2999 (((-384) (-1277 (-320 (-227)))) 177)) (-3741 (((-320 (-227)) (-320 (-384))) 28)) (-3334 (((-413 (-570)) (-320 (-227))) 56)) (-3371 (((-320 (-413 (-570))) (-320 (-227))) 73)) (-1497 (((-320 (-384)) (-320 (-227))) 103)) (-3083 (((-227) (-320 (-227))) 57)) (-1820 (((-650 (-227)) (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) 68)) (-2860 (((-1103 (-849 (-227))) (-1103 (-849 (-227)))) 65)) (-2832 (((-1168) (-227)) 76)) (-2622 (((-705) (-227)) 95)) (-2506 (((-413 (-570)) (-227)) 58)) (-4094 (((-320 (-384)) (-227)) 52)) (-2601 (((-650 (-1103 (-849 (-227)))) (-650 (-1103 (-849 (-384))))) 46)) (-1505 (((-1044) (-650 (-1044))) 191) (((-1044) (-1044) (-1044)) 185)) (-3983 (((-1044) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
-(((-309) (-10 -7 (-15 -1529 ((-227) (-384))) (-15 -3741 ((-320 (-227)) (-320 (-384)))) (-15 -1388 ((-849 (-227)) (-849 (-384)))) (-15 -1486 ((-1103 (-849 (-227))) (-1103 (-849 (-384))))) (-15 -2601 ((-650 (-1103 (-849 (-227)))) (-650 (-1103 (-849 (-384)))))) (-15 -2506 ((-413 (-570)) (-227))) (-15 -3334 ((-413 (-570)) (-320 (-227)))) (-15 -3083 ((-227) (-320 (-227)))) (-15 -3278 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -2999 ((-384) (-1277 (-320 (-227))))) (-15 -4168 ((-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570))) (-1277 (-320 (-227))))) (-15 -3371 ((-320 (-413 (-570))) (-320 (-227)))) (-15 -2860 ((-1103 (-849 (-227))) (-1103 (-849 (-227))))) (-15 -1820 ((-650 (-227)) (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))) (-15 -2622 ((-705) (-227))) (-15 -1583 ((-1277 (-705)) (-650 (-227)))) (-15 -1497 ((-320 (-384)) (-320 (-227)))) (-15 -1696 ((-1277 (-320 (-384))) (-1277 (-320 (-227))))) (-15 -1593 ((-112) (-227) (-1103 (-849 (-227))))) (-15 -2832 ((-1168) (-227))) (-15 -3803 ((-1168) (-384))) (-15 -2173 ((-650 (-1168)) (-650 (-227)))) (-15 -4336 ((-650 (-1168)) (-1166 (-227)))) (-15 -1886 ((-227) (-1103 (-849 (-227))))) (-15 -2322 ((-227) (-1103 (-849 (-227))))) (-15 -1505 ((-1044) (-1044) (-1044))) (-15 -1505 ((-1044) (-650 (-1044)))) (-15 -1602 ((-1168) (-384))) (-15 -2082 ((-1044) (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))))) (-15 -2082 ((-1044) (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))))) (-15 -3983 ((-1044) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1345 ((-1044) (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))) (-15 -2029 ((-320 (-384)) (-959 (-227)))) (-15 -4178 ((-227) (-959 (-227)))) (-15 -4094 ((-320 (-384)) (-227))) (-15 -1591 ((-227) (-413 (-570)))) (-15 -2565 ((-695 (-227)) (-650 (-227)) (-777))))) (T -309))
-((-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-227))) (-5 *4 (-777)) (-5 *2 (-695 (-227))) (-5 *1 (-309)))) (-1591 (*1 *2 *3) (-12 (-5 *3 (-413 (-570))) (-5 *2 (-227)) (-5 *1 (-309)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-320 (-384))) (-5 *1 (-309)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-309)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-650 (-1044))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-1505 (*1 *2 *2 *2) (-12 (-5 *2 (-1044)) (-5 *1 (-309)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-309)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-849 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *2 (-1277 (-320 (-384)))) (-5 *1 (-309)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1277 (-705))) (-5 *1 (-309)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-705)) (-5 *1 (-309)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-5 *2 (-650 (-227))) (-5 *1 (-309)))) (-2860 (*1 *2 *2) (-12 (-5 *2 (-1103 (-849 (-227)))) (-5 *1 (-309)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-413 (-570)))) (-5 *1 (-309)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *2 (-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570)))) (-5 *1 (-309)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-309)))) (-3278 (*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-309)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-227)) (-5 *1 (-309)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-413 (-570))) (-5 *1 (-309)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-413 (-570))) (-5 *1 (-309)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-650 (-1103 (-849 (-384))))) (-5 *2 (-650 (-1103 (-849 (-227))))) (-5 *1 (-309)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-384)))) (-5 *2 (-1103 (-849 (-227)))) (-5 *1 (-309)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-849 (-384))) (-5 *2 (-849 (-227))) (-5 *1 (-309)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-320 (-384))) (-5 *2 (-320 (-227))) (-5 *1 (-309)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-309)))))
-(-10 -7 (-15 -1529 ((-227) (-384))) (-15 -3741 ((-320 (-227)) (-320 (-384)))) (-15 -1388 ((-849 (-227)) (-849 (-384)))) (-15 -1486 ((-1103 (-849 (-227))) (-1103 (-849 (-384))))) (-15 -2601 ((-650 (-1103 (-849 (-227)))) (-650 (-1103 (-849 (-384)))))) (-15 -2506 ((-413 (-570)) (-227))) (-15 -3334 ((-413 (-570)) (-320 (-227)))) (-15 -3083 ((-227) (-320 (-227)))) (-15 -3278 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -2999 ((-384) (-1277 (-320 (-227))))) (-15 -4168 ((-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570))) (-1277 (-320 (-227))))) (-15 -3371 ((-320 (-413 (-570))) (-320 (-227)))) (-15 -2860 ((-1103 (-849 (-227))) (-1103 (-849 (-227))))) (-15 -1820 ((-650 (-227)) (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))) (-15 -2622 ((-705) (-227))) (-15 -1583 ((-1277 (-705)) (-650 (-227)))) (-15 -1497 ((-320 (-384)) (-320 (-227)))) (-15 -1696 ((-1277 (-320 (-384))) (-1277 (-320 (-227))))) (-15 -1593 ((-112) (-227) (-1103 (-849 (-227))))) (-15 -2832 ((-1168) (-227))) (-15 -3803 ((-1168) (-384))) (-15 -2173 ((-650 (-1168)) (-650 (-227)))) (-15 -4336 ((-650 (-1168)) (-1166 (-227)))) (-15 -1886 ((-227) (-1103 (-849 (-227))))) (-15 -2322 ((-227) (-1103 (-849 (-227))))) (-15 -1505 ((-1044) (-1044) (-1044))) (-15 -1505 ((-1044) (-650 (-1044)))) (-15 -1602 ((-1168) (-384))) (-15 -2082 ((-1044) (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))))) (-15 -2082 ((-1044) (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))))) (-15 -3983 ((-1044) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1345 ((-1044) (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))) (-15 -2029 ((-320 (-384)) (-959 (-227)))) (-15 -4178 ((-227) (-959 (-227)))) (-15 -4094 ((-320 (-384)) (-227))) (-15 -1591 ((-227) (-413 (-570)))) (-15 -2565 ((-695 (-227)) (-650 (-227)) (-777))))
-((-1799 (((-112) $ $) 14)) (-2788 (($ $ $) 18)) (-2799 (($ $ $) 17)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 50)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 65)) (-3903 (($ $ $) 25) (($ (-650 $)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2837 (((-3 $ "failed") $ $) 21)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 53)))
-(((-310 |#1|) (-10 -8 (-15 -1928 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -1491 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1491 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3643 |#1|)) |#1| |#1|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -1799 ((-112) |#1| |#1|)) (-15 -4128 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -2762 ((-2 (|:| -1747 (-650 |#1|)) (|:| -3643 |#1|)) (-650 |#1|))) (-15 -3903 (|#1| (-650 |#1|))) (-15 -3903 (|#1| |#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) (-311)) (T -310))
-NIL
-(-10 -8 (-15 -1928 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -1491 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1491 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3643 |#1|)) |#1| |#1|)) (-15 -2788 (|#1| |#1| |#1|)) (-15 -2799 (|#1| |#1| |#1|)) (-15 -1799 ((-112) |#1| |#1|)) (-15 -4128 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -2762 ((-2 (|:| -1747 (-650 |#1|)) (|:| -3643 |#1|)) (-650 |#1|))) (-15 -3903 (|#1| (-650 |#1|))) (-15 -3903 (|#1| |#1| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-1799 (((-112) $ $) 65)) (-2333 (($) 18 T CONST)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2005 (((-112) $) 35)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-311) (-141)) (T -311))
-((-1799 (*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-777)))) (-4038 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-311)))) (-2799 (*1 *1 *1 *1) (-4 *1 (-311))) (-2788 (*1 *1 *1 *1) (-4 *1 (-311))) (-1491 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3643 *1))) (-4 *1 (-311)))) (-1491 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-311)))) (-1928 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-311)))))
-(-13 (-927) (-10 -8 (-15 -1799 ((-112) $ $)) (-15 -2002 ((-777) $)) (-15 -4038 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -2799 ($ $ $)) (-15 -2788 ($ $ $)) (-15 -1491 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $)) (-15 -1491 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1928 ((-3 (-650 $) "failed") (-650 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-3034 (($ $ (-650 |#2|) (-650 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-298 |#2|)) 11) (($ $ (-650 (-298 |#2|))) NIL)))
-(((-312 |#1| |#2|) (-10 -8 (-15 -3034 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -3034 (|#1| |#1| (-298 |#2|))) (-15 -3034 (|#1| |#1| |#2| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#2|)))) (-313 |#2|) (-1109)) (T -312))
-NIL
-(-10 -8 (-15 -3034 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -3034 (|#1| |#1| (-298 |#2|))) (-15 -3034 (|#1| |#1| |#2| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#2|))))
-((-3034 (($ $ (-650 |#1|) (-650 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-298 |#1|)) 11) (($ $ (-650 (-298 |#1|))) 10)))
-(((-313 |#1|) (-141) (-1109)) (T -313))
-((-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-298 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1109)))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *3))) (-4 *1 (-313 *3)) (-4 *3 (-1109)))))
-(-13 (-520 |t#1| |t#1|) (-10 -8 (-15 -3034 ($ $ (-298 |t#1|))) (-15 -3034 ($ $ (-650 (-298 |t#1|))))))
-(((-520 |#1| |#1|) . T))
-((-3034 ((|#1| (-1 |#1| (-570)) (-1188 (-413 (-570)))) 26)))
-(((-314 |#1|) (-10 -7 (-15 -3034 (|#1| (-1 |#1| (-570)) (-1188 (-413 (-570)))))) (-38 (-413 (-570)))) (T -314))
-((-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-570))) (-5 *4 (-1188 (-413 (-570)))) (-5 *1 (-314 *2)) (-4 *2 (-38 (-413 (-570)))))))
-(-10 -7 (-15 -3034 (|#1| (-1 |#1| (-570)) (-1188 (-413 (-570))))))
-((-2847 (((-112) $ $) NIL)) (-2613 (((-570) $) 12)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3812 (((-1144) $) 9)) (-2869 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-315) (-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2613 ((-570) $))))) (T -315))
-((-3812 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-315)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-315)))))
-(-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2613 ((-570) $))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 7)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 9)))
-(((-316) (-1109)) (T -316))
-NIL
-(-1109)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 60)) (-3150 (((-1263 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-1263 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-3 (-1262 |#2| |#3| |#4|) "failed") $) 26)) (-4387 (((-1263 |#1| |#2| |#3| |#4|) $) NIL) (((-1186) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-570) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-1262 |#2| |#3| |#4|) $) NIL)) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-1263 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1277 (-1263 |#1| |#2| |#3| |#4|)))) (-695 $) (-1277 $)) NIL) (((-695 (-1263 |#1| |#2| |#3| |#4|)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 (((-1263 |#1| |#2| |#3| |#4|) $) 22)) (-3525 (((-3 $ "failed") $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1161)))) (-2746 (((-112) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-856)))) (-1764 (($ $ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-856)))) (-2536 (($ (-1 (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|)) $) NIL)) (-2555 (((-3 (-849 |#2|) "failed") $) 80)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-311)))) (-2037 (((-1263 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 (-1263 |#1| |#2| |#3| |#4|)) (-650 (-1263 |#1| |#2| |#3| |#4|))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-313 (-1263 |#1| |#2| |#3| |#4|)))) (($ $ (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-313 (-1263 |#1| |#2| |#3| |#4|)))) (($ $ (-298 (-1263 |#1| |#2| |#3| |#4|))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-313 (-1263 |#1| |#2| |#3| |#4|)))) (($ $ (-650 (-298 (-1263 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-313 (-1263 |#1| |#2| |#3| |#4|)))) (($ $ (-650 (-1186)) (-650 (-1263 |#1| |#2| |#3| |#4|))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-520 (-1186) (-1263 |#1| |#2| |#3| |#4|)))) (($ $ (-1186) (-1263 |#1| |#2| |#3| |#4|)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-520 (-1186) (-1263 |#1| |#2| |#3| |#4|))))) (-2002 (((-777) $) NIL)) (-2057 (($ $ (-1263 |#1| |#2| |#3| |#4|)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-290 (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-777)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-1186)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1 (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|)) (-777)) NIL) (($ $ (-1 (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|))) NIL)) (-4424 (($ $) NIL)) (-1599 (((-1263 |#1| |#2| |#3| |#4|) $) 19)) (-2601 (((-899 (-570)) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-620 (-542)))) (((-384) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1031))) (((-227) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1031)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-1263 |#1| |#2| |#3| |#4|) (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-1263 |#1| |#2| |#3| |#4|)) 30) (($ (-1186)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-1047 (-1186)))) (($ (-1262 |#2| |#3| |#4|)) 37)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-1263 |#1| |#2| |#3| |#4|) (-916))) (|has| (-1263 |#1| |#2| |#3| |#4|) (-146))))) (-2294 (((-777)) NIL T CONST)) (-3850 (((-1263 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-826)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-777)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-1186)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1 (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|)) (-777)) NIL) (($ $ (-1 (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|))) NIL)) (-3959 (((-112) $ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-1263 |#1| |#2| |#3| |#4|) (-856)))) (-4013 (($ $ $) 35) (($ (-1263 |#1| |#2| |#3| |#4|) (-1263 |#1| |#2| |#3| |#4|)) 32)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-1263 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1263 |#1| |#2| |#3| |#4|)) NIL)))
-(((-317 |#1| |#2| |#3| |#4|) (-13 (-1001 (-1263 |#1| |#2| |#3| |#4|)) (-1047 (-1262 |#2| |#3| |#4|)) (-10 -8 (-15 -2555 ((-3 (-849 |#2|) "failed") $)) (-15 -2869 ($ (-1262 |#2| |#3| |#4|))))) (-13 (-1047 (-570)) (-645 (-570)) (-458)) (-13 (-27) (-1212) (-436 |#1|)) (-1186) |#2|) (T -317))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1262 *4 *5 *6)) (-4 *4 (-13 (-27) (-1212) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4) (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *1 (-317 *3 *4 *5 *6)))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *2 (-849 *4)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1212) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4))))
-(-13 (-1001 (-1263 |#1| |#2| |#3| |#4|)) (-1047 (-1262 |#2| |#3| |#4|)) (-10 -8 (-15 -2555 ((-3 (-849 |#2|) "failed") $)) (-15 -2869 ($ (-1262 |#2| |#3| |#4|)))))
-((-2536 (((-320 |#2|) (-1 |#2| |#1|) (-320 |#1|)) 13)))
-(((-318 |#1| |#2|) (-10 -7 (-15 -2536 ((-320 |#2|) (-1 |#2| |#1|) (-320 |#1|)))) (-1109) (-1109)) (T -318))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-320 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-320 *6)) (-5 *1 (-318 *5 *6)))))
-(-10 -7 (-15 -2536 ((-320 |#2|) (-1 |#2| |#1|) (-320 |#1|))))
-((-4268 (((-52) |#2| (-298 |#2|) (-777)) 40) (((-52) |#2| (-298 |#2|)) 32) (((-52) |#2| (-777)) 35) (((-52) |#2|) 33) (((-52) (-1186)) 26)) (-1866 (((-52) |#2| (-298 |#2|) (-413 (-570))) 59) (((-52) |#2| (-298 |#2|)) 56) (((-52) |#2| (-413 (-570))) 58) (((-52) |#2|) 57) (((-52) (-1186)) 55)) (-4291 (((-52) |#2| (-298 |#2|) (-413 (-570))) 54) (((-52) |#2| (-298 |#2|)) 51) (((-52) |#2| (-413 (-570))) 53) (((-52) |#2|) 52) (((-52) (-1186)) 50)) (-4280 (((-52) |#2| (-298 |#2|) (-570)) 47) (((-52) |#2| (-298 |#2|)) 44) (((-52) |#2| (-570)) 46) (((-52) |#2|) 45) (((-52) (-1186)) 43)))
-(((-319 |#1| |#2|) (-10 -7 (-15 -4268 ((-52) (-1186))) (-15 -4268 ((-52) |#2|)) (-15 -4268 ((-52) |#2| (-777))) (-15 -4268 ((-52) |#2| (-298 |#2|))) (-15 -4268 ((-52) |#2| (-298 |#2|) (-777))) (-15 -4280 ((-52) (-1186))) (-15 -4280 ((-52) |#2|)) (-15 -4280 ((-52) |#2| (-570))) (-15 -4280 ((-52) |#2| (-298 |#2|))) (-15 -4280 ((-52) |#2| (-298 |#2|) (-570))) (-15 -4291 ((-52) (-1186))) (-15 -4291 ((-52) |#2|)) (-15 -4291 ((-52) |#2| (-413 (-570)))) (-15 -4291 ((-52) |#2| (-298 |#2|))) (-15 -4291 ((-52) |#2| (-298 |#2|) (-413 (-570)))) (-15 -1866 ((-52) (-1186))) (-15 -1866 ((-52) |#2|)) (-15 -1866 ((-52) |#2| (-413 (-570)))) (-15 -1866 ((-52) |#2| (-298 |#2|))) (-15 -1866 ((-52) |#2| (-298 |#2|) (-413 (-570))))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|))) (T -319))
-((-1866 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-413 (-570))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4))))) (-4291 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-4291 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-4291 (*1 *2 *3 *4) (-12 (-5 *4 (-413 (-570))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-4291 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4))))) (-4280 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-458) (-1047 *5) (-645 *5))) (-5 *5 (-570)) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-4 *5 (-13 (-458) (-1047 *4) (-645 *4))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-4280 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4))))) (-4268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-5 *5 (-777)) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-4268 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4))))))
-(-10 -7 (-15 -4268 ((-52) (-1186))) (-15 -4268 ((-52) |#2|)) (-15 -4268 ((-52) |#2| (-777))) (-15 -4268 ((-52) |#2| (-298 |#2|))) (-15 -4268 ((-52) |#2| (-298 |#2|) (-777))) (-15 -4280 ((-52) (-1186))) (-15 -4280 ((-52) |#2|)) (-15 -4280 ((-52) |#2| (-570))) (-15 -4280 ((-52) |#2| (-298 |#2|))) (-15 -4280 ((-52) |#2| (-298 |#2|) (-570))) (-15 -4291 ((-52) (-1186))) (-15 -4291 ((-52) |#2|)) (-15 -4291 ((-52) |#2| (-413 (-570)))) (-15 -4291 ((-52) |#2| (-298 |#2|))) (-15 -4291 ((-52) |#2| (-298 |#2|) (-413 (-570)))) (-15 -1866 ((-52) (-1186))) (-15 -1866 ((-52) |#2|)) (-15 -1866 ((-52) |#2| (-413 (-570)))) (-15 -1866 ((-52) |#2| (-298 |#2|))) (-15 -1866 ((-52) |#2| (-298 |#2|) (-413 (-570)))))
-((-2847 (((-112) $ $) NIL)) (-2842 (((-650 $) $ (-1186)) NIL (|has| |#1| (-562))) (((-650 $) $) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $) (-1186)) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $)) NIL (|has| |#1| (-562))) (((-650 $) (-959 $)) NIL (|has| |#1| (-562)))) (-4121 (($ $ (-1186)) NIL (|has| |#1| (-562))) (($ $) NIL (|has| |#1| (-562))) (($ (-1182 $) (-1186)) NIL (|has| |#1| (-562))) (($ (-1182 $)) NIL (|has| |#1| (-562))) (($ (-959 $)) NIL (|has| |#1| (-562)))) (-2564 (((-112) $) 27 (-3749 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-1598 (((-650 (-1186)) $) 368)) (-3449 (((-413 (-1182 $)) $ (-618 $)) NIL (|has| |#1| (-562)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4246 (((-650 (-618 $)) $) NIL)) (-3900 (($ $) 171 (|has| |#1| (-562)))) (-3770 (($ $) 147 (|has| |#1| (-562)))) (-2505 (($ $ (-1101 $)) 232 (|has| |#1| (-562))) (($ $ (-1186)) 228 (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) NIL (-3749 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-1465 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) 386) (($ $ (-650 (-618 $)) (-650 $)) 430)) (-3585 (((-424 (-1182 $)) (-1182 $)) 308 (-12 (|has| |#1| (-458)) (|has| |#1| (-562))))) (-3312 (($ $) NIL (|has| |#1| (-562)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-562)))) (-2459 (($ $) NIL (|has| |#1| (-562)))) (-1799 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3876 (($ $) 167 (|has| |#1| (-562)))) (-3745 (($ $) 143 (|has| |#1| (-562)))) (-3361 (($ $ (-570)) 73 (|has| |#1| (-562)))) (-1513 (($ $) 175 (|has| |#1| (-562)))) (-3791 (($ $) 151 (|has| |#1| (-562)))) (-2333 (($) NIL (-3749 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))) CONST)) (-4088 (((-650 $) $ (-1186)) NIL (|has| |#1| (-562))) (((-650 $) $) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $) (-1186)) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $)) NIL (|has| |#1| (-562))) (((-650 $) (-959 $)) NIL (|has| |#1| (-562)))) (-2056 (($ $ (-1186)) NIL (|has| |#1| (-562))) (($ $) NIL (|has| |#1| (-562))) (($ (-1182 $) (-1186)) 134 (|has| |#1| (-562))) (($ (-1182 $)) NIL (|has| |#1| (-562))) (($ (-959 $)) NIL (|has| |#1| (-562)))) (-2435 (((-3 (-618 $) "failed") $) 18) (((-3 (-1186) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-959 |#1|)) "failed") $) NIL (|has| |#1| (-562))) (((-3 (-959 |#1|) "failed") $) NIL (|has| |#1| (-1058))) (((-3 (-413 (-570)) "failed") $) 46 (-3749 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-4387 (((-618 $) $) 12) (((-1186) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-959 |#1|)) $) NIL (|has| |#1| (-562))) (((-959 |#1|) $) NIL (|has| |#1| (-1058))) (((-413 (-570)) $) 319 (-3749 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-2788 (($ $ $) NIL (|has| |#1| (-562)))) (-3054 (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 125 (|has| |#1| (-1058))) (((-695 |#1|) (-695 $)) 115 (|has| |#1| (-1058))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (-2295 (($ $) 96 (|has| |#1| (-562)))) (-3957 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))))) (-2799 (($ $ $) NIL (|has| |#1| (-562)))) (-2584 (($ $ (-1101 $)) 236 (|has| |#1| (-562))) (($ $ (-1186)) 234 (|has| |#1| (-562)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-562)))) (-2145 (((-112) $) NIL (|has| |#1| (-562)))) (-2133 (($ $ $) 202 (|has| |#1| (-562)))) (-1625 (($) 137 (|has| |#1| (-562)))) (-2614 (($ $ $) 222 (|has| |#1| (-562)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 392 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 399 (|has| |#1| (-893 (-384))))) (-3244 (($ $) NIL) (($ (-650 $)) NIL)) (-3380 (((-650 (-115)) $) NIL)) (-2558 (((-115) (-115)) 276)) (-2005 (((-112) $) 25 (-3749 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))))) (-1973 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-3249 (($ $) 72 (|has| |#1| (-1058)))) (-1587 (((-1134 |#1| (-618 $)) $) 91 (|has| |#1| (-1058)))) (-2749 (((-112) $) 62 (|has| |#1| (-562)))) (-3035 (($ $ (-570)) NIL (|has| |#1| (-562)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-562)))) (-1413 (((-1182 $) (-618 $)) 277 (|has| $ (-1058)))) (-2536 (($ (-1 $ $) (-618 $)) 426)) (-1954 (((-3 (-618 $) "failed") $) NIL)) (-3447 (($ $) 141 (|has| |#1| (-562)))) (-2316 (($ $) 247 (|has| |#1| (-562)))) (-3867 (($ (-650 $)) NIL (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-3240 (((-1168) $) NIL)) (-2543 (((-650 (-618 $)) $) 49)) (-1665 (($ (-115) $) NIL) (($ (-115) (-650 $)) 431)) (-3235 (((-3 (-650 $) "failed") $) NIL (|has| |#1| (-1121)))) (-4095 (((-3 (-2 (|:| |val| $) (|:| -2940 (-570))) "failed") $) NIL (|has| |#1| (-1058)))) (-3055 (((-3 (-650 $) "failed") $) 436 (|has| |#1| (-25)))) (-3490 (((-3 (-2 (|:| -1747 (-570)) (|:| |var| (-618 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3353 (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $) NIL (|has| |#1| (-1121))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-115)) NIL (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-1186)) NIL (|has| |#1| (-1058)))) (-3917 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) 51)) (-4315 (($ $) NIL (-3749 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-3726 (($ $ (-1186)) 251 (|has| |#1| (-562))) (($ $ (-1101 $)) 253 (|has| |#1| (-562)))) (-3326 (((-777) $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) 43)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 301 (|has| |#1| (-562)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-2483 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-3948 (($ $ (-1186)) 226 (|has| |#1| (-562))) (($ $) 224 (|has| |#1| (-562)))) (-3459 (($ $) 218 (|has| |#1| (-562)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 306 (-12 (|has| |#1| (-458)) (|has| |#1| (-562))))) (-2340 (((-424 $) $) NIL (|has| |#1| (-562)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-562))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-562)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-562)))) (-2651 (($ $) 139 (|has| |#1| (-562)))) (-2160 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-3034 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) 425) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) 379) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1186)) NIL (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-620 (-542)))) (($ $) NIL (|has| |#1| (-620 (-542)))) (($ $ (-115) $ (-1186)) 366 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-115)) (-650 $) (-1186)) 365 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) NIL (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ (-650 $))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ $)) NIL (|has| |#1| (-1058)))) (-2002 (((-777) $) NIL (|has| |#1| (-562)))) (-3701 (($ $) 239 (|has| |#1| (-562)))) (-2057 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-3047 (($ $) NIL) (($ $ $) NIL)) (-3733 (($ $) 249 (|has| |#1| (-562)))) (-2550 (($ $) 200 (|has| |#1| (-562)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-1058))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-1058))) (($ $ (-1186)) NIL (|has| |#1| (-1058)))) (-4424 (($ $) 74 (|has| |#1| (-562)))) (-1599 (((-1134 |#1| (-618 $)) $) 93 (|has| |#1| (-562)))) (-3144 (($ $) 317 (|has| $ (-1058)))) (-1523 (($ $) 177 (|has| |#1| (-562)))) (-3801 (($ $) 153 (|has| |#1| (-562)))) (-3913 (($ $) 173 (|has| |#1| (-562)))) (-3781 (($ $) 149 (|has| |#1| (-562)))) (-3887 (($ $) 169 (|has| |#1| (-562)))) (-3758 (($ $) 145 (|has| |#1| (-562)))) (-2601 (((-899 (-570)) $) NIL (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#1| (-620 (-899 (-384))))) (($ (-424 $)) NIL (|has| |#1| (-562))) (((-542) $) 363 (|has| |#1| (-620 (-542))))) (-2733 (($ $ $) NIL (|has| |#1| (-479)))) (-2319 (($ $ $) NIL (|has| |#1| (-479)))) (-2869 (((-868) $) 424) (($ (-618 $)) 415) (($ (-1186)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-562))) (($ (-48)) 312 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) (($ (-1134 |#1| (-618 $))) 95 (|has| |#1| (-1058))) (($ (-413 |#1|)) NIL (|has| |#1| (-562))) (($ (-959 (-413 |#1|))) NIL (|has| |#1| (-562))) (($ (-413 (-959 (-413 |#1|)))) NIL (|has| |#1| (-562))) (($ (-413 (-959 |#1|))) NIL (|has| |#1| (-562))) (($ (-959 |#1|)) NIL (|has| |#1| (-1058))) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-562)) (|has| |#1| (-1047 (-413 (-570)))))) (($ (-570)) 34 (-3749 (|has| |#1| (-1047 (-570))) (|has| |#1| (-1058))))) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL (|has| |#1| (-1058)) CONST)) (-1613 (($ $) NIL) (($ (-650 $)) NIL)) (-1500 (($ $ $) 220 (|has| |#1| (-562)))) (-2742 (($ $ $) 206 (|has| |#1| (-562)))) (-3471 (($ $ $) 210 (|has| |#1| (-562)))) (-2786 (($ $ $) 204 (|has| |#1| (-562)))) (-2413 (($ $ $) 208 (|has| |#1| (-562)))) (-1475 (((-112) (-115)) 10)) (-1344 (((-112) $ $) 86)) (-1561 (($ $) 183 (|has| |#1| (-562)))) (-3833 (($ $) 159 (|has| |#1| (-562)))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) 179 (|has| |#1| (-562)))) (-3811 (($ $) 155 (|has| |#1| (-562)))) (-1585 (($ $) 187 (|has| |#1| (-562)))) (-3853 (($ $) 163 (|has| |#1| (-562)))) (-1620 (($ (-1186) $) NIL) (($ (-1186) $ $) NIL) (($ (-1186) $ $ $) NIL) (($ (-1186) $ $ $ $) NIL) (($ (-1186) (-650 $)) NIL)) (-3937 (($ $) 214 (|has| |#1| (-562)))) (-4386 (($ $) 212 (|has| |#1| (-562)))) (-2900 (($ $) 189 (|has| |#1| (-562)))) (-3864 (($ $) 165 (|has| |#1| (-562)))) (-1575 (($ $) 185 (|has| |#1| (-562)))) (-3844 (($ $) 161 (|has| |#1| (-562)))) (-1546 (($ $) 181 (|has| |#1| (-562)))) (-3821 (($ $) 157 (|has| |#1| (-562)))) (-2521 (($ $) 192 (|has| |#1| (-562)))) (-1981 (($) 21 (-3749 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) CONST)) (-1834 (($ $) 243 (|has| |#1| (-562)))) (-1998 (($) 23 (-3749 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))) CONST)) (-4285 (($ $) 194 (|has| |#1| (-562))) (($ $ $) 196 (|has| |#1| (-562)))) (-3695 (($ $) 241 (|has| |#1| (-562)))) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-1058))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-1058))) (($ $ (-1186)) NIL (|has| |#1| (-1058)))) (-3338 (($ $) 245 (|has| |#1| (-562)))) (-4036 (($ $ $) 198 (|has| |#1| (-562)))) (-3892 (((-112) $ $) 88)) (-4013 (($ (-1134 |#1| (-618 $)) (-1134 |#1| (-618 $))) 106 (|has| |#1| (-562))) (($ $ $) 42 (-3749 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-4003 (($ $ $) 40 (-3749 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (($ $) 29 (-3749 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-3992 (($ $ $) 38 (-3749 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (** (($ $ $) 64 (|has| |#1| (-562))) (($ $ (-413 (-570))) 314 (|has| |#1| (-562))) (($ $ (-570)) 80 (-3749 (|has| |#1| (-479)) (|has| |#1| (-562)))) (($ $ (-777)) 75 (-3749 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121)))) (($ $ (-928)) 84 (-3749 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))))) (* (($ (-413 (-570)) $) NIL (|has| |#1| (-562))) (($ $ (-413 (-570))) NIL (|has| |#1| (-562))) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ $ $) 36 (-3749 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121)))) (($ (-570) $) 32 (-3749 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (($ (-777) $) NIL (-3749 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (($ (-928) $) NIL (-3749 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))))
-(((-320 |#1|) (-13 (-436 |#1|) (-10 -8 (IF (|has| |#1| (-562)) (PROGN (-6 (-29 |#1|)) (-6 (-1212)) (-6 (-161)) (-6 (-635)) (-6 (-1148)) (-15 -2295 ($ $)) (-15 -2749 ((-112) $)) (-15 -3361 ($ $ (-570))) (IF (|has| |#1| (-458)) (PROGN (-15 -2874 ((-424 (-1182 $)) (-1182 $))) (-15 -3585 ((-424 (-1182 $)) (-1182 $)))) |%noBranch|) (IF (|has| |#1| (-1047 (-570))) (-6 (-1047 (-48))) |%noBranch|)) |%noBranch|))) (-1109)) (T -320))
-((-2295 (*1 *1 *1) (-12 (-5 *1 (-320 *2)) (-4 *2 (-562)) (-4 *2 (-1109)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))) (-3361 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))) (-2874 (*1 *2 *3) (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1)) (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109)))) (-3585 (*1 *2 *3) (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1)) (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109)))))
-(-13 (-436 |#1|) (-10 -8 (IF (|has| |#1| (-562)) (PROGN (-6 (-29 |#1|)) (-6 (-1212)) (-6 (-161)) (-6 (-635)) (-6 (-1148)) (-15 -2295 ($ $)) (-15 -2749 ((-112) $)) (-15 -3361 ($ $ (-570))) (IF (|has| |#1| (-458)) (PROGN (-15 -2874 ((-424 (-1182 $)) (-1182 $))) (-15 -3585 ((-424 (-1182 $)) (-1182 $)))) |%noBranch|) (IF (|has| |#1| (-1047 (-570))) (-6 (-1047 (-48))) |%noBranch|)) |%noBranch|)))
-((-3395 (((-52) |#2| (-115) (-298 |#2|) (-650 |#2|)) 89) (((-52) |#2| (-115) (-298 |#2|) (-298 |#2|)) 85) (((-52) |#2| (-115) (-298 |#2|) |#2|) 87) (((-52) (-298 |#2|) (-115) (-298 |#2|) |#2|) 88) (((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|))) 81) (((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 |#2|)) 83) (((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 |#2|)) 84) (((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|))) 82) (((-52) (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|)) 90) (((-52) (-298 |#2|) (-115) (-298 |#2|) (-298 |#2|)) 86)))
-(((-321 |#1| |#2|) (-10 -7 (-15 -3395 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-298 |#2|))) (-15 -3395 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -3395 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3395 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3395 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3395 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3395 ((-52) (-298 |#2|) (-115) (-298 |#2|) |#2|)) (-15 -3395 ((-52) |#2| (-115) (-298 |#2|) |#2|)) (-15 -3395 ((-52) |#2| (-115) (-298 |#2|) (-298 |#2|))) (-15 -3395 ((-52) |#2| (-115) (-298 |#2|) (-650 |#2|)))) (-13 (-562) (-620 (-542))) (-436 |#1|)) (T -321))
-((-3395 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-5 *6 (-650 *3)) (-4 *3 (-436 *7)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *7 *3)))) (-3395 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-3395 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-3395 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-298 *5)) (-5 *4 (-115)) (-4 *5 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *5)))) (-3395 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-115))) (-5 *6 (-650 (-298 *8))) (-4 *8 (-436 *7)) (-5 *5 (-298 *8)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *7 *8)))) (-3395 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7)) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *7)))) (-3395 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-650 (-298 *8))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *8)) (-5 *6 (-650 *8)) (-4 *8 (-436 *7)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *7 *8)))) (-3395 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7)) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *7)))) (-3395 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-650 *7)) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *7)))) (-3395 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-298 *6)) (-5 *4 (-115)) (-4 *6 (-436 *5)) (-4 *5 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *6)))))
-(-10 -7 (-15 -3395 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-298 |#2|))) (-15 -3395 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -3395 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3395 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3395 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3395 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3395 ((-52) (-298 |#2|) (-115) (-298 |#2|) |#2|)) (-15 -3395 ((-52) |#2| (-115) (-298 |#2|) |#2|)) (-15 -3395 ((-52) |#2| (-115) (-298 |#2|) (-298 |#2|))) (-15 -3395 ((-52) |#2| (-115) (-298 |#2|) (-650 |#2|))))
-((-2321 (((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570) (-1168)) 67) (((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570)) 68) (((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570) (-1168)) 64) (((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570)) 65)) (-2918 (((-1 (-227) (-227)) (-227)) 66)))
-(((-322) (-10 -7 (-15 -2918 ((-1 (-227) (-227)) (-227))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570) (-1168))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570) (-1168))))) (T -322))
-((-2321 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570)) (-5 *8 (-1168)) (-5 *2 (-1222 (-933))) (-5 *1 (-322)))) (-2321 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570)) (-5 *2 (-1222 (-933))) (-5 *1 (-322)))) (-2321 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *7 (-1168)) (-5 *2 (-1222 (-933))) (-5 *1 (-322)))) (-2321 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *2 (-1222 (-933))) (-5 *1 (-322)))) (-2918 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-322)) (-5 *3 (-227)))))
-(-10 -7 (-15 -2918 ((-1 (-227) (-227)) (-227))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570) (-1168))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570))) (-15 -2321 ((-1222 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570) (-1168))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 26)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-2972 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 20)) (-3900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-1513 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) 36)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) 16)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-413 (-570))) NIL) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3447 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-1363 (($ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212)))))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-413 (-570))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4364 (((-413 (-570)) $) 17)) (-3688 (($ (-1262 |#1| |#2| |#3|)) 11)) (-2940 (((-1262 |#1| |#2| |#3|) $) 12)) (-2651 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2650 (((-413 (-570)) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 10)) (-2869 (((-868) $) 42) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3481 ((|#1| $ (-413 (-570))) 34)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) NIL)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 28)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 37)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-323 |#1| |#2| |#3|) (-13 (-1258 |#1|) (-798) (-10 -8 (-15 -3688 ($ (-1262 |#1| |#2| |#3|))) (-15 -2940 ((-1262 |#1| |#2| |#3|) $)) (-15 -4364 ((-413 (-570)) $)))) (-368) (-1186) |#1|) (T -323))
-((-3688 (*1 *1 *2) (-12 (-5 *2 (-1262 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-323 *3 *4 *5)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-1262 *3 *4 *5)) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186)) (-14 *5 *3))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186)) (-14 *5 *3))))
-(-13 (-1258 |#1|) (-798) (-10 -8 (-15 -3688 ($ (-1262 |#1| |#2| |#3|))) (-15 -2940 ((-1262 |#1| |#2| |#3|) $)) (-15 -4364 ((-413 (-570)) $))))
-((-3035 (((-2 (|:| -2940 (-777)) (|:| -1747 |#1|) (|:| |radicand| (-650 |#1|))) (-424 |#1|) (-777)) 35)) (-3447 (((-650 (-2 (|:| -1747 (-777)) (|:| |logand| |#1|))) (-424 |#1|)) 40)))
-(((-324 |#1|) (-10 -7 (-15 -3035 ((-2 (|:| -2940 (-777)) (|:| -1747 |#1|) (|:| |radicand| (-650 |#1|))) (-424 |#1|) (-777))) (-15 -3447 ((-650 (-2 (|:| -1747 (-777)) (|:| |logand| |#1|))) (-424 |#1|)))) (-562)) (T -324))
-((-3447 (*1 *2 *3) (-12 (-5 *3 (-424 *4)) (-4 *4 (-562)) (-5 *2 (-650 (-2 (|:| -1747 (-777)) (|:| |logand| *4)))) (-5 *1 (-324 *4)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-424 *5)) (-4 *5 (-562)) (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *5) (|:| |radicand| (-650 *5)))) (-5 *1 (-324 *5)) (-5 *4 (-777)))))
-(-10 -7 (-15 -3035 ((-2 (|:| -2940 (-777)) (|:| -1747 |#1|) (|:| |radicand| (-650 |#1|))) (-424 |#1|) (-777))) (-15 -3447 ((-650 (-2 (|:| -1747 (-777)) (|:| |logand| |#1|))) (-424 |#1|))))
-((-1598 (((-650 |#2|) (-1182 |#4|)) 44)) (-4378 ((|#3| (-570)) 47)) (-3858 (((-1182 |#4|) (-1182 |#3|)) 30)) (-2306 (((-1182 |#4|) (-1182 |#4|) (-570)) 66)) (-3611 (((-1182 |#3|) (-1182 |#4|)) 21)) (-2650 (((-650 (-777)) (-1182 |#4|) (-650 |#2|)) 41)) (-2041 (((-1182 |#3|) (-1182 |#4|) (-650 |#2|) (-650 |#3|)) 35)))
-(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2041 ((-1182 |#3|) (-1182 |#4|) (-650 |#2|) (-650 |#3|))) (-15 -2650 ((-650 (-777)) (-1182 |#4|) (-650 |#2|))) (-15 -1598 ((-650 |#2|) (-1182 |#4|))) (-15 -3611 ((-1182 |#3|) (-1182 |#4|))) (-15 -3858 ((-1182 |#4|) (-1182 |#3|))) (-15 -2306 ((-1182 |#4|) (-1182 |#4|) (-570))) (-15 -4378 (|#3| (-570)))) (-799) (-856) (-1058) (-956 |#3| |#1| |#2|)) (T -325))
-((-4378 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1058)) (-5 *1 (-325 *4 *5 *2 *6)) (-4 *6 (-956 *2 *4 *5)))) (-2306 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *7)) (-5 *3 (-570)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *1 (-325 *4 *5 *6 *7)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-1182 *6)) (-4 *6 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-1182 *7)) (-5 *1 (-325 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-1182 *6)) (-5 *1 (-325 *4 *5 *6 *7)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-650 *5)) (-5 *1 (-325 *4 *5 *6 *7)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *8)) (-5 *4 (-650 *6)) (-4 *6 (-856)) (-4 *8 (-956 *7 *5 *6)) (-4 *5 (-799)) (-4 *7 (-1058)) (-5 *2 (-650 (-777))) (-5 *1 (-325 *5 *6 *7 *8)))) (-2041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 *8)) (-4 *7 (-856)) (-4 *8 (-1058)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-5 *2 (-1182 *8)) (-5 *1 (-325 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2041 ((-1182 |#3|) (-1182 |#4|) (-650 |#2|) (-650 |#3|))) (-15 -2650 ((-650 (-777)) (-1182 |#4|) (-650 |#2|))) (-15 -1598 ((-650 |#2|) (-1182 |#4|))) (-15 -3611 ((-1182 |#3|) (-1182 |#4|))) (-15 -3858 ((-1182 |#4|) (-1182 |#3|))) (-15 -2306 ((-1182 |#4|) (-1182 |#4|) (-570))) (-15 -4378 (|#3| (-570))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 19)) (-2972 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-570)))) $) 21)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2401 (((-777) $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-2245 ((|#1| $ (-570)) NIL)) (-2525 (((-570) $ (-570)) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-4249 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (($ (-1 (-570) (-570)) $) 11)) (-3240 (((-1168) $) NIL)) (-1792 (($ $ $) NIL (|has| (-570) (-798)))) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ |#1|) NIL)) (-3481 (((-570) |#1| $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) 29 (|has| |#1| (-856)))) (-4003 (($ $) 12) (($ $ $) 28)) (-3992 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL) (($ (-570) |#1|) 27)))
-(((-326 |#1|) (-13 (-21) (-723 (-570)) (-327 |#1| (-570)) (-10 -7 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|))) (-1109)) (T -326))
-NIL
-(-13 (-21) (-723 (-570)) (-327 |#1| (-570)) (-10 -7 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-2972 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|))) $) 28)) (-3997 (((-3 $ "failed") $ $) 20)) (-2401 (((-777) $) 29)) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 33)) (-4387 ((|#1| $) 34)) (-2245 ((|#1| $ (-570)) 26)) (-2525 ((|#2| $ (-570)) 27)) (-4249 (($ (-1 |#1| |#1|) $) 23)) (-1986 (($ (-1 |#2| |#2|) $) 24)) (-3240 (((-1168) $) 10)) (-1792 (($ $ $) 22 (|has| |#2| (-798)))) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ |#1|) 32)) (-3481 ((|#2| |#1| $) 25)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-3992 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ |#2| |#1|) 30)))
-(((-327 |#1| |#2|) (-141) (-1109) (-132)) (T -327))
-((-3992 (*1 *1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)) (-5 *2 (-777)))) (-2972 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)) (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 *4)))))) (-2525 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-327 *4 *2)) (-4 *4 (-1109)) (-4 *2 (-132)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-327 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1109)))) (-3481 (*1 *2 *3 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132)))) (-1986 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)))) (-1792 (*1 *1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132)) (-4 *3 (-798)))))
-(-13 (-132) (-1047 |t#1|) (-10 -8 (-15 -3992 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2401 ((-777) $)) (-15 -2972 ((-650 (-2 (|:| |gen| |t#1|) (|:| -2651 |t#2|))) $)) (-15 -2525 (|t#2| $ (-570))) (-15 -2245 (|t#1| $ (-570))) (-15 -3481 (|t#2| |t#1| $)) (-15 -1986 ($ (-1 |t#2| |t#2|) $)) (-15 -4249 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-798)) (-15 -1792 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-1047 |#1|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2972 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-777)))) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2401 (((-777) $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-2245 ((|#1| $ (-570)) NIL)) (-2525 (((-777) $ (-570)) NIL)) (-4249 (($ (-1 |#1| |#1|) $) NIL)) (-1986 (($ (-1 (-777) (-777)) $) NIL)) (-3240 (((-1168) $) NIL)) (-1792 (($ $ $) NIL (|has| (-777) (-798)))) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ |#1|) NIL)) (-3481 (((-777) |#1| $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-3992 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-777) |#1|) NIL)))
-(((-328 |#1|) (-327 |#1| (-777)) (-1109)) (T -328))
-NIL
-(-327 |#1| (-777))
-((-2211 (($ $) 72)) (-2425 (($ $ |#2| |#3| $) 14)) (-3989 (($ (-1 |#3| |#3|) $) 51)) (-4326 (((-112) $) 42)) (-4337 ((|#2| $) 44)) (-2837 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-2128 ((|#2| $) 68)) (-3125 (((-650 |#2|) $) 56)) (-2109 (($ $ $ (-777)) 37)) (-4013 (($ $ |#2|) 60)))
-(((-329 |#1| |#2| |#3|) (-10 -8 (-15 -2211 (|#1| |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2109 (|#1| |#1| |#1| (-777))) (-15 -2425 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3989 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3125 ((-650 |#2|) |#1|)) (-15 -4337 (|#2| |#1|)) (-15 -4326 ((-112) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4013 (|#1| |#1| |#2|))) (-330 |#2| |#3|) (-1058) (-798)) (T -329))
-NIL
-(-10 -8 (-15 -2211 (|#1| |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2109 (|#1| |#1| |#1| (-777))) (-15 -2425 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3989 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3125 ((-650 |#2|) |#1|)) (-15 -4337 (|#2| |#1|)) (-15 -4326 ((-112) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4013 (|#1| |#1| |#2|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 100 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 98 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 95)) (-4387 (((-570) $) 99 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 97 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 96)) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-2211 (($ $) 84 (|has| |#1| (-458)))) (-2425 (($ $ |#1| |#2| $) 88)) (-2005 (((-112) $) 35)) (-2928 (((-777) $) 91)) (-1338 (((-112) $) 74)) (-2402 (($ |#1| |#2|) 73)) (-2689 ((|#2| $) 90)) (-3989 (($ (-1 |#2| |#2|) $) 89)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-4326 (((-112) $) 94)) (-4337 ((|#1| $) 93)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-562)))) (-2650 ((|#2| $) 76)) (-2128 ((|#1| $) 85 (|has| |#1| (-458)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59) (($ (-413 (-570))) 69 (-3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))))) (-3125 (((-650 |#1|) $) 92)) (-3481 ((|#1| $ |#2|) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-2109 (($ $ $ (-777)) 87 (|has| |#1| (-174)))) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-330 |#1| |#2|) (-141) (-1058) (-798)) (T -330))
-((-4326 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-112)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-650 *3)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-777)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3989 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)))) (-2425 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-2109 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-4 *3 (-174)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *2 (-562)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)) (-4 *2 (-458)))) (-2211 (*1 *1 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *2 (-458)))))
-(-13 (-47 |t#1| |t#2|) (-417 |t#1|) (-10 -8 (-15 -4326 ((-112) $)) (-15 -4337 (|t#1| $)) (-15 -3125 ((-650 |t#1|) $)) (-15 -2928 ((-777) $)) (-15 -2689 (|t#2| $)) (-15 -3989 ($ (-1 |t#2| |t#2|) $)) (-15 -2425 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2109 ($ $ $ (-777))) |%noBranch|) (IF (|has| |t#1| (-562)) (-15 -2837 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-15 -2128 (|t#1| $)) (-15 -2211 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-294) |has| |#1| (-562)) ((-417 |#1|) . T) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3022 (((-112) (-112)) NIL)) (-3040 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) |#1|) $) NIL)) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-1381 (($ $) NIL (|has| |#1| (-1109)))) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-2604 (($ $ (-570)) NIL)) (-4069 (((-777) $) NIL)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-3675 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2801 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3148 (($ (-650 |#1|)) NIL)) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3332 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) NIL)) (-1674 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-331 |#1|) (-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3148 ($ (-650 |#1|))) (-15 -4069 ((-777) $)) (-15 -2604 ($ $ (-570))) (-15 -3022 ((-112) (-112))))) (-1227)) (T -331))
-((-3148 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-331 *3)))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-331 *3)) (-4 *3 (-1227)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-331 *3)) (-4 *3 (-1227)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-1227)))))
-(-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3148 ($ (-650 |#1|))) (-15 -4069 ((-777) $)) (-15 -2604 ($ $ (-570))) (-15 -3022 ((-112) (-112)))))
-((-1516 (((-112) $) 47)) (-1521 (((-777)) 23)) (-1439 ((|#2| $) 51) (($ $ (-928)) 121)) (-2401 (((-777)) 122)) (-2615 (($ (-1277 |#2|)) 20)) (-3531 (((-112) $) 134)) (-3046 ((|#2| $) 53) (($ $ (-928)) 118)) (-3658 (((-1182 |#2|) $) NIL) (((-1182 $) $ (-928)) 109)) (-1716 (((-1182 |#2|) $) 95)) (-3051 (((-1182 |#2|) $) 91) (((-3 (-1182 |#2|) "failed") $ $) 88)) (-4333 (($ $ (-1182 |#2|)) 58)) (-3172 (((-839 (-928))) 30) (((-928)) 48)) (-4388 (((-135)) 27)) (-2650 (((-839 (-928)) $) 32) (((-928) $) 137)) (-2229 (($) 128)) (-2987 (((-1277 |#2|) $) NIL) (((-695 |#2|) (-1277 $)) 42)) (-1660 (($ $) NIL) (((-3 $ "failed") $) 98)) (-1600 (((-112) $) 45)))
-(((-332 |#1| |#2|) (-10 -8 (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2401 ((-777))) (-15 -1660 (|#1| |#1|)) (-15 -3051 ((-3 (-1182 |#2|) "failed") |#1| |#1|)) (-15 -3051 ((-1182 |#2|) |#1|)) (-15 -1716 ((-1182 |#2|) |#1|)) (-15 -4333 (|#1| |#1| (-1182 |#2|))) (-15 -3531 ((-112) |#1|)) (-15 -2229 (|#1|)) (-15 -1439 (|#1| |#1| (-928))) (-15 -3046 (|#1| |#1| (-928))) (-15 -3658 ((-1182 |#1|) |#1| (-928))) (-15 -1439 (|#2| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -2650 ((-928) |#1|)) (-15 -3172 ((-928))) (-15 -3658 ((-1182 |#2|) |#1|)) (-15 -2615 (|#1| (-1277 |#2|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -1521 ((-777))) (-15 -3172 ((-839 (-928)))) (-15 -2650 ((-839 (-928)) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -1600 ((-112) |#1|)) (-15 -4388 ((-135)))) (-333 |#2|) (-368)) (T -332))
-((-4388 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-135)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-3172 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-839 (-928))) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-1521 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-3172 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-928)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-2401 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))))
-(-10 -8 (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2401 ((-777))) (-15 -1660 (|#1| |#1|)) (-15 -3051 ((-3 (-1182 |#2|) "failed") |#1| |#1|)) (-15 -3051 ((-1182 |#2|) |#1|)) (-15 -1716 ((-1182 |#2|) |#1|)) (-15 -4333 (|#1| |#1| (-1182 |#2|))) (-15 -3531 ((-112) |#1|)) (-15 -2229 (|#1|)) (-15 -1439 (|#1| |#1| (-928))) (-15 -3046 (|#1| |#1| (-928))) (-15 -3658 ((-1182 |#1|) |#1| (-928))) (-15 -1439 (|#2| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -2650 ((-928) |#1|)) (-15 -3172 ((-928))) (-15 -3658 ((-1182 |#2|) |#1|)) (-15 -2615 (|#1| (-1277 |#2|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -1521 ((-777))) (-15 -3172 ((-839 (-928)))) (-15 -2650 ((-839 (-928)) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -1600 ((-112) |#1|)) (-15 -4388 ((-135))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-1516 (((-112) $) 104)) (-1521 (((-777)) 100)) (-1439 ((|#1| $) 150) (($ $ (-928)) 147 (|has| |#1| (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) 132 (|has| |#1| (-373)))) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-1799 (((-112) $ $) 65)) (-2401 (((-777)) 122 (|has| |#1| (-373)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 111)) (-4387 ((|#1| $) 112)) (-2615 (($ (-1277 |#1|)) 156)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-373)))) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2066 (($) 119 (|has| |#1| (-373)))) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2310 (($) 134 (|has| |#1| (-373)))) (-4240 (((-112) $) 135 (|has| |#1| (-373)))) (-2118 (($ $ (-777)) 97 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) 96 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) 79)) (-3995 (((-928) $) 137 (|has| |#1| (-373))) (((-839 (-928)) $) 94 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) 35)) (-3284 (($) 145 (|has| |#1| (-373)))) (-3531 (((-112) $) 144 (|has| |#1| (-373)))) (-3046 ((|#1| $) 151) (($ $ (-928)) 148 (|has| |#1| (-373)))) (-3525 (((-3 $ "failed") $) 123 (|has| |#1| (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3658 (((-1182 |#1|) $) 155) (((-1182 $) $ (-928)) 149 (|has| |#1| (-373)))) (-1997 (((-928) $) 120 (|has| |#1| (-373)))) (-1716 (((-1182 |#1|) $) 141 (|has| |#1| (-373)))) (-3051 (((-1182 |#1|) $) 140 (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) 139 (|has| |#1| (-373)))) (-4333 (($ $ (-1182 |#1|)) 142 (|has| |#1| (-373)))) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3458 (($) 124 (|has| |#1| (-373)) CONST)) (-4298 (($ (-928)) 121 (|has| |#1| (-373)))) (-3031 (((-112) $) 103)) (-3891 (((-1129) $) 11)) (-3643 (($) 143 (|has| |#1| (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 131 (|has| |#1| (-373)))) (-2340 (((-424 $) $) 82)) (-3172 (((-839 (-928))) 101) (((-928)) 153)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-4058 (((-777) $) 136 (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) 95 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) 109)) (-2375 (($ $) 128 (|has| |#1| (-373))) (($ $ (-777)) 126 (|has| |#1| (-373)))) (-2650 (((-839 (-928)) $) 102) (((-928) $) 152)) (-3144 (((-1182 |#1|)) 154)) (-1900 (($) 133 (|has| |#1| (-373)))) (-2229 (($) 146 (|has| |#1| (-373)))) (-2987 (((-1277 |#1|) $) 158) (((-695 |#1|) (-1277 $)) 157)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 130 (|has| |#1| (-373)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ |#1|) 110)) (-1660 (($ $) 129 (|has| |#1| (-373))) (((-3 $ "failed") $) 93 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2681 (((-1277 $)) 160) (((-1277 $) (-928)) 159)) (-2939 (((-112) $ $) 45)) (-1600 (((-112) $) 105)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-4257 (($ $) 99 (|has| |#1| (-373))) (($ $ (-777)) 98 (|has| |#1| (-373)))) (-3414 (($ $) 127 (|has| |#1| (-373))) (($ $ (-777)) 125 (|has| |#1| (-373)))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 73) (($ $ |#1|) 108)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-333 |#1|) (-141) (-368)) (T -333))
-((-2681 (*1 *2) (-12 (-4 *3 (-368)) (-5 *2 (-1277 *1)) (-4 *1 (-333 *3)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-928)) (-4 *4 (-368)) (-5 *2 (-1277 *1)) (-4 *1 (-333 *4)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1277 *3)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-333 *4)) (-4 *4 (-368)) (-5 *2 (-695 *4)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-368)) (-4 *1 (-333 *3)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3)))) (-3144 (*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3)))) (-3172 (*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368)))) (-3658 (*1 *2 *1 *3) (-12 (-5 *3 (-928)) (-4 *4 (-373)) (-4 *4 (-368)) (-5 *2 (-1182 *1)) (-4 *1 (-333 *4)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)))) (-1439 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)))) (-2229 (*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) (-3284 (*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-112)))) (-3643 (*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) (-4333 (*1 *1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-373)) (-4 *1 (-333 *3)) (-4 *3 (-368)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-1182 *3)))) (-3051 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-1182 *3)))) (-3051 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-1182 *3)))))
-(-13 (-1296 |t#1|) (-1047 |t#1|) (-10 -8 (-15 -2681 ((-1277 $))) (-15 -2681 ((-1277 $) (-928))) (-15 -2987 ((-1277 |t#1|) $)) (-15 -2987 ((-695 |t#1|) (-1277 $))) (-15 -2615 ($ (-1277 |t#1|))) (-15 -3658 ((-1182 |t#1|) $)) (-15 -3144 ((-1182 |t#1|))) (-15 -3172 ((-928))) (-15 -2650 ((-928) $)) (-15 -3046 (|t#1| $)) (-15 -1439 (|t#1| $)) (IF (|has| |t#1| (-373)) (PROGN (-6 (-354)) (-15 -3658 ((-1182 $) $ (-928))) (-15 -3046 ($ $ (-928))) (-15 -1439 ($ $ (-928))) (-15 -2229 ($)) (-15 -3284 ($)) (-15 -3531 ((-112) $)) (-15 -3643 ($)) (-15 -4333 ($ $ (-1182 |t#1|))) (-15 -1716 ((-1182 |t#1|) $)) (-15 -3051 ((-1182 |t#1|) $)) (-15 -3051 ((-3 (-1182 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3749 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-235) |has| |#1| (-373)) ((-245) . T) ((-294) . T) ((-311) . T) ((-1296 |#1|) . T) ((-368) . T) ((-408) -3749 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-373) |has| |#1| (-373)) ((-354) |has| |#1| (-373)) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 |#1|) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-373)) ((-1231) . T) ((-1284 |#1|) . T))
-((-2847 (((-112) $ $) NIL)) (-1699 (($ (-1185) $) 100)) (-4189 (($) 89)) (-3292 (((-1129) (-1129)) 9)) (-3041 (($) 90)) (-3427 (($) 104) (($ (-320 (-705))) 112) (($ (-320 (-707))) 108) (($ (-320 (-700))) 116) (($ (-320 (-384))) 123) (($ (-320 (-570))) 119) (($ (-320 (-171 (-384)))) 127)) (-3703 (($ (-1185) $) 101)) (-1449 (($ (-650 (-868))) 91)) (-3602 (((-1282) $) 87)) (-1524 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2357 (($ (-1129)) 58)) (-3318 (((-1113) $) 30)) (-3388 (($ (-1101 (-959 (-570))) $) 97) (($ (-1101 (-959 (-570))) (-959 (-570)) $) 98)) (-2007 (($ (-1129)) 99)) (-1502 (($ (-1185) $) 129) (($ (-1185) $ $) 130)) (-3707 (($ (-1186) (-650 (-1186))) 88)) (-4270 (($ (-1168)) 94) (($ (-650 (-1168))) 92)) (-2869 (((-868) $) 132)) (-2544 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2171 (-112)) (|:| -4156 (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |blockBranch| (-650 $)) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2744 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -1781 $))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -1781 $))) (|:| |commonBranch| (-2 (|:| -1770 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868)))) $) 50)) (-4323 (($ (-1168)) 202)) (-2633 (($ (-650 $)) 128)) (-1344 (((-112) $ $) NIL)) (-2414 (($ (-1186) (-1168)) 135) (($ (-1186) (-320 (-707))) 175) (($ (-1186) (-320 (-705))) 176) (($ (-1186) (-320 (-700))) 177) (($ (-1186) (-695 (-707))) 138) (($ (-1186) (-695 (-705))) 141) (($ (-1186) (-695 (-700))) 144) (($ (-1186) (-1277 (-707))) 147) (($ (-1186) (-1277 (-705))) 150) (($ (-1186) (-1277 (-700))) 153) (($ (-1186) (-695 (-320 (-707)))) 156) (($ (-1186) (-695 (-320 (-705)))) 159) (($ (-1186) (-695 (-320 (-700)))) 162) (($ (-1186) (-1277 (-320 (-707)))) 165) (($ (-1186) (-1277 (-320 (-705)))) 168) (($ (-1186) (-1277 (-320 (-700)))) 171) (($ (-1186) (-650 (-959 (-570))) (-320 (-707))) 172) (($ (-1186) (-650 (-959 (-570))) (-320 (-705))) 173) (($ (-1186) (-650 (-959 (-570))) (-320 (-700))) 174) (($ (-1186) (-320 (-570))) 199) (($ (-1186) (-320 (-384))) 200) (($ (-1186) (-320 (-171 (-384)))) 201) (($ (-1186) (-695 (-320 (-570)))) 180) (($ (-1186) (-695 (-320 (-384)))) 183) (($ (-1186) (-695 (-320 (-171 (-384))))) 186) (($ (-1186) (-1277 (-320 (-570)))) 189) (($ (-1186) (-1277 (-320 (-384)))) 192) (($ (-1186) (-1277 (-320 (-171 (-384))))) 195) (($ (-1186) (-650 (-959 (-570))) (-320 (-570))) 196) (($ (-1186) (-650 (-959 (-570))) (-320 (-384))) 197) (($ (-1186) (-650 (-959 (-570))) (-320 (-171 (-384)))) 198)) (-3892 (((-112) $ $) NIL)))
-(((-334) (-13 (-1109) (-10 -8 (-15 -3388 ($ (-1101 (-959 (-570))) $)) (-15 -3388 ($ (-1101 (-959 (-570))) (-959 (-570)) $)) (-15 -1699 ($ (-1185) $)) (-15 -3703 ($ (-1185) $)) (-15 -2357 ($ (-1129))) (-15 -2007 ($ (-1129))) (-15 -4270 ($ (-1168))) (-15 -4270 ($ (-650 (-1168)))) (-15 -4323 ($ (-1168))) (-15 -3427 ($)) (-15 -3427 ($ (-320 (-705)))) (-15 -3427 ($ (-320 (-707)))) (-15 -3427 ($ (-320 (-700)))) (-15 -3427 ($ (-320 (-384)))) (-15 -3427 ($ (-320 (-570)))) (-15 -3427 ($ (-320 (-171 (-384))))) (-15 -1502 ($ (-1185) $)) (-15 -1502 ($ (-1185) $ $)) (-15 -2414 ($ (-1186) (-1168))) (-15 -2414 ($ (-1186) (-320 (-707)))) (-15 -2414 ($ (-1186) (-320 (-705)))) (-15 -2414 ($ (-1186) (-320 (-700)))) (-15 -2414 ($ (-1186) (-695 (-707)))) (-15 -2414 ($ (-1186) (-695 (-705)))) (-15 -2414 ($ (-1186) (-695 (-700)))) (-15 -2414 ($ (-1186) (-1277 (-707)))) (-15 -2414 ($ (-1186) (-1277 (-705)))) (-15 -2414 ($ (-1186) (-1277 (-700)))) (-15 -2414 ($ (-1186) (-695 (-320 (-707))))) (-15 -2414 ($ (-1186) (-695 (-320 (-705))))) (-15 -2414 ($ (-1186) (-695 (-320 (-700))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-707))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-705))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-700))))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-707)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-705)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-700)))) (-15 -2414 ($ (-1186) (-320 (-570)))) (-15 -2414 ($ (-1186) (-320 (-384)))) (-15 -2414 ($ (-1186) (-320 (-171 (-384))))) (-15 -2414 ($ (-1186) (-695 (-320 (-570))))) (-15 -2414 ($ (-1186) (-695 (-320 (-384))))) (-15 -2414 ($ (-1186) (-695 (-320 (-171 (-384)))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-570))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-384))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-171 (-384)))))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-570)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-384)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-171 (-384))))) (-15 -2633 ($ (-650 $))) (-15 -4189 ($)) (-15 -3041 ($)) (-15 -1449 ($ (-650 (-868)))) (-15 -3707 ($ (-1186) (-650 (-1186)))) (-15 -1524 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2544 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2171 (-112)) (|:| -4156 (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |blockBranch| (-650 $)) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2744 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -1781 $))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -1781 $))) (|:| |commonBranch| (-2 (|:| -1770 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868)))) $)) (-15 -3602 ((-1282) $)) (-15 -3318 ((-1113) $)) (-15 -3292 ((-1129) (-1129)))))) (T -334))
-((-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *1 (-334)))) (-3388 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *3 (-959 (-570))) (-5 *1 (-334)))) (-1699 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-3703 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-2357 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))) (-4270 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334)))) (-4270 (*1 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-334)))) (-4323 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334)))) (-3427 (*1 *1) (-5 *1 (-334))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-320 (-705))) (-5 *1 (-334)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-320 (-707))) (-5 *1 (-334)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-320 (-700))) (-5 *1 (-334)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-334)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-334)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-334)))) (-1502 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-1502 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-707))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-705))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-700))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-707))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-705))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-700))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-707))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-705))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-700))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-707)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-705)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-700)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-707)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-705)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-700)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-707))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-705))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-700))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-570))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-384))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-171 (-384)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-570)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-384)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-171 (-384))))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-570)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-384)))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-171 (-384))))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-570))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-384))) (-5 *1 (-334)))) (-2414 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-171 (-384)))) (-5 *1 (-334)))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-5 *1 (-334)))) (-4189 (*1 *1) (-5 *1 (-334))) (-3041 (*1 *1) (-5 *1 (-334))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-334)))) (-3707 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-334)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-334)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| (-334)) (|:| |elseClause| (-334)))) (|:| |returnBranch| (-2 (|:| -2171 (-112)) (|:| -4156 (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |blockBranch| (-650 (-334))) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2744 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -1781 (-334)))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -1781 (-334)))) (|:| |commonBranch| (-2 (|:| -1770 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868))))) (-5 *1 (-334)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-334)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-334)))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))))
-(-13 (-1109) (-10 -8 (-15 -3388 ($ (-1101 (-959 (-570))) $)) (-15 -3388 ($ (-1101 (-959 (-570))) (-959 (-570)) $)) (-15 -1699 ($ (-1185) $)) (-15 -3703 ($ (-1185) $)) (-15 -2357 ($ (-1129))) (-15 -2007 ($ (-1129))) (-15 -4270 ($ (-1168))) (-15 -4270 ($ (-650 (-1168)))) (-15 -4323 ($ (-1168))) (-15 -3427 ($)) (-15 -3427 ($ (-320 (-705)))) (-15 -3427 ($ (-320 (-707)))) (-15 -3427 ($ (-320 (-700)))) (-15 -3427 ($ (-320 (-384)))) (-15 -3427 ($ (-320 (-570)))) (-15 -3427 ($ (-320 (-171 (-384))))) (-15 -1502 ($ (-1185) $)) (-15 -1502 ($ (-1185) $ $)) (-15 -2414 ($ (-1186) (-1168))) (-15 -2414 ($ (-1186) (-320 (-707)))) (-15 -2414 ($ (-1186) (-320 (-705)))) (-15 -2414 ($ (-1186) (-320 (-700)))) (-15 -2414 ($ (-1186) (-695 (-707)))) (-15 -2414 ($ (-1186) (-695 (-705)))) (-15 -2414 ($ (-1186) (-695 (-700)))) (-15 -2414 ($ (-1186) (-1277 (-707)))) (-15 -2414 ($ (-1186) (-1277 (-705)))) (-15 -2414 ($ (-1186) (-1277 (-700)))) (-15 -2414 ($ (-1186) (-695 (-320 (-707))))) (-15 -2414 ($ (-1186) (-695 (-320 (-705))))) (-15 -2414 ($ (-1186) (-695 (-320 (-700))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-707))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-705))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-700))))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-707)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-705)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-700)))) (-15 -2414 ($ (-1186) (-320 (-570)))) (-15 -2414 ($ (-1186) (-320 (-384)))) (-15 -2414 ($ (-1186) (-320 (-171 (-384))))) (-15 -2414 ($ (-1186) (-695 (-320 (-570))))) (-15 -2414 ($ (-1186) (-695 (-320 (-384))))) (-15 -2414 ($ (-1186) (-695 (-320 (-171 (-384)))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-570))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-384))))) (-15 -2414 ($ (-1186) (-1277 (-320 (-171 (-384)))))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-570)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-384)))) (-15 -2414 ($ (-1186) (-650 (-959 (-570))) (-320 (-171 (-384))))) (-15 -2633 ($ (-650 $))) (-15 -4189 ($)) (-15 -3041 ($)) (-15 -1449 ($ (-650 (-868)))) (-15 -3707 ($ (-1186) (-650 (-1186)))) (-15 -1524 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2544 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2171 (-112)) (|:| -4156 (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868)))))) (|:| |blockBranch| (-650 $)) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2744 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -1781 $))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -1781 $))) (|:| |commonBranch| (-2 (|:| -1770 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868)))) $)) (-15 -3602 ((-1282) $)) (-15 -3318 ((-1113) $)) (-15 -3292 ((-1129) (-1129)))))
-((-2847 (((-112) $ $) NIL)) (-2872 (((-112) $) 13)) (-3745 (($ |#1|) 10)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3758 (($ |#1|) 12)) (-2869 (((-868) $) 19)) (-1344 (((-112) $ $) NIL)) (-2105 ((|#1| $) 14)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 21)))
-(((-335 |#1|) (-13 (-856) (-10 -8 (-15 -3745 ($ |#1|)) (-15 -3758 ($ |#1|)) (-15 -2872 ((-112) $)) (-15 -2105 (|#1| $)))) (-856)) (T -335))
-((-3745 (*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))) (-3758 (*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-856)))) (-2105 (*1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))))
-(-13 (-856) (-10 -8 (-15 -3745 ($ |#1|)) (-15 -3758 ($ |#1|)) (-15 -2872 ((-112) $)) (-15 -2105 (|#1| $))))
-((-1843 (((-334) (-1186) (-959 (-570))) 23)) (-1925 (((-334) (-1186) (-959 (-570))) 27)) (-2586 (((-334) (-1186) (-1101 (-959 (-570))) (-1101 (-959 (-570)))) 26) (((-334) (-1186) (-959 (-570)) (-959 (-570))) 24)) (-3329 (((-334) (-1186) (-959 (-570))) 31)))
-(((-336) (-10 -7 (-15 -1843 ((-334) (-1186) (-959 (-570)))) (-15 -2586 ((-334) (-1186) (-959 (-570)) (-959 (-570)))) (-15 -2586 ((-334) (-1186) (-1101 (-959 (-570))) (-1101 (-959 (-570))))) (-15 -1925 ((-334) (-1186) (-959 (-570)))) (-15 -3329 ((-334) (-1186) (-959 (-570)))))) (T -336))
-((-3329 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336)))) (-2586 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-1101 (-959 (-570)))) (-5 *2 (-334)) (-5 *1 (-336)))) (-2586 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336)))))
-(-10 -7 (-15 -1843 ((-334) (-1186) (-959 (-570)))) (-15 -2586 ((-334) (-1186) (-959 (-570)) (-959 (-570)))) (-15 -2586 ((-334) (-1186) (-1101 (-959 (-570))) (-1101 (-959 (-570))))) (-15 -1925 ((-334) (-1186) (-959 (-570)))) (-15 -3329 ((-334) (-1186) (-959 (-570)))))
-((-2847 (((-112) $ $) NIL)) (-1327 (((-512) $) 20)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2765 (((-965 (-777)) $) 18)) (-3305 (((-252) $) 7)) (-2869 (((-868) $) 26)) (-3218 (((-965 (-185 (-140))) $) 16)) (-1344 (((-112) $ $) NIL)) (-3496 (((-650 (-879 (-1191) (-777))) $) 12)) (-3892 (((-112) $ $) 22)))
-(((-337) (-13 (-1109) (-10 -8 (-15 -3305 ((-252) $)) (-15 -3496 ((-650 (-879 (-1191) (-777))) $)) (-15 -2765 ((-965 (-777)) $)) (-15 -3218 ((-965 (-185 (-140))) $)) (-15 -1327 ((-512) $))))) (T -337))
-((-3305 (*1 *2 *1) (-12 (-5 *2 (-252)) (-5 *1 (-337)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-650 (-879 (-1191) (-777)))) (-5 *1 (-337)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-965 (-777))) (-5 *1 (-337)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-965 (-185 (-140)))) (-5 *1 (-337)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-337)))))
-(-13 (-1109) (-10 -8 (-15 -3305 ((-252) $)) (-15 -3496 ((-650 (-879 (-1191) (-777))) $)) (-15 -2765 ((-965 (-777)) $)) (-15 -3218 ((-965 (-185 (-140))) $)) (-15 -1327 ((-512) $))))
-((-2536 (((-341 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-341 |#1| |#2| |#3| |#4|)) 33)))
-(((-338 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2536 ((-341 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-341 |#1| |#2| |#3| |#4|)))) (-368) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|) (-368) (-1253 |#5|) (-1253 (-413 |#6|)) (-347 |#5| |#6| |#7|)) (T -338))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-341 *5 *6 *7 *8)) (-4 *5 (-368)) (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *9 (-368)) (-4 *10 (-1253 *9)) (-4 *11 (-1253 (-413 *10))) (-5 *2 (-341 *9 *10 *11 *12)) (-5 *1 (-338 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-347 *9 *10 *11)))))
-(-10 -7 (-15 -2536 ((-341 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-341 |#1| |#2| |#3| |#4|))))
-((-2959 (((-112) $) 14)))
-(((-339 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2959 ((-112) |#1|))) (-340 |#2| |#3| |#4| |#5|) (-368) (-1253 |#2|) (-1253 (-413 |#3|)) (-347 |#2| |#3| |#4|)) (T -339))
-NIL
-(-10 -8 (-15 -2959 ((-112) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2295 (($ $) 29)) (-2959 (((-112) $) 28)) (-3240 (((-1168) $) 10)) (-2252 (((-419 |#2| (-413 |#2|) |#3| |#4|) $) 35)) (-3891 (((-1129) $) 11)) (-3643 (((-3 |#4| "failed") $) 27)) (-2345 (($ (-419 |#2| (-413 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-570)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2182 (((-2 (|:| -2047 (-419 |#2| (-413 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24)))
-(((-340 |#1| |#2| |#3| |#4|) (-141) (-368) (-1253 |t#1|) (-1253 (-413 |t#2|)) (-347 |t#1| |t#2| |t#3|)) (T -340))
-((-2252 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-419 *4 (-413 *4) *5 *6)))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-419 *4 (-413 *4) *5 *6)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-4 *3 (-368)) (-4 *1 (-340 *3 *4 *5 *6)))) (-2345 (*1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-4 *1 (-340 *3 *4 *5 *2)) (-4 *2 (-347 *3 *4 *5)))) (-2345 (*1 *1 *2 *2) (-12 (-4 *2 (-368)) (-4 *3 (-1253 *2)) (-4 *4 (-1253 (-413 *3))) (-4 *1 (-340 *2 *3 *4 *5)) (-4 *5 (-347 *2 *3 *4)))) (-2345 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-570)) (-4 *2 (-368)) (-4 *4 (-1253 *2)) (-4 *5 (-1253 (-413 *4))) (-4 *1 (-340 *2 *4 *5 *6)) (-4 *6 (-347 *2 *4 *5)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-2 (|:| -2047 (-419 *4 (-413 *4) *5 *6)) (|:| |principalPart| *6))))) (-2295 (*1 *1 *1) (-12 (-4 *1 (-340 *2 *3 *4 *5)) (-4 *2 (-368)) (-4 *3 (-1253 *2)) (-4 *4 (-1253 (-413 *3))) (-4 *5 (-347 *2 *3 *4)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-112)))) (-3643 (*1 *2 *1) (|partial| -12 (-4 *1 (-340 *3 *4 *5 *2)) (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-4 *2 (-347 *3 *4 *5)))) (-2345 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-368)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 (-413 *3))) (-4 *1 (-340 *4 *3 *5 *2)) (-4 *2 (-347 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2252 ((-419 |t#2| (-413 |t#2|) |t#3| |t#4|) $)) (-15 -2345 ($ (-419 |t#2| (-413 |t#2|) |t#3| |t#4|))) (-15 -2345 ($ |t#4|)) (-15 -2345 ($ |t#1| |t#1|)) (-15 -2345 ($ |t#1| |t#1| (-570))) (-15 -2182 ((-2 (|:| -2047 (-419 |t#2| (-413 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2295 ($ $)) (-15 -2959 ((-112) $)) (-15 -3643 ((-3 |t#4| "failed") $)) (-15 -2345 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2295 (($ $) 33)) (-2959 (((-112) $) NIL)) (-3240 (((-1168) $) NIL)) (-3409 (((-1277 |#4|) $) 134)) (-2252 (((-419 |#2| (-413 |#2|) |#3| |#4|) $) 31)) (-3891 (((-1129) $) NIL)) (-3643 (((-3 |#4| "failed") $) 36)) (-1916 (((-1277 |#4|) $) 126)) (-2345 (($ (-419 |#2| (-413 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-570)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2182 (((-2 (|:| -2047 (-419 |#2| (-413 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2869 (((-868) $) 17)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 14 T CONST)) (-3892 (((-112) $ $) 20)) (-4003 (($ $) 27) (($ $ $) NIL)) (-3992 (($ $ $) 25)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 23)))
-(((-341 |#1| |#2| |#3| |#4|) (-13 (-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1916 ((-1277 |#4|) $)) (-15 -3409 ((-1277 |#4|) $)))) (-368) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -341))
-((-1916 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-1277 *6)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *6 (-347 *3 *4 *5)))) (-3409 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-1277 *6)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *6 (-347 *3 *4 *5)))))
-(-13 (-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1916 ((-1277 |#4|) $)) (-15 -3409 ((-1277 |#4|) $))))
-((-3034 (($ $ (-1186) |#2|) NIL) (($ $ (-650 (-1186)) (-650 |#2|)) 20) (($ $ (-650 (-298 |#2|))) 15) (($ $ (-298 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-650 |#2|) (-650 |#2|)) NIL)) (-2057 (($ $ |#2|) 11)))
-(((-342 |#1| |#2|) (-10 -8 (-15 -2057 (|#1| |#1| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#2| |#2|)) (-15 -3034 (|#1| |#1| (-298 |#2|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 |#2|))) (-15 -3034 (|#1| |#1| (-1186) |#2|))) (-343 |#2|) (-1109)) (T -342))
-NIL
-(-10 -8 (-15 -2057 (|#1| |#1| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#2| |#2|)) (-15 -3034 (|#1| |#1| (-298 |#2|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 |#2|))) (-15 -3034 (|#1| |#1| (-1186) |#2|)))
-((-2536 (($ (-1 |#1| |#1|) $) 6)) (-3034 (($ $ (-1186) |#1|) 17 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 16 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-650 (-298 |#1|))) 15 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 14 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-313 |#1|))) (($ $ (-650 |#1|) (-650 |#1|)) 12 (|has| |#1| (-313 |#1|)))) (-2057 (($ $ |#1|) 11 (|has| |#1| (-290 |#1| |#1|)))))
-(((-343 |#1|) (-141) (-1109)) (T -343))
-((-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))))
-(-13 (-10 -8 (-15 -2536 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-290 |t#1| |t#1|)) (-6 (-290 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-313 |t#1|)) (-6 (-313 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-520 (-1186) |t#1|)) (-6 (-520 (-1186) |t#1|)) |%noBranch|)))
-(((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-1227) |has| |#1| (-290 |#1| |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1186)) $) NIL)) (-1405 (((-112)) 96) (((-112) (-112)) 97)) (-4246 (((-650 (-618 $)) $) NIL)) (-3900 (($ $) NIL)) (-3770 (($ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1465 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-2459 (($ $) NIL)) (-3876 (($ $) NIL)) (-3745 (($ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-618 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-320 |#3|)) 76) (((-3 $ "failed") (-1186)) 103) (((-3 $ "failed") (-320 (-570))) 64 (|has| |#3| (-1047 (-570)))) (((-3 $ "failed") (-413 (-959 (-570)))) 70 (|has| |#3| (-1047 (-570)))) (((-3 $ "failed") (-959 (-570))) 65 (|has| |#3| (-1047 (-570)))) (((-3 $ "failed") (-320 (-384))) 94 (|has| |#3| (-1047 (-384)))) (((-3 $ "failed") (-413 (-959 (-384)))) 88 (|has| |#3| (-1047 (-384)))) (((-3 $ "failed") (-959 (-384))) 83 (|has| |#3| (-1047 (-384))))) (-4387 (((-618 $) $) NIL) ((|#3| $) NIL) (($ (-320 |#3|)) 77) (($ (-1186)) 104) (($ (-320 (-570))) 66 (|has| |#3| (-1047 (-570)))) (($ (-413 (-959 (-570)))) 71 (|has| |#3| (-1047 (-570)))) (($ (-959 (-570))) 67 (|has| |#3| (-1047 (-570)))) (($ (-320 (-384))) 95 (|has| |#3| (-1047 (-384)))) (($ (-413 (-959 (-384)))) 89 (|has| |#3| (-1047 (-384)))) (($ (-959 (-384))) 85 (|has| |#3| (-1047 (-384))))) (-3957 (((-3 $ "failed") $) NIL)) (-1625 (($) 101)) (-3244 (($ $) NIL) (($ (-650 $)) NIL)) (-3380 (((-650 (-115)) $) NIL)) (-2558 (((-115) (-115)) NIL)) (-2005 (((-112) $) NIL)) (-1973 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-1413 (((-1182 $) (-618 $)) NIL (|has| $ (-1058)))) (-2536 (($ (-1 $ $) (-618 $)) NIL)) (-1954 (((-3 (-618 $) "failed") $) NIL)) (-3356 (($ $) 99)) (-3447 (($ $) NIL)) (-3240 (((-1168) $) NIL)) (-2543 (((-650 (-618 $)) $) NIL)) (-1665 (($ (-115) $) 98) (($ (-115) (-650 $)) NIL)) (-3917 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) NIL)) (-3326 (((-777) $) NIL)) (-3891 (((-1129) $) NIL)) (-2483 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-2651 (($ $) NIL)) (-2160 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-3034 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2057 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-3047 (($ $) NIL) (($ $ $) NIL)) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL)) (-3144 (($ $) NIL (|has| $ (-1058)))) (-3887 (($ $) NIL)) (-3758 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-618 $)) NIL) (($ |#3|) NIL) (($ (-570)) NIL) (((-320 |#3|) $) 102)) (-2294 (((-777)) NIL T CONST)) (-1613 (($ $) NIL) (($ (-650 $)) NIL)) (-1475 (((-112) (-115)) NIL)) (-1344 (((-112) $ $) NIL)) (-3833 (($ $) NIL)) (-3811 (($ $) NIL)) (-3821 (($ $) NIL)) (-2521 (($ $) NIL)) (-1981 (($) 100 T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL)))
-(((-344 |#1| |#2| |#3|) (-13 (-306) (-38 |#3|) (-1047 |#3|) (-907 (-1186)) (-10 -8 (-15 -4387 ($ (-320 |#3|))) (-15 -2435 ((-3 $ "failed") (-320 |#3|))) (-15 -4387 ($ (-1186))) (-15 -2435 ((-3 $ "failed") (-1186))) (-15 -2869 ((-320 |#3|) $)) (IF (|has| |#3| (-1047 (-570))) (PROGN (-15 -4387 ($ (-320 (-570)))) (-15 -2435 ((-3 $ "failed") (-320 (-570)))) (-15 -4387 ($ (-413 (-959 (-570))))) (-15 -2435 ((-3 $ "failed") (-413 (-959 (-570))))) (-15 -4387 ($ (-959 (-570)))) (-15 -2435 ((-3 $ "failed") (-959 (-570))))) |%noBranch|) (IF (|has| |#3| (-1047 (-384))) (PROGN (-15 -4387 ($ (-320 (-384)))) (-15 -2435 ((-3 $ "failed") (-320 (-384)))) (-15 -4387 ($ (-413 (-959 (-384))))) (-15 -2435 ((-3 $ "failed") (-413 (-959 (-384))))) (-15 -4387 ($ (-959 (-384)))) (-15 -2435 ((-3 $ "failed") (-959 (-384))))) |%noBranch|) (-15 -2521 ($ $)) (-15 -2459 ($ $)) (-15 -2651 ($ $)) (-15 -3447 ($ $)) (-15 -3356 ($ $)) (-15 -3745 ($ $)) (-15 -3758 ($ $)) (-15 -3770 ($ $)) (-15 -3811 ($ $)) (-15 -3821 ($ $)) (-15 -3833 ($ $)) (-15 -3876 ($ $)) (-15 -3887 ($ $)) (-15 -3900 ($ $)) (-15 -1625 ($)) (-15 -1598 ((-650 (-1186)) $)) (-15 -1405 ((-112))) (-15 -1405 ((-112) (-112))))) (-650 (-1186)) (-650 (-1186)) (-393)) (T -344))
-((-4387 (*1 *1 *2) (-12 (-5 *2 (-320 *5)) (-4 *5 (-393)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 *5)) (-4 *5 (-393)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 *2)) (-14 *4 (-650 *2)) (-4 *5 (-393)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 *2)) (-14 *4 (-650 *2)) (-4 *5 (-393)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-320 *5)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2521 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2459 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2651 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3356 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3745 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3758 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3876 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3887 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3900 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-1625 (*1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-344 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-393)))) (-1405 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-1405 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))))
-(-13 (-306) (-38 |#3|) (-1047 |#3|) (-907 (-1186)) (-10 -8 (-15 -4387 ($ (-320 |#3|))) (-15 -2435 ((-3 $ "failed") (-320 |#3|))) (-15 -4387 ($ (-1186))) (-15 -2435 ((-3 $ "failed") (-1186))) (-15 -2869 ((-320 |#3|) $)) (IF (|has| |#3| (-1047 (-570))) (PROGN (-15 -4387 ($ (-320 (-570)))) (-15 -2435 ((-3 $ "failed") (-320 (-570)))) (-15 -4387 ($ (-413 (-959 (-570))))) (-15 -2435 ((-3 $ "failed") (-413 (-959 (-570))))) (-15 -4387 ($ (-959 (-570)))) (-15 -2435 ((-3 $ "failed") (-959 (-570))))) |%noBranch|) (IF (|has| |#3| (-1047 (-384))) (PROGN (-15 -4387 ($ (-320 (-384)))) (-15 -2435 ((-3 $ "failed") (-320 (-384)))) (-15 -4387 ($ (-413 (-959 (-384))))) (-15 -2435 ((-3 $ "failed") (-413 (-959 (-384))))) (-15 -4387 ($ (-959 (-384)))) (-15 -2435 ((-3 $ "failed") (-959 (-384))))) |%noBranch|) (-15 -2521 ($ $)) (-15 -2459 ($ $)) (-15 -2651 ($ $)) (-15 -3447 ($ $)) (-15 -3356 ($ $)) (-15 -3745 ($ $)) (-15 -3758 ($ $)) (-15 -3770 ($ $)) (-15 -3811 ($ $)) (-15 -3821 ($ $)) (-15 -3833 ($ $)) (-15 -3876 ($ $)) (-15 -3887 ($ $)) (-15 -3900 ($ $)) (-15 -1625 ($)) (-15 -1598 ((-650 (-1186)) $)) (-15 -1405 ((-112))) (-15 -1405 ((-112) (-112)))))
-((-2536 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2536 (|#8| (-1 |#5| |#1|) |#4|))) (-1231) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|) (-1231) (-1253 |#5|) (-1253 (-413 |#6|)) (-347 |#5| |#6| |#7|)) (T -345))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1231)) (-4 *8 (-1231)) (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-4 *9 (-1253 *8)) (-4 *2 (-347 *8 *9 *10)) (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-347 *5 *6 *7)) (-4 *10 (-1253 (-413 *9))))))
-(-10 -7 (-15 -2536 (|#8| (-1 |#5| |#1|) |#4|)))
-((-1818 (((-2 (|:| |num| (-1277 |#3|)) (|:| |den| |#3|)) $) 39)) (-2615 (($ (-1277 (-413 |#3|)) (-1277 $)) NIL) (($ (-1277 (-413 |#3|))) NIL) (($ (-1277 |#3|) |#3|) 173)) (-4137 (((-1277 $) (-1277 $)) 156)) (-3309 (((-650 (-650 |#2|))) 126)) (-3118 (((-112) |#2| |#2|) 76)) (-2211 (($ $) 148)) (-2457 (((-777)) 172)) (-3962 (((-1277 $) (-1277 $)) 218)) (-3728 (((-650 (-959 |#2|)) (-1186)) 115)) (-3549 (((-112) $) 169)) (-3428 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-3665 (((-3 |#3| "failed")) 52)) (-2268 (((-777)) 184)) (-2057 ((|#2| $ |#2| |#2|) 140)) (-3095 (((-3 |#3| "failed")) 71)) (-2375 (($ $ (-1 (-413 |#3|) (-413 |#3|)) (-777)) NIL) (($ $ (-1 (-413 |#3|) (-413 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-2883 (((-1277 $) (-1277 $)) 162)) (-4171 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1956 (((-112)) 34)))
-(((-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3309 ((-650 (-650 |#2|)))) (-15 -3728 ((-650 (-959 |#2|)) (-1186))) (-15 -4171 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3665 ((-3 |#3| "failed"))) (-15 -3095 ((-3 |#3| "failed"))) (-15 -2057 (|#2| |#1| |#2| |#2|)) (-15 -2211 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3428 ((-112) |#1| |#3|)) (-15 -3428 ((-112) |#1| |#2|)) (-15 -2615 (|#1| (-1277 |#3|) |#3|)) (-15 -1818 ((-2 (|:| |num| (-1277 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4137 ((-1277 |#1|) (-1277 |#1|))) (-15 -3962 ((-1277 |#1|) (-1277 |#1|))) (-15 -2883 ((-1277 |#1|) (-1277 |#1|))) (-15 -3428 ((-112) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -3118 ((-112) |#2| |#2|)) (-15 -1956 ((-112))) (-15 -2268 ((-777))) (-15 -2457 ((-777))) (-15 -2375 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)))) (-15 -2375 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)) (-777))) (-15 -2615 (|#1| (-1277 (-413 |#3|)))) (-15 -2615 (|#1| (-1277 (-413 |#3|)) (-1277 |#1|)))) (-347 |#2| |#3| |#4|) (-1231) (-1253 |#2|) (-1253 (-413 |#3|))) (T -346))
-((-2457 (*1 *2) (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) (-2268 (*1 *2) (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) (-1956 (*1 *2) (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) (-3118 (*1 *2 *3 *3) (-12 (-4 *3 (-1231)) (-4 *5 (-1253 *3)) (-4 *6 (-1253 (-413 *5))) (-5 *2 (-112)) (-5 *1 (-346 *4 *3 *5 *6)) (-4 *4 (-347 *3 *5 *6)))) (-3095 (*1 *2) (|partial| -12 (-4 *4 (-1231)) (-4 *5 (-1253 (-413 *2))) (-4 *2 (-1253 *4)) (-5 *1 (-346 *3 *4 *2 *5)) (-4 *3 (-347 *4 *2 *5)))) (-3665 (*1 *2) (|partial| -12 (-4 *4 (-1231)) (-4 *5 (-1253 (-413 *2))) (-4 *2 (-1253 *4)) (-5 *1 (-346 *3 *4 *2 *5)) (-4 *3 (-347 *4 *2 *5)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *5 (-1231)) (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-5 *2 (-650 (-959 *5))) (-5 *1 (-346 *4 *5 *6 *7)) (-4 *4 (-347 *5 *6 *7)))) (-3309 (*1 *2) (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-5 *2 (-650 (-650 *4))) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))))
-(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3309 ((-650 (-650 |#2|)))) (-15 -3728 ((-650 (-959 |#2|)) (-1186))) (-15 -4171 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3665 ((-3 |#3| "failed"))) (-15 -3095 ((-3 |#3| "failed"))) (-15 -2057 (|#2| |#1| |#2| |#2|)) (-15 -2211 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3428 ((-112) |#1| |#3|)) (-15 -3428 ((-112) |#1| |#2|)) (-15 -2615 (|#1| (-1277 |#3|) |#3|)) (-15 -1818 ((-2 (|:| |num| (-1277 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4137 ((-1277 |#1|) (-1277 |#1|))) (-15 -3962 ((-1277 |#1|) (-1277 |#1|))) (-15 -2883 ((-1277 |#1|) (-1277 |#1|))) (-15 -3428 ((-112) |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -3118 ((-112) |#2| |#2|)) (-15 -1956 ((-112))) (-15 -2268 ((-777))) (-15 -2457 ((-777))) (-15 -2375 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)))) (-15 -2375 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)) (-777))) (-15 -2615 (|#1| (-1277 (-413 |#3|)))) (-15 -2615 (|#1| (-1277 (-413 |#3|)) (-1277 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1818 (((-2 (|:| |num| (-1277 |#2|)) (|:| |den| |#2|)) $) 204)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 102 (|has| (-413 |#2|) (-368)))) (-2046 (($ $) 103 (|has| (-413 |#2|) (-368)))) (-3426 (((-112) $) 105 (|has| (-413 |#2|) (-368)))) (-3524 (((-695 (-413 |#2|)) (-1277 $)) 53) (((-695 (-413 |#2|))) 68)) (-1439 (((-413 |#2|) $) 59)) (-2000 (((-1199 (-928) (-777)) (-570)) 155 (|has| (-413 |#2|) (-354)))) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 122 (|has| (-413 |#2|) (-368)))) (-2929 (((-424 $) $) 123 (|has| (-413 |#2|) (-368)))) (-1799 (((-112) $ $) 113 (|has| (-413 |#2|) (-368)))) (-2401 (((-777)) 96 (|has| (-413 |#2|) (-373)))) (-1612 (((-112)) 221)) (-4347 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 178 (|has| (-413 |#2|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 176 (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-3 (-413 |#2|) "failed") $) 173)) (-4387 (((-570) $) 177 (|has| (-413 |#2|) (-1047 (-570)))) (((-413 (-570)) $) 175 (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-413 |#2|) $) 174)) (-2615 (($ (-1277 (-413 |#2|)) (-1277 $)) 55) (($ (-1277 (-413 |#2|))) 71) (($ (-1277 |#2|) |#2|) 203)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-413 |#2|) (-354)))) (-2788 (($ $ $) 117 (|has| (-413 |#2|) (-368)))) (-4385 (((-695 (-413 |#2|)) $ (-1277 $)) 60) (((-695 (-413 |#2|)) $) 66)) (-3054 (((-695 (-570)) (-695 $)) 172 (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 171 (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-413 |#2|))) (|:| |vec| (-1277 (-413 |#2|)))) (-695 $) (-1277 $)) 170) (((-695 (-413 |#2|)) (-695 $)) 169)) (-4137 (((-1277 $) (-1277 $)) 209)) (-2295 (($ |#3|) 166) (((-3 $ "failed") (-413 |#3|)) 163 (|has| (-413 |#2|) (-368)))) (-3957 (((-3 $ "failed") $) 37)) (-3309 (((-650 (-650 |#1|))) 190 (|has| |#1| (-373)))) (-3118 (((-112) |#1| |#1|) 225)) (-4412 (((-928)) 61)) (-2066 (($) 99 (|has| (-413 |#2|) (-373)))) (-3343 (((-112)) 218)) (-1944 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2799 (($ $ $) 116 (|has| (-413 |#2|) (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 111 (|has| (-413 |#2|) (-368)))) (-2211 (($ $) 196)) (-2310 (($) 157 (|has| (-413 |#2|) (-354)))) (-4240 (((-112) $) 158 (|has| (-413 |#2|) (-354)))) (-2118 (($ $ (-777)) 149 (|has| (-413 |#2|) (-354))) (($ $) 148 (|has| (-413 |#2|) (-354)))) (-2145 (((-112) $) 124 (|has| (-413 |#2|) (-368)))) (-3995 (((-928) $) 160 (|has| (-413 |#2|) (-354))) (((-839 (-928)) $) 146 (|has| (-413 |#2|) (-354)))) (-2005 (((-112) $) 35)) (-2457 (((-777)) 228)) (-3962 (((-1277 $) (-1277 $)) 210)) (-3046 (((-413 |#2|) $) 58)) (-3728 (((-650 (-959 |#1|)) (-1186)) 191 (|has| |#1| (-368)))) (-3525 (((-3 $ "failed") $) 150 (|has| (-413 |#2|) (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 120 (|has| (-413 |#2|) (-368)))) (-3658 ((|#3| $) 51 (|has| (-413 |#2|) (-368)))) (-1997 (((-928) $) 98 (|has| (-413 |#2|) (-373)))) (-2283 ((|#3| $) 164)) (-3867 (($ (-650 $)) 109 (|has| (-413 |#2|) (-368))) (($ $ $) 108 (|has| (-413 |#2|) (-368)))) (-3240 (((-1168) $) 10)) (-2751 (((-695 (-413 |#2|))) 205)) (-1644 (((-695 (-413 |#2|))) 207)) (-4315 (($ $) 125 (|has| (-413 |#2|) (-368)))) (-3792 (($ (-1277 |#2|) |#2|) 201)) (-1741 (((-695 (-413 |#2|))) 206)) (-2314 (((-695 (-413 |#2|))) 208)) (-4318 (((-2 (|:| |num| (-695 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-4097 (((-2 (|:| |num| (-1277 |#2|)) (|:| |den| |#2|)) $) 202)) (-4345 (((-1277 $)) 214)) (-1868 (((-1277 $)) 215)) (-3549 (((-112) $) 213)) (-3428 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3458 (($) 151 (|has| (-413 |#2|) (-354)) CONST)) (-4298 (($ (-928)) 97 (|has| (-413 |#2|) (-373)))) (-3665 (((-3 |#2| "failed")) 193)) (-3891 (((-1129) $) 11)) (-2268 (((-777)) 227)) (-3643 (($) 168)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 110 (|has| (-413 |#2|) (-368)))) (-3903 (($ (-650 $)) 107 (|has| (-413 |#2|) (-368))) (($ $ $) 106 (|has| (-413 |#2|) (-368)))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 154 (|has| (-413 |#2|) (-354)))) (-2340 (((-424 $) $) 121 (|has| (-413 |#2|) (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-413 |#2|) (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 118 (|has| (-413 |#2|) (-368)))) (-2837 (((-3 $ "failed") $ $) 101 (|has| (-413 |#2|) (-368)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 112 (|has| (-413 |#2|) (-368)))) (-2002 (((-777) $) 114 (|has| (-413 |#2|) (-368)))) (-2057 ((|#1| $ |#1| |#1|) 195)) (-3095 (((-3 |#2| "failed")) 194)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 115 (|has| (-413 |#2|) (-368)))) (-2896 (((-413 |#2|) (-1277 $)) 54) (((-413 |#2|)) 67)) (-4058 (((-777) $) 159 (|has| (-413 |#2|) (-354))) (((-3 (-777) "failed") $ $) 147 (|has| (-413 |#2|) (-354)))) (-2375 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) 131 (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) 130 (|has| (-413 |#2|) (-368))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-650 (-1186)) (-650 (-777))) 138 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186) (-777)) 139 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-650 (-1186))) 140 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186)) 141 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-777)) 143 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-3212 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) 145 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-3212 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-2318 (((-695 (-413 |#2|)) (-1277 $) (-1 (-413 |#2|) (-413 |#2|))) 162 (|has| (-413 |#2|) (-368)))) (-3144 ((|#3|) 167)) (-1900 (($) 156 (|has| (-413 |#2|) (-354)))) (-2987 (((-1277 (-413 |#2|)) $ (-1277 $)) 57) (((-695 (-413 |#2|)) (-1277 $) (-1277 $)) 56) (((-1277 (-413 |#2|)) $) 73) (((-695 (-413 |#2|)) (-1277 $)) 72)) (-2601 (((-1277 (-413 |#2|)) $) 70) (($ (-1277 (-413 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 153 (|has| (-413 |#2|) (-354)))) (-2883 (((-1277 $) (-1277 $)) 211)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 |#2|)) 44) (($ (-413 (-570))) 95 (-3749 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-1047 (-413 (-570)))))) (($ $) 100 (|has| (-413 |#2|) (-368)))) (-1660 (($ $) 152 (|has| (-413 |#2|) (-354))) (((-3 $ "failed") $) 50 (|has| (-413 |#2|) (-146)))) (-1816 ((|#3| $) 52)) (-2294 (((-777)) 32 T CONST)) (-1380 (((-112)) 224)) (-4395 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1344 (((-112) $ $) 9)) (-2681 (((-1277 $)) 74)) (-2939 (((-112) $ $) 104 (|has| (-413 |#2|) (-368)))) (-4171 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1956 (((-112)) 226)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) 133 (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) 132 (|has| (-413 |#2|) (-368))) (($ $ (-650 (-1186)) (-650 (-777))) 134 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186) (-777)) 135 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-650 (-1186))) 136 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186)) 137 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-3212 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-777)) 142 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-3212 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) 144 (-3749 (-3212 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-3212 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 129 (|has| (-413 |#2|) (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 126 (|has| (-413 |#2|) (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 |#2|)) 46) (($ (-413 |#2|) $) 45) (($ (-413 (-570)) $) 128 (|has| (-413 |#2|) (-368))) (($ $ (-413 (-570))) 127 (|has| (-413 |#2|) (-368)))))
-(((-347 |#1| |#2| |#3|) (-141) (-1231) (-1253 |t#1|) (-1253 (-413 |t#2|))) (T -347))
-((-2457 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-777)))) (-2268 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-777)))) (-1956 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-3118 (*1 *2 *3 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-1380 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-4395 (*1 *2 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-4395 (*1 *2 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112)))) (-1612 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-4347 (*1 *2 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-4347 (*1 *2 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112)))) (-3343 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-1944 (*1 *2 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-1944 (*1 *2 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112)))) (-1868 (*1 *2) (-12 (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)))) (-4345 (*1 *2) (-12 (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-2883 (*1 *2 *2) (-12 (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))))) (-3962 (*1 *2 *2) (-12 (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))))) (-2314 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-1644 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-1741 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-2751 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-2 (|:| |num| (-1277 *4)) (|:| |den| *4))))) (-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1253 *4)) (-4 *4 (-1231)) (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1253 (-413 *3))))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-2 (|:| |num| (-1277 *4)) (|:| |den| *4))))) (-3792 (*1 *1 *2 *3) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1253 *4)) (-4 *4 (-1231)) (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1253 (-413 *3))))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-5 *2 (-2 (|:| |num| (-695 *5)) (|:| |den| *5))))) (-3428 (*1 *2 *1 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))) (-3428 (*1 *2 *1 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))))) (-2211 (*1 *1 *1) (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-1253 *2)) (-4 *4 (-1253 (-413 *3))))) (-2057 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-1253 *2)) (-4 *4 (-1253 (-413 *3))))) (-3095 (*1 *2) (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1231)) (-4 *4 (-1253 (-413 *2))) (-4 *2 (-1253 *3)))) (-3665 (*1 *2) (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1231)) (-4 *4 (-1253 (-413 *2))) (-4 *2 (-1253 *3)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-1231)) (-4 *6 (-1253 (-413 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-347 *4 *5 *6)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-4 *4 (-368)) (-5 *2 (-650 (-959 *4))))) (-3309 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))) (-4 *3 (-373)) (-5 *2 (-650 (-650 *3))))))
-(-13 (-730 (-413 |t#2|) |t#3|) (-10 -8 (-15 -2457 ((-777))) (-15 -2268 ((-777))) (-15 -1956 ((-112))) (-15 -3118 ((-112) |t#1| |t#1|)) (-15 -1380 ((-112))) (-15 -4395 ((-112) |t#1|)) (-15 -4395 ((-112) |t#2|)) (-15 -1612 ((-112))) (-15 -4347 ((-112) |t#1|)) (-15 -4347 ((-112) |t#2|)) (-15 -3343 ((-112))) (-15 -1944 ((-112) |t#1|)) (-15 -1944 ((-112) |t#2|)) (-15 -1868 ((-1277 $))) (-15 -4345 ((-1277 $))) (-15 -3549 ((-112) $)) (-15 -3428 ((-112) $)) (-15 -2883 ((-1277 $) (-1277 $))) (-15 -3962 ((-1277 $) (-1277 $))) (-15 -4137 ((-1277 $) (-1277 $))) (-15 -2314 ((-695 (-413 |t#2|)))) (-15 -1644 ((-695 (-413 |t#2|)))) (-15 -1741 ((-695 (-413 |t#2|)))) (-15 -2751 ((-695 (-413 |t#2|)))) (-15 -1818 ((-2 (|:| |num| (-1277 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2615 ($ (-1277 |t#2|) |t#2|)) (-15 -4097 ((-2 (|:| |num| (-1277 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3792 ($ (-1277 |t#2|) |t#2|)) (-15 -4318 ((-2 (|:| |num| (-695 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3428 ((-112) $ |t#1|)) (-15 -3428 ((-112) $ |t#2|)) (-15 -2375 ($ $ (-1 |t#2| |t#2|))) (-15 -2211 ($ $)) (-15 -2057 (|t#1| $ |t#1| |t#1|)) (-15 -3095 ((-3 |t#2| "failed"))) (-15 -3665 ((-3 |t#2| "failed"))) (-15 -4171 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-368)) (-15 -3728 ((-650 (-959 |t#1|)) (-1186))) |%noBranch|) (IF (|has| |t#1| (-373)) (-15 -3309 ((-650 (-650 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-38 #1=(-413 |#2|)) . T) ((-38 $) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-102) . T) ((-111 #0# #0#) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-146))) ((-148) |has| (-413 |#2|) (-148)) ((-622 #0#) -3749 (|has| (-413 |#2|) (-1047 (-413 (-570)))) (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-622 #1#) . T) ((-622 (-570)) . T) ((-622 $) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-619 (-868)) . T) ((-174) . T) ((-620 |#3|) . T) ((-233 #1#) |has| (-413 |#2|) (-368)) ((-235) -3749 (|has| (-413 |#2|) (-354)) (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368)))) ((-245) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-294) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-311) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-368) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-408) |has| (-413 |#2|) (-354)) ((-373) -3749 (|has| (-413 |#2|) (-373)) (|has| (-413 |#2|) (-354))) ((-354) |has| (-413 |#2|) (-354)) ((-375 #1# |#3|) . T) ((-415 #1# |#3|) . T) ((-382 #1#) . T) ((-417 #1#) . T) ((-458) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-562) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-652 #0#) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-652 #1#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-654 #1#) . T) ((-654 $) . T) ((-646 #0#) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-646 #1#) . T) ((-646 $) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-645 #1#) . T) ((-645 (-570)) |has| (-413 |#2|) (-645 (-570))) ((-723 #0#) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-723 #1#) . T) ((-723 $) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-730 #1# |#3|) . T) ((-732) . T) ((-907 (-1186)) -12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) ((-927) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-1047 (-413 (-570))) |has| (-413 |#2|) (-1047 (-413 (-570)))) ((-1047 #1#) . T) ((-1047 (-570)) |has| (-413 |#2|) (-1047 (-570))) ((-1060 #0#) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-1060 #1#) . T) ((-1060 $) . T) ((-1065 #0#) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-1065 #1#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| (-413 |#2|) (-354)) ((-1231) -3749 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-917 |#1|) (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| (-917 |#1|) (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-917 |#1|) "failed") $) NIL)) (-4387 (((-917 |#1|) $) NIL)) (-2615 (($ (-1277 (-917 |#1|))) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-917 |#1|) (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-917 |#1|) (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL (|has| (-917 |#1|) (-373)))) (-4240 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373)))) (($ $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| (-917 |#1|) (-373))) (((-839 (-928)) $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| (-917 |#1|) (-373)))) (-3531 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-3046 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| (-917 |#1|) (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 (-917 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-1997 (((-928) $) NIL (|has| (-917 |#1|) (-373)))) (-1716 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373)))) (-3051 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-1182 (-917 |#1|)) "failed") $ $) NIL (|has| (-917 |#1|) (-373)))) (-4333 (($ $ (-1182 (-917 |#1|))) NIL (|has| (-917 |#1|) (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-917 |#1|) (-373)) CONST)) (-4298 (($ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-1712 (((-965 (-1129))) NIL)) (-3643 (($) NIL (|has| (-917 |#1|) (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| (-917 |#1|) (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 (-917 |#1|))) NIL)) (-1900 (($) NIL (|has| (-917 |#1|) (-373)))) (-2229 (($) NIL (|has| (-917 |#1|) (-373)))) (-2987 (((-1277 (-917 |#1|)) $) NIL) (((-695 (-917 |#1|)) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| (-917 |#1|) (-373)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-917 |#1|)) NIL)) (-1660 (($ $) NIL (|has| (-917 |#1|) (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL) (((-1277 $) (-928)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3414 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-917 |#1|)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-917 |#1|)) NIL) (($ (-917 |#1|) $) NIL)))
-(((-348 |#1| |#2|) (-13 (-333 (-917 |#1|)) (-10 -7 (-15 -1712 ((-965 (-1129)))))) (-928) (-928)) (T -348))
-((-1712 (*1 *2) (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-348 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))))
-(-13 (-333 (-917 |#1|)) (-10 -7 (-15 -1712 ((-965 (-1129))))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 58)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) 56 (|has| |#1| (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 142)) (-4387 ((|#1| $) 113)) (-2615 (($ (-1277 |#1|)) 130)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) 124 (|has| |#1| (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) 160 (|has| |#1| (-373)))) (-4240 (((-112) $) 66 (|has| |#1| (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) 60 (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) 62)) (-3284 (($) 162 (|has| |#1| (-373)))) (-3531 (((-112) $) NIL (|has| |#1| (-373)))) (-3046 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 |#1|) $) 117) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-1997 (((-928) $) 171 (|has| |#1| (-373)))) (-1716 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-3051 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-4333 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 178)) (-3458 (($) NIL (|has| |#1| (-373)) CONST)) (-4298 (($ (-928)) 96 (|has| |#1| (-373)))) (-3031 (((-112) $) 147)) (-3891 (((-1129) $) NIL)) (-1712 (((-965 (-1129))) 57)) (-3643 (($) 158 (|has| |#1| (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 119 (|has| |#1| (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) 90) (((-928)) 91)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) 161 (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) 154 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 |#1|)) 122)) (-1900 (($) 159 (|has| |#1| (-373)))) (-2229 (($) 167 (|has| |#1| (-373)))) (-2987 (((-1277 |#1|) $) 77) (((-695 |#1|) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-2869 (((-868) $) 174) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 100)) (-1660 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) 155 T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) 144) (((-1277 $) (-928)) 98)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) 67 T CONST)) (-1998 (($) 103 T CONST)) (-4257 (($ $) 107 (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3414 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3892 (((-112) $ $) 65)) (-4013 (($ $ $) 176) (($ $ |#1|) 177)) (-4003 (($ $) 157) (($ $ $) NIL)) (-3992 (($ $ $) 86)) (** (($ $ (-928)) 180) (($ $ (-777)) 181) (($ $ (-570)) 179)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 102) (($ $ $) 101) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
-(((-349 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -1712 ((-965 (-1129)))))) (-354) (-1182 |#1|)) (T -349))
-((-1712 (*1 *2) (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-349 *3 *4)) (-4 *3 (-354)) (-14 *4 (-1182 *3)))))
-(-13 (-333 |#1|) (-10 -7 (-15 -1712 ((-965 (-1129))))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-2615 (($ (-1277 |#1|)) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| |#1| (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL (|has| |#1| (-373)))) (-4240 (((-112) $) NIL (|has| |#1| (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| |#1| (-373)))) (-3531 (((-112) $) NIL (|has| |#1| (-373)))) (-3046 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 |#1|) $) NIL) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-1997 (((-928) $) NIL (|has| |#1| (-373)))) (-1716 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-3051 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-4333 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| |#1| (-373)) CONST)) (-4298 (($ (-928)) NIL (|has| |#1| (-373)))) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-1712 (((-965 (-1129))) NIL)) (-3643 (($) NIL (|has| |#1| (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| |#1| (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 |#1|)) NIL)) (-1900 (($) NIL (|has| |#1| (-373)))) (-2229 (($) NIL (|has| |#1| (-373)))) (-2987 (((-1277 |#1|) $) NIL) (((-695 |#1|) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) NIL)) (-1660 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL) (((-1277 $) (-928)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3414 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-350 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -1712 ((-965 (-1129)))))) (-354) (-928)) (T -350))
-((-1712 (*1 *2) (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-350 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928)))))
-(-13 (-333 |#1|) (-10 -7 (-15 -1712 ((-965 (-1129))))))
-((-3955 (((-777) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129)))))) 61)) (-1812 (((-965 (-1129)) (-1182 |#1|)) 112)) (-3247 (((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) (-1182 |#1|)) 103)) (-4286 (((-695 |#1|) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129)))))) 113)) (-2520 (((-3 (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) "failed") (-928)) 13)) (-2663 (((-3 (-1182 |#1|) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129)))))) (-928)) 18)))
-(((-351 |#1|) (-10 -7 (-15 -1812 ((-965 (-1129)) (-1182 |#1|))) (-15 -3247 ((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) (-1182 |#1|))) (-15 -4286 ((-695 |#1|) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -3955 ((-777) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -2520 ((-3 (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) "failed") (-928))) (-15 -2663 ((-3 (-1182 |#1|) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129)))))) (-928)))) (-354)) (T -351))
-((-2663 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-3 (-1182 *4) (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129))))))) (-5 *1 (-351 *4)) (-4 *4 (-354)))) (-2520 (*1 *2 *3) (|partial| -12 (-5 *3 (-928)) (-5 *2 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129)))))) (-5 *1 (-351 *4)) (-4 *4 (-354)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129)))))) (-4 *4 (-354)) (-5 *2 (-777)) (-5 *1 (-351 *4)))) (-4286 (*1 *2 *3) (-12 (-5 *3 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129)))))) (-4 *4 (-354)) (-5 *2 (-695 *4)) (-5 *1 (-351 *4)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129)))))) (-5 *1 (-351 *4)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-965 (-1129))) (-5 *1 (-351 *4)))))
-(-10 -7 (-15 -1812 ((-965 (-1129)) (-1182 |#1|))) (-15 -3247 ((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) (-1182 |#1|))) (-15 -4286 ((-695 |#1|) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -3955 ((-777) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -2520 ((-3 (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) "failed") (-928))) (-15 -2663 ((-3 (-1182 |#1|) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129)))))) (-928))))
-((-2869 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
-(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -2869 (|#3| |#1|)) (-15 -2869 (|#1| |#3|))) (-333 |#2|) (-354) (-333 |#2|)) (T -352))
-((-2869 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *2 *4 *3)) (-4 *3 (-333 *4)))) (-2869 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *3 *4 *2)) (-4 *3 (-333 *4)))))
-(-10 -7 (-15 -2869 (|#3| |#1|)) (-15 -2869 (|#1| |#3|)))
-((-4240 (((-112) $) 60)) (-3995 (((-839 (-928)) $) 23) (((-928) $) 64)) (-3525 (((-3 $ "failed") $) 18)) (-3458 (($) 9)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 114)) (-4058 (((-3 (-777) "failed") $ $) 92) (((-777) $) 79)) (-2375 (($ $ (-777)) NIL) (($ $) 8)) (-1900 (($) 53)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 38)) (-1660 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-353 |#1|) (-10 -8 (-15 -3995 ((-928) |#1|)) (-15 -4058 ((-777) |#1|)) (-15 -4240 ((-112) |#1|)) (-15 -1900 (|#1|)) (-15 -2561 ((-3 (-1277 |#1|) "failed") (-695 |#1|))) (-15 -1660 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -4058 ((-3 (-777) "failed") |#1| |#1|)) (-15 -3995 ((-839 (-928)) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)))) (-354)) (T -353))
-NIL
-(-10 -8 (-15 -3995 ((-928) |#1|)) (-15 -4058 ((-777) |#1|)) (-15 -4240 ((-112) |#1|)) (-15 -1900 (|#1|)) (-15 -2561 ((-3 (-1277 |#1|) "failed") (-695 |#1|))) (-15 -1660 (|#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -4058 ((-3 (-777) "failed") |#1| |#1|)) (-15 -3995 ((-839 (-928)) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-2000 (((-1199 (-928) (-777)) (-570)) 101)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-1799 (((-112) $ $) 65)) (-2401 (((-777)) 111)) (-2333 (($) 18 T CONST)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2066 (($) 114)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2310 (($) 99)) (-4240 (((-112) $) 98)) (-2118 (($ $) 87) (($ $ (-777)) 86)) (-2145 (((-112) $) 79)) (-3995 (((-839 (-928)) $) 89) (((-928) $) 96)) (-2005 (((-112) $) 35)) (-3525 (((-3 $ "failed") $) 110)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1997 (((-928) $) 113)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3458 (($) 109 T CONST)) (-4298 (($ (-928)) 112)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 102)) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-4058 (((-3 (-777) "failed") $ $) 88) (((-777) $) 97)) (-2375 (($ $ (-777)) 107) (($ $) 105)) (-1900 (($) 100)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 103)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-1660 (((-3 $ "failed") $) 90) (($ $) 104)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-777)) 108) (($ $) 106)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75)))
-(((-354) (-141)) (T -354))
-((-1660 (*1 *1 *1) (-4 *1 (-354))) (-2561 (*1 *2 *3) (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-354)) (-5 *2 (-1277 *1)))) (-1617 (*1 *2) (-12 (-4 *1 (-354)) (-5 *2 (-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))))) (-2000 (*1 *2 *3) (-12 (-4 *1 (-354)) (-5 *3 (-570)) (-5 *2 (-1199 (-928) (-777))))) (-1900 (*1 *1) (-4 *1 (-354))) (-2310 (*1 *1) (-4 *1 (-354))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-112)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-777)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-928)))) (-3290 (*1 *2) (-12 (-4 *1 (-354)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-408) (-373) (-1161) (-235) (-10 -8 (-15 -1660 ($ $)) (-15 -2561 ((-3 (-1277 $) "failed") (-695 $))) (-15 -1617 ((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570)))))) (-15 -2000 ((-1199 (-928) (-777)) (-570))) (-15 -1900 ($)) (-15 -2310 ($)) (-15 -4240 ((-112) $)) (-15 -4058 ((-777) $)) (-15 -3995 ((-928) $)) (-15 -3290 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-235) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-408) . T) ((-373) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) . T) ((-1231) . T))
-((-4053 (((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) |#1|) 55)) (-1868 (((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|)))) 53)))
-(((-355 |#1| |#2| |#3|) (-10 -7 (-15 -1868 ((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))))) (-15 -4053 ((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) |#1|))) (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))) (-1253 |#1|) (-415 |#1| |#2|)) (T -355))
-((-4053 (*1 *2 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *4 (-1253 *3)) (-5 *2 (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-1868 (*1 *2) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *4 (-1253 *3)) (-5 *2 (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(-10 -7 (-15 -1868 ((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))))) (-15 -4053 ((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-917 |#1|) (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3955 (((-777)) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| (-917 |#1|) (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-917 |#1|) "failed") $) NIL)) (-4387 (((-917 |#1|) $) NIL)) (-2615 (($ (-1277 (-917 |#1|))) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-917 |#1|) (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-917 |#1|) (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL (|has| (-917 |#1|) (-373)))) (-4240 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373)))) (($ $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| (-917 |#1|) (-373))) (((-839 (-928)) $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| (-917 |#1|) (-373)))) (-3531 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-3046 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| (-917 |#1|) (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 (-917 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-1997 (((-928) $) NIL (|has| (-917 |#1|) (-373)))) (-1716 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373)))) (-3051 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-1182 (-917 |#1|)) "failed") $ $) NIL (|has| (-917 |#1|) (-373)))) (-4333 (($ $ (-1182 (-917 |#1|))) NIL (|has| (-917 |#1|) (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-917 |#1|) (-373)) CONST)) (-4298 (($ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-2945 (((-1277 (-650 (-2 (|:| -4156 (-917 |#1|)) (|:| -4298 (-1129)))))) NIL)) (-4153 (((-695 (-917 |#1|))) NIL)) (-3643 (($) NIL (|has| (-917 |#1|) (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| (-917 |#1|) (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 (-917 |#1|))) NIL)) (-1900 (($) NIL (|has| (-917 |#1|) (-373)))) (-2229 (($) NIL (|has| (-917 |#1|) (-373)))) (-2987 (((-1277 (-917 |#1|)) $) NIL) (((-695 (-917 |#1|)) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| (-917 |#1|) (-373)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-917 |#1|)) NIL)) (-1660 (($ $) NIL (|has| (-917 |#1|) (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL) (((-1277 $) (-928)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3414 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-917 |#1|)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-917 |#1|)) NIL) (($ (-917 |#1|) $) NIL)))
-(((-356 |#1| |#2|) (-13 (-333 (-917 |#1|)) (-10 -7 (-15 -2945 ((-1277 (-650 (-2 (|:| -4156 (-917 |#1|)) (|:| -4298 (-1129))))))) (-15 -4153 ((-695 (-917 |#1|)))) (-15 -3955 ((-777))))) (-928) (-928)) (T -356))
-((-2945 (*1 *2) (-12 (-5 *2 (-1277 (-650 (-2 (|:| -4156 (-917 *3)) (|:| -4298 (-1129)))))) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-4153 (*1 *2) (-12 (-5 *2 (-695 (-917 *3))) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-3955 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))))
-(-13 (-333 (-917 |#1|)) (-10 -7 (-15 -2945 ((-1277 (-650 (-2 (|:| -4156 (-917 |#1|)) (|:| -4298 (-1129))))))) (-15 -4153 ((-695 (-917 |#1|)))) (-15 -3955 ((-777)))))
-((-2847 (((-112) $ $) 73)) (-2564 (((-112) $) 88)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 ((|#1| $) 106) (($ $ (-928)) 104 (|has| |#1| (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) 170 (|has| |#1| (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3955 (((-777)) 103)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) 187 (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 127)) (-4387 ((|#1| $) 105)) (-2615 (($ (-1277 |#1|)) 71)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) 182 (|has| |#1| (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) 171 (|has| |#1| (-373)))) (-4240 (((-112) $) NIL (|has| |#1| (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) 113 (|has| |#1| (-373)))) (-3531 (((-112) $) 200 (|has| |#1| (-373)))) (-3046 ((|#1| $) 108) (($ $ (-928)) 107 (|has| |#1| (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 |#1|) $) 214) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-1997 (((-928) $) 148 (|has| |#1| (-373)))) (-1716 (((-1182 |#1|) $) 87 (|has| |#1| (-373)))) (-3051 (((-1182 |#1|) $) 84 (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) 96 (|has| |#1| (-373)))) (-4333 (($ $ (-1182 |#1|)) 83 (|has| |#1| (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 218)) (-3458 (($) NIL (|has| |#1| (-373)) CONST)) (-4298 (($ (-928)) 150 (|has| |#1| (-373)))) (-3031 (((-112) $) 123)) (-3891 (((-1129) $) NIL)) (-2945 (((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129)))))) 97)) (-4153 (((-695 |#1|)) 101)) (-3643 (($) 110 (|has| |#1| (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 173 (|has| |#1| (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) 174)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) 75)) (-3144 (((-1182 |#1|)) 175)) (-1900 (($) 147 (|has| |#1| (-373)))) (-2229 (($) NIL (|has| |#1| (-373)))) (-2987 (((-1277 |#1|) $) 121) (((-695 |#1|) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-2869 (((-868) $) 140) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 70)) (-1660 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) 180 T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) 197) (((-1277 $) (-928)) 116)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) 186 T CONST)) (-1998 (($) 161 T CONST)) (-4257 (($ $) 122 (|has| |#1| (-373))) (($ $ (-777)) 114 (|has| |#1| (-373)))) (-3414 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3892 (((-112) $ $) 208)) (-4013 (($ $ $) 119) (($ $ |#1|) 120)) (-4003 (($ $) 202) (($ $ $) 206)) (-3992 (($ $ $) 204)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 153)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 211) (($ $ $) 164) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
-(((-357 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -2945 ((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -4153 ((-695 |#1|))) (-15 -3955 ((-777))))) (-354) (-3 (-1182 |#1|) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (T -357))
-((-2945 (*1 *2) (-12 (-5 *2 (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) *2)))) (-4153 (*1 *2) (-12 (-5 *2 (-695 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129))))))))) (-3955 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129))))))))))
-(-13 (-333 |#1|) (-10 -7 (-15 -2945 ((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -4153 ((-695 |#1|))) (-15 -3955 ((-777)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3955 (((-777)) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-2615 (($ (-1277 |#1|)) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| |#1| (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL (|has| |#1| (-373)))) (-4240 (((-112) $) NIL (|has| |#1| (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| |#1| (-373)))) (-3531 (((-112) $) NIL (|has| |#1| (-373)))) (-3046 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 |#1|) $) NIL) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-1997 (((-928) $) NIL (|has| |#1| (-373)))) (-1716 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-3051 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-4333 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| |#1| (-373)) CONST)) (-4298 (($ (-928)) NIL (|has| |#1| (-373)))) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-2945 (((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129)))))) NIL)) (-4153 (((-695 |#1|)) NIL)) (-3643 (($) NIL (|has| |#1| (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| |#1| (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 |#1|)) NIL)) (-1900 (($) NIL (|has| |#1| (-373)))) (-2229 (($) NIL (|has| |#1| (-373)))) (-2987 (((-1277 |#1|) $) NIL) (((-695 |#1|) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) NIL)) (-1660 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL) (((-1277 $) (-928)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3414 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-358 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -2945 ((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -4153 ((-695 |#1|))) (-15 -3955 ((-777))))) (-354) (-928)) (T -358))
-((-2945 (*1 *2) (-12 (-5 *2 (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129)))))) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928)))) (-4153 (*1 *2) (-12 (-5 *2 (-695 *3)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928)))) (-3955 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928)))))
-(-13 (-333 |#1|) (-10 -7 (-15 -2945 ((-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))))) (-15 -4153 ((-695 |#1|))) (-15 -3955 ((-777)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-917 |#1|) (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| (-917 |#1|) (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-917 |#1|) "failed") $) NIL)) (-4387 (((-917 |#1|) $) NIL)) (-2615 (($ (-1277 (-917 |#1|))) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-917 |#1|) (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-917 |#1|) (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL (|has| (-917 |#1|) (-373)))) (-4240 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373)))) (($ $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| (-917 |#1|) (-373))) (((-839 (-928)) $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| (-917 |#1|) (-373)))) (-3531 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-3046 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| (-917 |#1|) (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 (-917 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-1997 (((-928) $) NIL (|has| (-917 |#1|) (-373)))) (-1716 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373)))) (-3051 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-1182 (-917 |#1|)) "failed") $ $) NIL (|has| (-917 |#1|) (-373)))) (-4333 (($ $ (-1182 (-917 |#1|))) NIL (|has| (-917 |#1|) (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-917 |#1|) (-373)) CONST)) (-4298 (($ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-3643 (($) NIL (|has| (-917 |#1|) (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| (-917 |#1|) (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 (-917 |#1|))) NIL)) (-1900 (($) NIL (|has| (-917 |#1|) (-373)))) (-2229 (($) NIL (|has| (-917 |#1|) (-373)))) (-2987 (((-1277 (-917 |#1|)) $) NIL) (((-695 (-917 |#1|)) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| (-917 |#1|) (-373)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-917 |#1|)) NIL)) (-1660 (($ $) NIL (|has| (-917 |#1|) (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL) (((-1277 $) (-928)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3414 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-917 |#1|)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-917 |#1|)) NIL) (($ (-917 |#1|) $) NIL)))
-(((-359 |#1| |#2|) (-333 (-917 |#1|)) (-928) (-928)) (T -359))
-NIL
-(-333 (-917 |#1|))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) 129 (|has| |#1| (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) 155 (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 103)) (-4387 ((|#1| $) 100)) (-2615 (($ (-1277 |#1|)) 95)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) 92 (|has| |#1| (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) 51 (|has| |#1| (-373)))) (-4240 (((-112) $) NIL (|has| |#1| (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) 130 (|has| |#1| (-373)))) (-3531 (((-112) $) 84 (|has| |#1| (-373)))) (-3046 ((|#1| $) 47) (($ $ (-928)) 52 (|has| |#1| (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 |#1|) $) 75) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-1997 (((-928) $) 107 (|has| |#1| (-373)))) (-1716 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-3051 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-4333 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| |#1| (-373)) CONST)) (-4298 (($ (-928)) 105 (|has| |#1| (-373)))) (-3031 (((-112) $) 157)) (-3891 (((-1129) $) NIL)) (-3643 (($) 44 (|has| |#1| (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 124 (|has| |#1| (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) 154)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) 67)) (-3144 (((-1182 |#1|)) 98)) (-1900 (($) 135 (|has| |#1| (-373)))) (-2229 (($) NIL (|has| |#1| (-373)))) (-2987 (((-1277 |#1|) $) 63) (((-695 |#1|) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-2869 (((-868) $) 153) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 97)) (-1660 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) 159 T CONST)) (-1344 (((-112) $ $) 161)) (-2681 (((-1277 $)) 119) (((-1277 $) (-928)) 58)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) 121 T CONST)) (-1998 (($) 40 T CONST)) (-4257 (($ $) 78 (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3414 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3892 (((-112) $ $) 117)) (-4013 (($ $ $) 109) (($ $ |#1|) 110)) (-4003 (($ $) 90) (($ $ $) 115)) (-3992 (($ $ $) 113)) (** (($ $ (-928)) NIL) (($ $ (-777)) 53) (($ $ (-570)) 138)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 88) (($ $ $) 65) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
-(((-360 |#1| |#2|) (-333 |#1|) (-354) (-1182 |#1|)) (T -360))
-NIL
-(-333 |#1|)
-((-2257 ((|#1| (-1182 |#2|)) 59)))
-(((-361 |#1| |#2|) (-10 -7 (-15 -2257 (|#1| (-1182 |#2|)))) (-13 (-408) (-10 -7 (-15 -2869 (|#1| |#2|)) (-15 -1997 ((-928) |#1|)) (-15 -2681 ((-1277 |#1|) (-928))) (-15 -4257 (|#1| |#1|)))) (-354)) (T -361))
-((-2257 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-4 *2 (-13 (-408) (-10 -7 (-15 -2869 (*2 *4)) (-15 -1997 ((-928) *2)) (-15 -2681 ((-1277 *2) (-928))) (-15 -4257 (*2 *2))))) (-5 *1 (-361 *2 *4)))))
-(-10 -7 (-15 -2257 (|#1| (-1182 |#2|))))
-((-3207 (((-965 (-1182 |#1|)) (-1182 |#1|)) 49)) (-2066 (((-1182 |#1|) (-928) (-928)) 154) (((-1182 |#1|) (-928)) 150)) (-4240 (((-112) (-1182 |#1|)) 107)) (-3831 (((-928) (-928)) 85)) (-1819 (((-928) (-928)) 92)) (-4194 (((-928) (-928)) 83)) (-3531 (((-112) (-1182 |#1|)) 111)) (-1423 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 135)) (-3385 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 140)) (-3682 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 139)) (-2736 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 138)) (-1924 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 131)) (-3739 (((-1182 |#1|) (-1182 |#1|)) 71)) (-2827 (((-1182 |#1|) (-928)) 145)) (-4267 (((-1182 |#1|) (-928)) 148)) (-3163 (((-1182 |#1|) (-928)) 147)) (-2687 (((-1182 |#1|) (-928)) 146)) (-3608 (((-1182 |#1|) (-928)) 143)))
-(((-362 |#1|) (-10 -7 (-15 -4240 ((-112) (-1182 |#1|))) (-15 -3531 ((-112) (-1182 |#1|))) (-15 -4194 ((-928) (-928))) (-15 -3831 ((-928) (-928))) (-15 -1819 ((-928) (-928))) (-15 -3608 ((-1182 |#1|) (-928))) (-15 -2827 ((-1182 |#1|) (-928))) (-15 -2687 ((-1182 |#1|) (-928))) (-15 -3163 ((-1182 |#1|) (-928))) (-15 -4267 ((-1182 |#1|) (-928))) (-15 -1924 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -1423 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -2736 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3682 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3385 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -2066 ((-1182 |#1|) (-928))) (-15 -2066 ((-1182 |#1|) (-928) (-928))) (-15 -3739 ((-1182 |#1|) (-1182 |#1|))) (-15 -3207 ((-965 (-1182 |#1|)) (-1182 |#1|)))) (-354)) (T -362))
-((-3207 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-965 (-1182 *4))) (-5 *1 (-362 *4)) (-5 *3 (-1182 *4)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-2066 (*1 *2 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-3385 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-3682 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-2736 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-1423 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-1924 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-2687 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-1819 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-362 *4)))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-362 *4)))))
-(-10 -7 (-15 -4240 ((-112) (-1182 |#1|))) (-15 -3531 ((-112) (-1182 |#1|))) (-15 -4194 ((-928) (-928))) (-15 -3831 ((-928) (-928))) (-15 -1819 ((-928) (-928))) (-15 -3608 ((-1182 |#1|) (-928))) (-15 -2827 ((-1182 |#1|) (-928))) (-15 -2687 ((-1182 |#1|) (-928))) (-15 -3163 ((-1182 |#1|) (-928))) (-15 -4267 ((-1182 |#1|) (-928))) (-15 -1924 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -1423 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -2736 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3682 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3385 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -2066 ((-1182 |#1|) (-928))) (-15 -2066 ((-1182 |#1|) (-928) (-928))) (-15 -3739 ((-1182 |#1|) (-1182 |#1|))) (-15 -3207 ((-965 (-1182 |#1|)) (-1182 |#1|))))
-((-3208 (((-3 (-650 |#3|) "failed") (-650 |#3|) |#3|) 38)))
-(((-363 |#1| |#2| |#3|) (-10 -7 (-15 -3208 ((-3 (-650 |#3|) "failed") (-650 |#3|) |#3|))) (-354) (-1253 |#1|) (-1253 |#2|)) (T -363))
-((-3208 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-354)) (-5 *1 (-363 *4 *5 *3)))))
-(-10 -7 (-15 -3208 ((-3 (-650 |#3|) "failed") (-650 |#3|) |#3|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-2615 (($ (-1277 |#1|)) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| |#1| (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL (|has| |#1| (-373)))) (-4240 (((-112) $) NIL (|has| |#1| (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| |#1| (-373)))) (-3531 (((-112) $) NIL (|has| |#1| (-373)))) (-3046 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 |#1|) $) NIL) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-1997 (((-928) $) NIL (|has| |#1| (-373)))) (-1716 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-3051 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-4333 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| |#1| (-373)) CONST)) (-4298 (($ (-928)) NIL (|has| |#1| (-373)))) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-3643 (($) NIL (|has| |#1| (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| |#1| (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 |#1|)) NIL)) (-1900 (($) NIL (|has| |#1| (-373)))) (-2229 (($) NIL (|has| |#1| (-373)))) (-2987 (((-1277 |#1|) $) NIL) (((-695 |#1|) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) NIL)) (-1660 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL) (((-1277 $) (-928)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3414 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-364 |#1| |#2|) (-333 |#1|) (-354) (-928)) (T -364))
-NIL
-(-333 |#1|)
-((-1912 (((-112) (-650 (-959 |#1|))) 41)) (-2348 (((-650 (-959 |#1|)) (-650 (-959 |#1|))) 53)) (-2379 (((-3 (-650 (-959 |#1|)) "failed") (-650 (-959 |#1|))) 48)))
-(((-365 |#1| |#2|) (-10 -7 (-15 -1912 ((-112) (-650 (-959 |#1|)))) (-15 -2379 ((-3 (-650 (-959 |#1|)) "failed") (-650 (-959 |#1|)))) (-15 -2348 ((-650 (-959 |#1|)) (-650 (-959 |#1|))))) (-458) (-650 (-1186))) (T -365))
-((-2348 (*1 *2 *2) (-12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458)) (-5 *1 (-365 *3 *4)) (-14 *4 (-650 (-1186))))) (-2379 (*1 *2 *2) (|partial| -12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458)) (-5 *1 (-365 *3 *4)) (-14 *4 (-650 (-1186))))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-112)) (-5 *1 (-365 *4 *5)) (-14 *5 (-650 (-1186))))))
-(-10 -7 (-15 -1912 ((-112) (-650 (-959 |#1|)))) (-15 -2379 ((-3 (-650 (-959 |#1|)) "failed") (-650 (-959 |#1|)))) (-15 -2348 ((-650 (-959 |#1|)) (-650 (-959 |#1|)))))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777) $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) 17)) (-2245 ((|#1| $ (-570)) NIL)) (-1762 (((-570) $ (-570)) NIL)) (-4249 (($ (-1 |#1| |#1|) $) 34)) (-1713 (($ (-1 (-570) (-570)) $) 26)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 28)) (-3891 (((-1129) $) NIL)) (-2660 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-570)))) $) 30)) (-2733 (($ $ $) NIL)) (-2319 (($ $ $) NIL)) (-2869 (((-868) $) 40) (($ |#1|) NIL)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 11 T CONST)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ |#1| (-570)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-366 |#1|) (-13 (-479) (-1047 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-570))) (-15 -2401 ((-777) $)) (-15 -1762 ((-570) $ (-570))) (-15 -2245 (|#1| $ (-570))) (-15 -1713 ($ (-1 (-570) (-570)) $)) (-15 -4249 ($ (-1 |#1| |#1|) $)) (-15 -2660 ((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-570)))) $)))) (-1109)) (T -366))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) (-1762 (*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-570) (-570))) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-366 *3)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 (-570))))) (-5 *1 (-366 *3)) (-4 *3 (-1109)))))
-(-13 (-479) (-1047 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-570))) (-15 -2401 ((-777) $)) (-15 -1762 ((-570) $ (-570))) (-15 -2245 (|#1| $ (-570))) (-15 -1713 ($ (-1 (-570) (-570)) $)) (-15 -4249 ($ (-1 |#1| |#1|) $)) (-15 -2660 ((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-570)))) $))))
-((-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 13)) (-2046 (($ $) 14)) (-2929 (((-424 $) $) 34)) (-2145 (((-112) $) 30)) (-4315 (($ $) 19)) (-3903 (($ $ $) 25) (($ (-650 $)) NIL)) (-2340 (((-424 $) $) 35)) (-2837 (((-3 $ "failed") $ $) 24)) (-2002 (((-777) $) 28)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 39)) (-2939 (((-112) $ $) 16)) (-4013 (($ $ $) 37)))
-(((-367 |#1|) (-10 -8 (-15 -4013 (|#1| |#1| |#1|)) (-15 -4315 (|#1| |#1|)) (-15 -2145 ((-112) |#1|)) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -4038 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2002 ((-777) |#1|)) (-15 -3903 (|#1| (-650 |#1|))) (-15 -3903 (|#1| |#1| |#1|)) (-15 -2939 ((-112) |#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -1558 ((-2 (|:| -1347 |#1|) (|:| -4439 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|))) (-368)) (T -367))
-NIL
-(-10 -8 (-15 -4013 (|#1| |#1| |#1|)) (-15 -4315 (|#1| |#1|)) (-15 -2145 ((-112) |#1|)) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -4038 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2002 ((-777) |#1|)) (-15 -3903 (|#1| (-650 |#1|))) (-15 -3903 (|#1| |#1| |#1|)) (-15 -2939 ((-112) |#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -1558 ((-2 (|:| -1347 |#1|) (|:| -4439 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-1799 (((-112) $ $) 65)) (-2333 (($) 18 T CONST)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2145 (((-112) $) 79)) (-2005 (((-112) $) 35)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75)))
-(((-368) (-141)) (T -368))
-((-4013 (*1 *1 *1 *1) (-4 *1 (-368))))
-(-13 (-311) (-1231) (-245) (-10 -8 (-15 -4013 ($ $ $)) (-6 -4450) (-6 -4444)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T))
-((-2847 (((-112) $ $) 7)) (-3185 ((|#2| $ |#2|) 14)) (-2873 (($ $ (-1168)) 19)) (-3262 ((|#2| $) 15)) (-2965 (($ |#1|) 21) (($ |#1| (-1168)) 20)) (-1770 ((|#1| $) 17)) (-3240 (((-1168) $) 10)) (-2116 (((-1168) $) 16)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1740 (($ $) 18)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-369 |#1| |#2|) (-141) (-1109) (-1109)) (T -369))
-((-2965 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-2965 (*1 *1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *1 (-369 *2 *4)) (-4 *2 (-1109)) (-4 *4 (-1109)))) (-2873 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-1740 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-1168)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-3185 (*1 *2 *1 *2) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -2965 ($ |t#1|)) (-15 -2965 ($ |t#1| (-1168))) (-15 -2873 ($ $ (-1168))) (-15 -1740 ($ $)) (-15 -1770 (|t#1| $)) (-15 -2116 ((-1168) $)) (-15 -3262 (|t#2| $)) (-15 -3185 (|t#2| $ |t#2|))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-3185 ((|#1| $ |#1|) 31)) (-2873 (($ $ (-1168)) 23)) (-1614 (((-3 |#1| "failed") $) 30)) (-3262 ((|#1| $) 28)) (-2965 (($ (-394)) 22) (($ (-394) (-1168)) 21)) (-1770 (((-394) $) 25)) (-3240 (((-1168) $) NIL)) (-2116 (((-1168) $) 26)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 20)) (-1740 (($ $) 24)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 19)))
-(((-370 |#1|) (-13 (-369 (-394) |#1|) (-10 -8 (-15 -1614 ((-3 |#1| "failed") $)))) (-1109)) (T -370))
-((-1614 (*1 *2 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1109)))))
-(-13 (-369 (-394) |#1|) (-10 -8 (-15 -1614 ((-3 |#1| "failed") $))))
-((-1757 (((-1277 (-695 |#2|)) (-1277 $)) 67)) (-3237 (((-695 |#2|) (-1277 $)) 139)) (-4071 ((|#2| $) 36)) (-2713 (((-695 |#2|) $ (-1277 $)) 142)) (-2075 (((-3 $ "failed") $) 89)) (-2095 ((|#2| $) 39)) (-2770 (((-1182 |#2|) $) 98)) (-1885 ((|#2| (-1277 $)) 122)) (-4236 (((-1182 |#2|) $) 32)) (-2027 (((-112)) 116)) (-2615 (($ (-1277 |#2|) (-1277 $)) 132)) (-3957 (((-3 $ "failed") $) 93)) (-1991 (((-112)) 111)) (-1939 (((-112)) 106)) (-3505 (((-112)) 58)) (-3592 (((-695 |#2|) (-1277 $)) 137)) (-2790 ((|#2| $) 35)) (-2256 (((-695 |#2|) $ (-1277 $)) 141)) (-1760 (((-3 $ "failed") $) 87)) (-2168 ((|#2| $) 38)) (-1700 (((-1182 |#2|) $) 97)) (-1965 ((|#2| (-1277 $)) 120)) (-4281 (((-1182 |#2|) $) 30)) (-2476 (((-112)) 115)) (-3084 (((-112)) 108)) (-2451 (((-112)) 56)) (-3692 (((-112)) 103)) (-2808 (((-112)) 117)) (-2987 (((-1277 |#2|) $ (-1277 $)) NIL) (((-695 |#2|) (-1277 $) (-1277 $)) 128)) (-3143 (((-112)) 113)) (-2013 (((-650 (-1277 |#2|))) 102)) (-2125 (((-112)) 114)) (-4099 (((-112)) 112)) (-4235 (((-112)) 51)) (-1849 (((-112)) 118)))
-(((-371 |#1| |#2|) (-10 -8 (-15 -2770 ((-1182 |#2|) |#1|)) (-15 -1700 ((-1182 |#2|) |#1|)) (-15 -2013 ((-650 (-1277 |#2|)))) (-15 -2075 ((-3 |#1| "failed") |#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 -1939 ((-112))) (-15 -3084 ((-112))) (-15 -1991 ((-112))) (-15 -2451 ((-112))) (-15 -3505 ((-112))) (-15 -3692 ((-112))) (-15 -1849 ((-112))) (-15 -2808 ((-112))) (-15 -2027 ((-112))) (-15 -2476 ((-112))) (-15 -4235 ((-112))) (-15 -2125 ((-112))) (-15 -4099 ((-112))) (-15 -3143 ((-112))) (-15 -4236 ((-1182 |#2|) |#1|)) (-15 -4281 ((-1182 |#2|) |#1|)) (-15 -3237 ((-695 |#2|) (-1277 |#1|))) (-15 -3592 ((-695 |#2|) (-1277 |#1|))) (-15 -1885 (|#2| (-1277 |#1|))) (-15 -1965 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -2095 (|#2| |#1|)) (-15 -2168 (|#2| |#1|)) (-15 -4071 (|#2| |#1|)) (-15 -2790 (|#2| |#1|)) (-15 -2713 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -2256 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -1757 ((-1277 (-695 |#2|)) (-1277 |#1|)))) (-372 |#2|) (-174)) (T -371))
-((-3143 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-4099 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2125 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-4235 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2476 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2027 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2808 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1849 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-3692 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-3505 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2451 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1991 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-3084 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1939 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2013 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-650 (-1277 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))))
-(-10 -8 (-15 -2770 ((-1182 |#2|) |#1|)) (-15 -1700 ((-1182 |#2|) |#1|)) (-15 -2013 ((-650 (-1277 |#2|)))) (-15 -2075 ((-3 |#1| "failed") |#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 -1939 ((-112))) (-15 -3084 ((-112))) (-15 -1991 ((-112))) (-15 -2451 ((-112))) (-15 -3505 ((-112))) (-15 -3692 ((-112))) (-15 -1849 ((-112))) (-15 -2808 ((-112))) (-15 -2027 ((-112))) (-15 -2476 ((-112))) (-15 -4235 ((-112))) (-15 -2125 ((-112))) (-15 -4099 ((-112))) (-15 -3143 ((-112))) (-15 -4236 ((-1182 |#2|) |#1|)) (-15 -4281 ((-1182 |#2|) |#1|)) (-15 -3237 ((-695 |#2|) (-1277 |#1|))) (-15 -3592 ((-695 |#2|) (-1277 |#1|))) (-15 -1885 (|#2| (-1277 |#1|))) (-15 -1965 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -2095 (|#2| |#1|)) (-15 -2168 (|#2| |#1|)) (-15 -4071 (|#2| |#1|)) (-15 -2790 (|#2| |#1|)) (-15 -2713 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -2256 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -1757 ((-1277 (-695 |#2|)) (-1277 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1347 (((-3 $ "failed")) 42 (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) 20)) (-1757 (((-1277 (-695 |#1|)) (-1277 $)) 83)) (-3266 (((-1277 $)) 86)) (-2333 (($) 18 T CONST)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) 45 (|has| |#1| (-562)))) (-3929 (((-3 $ "failed")) 43 (|has| |#1| (-562)))) (-3237 (((-695 |#1|) (-1277 $)) 70)) (-4071 ((|#1| $) 79)) (-2713 (((-695 |#1|) $ (-1277 $)) 81)) (-2075 (((-3 $ "failed") $) 50 (|has| |#1| (-562)))) (-1794 (($ $ (-928)) 31)) (-2095 ((|#1| $) 77)) (-2770 (((-1182 |#1|) $) 47 (|has| |#1| (-562)))) (-1885 ((|#1| (-1277 $)) 72)) (-4236 (((-1182 |#1|) $) 68)) (-2027 (((-112)) 62)) (-2615 (($ (-1277 |#1|) (-1277 $)) 74)) (-3957 (((-3 $ "failed") $) 52 (|has| |#1| (-562)))) (-4412 (((-928)) 85)) (-2462 (((-112)) 59)) (-3969 (($ $ (-928)) 38)) (-1991 (((-112)) 55)) (-1939 (((-112)) 53)) (-3505 (((-112)) 57)) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) 46 (|has| |#1| (-562)))) (-3489 (((-3 $ "failed")) 44 (|has| |#1| (-562)))) (-3592 (((-695 |#1|) (-1277 $)) 71)) (-2790 ((|#1| $) 80)) (-2256 (((-695 |#1|) $ (-1277 $)) 82)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-562)))) (-3454 (($ $ (-928)) 32)) (-2168 ((|#1| $) 78)) (-1700 (((-1182 |#1|) $) 48 (|has| |#1| (-562)))) (-1965 ((|#1| (-1277 $)) 73)) (-4281 (((-1182 |#1|) $) 69)) (-2476 (((-112)) 63)) (-3240 (((-1168) $) 10)) (-3084 (((-112)) 54)) (-2451 (((-112)) 56)) (-3692 (((-112)) 58)) (-3891 (((-1129) $) 11)) (-2808 (((-112)) 61)) (-2987 (((-1277 |#1|) $ (-1277 $)) 76) (((-695 |#1|) (-1277 $) (-1277 $)) 75)) (-4259 (((-650 (-959 |#1|)) (-1277 $)) 84)) (-2319 (($ $ $) 28)) (-3143 (((-112)) 67)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-2013 (((-650 (-1277 |#1|))) 49 (|has| |#1| (-562)))) (-4373 (($ $ $ $) 29)) (-2125 (((-112)) 65)) (-2885 (($ $ $) 27)) (-4099 (((-112)) 66)) (-4235 (((-112)) 64)) (-1849 (((-112)) 60)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-372 |#1|) (-141) (-174)) (T -372))
-((-3266 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1277 *1)) (-4 *1 (-372 *3)))) (-4412 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-928)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-650 (-959 *4))))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-1277 (-695 *4))))) (-2256 (*1 *2 *1 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-2713 (*1 *2 *1 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-4071 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-2987 (*1 *2 *1 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-1277 *4)))) (-2987 (*1 *2 *3 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-1277 *1)) (-4 *4 (-174)) (-4 *1 (-372 *4)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3)))) (-3143 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4099 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2125 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4235 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2476 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2027 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2808 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1849 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2462 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3692 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3505 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2451 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1991 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3084 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1939 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3957 (*1 *1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-1760 (*1 *1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-2075 (*1 *1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-2013 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) (-5 *2 (-650 (-1277 *3))))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) (-5 *2 (-1182 *3)))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) (-5 *2 (-1182 *3)))) (-4405 (*1 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2681 (-650 *1)))) (-4 *1 (-372 *3)))) (-3339 (*1 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2681 (-650 *1)))) (-4 *1 (-372 *3)))) (-3489 (*1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))) (-3929 (*1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))) (-1347 (*1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))))
-(-13 (-750 |t#1|) (-10 -8 (-15 -3266 ((-1277 $))) (-15 -4412 ((-928))) (-15 -4259 ((-650 (-959 |t#1|)) (-1277 $))) (-15 -1757 ((-1277 (-695 |t#1|)) (-1277 $))) (-15 -2256 ((-695 |t#1|) $ (-1277 $))) (-15 -2713 ((-695 |t#1|) $ (-1277 $))) (-15 -2790 (|t#1| $)) (-15 -4071 (|t#1| $)) (-15 -2168 (|t#1| $)) (-15 -2095 (|t#1| $)) (-15 -2987 ((-1277 |t#1|) $ (-1277 $))) (-15 -2987 ((-695 |t#1|) (-1277 $) (-1277 $))) (-15 -2615 ($ (-1277 |t#1|) (-1277 $))) (-15 -1965 (|t#1| (-1277 $))) (-15 -1885 (|t#1| (-1277 $))) (-15 -3592 ((-695 |t#1|) (-1277 $))) (-15 -3237 ((-695 |t#1|) (-1277 $))) (-15 -4281 ((-1182 |t#1|) $)) (-15 -4236 ((-1182 |t#1|) $)) (-15 -3143 ((-112))) (-15 -4099 ((-112))) (-15 -2125 ((-112))) (-15 -4235 ((-112))) (-15 -2476 ((-112))) (-15 -2027 ((-112))) (-15 -2808 ((-112))) (-15 -1849 ((-112))) (-15 -2462 ((-112))) (-15 -3692 ((-112))) (-15 -3505 ((-112))) (-15 -2451 ((-112))) (-15 -1991 ((-112))) (-15 -3084 ((-112))) (-15 -1939 ((-112))) (IF (|has| |t#1| (-562)) (PROGN (-15 -3957 ((-3 $ "failed") $)) (-15 -1760 ((-3 $ "failed") $)) (-15 -2075 ((-3 $ "failed") $)) (-15 -2013 ((-650 (-1277 |t#1|)))) (-15 -1700 ((-1182 |t#1|) $)) (-15 -2770 ((-1182 |t#1|) $)) (-15 -4405 ((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed"))) (-15 -3339 ((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed"))) (-15 -3489 ((-3 $ "failed"))) (-15 -3929 ((-3 $ "failed"))) (-15 -1347 ((-3 $ "failed"))) (-6 -4449)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-726) . T) ((-750 |#1|) . T) ((-767) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-2401 (((-777)) 17)) (-2066 (($) 14)) (-1997 (((-928) $) 15)) (-3240 (((-1168) $) 10)) (-4298 (($ (-928)) 16)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-373) (-141)) (T -373))
-((-2401 (*1 *2) (-12 (-4 *1 (-373)) (-5 *2 (-777)))) (-4298 (*1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-373)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-928)))) (-2066 (*1 *1) (-4 *1 (-373))))
-(-13 (-1109) (-10 -8 (-15 -2401 ((-777))) (-15 -4298 ($ (-928))) (-15 -1997 ((-928) $)) (-15 -2066 ($))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-3524 (((-695 |#2|) (-1277 $)) 45)) (-2615 (($ (-1277 |#2|) (-1277 $)) 39)) (-4385 (((-695 |#2|) $ (-1277 $)) 47)) (-2896 ((|#2| (-1277 $)) 13)) (-2987 (((-1277 |#2|) $ (-1277 $)) NIL) (((-695 |#2|) (-1277 $) (-1277 $)) 27)))
-(((-374 |#1| |#2| |#3|) (-10 -8 (-15 -3524 ((-695 |#2|) (-1277 |#1|))) (-15 -2896 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -4385 ((-695 |#2|) |#1| (-1277 |#1|)))) (-375 |#2| |#3|) (-174) (-1253 |#2|)) (T -374))
-NIL
-(-10 -8 (-15 -3524 ((-695 |#2|) (-1277 |#1|))) (-15 -2896 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -4385 ((-695 |#2|) |#1| (-1277 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3524 (((-695 |#1|) (-1277 $)) 53)) (-1439 ((|#1| $) 59)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2615 (($ (-1277 |#1|) (-1277 $)) 55)) (-4385 (((-695 |#1|) $ (-1277 $)) 60)) (-3957 (((-3 $ "failed") $) 37)) (-4412 (((-928)) 61)) (-2005 (((-112) $) 35)) (-3046 ((|#1| $) 58)) (-3658 ((|#2| $) 51 (|has| |#1| (-368)))) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2896 ((|#1| (-1277 $)) 54)) (-2987 (((-1277 |#1|) $ (-1277 $)) 57) (((-695 |#1|) (-1277 $) (-1277 $)) 56)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44)) (-1660 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1816 ((|#2| $) 52)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-375 |#1| |#2|) (-141) (-174) (-1253 |t#1|)) (T -375))
-((-4412 (*1 *2) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3)) (-5 *2 (-928)))) (-4385 (*1 *2 *1 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-695 *4)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1253 *2)) (-4 *2 (-174)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1253 *2)) (-4 *2 (-174)))) (-2987 (*1 *2 *1 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-1277 *4)))) (-2987 (*1 *2 *3 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-695 *4)))) (-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-1277 *1)) (-4 *4 (-174)) (-4 *1 (-375 *4 *5)) (-4 *5 (-1253 *4)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *2 *4)) (-4 *4 (-1253 *2)) (-4 *2 (-174)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-695 *4)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1253 *3)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *3 (-368)) (-4 *2 (-1253 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -4412 ((-928))) (-15 -4385 ((-695 |t#1|) $ (-1277 $))) (-15 -1439 (|t#1| $)) (-15 -3046 (|t#1| $)) (-15 -2987 ((-1277 |t#1|) $ (-1277 $))) (-15 -2987 ((-695 |t#1|) (-1277 $) (-1277 $))) (-15 -2615 ($ (-1277 |t#1|) (-1277 $))) (-15 -2896 (|t#1| (-1277 $))) (-15 -3524 ((-695 |t#1|) (-1277 $))) (-15 -1816 (|t#2| $)) (IF (|has| |t#1| (-368)) (-15 -3658 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-3693 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2295 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2536 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-376 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2295 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3693 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1227) (-378 |#1|) (-1227) (-378 |#3|)) (T -376))
-((-3693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1227)) (-4 *5 (-1227)) (-4 *2 (-378 *5)) (-5 *1 (-376 *6 *4 *5 *2)) (-4 *4 (-378 *6)))) (-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1227)) (-4 *2 (-1227)) (-5 *1 (-376 *5 *4 *2 *6)) (-4 *4 (-378 *5)) (-4 *6 (-378 *2)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-4 *2 (-378 *6)) (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-378 *5)))))
-(-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2295 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3693 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3134 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2778 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2018 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4366 (($ $) 25)) (-2619 (((-570) (-1 (-112) |#2|) $) NIL) (((-570) |#2| $) 11) (((-570) |#2| $ (-570)) NIL)) (-4356 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-377 |#1| |#2|) (-10 -8 (-15 -2778 (|#1| |#1|)) (-15 -2778 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3134 ((-112) |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2619 ((-570) |#2| |#1| (-570))) (-15 -2619 ((-570) |#2| |#1|)) (-15 -2619 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -3134 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2018 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -4356 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-378 |#2|) (-1227)) (T -377))
-NIL
-(-10 -8 (-15 -2778 (|#1| |#1|)) (-15 -2778 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3134 ((-112) |#1|)) (-15 -2018 (|#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2619 ((-570) |#2| |#1| (-570))) (-15 -2619 ((-570) |#2| |#1|)) (-15 -2619 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -3134 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2018 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -4356 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4453))) (($ $) 91 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4453))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 60 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-4125 (($ $) 93 (|has| $ (-6 -4453)))) (-4366 (($ $) 103)) (-3153 (($ $) 80 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#1| $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 52)) (-2619 (((-570) (-1 (-112) |#1|) $) 100) (((-570) |#1| $) 99 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 98 (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-1908 (($ $ $) 90 (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-1764 (($ $ $) 89 (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 43 (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4222 (($ $ |#1|) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1244 (-570))) 71)) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2181 (($ $ $ (-570)) 94 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 72)) (-1505 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) 87 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 86 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-3945 (((-112) $ $) 88 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 85 (|has| |#1| (-856)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-378 |#1|) (-141) (-1227)) (T -378))
-((-4356 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1227)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1227)))) (-2018 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1227)))) (-3134 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-378 *4)) (-4 *4 (-1227)) (-5 *2 (-112)))) (-2619 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-378 *4)) (-4 *4 (-1227)) (-5 *2 (-570)))) (-2619 (*1 *2 *3 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-1227)) (-4 *3 (-1109)) (-5 *2 (-570)))) (-2619 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-378 *3)) (-4 *3 (-1227)) (-4 *3 (-1109)))) (-4356 (*1 *1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1227)) (-4 *2 (-856)))) (-2018 (*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1227)) (-4 *2 (-856)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-1227)) (-4 *3 (-856)) (-5 *2 (-112)))) (-2181 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-570)) (|has| *1 (-6 -4453)) (-4 *1 (-378 *3)) (-4 *3 (-1227)))) (-4125 (*1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-378 *2)) (-4 *2 (-1227)))) (-2778 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4453)) (-4 *1 (-378 *3)) (-4 *3 (-1227)))) (-2778 (*1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-378 *2)) (-4 *2 (-1227)) (-4 *2 (-856)))))
-(-13 (-657 |t#1|) (-10 -8 (-6 -4452) (-15 -4356 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4366 ($ $)) (-15 -2018 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3134 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2619 ((-570) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -2619 ((-570) |t#1| $)) (-15 -2619 ((-570) |t#1| $ (-570)))) |%noBranch|) (IF (|has| |t#1| (-856)) (PROGN (-6 (-856)) (-15 -4356 ($ $ $)) (-15 -2018 ($ $)) (-15 -3134 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4453)) (PROGN (-15 -2181 ($ $ $ (-570))) (-15 -4125 ($ $)) (-15 -2778 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-856)) (-15 -2778 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1227) . T))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3473 (((-650 |#1|) $) 37)) (-3768 (($ $ (-777)) 38)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2720 (((-1301 |#1| |#2|) (-1301 |#1| |#2|) $) 41)) (-3222 (($ $) 39)) (-2787 (((-1301 |#1| |#2|) (-1301 |#1| |#2|) $) 42)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-3034 (($ $ |#1| $) 36) (($ $ (-650 |#1|) (-650 $)) 35)) (-2650 (((-777) $) 43)) (-2881 (($ $ $) 34)) (-2869 (((-868) $) 12) (($ |#1|) 46) (((-1292 |#1| |#2|) $) 45) (((-1301 |#1| |#2|) $) 44)) (-1747 ((|#2| (-1301 |#1| |#2|) $) 47)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1960 (($ (-678 |#1|)) 40)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#2|) 33 (|has| |#2| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
-(((-379 |#1| |#2|) (-141) (-856) (-174)) (T -379))
-((-1747 (*1 *2 *3 *1) (-12 (-5 *3 (-1301 *4 *2)) (-4 *1 (-379 *4 *2)) (-4 *4 (-856)) (-4 *2 (-174)))) (-2869 (*1 *1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-1292 *3 *4)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-1301 *3 *4)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-777)))) (-2787 (*1 *2 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-2720 (*1 *2 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-4 *1 (-379 *3 *4)) (-4 *4 (-174)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-650 *3)))) (-3034 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-856)) (-4 *5 (-174)))))
-(-13 (-640 |t#2|) (-10 -8 (-15 -1747 (|t#2| (-1301 |t#1| |t#2|) $)) (-15 -2869 ($ |t#1|)) (-15 -2869 ((-1292 |t#1| |t#2|) $)) (-15 -2869 ((-1301 |t#1| |t#2|) $)) (-15 -2650 ((-777) $)) (-15 -2787 ((-1301 |t#1| |t#2|) (-1301 |t#1| |t#2|) $)) (-15 -2720 ((-1301 |t#1| |t#2|) (-1301 |t#1| |t#2|) $)) (-15 -1960 ($ (-678 |t#1|))) (-15 -3222 ($ $)) (-15 -3768 ($ $ (-777))) (-15 -3473 ((-650 |t#1|) $)) (-15 -3034 ($ $ |t#1| $)) (-15 -3034 ($ $ (-650 |t#1|) (-650 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-654 |#2|) . T) ((-640 |#2|) . T) ((-646 |#2|) . T) ((-723 |#2|) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1109) . T))
-((-2479 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-1532 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3389 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
-(((-380 |#1| |#2|) (-10 -7 (-15 -1532 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3389 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2479 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1227) (-13 (-378 |#1|) (-10 -7 (-6 -4453)))) (T -380))
-((-2479 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-380 *4 *2)) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453)))))) (-3389 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-380 *4 *2)) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453)))))) (-1532 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-380 *4 *2)) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453)))))))
-(-10 -7 (-15 -1532 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3389 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2479 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-3054 (((-695 |#2|) (-695 $)) NIL) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 22) (((-695 (-570)) (-695 $)) 14)))
-(((-381 |#1| |#2|) (-10 -8 (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 |#2|) (-695 |#1|)))) (-382 |#2|) (-1058)) (T -381))
-NIL
-(-10 -8 (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 |#2|) (-695 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3054 (((-695 |#1|) (-695 $)) 40) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 39) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 47 (|has| |#1| (-645 (-570)))) (((-695 (-570)) (-695 $)) 46 (|has| |#1| (-645 (-570))))) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-382 |#1|) (-141) (-1058)) (T -382))
-NIL
-(-13 (-645 |t#1|) (-10 -7 (IF (|has| |t#1| (-645 (-570))) (-6 (-645 (-570))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-1592 (((-650 (-298 (-959 (-171 |#1|)))) (-298 (-413 (-959 (-171 (-570))))) |#1|) 51) (((-650 (-298 (-959 (-171 |#1|)))) (-413 (-959 (-171 (-570)))) |#1|) 50) (((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-298 (-413 (-959 (-171 (-570)))))) |#1|) 47) (((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-413 (-959 (-171 (-570))))) |#1|) 41)) (-3744 (((-650 (-650 (-171 |#1|))) (-650 (-413 (-959 (-171 (-570))))) (-650 (-1186)) |#1|) 30) (((-650 (-171 |#1|)) (-413 (-959 (-171 (-570)))) |#1|) 18)))
-(((-383 |#1|) (-10 -7 (-15 -1592 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -1592 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-298 (-413 (-959 (-171 (-570)))))) |#1|)) (-15 -1592 ((-650 (-298 (-959 (-171 |#1|)))) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -1592 ((-650 (-298 (-959 (-171 |#1|)))) (-298 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -3744 ((-650 (-171 |#1|)) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -3744 ((-650 (-650 (-171 |#1|))) (-650 (-413 (-959 (-171 (-570))))) (-650 (-1186)) |#1|))) (-13 (-368) (-854))) (T -383))
-((-3744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570)))))) (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 (-171 *5)))) (-5 *1 (-383 *5)) (-4 *5 (-13 (-368) (-854))))) (-3744 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-171 (-570))))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 (-171 (-570)))))) (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-171 (-570))))) (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-298 (-413 (-959 (-171 (-570))))))) (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570)))))) (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))))
-(-10 -7 (-15 -1592 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -1592 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-298 (-413 (-959 (-171 (-570)))))) |#1|)) (-15 -1592 ((-650 (-298 (-959 (-171 |#1|)))) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -1592 ((-650 (-298 (-959 (-171 |#1|)))) (-298 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -3744 ((-650 (-171 |#1|)) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -3744 ((-650 (-650 (-171 |#1|))) (-650 (-413 (-959 (-171 (-570))))) (-650 (-1186)) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 35)) (-3150 (((-570) $) 62)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3025 (($ $) 136)) (-3900 (($ $) 98)) (-3770 (($ $) 90)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-2459 (($ $) 47)) (-1799 (((-112) $ $) NIL)) (-3876 (($ $) 96)) (-3745 (($ $) 85)) (-2419 (((-570) $) 78)) (-3609 (($ $ (-570)) 73)) (-1513 (($ $) NIL)) (-3791 (($ $) NIL)) (-2333 (($) NIL T CONST)) (-3325 (($ $) 138)) (-2435 (((-3 (-570) "failed") $) 231) (((-3 (-413 (-570)) "failed") $) 227)) (-4387 (((-570) $) 229) (((-413 (-570)) $) 225)) (-2788 (($ $ $) NIL)) (-2135 (((-570) $ $) 125)) (-3957 (((-3 $ "failed") $) 141)) (-4353 (((-413 (-570)) $ (-777)) 232) (((-413 (-570)) $ (-777) (-777)) 224)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-1492 (((-928)) 121) (((-928) (-928)) 122 (|has| $ (-6 -4443)))) (-2811 (((-112) $) 130)) (-1625 (($) 41)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL)) (-1838 (((-1282) (-777)) 191)) (-3220 (((-1282)) 196) (((-1282) (-777)) 197)) (-3629 (((-1282)) 198) (((-1282) (-777)) 199)) (-2258 (((-1282)) 194) (((-1282) (-777)) 195)) (-3995 (((-570) $) 68)) (-2005 (((-112) $) 40)) (-3035 (($ $ (-570)) NIL)) (-2236 (($ $) 51)) (-3046 (($ $) NIL)) (-2746 (((-112) $) 37)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL) (($) NIL (-12 (-3201 (|has| $ (-6 -4435))) (-3201 (|has| $ (-6 -4443)))))) (-1764 (($ $ $) NIL) (($) NIL (-12 (-3201 (|has| $ (-6 -4435))) (-3201 (|has| $ (-6 -4443)))))) (-3646 (((-570) $) 17)) (-3483 (($) 106) (($ $) 113)) (-3356 (($) 112) (($ $) 114)) (-3447 (($ $) 101)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 143)) (-2083 (((-928) (-570)) 46 (|has| $ (-6 -4443)))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) 60)) (-2037 (($ $) 135)) (-1531 (($ (-570) (-570)) 131) (($ (-570) (-570) (-928)) 132)) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2940 (((-570) $) 19)) (-2183 (($) 115)) (-2651 (($ $) 95)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3961 (((-928)) 123) (((-928) (-928)) 124 (|has| $ (-6 -4443)))) (-2375 (($ $ (-777)) NIL) (($ $) 142)) (-4060 (((-928) (-570)) 50 (|has| $ (-6 -4443)))) (-1523 (($ $) NIL)) (-3801 (($ $) NIL)) (-3913 (($ $) NIL)) (-3781 (($ $) NIL)) (-3887 (($ $) 97)) (-3758 (($ $) 89)) (-2601 (((-384) $) 216) (((-227) $) 218) (((-899 (-384)) $) NIL) (((-1168) $) 202) (((-542) $) 214) (($ (-227)) 223)) (-2869 (((-868) $) 206) (($ (-570)) 228) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-570)) 228) (($ (-413 (-570))) NIL) (((-227) $) 219)) (-2294 (((-777)) NIL T CONST)) (-3850 (($ $) 137)) (-3529 (((-928)) 61) (((-928) (-928)) 80 (|has| $ (-6 -4443)))) (-1344 (((-112) $ $) NIL)) (-1540 (((-928)) 126)) (-1561 (($ $) 104)) (-3833 (($ $) 49) (($ $ $) 59)) (-2939 (((-112) $ $) NIL)) (-1536 (($ $) 102)) (-3811 (($ $) 39)) (-1585 (($ $) NIL)) (-3853 (($ $) NIL)) (-2900 (($ $) NIL)) (-3864 (($ $) NIL)) (-1575 (($ $) NIL)) (-3844 (($ $) NIL)) (-1546 (($ $) 103)) (-3821 (($ $) 52)) (-2521 (($ $) 58)) (-1981 (($) 36 T CONST)) (-1998 (($) 43 T CONST)) (-4245 (((-1168) $) 27) (((-1168) $ (-112)) 29) (((-1282) (-828) $) 30) (((-1282) (-828) $ (-112)) 31)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3959 (((-112) $ $) 203)) (-3933 (((-112) $ $) 45)) (-3892 (((-112) $ $) 56)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 57)) (-4013 (($ $ $) 48) (($ $ (-570)) 42)) (-4003 (($ $) 38) (($ $ $) 53)) (-3992 (($ $ $) 72)) (** (($ $ (-928)) 83) (($ $ (-777)) NIL) (($ $ (-570)) 107) (($ $ (-413 (-570))) 154) (($ $ $) 145)) (* (($ (-928) $) 79) (($ (-777) $) NIL) (($ (-570) $) 84) (($ $ $) 71) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-384) (-13 (-410) (-235) (-620 (-1168)) (-834) (-619 (-227)) (-1212) (-620 (-542)) (-624 (-227)) (-10 -8 (-15 -4013 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -2236 ($ $)) (-15 -2135 ((-570) $ $)) (-15 -3609 ($ $ (-570))) (-15 -4353 ((-413 (-570)) $ (-777))) (-15 -4353 ((-413 (-570)) $ (-777) (-777))) (-15 -3483 ($)) (-15 -3356 ($)) (-15 -2183 ($)) (-15 -3833 ($ $ $)) (-15 -3483 ($ $)) (-15 -3356 ($ $)) (-15 -3629 ((-1282))) (-15 -3629 ((-1282) (-777))) (-15 -2258 ((-1282))) (-15 -2258 ((-1282) (-777))) (-15 -3220 ((-1282))) (-15 -3220 ((-1282) (-777))) (-15 -1838 ((-1282) (-777))) (-6 -4443) (-6 -4435)))) (T -384))
-((** (*1 *1 *1 *1) (-5 *1 (-384))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) (-2236 (*1 *1 *1) (-5 *1 (-384))) (-2135 (*1 *2 *1 *1) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384)))) (-4353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384)))) (-3483 (*1 *1) (-5 *1 (-384))) (-3356 (*1 *1) (-5 *1 (-384))) (-2183 (*1 *1) (-5 *1 (-384))) (-3833 (*1 *1 *1 *1) (-5 *1 (-384))) (-3483 (*1 *1 *1) (-5 *1 (-384))) (-3356 (*1 *1 *1) (-5 *1 (-384))) (-3629 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-384)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384)))) (-2258 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-384)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384)))) (-3220 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-384)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384)))))
-(-13 (-410) (-235) (-620 (-1168)) (-834) (-619 (-227)) (-1212) (-620 (-542)) (-624 (-227)) (-10 -8 (-15 -4013 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -2236 ($ $)) (-15 -2135 ((-570) $ $)) (-15 -3609 ($ $ (-570))) (-15 -4353 ((-413 (-570)) $ (-777))) (-15 -4353 ((-413 (-570)) $ (-777) (-777))) (-15 -3483 ($)) (-15 -3356 ($)) (-15 -2183 ($)) (-15 -3833 ($ $ $)) (-15 -3483 ($ $)) (-15 -3356 ($ $)) (-15 -3629 ((-1282))) (-15 -3629 ((-1282) (-777))) (-15 -2258 ((-1282))) (-15 -2258 ((-1282) (-777))) (-15 -3220 ((-1282))) (-15 -3220 ((-1282) (-777))) (-15 -1838 ((-1282) (-777))) (-6 -4443) (-6 -4435)))
-((-2577 (((-650 (-298 (-959 |#1|))) (-298 (-413 (-959 (-570)))) |#1|) 46) (((-650 (-298 (-959 |#1|))) (-413 (-959 (-570))) |#1|) 45) (((-650 (-650 (-298 (-959 |#1|)))) (-650 (-298 (-413 (-959 (-570))))) |#1|) 42) (((-650 (-650 (-298 (-959 |#1|)))) (-650 (-413 (-959 (-570)))) |#1|) 36)) (-4059 (((-650 |#1|) (-413 (-959 (-570))) |#1|) 20) (((-650 (-650 |#1|)) (-650 (-413 (-959 (-570)))) (-650 (-1186)) |#1|) 30)))
-(((-385 |#1|) (-10 -7 (-15 -2577 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-413 (-959 (-570)))) |#1|)) (-15 -2577 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-298 (-413 (-959 (-570))))) |#1|)) (-15 -2577 ((-650 (-298 (-959 |#1|))) (-413 (-959 (-570))) |#1|)) (-15 -2577 ((-650 (-298 (-959 |#1|))) (-298 (-413 (-959 (-570)))) |#1|)) (-15 -4059 ((-650 (-650 |#1|)) (-650 (-413 (-959 (-570)))) (-650 (-1186)) |#1|)) (-15 -4059 ((-650 |#1|) (-413 (-959 (-570))) |#1|))) (-13 (-854) (-368))) (T -385))
-((-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-4059 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-413 (-959 (-570))))) (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 *5))) (-5 *1 (-385 *5)) (-4 *5 (-13 (-854) (-368))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 (-570))))) (-5 *2 (-650 (-298 (-959 *4)))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 (-298 (-959 *4)))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-298 (-413 (-959 (-570)))))) (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 (-570))))) (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))))
-(-10 -7 (-15 -2577 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-413 (-959 (-570)))) |#1|)) (-15 -2577 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-298 (-413 (-959 (-570))))) |#1|)) (-15 -2577 ((-650 (-298 (-959 |#1|))) (-413 (-959 (-570))) |#1|)) (-15 -2577 ((-650 (-298 (-959 |#1|))) (-298 (-413 (-959 (-570)))) |#1|)) (-15 -4059 ((-650 (-650 |#1|)) (-650 (-413 (-959 (-570)))) (-650 (-1186)) |#1|)) (-15 -4059 ((-650 |#1|) (-413 (-959 (-570))) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) 30)) (-4387 ((|#2| $) 32)) (-4394 (($ $) NIL)) (-2928 (((-777) $) 11)) (-1739 (((-650 $) $) 23)) (-1338 (((-112) $) NIL)) (-3677 (($ |#2| |#1|) 21)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3498 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-4355 ((|#2| $) 18)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 51) (($ |#2|) 31)) (-3125 (((-650 |#1|) $) 20)) (-3481 ((|#1| $ |#2|) 55)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 33 T CONST)) (-2255 (((-650 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-386 |#1| |#2|) (-13 (-387 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1058) (-856)) (T -386))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-386 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856)))))
-(-13 (-387 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#2| "failed") $) 49)) (-4387 ((|#2| $) 50)) (-4394 (($ $) 35)) (-2928 (((-777) $) 39)) (-1739 (((-650 $) $) 40)) (-1338 (((-112) $) 43)) (-3677 (($ |#2| |#1|) 44)) (-2536 (($ (-1 |#1| |#1|) $) 45)) (-3498 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-4355 ((|#2| $) 38)) (-4369 ((|#1| $) 37)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ |#2|) 48)) (-3125 (((-650 |#1|) $) 41)) (-3481 ((|#1| $ |#2|) 46)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-2255 (((-650 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
-(((-387 |#1| |#2|) (-141) (-1058) (-1109)) (T -387))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109)))) (-3481 (*1 *2 *1 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)))) (-3677 (*1 *1 *2 *3) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-112)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 *3)))) (-1739 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-387 *3 *4)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-777)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4394 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109)))))
-(-13 (-111 |t#1| |t#1|) (-1047 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3481 (|t#1| $ |t#2|)) (-15 -2536 ($ (-1 |t#1| |t#1|) $)) (-15 -3677 ($ |t#2| |t#1|)) (-15 -1338 ((-112) $)) (-15 -2255 ((-650 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3125 ((-650 |t#1|) $)) (-15 -1739 ((-650 $) $)) (-15 -2928 ((-777) $)) (-15 -4355 (|t#2| $)) (-15 -4369 (|t#1| $)) (-15 -3498 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4394 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-723 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-1047 |#2|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T))
-((-2237 (((-1282) $) 7)) (-2869 (((-868) $) 8) (($ (-695 (-705))) 14) (($ (-650 (-334))) 13) (($ (-334)) 12) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 11)))
-(((-388) (-141)) (T -388))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-695 (-705))) (-4 *1 (-388)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-388)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-388)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) (-4 *1 (-388)))))
-(-13 (-401) (-10 -8 (-15 -2869 ($ (-695 (-705)))) (-15 -2869 ($ (-650 (-334)))) (-15 -2869 ($ (-334))) (-15 -2869 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))))))
-(((-619 (-868)) . T) ((-401) . T) ((-1227) . T))
-((-2435 (((-3 $ "failed") (-695 (-320 (-384)))) 21) (((-3 $ "failed") (-695 (-320 (-570)))) 19) (((-3 $ "failed") (-695 (-959 (-384)))) 17) (((-3 $ "failed") (-695 (-959 (-570)))) 15) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 13) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 11)) (-4387 (($ (-695 (-320 (-384)))) 22) (($ (-695 (-320 (-570)))) 20) (($ (-695 (-959 (-384)))) 18) (($ (-695 (-959 (-570)))) 16) (($ (-695 (-413 (-959 (-384))))) 14) (($ (-695 (-413 (-959 (-570))))) 12)) (-2237 (((-1282) $) 7)) (-2869 (((-868) $) 8) (($ (-650 (-334))) 25) (($ (-334)) 24) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 23)))
-(((-389) (-141)) (T -389))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-389)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-389)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) (-4 *1 (-389)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389)))))
-(-13 (-401) (-10 -8 (-15 -2869 ($ (-650 (-334)))) (-15 -2869 ($ (-334))) (-15 -2869 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))) (-15 -4387 ($ (-695 (-320 (-384))))) (-15 -2435 ((-3 $ "failed") (-695 (-320 (-384))))) (-15 -4387 ($ (-695 (-320 (-570))))) (-15 -2435 ((-3 $ "failed") (-695 (-320 (-570))))) (-15 -4387 ($ (-695 (-959 (-384))))) (-15 -2435 ((-3 $ "failed") (-695 (-959 (-384))))) (-15 -4387 ($ (-695 (-959 (-570))))) (-15 -2435 ((-3 $ "failed") (-695 (-959 (-570))))) (-15 -4387 ($ (-695 (-413 (-959 (-384)))))) (-15 -2435 ((-3 $ "failed") (-695 (-413 (-959 (-384)))))) (-15 -4387 ($ (-695 (-413 (-959 (-570)))))) (-15 -2435 ((-3 $ "failed") (-695 (-413 (-959 (-570))))))))
-(((-619 (-868)) . T) ((-401) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-2402 (($ |#1| |#2|) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2336 ((|#2| $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 33)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 12 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-390 |#1| |#2|) (-13 (-111 |#1| |#1|) (-515 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|))) (-1058) (-856)) (T -390))
-NIL
-(-13 (-111 |#1| |#1|) (-515 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|)))
-((-2847 (((-112) $ $) 7)) (-2401 (((-777) $) 34)) (-2333 (($) 19 T CONST)) (-2720 (((-3 $ "failed") $ $) 37)) (-2435 (((-3 |#1| "failed") $) 45)) (-4387 ((|#1| $) 46)) (-3957 (((-3 $ "failed") $) 16)) (-3056 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2005 (((-112) $) 18)) (-2245 ((|#1| $ (-570)) 31)) (-1762 (((-777) $ (-570)) 32)) (-1908 (($ $ $) 28 (|has| |#1| (-856)))) (-1764 (($ $ $) 27 (|has| |#1| (-856)))) (-4249 (($ (-1 |#1| |#1|) $) 29)) (-1713 (($ (-1 (-777) (-777)) $) 30)) (-2787 (((-3 $ "failed") $ $) 38)) (-3240 (((-1168) $) 10)) (-1995 (($ $ $) 39)) (-3788 (($ $ $) 40)) (-3891 (((-1129) $) 11)) (-2660 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-777)))) $) 33)) (-4038 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2869 (((-868) $) 12) (($ |#1|) 44)) (-1344 (((-112) $ $) 9)) (-1998 (($) 20 T CONST)) (-3959 (((-112) $ $) 25 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 24 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 26 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 23 (|has| |#1| (-856)))) (** (($ $ (-928)) 14) (($ $ (-777)) 17) (($ |#1| (-777)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
-(((-391 |#1|) (-141) (-1109)) (T -391))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-3788 (*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-1995 (*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-2787 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-2720 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-4038 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1109)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-391 *3)))) (-3056 (*1 *2 *1 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-391 *3)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109)) (-5 *2 (-777)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 (-777))))))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-391 *4)) (-4 *4 (-1109)) (-5 *2 (-777)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-777) (-777))) (-4 *1 (-391 *3)) (-4 *3 (-1109)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3)) (-4 *3 (-1109)))))
-(-13 (-732) (-1047 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-777))) (-15 -3788 ($ $ $)) (-15 -1995 ($ $ $)) (-15 -2787 ((-3 $ "failed") $ $)) (-15 -2720 ((-3 $ "failed") $ $)) (-15 -4038 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3056 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2401 ((-777) $)) (-15 -2660 ((-650 (-2 (|:| |gen| |t#1|) (|:| -2651 (-777)))) $)) (-15 -1762 ((-777) $ (-570))) (-15 -2245 (|t#1| $ (-570))) (-15 -1713 ($ (-1 (-777) (-777)) $)) (-15 -4249 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|)))
-(((-102) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-732) . T) ((-856) |has| |#1| (-856)) ((-1047 |#1|) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777) $) 74)) (-2333 (($) NIL T CONST)) (-2720 (((-3 $ "failed") $ $) 77)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3056 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2005 (((-112) $) 17)) (-2245 ((|#1| $ (-570)) NIL)) (-1762 (((-777) $ (-570)) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-4249 (($ (-1 |#1| |#1|) $) 40)) (-1713 (($ (-1 (-777) (-777)) $) 37)) (-2787 (((-3 $ "failed") $ $) 60)) (-3240 (((-1168) $) NIL)) (-1995 (($ $ $) 28)) (-3788 (($ $ $) 26)) (-3891 (((-1129) $) NIL)) (-2660 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-777)))) $) 34)) (-4038 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2869 (((-868) $) 24) (($ |#1|) NIL)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 11 T CONST)) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) 84 (|has| |#1| (-856)))) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ |#1| (-777)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-392 |#1|) (-391 |#1|) (-1109)) (T -392))
-NIL
-(-391 |#1|)
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 53)) (-4387 (((-570) $) 54)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-1908 (($ $ $) 60)) (-1764 (($ $ $) 59)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-570)) 52)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3959 (((-112) $ $) 57)) (-3933 (((-112) $ $) 56)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 58)) (-3918 (((-112) $ $) 55)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-393) (-141)) (T -393))
-NIL
-(-13 (-562) (-856) (-1047 (-570)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-856) . T) ((-1047 (-570)) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-1509 (((-112) $) 25)) (-3698 (((-112) $) 22)) (-2296 (($ (-1168) (-1168) (-1168)) 26)) (-1770 (((-1168) $) 16)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-4161 (($ (-1168) (-1168) (-1168)) 14)) (-1633 (((-1168) $) 17)) (-2111 (((-112) $) 18)) (-4349 (((-1168) $) 15)) (-2869 (((-868) $) 12) (($ (-1168)) 13) (((-1168) $) 9)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 7)))
-(((-394) (-395)) (T -394))
-NIL
-(-395)
-((-2847 (((-112) $ $) 7)) (-1509 (((-112) $) 17)) (-3698 (((-112) $) 18)) (-2296 (($ (-1168) (-1168) (-1168)) 16)) (-1770 (((-1168) $) 21)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-4161 (($ (-1168) (-1168) (-1168)) 23)) (-1633 (((-1168) $) 20)) (-2111 (((-112) $) 19)) (-4349 (((-1168) $) 22)) (-2869 (((-868) $) 12) (($ (-1168)) 25) (((-1168) $) 24)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
+((-4057 (($ $) 6)) (-3272 (($ $) 7)) (** (($ $ $) 8)))
+(((-290) (-141)) (T -290))
+((** (*1 *1 *1 *1) (-4 *1 (-290))) (-3272 (*1 *1 *1) (-4 *1 (-290))) (-4057 (*1 *1 *1) (-4 *1 (-290))))
+(-13 (-10 -8 (-15 -4057 ($ $)) (-15 -3272 ($ $)) (-15 ** ($ $ $))))
+((-2977 (((-652 (-1168 |#1|)) (-1168 |#1|) |#1|) 35)) (-3674 ((|#2| |#2| |#1|) 39)) (-2542 ((|#2| |#2| |#1|) 41)) (-3912 ((|#2| |#2| |#1|) 40)))
+(((-291 |#1| |#2|) (-10 -7 (-15 -3674 (|#2| |#2| |#1|)) (-15 -3912 (|#2| |#2| |#1|)) (-15 -2542 (|#2| |#2| |#1|)) (-15 -2977 ((-652 (-1168 |#1|)) (-1168 |#1|) |#1|))) (-370) (-1270 |#1|)) (T -291))
+((-2977 (*1 *2 *3 *4) (-12 (-4 *4 (-370)) (-5 *2 (-652 (-1168 *4))) (-5 *1 (-291 *4 *5)) (-5 *3 (-1168 *4)) (-4 *5 (-1270 *4)))) (-2542 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))) (-3912 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))) (-3674 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
+(-10 -7 (-15 -3674 (|#2| |#2| |#1|)) (-15 -3912 (|#2| |#2| |#1|)) (-15 -2542 (|#2| |#2| |#1|)) (-15 -2977 ((-652 (-1168 |#1|)) (-1168 |#1|) |#1|)))
+((-2679 ((|#2| $ |#1|) 6)))
+(((-292 |#1| |#2|) (-141) (-1229) (-1229)) (T -292))
+((-2679 (*1 *2 *1 *3) (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1229)) (-4 *2 (-1229)))))
+(-13 (-1229) (-10 -8 (-15 -2679 (|t#2| $ |t#1|))))
+(((-1229) . T))
+((-3061 ((|#3| $ |#2| |#3|) 12)) (-2986 ((|#3| $ |#2|) 10)))
+(((-293 |#1| |#2| |#3|) (-10 -8 (-15 -3061 (|#3| |#1| |#2| |#3|)) (-15 -2986 (|#3| |#1| |#2|))) (-294 |#2| |#3|) (-1111) (-1229)) (T -293))
+NIL
+(-10 -8 (-15 -3061 (|#3| |#1| |#2| |#3|)) (-15 -2986 (|#3| |#1| |#2|)))
+((-3659 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4455)))) (-3061 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) 11)) (-2679 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-294 |#1| |#2|) (-141) (-1111) (-1229)) (T -294))
+((-2679 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-2986 (*1 *2 *1 *3) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-3659 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-3061 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))))
+(-13 (-292 |t#1| |t#2|) (-10 -8 (-15 -2679 (|t#2| $ |t#1| |t#2|)) (-15 -2986 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -3659 (|t#2| $ |t#1| |t#2|)) (-15 -3061 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-292 |#1| |#2|) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 37)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 44)) (-1697 (($ $) 41)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) 35)) (-2925 (($ |#2| |#3|) 18)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2425 ((|#3| $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 19)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2347 (((-3 $ "failed") $ $) NIL)) (-4395 (((-779) $) 36)) (-2679 ((|#2| $ |#2|) 46)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 23)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) 31 T CONST)) (-2619 (($) 39 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 40)))
+(((-295 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-313) (-292 |#2| |#2|) (-10 -8 (-15 -2425 (|#3| $)) (-15 -3491 (|#2| $)) (-15 -2925 ($ |#2| |#3|)) (-15 -2347 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -1809 ($ $)))) (-174) (-1255 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -295))
+((-2982 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2425 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-295 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1255 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3491 (*1 *2 *1) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-295 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2925 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-295 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1255 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2347 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1809 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
+(-13 (-313) (-292 |#2| |#2|) (-10 -8 (-15 -2425 (|#3| $)) (-15 -3491 (|#2| $)) (-15 -2925 ($ |#2| |#3|)) (-15 -2347 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -1809 ($ $))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-296) (-141)) (T -296))
+NIL
+(-13 (-1060) (-111 $ $) (-10 -7 (-6 -4447)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3542 (((-652 (-1096)) $) 10)) (-3301 (($ (-514) (-514) (-1115) $) 19)) (-1831 (($ (-514) (-652 (-974)) $) 23)) (-3836 (($) 25)) (-4239 (((-699 (-1115)) (-514) (-514) $) 18)) (-2100 (((-652 (-974)) (-514) $) 22)) (-1321 (($) 7)) (-1359 (($) 24)) (-3491 (((-870) $) 29)) (-2547 (($) 26)))
+(((-297) (-13 (-621 (-870)) (-10 -8 (-15 -1321 ($)) (-15 -3542 ((-652 (-1096)) $)) (-15 -4239 ((-699 (-1115)) (-514) (-514) $)) (-15 -3301 ($ (-514) (-514) (-1115) $)) (-15 -2100 ((-652 (-974)) (-514) $)) (-15 -1831 ($ (-514) (-652 (-974)) $)) (-15 -1359 ($)) (-15 -3836 ($)) (-15 -2547 ($))))) (T -297))
+((-1321 (*1 *1) (-5 *1 (-297))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-652 (-1096))) (-5 *1 (-297)))) (-4239 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-1115))) (-5 *1 (-297)))) (-3301 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-297)))) (-2100 (*1 *2 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-652 (-974))) (-5 *1 (-297)))) (-1831 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-297)))) (-1359 (*1 *1) (-5 *1 (-297))) (-3836 (*1 *1) (-5 *1 (-297))) (-2547 (*1 *1) (-5 *1 (-297))))
+(-13 (-621 (-870)) (-10 -8 (-15 -1321 ($)) (-15 -3542 ((-652 (-1096)) $)) (-15 -4239 ((-699 (-1115)) (-514) (-514) $)) (-15 -3301 ($ (-514) (-514) (-1115) $)) (-15 -2100 ((-652 (-974)) (-514) $)) (-15 -1831 ($ (-514) (-652 (-974)) $)) (-15 -1359 ($)) (-15 -3836 ($)) (-15 -2547 ($))))
+((-2394 (((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|)))) 102)) (-1747 (((-652 (-697 (-415 (-961 |#1|)))) (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|)))))) (-697 (-415 (-961 |#1|)))) 97) (((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))) (-779) (-779)) 41)) (-3660 (((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|)))) 99)) (-3149 (((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|)))) 75)) (-2564 (((-652 (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (-697 (-415 (-961 |#1|)))) 74)) (-3245 (((-961 |#1|) (-697 (-415 (-961 |#1|)))) 55) (((-961 |#1|) (-697 (-415 (-961 |#1|))) (-1188)) 56)))
+(((-298 |#1|) (-10 -7 (-15 -3245 ((-961 |#1|) (-697 (-415 (-961 |#1|))) (-1188))) (-15 -3245 ((-961 |#1|) (-697 (-415 (-961 |#1|))))) (-15 -2564 ((-652 (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (-697 (-415 (-961 |#1|))))) (-15 -3149 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))))) (-15 -1747 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))) (-779) (-779))) (-15 -1747 ((-652 (-697 (-415 (-961 |#1|)))) (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|)))))) (-697 (-415 (-961 |#1|))))) (-15 -2394 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|))))) (-15 -3660 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|)))))) (-460)) (T -298))
+((-3660 (*1 *2 *3) (-12 (-4 *4 (-460)) (-5 *2 (-652 (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 *4)))))))) (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))) (-2394 (*1 *2 *3) (-12 (-4 *4 (-460)) (-5 *2 (-652 (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 *4)))))))) (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 *4)))) (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5))))) (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))) (-1747 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-415 (-961 *6)) (-1177 (-1188) (-961 *6)))) (-5 *5 (-779)) (-4 *6 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *6))))) (-5 *1 (-298 *6)) (-5 *4 (-697 (-415 (-961 *6)))))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5)))) (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5))))) (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-4 *4 (-460)) (-5 *2 (-652 (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4))))) (-5 *1 (-298 *4)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-5 *2 (-961 *4)) (-5 *1 (-298 *4)) (-4 *4 (-460)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-961 *5)))) (-5 *4 (-1188)) (-5 *2 (-961 *5)) (-5 *1 (-298 *5)) (-4 *5 (-460)))))
+(-10 -7 (-15 -3245 ((-961 |#1|) (-697 (-415 (-961 |#1|))) (-1188))) (-15 -3245 ((-961 |#1|) (-697 (-415 (-961 |#1|))))) (-15 -2564 ((-652 (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (-697 (-415 (-961 |#1|))))) (-15 -3149 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))))) (-15 -1747 ((-652 (-697 (-415 (-961 |#1|)))) (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|))) (-697 (-415 (-961 |#1|))) (-779) (-779))) (-15 -1747 ((-652 (-697 (-415 (-961 |#1|)))) (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|)))))) (-697 (-415 (-961 |#1|))))) (-15 -2394 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |geneigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|))))) (-15 -3660 ((-652 (-2 (|:| |eigval| (-3 (-415 (-961 |#1|)) (-1177 (-1188) (-961 |#1|)))) (|:| |eigmult| (-779)) (|:| |eigvec| (-652 (-697 (-415 (-961 |#1|))))))) (-697 (-415 (-961 |#1|))))))
+((-3161 (((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)) 14)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -3161 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|)))) (-1229) (-1229)) (T -299))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-300 *6)) (-5 *1 (-299 *5 *6)))))
+(-10 -7 (-15 -3161 ((-300 |#2|) (-1 |#2| |#1|) (-300 |#1|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3143 (((-112) $) NIL (|has| |#1| (-21)))) (-2084 (($ $) 12)) (-2092 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1480 (($ $ $) 95 (|has| |#1| (-308)))) (-1586 (($) NIL (-3783 (|has| |#1| (-21)) (|has| |#1| (-734))) CONST)) (-3543 (($ $) 51 (|has| |#1| (-21)))) (-3377 (((-3 $ "failed") $) 62 (|has| |#1| (-734)))) (-1336 ((|#1| $) 11)) (-2982 (((-3 $ "failed") $) 60 (|has| |#1| (-734)))) (-4422 (((-112) $) NIL (|has| |#1| (-734)))) (-3161 (($ (-1 |#1| |#1|) $) 14)) (-1325 ((|#1| $) 10)) (-1595 (($ $) 50 (|has| |#1| (-21)))) (-4408 (((-3 $ "failed") $) 61 (|has| |#1| (-734)))) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1809 (($ $) 64 (-3783 (|has| |#1| (-370)) (|has| |#1| (-481))))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2759 (((-652 $) $) 85 (|has| |#1| (-564)))) (-3654 (($ $ $) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 $)) 28 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-1188) |#1|) 17 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 21 (|has| |#1| (-522 (-1188) |#1|)))) (-3283 (($ |#1| |#1|) 9)) (-1670 (((-135)) 90 (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) 87 (|has| |#1| (-909 (-1188))))) (-4242 (($ $ $) NIL (|has| |#1| (-481)))) (-1433 (($ $ $) NIL (|has| |#1| (-481)))) (-3491 (($ (-572)) NIL (|has| |#1| (-1060))) (((-112) $) 37 (|has| |#1| (-1111))) (((-870) $) 36 (|has| |#1| (-1111)))) (-2455 (((-779)) 67 (|has| |#1| (-1060)) CONST)) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2602 (($) 47 (|has| |#1| (-21)) CONST)) (-2619 (($) 57 (|has| |#1| (-734)) CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188))))) (-3921 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1111)))) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 92 (-3783 (|has| |#1| (-370)) (|has| |#1| (-481))))) (-4018 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4005 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-572)) NIL (|has| |#1| (-481))) (($ $ (-779)) NIL (|has| |#1| (-734))) (($ $ (-930)) NIL (|has| |#1| (-1123)))) (* (($ $ |#1|) 55 (|has| |#1| (-1123))) (($ |#1| $) 54 (|has| |#1| (-1123))) (($ $ $) 53 (|has| |#1| (-1123))) (($ (-572) $) 70 (|has| |#1| (-21))) (($ (-779) $) NIL (|has| |#1| (-21))) (($ (-930) $) NIL (|has| |#1| (-25)))))
+(((-300 |#1|) (-13 (-1229) (-10 -8 (-15 -3921 ($ |#1| |#1|)) (-15 -3283 ($ |#1| |#1|)) (-15 -2084 ($ $)) (-15 -1325 (|#1| $)) (-15 -1336 (|#1| $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-522 (-1188) |#1|)) (-6 (-522 (-1188) |#1|)) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-6 (-621 (-112))) (IF (|has| |#1| (-315 |#1|)) (PROGN (-15 -3654 ($ $ $)) (-15 -3654 ($ $ (-652 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4005 ($ |#1| $)) (-15 -4005 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1595 ($ $)) (-15 -3543 ($ $)) (-15 -4018 ($ |#1| $)) (-15 -4018 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1123)) (PROGN (-6 (-1123)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-734)) (PROGN (-6 (-734)) (-15 -4408 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-481)) (PROGN (-6 (-481)) (-15 -4408 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-6 (-1060)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|) (IF (|has| |#1| (-564)) (-15 -2759 ((-652 $) $)) |%noBranch|) (IF (|has| |#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-1286 |#1|)) (-15 -4029 ($ $ $)) (-15 -1809 ($ $))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -1480 ($ $ $)) |%noBranch|))) (-1229)) (T -300))
+((-3921 (*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-3283 (*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-2084 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-1325 (*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-1336 (*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-300 *3)))) (-3654 (*1 *1 *1 *1) (-12 (-4 *2 (-315 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)) (-5 *1 (-300 *2)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *3))) (-4 *3 (-315 *3)) (-4 *3 (-1111)) (-4 *3 (-1229)) (-5 *1 (-300 *3)))) (-4005 (*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229)))) (-4005 (*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-3543 (*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-4018 (*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-4018 (*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))) (-4408 (*1 *1 *1) (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))) (-3377 (*1 *1 *1) (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-652 (-300 *3))) (-5 *1 (-300 *3)) (-4 *3 (-564)) (-4 *3 (-1229)))) (-1480 (*1 *1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-308)) (-4 *2 (-1229)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229)))) (-4029 (*1 *1 *1 *1) (-3783 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229))) (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229))))) (-1809 (*1 *1 *1) (-3783 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229))) (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229))))))
+(-13 (-1229) (-10 -8 (-15 -3921 ($ |#1| |#1|)) (-15 -3283 ($ |#1| |#1|)) (-15 -2084 ($ $)) (-15 -1325 (|#1| $)) (-15 -1336 (|#1| $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-522 (-1188) |#1|)) (-6 (-522 (-1188) |#1|)) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-6 (-621 (-112))) (IF (|has| |#1| (-315 |#1|)) (PROGN (-15 -3654 ($ $ $)) (-15 -3654 ($ $ (-652 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4005 ($ |#1| $)) (-15 -4005 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1595 ($ $)) (-15 -3543 ($ $)) (-15 -4018 ($ |#1| $)) (-15 -4018 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1123)) (PROGN (-6 (-1123)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-734)) (PROGN (-6 (-734)) (-15 -4408 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-481)) (PROGN (-6 (-481)) (-15 -4408 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-6 (-1060)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|) (IF (|has| |#1| (-564)) (-15 -2759 ((-652 $) $)) |%noBranch|) (IF (|has| |#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-1286 |#1|)) (-15 -4029 ($ $ $)) (-15 -1809 ($ $))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -1480 ($ $ $)) |%noBranch|)))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2812 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#2| $ |#1| |#2|) NIL)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) NIL)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) NIL)) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 ((|#1| $) NIL (|has| |#1| (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 ((|#1| $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2608 (((-652 |#1|) $) NIL)) (-4096 (((-112) |#1| $) NIL)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1634 (((-652 |#1|) $) NIL)) (-3132 (((-112) |#1| $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#2| $) NIL (|has| |#1| (-858)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-301 |#1| |#2|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111)) (T -301))
+NIL
+(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
+((-3684 (((-318) (-1170) (-652 (-1170))) 17) (((-318) (-1170) (-1170)) 16) (((-318) (-652 (-1170))) 15) (((-318) (-1170)) 14)))
+(((-302) (-10 -7 (-15 -3684 ((-318) (-1170))) (-15 -3684 ((-318) (-652 (-1170)))) (-15 -3684 ((-318) (-1170) (-1170))) (-15 -3684 ((-318) (-1170) (-652 (-1170)))))) (T -302))
+((-3684 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1170))) (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302)))) (-3684 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-318)) (-5 *1 (-302)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302)))))
+(-10 -7 (-15 -3684 ((-318) (-1170))) (-15 -3684 ((-318) (-652 (-1170)))) (-15 -3684 ((-318) (-1170) (-1170))) (-15 -3684 ((-318) (-1170) (-652 (-1170)))))
+((-3161 ((|#2| (-1 |#2| |#1|) (-1170) (-620 |#1|)) 18)))
+(((-303 |#1| |#2|) (-10 -7 (-15 -3161 (|#2| (-1 |#2| |#1|) (-1170) (-620 |#1|)))) (-308) (-1229)) (T -303))
+((-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1170)) (-5 *5 (-620 *6)) (-4 *6 (-308)) (-4 *2 (-1229)) (-5 *1 (-303 *6 *2)))))
+(-10 -7 (-15 -3161 (|#2| (-1 |#2| |#1|) (-1170) (-620 |#1|))))
+((-3161 ((|#2| (-1 |#2| |#1|) (-620 |#1|)) 17)))
+(((-304 |#1| |#2|) (-10 -7 (-15 -3161 (|#2| (-1 |#2| |#1|) (-620 |#1|)))) (-308) (-308)) (T -304))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-620 *5)) (-4 *5 (-308)) (-4 *2 (-308)) (-5 *1 (-304 *5 *2)))))
+(-10 -7 (-15 -3161 (|#2| (-1 |#2| |#1|) (-620 |#1|))))
+((-2898 (((-112) (-227)) 12)))
+(((-305 |#1| |#2|) (-10 -7 (-15 -2898 ((-112) (-227)))) (-227) (-227)) (T -305))
+((-2898 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-305 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2898 ((-112) (-227))))
+((-2814 (((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227)))) 118)) (-1776 (((-1168 (-227)) (-1279 (-322 (-227))) (-652 (-1188)) (-1105 (-851 (-227)))) 135) (((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227)))) 72)) (-2441 (((-652 (-1170)) (-1168 (-227))) NIL)) (-3479 (((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227)))) 69)) (-3468 (((-652 (-227)) (-961 (-415 (-572))) (-1188) (-1105 (-851 (-227)))) 59)) (-2475 (((-652 (-1170)) (-652 (-227))) NIL)) (-2662 (((-227) (-1105 (-851 (-227)))) 29)) (-1466 (((-227) (-1105 (-851 (-227)))) 30)) (-1453 (((-112) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-2726 (((-1170) (-227)) NIL)))
+(((-306) (-10 -7 (-15 -2662 ((-227) (-1105 (-851 (-227))))) (-15 -1466 ((-227) (-1105 (-851 (-227))))) (-15 -1453 ((-112) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3479 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -2814 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -1776 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -1776 ((-1168 (-227)) (-1279 (-322 (-227))) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -3468 ((-652 (-227)) (-961 (-415 (-572))) (-1188) (-1105 (-851 (-227))))) (-15 -2726 ((-1170) (-227))) (-15 -2475 ((-652 (-1170)) (-652 (-227)))) (-15 -2441 ((-652 (-1170)) (-1168 (-227)))))) (T -306))
+((-2441 (*1 *2 *3) (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-306)))) (-3468 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *4 (-1188)) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188))) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188))) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))) (-2814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188))) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))) (-3479 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188)) (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-306)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306)))))
+(-10 -7 (-15 -2662 ((-227) (-1105 (-851 (-227))))) (-15 -1466 ((-227) (-1105 (-851 (-227))))) (-15 -1453 ((-112) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3479 ((-652 (-227)) (-322 (-227)) (-1188) (-1105 (-851 (-227))))) (-15 -2814 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -1776 ((-1168 (-227)) (-322 (-227)) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -1776 ((-1168 (-227)) (-1279 (-322 (-227))) (-652 (-1188)) (-1105 (-851 (-227))))) (-15 -3468 ((-652 (-227)) (-961 (-415 (-572))) (-1188) (-1105 (-851 (-227))))) (-15 -2726 ((-1170) (-227))) (-15 -2475 ((-652 (-1170)) (-652 (-227)))) (-15 -2441 ((-652 (-1170)) (-1168 (-227)))))
+((-1746 (((-652 (-620 $)) $) 27)) (-1480 (($ $ (-300 $)) 78) (($ $ (-652 (-300 $))) 139) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-3072 (((-3 (-620 $) "failed") $) 127)) (-1869 (((-620 $) $) 126)) (-3666 (($ $) 17) (($ (-652 $)) 54)) (-1323 (((-652 (-115)) $) 35)) (-3181 (((-115) (-115)) 88)) (-2270 (((-112) $) 150)) (-3161 (($ (-1 $ $) (-620 $)) 86)) (-2094 (((-3 (-620 $) "failed") $) 94)) (-2296 (($ (-115) $) 59) (($ (-115) (-652 $)) 110)) (-2685 (((-112) $ (-115)) 132) (((-112) $ (-1188)) 131)) (-3920 (((-779) $) 44)) (-3681 (((-112) $ $) 57) (((-112) $ (-1188)) 49)) (-3601 (((-112) $) 148)) (-3654 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) 137) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 81) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) 67) (($ $ (-1188) (-1 $ $)) 72) (($ $ (-652 (-115)) (-652 (-1 $ $))) 80) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 82) (($ $ (-115) (-1 $ (-652 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2679 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-652 $)) 123)) (-2151 (($ $) 51) (($ $ $) 135)) (-1850 (($ $) 15) (($ (-652 $)) 53)) (-3088 (((-112) (-115)) 21)))
+(((-307 |#1|) (-10 -8 (-15 -2270 ((-112) |#1|)) (-15 -3601 ((-112) |#1|)) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -3681 ((-112) |#1| (-1188))) (-15 -3681 ((-112) |#1| |#1|)) (-15 -3161 (|#1| (-1 |#1| |#1|) (-620 |#1|))) (-15 -2296 (|#1| (-115) (-652 |#1|))) (-15 -2296 (|#1| (-115) |#1|)) (-15 -2685 ((-112) |#1| (-1188))) (-15 -2685 ((-112) |#1| (-115))) (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -1323 ((-652 (-115)) |#1|)) (-15 -1746 ((-652 (-620 |#1|)) |#1|)) (-15 -2094 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3920 ((-779) |#1|)) (-15 -2151 (|#1| |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -3666 (|#1| (-652 |#1|))) (-15 -3666 (|#1| |#1|)) (-15 -1850 (|#1| (-652 |#1|))) (-15 -1850 (|#1| |#1|)) (-15 -1480 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -1480 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1480 (|#1| |#1| (-300 |#1|))) (-15 -2679 (|#1| (-115) (-652 |#1|))) (-15 -2679 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -3654 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -3072 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1869 ((-620 |#1|) |#1|))) (-308)) (T -307))
+((-3181 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-307 *3)) (-4 *3 (-308)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-307 *4)) (-4 *4 (-308)))))
+(-10 -8 (-15 -2270 ((-112) |#1|)) (-15 -3601 ((-112) |#1|)) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -3681 ((-112) |#1| (-1188))) (-15 -3681 ((-112) |#1| |#1|)) (-15 -3161 (|#1| (-1 |#1| |#1|) (-620 |#1|))) (-15 -2296 (|#1| (-115) (-652 |#1|))) (-15 -2296 (|#1| (-115) |#1|)) (-15 -2685 ((-112) |#1| (-1188))) (-15 -2685 ((-112) |#1| (-115))) (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -1323 ((-652 (-115)) |#1|)) (-15 -1746 ((-652 (-620 |#1|)) |#1|)) (-15 -2094 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3920 ((-779) |#1|)) (-15 -2151 (|#1| |#1| |#1|)) (-15 -2151 (|#1| |#1|)) (-15 -3666 (|#1| (-652 |#1|))) (-15 -3666 (|#1| |#1|)) (-15 -1850 (|#1| (-652 |#1|))) (-15 -1850 (|#1| |#1|)) (-15 -1480 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -1480 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1480 (|#1| |#1| (-300 |#1|))) (-15 -2679 (|#1| (-115) (-652 |#1|))) (-15 -2679 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -3654 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -3072 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1869 ((-620 |#1|) |#1|)))
+((-3464 (((-112) $ $) 7)) (-1746 (((-652 (-620 $)) $) 39)) (-1480 (($ $ (-300 $)) 51) (($ $ (-652 (-300 $))) 50) (($ $ (-652 (-620 $)) (-652 $)) 49)) (-3072 (((-3 (-620 $) "failed") $) 64)) (-1869 (((-620 $) $) 65)) (-3666 (($ $) 46) (($ (-652 $)) 45)) (-1323 (((-652 (-115)) $) 38)) (-3181 (((-115) (-115)) 37)) (-2270 (((-112) $) 17 (|has| $ (-1049 (-572))))) (-2328 (((-1184 $) (-620 $)) 20 (|has| $ (-1060)))) (-3161 (($ (-1 $ $) (-620 $)) 31)) (-2094 (((-3 (-620 $) "failed") $) 41)) (-3618 (((-1170) $) 10)) (-3165 (((-652 (-620 $)) $) 40)) (-2296 (($ (-115) $) 33) (($ (-115) (-652 $)) 32)) (-2685 (((-112) $ (-115)) 35) (((-112) $ (-1188)) 34)) (-3920 (((-779) $) 42)) (-2614 (((-1131) $) 11)) (-3681 (((-112) $ $) 30) (((-112) $ (-1188)) 29)) (-3601 (((-112) $) 18 (|has| $ (-1049 (-572))))) (-3654 (($ $ (-620 $) $) 62) (($ $ (-652 (-620 $)) (-652 $)) 61) (($ $ (-652 (-300 $))) 60) (($ $ (-300 $)) 59) (($ $ $ $) 58) (($ $ (-652 $) (-652 $)) 57) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 28) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 27) (($ $ (-1188) (-1 $ (-652 $))) 26) (($ $ (-1188) (-1 $ $)) 25) (($ $ (-652 (-115)) (-652 (-1 $ $))) 24) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 23) (($ $ (-115) (-1 $ (-652 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2679 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-652 $)) 52)) (-2151 (($ $) 44) (($ $ $) 43)) (-3858 (($ $) 19 (|has| $ (-1060)))) (-3491 (((-870) $) 12) (($ (-620 $)) 63)) (-1850 (($ $) 48) (($ (-652 $)) 47)) (-3088 (((-112) (-115)) 36)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-308) (-141)) (T -308))
+((-2679 (*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2679 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2679 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2679 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2679 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-300 *1)) (-4 *1 (-308)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *1))) (-4 *1 (-308)))) (-1480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-620 *1))) (-5 *3 (-652 *1)) (-4 *1 (-308)))) (-1850 (*1 *1 *1) (-4 *1 (-308))) (-1850 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308)))) (-3666 (*1 *1 *1) (-4 *1 (-308))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308)))) (-2151 (*1 *1 *1) (-4 *1 (-308))) (-2151 (*1 *1 *1 *1) (-4 *1 (-308))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-779)))) (-2094 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-308)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-652 (-115))))) (-3181 (*1 *2 *2) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-3088 (*1 *2 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2685 (*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2685 (*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112)))) (-2296 (*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115)))) (-2296 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308)))) (-3161 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-620 *1)) (-4 *1 (-308)))) (-3681 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-3681 (*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-308)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-308)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1060)) (-4 *1 (-308)) (-5 *2 (-1184 *1)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-1060)) (-4 *1 (-308)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112)))))
+(-13 (-1111) (-1049 (-620 $)) (-522 (-620 $) $) (-315 $) (-10 -8 (-15 -2679 ($ (-115) $)) (-15 -2679 ($ (-115) $ $)) (-15 -2679 ($ (-115) $ $ $)) (-15 -2679 ($ (-115) $ $ $ $)) (-15 -2679 ($ (-115) (-652 $))) (-15 -1480 ($ $ (-300 $))) (-15 -1480 ($ $ (-652 (-300 $)))) (-15 -1480 ($ $ (-652 (-620 $)) (-652 $))) (-15 -1850 ($ $)) (-15 -1850 ($ (-652 $))) (-15 -3666 ($ $)) (-15 -3666 ($ (-652 $))) (-15 -2151 ($ $)) (-15 -2151 ($ $ $)) (-15 -3920 ((-779) $)) (-15 -2094 ((-3 (-620 $) "failed") $)) (-15 -3165 ((-652 (-620 $)) $)) (-15 -1746 ((-652 (-620 $)) $)) (-15 -1323 ((-652 (-115)) $)) (-15 -3181 ((-115) (-115))) (-15 -3088 ((-112) (-115))) (-15 -2685 ((-112) $ (-115))) (-15 -2685 ((-112) $ (-1188))) (-15 -2296 ($ (-115) $)) (-15 -2296 ($ (-115) (-652 $))) (-15 -3161 ($ (-1 $ $) (-620 $))) (-15 -3681 ((-112) $ $)) (-15 -3681 ((-112) $ (-1188))) (-15 -3654 ($ $ (-652 (-1188)) (-652 (-1 $ $)))) (-15 -3654 ($ $ (-652 (-1188)) (-652 (-1 $ (-652 $))))) (-15 -3654 ($ $ (-1188) (-1 $ (-652 $)))) (-15 -3654 ($ $ (-1188) (-1 $ $))) (-15 -3654 ($ $ (-652 (-115)) (-652 (-1 $ $)))) (-15 -3654 ($ $ (-652 (-115)) (-652 (-1 $ (-652 $))))) (-15 -3654 ($ $ (-115) (-1 $ (-652 $)))) (-15 -3654 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1060)) (PROGN (-15 -2328 ((-1184 $) (-620 $))) (-15 -3858 ($ $))) |%noBranch|) (IF (|has| $ (-1049 (-572))) (PROGN (-15 -3601 ((-112) $)) (-15 -2270 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-624 #0=(-620 $)) . T) ((-621 (-870)) . T) ((-315 $) . T) ((-522 (-620 $) $) . T) ((-522 $ $) . T) ((-1049 #0#) . T) ((-1111) . T))
+((-1972 (((-652 |#1|) (-652 |#1|)) 10)))
+(((-309 |#1|) (-10 -7 (-15 -1972 ((-652 |#1|) (-652 |#1|)))) (-856)) (T -309))
+((-1972 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-856)) (-5 *1 (-309 *3)))))
+(-10 -7 (-15 -1972 ((-652 |#1|) (-652 |#1|))))
+((-3161 (((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)) 17)))
+(((-310 |#1| |#2|) (-10 -7 (-15 -3161 ((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)))) (-1060) (-1060)) (T -310))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-697 *6)) (-5 *1 (-310 *5 *6)))))
+(-10 -7 (-15 -3161 ((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|))))
+((-4426 (((-1279 (-322 (-386))) (-1279 (-322 (-227)))) 110)) (-3206 (((-1105 (-851 (-227))) (-1105 (-851 (-386)))) 43)) (-2441 (((-652 (-1170)) (-1168 (-227))) 92)) (-1537 (((-322 (-386)) (-961 (-227))) 53)) (-3423 (((-227) (-961 (-227))) 49)) (-2967 (((-1170) (-386)) 195)) (-3767 (((-851 (-227)) (-851 (-386))) 37)) (-3324 (((-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))) (-1279 (-322 (-227)))) 165)) (-3977 (((-1046) (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) 207) (((-1046) (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) 205)) (-1866 (((-697 (-227)) (-652 (-227)) (-779)) 19)) (-2811 (((-1279 (-707)) (-652 (-227))) 99)) (-2475 (((-652 (-1170)) (-652 (-227))) 79)) (-3866 (((-3 (-322 (-227)) "failed") (-322 (-227))) 128)) (-2898 (((-112) (-227) (-1105 (-851 (-227)))) 117)) (-3434 (((-1046) (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))) 224)) (-2662 (((-227) (-1105 (-851 (-227)))) 112)) (-1466 (((-227) (-1105 (-851 (-227)))) 113)) (-2878 (((-227) (-415 (-572))) 31)) (-4201 (((-1170) (-386)) 77)) (-3599 (((-227) (-386)) 22)) (-2995 (((-386) (-1279 (-322 (-227)))) 177)) (-1731 (((-322 (-227)) (-322 (-386))) 28)) (-2077 (((-415 (-572)) (-322 (-227))) 56)) (-4366 (((-322 (-415 (-572))) (-322 (-227))) 73)) (-3305 (((-322 (-386)) (-322 (-227))) 103)) (-4403 (((-227) (-322 (-227))) 57)) (-3289 (((-652 (-227)) (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) 68)) (-2981 (((-1105 (-851 (-227))) (-1105 (-851 (-227)))) 65)) (-2726 (((-1170) (-227)) 76)) (-2439 (((-707) (-227)) 95)) (-2642 (((-415 (-572)) (-227)) 58)) (-1816 (((-322 (-386)) (-227)) 52)) (-3222 (((-652 (-1105 (-851 (-227)))) (-652 (-1105 (-851 (-386))))) 46)) (-2121 (((-1046) (-652 (-1046))) 191) (((-1046) (-1046) (-1046)) 185)) (-1944 (((-1046) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
+(((-311) (-10 -7 (-15 -3599 ((-227) (-386))) (-15 -1731 ((-322 (-227)) (-322 (-386)))) (-15 -3767 ((-851 (-227)) (-851 (-386)))) (-15 -3206 ((-1105 (-851 (-227))) (-1105 (-851 (-386))))) (-15 -3222 ((-652 (-1105 (-851 (-227)))) (-652 (-1105 (-851 (-386)))))) (-15 -2642 ((-415 (-572)) (-227))) (-15 -2077 ((-415 (-572)) (-322 (-227)))) (-15 -4403 ((-227) (-322 (-227)))) (-15 -3866 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2995 ((-386) (-1279 (-322 (-227))))) (-15 -3324 ((-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))) (-1279 (-322 (-227))))) (-15 -4366 ((-322 (-415 (-572))) (-322 (-227)))) (-15 -2981 ((-1105 (-851 (-227))) (-1105 (-851 (-227))))) (-15 -3289 ((-652 (-227)) (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))) (-15 -2439 ((-707) (-227))) (-15 -2811 ((-1279 (-707)) (-652 (-227)))) (-15 -3305 ((-322 (-386)) (-322 (-227)))) (-15 -4426 ((-1279 (-322 (-386))) (-1279 (-322 (-227))))) (-15 -2898 ((-112) (-227) (-1105 (-851 (-227))))) (-15 -2726 ((-1170) (-227))) (-15 -4201 ((-1170) (-386))) (-15 -2475 ((-652 (-1170)) (-652 (-227)))) (-15 -2441 ((-652 (-1170)) (-1168 (-227)))) (-15 -2662 ((-227) (-1105 (-851 (-227))))) (-15 -1466 ((-227) (-1105 (-851 (-227))))) (-15 -2121 ((-1046) (-1046) (-1046))) (-15 -2121 ((-1046) (-652 (-1046)))) (-15 -2967 ((-1170) (-386))) (-15 -3977 ((-1046) (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))))) (-15 -3977 ((-1046) (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))) (-15 -1944 ((-1046) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3434 ((-1046) (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))) (-15 -1537 ((-322 (-386)) (-961 (-227)))) (-15 -3423 ((-227) (-961 (-227)))) (-15 -1816 ((-322 (-386)) (-227))) (-15 -2878 ((-227) (-415 (-572)))) (-15 -1866 ((-697 (-227)) (-652 (-227)) (-779))))) (T -311))
+((-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-227))) (-5 *4 (-779)) (-5 *2 (-697 (-227))) (-5 *1 (-311)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-415 (-572))) (-5 *2 (-227)) (-5 *1 (-311)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-322 (-386))) (-5 *1 (-311)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-652 (-1046))) (-5 *2 (-1046)) (-5 *1 (-311)))) (-2121 (*1 *2 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-311)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-1105 (-851 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-311)))) (-4426 (*1 *2 *3) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-1279 (-322 (-386)))) (-5 *1 (-311)))) (-3305 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1279 (-707))) (-5 *1 (-311)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-707)) (-5 *1 (-311)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-5 *2 (-652 (-227))) (-5 *1 (-311)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1105 (-851 (-227)))) (-5 *1 (-311)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-415 (-572)))) (-5 *1 (-311)))) (-3324 (*1 *2 *3) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572)))) (-5 *1 (-311)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-311)))) (-3866 (*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-311)))) (-4403 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-415 (-572))) (-5 *1 (-311)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-415 (-572))) (-5 *1 (-311)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-652 (-1105 (-851 (-386))))) (-5 *2 (-652 (-1105 (-851 (-227))))) (-5 *1 (-311)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1105 (-851 (-386)))) (-5 *2 (-1105 (-851 (-227)))) (-5 *1 (-311)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-851 (-386))) (-5 *2 (-851 (-227))) (-5 *1 (-311)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-322 (-386))) (-5 *2 (-322 (-227))) (-5 *1 (-311)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-311)))))
+(-10 -7 (-15 -3599 ((-227) (-386))) (-15 -1731 ((-322 (-227)) (-322 (-386)))) (-15 -3767 ((-851 (-227)) (-851 (-386)))) (-15 -3206 ((-1105 (-851 (-227))) (-1105 (-851 (-386))))) (-15 -3222 ((-652 (-1105 (-851 (-227)))) (-652 (-1105 (-851 (-386)))))) (-15 -2642 ((-415 (-572)) (-227))) (-15 -2077 ((-415 (-572)) (-322 (-227)))) (-15 -4403 ((-227) (-322 (-227)))) (-15 -3866 ((-3 (-322 (-227)) "failed") (-322 (-227)))) (-15 -2995 ((-386) (-1279 (-322 (-227))))) (-15 -3324 ((-2 (|:| |additions| (-572)) (|:| |multiplications| (-572)) (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))) (-1279 (-322 (-227))))) (-15 -4366 ((-322 (-415 (-572))) (-322 (-227)))) (-15 -2981 ((-1105 (-851 (-227))) (-1105 (-851 (-227))))) (-15 -3289 ((-652 (-227)) (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))) (-15 -2439 ((-707) (-227))) (-15 -2811 ((-1279 (-707)) (-652 (-227)))) (-15 -3305 ((-322 (-386)) (-322 (-227)))) (-15 -4426 ((-1279 (-322 (-386))) (-1279 (-322 (-227))))) (-15 -2898 ((-112) (-227) (-1105 (-851 (-227))))) (-15 -2726 ((-1170) (-227))) (-15 -4201 ((-1170) (-386))) (-15 -2475 ((-652 (-1170)) (-652 (-227)))) (-15 -2441 ((-652 (-1170)) (-1168 (-227)))) (-15 -2662 ((-227) (-1105 (-851 (-227))))) (-15 -1466 ((-227) (-1105 (-851 (-227))))) (-15 -2121 ((-1046) (-1046) (-1046))) (-15 -2121 ((-1046) (-652 (-1046)))) (-15 -2967 ((-1170) (-386))) (-15 -3977 ((-1046) (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))))) (-15 -3977 ((-1046) (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))) (-15 -1944 ((-1046) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3434 ((-1046) (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))) (-15 -1537 ((-322 (-386)) (-961 (-227)))) (-15 -3423 ((-227) (-961 (-227)))) (-15 -1816 ((-322 (-386)) (-227))) (-15 -2878 ((-227) (-415 (-572)))) (-15 -1866 ((-697 (-227)) (-652 (-227)) (-779))))
+((-4252 (((-112) $ $) 14)) (-3407 (($ $ $) 18)) (-3418 (($ $ $) 17)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 50)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 65)) (-1370 (($ $ $) 25) (($ (-652 $)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3453 (((-3 $ "failed") $ $) 21)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 53)))
+(((-312 |#1|) (-10 -8 (-15 -1841 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -3260 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3260 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4267 |#1|)) |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -4252 ((-112) |#1| |#1|)) (-15 -4123 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -3350 ((-2 (|:| -2379 (-652 |#1|)) (|:| -4267 |#1|)) (-652 |#1|))) (-15 -1370 (|#1| (-652 |#1|))) (-15 -1370 (|#1| |#1| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|))) (-313)) (T -312))
+NIL
+(-10 -8 (-15 -1841 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -3260 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3260 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4267 |#1|)) |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -4252 ((-112) |#1| |#1|)) (-15 -4123 ((-3 (-652 |#1|) "failed") (-652 |#1|) |#1|)) (-15 -3350 ((-2 (|:| -2379 (-652 |#1|)) (|:| -4267 |#1|)) (-652 |#1|))) (-15 -1370 (|#1| (-652 |#1|))) (-15 -1370 (|#1| |#1| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-4252 (((-112) $ $) 65)) (-1586 (($) 18 T CONST)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-4422 (((-112) $) 35)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-313) (-141)) (T -313))
+((-4252 (*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))) (-4395 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-779)))) (-2501 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-313)))) (-3418 (*1 *1 *1 *1) (-4 *1 (-313))) (-3407 (*1 *1 *1 *1) (-4 *1 (-313))) (-3260 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4267 *1))) (-4 *1 (-313)))) (-3260 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-313)))) (-1841 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-313)))))
+(-13 (-929) (-10 -8 (-15 -4252 ((-112) $ $)) (-15 -4395 ((-779) $)) (-15 -2501 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -3418 ($ $ $)) (-15 -3407 ($ $ $)) (-15 -3260 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $)) (-15 -3260 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1841 ((-3 (-652 $) "failed") (-652 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3654 (($ $ (-652 |#2|) (-652 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-300 |#2|)) 11) (($ $ (-652 (-300 |#2|))) NIL)))
+(((-314 |#1| |#2|) (-10 -8 (-15 -3654 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -3654 (|#1| |#1| (-300 |#2|))) (-15 -3654 (|#1| |#1| |#2| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#2|)))) (-315 |#2|) (-1111)) (T -314))
+NIL
+(-10 -8 (-15 -3654 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -3654 (|#1| |#1| (-300 |#2|))) (-15 -3654 (|#1| |#1| |#2| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#2|))))
+((-3654 (($ $ (-652 |#1|) (-652 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-300 |#1|)) 11) (($ $ (-652 (-300 |#1|))) 10)))
+(((-315 |#1|) (-141) (-1111)) (T -315))
+((-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-300 *3)) (-4 *1 (-315 *3)) (-4 *3 (-1111)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *3))) (-4 *1 (-315 *3)) (-4 *3 (-1111)))))
+(-13 (-522 |t#1| |t#1|) (-10 -8 (-15 -3654 ($ $ (-300 |t#1|))) (-15 -3654 ($ $ (-652 (-300 |t#1|))))))
+(((-522 |#1| |#1|) . T))
+((-3654 ((|#1| (-1 |#1| (-572)) (-1190 (-415 (-572)))) 26)))
+(((-316 |#1|) (-10 -7 (-15 -3654 (|#1| (-1 |#1| (-572)) (-1190 (-415 (-572)))))) (-38 (-415 (-572)))) (T -316))
+((-3654 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-572))) (-5 *4 (-1190 (-415 (-572)))) (-5 *1 (-316 *2)) (-4 *2 (-38 (-415 (-572)))))))
+(-10 -7 (-15 -3654 (|#1| (-1 |#1| (-572)) (-1190 (-415 (-572))))))
+((-3464 (((-112) $ $) NIL)) (-3234 (((-572) $) 12)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4410 (((-1146) $) 9)) (-3491 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-317) (-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3234 ((-572) $))))) (T -317))
+((-4410 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-317)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-317)))))
+(-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3234 ((-572) $))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 7)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 9)))
+(((-318) (-1111)) (T -318))
+NIL
+(-1111)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 60)) (-3923 (((-1265 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-1265 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-3 (-1264 |#2| |#3| |#4|) "failed") $) 26)) (-1869 (((-1265 |#1| |#2| |#3| |#4|) $) NIL) (((-1188) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-572) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-572)))) (((-1264 |#2| |#3| |#4|) $) NIL)) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-1265 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1279 (-1265 |#1| |#2| |#3| |#4|)))) (-697 $) (-1279 $)) NIL) (((-697 (-1265 |#1| |#2| |#3| |#4|)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 (((-1265 |#1| |#2| |#3| |#4|) $) 22)) (-3396 (((-3 $ "failed") $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1163)))) (-4354 (((-112) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3928 (($ $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3161 (($ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) $) NIL)) (-3096 (((-3 (-851 |#2|) "failed") $) 80)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-313)))) (-1609 (((-1265 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 (-1265 |#1| |#2| |#3| |#4|)) (-652 (-1265 |#1| |#2| |#3| |#4|))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-300 (-1265 |#1| |#2| |#3| |#4|))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-652 (-300 (-1265 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-315 (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-652 (-1188)) (-652 (-1265 |#1| |#2| |#3| |#4|))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-522 (-1188) (-1265 |#1| |#2| |#3| |#4|)))) (($ $ (-1188) (-1265 |#1| |#2| |#3| |#4|)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-522 (-1188) (-1265 |#1| |#2| |#3| |#4|))))) (-4395 (((-779) $) NIL)) (-2679 (($ $ (-1265 |#1| |#2| |#3| |#4|)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-292 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-1188)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) (-779)) NIL) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|))) NIL)) (-3982 (($ $) NIL)) (-2224 (((-1265 |#1| |#2| |#3| |#4|) $) 19)) (-3222 (((-901 (-572)) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-622 (-544)))) (((-386) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1033))) (((-227) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1033)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-1265 |#1| |#2| |#3| |#4|) (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-1265 |#1| |#2| |#3| |#4|)) 30) (($ (-1188)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-1049 (-1188)))) (($ (-1264 |#2| |#3| |#4|)) 37)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-1265 |#1| |#2| |#3| |#4|) (-918))) (|has| (-1265 |#1| |#2| |#3| |#4|) (-146))))) (-2455 (((-779)) NIL T CONST)) (-3441 (((-1265 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-828)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-1188)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-909 (-1188)))) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) (-779)) NIL) (($ $ (-1 (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|))) NIL)) (-3976 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-1265 |#1| |#2| |#3| |#4|) (-858)))) (-4029 (($ $ $) 35) (($ (-1265 |#1| |#2| |#3| |#4|) (-1265 |#1| |#2| |#3| |#4|)) 32)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-1265 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1265 |#1| |#2| |#3| |#4|)) NIL)))
+(((-319 |#1| |#2| |#3| |#4|) (-13 (-1003 (-1265 |#1| |#2| |#3| |#4|)) (-1049 (-1264 |#2| |#3| |#4|)) (-10 -8 (-15 -3096 ((-3 (-851 |#2|) "failed") $)) (-15 -3491 ($ (-1264 |#2| |#3| |#4|))))) (-13 (-1049 (-572)) (-647 (-572)) (-460)) (-13 (-27) (-1214) (-438 |#1|)) (-1188) |#2|) (T -319))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1264 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4) (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *1 (-319 *3 *4 *5 *6)))) (-3096 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *2 (-851 *4)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4))))
+(-13 (-1003 (-1265 |#1| |#2| |#3| |#4|)) (-1049 (-1264 |#2| |#3| |#4|)) (-10 -8 (-15 -3096 ((-3 (-851 |#2|) "failed") $)) (-15 -3491 ($ (-1264 |#2| |#3| |#4|)))))
+((-3161 (((-322 |#2|) (-1 |#2| |#1|) (-322 |#1|)) 13)))
+(((-320 |#1| |#2|) (-10 -7 (-15 -3161 ((-322 |#2|) (-1 |#2| |#1|) (-322 |#1|)))) (-1111) (-1111)) (T -320))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-322 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-322 *6)) (-5 *1 (-320 *5 *6)))))
+(-10 -7 (-15 -3161 ((-322 |#2|) (-1 |#2| |#1|) (-322 |#1|))))
+((-1765 (((-52) |#2| (-300 |#2|) (-779)) 40) (((-52) |#2| (-300 |#2|)) 32) (((-52) |#2| (-779)) 35) (((-52) |#2|) 33) (((-52) (-1188)) 26)) (-2493 (((-52) |#2| (-300 |#2|) (-415 (-572))) 59) (((-52) |#2| (-300 |#2|)) 56) (((-52) |#2| (-415 (-572))) 58) (((-52) |#2|) 57) (((-52) (-1188)) 55)) (-1787 (((-52) |#2| (-300 |#2|) (-415 (-572))) 54) (((-52) |#2| (-300 |#2|)) 51) (((-52) |#2| (-415 (-572))) 53) (((-52) |#2|) 52) (((-52) (-1188)) 50)) (-1778 (((-52) |#2| (-300 |#2|) (-572)) 47) (((-52) |#2| (-300 |#2|)) 44) (((-52) |#2| (-572)) 46) (((-52) |#2|) 45) (((-52) (-1188)) 43)))
+(((-321 |#1| |#2|) (-10 -7 (-15 -1765 ((-52) (-1188))) (-15 -1765 ((-52) |#2|)) (-15 -1765 ((-52) |#2| (-779))) (-15 -1765 ((-52) |#2| (-300 |#2|))) (-15 -1765 ((-52) |#2| (-300 |#2|) (-779))) (-15 -1778 ((-52) (-1188))) (-15 -1778 ((-52) |#2|)) (-15 -1778 ((-52) |#2| (-572))) (-15 -1778 ((-52) |#2| (-300 |#2|))) (-15 -1778 ((-52) |#2| (-300 |#2|) (-572))) (-15 -1787 ((-52) (-1188))) (-15 -1787 ((-52) |#2|)) (-15 -1787 ((-52) |#2| (-415 (-572)))) (-15 -1787 ((-52) |#2| (-300 |#2|))) (-15 -1787 ((-52) |#2| (-300 |#2|) (-415 (-572)))) (-15 -2493 ((-52) (-1188))) (-15 -2493 ((-52) |#2|)) (-15 -2493 ((-52) |#2| (-415 (-572)))) (-15 -2493 ((-52) |#2| (-300 |#2|))) (-15 -2493 ((-52) |#2| (-300 |#2|) (-415 (-572))))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -321))
+((-2493 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *4 (-415 (-572))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-1787 (*1 *2 *3 *4) (-12 (-5 *4 (-415 (-572))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-1787 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 *5) (-647 *5))) (-5 *5 (-572)) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-1778 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-4 *5 (-13 (-460) (-1049 *4) (-647 *4))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-1778 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))) (-1765 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-300 *3)) (-5 *5 (-779)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-1765 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4))))))
+(-10 -7 (-15 -1765 ((-52) (-1188))) (-15 -1765 ((-52) |#2|)) (-15 -1765 ((-52) |#2| (-779))) (-15 -1765 ((-52) |#2| (-300 |#2|))) (-15 -1765 ((-52) |#2| (-300 |#2|) (-779))) (-15 -1778 ((-52) (-1188))) (-15 -1778 ((-52) |#2|)) (-15 -1778 ((-52) |#2| (-572))) (-15 -1778 ((-52) |#2| (-300 |#2|))) (-15 -1778 ((-52) |#2| (-300 |#2|) (-572))) (-15 -1787 ((-52) (-1188))) (-15 -1787 ((-52) |#2|)) (-15 -1787 ((-52) |#2| (-415 (-572)))) (-15 -1787 ((-52) |#2| (-300 |#2|))) (-15 -1787 ((-52) |#2| (-300 |#2|) (-415 (-572)))) (-15 -2493 ((-52) (-1188))) (-15 -2493 ((-52) |#2|)) (-15 -2493 ((-52) |#2| (-415 (-572)))) (-15 -2493 ((-52) |#2| (-300 |#2|))) (-15 -2493 ((-52) |#2| (-300 |#2|) (-415 (-572)))))
+((-3464 (((-112) $ $) NIL)) (-2814 (((-652 $) $ (-1188)) NIL (|has| |#1| (-564))) (((-652 $) $) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $) (-1188)) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $)) NIL (|has| |#1| (-564))) (((-652 $) (-961 $)) NIL (|has| |#1| (-564)))) (-4049 (($ $ (-1188)) NIL (|has| |#1| (-564))) (($ $) NIL (|has| |#1| (-564))) (($ (-1184 $) (-1188)) NIL (|has| |#1| (-564))) (($ (-1184 $)) NIL (|has| |#1| (-564))) (($ (-961 $)) NIL (|has| |#1| (-564)))) (-3143 (((-112) $) 27 (-3783 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-2220 (((-652 (-1188)) $) 368)) (-4063 (((-415 (-1184 $)) $ (-620 $)) NIL (|has| |#1| (-564)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1746 (((-652 (-620 $)) $) NIL)) (-3915 (($ $) 171 (|has| |#1| (-564)))) (-3790 (($ $) 147 (|has| |#1| (-564)))) (-2630 (($ $ (-1103 $)) 232 (|has| |#1| (-564))) (($ $ (-1188)) 228 (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) NIL (-3783 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-1480 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) 386) (($ $ (-652 (-620 $)) (-652 $)) 430)) (-2730 (((-426 (-1184 $)) (-1184 $)) 308 (-12 (|has| |#1| (-460)) (|has| |#1| (-564))))) (-1861 (($ $) NIL (|has| |#1| (-564)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-564)))) (-3093 (($ $) NIL (|has| |#1| (-564)))) (-4252 (((-112) $ $) NIL (|has| |#1| (-564)))) (-3893 (($ $) 167 (|has| |#1| (-564)))) (-3770 (($ $) 143 (|has| |#1| (-564)))) (-2382 (($ $ (-572)) 73 (|has| |#1| (-564)))) (-3939 (($ $) 175 (|has| |#1| (-564)))) (-3811 (($ $) 151 (|has| |#1| (-564)))) (-1586 (($) NIL (-3783 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123))) CONST)) (-1755 (((-652 $) $ (-1188)) NIL (|has| |#1| (-564))) (((-652 $) $) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $) (-1188)) NIL (|has| |#1| (-564))) (((-652 $) (-1184 $)) NIL (|has| |#1| (-564))) (((-652 $) (-961 $)) NIL (|has| |#1| (-564)))) (-3748 (($ $ (-1188)) NIL (|has| |#1| (-564))) (($ $) NIL (|has| |#1| (-564))) (($ (-1184 $) (-1188)) 134 (|has| |#1| (-564))) (($ (-1184 $)) NIL (|has| |#1| (-564))) (($ (-961 $)) NIL (|has| |#1| (-564)))) (-3072 (((-3 (-620 $) "failed") $) 18) (((-3 (-1188) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-961 |#1|)) "failed") $) NIL (|has| |#1| (-564))) (((-3 (-961 |#1|) "failed") $) NIL (|has| |#1| (-1060))) (((-3 (-415 (-572)) "failed") $) 46 (-3783 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-1869 (((-620 $) $) 12) (((-1188) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-961 |#1|)) $) NIL (|has| |#1| (-564))) (((-961 |#1|) $) NIL (|has| |#1| (-1060))) (((-415 (-572)) $) 319 (-3783 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-3407 (($ $ $) NIL (|has| |#1| (-564)))) (-2245 (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 125 (|has| |#1| (-1060))) (((-697 |#1|) (-697 $)) 115 (|has| |#1| (-1060))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (-2925 (($ $) 96 (|has| |#1| (-564)))) (-2982 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123))))) (-3418 (($ $ $) NIL (|has| |#1| (-564)))) (-2047 (($ $ (-1103 $)) 236 (|has| |#1| (-564))) (($ $ (-1188)) 234 (|has| |#1| (-564)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-564)))) (-3439 (((-112) $) NIL (|has| |#1| (-564)))) (-3318 (($ $ $) 202 (|has| |#1| (-564)))) (-2250 (($) 137 (|has| |#1| (-564)))) (-2362 (($ $ $) 222 (|has| |#1| (-564)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 392 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 399 (|has| |#1| (-895 (-386))))) (-3666 (($ $) NIL) (($ (-652 $)) NIL)) (-1323 (((-652 (-115)) $) NIL)) (-3181 (((-115) (-115)) 276)) (-4422 (((-112) $) 25 (-3783 (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123))))) (-2270 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-3710 (($ $) 72 (|has| |#1| (-1060)))) (-2209 (((-1136 |#1| (-620 $)) $) 91 (|has| |#1| (-1060)))) (-3209 (((-112) $) 62 (|has| |#1| (-564)))) (-2033 (($ $ (-572)) NIL (|has| |#1| (-564)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-564)))) (-2328 (((-1184 $) (-620 $)) 277 (|has| $ (-1060)))) (-3161 (($ (-1 $ $) (-620 $)) 426)) (-2094 (((-3 (-620 $) "failed") $) NIL)) (-4057 (($ $) 141 (|has| |#1| (-564)))) (-2951 (($ $) 247 (|has| |#1| (-564)))) (-1335 (($ (-652 $)) NIL (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-3618 (((-1170) $) NIL)) (-3165 (((-652 (-620 $)) $) 49)) (-2296 (($ (-115) $) NIL) (($ (-115) (-652 $)) 431)) (-3570 (((-3 (-652 $) "failed") $) NIL (|has| |#1| (-1123)))) (-1828 (((-3 (-2 (|:| |val| $) (|:| -2477 (-572))) "failed") $) NIL (|has| |#1| (-1060)))) (-2257 (((-3 (-652 $) "failed") $) 436 (|has| |#1| (-25)))) (-4285 (((-3 (-2 (|:| -2379 (-572)) (|:| |var| (-620 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2298 (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $) NIL (|has| |#1| (-1123))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-115)) NIL (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-1188)) NIL (|has| |#1| (-1060)))) (-2685 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) 51)) (-1809 (($ $) NIL (-3783 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-1619 (($ $ (-1188)) 251 (|has| |#1| (-564))) (($ $ (-1103 $)) 253 (|has| |#1| (-564)))) (-3920 (((-779) $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) 43)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 301 (|has| |#1| (-564)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-3681 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-2901 (($ $ (-1188)) 226 (|has| |#1| (-564))) (($ $) 224 (|has| |#1| (-564)))) (-4002 (($ $) 218 (|has| |#1| (-564)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 306 (-12 (|has| |#1| (-460)) (|has| |#1| (-564))))) (-2972 (((-426 $) $) NIL (|has| |#1| (-564)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-564))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-564)))) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-564)))) (-3272 (($ $) 139 (|has| |#1| (-564)))) (-3601 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-3654 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) 425) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) 379) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1188)) NIL (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-622 (-544)))) (($ $) NIL (|has| |#1| (-622 (-544)))) (($ $ (-115) $ (-1188)) 366 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-115)) (-652 $) (-1188)) 365 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) NIL (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ (-652 $))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ $)) NIL (|has| |#1| (-1060)))) (-4395 (((-779) $) NIL (|has| |#1| (-564)))) (-3734 (($ $) 239 (|has| |#1| (-564)))) (-2679 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-2151 (($ $) NIL) (($ $ $) NIL)) (-3760 (($ $) 249 (|has| |#1| (-564)))) (-3032 (($ $) 200 (|has| |#1| (-564)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-1060))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-1060))) (($ $ (-1188)) NIL (|has| |#1| (-1060)))) (-3982 (($ $) 74 (|has| |#1| (-564)))) (-2224 (((-1136 |#1| (-620 $)) $) 93 (|has| |#1| (-564)))) (-3858 (($ $) 317 (|has| $ (-1060)))) (-2139 (($ $) 177 (|has| |#1| (-564)))) (-3822 (($ $) 153 (|has| |#1| (-564)))) (-3927 (($ $) 173 (|has| |#1| (-564)))) (-3800 (($ $) 149 (|has| |#1| (-564)))) (-3905 (($ $) 169 (|has| |#1| (-564)))) (-3780 (($ $) 145 (|has| |#1| (-564)))) (-3222 (((-901 (-572)) $) NIL (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#1| (-622 (-901 (-386))))) (($ (-426 $)) NIL (|has| |#1| (-564))) (((-544) $) 363 (|has| |#1| (-622 (-544))))) (-4242 (($ $ $) NIL (|has| |#1| (-481)))) (-1433 (($ $ $) NIL (|has| |#1| (-481)))) (-3491 (((-870) $) 424) (($ (-620 $)) 415) (($ (-1188)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-564))) (($ (-48)) 312 (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) (($ (-1136 |#1| (-620 $))) 95 (|has| |#1| (-1060))) (($ (-415 |#1|)) NIL (|has| |#1| (-564))) (($ (-961 (-415 |#1|))) NIL (|has| |#1| (-564))) (($ (-415 (-961 (-415 |#1|)))) NIL (|has| |#1| (-564))) (($ (-415 (-961 |#1|))) NIL (|has| |#1| (-564))) (($ (-961 |#1|)) NIL (|has| |#1| (-1060))) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-564)) (|has| |#1| (-1049 (-415 (-572)))))) (($ (-572)) 34 (-3783 (|has| |#1| (-1049 (-572))) (|has| |#1| (-1060))))) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL (|has| |#1| (-1060)) CONST)) (-1850 (($ $) NIL) (($ (-652 $)) NIL)) (-3337 (($ $ $) 220 (|has| |#1| (-564)))) (-4317 (($ $ $) 206 (|has| |#1| (-564)))) (-4122 (($ $ $) 210 (|has| |#1| (-564)))) (-3582 (($ $ $) 204 (|has| |#1| (-564)))) (-4264 (($ $ $) 208 (|has| |#1| (-564)))) (-3088 (((-112) (-115)) 10)) (-3424 (((-112) $ $) 86)) (-2176 (($ $) 183 (|has| |#1| (-564)))) (-3852 (($ $) 159 (|has| |#1| (-564)))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) 179 (|has| |#1| (-564)))) (-3833 (($ $) 155 (|has| |#1| (-564)))) (-2204 (($ $) 187 (|has| |#1| (-564)))) (-3871 (($ $) 163 (|has| |#1| (-564)))) (-2244 (($ (-1188) $) NIL) (($ (-1188) $ $) NIL) (($ (-1188) $ $ $) NIL) (($ (-1188) $ $ $ $) NIL) (($ (-1188) (-652 $)) NIL)) (-2815 (($ $) 214 (|has| |#1| (-564)))) (-1659 (($ $) 212 (|has| |#1| (-564)))) (-3120 (($ $) 189 (|has| |#1| (-564)))) (-3883 (($ $) 165 (|has| |#1| (-564)))) (-2193 (($ $) 185 (|has| |#1| (-564)))) (-3861 (($ $) 161 (|has| |#1| (-564)))) (-2162 (($ $) 181 (|has| |#1| (-564)))) (-3842 (($ $) 157 (|has| |#1| (-564)))) (-2775 (($ $) 192 (|has| |#1| (-564)))) (-2602 (($) 21 (-3783 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) CONST)) (-3420 (($ $) 243 (|has| |#1| (-564)))) (-2619 (($) 23 (-3783 (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123))) CONST)) (-3227 (($ $) 194 (|has| |#1| (-564))) (($ $ $) 196 (|has| |#1| (-564)))) (-1319 (($ $) 241 (|has| |#1| (-564)))) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-1060))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-1060))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-1060))) (($ $ (-1188)) NIL (|has| |#1| (-1060)))) (-2111 (($ $) 245 (|has| |#1| (-564)))) (-2478 (($ $ $) 198 (|has| |#1| (-564)))) (-3921 (((-112) $ $) 88)) (-4029 (($ (-1136 |#1| (-620 $)) (-1136 |#1| (-620 $))) 106 (|has| |#1| (-564))) (($ $ $) 42 (-3783 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-4018 (($ $ $) 40 (-3783 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (($ $) 29 (-3783 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (-4005 (($ $ $) 38 (-3783 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))) (** (($ $ $) 64 (|has| |#1| (-564))) (($ $ (-415 (-572))) 314 (|has| |#1| (-564))) (($ $ (-572)) 80 (-3783 (|has| |#1| (-481)) (|has| |#1| (-564)))) (($ $ (-779)) 75 (-3783 (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123)))) (($ $ (-930)) 84 (-3783 (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123))))) (* (($ (-415 (-572)) $) NIL (|has| |#1| (-564))) (($ $ (-415 (-572))) NIL (|has| |#1| (-564))) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ $ $) 36 (-3783 (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) (|has| |#1| (-1123)))) (($ (-572) $) 32 (-3783 (|has| |#1| (-21)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (($ (-779) $) NIL (-3783 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))))) (($ (-930) $) NIL (-3783 (|has| |#1| (-25)) (-12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))))))
+(((-322 |#1|) (-13 (-438 |#1|) (-10 -8 (IF (|has| |#1| (-564)) (PROGN (-6 (-29 |#1|)) (-6 (-1214)) (-6 (-161)) (-6 (-637)) (-6 (-1150)) (-15 -2925 ($ $)) (-15 -3209 ((-112) $)) (-15 -2382 ($ $ (-572))) (IF (|has| |#1| (-460)) (PROGN (-15 -3115 ((-426 (-1184 $)) (-1184 $))) (-15 -2730 ((-426 (-1184 $)) (-1184 $)))) |%noBranch|) (IF (|has| |#1| (-1049 (-572))) (-6 (-1049 (-48))) |%noBranch|)) |%noBranch|))) (-1111)) (T -322))
+((-2925 (*1 *1 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-564)) (-4 *2 (-1111)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))) (-3115 (*1 *2 *3) (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111)))) (-2730 (*1 *2 *3) (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111)))))
+(-13 (-438 |#1|) (-10 -8 (IF (|has| |#1| (-564)) (PROGN (-6 (-29 |#1|)) (-6 (-1214)) (-6 (-161)) (-6 (-637)) (-6 (-1150)) (-15 -2925 ($ $)) (-15 -3209 ((-112) $)) (-15 -2382 ($ $ (-572))) (IF (|has| |#1| (-460)) (PROGN (-15 -3115 ((-426 (-1184 $)) (-1184 $))) (-15 -2730 ((-426 (-1184 $)) (-1184 $)))) |%noBranch|) (IF (|has| |#1| (-1049 (-572))) (-6 (-1049 (-48))) |%noBranch|)) |%noBranch|)))
+((-1500 (((-52) |#2| (-115) (-300 |#2|) (-652 |#2|)) 89) (((-52) |#2| (-115) (-300 |#2|) (-300 |#2|)) 85) (((-52) |#2| (-115) (-300 |#2|) |#2|) 87) (((-52) (-300 |#2|) (-115) (-300 |#2|) |#2|) 88) (((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|))) 81) (((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 |#2|)) 83) (((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 |#2|)) 84) (((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|))) 82) (((-52) (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|)) 90) (((-52) (-300 |#2|) (-115) (-300 |#2|) (-300 |#2|)) 86)))
+(((-323 |#1| |#2|) (-10 -7 (-15 -1500 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-300 |#2|))) (-15 -1500 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -1500 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -1500 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -1500 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -1500 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -1500 ((-52) (-300 |#2|) (-115) (-300 |#2|) |#2|)) (-15 -1500 ((-52) |#2| (-115) (-300 |#2|) |#2|)) (-15 -1500 ((-52) |#2| (-115) (-300 |#2|) (-300 |#2|))) (-15 -1500 ((-52) |#2| (-115) (-300 |#2|) (-652 |#2|)))) (-13 (-564) (-622 (-544))) (-438 |#1|)) (T -323))
+((-1500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-5 *6 (-652 *3)) (-4 *3 (-438 *7)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *7 *3)))) (-1500 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-1500 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *3)))) (-1500 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-300 *5)) (-5 *4 (-115)) (-4 *5 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *5)))) (-1500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-115))) (-5 *6 (-652 (-300 *8))) (-4 *8 (-438 *7)) (-5 *5 (-300 *8)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *7 *8)))) (-1500 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7)) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *7)))) (-1500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-652 (-300 *8))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *8)) (-5 *6 (-652 *8)) (-4 *8 (-438 *7)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *7 *8)))) (-1500 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7)) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *7)))) (-1500 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-652 *7)) (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *6 *7)))) (-1500 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-300 *6)) (-5 *4 (-115)) (-4 *6 (-438 *5)) (-4 *5 (-13 (-564) (-622 (-544)))) (-5 *2 (-52)) (-5 *1 (-323 *5 *6)))))
+(-10 -7 (-15 -1500 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-300 |#2|))) (-15 -1500 ((-52) (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -1500 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -1500 ((-52) (-652 (-300 |#2|)) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -1500 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 |#2|))) (-15 -1500 ((-52) (-652 |#2|) (-652 (-115)) (-300 |#2|) (-652 (-300 |#2|)))) (-15 -1500 ((-52) (-300 |#2|) (-115) (-300 |#2|) |#2|)) (-15 -1500 ((-52) |#2| (-115) (-300 |#2|) |#2|)) (-15 -1500 ((-52) |#2| (-115) (-300 |#2|) (-300 |#2|))) (-15 -1500 ((-52) |#2| (-115) (-300 |#2|) (-652 |#2|))))
+((-1455 (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572) (-1170)) 67) (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572)) 68) (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572) (-1170)) 64) (((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572)) 65)) (-2242 (((-1 (-227) (-227)) (-227)) 66)))
+(((-324) (-10 -7 (-15 -2242 ((-1 (-227) (-227)) (-227))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572) (-1170))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572) (-1170))))) (T -324))
+((-1455 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572)) (-5 *8 (-1170)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-1455 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-1455 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *7 (-1170)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-1455 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *2 (-1224 (-935))) (-5 *1 (-324)))) (-2242 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-324)) (-5 *3 (-227)))))
+(-10 -7 (-15 -2242 ((-1 (-227) (-227)) (-227))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-1 (-227) (-227)) (-572) (-1170))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572))) (-15 -1455 ((-1224 (-935)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-227) (-572) (-1170))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 26)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-2709 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 20)) (-3915 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) 36)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) 16)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-415 (-572))) NIL) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4057 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-4161 (($ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214)))))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-415 (-572))) NIL)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-1463 (((-415 (-572)) $) 17)) (-2495 (($ (-1264 |#1| |#2| |#3|)) 11)) (-2477 (((-1264 |#1| |#2| |#3|) $) 12)) (-3272 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-1497 (((-415 (-572)) $) NIL)) (-2139 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 10)) (-3491 (((-870) $) 42) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-4206 ((|#1| $ (-415 (-572))) 34)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) NIL)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 28)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 37)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-325 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-800) (-10 -8 (-15 -2495 ($ (-1264 |#1| |#2| |#3|))) (-15 -2477 ((-1264 |#1| |#2| |#3|) $)) (-15 -1463 ((-415 (-572)) $)))) (-370) (-1188) |#1|) (T -325))
+((-2495 (*1 *1 *2) (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-325 *3 *4 *5)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-1264 *3 *4 *5)) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188)) (-14 *5 *3))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188)) (-14 *5 *3))))
+(-13 (-1260 |#1|) (-800) (-10 -8 (-15 -2495 ($ (-1264 |#1| |#2| |#3|))) (-15 -2477 ((-1264 |#1| |#2| |#3|) $)) (-15 -1463 ((-415 (-572)) $))))
+((-2033 (((-2 (|:| -2477 (-779)) (|:| -2379 |#1|) (|:| |radicand| (-652 |#1|))) (-426 |#1|) (-779)) 35)) (-4057 (((-652 (-2 (|:| -2379 (-779)) (|:| |logand| |#1|))) (-426 |#1|)) 40)))
+(((-326 |#1|) (-10 -7 (-15 -2033 ((-2 (|:| -2477 (-779)) (|:| -2379 |#1|) (|:| |radicand| (-652 |#1|))) (-426 |#1|) (-779))) (-15 -4057 ((-652 (-2 (|:| -2379 (-779)) (|:| |logand| |#1|))) (-426 |#1|)))) (-564)) (T -326))
+((-4057 (*1 *2 *3) (-12 (-5 *3 (-426 *4)) (-4 *4 (-564)) (-5 *2 (-652 (-2 (|:| -2379 (-779)) (|:| |logand| *4)))) (-5 *1 (-326 *4)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-426 *5)) (-4 *5 (-564)) (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *5) (|:| |radicand| (-652 *5)))) (-5 *1 (-326 *5)) (-5 *4 (-779)))))
+(-10 -7 (-15 -2033 ((-2 (|:| -2477 (-779)) (|:| -2379 |#1|) (|:| |radicand| (-652 |#1|))) (-426 |#1|) (-779))) (-15 -4057 ((-652 (-2 (|:| -2379 (-779)) (|:| |logand| |#1|))) (-426 |#1|))))
+((-2220 (((-652 |#2|) (-1184 |#4|)) 44)) (-1593 ((|#3| (-572)) 47)) (-3513 (((-1184 |#4|) (-1184 |#3|)) 30)) (-4427 (((-1184 |#4|) (-1184 |#4|) (-572)) 66)) (-2996 (((-1184 |#3|) (-1184 |#4|)) 21)) (-1497 (((-652 (-779)) (-1184 |#4|) (-652 |#2|)) 41)) (-1645 (((-1184 |#3|) (-1184 |#4|) (-652 |#2|) (-652 |#3|)) 35)))
+(((-327 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1645 ((-1184 |#3|) (-1184 |#4|) (-652 |#2|) (-652 |#3|))) (-15 -1497 ((-652 (-779)) (-1184 |#4|) (-652 |#2|))) (-15 -2220 ((-652 |#2|) (-1184 |#4|))) (-15 -2996 ((-1184 |#3|) (-1184 |#4|))) (-15 -3513 ((-1184 |#4|) (-1184 |#3|))) (-15 -4427 ((-1184 |#4|) (-1184 |#4|) (-572))) (-15 -1593 (|#3| (-572)))) (-801) (-858) (-1060) (-958 |#3| |#1| |#2|)) (T -327))
+((-1593 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1060)) (-5 *1 (-327 *4 *5 *2 *6)) (-4 *6 (-958 *2 *4 *5)))) (-4427 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *7)) (-5 *3 (-572)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *1 (-327 *4 *5 *6 *7)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1184 *6)) (-4 *6 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-1184 *7)) (-5 *1 (-327 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-1184 *6)) (-5 *1 (-327 *4 *5 *6 *7)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-652 *5)) (-5 *1 (-327 *4 *5 *6 *7)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *8)) (-5 *4 (-652 *6)) (-4 *6 (-858)) (-4 *8 (-958 *7 *5 *6)) (-4 *5 (-801)) (-4 *7 (-1060)) (-5 *2 (-652 (-779))) (-5 *1 (-327 *5 *6 *7 *8)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 *8)) (-4 *7 (-858)) (-4 *8 (-1060)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-5 *2 (-1184 *8)) (-5 *1 (-327 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1645 ((-1184 |#3|) (-1184 |#4|) (-652 |#2|) (-652 |#3|))) (-15 -1497 ((-652 (-779)) (-1184 |#4|) (-652 |#2|))) (-15 -2220 ((-652 |#2|) (-1184 |#4|))) (-15 -2996 ((-1184 |#3|) (-1184 |#4|))) (-15 -3513 ((-1184 |#4|) (-1184 |#3|))) (-15 -4427 ((-1184 |#4|) (-1184 |#4|) (-572))) (-15 -1593 (|#3| (-572))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 19)) (-2709 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-572)))) $) 21)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3037 (((-779) $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-1932 ((|#1| $ (-572)) NIL)) (-2816 (((-572) $ (-572)) NIL)) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-2842 (($ (-1 |#1| |#1|) $) NIL)) (-2407 (($ (-1 (-572) (-572)) $) 11)) (-3618 (((-1170) $) NIL)) (-4192 (($ $ $) NIL (|has| (-572) (-800)))) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ |#1|) NIL)) (-4206 (((-572) |#1| $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) 29 (|has| |#1| (-858)))) (-4018 (($ $) 12) (($ $ $) 28)) (-4005 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL) (($ (-572) |#1|) 27)))
+(((-328 |#1|) (-13 (-21) (-725 (-572)) (-329 |#1| (-572)) (-10 -7 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|))) (-1111)) (T -328))
+NIL
+(-13 (-21) (-725 (-572)) (-329 |#1| (-572)) (-10 -7 (IF (|has| |#1| (-858)) (-6 (-858)) |%noBranch|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2709 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|))) $) 28)) (-2092 (((-3 $ "failed") $ $) 20)) (-3037 (((-779) $) 29)) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 33)) (-1869 ((|#1| $) 34)) (-1932 ((|#1| $ (-572)) 26)) (-2816 ((|#2| $ (-572)) 27)) (-2842 (($ (-1 |#1| |#1|) $) 23)) (-2407 (($ (-1 |#2| |#2|) $) 24)) (-3618 (((-1170) $) 10)) (-4192 (($ $ $) 22 (|has| |#2| (-800)))) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ |#1|) 32)) (-4206 ((|#2| |#1| $) 25)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4005 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ |#2| |#1|) 30)))
+(((-329 |#1| |#2|) (-141) (-1111) (-132)) (T -329))
+((-4005 (*1 *1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)) (-5 *2 (-779)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)) (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 *4)))))) (-2816 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-329 *4 *2)) (-4 *4 (-1111)) (-4 *2 (-132)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-329 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1111)))) (-4206 (*1 *2 *3 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132)))) (-2407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)))) (-2842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132)) (-4 *3 (-800)))))
+(-13 (-132) (-1049 |t#1|) (-10 -8 (-15 -4005 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3037 ((-779) $)) (-15 -2709 ((-652 (-2 (|:| |gen| |t#1|) (|:| -3272 |t#2|))) $)) (-15 -2816 (|t#2| $ (-572))) (-15 -1932 (|t#1| $ (-572))) (-15 -4206 (|t#2| |t#1| $)) (-15 -2407 ($ (-1 |t#2| |t#2|) $)) (-15 -2842 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-800)) (-15 -4192 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-1049 |#1|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2709 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-779)))) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3037 (((-779) $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-1932 ((|#1| $ (-572)) NIL)) (-2816 (((-779) $ (-572)) NIL)) (-2842 (($ (-1 |#1| |#1|) $) NIL)) (-2407 (($ (-1 (-779) (-779)) $) NIL)) (-3618 (((-1170) $) NIL)) (-4192 (($ $ $) NIL (|has| (-779) (-800)))) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ |#1|) NIL)) (-4206 (((-779) |#1| $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4005 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-779) |#1|) NIL)))
+(((-330 |#1|) (-329 |#1| (-779)) (-1111)) (T -330))
+NIL
+(-329 |#1| (-779))
+((-2889 (($ $) 72)) (-3163 (($ $ |#2| |#3| $) 14)) (-2008 (($ (-1 |#3| |#3|) $) 51)) (-1817 (((-112) $) 42)) (-1829 ((|#2| $) 44)) (-3453 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3262 ((|#2| $) 68)) (-1708 (((-652 |#2|) $) 56)) (-4257 (($ $ $ (-779)) 37)) (-4029 (($ $ |#2|) 60)))
+(((-331 |#1| |#2| |#3|) (-10 -8 (-15 -2889 (|#1| |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4257 (|#1| |#1| |#1| (-779))) (-15 -3163 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2008 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1708 ((-652 |#2|) |#1|)) (-15 -1829 (|#2| |#1|)) (-15 -1817 ((-112) |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4029 (|#1| |#1| |#2|))) (-332 |#2| |#3|) (-1060) (-800)) (T -331))
+NIL
+(-10 -8 (-15 -2889 (|#1| |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4257 (|#1| |#1| |#1| (-779))) (-15 -3163 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2008 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1708 ((-652 |#2|) |#1|)) (-15 -1829 (|#2| |#1|)) (-15 -1817 ((-112) |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4029 (|#1| |#1| |#2|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 100 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 98 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 95)) (-1869 (((-572) $) 99 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 97 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 96)) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-2889 (($ $) 84 (|has| |#1| (-460)))) (-3163 (($ $ |#1| |#2| $) 88)) (-4422 (((-112) $) 35)) (-2348 (((-779) $) 91)) (-3357 (((-112) $) 74)) (-3042 (($ |#1| |#2|) 73)) (-3808 ((|#2| $) 90)) (-2008 (($ (-1 |#2| |#2|) $) 89)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1817 (((-112) $) 94)) (-1829 ((|#1| $) 93)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-564)))) (-1497 ((|#2| $) 76)) (-3262 ((|#1| $) 85 (|has| |#1| (-460)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59) (($ (-415 (-572))) 69 (-3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))))) (-1708 (((-652 |#1|) $) 92)) (-4206 ((|#1| $ |#2|) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-4257 (($ $ $ (-779)) 87 (|has| |#1| (-174)))) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-332 |#1| |#2|) (-141) (-1060) (-800)) (T -332))
+((-1817 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-112)))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-652 *3)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-779)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-2008 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)))) (-3163 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))) (-4257 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-4 *3 (-174)))) (-3453 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *2 (-564)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)) (-4 *2 (-460)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *2 (-460)))))
+(-13 (-47 |t#1| |t#2|) (-419 |t#1|) (-10 -8 (-15 -1817 ((-112) $)) (-15 -1829 (|t#1| $)) (-15 -1708 ((-652 |t#1|) $)) (-15 -2348 ((-779) $)) (-15 -3808 (|t#2| $)) (-15 -2008 ($ (-1 |t#2| |t#2|) $)) (-15 -3163 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -4257 ($ $ $ (-779))) |%noBranch|) (IF (|has| |t#1| (-564)) (-15 -3453 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-15 -3262 (|t#1| $)) (-15 -2889 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-296) |has| |#1| (-564)) ((-419 |#1|) . T) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-1927 (((-112) (-112)) NIL)) (-3659 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) |#1|) $) NIL)) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-1727 (($ $) NIL (|has| |#1| (-1111)))) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-2273 (($ $ (-572)) NIL)) (-1578 (((-779) $) NIL)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-2363 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3704 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3898 (($ (-652 |#1|)) NIL)) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-2049 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) NIL)) (-2355 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-333 |#1|) (-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3898 ($ (-652 |#1|))) (-15 -1578 ((-779) $)) (-15 -2273 ($ $ (-572))) (-15 -1927 ((-112) (-112))))) (-1229)) (T -333))
+((-3898 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-333 *3)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-333 *3)) (-4 *3 (-1229)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-333 *3)) (-4 *3 (-1229)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-333 *3)) (-4 *3 (-1229)))))
+(-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3898 ($ (-652 |#1|))) (-15 -1578 ((-779) $)) (-15 -2273 ($ $ (-572))) (-15 -1927 ((-112) (-112)))))
+((-3484 (((-112) $) 47)) (-3541 (((-779)) 23)) (-2055 ((|#2| $) 51) (($ $ (-930)) 121)) (-3037 (((-779)) 122)) (-2372 (($ (-1279 |#2|)) 20)) (-3466 (((-112) $) 134)) (-2140 ((|#2| $) 53) (($ $ (-930)) 118)) (-2179 (((-1184 |#2|) $) NIL) (((-1184 $) $ (-930)) 109)) (-1532 (((-1184 |#2|) $) 95)) (-2202 (((-1184 |#2|) $) 91) (((-3 (-1184 |#2|) "failed") $ $) 88)) (-2423 (($ $ (-1184 |#2|)) 58)) (-4148 (((-841 (-930))) 30) (((-930)) 48)) (-1670 (((-135)) 27)) (-1497 (((-841 (-930)) $) 32) (((-930) $) 137)) (-3068 (($) 128)) (-2862 (((-1279 |#2|) $) NIL) (((-697 |#2|) (-1279 $)) 42)) (-2210 (($ $) NIL) (((-3 $ "failed") $) 98)) (-2947 (((-112) $) 45)))
+(((-334 |#1| |#2|) (-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3037 ((-779))) (-15 -2210 (|#1| |#1|)) (-15 -2202 ((-3 (-1184 |#2|) "failed") |#1| |#1|)) (-15 -2202 ((-1184 |#2|) |#1|)) (-15 -1532 ((-1184 |#2|) |#1|)) (-15 -2423 (|#1| |#1| (-1184 |#2|))) (-15 -3466 ((-112) |#1|)) (-15 -3068 (|#1|)) (-15 -2055 (|#1| |#1| (-930))) (-15 -2140 (|#1| |#1| (-930))) (-15 -2179 ((-1184 |#1|) |#1| (-930))) (-15 -2055 (|#2| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -1497 ((-930) |#1|)) (-15 -4148 ((-930))) (-15 -2179 ((-1184 |#2|) |#1|)) (-15 -2372 (|#1| (-1279 |#2|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -3541 ((-779))) (-15 -4148 ((-841 (-930)))) (-15 -1497 ((-841 (-930)) |#1|)) (-15 -3484 ((-112) |#1|)) (-15 -2947 ((-112) |#1|)) (-15 -1670 ((-135)))) (-335 |#2|) (-370)) (T -334))
+((-1670 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-135)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-4148 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-841 (-930))) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3541 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-4148 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-930)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3037 (*1 *2) (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))))
+(-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3037 ((-779))) (-15 -2210 (|#1| |#1|)) (-15 -2202 ((-3 (-1184 |#2|) "failed") |#1| |#1|)) (-15 -2202 ((-1184 |#2|) |#1|)) (-15 -1532 ((-1184 |#2|) |#1|)) (-15 -2423 (|#1| |#1| (-1184 |#2|))) (-15 -3466 ((-112) |#1|)) (-15 -3068 (|#1|)) (-15 -2055 (|#1| |#1| (-930))) (-15 -2140 (|#1| |#1| (-930))) (-15 -2179 ((-1184 |#1|) |#1| (-930))) (-15 -2055 (|#2| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -1497 ((-930) |#1|)) (-15 -4148 ((-930))) (-15 -2179 ((-1184 |#2|) |#1|)) (-15 -2372 (|#1| (-1279 |#2|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -3541 ((-779))) (-15 -4148 ((-841 (-930)))) (-15 -1497 ((-841 (-930)) |#1|)) (-15 -3484 ((-112) |#1|)) (-15 -2947 ((-112) |#1|)) (-15 -1670 ((-135))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-3484 (((-112) $) 104)) (-3541 (((-779)) 100)) (-2055 ((|#1| $) 150) (($ $ (-930)) 147 (|has| |#1| (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) 132 (|has| |#1| (-375)))) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-4252 (((-112) $ $) 65)) (-3037 (((-779)) 122 (|has| |#1| (-375)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 111)) (-1869 ((|#1| $) 112)) (-2372 (($ (-1279 |#1|)) 156)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-375)))) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-2688 (($) 119 (|has| |#1| (-375)))) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-1345 (($) 134 (|has| |#1| (-375)))) (-2754 (((-112) $) 135 (|has| |#1| (-375)))) (-3156 (($ $ (-779)) 97 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) 96 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) 79)) (-2068 (((-930) $) 137 (|has| |#1| (-375))) (((-841 (-930)) $) 94 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) 35)) (-2833 (($) 145 (|has| |#1| (-375)))) (-3466 (((-112) $) 144 (|has| |#1| (-375)))) (-2140 ((|#1| $) 151) (($ $ (-930)) 148 (|has| |#1| (-375)))) (-3396 (((-3 $ "failed") $) 123 (|has| |#1| (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2179 (((-1184 |#1|) $) 155) (((-1184 $) $ (-930)) 149 (|has| |#1| (-375)))) (-4370 (((-930) $) 120 (|has| |#1| (-375)))) (-1532 (((-1184 |#1|) $) 141 (|has| |#1| (-375)))) (-2202 (((-1184 |#1|) $) 140 (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) 139 (|has| |#1| (-375)))) (-2423 (($ $ (-1184 |#1|)) 142 (|has| |#1| (-375)))) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-3477 (($) 124 (|has| |#1| (-375)) CONST)) (-1795 (($ (-930)) 121 (|has| |#1| (-375)))) (-2011 (((-112) $) 103)) (-2614 (((-1131) $) 11)) (-4267 (($) 143 (|has| |#1| (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 131 (|has| |#1| (-375)))) (-2972 (((-426 $) $) 82)) (-4148 (((-841 (-930))) 101) (((-930)) 153)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-1468 (((-779) $) 136 (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) 95 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) 109)) (-3011 (($ $) 128 (|has| |#1| (-375))) (($ $ (-779)) 126 (|has| |#1| (-375)))) (-1497 (((-841 (-930)) $) 102) (((-930) $) 152)) (-3858 (((-1184 |#1|)) 154)) (-2817 (($) 133 (|has| |#1| (-375)))) (-3068 (($) 146 (|has| |#1| (-375)))) (-2862 (((-1279 |#1|) $) 158) (((-697 |#1|) (-1279 $)) 157)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 130 (|has| |#1| (-375)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ |#1|) 110)) (-2210 (($ $) 129 (|has| |#1| (-375))) (((-3 $ "failed") $) 93 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-1769 (((-1279 $)) 160) (((-1279 $) (-930)) 159)) (-2466 (((-112) $ $) 45)) (-2947 (((-112) $) 105)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-2933 (($ $) 99 (|has| |#1| (-375))) (($ $ (-779)) 98 (|has| |#1| (-375)))) (-4019 (($ $) 127 (|has| |#1| (-375))) (($ $ (-779)) 125 (|has| |#1| (-375)))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 73) (($ $ |#1|) 108)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-335 |#1|) (-141) (-370)) (T -335))
+((-1769 (*1 *2) (-12 (-4 *3 (-370)) (-5 *2 (-1279 *1)) (-4 *1 (-335 *3)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-930)) (-4 *4 (-370)) (-5 *2 (-1279 *1)) (-4 *1 (-335 *4)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1279 *3)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-335 *4)) (-4 *4 (-370)) (-5 *2 (-697 *4)))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-4 *1 (-335 *3)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3)))) (-3858 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3)))) (-4148 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370)))) (-2179 (*1 *2 *1 *3) (-12 (-5 *3 (-930)) (-4 *4 (-375)) (-4 *4 (-370)) (-5 *2 (-1184 *1)) (-4 *1 (-335 *4)))) (-2140 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)))) (-3068 (*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))) (-2833 (*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-112)))) (-4267 (*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-375)) (-4 *1 (-335 *3)) (-4 *3 (-370)))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-1184 *3)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-1184 *3)))) (-2202 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-1184 *3)))))
+(-13 (-1298 |t#1|) (-1049 |t#1|) (-10 -8 (-15 -1769 ((-1279 $))) (-15 -1769 ((-1279 $) (-930))) (-15 -2862 ((-1279 |t#1|) $)) (-15 -2862 ((-697 |t#1|) (-1279 $))) (-15 -2372 ($ (-1279 |t#1|))) (-15 -2179 ((-1184 |t#1|) $)) (-15 -3858 ((-1184 |t#1|))) (-15 -4148 ((-930))) (-15 -1497 ((-930) $)) (-15 -2140 (|t#1| $)) (-15 -2055 (|t#1| $)) (IF (|has| |t#1| (-375)) (PROGN (-6 (-356)) (-15 -2179 ((-1184 $) $ (-930))) (-15 -2140 ($ $ (-930))) (-15 -2055 ($ $ (-930))) (-15 -3068 ($)) (-15 -2833 ($)) (-15 -3466 ((-112) $)) (-15 -4267 ($)) (-15 -2423 ($ $ (-1184 |t#1|))) (-15 -1532 ((-1184 |t#1|) $)) (-15 -2202 ((-1184 |t#1|) $)) (-15 -2202 ((-3 (-1184 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3783 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-237) |has| |#1| (-375)) ((-247) . T) ((-296) . T) ((-313) . T) ((-1298 |#1|) . T) ((-370) . T) ((-410) -3783 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-375) |has| |#1| (-375)) ((-356) |has| |#1| (-375)) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 |#1|) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-375)) ((-1233) . T) ((-1286 |#1|) . T))
+((-3464 (((-112) $ $) NIL)) (-1331 (($ (-1187) $) 100)) (-1694 (($) 89)) (-2922 (((-1131) (-1131)) 9)) (-3661 (($) 90)) (-1784 (($) 104) (($ (-322 (-707))) 112) (($ (-322 (-709))) 108) (($ (-322 (-702))) 116) (($ (-322 (-386))) 123) (($ (-322 (-572))) 119) (($ (-322 (-171 (-386)))) 127)) (-1403 (($ (-1187) $) 101)) (-3665 (($ (-652 (-870))) 91)) (-2905 (((-1284) $) 87)) (-4293 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3771 (($ (-1131)) 58)) (-1912 (((-1115) $) 30)) (-1420 (($ (-1103 (-961 (-572))) $) 97) (($ (-1103 (-961 (-572))) (-961 (-572)) $) 98)) (-2631 (($ (-1131)) 99)) (-2118 (($ (-1187) $) 129) (($ (-1187) $ $) 130)) (-4324 (($ (-1188) (-652 (-1188))) 88)) (-1766 (($ (-1170)) 94) (($ (-652 (-1170))) 92)) (-3491 (((-870) $) 132)) (-3167 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3712 (-112)) (|:| -1653 (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |blockBranch| (-652 $)) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -4336 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2414 $))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2414 $))) (|:| |commonBranch| (-2 (|:| -2402 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870)))) $) 50)) (-2320 (($ (-1170)) 202)) (-4432 (($ (-652 $)) 128)) (-3424 (((-112) $ $) NIL)) (-4278 (($ (-1188) (-1170)) 135) (($ (-1188) (-322 (-709))) 175) (($ (-1188) (-322 (-707))) 176) (($ (-1188) (-322 (-702))) 177) (($ (-1188) (-697 (-709))) 138) (($ (-1188) (-697 (-707))) 141) (($ (-1188) (-697 (-702))) 144) (($ (-1188) (-1279 (-709))) 147) (($ (-1188) (-1279 (-707))) 150) (($ (-1188) (-1279 (-702))) 153) (($ (-1188) (-697 (-322 (-709)))) 156) (($ (-1188) (-697 (-322 (-707)))) 159) (($ (-1188) (-697 (-322 (-702)))) 162) (($ (-1188) (-1279 (-322 (-709)))) 165) (($ (-1188) (-1279 (-322 (-707)))) 168) (($ (-1188) (-1279 (-322 (-702)))) 171) (($ (-1188) (-652 (-961 (-572))) (-322 (-709))) 172) (($ (-1188) (-652 (-961 (-572))) (-322 (-707))) 173) (($ (-1188) (-652 (-961 (-572))) (-322 (-702))) 174) (($ (-1188) (-322 (-572))) 199) (($ (-1188) (-322 (-386))) 200) (($ (-1188) (-322 (-171 (-386)))) 201) (($ (-1188) (-697 (-322 (-572)))) 180) (($ (-1188) (-697 (-322 (-386)))) 183) (($ (-1188) (-697 (-322 (-171 (-386))))) 186) (($ (-1188) (-1279 (-322 (-572)))) 189) (($ (-1188) (-1279 (-322 (-386)))) 192) (($ (-1188) (-1279 (-322 (-171 (-386))))) 195) (($ (-1188) (-652 (-961 (-572))) (-322 (-572))) 196) (($ (-1188) (-652 (-961 (-572))) (-322 (-386))) 197) (($ (-1188) (-652 (-961 (-572))) (-322 (-171 (-386)))) 198)) (-3921 (((-112) $ $) NIL)))
+(((-336) (-13 (-1111) (-10 -8 (-15 -1420 ($ (-1103 (-961 (-572))) $)) (-15 -1420 ($ (-1103 (-961 (-572))) (-961 (-572)) $)) (-15 -1331 ($ (-1187) $)) (-15 -1403 ($ (-1187) $)) (-15 -3771 ($ (-1131))) (-15 -2631 ($ (-1131))) (-15 -1766 ($ (-1170))) (-15 -1766 ($ (-652 (-1170)))) (-15 -2320 ($ (-1170))) (-15 -1784 ($)) (-15 -1784 ($ (-322 (-707)))) (-15 -1784 ($ (-322 (-709)))) (-15 -1784 ($ (-322 (-702)))) (-15 -1784 ($ (-322 (-386)))) (-15 -1784 ($ (-322 (-572)))) (-15 -1784 ($ (-322 (-171 (-386))))) (-15 -2118 ($ (-1187) $)) (-15 -2118 ($ (-1187) $ $)) (-15 -4278 ($ (-1188) (-1170))) (-15 -4278 ($ (-1188) (-322 (-709)))) (-15 -4278 ($ (-1188) (-322 (-707)))) (-15 -4278 ($ (-1188) (-322 (-702)))) (-15 -4278 ($ (-1188) (-697 (-709)))) (-15 -4278 ($ (-1188) (-697 (-707)))) (-15 -4278 ($ (-1188) (-697 (-702)))) (-15 -4278 ($ (-1188) (-1279 (-709)))) (-15 -4278 ($ (-1188) (-1279 (-707)))) (-15 -4278 ($ (-1188) (-1279 (-702)))) (-15 -4278 ($ (-1188) (-697 (-322 (-709))))) (-15 -4278 ($ (-1188) (-697 (-322 (-707))))) (-15 -4278 ($ (-1188) (-697 (-322 (-702))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-709))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-707))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-702))))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-709)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-707)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-702)))) (-15 -4278 ($ (-1188) (-322 (-572)))) (-15 -4278 ($ (-1188) (-322 (-386)))) (-15 -4278 ($ (-1188) (-322 (-171 (-386))))) (-15 -4278 ($ (-1188) (-697 (-322 (-572))))) (-15 -4278 ($ (-1188) (-697 (-322 (-386))))) (-15 -4278 ($ (-1188) (-697 (-322 (-171 (-386)))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-572))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-386))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-171 (-386)))))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-572)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-386)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-171 (-386))))) (-15 -4432 ($ (-652 $))) (-15 -1694 ($)) (-15 -3661 ($)) (-15 -3665 ($ (-652 (-870)))) (-15 -4324 ($ (-1188) (-652 (-1188)))) (-15 -4293 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3167 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3712 (-112)) (|:| -1653 (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |blockBranch| (-652 $)) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -4336 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2414 $))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2414 $))) (|:| |commonBranch| (-2 (|:| -2402 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870)))) $)) (-15 -2905 ((-1284) $)) (-15 -1912 ((-1115) $)) (-15 -2922 ((-1131) (-1131)))))) (T -336))
+((-1420 (*1 *1 *2 *1) (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *1 (-336)))) (-1420 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *3 (-961 (-572))) (-5 *1 (-336)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-1403 (*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))) (-2631 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-336)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))) (-1784 (*1 *1) (-5 *1 (-336))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-322 (-707))) (-5 *1 (-336)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-322 (-709))) (-5 *1 (-336)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-322 (-702))) (-5 *1 (-336)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-336)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-336)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-336)))) (-2118 (*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-2118 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-709))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-707))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-702))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-709))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-707))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-702))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-709))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-707))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-702))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-709)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-707)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-702)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-709)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-707)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-702)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-709))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-707))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-702))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-572))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-386))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-171 (-386)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-572)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-386)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-171 (-386))))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-572)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-386)))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-171 (-386))))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-572))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-386))) (-5 *1 (-336)))) (-4278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-322 (-171 (-386)))) (-5 *1 (-336)))) (-4432 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-5 *1 (-336)))) (-1694 (*1 *1) (-5 *1 (-336))) (-3661 (*1 *1) (-5 *1 (-336))) (-3665 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-336)))) (-4324 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-336)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-336)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| (-336)) (|:| |elseClause| (-336)))) (|:| |returnBranch| (-2 (|:| -3712 (-112)) (|:| -1653 (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |blockBranch| (-652 (-336))) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -4336 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2414 (-336)))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2414 (-336)))) (|:| |commonBranch| (-2 (|:| -2402 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870))))) (-5 *1 (-336)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-336)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-336)))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
+(-13 (-1111) (-10 -8 (-15 -1420 ($ (-1103 (-961 (-572))) $)) (-15 -1420 ($ (-1103 (-961 (-572))) (-961 (-572)) $)) (-15 -1331 ($ (-1187) $)) (-15 -1403 ($ (-1187) $)) (-15 -3771 ($ (-1131))) (-15 -2631 ($ (-1131))) (-15 -1766 ($ (-1170))) (-15 -1766 ($ (-652 (-1170)))) (-15 -2320 ($ (-1170))) (-15 -1784 ($)) (-15 -1784 ($ (-322 (-707)))) (-15 -1784 ($ (-322 (-709)))) (-15 -1784 ($ (-322 (-702)))) (-15 -1784 ($ (-322 (-386)))) (-15 -1784 ($ (-322 (-572)))) (-15 -1784 ($ (-322 (-171 (-386))))) (-15 -2118 ($ (-1187) $)) (-15 -2118 ($ (-1187) $ $)) (-15 -4278 ($ (-1188) (-1170))) (-15 -4278 ($ (-1188) (-322 (-709)))) (-15 -4278 ($ (-1188) (-322 (-707)))) (-15 -4278 ($ (-1188) (-322 (-702)))) (-15 -4278 ($ (-1188) (-697 (-709)))) (-15 -4278 ($ (-1188) (-697 (-707)))) (-15 -4278 ($ (-1188) (-697 (-702)))) (-15 -4278 ($ (-1188) (-1279 (-709)))) (-15 -4278 ($ (-1188) (-1279 (-707)))) (-15 -4278 ($ (-1188) (-1279 (-702)))) (-15 -4278 ($ (-1188) (-697 (-322 (-709))))) (-15 -4278 ($ (-1188) (-697 (-322 (-707))))) (-15 -4278 ($ (-1188) (-697 (-322 (-702))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-709))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-707))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-702))))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-709)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-707)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-702)))) (-15 -4278 ($ (-1188) (-322 (-572)))) (-15 -4278 ($ (-1188) (-322 (-386)))) (-15 -4278 ($ (-1188) (-322 (-171 (-386))))) (-15 -4278 ($ (-1188) (-697 (-322 (-572))))) (-15 -4278 ($ (-1188) (-697 (-322 (-386))))) (-15 -4278 ($ (-1188) (-697 (-322 (-171 (-386)))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-572))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-386))))) (-15 -4278 ($ (-1188) (-1279 (-322 (-171 (-386)))))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-572)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-386)))) (-15 -4278 ($ (-1188) (-652 (-961 (-572))) (-322 (-171 (-386))))) (-15 -4432 ($ (-652 $))) (-15 -1694 ($)) (-15 -3661 ($)) (-15 -3665 ($ (-652 (-870)))) (-15 -4324 ($ (-1188) (-652 (-1188)))) (-15 -4293 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3167 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1188)) (|:| |arrayIndex| (-652 (-961 (-572)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1188)) (|:| |rand| (-870)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1187)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3712 (-112)) (|:| -1653 (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870)))))) (|:| |blockBranch| (-652 $)) (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170)) (|:| |forBranch| (-2 (|:| -4336 (-1103 (-961 (-572)))) (|:| |span| (-961 (-572))) (|:| -2414 $))) (|:| |labelBranch| (-1131)) (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2414 $))) (|:| |commonBranch| (-2 (|:| -2402 (-1188)) (|:| |contents| (-652 (-1188))))) (|:| |printBranch| (-652 (-870)))) $)) (-15 -2905 ((-1284) $)) (-15 -1912 ((-1115) $)) (-15 -2922 ((-1131) (-1131)))))
+((-3464 (((-112) $ $) NIL)) (-3091 (((-112) $) 13)) (-3770 (($ |#1|) 10)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3780 (($ |#1|) 12)) (-3491 (((-870) $) 19)) (-3424 (((-112) $ $) NIL)) (-4219 ((|#1| $) 14)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 21)))
+(((-337 |#1|) (-13 (-858) (-10 -8 (-15 -3770 ($ |#1|)) (-15 -3780 ($ |#1|)) (-15 -3091 ((-112) $)) (-15 -4219 (|#1| $)))) (-858)) (T -337))
+((-3770 (*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858)))) (-3780 (*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-858)))) (-4219 (*1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858)))))
+(-13 (-858) (-10 -8 (-15 -3770 ($ |#1|)) (-15 -3780 ($ |#1|)) (-15 -3091 ((-112) $)) (-15 -4219 (|#1| $))))
+((-3515 (((-336) (-1188) (-961 (-572))) 23)) (-1808 (((-336) (-1188) (-961 (-572))) 27)) (-2069 (((-336) (-1188) (-1103 (-961 (-572))) (-1103 (-961 (-572)))) 26) (((-336) (-1188) (-961 (-572)) (-961 (-572))) 24)) (-2016 (((-336) (-1188) (-961 (-572))) 31)))
+(((-338) (-10 -7 (-15 -3515 ((-336) (-1188) (-961 (-572)))) (-15 -2069 ((-336) (-1188) (-961 (-572)) (-961 (-572)))) (-15 -2069 ((-336) (-1188) (-1103 (-961 (-572))) (-1103 (-961 (-572))))) (-15 -1808 ((-336) (-1188) (-961 (-572)))) (-15 -2016 ((-336) (-1188) (-961 (-572)))))) (T -338))
+((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))) (-2069 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-1103 (-961 (-572)))) (-5 *2 (-336)) (-5 *1 (-338)))) (-2069 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))) (-3515 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336)) (-5 *1 (-338)))))
+(-10 -7 (-15 -3515 ((-336) (-1188) (-961 (-572)))) (-15 -2069 ((-336) (-1188) (-961 (-572)) (-961 (-572)))) (-15 -2069 ((-336) (-1188) (-1103 (-961 (-572))) (-1103 (-961 (-572))))) (-15 -1808 ((-336) (-1188) (-961 (-572)))) (-15 -2016 ((-336) (-1188) (-961 (-572)))))
+((-3464 (((-112) $ $) NIL)) (-3238 (((-514) $) 20)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3382 (((-967 (-779)) $) 18)) (-3078 (((-254) $) 7)) (-3491 (((-870) $) 26)) (-3809 (((-967 (-185 (-140))) $) 16)) (-3424 (((-112) $ $) NIL)) (-4340 (((-652 (-881 (-1193) (-779))) $) 12)) (-3921 (((-112) $ $) 22)))
+(((-339) (-13 (-1111) (-10 -8 (-15 -3078 ((-254) $)) (-15 -4340 ((-652 (-881 (-1193) (-779))) $)) (-15 -3382 ((-967 (-779)) $)) (-15 -3809 ((-967 (-185 (-140))) $)) (-15 -3238 ((-514) $))))) (T -339))
+((-3078 (*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-339)))) (-4340 (*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-1193) (-779)))) (-5 *1 (-339)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-967 (-779))) (-5 *1 (-339)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-967 (-185 (-140)))) (-5 *1 (-339)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-339)))))
+(-13 (-1111) (-10 -8 (-15 -3078 ((-254) $)) (-15 -4340 ((-652 (-881 (-1193) (-779))) $)) (-15 -3382 ((-967 (-779)) $)) (-15 -3809 ((-967 (-185 (-140))) $)) (-15 -3238 ((-514) $))))
+((-3161 (((-343 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-343 |#1| |#2| |#3| |#4|)) 33)))
+(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3161 ((-343 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-343 |#1| |#2| |#3| |#4|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|) (-370) (-1255 |#5|) (-1255 (-415 |#6|)) (-349 |#5| |#6| |#7|)) (T -340))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-343 *5 *6 *7 *8)) (-4 *5 (-370)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *9 (-370)) (-4 *10 (-1255 *9)) (-4 *11 (-1255 (-415 *10))) (-5 *2 (-343 *9 *10 *11 *12)) (-5 *1 (-340 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-349 *9 *10 *11)))))
+(-10 -7 (-15 -3161 ((-343 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-343 |#1| |#2| |#3| |#4|))))
+((-2576 (((-112) $) 14)))
+(((-341 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2576 ((-112) |#1|))) (-342 |#2| |#3| |#4| |#5|) (-370) (-1255 |#2|) (-1255 (-415 |#3|)) (-349 |#2| |#3| |#4|)) (T -341))
+NIL
+(-10 -8 (-15 -2576 ((-112) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2925 (($ $) 29)) (-2576 (((-112) $) 28)) (-3618 (((-1170) $) 10)) (-1994 (((-421 |#2| (-415 |#2|) |#3| |#4|) $) 35)) (-2614 (((-1131) $) 11)) (-4267 (((-3 |#4| "failed") $) 27)) (-1692 (($ (-421 |#2| (-415 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-572)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2572 (((-2 (|:| -2667 (-421 |#2| (-415 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24)))
+(((-342 |#1| |#2| |#3| |#4|) (-141) (-370) (-1255 |t#1|) (-1255 (-415 |t#2|)) (-349 |t#1| |t#2| |t#3|)) (T -342))
+((-1994 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-421 *4 (-415 *4) *5 *6)))) (-1692 (*1 *1 *2) (-12 (-5 *2 (-421 *4 (-415 *4) *5 *6)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-4 *3 (-370)) (-4 *1 (-342 *3 *4 *5 *6)))) (-1692 (*1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *1 (-342 *3 *4 *5 *2)) (-4 *2 (-349 *3 *4 *5)))) (-1692 (*1 *1 *2 *2) (-12 (-4 *2 (-370)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))) (-4 *1 (-342 *2 *3 *4 *5)) (-4 *5 (-349 *2 *3 *4)))) (-1692 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-572)) (-4 *2 (-370)) (-4 *4 (-1255 *2)) (-4 *5 (-1255 (-415 *4))) (-4 *1 (-342 *2 *4 *5 *6)) (-4 *6 (-349 *2 *4 *5)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-2 (|:| -2667 (-421 *4 (-415 *4) *5 *6)) (|:| |principalPart| *6))))) (-2925 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4 *5)) (-4 *2 (-370)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))) (-4 *5 (-349 *2 *3 *4)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-112)))) (-4267 (*1 *2 *1) (|partial| -12 (-4 *1 (-342 *3 *4 *5 *2)) (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *2 (-349 *3 *4 *5)))) (-1692 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-370)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-4 *1 (-342 *4 *3 *5 *2)) (-4 *2 (-349 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -1994 ((-421 |t#2| (-415 |t#2|) |t#3| |t#4|) $)) (-15 -1692 ($ (-421 |t#2| (-415 |t#2|) |t#3| |t#4|))) (-15 -1692 ($ |t#4|)) (-15 -1692 ($ |t#1| |t#1|)) (-15 -1692 ($ |t#1| |t#1| (-572))) (-15 -2572 ((-2 (|:| -2667 (-421 |t#2| (-415 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2925 ($ $)) (-15 -2576 ((-112) $)) (-15 -4267 ((-3 |t#4| "failed") $)) (-15 -1692 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2925 (($ $) 33)) (-2576 (((-112) $) NIL)) (-3618 (((-1170) $) NIL)) (-1623 (((-1279 |#4|) $) 134)) (-1994 (((-421 |#2| (-415 |#2|) |#3| |#4|) $) 31)) (-2614 (((-1131) $) NIL)) (-4267 (((-3 |#4| "failed") $) 36)) (-2984 (((-1279 |#4|) $) 126)) (-1692 (($ (-421 |#2| (-415 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-572)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2572 (((-2 (|:| -2667 (-421 |#2| (-415 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3491 (((-870) $) 17)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 14 T CONST)) (-3921 (((-112) $ $) 20)) (-4018 (($ $) 27) (($ $ $) NIL)) (-4005 (($ $ $) 25)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 23)))
+(((-343 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2984 ((-1279 |#4|) $)) (-15 -1623 ((-1279 |#4|) $)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -343))
+((-2984 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *6 (-349 *3 *4 *5)))) (-1623 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *6 (-349 *3 *4 *5)))))
+(-13 (-342 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2984 ((-1279 |#4|) $)) (-15 -1623 ((-1279 |#4|) $))))
+((-3654 (($ $ (-1188) |#2|) NIL) (($ $ (-652 (-1188)) (-652 |#2|)) 20) (($ $ (-652 (-300 |#2|))) 15) (($ $ (-300 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-652 |#2|) (-652 |#2|)) NIL)) (-2679 (($ $ |#2|) 11)))
+(((-344 |#1| |#2|) (-10 -8 (-15 -2679 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#2| |#2|)) (-15 -3654 (|#1| |#1| (-300 |#2|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 |#2|))) (-15 -3654 (|#1| |#1| (-1188) |#2|))) (-345 |#2|) (-1111)) (T -344))
+NIL
+(-10 -8 (-15 -2679 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#2| |#2|)) (-15 -3654 (|#1| |#1| (-300 |#2|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 |#2|))) (-15 -3654 (|#1| |#1| (-1188) |#2|)))
+((-3161 (($ (-1 |#1| |#1|) $) 6)) (-3654 (($ $ (-1188) |#1|) 17 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 16 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-652 (-300 |#1|))) 15 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 14 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-315 |#1|))) (($ $ (-652 |#1|) (-652 |#1|)) 12 (|has| |#1| (-315 |#1|)))) (-2679 (($ $ |#1|) 11 (|has| |#1| (-292 |#1| |#1|)))))
+(((-345 |#1|) (-141) (-1111)) (T -345))
+((-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1111)))))
+(-13 (-10 -8 (-15 -3161 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-292 |t#1| |t#1|)) (-6 (-292 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-315 |t#1|)) (-6 (-315 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522 (-1188) |t#1|)) (-6 (-522 (-1188) |t#1|)) |%noBranch|)))
+(((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-1229) |has| |#1| (-292 |#1| |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1188)) $) NIL)) (-2767 (((-112)) 96) (((-112) (-112)) 97)) (-1746 (((-652 (-620 $)) $) NIL)) (-3915 (($ $) NIL)) (-3790 (($ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1480 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-3093 (($ $) NIL)) (-3893 (($ $) NIL)) (-3770 (($ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-620 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-322 |#3|)) 76) (((-3 $ "failed") (-1188)) 103) (((-3 $ "failed") (-322 (-572))) 64 (|has| |#3| (-1049 (-572)))) (((-3 $ "failed") (-415 (-961 (-572)))) 70 (|has| |#3| (-1049 (-572)))) (((-3 $ "failed") (-961 (-572))) 65 (|has| |#3| (-1049 (-572)))) (((-3 $ "failed") (-322 (-386))) 94 (|has| |#3| (-1049 (-386)))) (((-3 $ "failed") (-415 (-961 (-386)))) 88 (|has| |#3| (-1049 (-386)))) (((-3 $ "failed") (-961 (-386))) 83 (|has| |#3| (-1049 (-386))))) (-1869 (((-620 $) $) NIL) ((|#3| $) NIL) (($ (-322 |#3|)) 77) (($ (-1188)) 104) (($ (-322 (-572))) 66 (|has| |#3| (-1049 (-572)))) (($ (-415 (-961 (-572)))) 71 (|has| |#3| (-1049 (-572)))) (($ (-961 (-572))) 67 (|has| |#3| (-1049 (-572)))) (($ (-322 (-386))) 95 (|has| |#3| (-1049 (-386)))) (($ (-415 (-961 (-386)))) 89 (|has| |#3| (-1049 (-386)))) (($ (-961 (-386))) 85 (|has| |#3| (-1049 (-386))))) (-2982 (((-3 $ "failed") $) NIL)) (-2250 (($) 101)) (-3666 (($ $) NIL) (($ (-652 $)) NIL)) (-1323 (((-652 (-115)) $) NIL)) (-3181 (((-115) (-115)) NIL)) (-4422 (((-112) $) NIL)) (-2270 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2328 (((-1184 $) (-620 $)) NIL (|has| $ (-1060)))) (-3161 (($ (-1 $ $) (-620 $)) NIL)) (-2094 (((-3 (-620 $) "failed") $) NIL)) (-3956 (($ $) 99)) (-4057 (($ $) NIL)) (-3618 (((-1170) $) NIL)) (-3165 (((-652 (-620 $)) $) NIL)) (-2296 (($ (-115) $) 98) (($ (-115) (-652 $)) NIL)) (-2685 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) NIL)) (-3920 (((-779) $) NIL)) (-2614 (((-1131) $) NIL)) (-3681 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-3272 (($ $) NIL)) (-3601 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-3654 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2679 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-2151 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL)) (-3858 (($ $) NIL (|has| $ (-1060)))) (-3905 (($ $) NIL)) (-3780 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-620 $)) NIL) (($ |#3|) NIL) (($ (-572)) NIL) (((-322 |#3|) $) 102)) (-2455 (((-779)) NIL T CONST)) (-1850 (($ $) NIL) (($ (-652 $)) NIL)) (-3088 (((-112) (-115)) NIL)) (-3424 (((-112) $ $) NIL)) (-3852 (($ $) NIL)) (-3833 (($ $) NIL)) (-3842 (($ $) NIL)) (-2775 (($ $) NIL)) (-2602 (($) 100 T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
+(((-346 |#1| |#2| |#3|) (-13 (-308) (-38 |#3|) (-1049 |#3|) (-909 (-1188)) (-10 -8 (-15 -1869 ($ (-322 |#3|))) (-15 -3072 ((-3 $ "failed") (-322 |#3|))) (-15 -1869 ($ (-1188))) (-15 -3072 ((-3 $ "failed") (-1188))) (-15 -3491 ((-322 |#3|) $)) (IF (|has| |#3| (-1049 (-572))) (PROGN (-15 -1869 ($ (-322 (-572)))) (-15 -3072 ((-3 $ "failed") (-322 (-572)))) (-15 -1869 ($ (-415 (-961 (-572))))) (-15 -3072 ((-3 $ "failed") (-415 (-961 (-572))))) (-15 -1869 ($ (-961 (-572)))) (-15 -3072 ((-3 $ "failed") (-961 (-572))))) |%noBranch|) (IF (|has| |#3| (-1049 (-386))) (PROGN (-15 -1869 ($ (-322 (-386)))) (-15 -3072 ((-3 $ "failed") (-322 (-386)))) (-15 -1869 ($ (-415 (-961 (-386))))) (-15 -3072 ((-3 $ "failed") (-415 (-961 (-386))))) (-15 -1869 ($ (-961 (-386)))) (-15 -3072 ((-3 $ "failed") (-961 (-386))))) |%noBranch|) (-15 -2775 ($ $)) (-15 -3093 ($ $)) (-15 -3272 ($ $)) (-15 -4057 ($ $)) (-15 -3956 ($ $)) (-15 -3770 ($ $)) (-15 -3780 ($ $)) (-15 -3790 ($ $)) (-15 -3833 ($ $)) (-15 -3842 ($ $)) (-15 -3852 ($ $)) (-15 -3893 ($ $)) (-15 -3905 ($ $)) (-15 -3915 ($ $)) (-15 -2250 ($)) (-15 -2220 ((-652 (-1188)) $)) (-15 -2767 ((-112))) (-15 -2767 ((-112) (-112))))) (-652 (-1188)) (-652 (-1188)) (-395)) (T -346))
+((-1869 (*1 *1 *2) (-12 (-5 *2 (-322 *5)) (-4 *5 (-395)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 *5)) (-4 *5 (-395)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 *2)) (-14 *4 (-652 *2)) (-4 *5 (-395)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 *2)) (-14 *4 (-652 *2)) (-4 *5 (-395)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-322 *5)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2775 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3272 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-4057 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3956 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3780 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3790 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3842 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3852 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3893 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-3915 (*1 *1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2250 (*1 *1) (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188))) (-14 *3 (-652 (-1188))) (-4 *4 (-395)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-395)))) (-2767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395)))))
+(-13 (-308) (-38 |#3|) (-1049 |#3|) (-909 (-1188)) (-10 -8 (-15 -1869 ($ (-322 |#3|))) (-15 -3072 ((-3 $ "failed") (-322 |#3|))) (-15 -1869 ($ (-1188))) (-15 -3072 ((-3 $ "failed") (-1188))) (-15 -3491 ((-322 |#3|) $)) (IF (|has| |#3| (-1049 (-572))) (PROGN (-15 -1869 ($ (-322 (-572)))) (-15 -3072 ((-3 $ "failed") (-322 (-572)))) (-15 -1869 ($ (-415 (-961 (-572))))) (-15 -3072 ((-3 $ "failed") (-415 (-961 (-572))))) (-15 -1869 ($ (-961 (-572)))) (-15 -3072 ((-3 $ "failed") (-961 (-572))))) |%noBranch|) (IF (|has| |#3| (-1049 (-386))) (PROGN (-15 -1869 ($ (-322 (-386)))) (-15 -3072 ((-3 $ "failed") (-322 (-386)))) (-15 -1869 ($ (-415 (-961 (-386))))) (-15 -3072 ((-3 $ "failed") (-415 (-961 (-386))))) (-15 -1869 ($ (-961 (-386)))) (-15 -3072 ((-3 $ "failed") (-961 (-386))))) |%noBranch|) (-15 -2775 ($ $)) (-15 -3093 ($ $)) (-15 -3272 ($ $)) (-15 -4057 ($ $)) (-15 -3956 ($ $)) (-15 -3770 ($ $)) (-15 -3780 ($ $)) (-15 -3790 ($ $)) (-15 -3833 ($ $)) (-15 -3842 ($ $)) (-15 -3852 ($ $)) (-15 -3893 ($ $)) (-15 -3905 ($ $)) (-15 -3915 ($ $)) (-15 -2250 ($)) (-15 -2220 ((-652 (-1188)) $)) (-15 -2767 ((-112))) (-15 -2767 ((-112) (-112)))))
+((-3161 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3161 (|#8| (-1 |#5| |#1|) |#4|))) (-1233) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|) (-1233) (-1255 |#5|) (-1255 (-415 |#6|)) (-349 |#5| |#6| |#7|)) (T -347))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1233)) (-4 *8 (-1233)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *9 (-1255 *8)) (-4 *2 (-349 *8 *9 *10)) (-5 *1 (-347 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-349 *5 *6 *7)) (-4 *10 (-1255 (-415 *9))))))
+(-10 -7 (-15 -3161 (|#8| (-1 |#5| |#1|) |#4|)))
+((-3265 (((-2 (|:| |num| (-1279 |#3|)) (|:| |den| |#3|)) $) 39)) (-2372 (($ (-1279 (-415 |#3|)) (-1279 $)) NIL) (($ (-1279 (-415 |#3|))) NIL) (($ (-1279 |#3|) |#3|) 173)) (-4216 (((-1279 $) (-1279 $)) 156)) (-1827 (((-652 (-652 |#2|))) 126)) (-1646 (((-112) |#2| |#2|) 76)) (-2889 (($ $) 148)) (-3494 (((-779)) 172)) (-3016 (((-1279 $) (-1279 $)) 218)) (-1628 (((-652 (-961 |#2|)) (-1188)) 115)) (-3662 (((-112) $) 169)) (-1796 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2272 (((-3 |#3| "failed")) 52)) (-2183 (((-779)) 184)) (-2679 ((|#2| $ |#2| |#2|) 140)) (-1413 (((-3 |#3| "failed")) 71)) (-3011 (($ $ (-1 (-415 |#3|) (-415 |#3|)) (-779)) NIL) (($ $ (-1 (-415 |#3|) (-415 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-1904 (((-1279 $) (-1279 $)) 162)) (-3345 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2116 (((-112)) 34)))
+(((-348 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -1827 ((-652 (-652 |#2|)))) (-15 -1628 ((-652 (-961 |#2|)) (-1188))) (-15 -3345 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2272 ((-3 |#3| "failed"))) (-15 -1413 ((-3 |#3| "failed"))) (-15 -2679 (|#2| |#1| |#2| |#2|)) (-15 -2889 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1796 ((-112) |#1| |#3|)) (-15 -1796 ((-112) |#1| |#2|)) (-15 -2372 (|#1| (-1279 |#3|) |#3|)) (-15 -3265 ((-2 (|:| |num| (-1279 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4216 ((-1279 |#1|) (-1279 |#1|))) (-15 -3016 ((-1279 |#1|) (-1279 |#1|))) (-15 -1904 ((-1279 |#1|) (-1279 |#1|))) (-15 -1796 ((-112) |#1|)) (-15 -3662 ((-112) |#1|)) (-15 -1646 ((-112) |#2| |#2|)) (-15 -2116 ((-112))) (-15 -2183 ((-779))) (-15 -3494 ((-779))) (-15 -3011 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)))) (-15 -3011 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)) (-779))) (-15 -2372 (|#1| (-1279 (-415 |#3|)))) (-15 -2372 (|#1| (-1279 (-415 |#3|)) (-1279 |#1|)))) (-349 |#2| |#3| |#4|) (-1233) (-1255 |#2|) (-1255 (-415 |#3|))) (T -348))
+((-3494 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))) (-2183 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))) (-2116 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))) (-1646 (*1 *2 *3 *3) (-12 (-4 *3 (-1233)) (-4 *5 (-1255 *3)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-112)) (-5 *1 (-348 *4 *3 *5 *6)) (-4 *4 (-349 *3 *5 *6)))) (-1413 (*1 *2) (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5)) (-4 *3 (-349 *4 *2 *5)))) (-2272 (*1 *2) (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5)) (-4 *3 (-349 *4 *2 *5)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *5 (-1233)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-5 *2 (-652 (-961 *5))) (-5 *1 (-348 *4 *5 *6 *7)) (-4 *4 (-349 *5 *6 *7)))) (-1827 (*1 *2) (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-652 (-652 *4))) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6)))))
+(-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -1827 ((-652 (-652 |#2|)))) (-15 -1628 ((-652 (-961 |#2|)) (-1188))) (-15 -3345 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2272 ((-3 |#3| "failed"))) (-15 -1413 ((-3 |#3| "failed"))) (-15 -2679 (|#2| |#1| |#2| |#2|)) (-15 -2889 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1796 ((-112) |#1| |#3|)) (-15 -1796 ((-112) |#1| |#2|)) (-15 -2372 (|#1| (-1279 |#3|) |#3|)) (-15 -3265 ((-2 (|:| |num| (-1279 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4216 ((-1279 |#1|) (-1279 |#1|))) (-15 -3016 ((-1279 |#1|) (-1279 |#1|))) (-15 -1904 ((-1279 |#1|) (-1279 |#1|))) (-15 -1796 ((-112) |#1|)) (-15 -3662 ((-112) |#1|)) (-15 -1646 ((-112) |#2| |#2|)) (-15 -2116 ((-112))) (-15 -2183 ((-779))) (-15 -3494 ((-779))) (-15 -3011 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)))) (-15 -3011 (|#1| |#1| (-1 (-415 |#3|) (-415 |#3|)) (-779))) (-15 -2372 (|#1| (-1279 (-415 |#3|)))) (-15 -2372 (|#1| (-1279 (-415 |#3|)) (-1279 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3265 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 204)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 102 (|has| (-415 |#2|) (-370)))) (-1697 (($ $) 103 (|has| (-415 |#2|) (-370)))) (-1774 (((-112) $) 105 (|has| (-415 |#2|) (-370)))) (-3385 (((-697 (-415 |#2|)) (-1279 $)) 53) (((-697 (-415 |#2|))) 68)) (-2055 (((-415 |#2|) $) 59)) (-4380 (((-1201 (-930) (-779)) (-572)) 155 (|has| (-415 |#2|) (-356)))) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 122 (|has| (-415 |#2|) (-370)))) (-2359 (((-426 $) $) 123 (|has| (-415 |#2|) (-370)))) (-4252 (((-112) $ $) 113 (|has| (-415 |#2|) (-370)))) (-3037 (((-779)) 96 (|has| (-415 |#2|) (-375)))) (-1773 (((-112)) 221)) (-2546 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 178 (|has| (-415 |#2|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 176 (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-3 (-415 |#2|) "failed") $) 173)) (-1869 (((-572) $) 177 (|has| (-415 |#2|) (-1049 (-572)))) (((-415 (-572)) $) 175 (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-415 |#2|) $) 174)) (-2372 (($ (-1279 (-415 |#2|)) (-1279 $)) 55) (($ (-1279 (-415 |#2|))) 71) (($ (-1279 |#2|) |#2|) 203)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-415 |#2|) (-356)))) (-3407 (($ $ $) 117 (|has| (-415 |#2|) (-370)))) (-1649 (((-697 (-415 |#2|)) $ (-1279 $)) 60) (((-697 (-415 |#2|)) $) 66)) (-2245 (((-697 (-572)) (-697 $)) 172 (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 171 (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-415 |#2|))) (|:| |vec| (-1279 (-415 |#2|)))) (-697 $) (-1279 $)) 170) (((-697 (-415 |#2|)) (-697 $)) 169)) (-4216 (((-1279 $) (-1279 $)) 209)) (-2925 (($ |#3|) 166) (((-3 $ "failed") (-415 |#3|)) 163 (|has| (-415 |#2|) (-370)))) (-2982 (((-3 $ "failed") $) 37)) (-1827 (((-652 (-652 |#1|))) 190 (|has| |#1| (-375)))) (-1646 (((-112) |#1| |#1|) 225)) (-1526 (((-930)) 61)) (-2688 (($) 99 (|has| (-415 |#2|) (-375)))) (-2170 (((-112)) 218)) (-1987 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-3418 (($ $ $) 116 (|has| (-415 |#2|) (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 111 (|has| (-415 |#2|) (-370)))) (-2889 (($ $) 196)) (-1345 (($) 157 (|has| (-415 |#2|) (-356)))) (-2754 (((-112) $) 158 (|has| (-415 |#2|) (-356)))) (-3156 (($ $ (-779)) 149 (|has| (-415 |#2|) (-356))) (($ $) 148 (|has| (-415 |#2|) (-356)))) (-3439 (((-112) $) 124 (|has| (-415 |#2|) (-370)))) (-2068 (((-930) $) 160 (|has| (-415 |#2|) (-356))) (((-841 (-930)) $) 146 (|has| (-415 |#2|) (-356)))) (-4422 (((-112) $) 35)) (-3494 (((-779)) 228)) (-3016 (((-1279 $) (-1279 $)) 210)) (-2140 (((-415 |#2|) $) 58)) (-1628 (((-652 (-961 |#1|)) (-1188)) 191 (|has| |#1| (-370)))) (-3396 (((-3 $ "failed") $) 150 (|has| (-415 |#2|) (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 120 (|has| (-415 |#2|) (-370)))) (-2179 ((|#3| $) 51 (|has| (-415 |#2|) (-370)))) (-4370 (((-930) $) 98 (|has| (-415 |#2|) (-375)))) (-2913 ((|#3| $) 164)) (-1335 (($ (-652 $)) 109 (|has| (-415 |#2|) (-370))) (($ $ $) 108 (|has| (-415 |#2|) (-370)))) (-3618 (((-1170) $) 10)) (-3231 (((-697 (-415 |#2|))) 205)) (-2026 (((-697 (-415 |#2|))) 207)) (-1809 (($ $) 125 (|has| (-415 |#2|) (-370)))) (-4108 (($ (-1279 |#2|) |#2|) 201)) (-3733 (((-697 (-415 |#2|))) 206)) (-1378 (((-697 (-415 |#2|))) 208)) (-2261 (((-2 (|:| |num| (-697 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1851 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 202)) (-2525 (((-1279 $)) 214)) (-2469 (((-1279 $)) 215)) (-3662 (((-112) $) 213)) (-1796 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3477 (($) 151 (|has| (-415 |#2|) (-356)) CONST)) (-1795 (($ (-930)) 97 (|has| (-415 |#2|) (-375)))) (-2272 (((-3 |#2| "failed")) 193)) (-2614 (((-1131) $) 11)) (-2183 (((-779)) 227)) (-4267 (($) 168)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 110 (|has| (-415 |#2|) (-370)))) (-1370 (($ (-652 $)) 107 (|has| (-415 |#2|) (-370))) (($ $ $) 106 (|has| (-415 |#2|) (-370)))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 154 (|has| (-415 |#2|) (-356)))) (-2972 (((-426 $) $) 121 (|has| (-415 |#2|) (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-415 |#2|) (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 118 (|has| (-415 |#2|) (-370)))) (-3453 (((-3 $ "failed") $ $) 101 (|has| (-415 |#2|) (-370)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 112 (|has| (-415 |#2|) (-370)))) (-4395 (((-779) $) 114 (|has| (-415 |#2|) (-370)))) (-2679 ((|#1| $ |#1| |#1|) 195)) (-1413 (((-3 |#2| "failed")) 194)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 115 (|has| (-415 |#2|) (-370)))) (-2020 (((-415 |#2|) (-1279 $)) 54) (((-415 |#2|)) 67)) (-1468 (((-779) $) 159 (|has| (-415 |#2|) (-356))) (((-3 (-779) "failed") $ $) 147 (|has| (-415 |#2|) (-356)))) (-3011 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) 131 (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) 130 (|has| (-415 |#2|) (-370))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-652 (-1188)) (-652 (-779))) 138 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188) (-779)) 139 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-652 (-1188))) 140 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188)) 141 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-779)) 143 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-3804 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) 145 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-3804 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-1421 (((-697 (-415 |#2|)) (-1279 $) (-1 (-415 |#2|) (-415 |#2|))) 162 (|has| (-415 |#2|) (-370)))) (-3858 ((|#3|) 167)) (-2817 (($) 156 (|has| (-415 |#2|) (-356)))) (-2862 (((-1279 (-415 |#2|)) $ (-1279 $)) 57) (((-697 (-415 |#2|)) (-1279 $) (-1279 $)) 56) (((-1279 (-415 |#2|)) $) 73) (((-697 (-415 |#2|)) (-1279 $)) 72)) (-3222 (((-1279 (-415 |#2|)) $) 70) (($ (-1279 (-415 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 153 (|has| (-415 |#2|) (-356)))) (-1904 (((-1279 $) (-1279 $)) 211)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 |#2|)) 44) (($ (-415 (-572))) 95 (-3783 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-1049 (-415 (-572)))))) (($ $) 100 (|has| (-415 |#2|) (-370)))) (-2210 (($ $) 152 (|has| (-415 |#2|) (-356))) (((-3 $ "failed") $) 50 (|has| (-415 |#2|) (-146)))) (-3245 ((|#3| $) 52)) (-2455 (((-779)) 32 T CONST)) (-1715 (((-112)) 224)) (-1733 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3424 (((-112) $ $) 9)) (-1769 (((-1279 $)) 74)) (-2466 (((-112) $ $) 104 (|has| (-415 |#2|) (-370)))) (-3345 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-2116 (((-112)) 226)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) 133 (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) 132 (|has| (-415 |#2|) (-370))) (($ $ (-652 (-1188)) (-652 (-779))) 134 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188) (-779)) 135 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-652 (-1188))) 136 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-1188)) 137 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) (-3804 (|has| (-415 |#2|) (-909 (-1188))) (|has| (-415 |#2|) (-370))))) (($ $ (-779)) 142 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-3804 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) 144 (-3783 (-3804 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-237))) (-3804 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 129 (|has| (-415 |#2|) (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 126 (|has| (-415 |#2|) (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 |#2|)) 46) (($ (-415 |#2|) $) 45) (($ (-415 (-572)) $) 128 (|has| (-415 |#2|) (-370))) (($ $ (-415 (-572))) 127 (|has| (-415 |#2|) (-370)))))
+(((-349 |#1| |#2| |#3|) (-141) (-1233) (-1255 |t#1|) (-1255 (-415 |t#2|))) (T -349))
+((-3494 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779)))) (-2183 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779)))) (-2116 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1646 (*1 *2 *3 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1715 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1733 (*1 *2 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1733 (*1 *2 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-1773 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-2546 (*1 *2 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-2546 (*1 *2 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-2170 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1987 (*1 *2 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1987 (*1 *2 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-2469 (*1 *2) (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)))) (-2525 (*1 *2) (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-3016 (*1 *2 *2) (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-1378 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-2026 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-3733 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-3231 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))) (-2372 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233)) (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3))))) (-1851 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))) (-4108 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233)) (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3))))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-2 (|:| |num| (-697 *5)) (|:| |den| *5))))) (-1796 (*1 *2 *1 *3) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))) (-1796 (*1 *2 *1 *3) (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))))) (-2679 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3))))) (-1413 (*1 *2) (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233)) (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))) (-2272 (*1 *2) (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233)) (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))) (-3345 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1233)) (-4 *6 (-1255 (-415 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-349 *4 *5 *6)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *4 (-370)) (-5 *2 (-652 (-961 *4))))) (-1827 (*1 *2) (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))) (-4 *3 (-375)) (-5 *2 (-652 (-652 *3))))))
+(-13 (-732 (-415 |t#2|) |t#3|) (-10 -8 (-15 -3494 ((-779))) (-15 -2183 ((-779))) (-15 -2116 ((-112))) (-15 -1646 ((-112) |t#1| |t#1|)) (-15 -1715 ((-112))) (-15 -1733 ((-112) |t#1|)) (-15 -1733 ((-112) |t#2|)) (-15 -1773 ((-112))) (-15 -2546 ((-112) |t#1|)) (-15 -2546 ((-112) |t#2|)) (-15 -2170 ((-112))) (-15 -1987 ((-112) |t#1|)) (-15 -1987 ((-112) |t#2|)) (-15 -2469 ((-1279 $))) (-15 -2525 ((-1279 $))) (-15 -3662 ((-112) $)) (-15 -1796 ((-112) $)) (-15 -1904 ((-1279 $) (-1279 $))) (-15 -3016 ((-1279 $) (-1279 $))) (-15 -4216 ((-1279 $) (-1279 $))) (-15 -1378 ((-697 (-415 |t#2|)))) (-15 -2026 ((-697 (-415 |t#2|)))) (-15 -3733 ((-697 (-415 |t#2|)))) (-15 -3231 ((-697 (-415 |t#2|)))) (-15 -3265 ((-2 (|:| |num| (-1279 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2372 ($ (-1279 |t#2|) |t#2|)) (-15 -1851 ((-2 (|:| |num| (-1279 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4108 ($ (-1279 |t#2|) |t#2|)) (-15 -2261 ((-2 (|:| |num| (-697 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1796 ((-112) $ |t#1|)) (-15 -1796 ((-112) $ |t#2|)) (-15 -3011 ($ $ (-1 |t#2| |t#2|))) (-15 -2889 ($ $)) (-15 -2679 (|t#1| $ |t#1| |t#1|)) (-15 -1413 ((-3 |t#2| "failed"))) (-15 -2272 ((-3 |t#2| "failed"))) (-15 -3345 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-370)) (-15 -1628 ((-652 (-961 |t#1|)) (-1188))) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -1827 ((-652 (-652 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-38 #1=(-415 |#2|)) . T) ((-38 $) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-102) . T) ((-111 #0# #0#) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-146))) ((-148) |has| (-415 |#2|) (-148)) ((-624 #0#) -3783 (|has| (-415 |#2|) (-1049 (-415 (-572)))) (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-624 #1#) . T) ((-624 (-572)) . T) ((-624 $) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-621 (-870)) . T) ((-174) . T) ((-622 |#3|) . T) ((-233 #1#) |has| (-415 |#2|) (-370)) ((-237) -3783 (|has| (-415 |#2|) (-356)) (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370)))) ((-247) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-296) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-313) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-370) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-410) |has| (-415 |#2|) (-356)) ((-375) -3783 (|has| (-415 |#2|) (-375)) (|has| (-415 |#2|) (-356))) ((-356) |has| (-415 |#2|) (-356)) ((-377 #1# |#3|) . T) ((-417 #1# |#3|) . T) ((-384 #1#) . T) ((-419 #1#) . T) ((-460) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-564) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-654 #0#) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-654 #1#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-656 #1#) . T) ((-656 $) . T) ((-648 #0#) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-648 #1#) . T) ((-648 $) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-647 #1#) . T) ((-647 (-572)) |has| (-415 |#2|) (-647 (-572))) ((-725 #0#) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-725 #1#) . T) ((-725 $) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-732 #1# |#3|) . T) ((-734) . T) ((-909 (-1188)) -12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188)))) ((-929) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-1049 (-415 (-572))) |has| (-415 |#2|) (-1049 (-415 (-572)))) ((-1049 #1#) . T) ((-1049 (-572)) |has| (-415 |#2|) (-1049 (-572))) ((-1062 #0#) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-1062 #1#) . T) ((-1062 $) . T) ((-1067 #0#) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))) ((-1067 #1#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| (-415 |#2|) (-356)) ((-1233) -3783 (|has| (-415 |#2|) (-356)) (|has| (-415 |#2|) (-370))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-919 |#1|) (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| (-919 |#1|) (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-919 |#1|) "failed") $) NIL)) (-1869 (((-919 |#1|) $) NIL)) (-2372 (($ (-1279 (-919 |#1|))) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-919 |#1|) (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-919 |#1|) (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL (|has| (-919 |#1|) (-375)))) (-2754 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375)))) (($ $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| (-919 |#1|) (-375))) (((-841 (-930)) $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| (-919 |#1|) (-375)))) (-3466 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2140 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-919 |#1|) (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 (-919 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-4370 (((-930) $) NIL (|has| (-919 |#1|) (-375)))) (-1532 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375)))) (-2202 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-1184 (-919 |#1|)) "failed") $ $) NIL (|has| (-919 |#1|) (-375)))) (-2423 (($ $ (-1184 (-919 |#1|))) NIL (|has| (-919 |#1|) (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-919 |#1|) (-375)) CONST)) (-1795 (($ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-1488 (((-967 (-1131))) NIL)) (-4267 (($) NIL (|has| (-919 |#1|) (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| (-919 |#1|) (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 (-919 |#1|))) NIL)) (-2817 (($) NIL (|has| (-919 |#1|) (-375)))) (-3068 (($) NIL (|has| (-919 |#1|) (-375)))) (-2862 (((-1279 (-919 |#1|)) $) NIL) (((-697 (-919 |#1|)) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-919 |#1|) (-375)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-919 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-919 |#1|) (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-4019 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $ (-919 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-919 |#1|)) NIL) (($ (-919 |#1|) $) NIL)))
+(((-350 |#1| |#2|) (-13 (-335 (-919 |#1|)) (-10 -7 (-15 -1488 ((-967 (-1131)))))) (-930) (-930)) (T -350))
+((-1488 (*1 *2) (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-350 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))))
+(-13 (-335 (-919 |#1|)) (-10 -7 (-15 -1488 ((-967 (-1131))))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 58)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) 56 (|has| |#1| (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 142)) (-1869 ((|#1| $) 113)) (-2372 (($ (-1279 |#1|)) 130)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) 124 (|has| |#1| (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) 160 (|has| |#1| (-375)))) (-2754 (((-112) $) 66 (|has| |#1| (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) 60 (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) 62)) (-2833 (($) 162 (|has| |#1| (-375)))) (-3466 (((-112) $) NIL (|has| |#1| (-375)))) (-2140 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 |#1|) $) 117) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-4370 (((-930) $) 171 (|has| |#1| (-375)))) (-1532 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-2202 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-2423 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 178)) (-3477 (($) NIL (|has| |#1| (-375)) CONST)) (-1795 (($ (-930)) 96 (|has| |#1| (-375)))) (-2011 (((-112) $) 147)) (-2614 (((-1131) $) NIL)) (-1488 (((-967 (-1131))) 57)) (-4267 (($) 158 (|has| |#1| (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 119 (|has| |#1| (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) 90) (((-930)) 91)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) 161 (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) 154 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 |#1|)) 122)) (-2817 (($) 159 (|has| |#1| (-375)))) (-3068 (($) 167 (|has| |#1| (-375)))) (-2862 (((-1279 |#1|) $) 77) (((-697 |#1|) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-3491 (((-870) $) 174) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 100)) (-2210 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) 155 T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) 144) (((-1279 $) (-930)) 98)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) 67 T CONST)) (-2619 (($) 103 T CONST)) (-2933 (($ $) 107 (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4019 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3921 (((-112) $ $) 65)) (-4029 (($ $ $) 176) (($ $ |#1|) 177)) (-4018 (($ $) 157) (($ $ $) NIL)) (-4005 (($ $ $) 86)) (** (($ $ (-930)) 180) (($ $ (-779)) 181) (($ $ (-572)) 179)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 102) (($ $ $) 101) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
+(((-351 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -1488 ((-967 (-1131)))))) (-356) (-1184 |#1|)) (T -351))
+((-1488 (*1 *2) (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-351 *3 *4)) (-4 *3 (-356)) (-14 *4 (-1184 *3)))))
+(-13 (-335 |#1|) (-10 -7 (-15 -1488 ((-967 (-1131))))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2372 (($ (-1279 |#1|)) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| |#1| (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL (|has| |#1| (-375)))) (-2754 (((-112) $) NIL (|has| |#1| (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-375)))) (-3466 (((-112) $) NIL (|has| |#1| (-375)))) (-2140 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 |#1|) $) NIL) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-4370 (((-930) $) NIL (|has| |#1| (-375)))) (-1532 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-2202 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-2423 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| |#1| (-375)) CONST)) (-1795 (($ (-930)) NIL (|has| |#1| (-375)))) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-1488 (((-967 (-1131))) NIL)) (-4267 (($) NIL (|has| |#1| (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| |#1| (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 |#1|)) NIL)) (-2817 (($) NIL (|has| |#1| (-375)))) (-3068 (($) NIL (|has| |#1| (-375)))) (-2862 (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) NIL)) (-2210 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4019 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-352 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -1488 ((-967 (-1131)))))) (-356) (-930)) (T -352))
+((-1488 (*1 *2) (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-352 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))))
+(-13 (-335 |#1|) (-10 -7 (-15 -1488 ((-967 (-1131))))))
+((-2961 (((-779) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131)))))) 61)) (-3201 (((-967 (-1131)) (-1184 |#1|)) 112)) (-3693 (((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) (-1184 |#1|)) 103)) (-1940 (((-697 |#1|) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131)))))) 113)) (-2765 (((-3 (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) "failed") (-930)) 13)) (-1610 (((-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131)))))) (-930)) 18)))
+(((-353 |#1|) (-10 -7 (-15 -3201 ((-967 (-1131)) (-1184 |#1|))) (-15 -3693 ((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) (-1184 |#1|))) (-15 -1940 ((-697 |#1|) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -2961 ((-779) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -2765 ((-3 (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) "failed") (-930))) (-15 -1610 ((-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131)))))) (-930)))) (-356)) (T -353))
+((-1610 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-3 (-1184 *4) (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131))))))) (-5 *1 (-353 *4)) (-4 *4 (-356)))) (-2765 (*1 *2 *3) (|partial| -12 (-5 *3 (-930)) (-5 *2 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131)))))) (-5 *1 (-353 *4)) (-4 *4 (-356)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131)))))) (-4 *4 (-356)) (-5 *2 (-779)) (-5 *1 (-353 *4)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131)))))) (-4 *4 (-356)) (-5 *2 (-697 *4)) (-5 *1 (-353 *4)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131)))))) (-5 *1 (-353 *4)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-967 (-1131))) (-5 *1 (-353 *4)))))
+(-10 -7 (-15 -3201 ((-967 (-1131)) (-1184 |#1|))) (-15 -3693 ((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) (-1184 |#1|))) (-15 -1940 ((-697 |#1|) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -2961 ((-779) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -2765 ((-3 (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) "failed") (-930))) (-15 -1610 ((-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131)))))) (-930))))
+((-3491 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
+(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -3491 (|#3| |#1|)) (-15 -3491 (|#1| |#3|))) (-335 |#2|) (-356) (-335 |#2|)) (T -354))
+((-3491 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *2 *4 *3)) (-4 *3 (-335 *4)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *3 *4 *2)) (-4 *3 (-335 *4)))))
+(-10 -7 (-15 -3491 (|#3| |#1|)) (-15 -3491 (|#1| |#3|)))
+((-2754 (((-112) $) 60)) (-2068 (((-841 (-930)) $) 23) (((-930) $) 64)) (-3396 (((-3 $ "failed") $) 18)) (-3477 (($) 9)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 114)) (-1468 (((-3 (-779) "failed") $ $) 92) (((-779) $) 79)) (-3011 (($ $ (-779)) NIL) (($ $) 8)) (-2817 (($) 53)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 38)) (-2210 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-355 |#1|) (-10 -8 (-15 -2068 ((-930) |#1|)) (-15 -1468 ((-779) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -2817 (|#1|)) (-15 -3130 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -2210 (|#1| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -1468 ((-3 (-779) "failed") |#1| |#1|)) (-15 -2068 ((-841 (-930)) |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)))) (-356)) (T -355))
+NIL
+(-10 -8 (-15 -2068 ((-930) |#1|)) (-15 -1468 ((-779) |#1|)) (-15 -2754 ((-112) |#1|)) (-15 -2817 (|#1|)) (-15 -3130 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -2210 (|#1| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -1468 ((-3 (-779) "failed") |#1| |#1|)) (-15 -2068 ((-841 (-930)) |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-4380 (((-1201 (-930) (-779)) (-572)) 101)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-4252 (((-112) $ $) 65)) (-3037 (((-779)) 111)) (-1586 (($) 18 T CONST)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-2688 (($) 114)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-1345 (($) 99)) (-2754 (((-112) $) 98)) (-3156 (($ $) 87) (($ $ (-779)) 86)) (-3439 (((-112) $) 79)) (-2068 (((-841 (-930)) $) 89) (((-930) $) 96)) (-4422 (((-112) $) 35)) (-3396 (((-3 $ "failed") $) 110)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-4370 (((-930) $) 113)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-3477 (($) 109 T CONST)) (-1795 (($ (-930)) 112)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 102)) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-1468 (((-3 (-779) "failed") $ $) 88) (((-779) $) 97)) (-3011 (($ $ (-779)) 107) (($ $) 105)) (-2817 (($) 100)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 103)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-2210 (((-3 $ "failed") $) 90) (($ $) 104)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-779)) 108) (($ $) 106)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
+(((-356) (-141)) (T -356))
+((-2210 (*1 *1 *1) (-4 *1 (-356))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-356)) (-5 *2 (-1279 *1)))) (-1815 (*1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))))) (-4380 (*1 *2 *3) (-12 (-4 *1 (-356)) (-5 *3 (-572)) (-5 *2 (-1201 (-930) (-779))))) (-2817 (*1 *1) (-4 *1 (-356))) (-1345 (*1 *1) (-4 *1 (-356))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-112)))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-779)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-930)))) (-2899 (*1 *2) (-12 (-4 *1 (-356)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-410) (-375) (-1163) (-237) (-10 -8 (-15 -2210 ($ $)) (-15 -3130 ((-3 (-1279 $) "failed") (-697 $))) (-15 -1815 ((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572)))))) (-15 -4380 ((-1201 (-930) (-779)) (-572))) (-15 -2817 ($)) (-15 -1345 ($)) (-15 -2754 ((-112) $)) (-15 -1468 ((-779) $)) (-15 -2068 ((-930) $)) (-15 -2899 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-237) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-410) . T) ((-375) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) . T) ((-1233) . T))
+((-1409 (((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) |#1|) 55)) (-2469 (((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|)))) 53)))
+(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -2469 ((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))))) (-15 -1409 ((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) |#1|))) (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))) (-1255 |#1|) (-417 |#1| |#2|)) (T -357))
+((-1409 (*1 *2 *3) (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *2 (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-2469 (*1 *2) (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *2 (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
+(-10 -7 (-15 -2469 ((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))))) (-15 -1409 ((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-919 |#1|) (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-2961 (((-779)) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| (-919 |#1|) (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-919 |#1|) "failed") $) NIL)) (-1869 (((-919 |#1|) $) NIL)) (-2372 (($ (-1279 (-919 |#1|))) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-919 |#1|) (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-919 |#1|) (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL (|has| (-919 |#1|) (-375)))) (-2754 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375)))) (($ $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| (-919 |#1|) (-375))) (((-841 (-930)) $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| (-919 |#1|) (-375)))) (-3466 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2140 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-919 |#1|) (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 (-919 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-4370 (((-930) $) NIL (|has| (-919 |#1|) (-375)))) (-1532 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375)))) (-2202 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-1184 (-919 |#1|)) "failed") $ $) NIL (|has| (-919 |#1|) (-375)))) (-2423 (($ $ (-1184 (-919 |#1|))) NIL (|has| (-919 |#1|) (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-919 |#1|) (-375)) CONST)) (-1795 (($ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-2529 (((-1279 (-652 (-2 (|:| -1653 (-919 |#1|)) (|:| -1795 (-1131)))))) NIL)) (-4359 (((-697 (-919 |#1|))) NIL)) (-4267 (($) NIL (|has| (-919 |#1|) (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| (-919 |#1|) (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 (-919 |#1|))) NIL)) (-2817 (($) NIL (|has| (-919 |#1|) (-375)))) (-3068 (($) NIL (|has| (-919 |#1|) (-375)))) (-2862 (((-1279 (-919 |#1|)) $) NIL) (((-697 (-919 |#1|)) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-919 |#1|) (-375)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-919 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-919 |#1|) (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-4019 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $ (-919 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-919 |#1|)) NIL) (($ (-919 |#1|) $) NIL)))
+(((-358 |#1| |#2|) (-13 (-335 (-919 |#1|)) (-10 -7 (-15 -2529 ((-1279 (-652 (-2 (|:| -1653 (-919 |#1|)) (|:| -1795 (-1131))))))) (-15 -4359 ((-697 (-919 |#1|)))) (-15 -2961 ((-779))))) (-930) (-930)) (T -358))
+((-2529 (*1 *2) (-12 (-5 *2 (-1279 (-652 (-2 (|:| -1653 (-919 *3)) (|:| -1795 (-1131)))))) (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-4359 (*1 *2) (-12 (-5 *2 (-697 (-919 *3))) (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-2961 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))))
+(-13 (-335 (-919 |#1|)) (-10 -7 (-15 -2529 ((-1279 (-652 (-2 (|:| -1653 (-919 |#1|)) (|:| -1795 (-1131))))))) (-15 -4359 ((-697 (-919 |#1|)))) (-15 -2961 ((-779)))))
+((-3464 (((-112) $ $) 73)) (-3143 (((-112) $) 88)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 ((|#1| $) 106) (($ $ (-930)) 104 (|has| |#1| (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) 170 (|has| |#1| (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-2961 (((-779)) 103)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) 187 (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 127)) (-1869 ((|#1| $) 105)) (-2372 (($ (-1279 |#1|)) 71)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) 182 (|has| |#1| (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) 171 (|has| |#1| (-375)))) (-2754 (((-112) $) NIL (|has| |#1| (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) 113 (|has| |#1| (-375)))) (-3466 (((-112) $) 200 (|has| |#1| (-375)))) (-2140 ((|#1| $) 108) (($ $ (-930)) 107 (|has| |#1| (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 |#1|) $) 214) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-4370 (((-930) $) 148 (|has| |#1| (-375)))) (-1532 (((-1184 |#1|) $) 87 (|has| |#1| (-375)))) (-2202 (((-1184 |#1|) $) 84 (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) 96 (|has| |#1| (-375)))) (-2423 (($ $ (-1184 |#1|)) 83 (|has| |#1| (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 218)) (-3477 (($) NIL (|has| |#1| (-375)) CONST)) (-1795 (($ (-930)) 150 (|has| |#1| (-375)))) (-2011 (((-112) $) 123)) (-2614 (((-1131) $) NIL)) (-2529 (((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131)))))) 97)) (-4359 (((-697 |#1|)) 101)) (-4267 (($) 110 (|has| |#1| (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 173 (|has| |#1| (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) 174)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) 75)) (-3858 (((-1184 |#1|)) 175)) (-2817 (($) 147 (|has| |#1| (-375)))) (-3068 (($) NIL (|has| |#1| (-375)))) (-2862 (((-1279 |#1|) $) 121) (((-697 |#1|) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-3491 (((-870) $) 140) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 70)) (-2210 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) 180 T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) 197) (((-1279 $) (-930)) 116)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) 186 T CONST)) (-2619 (($) 161 T CONST)) (-2933 (($ $) 122 (|has| |#1| (-375))) (($ $ (-779)) 114 (|has| |#1| (-375)))) (-4019 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3921 (((-112) $ $) 208)) (-4029 (($ $ $) 119) (($ $ |#1|) 120)) (-4018 (($ $) 202) (($ $ $) 206)) (-4005 (($ $ $) 204)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 153)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 211) (($ $ $) 164) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
+(((-359 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -2529 ((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -4359 ((-697 |#1|))) (-15 -2961 ((-779))))) (-356) (-3 (-1184 |#1|) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (T -359))
+((-2529 (*1 *2) (-12 (-5 *2 (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131)))))) (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) *2)))) (-4359 (*1 *2) (-12 (-5 *2 (-697 *3)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131))))))))) (-2961 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131))))))))))
+(-13 (-335 |#1|) (-10 -7 (-15 -2529 ((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -4359 ((-697 |#1|))) (-15 -2961 ((-779)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-2961 (((-779)) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2372 (($ (-1279 |#1|)) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| |#1| (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL (|has| |#1| (-375)))) (-2754 (((-112) $) NIL (|has| |#1| (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-375)))) (-3466 (((-112) $) NIL (|has| |#1| (-375)))) (-2140 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 |#1|) $) NIL) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-4370 (((-930) $) NIL (|has| |#1| (-375)))) (-1532 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-2202 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-2423 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| |#1| (-375)) CONST)) (-1795 (($ (-930)) NIL (|has| |#1| (-375)))) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-2529 (((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131)))))) NIL)) (-4359 (((-697 |#1|)) NIL)) (-4267 (($) NIL (|has| |#1| (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| |#1| (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 |#1|)) NIL)) (-2817 (($) NIL (|has| |#1| (-375)))) (-3068 (($) NIL (|has| |#1| (-375)))) (-2862 (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) NIL)) (-2210 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4019 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-360 |#1| |#2|) (-13 (-335 |#1|) (-10 -7 (-15 -2529 ((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -4359 ((-697 |#1|))) (-15 -2961 ((-779))))) (-356) (-930)) (T -360))
+((-2529 (*1 *2) (-12 (-5 *2 (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131)))))) (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))) (-4359 (*1 *2) (-12 (-5 *2 (-697 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))) (-2961 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))))
+(-13 (-335 |#1|) (-10 -7 (-15 -2529 ((-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))))) (-15 -4359 ((-697 |#1|))) (-15 -2961 ((-779)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-919 |#1|) (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| (-919 |#1|) (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-919 |#1|) "failed") $) NIL)) (-1869 (((-919 |#1|) $) NIL)) (-2372 (($ (-1279 (-919 |#1|))) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-919 |#1|) (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-919 |#1|) (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL (|has| (-919 |#1|) (-375)))) (-2754 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375)))) (($ $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| (-919 |#1|) (-375))) (((-841 (-930)) $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| (-919 |#1|) (-375)))) (-3466 (((-112) $) NIL (|has| (-919 |#1|) (-375)))) (-2140 (((-919 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-919 |#1|) (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 (-919 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-4370 (((-930) $) NIL (|has| (-919 |#1|) (-375)))) (-1532 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375)))) (-2202 (((-1184 (-919 |#1|)) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-1184 (-919 |#1|)) "failed") $ $) NIL (|has| (-919 |#1|) (-375)))) (-2423 (($ $ (-1184 (-919 |#1|))) NIL (|has| (-919 |#1|) (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-919 |#1|) (-375)) CONST)) (-1795 (($ (-930)) NIL (|has| (-919 |#1|) (-375)))) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-4267 (($) NIL (|has| (-919 |#1|) (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| (-919 |#1|) (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| (-919 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 (-919 |#1|))) NIL)) (-2817 (($) NIL (|has| (-919 |#1|) (-375)))) (-3068 (($) NIL (|has| (-919 |#1|) (-375)))) (-2862 (((-1279 (-919 |#1|)) $) NIL) (((-697 (-919 |#1|)) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-919 |#1|) (-375)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-919 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-919 |#1|) (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| (-919 |#1|) (-146)) (|has| (-919 |#1|) (-375))))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-4019 (($ $) NIL (|has| (-919 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-919 |#1|) (-375)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $ (-919 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-919 |#1|)) NIL) (($ (-919 |#1|) $) NIL)))
+(((-361 |#1| |#2|) (-335 (-919 |#1|)) (-930) (-930)) (T -361))
+NIL
+(-335 (-919 |#1|))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) 129 (|has| |#1| (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) 155 (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 103)) (-1869 ((|#1| $) 100)) (-2372 (($ (-1279 |#1|)) 95)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) 92 (|has| |#1| (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) 51 (|has| |#1| (-375)))) (-2754 (((-112) $) NIL (|has| |#1| (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) 130 (|has| |#1| (-375)))) (-3466 (((-112) $) 84 (|has| |#1| (-375)))) (-2140 ((|#1| $) 47) (($ $ (-930)) 52 (|has| |#1| (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 |#1|) $) 75) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-4370 (((-930) $) 107 (|has| |#1| (-375)))) (-1532 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-2202 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-2423 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| |#1| (-375)) CONST)) (-1795 (($ (-930)) 105 (|has| |#1| (-375)))) (-2011 (((-112) $) 157)) (-2614 (((-1131) $) NIL)) (-4267 (($) 44 (|has| |#1| (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 124 (|has| |#1| (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) 154)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) 67)) (-3858 (((-1184 |#1|)) 98)) (-2817 (($) 135 (|has| |#1| (-375)))) (-3068 (($) NIL (|has| |#1| (-375)))) (-2862 (((-1279 |#1|) $) 63) (((-697 |#1|) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-3491 (((-870) $) 153) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 97)) (-2210 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) 159 T CONST)) (-3424 (((-112) $ $) 161)) (-1769 (((-1279 $)) 119) (((-1279 $) (-930)) 58)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) 121 T CONST)) (-2619 (($) 40 T CONST)) (-2933 (($ $) 78 (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4019 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3921 (((-112) $ $) 117)) (-4029 (($ $ $) 109) (($ $ |#1|) 110)) (-4018 (($ $) 90) (($ $ $) 115)) (-4005 (($ $ $) 113)) (** (($ $ (-930)) NIL) (($ $ (-779)) 53) (($ $ (-572)) 138)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 88) (($ $ $) 65) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
+(((-362 |#1| |#2|) (-335 |#1|) (-356) (-1184 |#1|)) (T -362))
+NIL
+(-335 |#1|)
+((-2050 ((|#1| (-1184 |#2|)) 59)))
+(((-363 |#1| |#2|) (-10 -7 (-15 -2050 (|#1| (-1184 |#2|)))) (-13 (-410) (-10 -7 (-15 -3491 (|#1| |#2|)) (-15 -4370 ((-930) |#1|)) (-15 -1769 ((-1279 |#1|) (-930))) (-15 -2933 (|#1| |#1|)))) (-356)) (T -363))
+((-2050 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-4 *2 (-13 (-410) (-10 -7 (-15 -3491 (*2 *4)) (-15 -4370 ((-930) *2)) (-15 -1769 ((-1279 *2) (-930))) (-15 -2933 (*2 *2))))) (-5 *1 (-363 *2 *4)))))
+(-10 -7 (-15 -2050 (|#1| (-1184 |#2|))))
+((-3306 (((-967 (-1184 |#1|)) (-1184 |#1|)) 49)) (-2688 (((-1184 |#1|) (-930) (-930)) 154) (((-1184 |#1|) (-930)) 150)) (-2754 (((-112) (-1184 |#1|)) 107)) (-3254 (((-930) (-930)) 85)) (-3277 (((-930) (-930)) 92)) (-3568 (((-930) (-930)) 83)) (-3466 (((-112) (-1184 |#1|)) 111)) (-3705 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 135)) (-1379 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 140)) (-2429 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 139)) (-4268 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 138)) (-1799 (((-3 (-1184 |#1|) "failed") (-1184 |#1|)) 131)) (-1719 (((-1184 |#1|) (-1184 |#1|)) 71)) (-2668 (((-1184 |#1|) (-930)) 145)) (-3052 (((-1184 |#1|) (-930)) 148)) (-4065 (((-1184 |#1|) (-930)) 147)) (-1833 (((-1184 |#1|) (-930)) 146)) (-2975 (((-1184 |#1|) (-930)) 143)))
+(((-364 |#1|) (-10 -7 (-15 -2754 ((-112) (-1184 |#1|))) (-15 -3466 ((-112) (-1184 |#1|))) (-15 -3568 ((-930) (-930))) (-15 -3254 ((-930) (-930))) (-15 -3277 ((-930) (-930))) (-15 -2975 ((-1184 |#1|) (-930))) (-15 -2668 ((-1184 |#1|) (-930))) (-15 -1833 ((-1184 |#1|) (-930))) (-15 -4065 ((-1184 |#1|) (-930))) (-15 -3052 ((-1184 |#1|) (-930))) (-15 -1799 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -3705 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -4268 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2429 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -1379 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2688 ((-1184 |#1|) (-930))) (-15 -2688 ((-1184 |#1|) (-930) (-930))) (-15 -1719 ((-1184 |#1|) (-1184 |#1|))) (-15 -3306 ((-967 (-1184 |#1|)) (-1184 |#1|)))) (-356)) (T -364))
+((-3306 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-967 (-1184 *4))) (-5 *1 (-364 *4)) (-5 *3 (-1184 *4)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-2688 (*1 *2 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-1379 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-2429 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-4268 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-3705 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-1799 (*1 *2 *2) (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4)) (-4 *4 (-356)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))) (-3568 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-364 *4)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-364 *4)))))
+(-10 -7 (-15 -2754 ((-112) (-1184 |#1|))) (-15 -3466 ((-112) (-1184 |#1|))) (-15 -3568 ((-930) (-930))) (-15 -3254 ((-930) (-930))) (-15 -3277 ((-930) (-930))) (-15 -2975 ((-1184 |#1|) (-930))) (-15 -2668 ((-1184 |#1|) (-930))) (-15 -1833 ((-1184 |#1|) (-930))) (-15 -4065 ((-1184 |#1|) (-930))) (-15 -3052 ((-1184 |#1|) (-930))) (-15 -1799 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -3705 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -4268 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2429 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -1379 ((-3 (-1184 |#1|) "failed") (-1184 |#1|))) (-15 -2688 ((-1184 |#1|) (-930))) (-15 -2688 ((-1184 |#1|) (-930) (-930))) (-15 -1719 ((-1184 |#1|) (-1184 |#1|))) (-15 -3306 ((-967 (-1184 |#1|)) (-1184 |#1|))))
+((-3317 (((-3 (-652 |#3|) "failed") (-652 |#3|) |#3|) 38)))
+(((-365 |#1| |#2| |#3|) (-10 -7 (-15 -3317 ((-3 (-652 |#3|) "failed") (-652 |#3|) |#3|))) (-356) (-1255 |#1|) (-1255 |#2|)) (T -365))
+((-3317 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *1 (-365 *4 *5 *3)))))
+(-10 -7 (-15 -3317 ((-3 (-652 |#3|) "failed") (-652 |#3|) |#3|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2372 (($ (-1279 |#1|)) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| |#1| (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL (|has| |#1| (-375)))) (-2754 (((-112) $) NIL (|has| |#1| (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| |#1| (-375))) (((-841 (-930)) $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| |#1| (-375)))) (-3466 (((-112) $) NIL (|has| |#1| (-375)))) (-2140 ((|#1| $) NIL) (($ $ (-930)) NIL (|has| |#1| (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 |#1|) $) NIL) (((-1184 $) $ (-930)) NIL (|has| |#1| (-375)))) (-4370 (((-930) $) NIL (|has| |#1| (-375)))) (-1532 (((-1184 |#1|) $) NIL (|has| |#1| (-375)))) (-2202 (((-1184 |#1|) $) NIL (|has| |#1| (-375))) (((-3 (-1184 |#1|) "failed") $ $) NIL (|has| |#1| (-375)))) (-2423 (($ $ (-1184 |#1|)) NIL (|has| |#1| (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| |#1| (-375)) CONST)) (-1795 (($ (-930)) NIL (|has| |#1| (-375)))) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-4267 (($) NIL (|has| |#1| (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| |#1| (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| |#1| (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 |#1|)) NIL)) (-2817 (($) NIL (|has| |#1| (-375)))) (-3068 (($) NIL (|has| |#1| (-375)))) (-2862 (((-1279 |#1|) $) NIL) (((-697 |#1|) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-375)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) NIL)) (-2210 (($ $) NIL (|has| |#1| (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-4019 (($ $) NIL (|has| |#1| (-375))) (($ $ (-779)) NIL (|has| |#1| (-375)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-366 |#1| |#2|) (-335 |#1|) (-356) (-930)) (T -366))
+NIL
+(-335 |#1|)
+((-2941 (((-112) (-652 (-961 |#1|))) 41)) (-1726 (((-652 (-961 |#1|)) (-652 (-961 |#1|))) 53)) (-3984 (((-3 (-652 (-961 |#1|)) "failed") (-652 (-961 |#1|))) 48)))
+(((-367 |#1| |#2|) (-10 -7 (-15 -2941 ((-112) (-652 (-961 |#1|)))) (-15 -3984 ((-3 (-652 (-961 |#1|)) "failed") (-652 (-961 |#1|)))) (-15 -1726 ((-652 (-961 |#1|)) (-652 (-961 |#1|))))) (-460) (-652 (-1188))) (T -367))
+((-1726 (*1 *2 *2) (-12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460)) (-5 *1 (-367 *3 *4)) (-14 *4 (-652 (-1188))))) (-3984 (*1 *2 *2) (|partial| -12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460)) (-5 *1 (-367 *3 *4)) (-14 *4 (-652 (-1188))))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-112)) (-5 *1 (-367 *4 *5)) (-14 *5 (-652 (-1188))))))
+(-10 -7 (-15 -2941 ((-112) (-652 (-961 |#1|)))) (-15 -3984 ((-3 (-652 (-961 |#1|)) "failed") (-652 (-961 |#1|)))) (-15 -1726 ((-652 (-961 |#1|)) (-652 (-961 |#1|)))))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779) $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) 17)) (-1932 ((|#1| $ (-572)) NIL)) (-3904 (((-572) $ (-572)) NIL)) (-2842 (($ (-1 |#1| |#1|) $) 34)) (-1499 (($ (-1 (-572) (-572)) $) 26)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 28)) (-2614 (((-1131) $) NIL)) (-1591 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-572)))) $) 30)) (-4242 (($ $ $) NIL)) (-1433 (($ $ $) NIL)) (-3491 (((-870) $) 40) (($ |#1|) NIL)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 11 T CONST)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ |#1| (-572)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-368 |#1|) (-13 (-481) (-1049 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-572))) (-15 -3037 ((-779) $)) (-15 -3904 ((-572) $ (-572))) (-15 -1932 (|#1| $ (-572))) (-15 -1499 ($ (-1 (-572) (-572)) $)) (-15 -2842 ($ (-1 |#1| |#1|) $)) (-15 -1591 ((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-572)))) $)))) (-1111)) (T -368))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-368 *3)) (-4 *3 (-1111)))) (-3904 (*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-368 *3)) (-4 *3 (-1111)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111)))) (-1499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-572) (-572))) (-5 *1 (-368 *3)) (-4 *3 (-1111)))) (-2842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-368 *3)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 (-572))))) (-5 *1 (-368 *3)) (-4 *3 (-1111)))))
+(-13 (-481) (-1049 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-572))) (-15 -3037 ((-779) $)) (-15 -3904 ((-572) $ (-572))) (-15 -1932 (|#1| $ (-572))) (-15 -1499 ($ (-1 (-572) (-572)) $)) (-15 -2842 ($ (-1 |#1| |#1|) $)) (-15 -1591 ((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-572)))) $))))
+((-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 13)) (-1697 (($ $) 14)) (-2359 (((-426 $) $) 34)) (-3439 (((-112) $) 30)) (-1809 (($ $) 19)) (-1370 (($ $ $) 25) (($ (-652 $)) NIL)) (-2972 (((-426 $) $) 35)) (-3453 (((-3 $ "failed") $ $) 24)) (-4395 (((-779) $) 28)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 39)) (-2466 (((-112) $ $) 16)) (-4029 (($ $ $) 37)))
+(((-369 |#1|) (-10 -8 (-15 -4029 (|#1| |#1| |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2501 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -4395 ((-779) |#1|)) (-15 -1370 (|#1| (-652 |#1|))) (-15 -1370 (|#1| |#1| |#1|)) (-15 -2466 ((-112) |#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -2580 ((-2 (|:| -3457 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|))) (-370)) (T -369))
+NIL
+(-10 -8 (-15 -4029 (|#1| |#1| |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2501 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -4395 ((-779) |#1|)) (-15 -1370 (|#1| (-652 |#1|))) (-15 -1370 (|#1| |#1| |#1|)) (-15 -2466 ((-112) |#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -2580 ((-2 (|:| -3457 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-4252 (((-112) $ $) 65)) (-1586 (($) 18 T CONST)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3439 (((-112) $) 79)) (-4422 (((-112) $) 35)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
+(((-370) (-141)) (T -370))
+((-4029 (*1 *1 *1 *1) (-4 *1 (-370))))
+(-13 (-313) (-1233) (-247) (-10 -8 (-15 -4029 ($ $ $)) (-6 -4452) (-6 -4446)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
+((-3464 (((-112) $ $) 7)) (-4280 ((|#2| $ |#2|) 14)) (-3098 (($ $ (-1170)) 19)) (-2594 ((|#2| $) 15)) (-3589 (($ |#1|) 21) (($ |#1| (-1170)) 20)) (-2402 ((|#1| $) 17)) (-3618 (((-1170) $) 10)) (-3134 (((-1170) $) 16)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3725 (($ $) 18)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-371 |#1| |#2|) (-141) (-1111) (-1111)) (T -371))
+((-3589 (*1 *1 *2) (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-3589 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-371 *2 *4)) (-4 *2 (-1111)) (-4 *4 (-1111)))) (-3098 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-371 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-3725 (*1 *1 *1) (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-371 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-371 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-1170)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-4280 (*1 *2 *1 *2) (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
+(-13 (-1111) (-10 -8 (-15 -3589 ($ |t#1|)) (-15 -3589 ($ |t#1| (-1170))) (-15 -3098 ($ $ (-1170))) (-15 -3725 ($ $)) (-15 -2402 (|t#1| $)) (-15 -3134 ((-1170) $)) (-15 -2594 (|t#2| $)) (-15 -4280 (|t#2| $ |t#2|))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-4280 ((|#1| $ |#1|) 31)) (-3098 (($ $ (-1170)) 23)) (-1783 (((-3 |#1| "failed") $) 30)) (-2594 ((|#1| $) 28)) (-3589 (($ (-396)) 22) (($ (-396) (-1170)) 21)) (-2402 (((-396) $) 25)) (-3618 (((-1170) $) NIL)) (-3134 (((-1170) $) 26)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 20)) (-3725 (($ $) 24)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 19)))
+(((-372 |#1|) (-13 (-371 (-396) |#1|) (-10 -8 (-15 -1783 ((-3 |#1| "failed") $)))) (-1111)) (T -372))
+((-1783 (*1 *2 *1) (|partial| -12 (-5 *1 (-372 *2)) (-4 *2 (-1111)))))
+(-13 (-371 (-396) |#1|) (-10 -8 (-15 -1783 ((-3 |#1| "failed") $))))
+((-3862 (((-1279 (-697 |#2|)) (-1279 $)) 67)) (-3590 (((-697 |#2|) (-1279 $)) 139)) (-1597 ((|#2| $) 36)) (-4043 (((-697 |#2|) $ (-1279 $)) 142)) (-3899 (((-3 $ "failed") $) 89)) (-4114 ((|#2| $) 39)) (-3440 (((-1184 |#2|) $) 98)) (-2650 ((|#2| (-1279 $)) 122)) (-2712 (((-1184 |#2|) $) 32)) (-1515 (((-112)) 116)) (-2372 (($ (-1279 |#2|) (-1279 $)) 132)) (-2982 (((-3 $ "failed") $) 93)) (-4325 (((-112)) 111)) (-1936 (((-112)) 106)) (-3246 (((-112)) 58)) (-2808 (((-697 |#2|) (-1279 $)) 137)) (-3611 ((|#2| $) 35)) (-2037 (((-697 |#2|) $ (-1279 $)) 141)) (-3882 (((-3 $ "failed") $) 87)) (-3686 ((|#2| $) 38)) (-1342 (((-1184 |#2|) $) 97)) (-2190 ((|#2| (-1279 $)) 120)) (-3177 (((-1184 |#2|) $) 30)) (-3614 (((-112)) 115)) (-4412 (((-112)) 108)) (-3421 (((-112)) 56)) (-4413 (((-112)) 103)) (-3749 (((-112)) 117)) (-2862 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) 128)) (-3846 (((-112)) 113)) (-1373 (((-652 (-1279 |#2|))) 102)) (-3229 (((-112)) 114)) (-1873 (((-112)) 112)) (-2702 (((-112)) 51)) (-3565 (((-112)) 118)))
+(((-373 |#1| |#2|) (-10 -8 (-15 -3440 ((-1184 |#2|) |#1|)) (-15 -1342 ((-1184 |#2|) |#1|)) (-15 -1373 ((-652 (-1279 |#2|)))) (-15 -3899 ((-3 |#1| "failed") |#1|)) (-15 -3882 ((-3 |#1| "failed") |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 -1936 ((-112))) (-15 -4412 ((-112))) (-15 -4325 ((-112))) (-15 -3421 ((-112))) (-15 -3246 ((-112))) (-15 -4413 ((-112))) (-15 -3565 ((-112))) (-15 -3749 ((-112))) (-15 -1515 ((-112))) (-15 -3614 ((-112))) (-15 -2702 ((-112))) (-15 -3229 ((-112))) (-15 -1873 ((-112))) (-15 -3846 ((-112))) (-15 -2712 ((-1184 |#2|) |#1|)) (-15 -3177 ((-1184 |#2|) |#1|)) (-15 -3590 ((-697 |#2|) (-1279 |#1|))) (-15 -2808 ((-697 |#2|) (-1279 |#1|))) (-15 -2650 (|#2| (-1279 |#1|))) (-15 -2190 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -4114 (|#2| |#1|)) (-15 -3686 (|#2| |#1|)) (-15 -1597 (|#2| |#1|)) (-15 -3611 (|#2| |#1|)) (-15 -4043 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2037 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -3862 ((-1279 (-697 |#2|)) (-1279 |#1|)))) (-374 |#2|) (-174)) (T -373))
+((-3846 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1873 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3229 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-2702 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3614 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1515 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3749 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3565 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-4413 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3246 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-3421 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-4325 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-4412 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1936 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))) (-1373 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-652 (-1279 *4))) (-5 *1 (-373 *3 *4)) (-4 *3 (-374 *4)))))
+(-10 -8 (-15 -3440 ((-1184 |#2|) |#1|)) (-15 -1342 ((-1184 |#2|) |#1|)) (-15 -1373 ((-652 (-1279 |#2|)))) (-15 -3899 ((-3 |#1| "failed") |#1|)) (-15 -3882 ((-3 |#1| "failed") |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 -1936 ((-112))) (-15 -4412 ((-112))) (-15 -4325 ((-112))) (-15 -3421 ((-112))) (-15 -3246 ((-112))) (-15 -4413 ((-112))) (-15 -3565 ((-112))) (-15 -3749 ((-112))) (-15 -1515 ((-112))) (-15 -3614 ((-112))) (-15 -2702 ((-112))) (-15 -3229 ((-112))) (-15 -1873 ((-112))) (-15 -3846 ((-112))) (-15 -2712 ((-1184 |#2|) |#1|)) (-15 -3177 ((-1184 |#2|) |#1|)) (-15 -3590 ((-697 |#2|) (-1279 |#1|))) (-15 -2808 ((-697 |#2|) (-1279 |#1|))) (-15 -2650 (|#2| (-1279 |#1|))) (-15 -2190 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -4114 (|#2| |#1|)) (-15 -3686 (|#2| |#1|)) (-15 -1597 (|#2| |#1|)) (-15 -3611 (|#2| |#1|)) (-15 -4043 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2037 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -3862 ((-1279 (-697 |#2|)) (-1279 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3457 (((-3 $ "failed")) 42 (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) 20)) (-3862 (((-1279 (-697 |#1|)) (-1279 $)) 83)) (-2646 (((-1279 $)) 86)) (-1586 (($) 18 T CONST)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) 45 (|has| |#1| (-564)))) (-2771 (((-3 $ "failed")) 43 (|has| |#1| (-564)))) (-3590 (((-697 |#1|) (-1279 $)) 70)) (-1597 ((|#1| $) 79)) (-4043 (((-697 |#1|) $ (-1279 $)) 81)) (-3899 (((-3 $ "failed") $) 50 (|has| |#1| (-564)))) (-4203 (($ $ (-930)) 31)) (-4114 ((|#1| $) 77)) (-3440 (((-1184 |#1|) $) 47 (|has| |#1| (-564)))) (-2650 ((|#1| (-1279 $)) 72)) (-2712 (((-1184 |#1|) $) 68)) (-1515 (((-112)) 62)) (-2372 (($ (-1279 |#1|) (-1279 $)) 74)) (-2982 (((-3 $ "failed") $) 52 (|has| |#1| (-564)))) (-1526 (((-930)) 85)) (-3538 (((-112)) 59)) (-3100 (($ $ (-930)) 38)) (-4325 (((-112)) 55)) (-1936 (((-112)) 53)) (-3246 (((-112)) 57)) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) 46 (|has| |#1| (-564)))) (-4277 (((-3 $ "failed")) 44 (|has| |#1| (-564)))) (-2808 (((-697 |#1|) (-1279 $)) 71)) (-3611 ((|#1| $) 80)) (-2037 (((-697 |#1|) $ (-1279 $)) 82)) (-3882 (((-3 $ "failed") $) 51 (|has| |#1| (-564)))) (-3962 (($ $ (-930)) 32)) (-3686 ((|#1| $) 78)) (-1342 (((-1184 |#1|) $) 48 (|has| |#1| (-564)))) (-2190 ((|#1| (-1279 $)) 73)) (-3177 (((-1184 |#1|) $) 69)) (-3614 (((-112)) 63)) (-3618 (((-1170) $) 10)) (-4412 (((-112)) 54)) (-3421 (((-112)) 56)) (-4413 (((-112)) 58)) (-2614 (((-1131) $) 11)) (-3749 (((-112)) 61)) (-2862 (((-1279 |#1|) $ (-1279 $)) 76) (((-697 |#1|) (-1279 $) (-1279 $)) 75)) (-2956 (((-652 (-961 |#1|)) (-1279 $)) 84)) (-1433 (($ $ $) 28)) (-3846 (((-112)) 67)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-1373 (((-652 (-1279 |#1|))) 49 (|has| |#1| (-564)))) (-1541 (($ $ $ $) 29)) (-3229 (((-112)) 65)) (-1923 (($ $ $) 27)) (-1873 (((-112)) 66)) (-2702 (((-112)) 64)) (-3565 (((-112)) 60)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-374 |#1|) (-141) (-174)) (T -374))
+((-2646 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-374 *3)))) (-1526 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-930)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-652 (-961 *4))))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-1279 (-697 *4))))) (-2037 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-4043 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-1279 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-2372 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174)) (-4 *1 (-374 *4)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))) (-3846 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1873 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3229 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2702 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3614 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1515 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3749 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3565 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3538 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4413 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3246 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3421 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4325 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4412 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1936 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2982 (*1 *1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-3882 (*1 *1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-3899 (*1 *1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564)))) (-1373 (*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564)) (-5 *2 (-652 (-1279 *3))))) (-1342 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564)) (-5 *2 (-1184 *3)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564)) (-5 *2 (-1184 *3)))) (-1835 (*1 *2) (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1769 (-652 *1)))) (-4 *1 (-374 *3)))) (-2123 (*1 *2) (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1769 (-652 *1)))) (-4 *1 (-374 *3)))) (-4277 (*1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))) (-2771 (*1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))) (-3457 (*1 *1) (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))))
+(-13 (-752 |t#1|) (-10 -8 (-15 -2646 ((-1279 $))) (-15 -1526 ((-930))) (-15 -2956 ((-652 (-961 |t#1|)) (-1279 $))) (-15 -3862 ((-1279 (-697 |t#1|)) (-1279 $))) (-15 -2037 ((-697 |t#1|) $ (-1279 $))) (-15 -4043 ((-697 |t#1|) $ (-1279 $))) (-15 -3611 (|t#1| $)) (-15 -1597 (|t#1| $)) (-15 -3686 (|t#1| $)) (-15 -4114 (|t#1| $)) (-15 -2862 ((-1279 |t#1|) $ (-1279 $))) (-15 -2862 ((-697 |t#1|) (-1279 $) (-1279 $))) (-15 -2372 ($ (-1279 |t#1|) (-1279 $))) (-15 -2190 (|t#1| (-1279 $))) (-15 -2650 (|t#1| (-1279 $))) (-15 -2808 ((-697 |t#1|) (-1279 $))) (-15 -3590 ((-697 |t#1|) (-1279 $))) (-15 -3177 ((-1184 |t#1|) $)) (-15 -2712 ((-1184 |t#1|) $)) (-15 -3846 ((-112))) (-15 -1873 ((-112))) (-15 -3229 ((-112))) (-15 -2702 ((-112))) (-15 -3614 ((-112))) (-15 -1515 ((-112))) (-15 -3749 ((-112))) (-15 -3565 ((-112))) (-15 -3538 ((-112))) (-15 -4413 ((-112))) (-15 -3246 ((-112))) (-15 -3421 ((-112))) (-15 -4325 ((-112))) (-15 -4412 ((-112))) (-15 -1936 ((-112))) (IF (|has| |t#1| (-564)) (PROGN (-15 -2982 ((-3 $ "failed") $)) (-15 -3882 ((-3 $ "failed") $)) (-15 -3899 ((-3 $ "failed") $)) (-15 -1373 ((-652 (-1279 |t#1|)))) (-15 -1342 ((-1184 |t#1|) $)) (-15 -3440 ((-1184 |t#1|) $)) (-15 -1835 ((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed"))) (-15 -2123 ((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed"))) (-15 -4277 ((-3 $ "failed"))) (-15 -2771 ((-3 $ "failed"))) (-15 -3457 ((-3 $ "failed"))) (-6 -4451)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-728) . T) ((-752 |#1|) . T) ((-769) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-3037 (((-779)) 17)) (-2688 (($) 14)) (-4370 (((-930) $) 15)) (-3618 (((-1170) $) 10)) (-1795 (($ (-930)) 16)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-375) (-141)) (T -375))
+((-3037 (*1 *2) (-12 (-4 *1 (-375)) (-5 *2 (-779)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-375)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-930)))) (-2688 (*1 *1) (-4 *1 (-375))))
+(-13 (-1111) (-10 -8 (-15 -3037 ((-779))) (-15 -1795 ($ (-930))) (-15 -4370 ((-930) $)) (-15 -2688 ($))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3385 (((-697 |#2|) (-1279 $)) 45)) (-2372 (($ (-1279 |#2|) (-1279 $)) 39)) (-1649 (((-697 |#2|) $ (-1279 $)) 47)) (-2020 ((|#2| (-1279 $)) 13)) (-2862 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) 27)))
+(((-376 |#1| |#2| |#3|) (-10 -8 (-15 -3385 ((-697 |#2|) (-1279 |#1|))) (-15 -2020 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -1649 ((-697 |#2|) |#1| (-1279 |#1|)))) (-377 |#2| |#3|) (-174) (-1255 |#2|)) (T -376))
+NIL
+(-10 -8 (-15 -3385 ((-697 |#2|) (-1279 |#1|))) (-15 -2020 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -1649 ((-697 |#2|) |#1| (-1279 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3385 (((-697 |#1|) (-1279 $)) 53)) (-2055 ((|#1| $) 59)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2372 (($ (-1279 |#1|) (-1279 $)) 55)) (-1649 (((-697 |#1|) $ (-1279 $)) 60)) (-2982 (((-3 $ "failed") $) 37)) (-1526 (((-930)) 61)) (-4422 (((-112) $) 35)) (-2140 ((|#1| $) 58)) (-2179 ((|#2| $) 51 (|has| |#1| (-370)))) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2020 ((|#1| (-1279 $)) 54)) (-2862 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44)) (-2210 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3245 ((|#2| $) 52)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-377 |#1| |#2|) (-141) (-174) (-1255 |t#1|)) (T -377))
+((-1526 (*1 *2) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-930)))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174)))) (-2862 (*1 *2 *1 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-2372 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174)) (-4 *1 (-377 *4 *5)) (-4 *5 (-1255 *4)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *2 *4)) (-4 *4 (-1255 *2)) (-4 *2 (-174)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *3 (-370)) (-4 *2 (-1255 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -1526 ((-930))) (-15 -1649 ((-697 |t#1|) $ (-1279 $))) (-15 -2055 (|t#1| $)) (-15 -2140 (|t#1| $)) (-15 -2862 ((-1279 |t#1|) $ (-1279 $))) (-15 -2862 ((-697 |t#1|) (-1279 $) (-1279 $))) (-15 -2372 ($ (-1279 |t#1|) (-1279 $))) (-15 -2020 (|t#1| (-1279 $))) (-15 -3385 ((-697 |t#1|) (-1279 $))) (-15 -3245 (|t#2| $)) (IF (|has| |t#1| (-370)) (-15 -2179 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-4424 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2925 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3161 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-378 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2925 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4424 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1229) (-380 |#1|) (-1229) (-380 |#3|)) (T -378))
+((-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-4 *2 (-380 *5)) (-5 *1 (-378 *6 *4 *5 *2)) (-4 *4 (-380 *6)))) (-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-378 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-4 *2 (-380 *6)) (-5 *1 (-378 *5 *4 *6 *2)) (-4 *4 (-380 *5)))))
+(-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2925 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4424 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3755 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3519 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2641 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-1852 (($ $) 25)) (-3239 (((-572) (-1 (-112) |#2|) $) NIL) (((-572) |#2| $) 11) (((-572) |#2| $ (-572)) NIL)) (-1377 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-379 |#1| |#2|) (-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -2641 (|#1| |#1|)) (-15 -1377 (|#1| |#1| |#1|)) (-15 -3239 ((-572) |#2| |#1| (-572))) (-15 -3239 ((-572) |#2| |#1|)) (-15 -3239 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -3755 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2641 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1377 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-380 |#2|) (-1229)) (T -379))
+NIL
+(-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -2641 (|#1| |#1|)) (-15 -1377 (|#1| |#1| |#1|)) (-15 -3239 ((-572) |#2| |#1| (-572))) (-15 -3239 ((-572) |#2| |#1|)) (-15 -3239 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -3755 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2641 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1852 (|#1| |#1|)) (-15 -1377 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-4095 (($ $) 93 (|has| $ (-6 -4455)))) (-1852 (($ $) 103)) (-3955 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 52)) (-3239 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2536 (($ $ $) 90 (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3928 (($ $ $) 89 (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 43 (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3803 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2561 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 72)) (-2121 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 86 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3965 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-858)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-380 |#1|) (-141) (-1229)) (T -380))
+((-1377 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-1852 (*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)))) (-2641 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-3755 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-3239 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229)) (-5 *2 (-572)))) (-3239 (*1 *2 *3 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-572)))) (-3239 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)))) (-1377 (*1 *1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))) (-2641 (*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-858)) (-5 *2 (-112)))) (-2561 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-4095 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229)))) (-3519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4455)) (-4 *1 (-380 *3)) (-4 *3 (-1229)))) (-3519 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858)))))
+(-13 (-659 |t#1|) (-10 -8 (-6 -4454) (-15 -1377 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1852 ($ $)) (-15 -2641 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3755 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3239 ((-572) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -3239 ((-572) |t#1| $)) (-15 -3239 ((-572) |t#1| $ (-572)))) |%noBranch|) (IF (|has| |t#1| (-858)) (PROGN (-6 (-858)) (-15 -1377 ($ $ $)) (-15 -2641 ($ $)) (-15 -3755 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2561 ($ $ $ (-572))) (-15 -4095 ($ $)) (-15 -3519 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-858)) (-15 -3519 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-4084 (((-652 |#1|) $) 37)) (-3891 (($ $ (-779)) 38)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-4118 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 41)) (-3450 (($ $) 39)) (-3593 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 42)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3654 (($ $ |#1| $) 36) (($ $ (-652 |#1|) (-652 $)) 35)) (-1497 (((-779) $) 43)) (-3503 (($ $ $) 34)) (-3491 (((-870) $) 12) (($ |#1|) 46) (((-1294 |#1| |#2|) $) 45) (((-1303 |#1| |#2|) $) 44)) (-2379 ((|#2| (-1303 |#1| |#2|) $) 47)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2138 (($ (-680 |#1|)) 40)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#2|) 33 (|has| |#2| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+(((-381 |#1| |#2|) (-141) (-858) (-174)) (T -381))
+((-2379 (*1 *2 *3 *1) (-12 (-5 *3 (-1303 *4 *2)) (-4 *1 (-381 *4 *2)) (-4 *4 (-858)) (-4 *2 (-174)))) (-3491 (*1 *1 *2) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-1294 *3 *4)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-1303 *3 *4)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-779)))) (-3593 (*1 *2 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-4118 (*1 *2 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-4 *1 (-381 *3 *4)) (-4 *4 (-174)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174)))) (-3891 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *2 (-652 *3)))) (-3654 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-858)) (-4 *5 (-174)))))
+(-13 (-642 |t#2|) (-10 -8 (-15 -2379 (|t#2| (-1303 |t#1| |t#2|) $)) (-15 -3491 ($ |t#1|)) (-15 -3491 ((-1294 |t#1| |t#2|) $)) (-15 -3491 ((-1303 |t#1| |t#2|) $)) (-15 -1497 ((-779) $)) (-15 -3593 ((-1303 |t#1| |t#2|) (-1303 |t#1| |t#2|) $)) (-15 -4118 ((-1303 |t#1| |t#2|) (-1303 |t#1| |t#2|) $)) (-15 -2138 ($ (-680 |t#1|))) (-15 -3450 ($ $)) (-15 -3891 ($ $ (-779))) (-15 -4084 ((-652 |t#1|) $)) (-15 -3654 ($ $ |t#1| $)) (-15 -3654 ($ $ (-652 |t#1|) (-652 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-656 |#2|) . T) ((-642 |#2|) . T) ((-648 |#2|) . T) ((-725 |#2|) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1111) . T))
+((-3646 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3608 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1432 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
+(((-382 |#1| |#2|) (-10 -7 (-15 -3608 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1432 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3646 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1229) (-13 (-380 |#1|) (-10 -7 (-6 -4455)))) (T -382))
+((-3646 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))) (-1432 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))) (-3608 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2)) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
+(-10 -7 (-15 -3608 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1432 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3646 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-2245 (((-697 |#2|) (-697 $)) NIL) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 22) (((-697 (-572)) (-697 $)) 14)))
+(((-383 |#1| |#2|) (-10 -8 (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 |#2|) (-697 |#1|)))) (-384 |#2|) (-1060)) (T -383))
+NIL
+(-10 -8 (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 |#2|) (-697 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2245 (((-697 |#1|) (-697 $)) 40) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 39) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 47 (|has| |#1| (-647 (-572)))) (((-697 (-572)) (-697 $)) 46 (|has| |#1| (-647 (-572))))) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-384 |#1|) (-141) (-1060)) (T -384))
+NIL
+(-13 (-647 |t#1|) (-10 -7 (IF (|has| |t#1| (-647 (-572))) (-6 (-647 (-572))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-2888 (((-652 (-300 (-961 (-171 |#1|)))) (-300 (-415 (-961 (-171 (-572))))) |#1|) 51) (((-652 (-300 (-961 (-171 |#1|)))) (-415 (-961 (-171 (-572)))) |#1|) 50) (((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-300 (-415 (-961 (-171 (-572)))))) |#1|) 47) (((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-415 (-961 (-171 (-572))))) |#1|) 41)) (-1758 (((-652 (-652 (-171 |#1|))) (-652 (-415 (-961 (-171 (-572))))) (-652 (-1188)) |#1|) 30) (((-652 (-171 |#1|)) (-415 (-961 (-171 (-572)))) |#1|) 18)))
+(((-385 |#1|) (-10 -7 (-15 -2888 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -2888 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-300 (-415 (-961 (-171 (-572)))))) |#1|)) (-15 -2888 ((-652 (-300 (-961 (-171 |#1|)))) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -2888 ((-652 (-300 (-961 (-171 |#1|)))) (-300 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -1758 ((-652 (-171 |#1|)) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -1758 ((-652 (-652 (-171 |#1|))) (-652 (-415 (-961 (-171 (-572))))) (-652 (-1188)) |#1|))) (-13 (-370) (-856))) (T -385))
+((-1758 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572)))))) (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 (-171 *5)))) (-5 *1 (-385 *5)) (-4 *5 (-13 (-370) (-856))))) (-1758 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-171 (-572))))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 (-171 (-572)))))) (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-171 (-572))))) (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-300 (-415 (-961 (-171 (-572))))))) (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572)))))) (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856))))))
+(-10 -7 (-15 -2888 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -2888 ((-652 (-652 (-300 (-961 (-171 |#1|))))) (-652 (-300 (-415 (-961 (-171 (-572)))))) |#1|)) (-15 -2888 ((-652 (-300 (-961 (-171 |#1|)))) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -2888 ((-652 (-300 (-961 (-171 |#1|)))) (-300 (-415 (-961 (-171 (-572))))) |#1|)) (-15 -1758 ((-652 (-171 |#1|)) (-415 (-961 (-171 (-572)))) |#1|)) (-15 -1758 ((-652 (-652 (-171 |#1|))) (-652 (-415 (-961 (-171 (-572))))) (-652 (-1188)) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 35)) (-3923 (((-572) $) 62)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-1957 (($ $) 136)) (-3915 (($ $) 98)) (-3790 (($ $) 90)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3093 (($ $) 47)) (-4252 (((-112) $ $) NIL)) (-3893 (($ $) 96)) (-3770 (($ $) 85)) (-4304 (((-572) $) 78)) (-4235 (($ $ (-572)) 73)) (-3939 (($ $) NIL)) (-3811 (($ $) NIL)) (-1586 (($) NIL T CONST)) (-1984 (($ $) 138)) (-3072 (((-3 (-572) "failed") $) 231) (((-3 (-415 (-572)) "failed") $) 227)) (-1869 (((-572) $) 229) (((-415 (-572)) $) 225)) (-3407 (($ $ $) NIL)) (-3326 (((-572) $ $) 125)) (-2982 (((-3 $ "failed") $) 141)) (-1352 (((-415 (-572)) $ (-779)) 232) (((-415 (-572)) $ (-779) (-779)) 224)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-1722 (((-930)) 121) (((-930) (-930)) 122 (|has| $ (-6 -4445)))) (-3778 (((-112) $) 130)) (-2250 (($) 41)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL)) (-3465 (((-1284) (-779)) 191)) (-3427 (((-1284)) 196) (((-1284) (-779)) 197)) (-1908 (((-1284)) 198) (((-1284) (-779)) 199)) (-2066 (((-1284)) 194) (((-1284) (-779)) 195)) (-2068 (((-572) $) 68)) (-4422 (((-112) $) 40)) (-2033 (($ $ (-572)) NIL)) (-1849 (($ $) 51)) (-2140 (($ $) NIL)) (-4354 (((-112) $) 37)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL) (($) NIL (-12 (-3795 (|has| $ (-6 -4437))) (-3795 (|has| $ (-6 -4445)))))) (-3928 (($ $ $) NIL) (($) NIL (-12 (-3795 (|has| $ (-6 -4437))) (-3795 (|has| $ (-6 -4445)))))) (-4269 (((-572) $) 17)) (-4224 (($) 106) (($ $) 113)) (-3956 (($) 112) (($ $) 114)) (-4057 (($ $) 101)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 143)) (-3987 (((-930) (-572)) 46 (|has| $ (-6 -4445)))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) 60)) (-1609 (($ $) 135)) (-2150 (($ (-572) (-572)) 131) (($ (-572) (-572) (-930)) 132)) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2477 (((-572) $) 19)) (-2582 (($) 115)) (-3272 (($ $) 95)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3005 (((-930)) 123) (((-930) (-930)) 124 (|has| $ (-6 -4445)))) (-3011 (($ $ (-779)) NIL) (($ $) 142)) (-1491 (((-930) (-572)) 50 (|has| $ (-6 -4445)))) (-2139 (($ $) NIL)) (-3822 (($ $) NIL)) (-3927 (($ $) NIL)) (-3800 (($ $) NIL)) (-3905 (($ $) 97)) (-3780 (($ $) 89)) (-3222 (((-386) $) 216) (((-227) $) 218) (((-901 (-386)) $) NIL) (((-1170) $) 202) (((-544) $) 214) (($ (-227)) 223)) (-3491 (((-870) $) 206) (($ (-572)) 228) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-572)) 228) (($ (-415 (-572))) NIL) (((-227) $) 219)) (-2455 (((-779)) NIL T CONST)) (-3441 (($ $) 137)) (-3444 (((-930)) 61) (((-930) (-930)) 80 (|has| $ (-6 -4445)))) (-3424 (((-112) $ $) NIL)) (-1556 (((-930)) 126)) (-2176 (($ $) 104)) (-3852 (($ $) 49) (($ $ $) 59)) (-2466 (((-112) $ $) NIL)) (-2152 (($ $) 102)) (-3833 (($ $) 39)) (-2204 (($ $) NIL)) (-3871 (($ $) NIL)) (-3120 (($ $) NIL)) (-3883 (($ $) NIL)) (-2193 (($ $) NIL)) (-3861 (($ $) NIL)) (-2162 (($ $) 103)) (-3842 (($ $) 52)) (-2775 (($ $) 58)) (-2602 (($) 36 T CONST)) (-2619 (($) 43 T CONST)) (-2810 (((-1170) $) 27) (((-1170) $ (-112)) 29) (((-1284) (-830) $) 30) (((-1284) (-830) $ (-112)) 31)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3976 (((-112) $ $) 203)) (-3954 (((-112) $ $) 45)) (-3921 (((-112) $ $) 56)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 57)) (-4029 (($ $ $) 48) (($ $ (-572)) 42)) (-4018 (($ $) 38) (($ $ $) 53)) (-4005 (($ $ $) 72)) (** (($ $ (-930)) 83) (($ $ (-779)) NIL) (($ $ (-572)) 107) (($ $ (-415 (-572))) 154) (($ $ $) 145)) (* (($ (-930) $) 79) (($ (-779) $) NIL) (($ (-572) $) 84) (($ $ $) 71) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-386) (-13 (-412) (-237) (-622 (-1170)) (-836) (-621 (-227)) (-1214) (-622 (-544)) (-626 (-227)) (-10 -8 (-15 -4029 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -1849 ($ $)) (-15 -3326 ((-572) $ $)) (-15 -4235 ($ $ (-572))) (-15 -1352 ((-415 (-572)) $ (-779))) (-15 -1352 ((-415 (-572)) $ (-779) (-779))) (-15 -4224 ($)) (-15 -3956 ($)) (-15 -2582 ($)) (-15 -3852 ($ $ $)) (-15 -4224 ($ $)) (-15 -3956 ($ $)) (-15 -1908 ((-1284))) (-15 -1908 ((-1284) (-779))) (-15 -2066 ((-1284))) (-15 -2066 ((-1284) (-779))) (-15 -3427 ((-1284))) (-15 -3427 ((-1284) (-779))) (-15 -3465 ((-1284) (-779))) (-6 -4445) (-6 -4437)))) (T -386))
+((** (*1 *1 *1 *1) (-5 *1 (-386))) (-4029 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386)))) (-1849 (*1 *1 *1) (-5 *1 (-386))) (-3326 (*1 *2 *1 *1) (-12 (-5 *2 (-572)) (-5 *1 (-386)))) (-4235 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386)))) (-1352 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386)))) (-1352 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386)))) (-4224 (*1 *1) (-5 *1 (-386))) (-3956 (*1 *1) (-5 *1 (-386))) (-2582 (*1 *1) (-5 *1 (-386))) (-3852 (*1 *1 *1 *1) (-5 *1 (-386))) (-4224 (*1 *1 *1) (-5 *1 (-386))) (-3956 (*1 *1 *1) (-5 *1 (-386))) (-1908 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))) (-2066 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))) (-3427 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))))
+(-13 (-412) (-237) (-622 (-1170)) (-836) (-621 (-227)) (-1214) (-622 (-544)) (-626 (-227)) (-10 -8 (-15 -4029 ($ $ (-572))) (-15 ** ($ $ $)) (-15 -1849 ($ $)) (-15 -3326 ((-572) $ $)) (-15 -4235 ($ $ (-572))) (-15 -1352 ((-415 (-572)) $ (-779))) (-15 -1352 ((-415 (-572)) $ (-779) (-779))) (-15 -4224 ($)) (-15 -3956 ($)) (-15 -2582 ($)) (-15 -3852 ($ $ $)) (-15 -4224 ($ $)) (-15 -3956 ($ $)) (-15 -1908 ((-1284))) (-15 -1908 ((-1284) (-779))) (-15 -2066 ((-1284))) (-15 -2066 ((-1284) (-779))) (-15 -3427 ((-1284))) (-15 -3427 ((-1284) (-779))) (-15 -3465 ((-1284) (-779))) (-6 -4445) (-6 -4437)))
+((-1969 (((-652 (-300 (-961 |#1|))) (-300 (-415 (-961 (-572)))) |#1|) 46) (((-652 (-300 (-961 |#1|))) (-415 (-961 (-572))) |#1|) 45) (((-652 (-652 (-300 (-961 |#1|)))) (-652 (-300 (-415 (-961 (-572))))) |#1|) 42) (((-652 (-652 (-300 (-961 |#1|)))) (-652 (-415 (-961 (-572)))) |#1|) 36)) (-1481 (((-652 |#1|) (-415 (-961 (-572))) |#1|) 20) (((-652 (-652 |#1|)) (-652 (-415 (-961 (-572)))) (-652 (-1188)) |#1|) 30)))
+(((-387 |#1|) (-10 -7 (-15 -1969 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-415 (-961 (-572)))) |#1|)) (-15 -1969 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-300 (-415 (-961 (-572))))) |#1|)) (-15 -1969 ((-652 (-300 (-961 |#1|))) (-415 (-961 (-572))) |#1|)) (-15 -1969 ((-652 (-300 (-961 |#1|))) (-300 (-415 (-961 (-572)))) |#1|)) (-15 -1481 ((-652 (-652 |#1|)) (-652 (-415 (-961 (-572)))) (-652 (-1188)) |#1|)) (-15 -1481 ((-652 |#1|) (-415 (-961 (-572))) |#1|))) (-13 (-856) (-370))) (T -387))
+((-1481 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-1481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-415 (-961 (-572))))) (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 *5))) (-5 *1 (-387 *5)) (-4 *5 (-13 (-856) (-370))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 (-572))))) (-5 *2 (-652 (-300 (-961 *4)))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 (-300 (-961 *4)))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-300 (-415 (-961 (-572)))))) (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 (-572))))) (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370))))))
+(-10 -7 (-15 -1969 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-415 (-961 (-572)))) |#1|)) (-15 -1969 ((-652 (-652 (-300 (-961 |#1|)))) (-652 (-300 (-415 (-961 (-572))))) |#1|)) (-15 -1969 ((-652 (-300 (-961 |#1|))) (-415 (-961 (-572))) |#1|)) (-15 -1969 ((-652 (-300 (-961 |#1|))) (-300 (-415 (-961 (-572)))) |#1|)) (-15 -1481 ((-652 (-652 |#1|)) (-652 (-415 (-961 (-572)))) (-652 (-1188)) |#1|)) (-15 -1481 ((-652 |#1|) (-415 (-961 (-572))) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) 30)) (-1869 ((|#2| $) 32)) (-1874 (($ $) NIL)) (-2348 (((-779) $) 11)) (-3715 (((-652 $) $) 23)) (-3357 (((-112) $) NIL)) (-4298 (($ |#2| |#1|) 21)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1840 ((|#2| $) 18)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 51) (($ |#2|) 31)) (-1708 (((-652 |#1|) $) 20)) (-4206 ((|#1| $ |#2|) 55)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 33 T CONST)) (-2028 (((-652 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-388 |#1| |#2|) (-13 (-389 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1060) (-858)) (T -388))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-388 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858)))))
+(-13 (-389 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#2| "failed") $) 49)) (-1869 ((|#2| $) 50)) (-1874 (($ $) 35)) (-2348 (((-779) $) 39)) (-3715 (((-652 $) $) 40)) (-3357 (((-112) $) 43)) (-4298 (($ |#2| |#1|) 44)) (-3161 (($ (-1 |#1| |#1|) $) 45)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1840 ((|#2| $) 38)) (-1853 ((|#1| $) 37)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ |#2|) 48)) (-1708 (((-652 |#1|) $) 41)) (-4206 ((|#1| $ |#2|) 46)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2028 (((-652 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-389 |#1| |#2|) (-141) (-1060) (-1111)) (T -389))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111)))) (-4206 (*1 *2 *1 *3) (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060)))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)))) (-4298 (*1 *1 *2 *3) (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-112)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 *3)))) (-3715 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-389 *3 *4)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-779)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111)))))
+(-13 (-111 |t#1| |t#1|) (-1049 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4206 (|t#1| $ |t#2|)) (-15 -3161 ($ (-1 |t#1| |t#1|) $)) (-15 -4298 ($ |t#2| |t#1|)) (-15 -3357 ((-112) $)) (-15 -2028 ((-652 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1708 ((-652 |t#1|) $)) (-15 -3715 ((-652 $) $)) (-15 -2348 ((-779) $)) (-15 -1840 (|t#2| $)) (-15 -1853 (|t#1| $)) (-15 -3176 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1874 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-725 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-1049 |#2|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
+((-2864 (((-1284) $) 7)) (-3491 (((-870) $) 8) (($ (-697 (-707))) 14) (($ (-652 (-336))) 13) (($ (-336)) 12) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 11)))
+(((-390) (-141)) (T -390))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-697 (-707))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-390)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) (-4 *1 (-390)))))
+(-13 (-403) (-10 -8 (-15 -3491 ($ (-697 (-707)))) (-15 -3491 ($ (-652 (-336)))) (-15 -3491 ($ (-336))) (-15 -3491 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))))))
+(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
+((-3072 (((-3 $ "failed") (-697 (-322 (-386)))) 21) (((-3 $ "failed") (-697 (-322 (-572)))) 19) (((-3 $ "failed") (-697 (-961 (-386)))) 17) (((-3 $ "failed") (-697 (-961 (-572)))) 15) (((-3 $ "failed") (-697 (-415 (-961 (-386))))) 13) (((-3 $ "failed") (-697 (-415 (-961 (-572))))) 11)) (-1869 (($ (-697 (-322 (-386)))) 22) (($ (-697 (-322 (-572)))) 20) (($ (-697 (-961 (-386)))) 18) (($ (-697 (-961 (-572)))) 16) (($ (-697 (-415 (-961 (-386))))) 14) (($ (-697 (-415 (-961 (-572))))) 12)) (-2864 (((-1284) $) 7)) (-3491 (((-870) $) 8) (($ (-652 (-336))) 25) (($ (-336)) 24) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 23)))
+(((-391) (-141)) (T -391))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-391)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-391)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) (-4 *1 (-391)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391)))))
+(-13 (-403) (-10 -8 (-15 -3491 ($ (-652 (-336)))) (-15 -3491 ($ (-336))) (-15 -3491 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))) (-15 -1869 ($ (-697 (-322 (-386))))) (-15 -3072 ((-3 $ "failed") (-697 (-322 (-386))))) (-15 -1869 ($ (-697 (-322 (-572))))) (-15 -3072 ((-3 $ "failed") (-697 (-322 (-572))))) (-15 -1869 ($ (-697 (-961 (-386))))) (-15 -3072 ((-3 $ "failed") (-697 (-961 (-386))))) (-15 -1869 ($ (-697 (-961 (-572))))) (-15 -3072 ((-3 $ "failed") (-697 (-961 (-572))))) (-15 -1869 ($ (-697 (-415 (-961 (-386)))))) (-15 -3072 ((-3 $ "failed") (-697 (-415 (-961 (-386)))))) (-15 -1869 ($ (-697 (-415 (-961 (-572)))))) (-15 -3072 ((-3 $ "failed") (-697 (-415 (-961 (-572))))))))
+(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-3042 (($ |#1| |#2|) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1614 ((|#2| $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 33)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 12 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-392 |#1| |#2|) (-13 (-111 |#1| |#1|) (-517 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|))) (-1060) (-858)) (T -392))
+NIL
+(-13 (-111 |#1| |#1|) (-517 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-725 |#1|)) |%noBranch|)))
+((-3464 (((-112) $ $) 7)) (-3037 (((-779) $) 34)) (-1586 (($) 19 T CONST)) (-4118 (((-3 $ "failed") $ $) 37)) (-3072 (((-3 |#1| "failed") $) 45)) (-1869 ((|#1| $) 46)) (-2982 (((-3 $ "failed") $) 16)) (-2269 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-4422 (((-112) $) 18)) (-1932 ((|#1| $ (-572)) 31)) (-3904 (((-779) $ (-572)) 32)) (-2536 (($ $ $) 28 (|has| |#1| (-858)))) (-3928 (($ $ $) 27 (|has| |#1| (-858)))) (-2842 (($ (-1 |#1| |#1|) $) 29)) (-1499 (($ (-1 (-779) (-779)) $) 30)) (-3593 (((-3 $ "failed") $ $) 38)) (-3618 (((-1170) $) 10)) (-4352 (($ $ $) 39)) (-4077 (($ $ $) 40)) (-2614 (((-1131) $) 11)) (-1591 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-779)))) $) 33)) (-2501 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-3491 (((-870) $) 12) (($ |#1|) 44)) (-3424 (((-112) $ $) 9)) (-2619 (($) 20 T CONST)) (-3976 (((-112) $ $) 25 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 24 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 26 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 23 (|has| |#1| (-858)))) (** (($ $ (-930)) 14) (($ $ (-779)) 17) (($ |#1| (-779)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+(((-393 |#1|) (-141) (-1111)) (T -393))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-4077 (*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-4352 (*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-3593 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-4118 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-2501 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1111)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-393 *3)))) (-2269 (*1 *2 *1 *1) (-12 (-4 *3 (-1111)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-393 *3)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111)) (-5 *2 (-779)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 (-779))))))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-393 *4)) (-4 *4 (-1111)) (-5 *2 (-779)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-393 *2)) (-4 *2 (-1111)))) (-1499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-779) (-779))) (-4 *1 (-393 *3)) (-4 *3 (-1111)))) (-2842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3)) (-4 *3 (-1111)))))
+(-13 (-734) (-1049 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-779))) (-15 -4077 ($ $ $)) (-15 -4352 ($ $ $)) (-15 -3593 ((-3 $ "failed") $ $)) (-15 -4118 ((-3 $ "failed") $ $)) (-15 -2501 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2269 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3037 ((-779) $)) (-15 -1591 ((-652 (-2 (|:| |gen| |t#1|) (|:| -3272 (-779)))) $)) (-15 -3904 ((-779) $ (-572))) (-15 -1932 (|t#1| $ (-572))) (-15 -1499 ($ (-1 (-779) (-779)) $)) (-15 -2842 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|)))
+(((-102) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-734) . T) ((-858) |has| |#1| (-858)) ((-1049 |#1|) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779) $) 74)) (-1586 (($) NIL T CONST)) (-4118 (((-3 $ "failed") $ $) 77)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2269 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-4422 (((-112) $) 17)) (-1932 ((|#1| $ (-572)) NIL)) (-3904 (((-779) $ (-572)) NIL)) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-2842 (($ (-1 |#1| |#1|) $) 40)) (-1499 (($ (-1 (-779) (-779)) $) 37)) (-3593 (((-3 $ "failed") $ $) 60)) (-3618 (((-1170) $) NIL)) (-4352 (($ $ $) 28)) (-4077 (($ $ $) 26)) (-2614 (((-1131) $) NIL)) (-1591 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-779)))) $) 34)) (-2501 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3491 (((-870) $) 24) (($ |#1|) NIL)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 11 T CONST)) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) 84 (|has| |#1| (-858)))) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ |#1| (-779)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-394 |#1|) (-393 |#1|) (-1111)) (T -394))
+NIL
+(-393 |#1|)
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 53)) (-1869 (((-572) $) 54)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-2536 (($ $ $) 60)) (-3928 (($ $ $) 59)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ $) 48)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-572)) 52)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3976 (((-112) $ $) 57)) (-3954 (((-112) $ $) 56)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 58)) (-3943 (((-112) $ $) 55)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
(((-395) (-141)) (T -395))
-((-4161 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))) (-2296 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395)))))
-(-13 (-1109) (-496 (-1168)) (-10 -8 (-15 -4161 ($ (-1168) (-1168) (-1168))) (-15 -4349 ((-1168) $)) (-15 -1770 ((-1168) $)) (-15 -1633 ((-1168) $)) (-15 -2111 ((-112) $)) (-15 -3698 ((-112) $)) (-15 -1509 ((-112) $)) (-15 -2296 ($ (-1168) (-1168) (-1168)))))
-(((-102) . T) ((-622 #0=(-1168)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2815 (((-868) $) 63)) (-2333 (($) NIL T CONST)) (-1794 (($ $ (-928)) NIL)) (-3969 (($ $ (-928)) NIL)) (-3454 (($ $ (-928)) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3643 (($ (-777)) 38)) (-4388 (((-777)) 18)) (-1384 (((-868) $) 65)) (-2319 (($ $ $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-4373 (($ $ $ $) NIL)) (-2885 (($ $ $) NIL)) (-1981 (($) 24 T CONST)) (-3892 (((-112) $ $) 41)) (-4003 (($ $) 48) (($ $ $) 50)) (-3992 (($ $ $) 51)) (** (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-396 |#1| |#2| |#3|) (-13 (-750 |#3|) (-10 -8 (-15 -4388 ((-777))) (-15 -1384 ((-868) $)) (-15 -2815 ((-868) $)) (-15 -3643 ($ (-777))))) (-777) (-777) (-174)) (T -396))
-((-4388 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777)) (-14 *4 (-777)) (-4 *5 (-174)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777)) (-14 *4 (-777)) (-4 *5 (-174)))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
-(-13 (-750 |#3|) (-10 -8 (-15 -4388 ((-777))) (-15 -1384 ((-868) $)) (-15 -2815 ((-868) $)) (-15 -3643 ($ (-777)))))
-((-3882 (((-1168)) 12)) (-2628 (((-1156 (-1168))) 30)) (-2214 (((-1282) (-1168)) 27) (((-1282) (-394)) 26)) (-2225 (((-1282)) 28)) (-2101 (((-1156 (-1168))) 29)))
-(((-397) (-10 -7 (-15 -2101 ((-1156 (-1168)))) (-15 -2628 ((-1156 (-1168)))) (-15 -2225 ((-1282))) (-15 -2214 ((-1282) (-394))) (-15 -2214 ((-1282) (-1168))) (-15 -3882 ((-1168))))) (T -397))
-((-3882 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-397)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-397)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1282)) (-5 *1 (-397)))) (-2225 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-397)))) (-2628 (*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397)))) (-2101 (*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397)))))
-(-10 -7 (-15 -2101 ((-1156 (-1168)))) (-15 -2628 ((-1156 (-1168)))) (-15 -2225 ((-1282))) (-15 -2214 ((-1282) (-394))) (-15 -2214 ((-1282) (-1168))) (-15 -3882 ((-1168))))
-((-3995 (((-777) (-341 |#1| |#2| |#3| |#4|)) 16)))
-(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3995 ((-777) (-341 |#1| |#2| |#3| |#4|)))) (-13 (-373) (-368)) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -398))
-((-3995 (*1 *2 *3) (-12 (-5 *3 (-341 *4 *5 *6 *7)) (-4 *4 (-13 (-373) (-368))) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-4 *7 (-347 *4 *5 *6)) (-5 *2 (-777)) (-5 *1 (-398 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3995 ((-777) (-341 |#1| |#2| |#3| |#4|))))
-((-2869 (((-400) |#1|) 11)))
-(((-399 |#1|) (-10 -7 (-15 -2869 ((-400) |#1|))) (-1109)) (T -399))
-((-2869 (*1 *2 *3) (-12 (-5 *2 (-400)) (-5 *1 (-399 *3)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -2869 ((-400) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-3488 (((-650 (-1168)) $ (-650 (-1168))) 42)) (-1813 (((-650 (-1168)) $ (-650 (-1168))) 43)) (-1572 (((-650 (-1168)) $ (-650 (-1168))) 44)) (-3425 (((-650 (-1168)) $) 39)) (-2296 (($) 30)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-4179 (((-650 (-1168)) $) 40)) (-1596 (((-650 (-1168)) $) 41)) (-2467 (((-1282) $ (-570)) 37) (((-1282) $) 38)) (-2601 (($ (-868) (-570)) 35)) (-2869 (((-868) $) 49) (($ (-868)) 32)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-400) (-13 (-1109) (-622 (-868)) (-10 -8 (-15 -2601 ($ (-868) (-570))) (-15 -2467 ((-1282) $ (-570))) (-15 -2467 ((-1282) $)) (-15 -1596 ((-650 (-1168)) $)) (-15 -4179 ((-650 (-1168)) $)) (-15 -2296 ($)) (-15 -3425 ((-650 (-1168)) $)) (-15 -1572 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -1813 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -3488 ((-650 (-1168)) $ (-650 (-1168))))))) (T -400))
-((-2601 (*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-400)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-400)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-400)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-2296 (*1 *1) (-5 *1 (-400))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-1572 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-1813 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-3488 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))))
-(-13 (-1109) (-622 (-868)) (-10 -8 (-15 -2601 ($ (-868) (-570))) (-15 -2467 ((-1282) $ (-570))) (-15 -2467 ((-1282) $)) (-15 -1596 ((-650 (-1168)) $)) (-15 -4179 ((-650 (-1168)) $)) (-15 -2296 ($)) (-15 -3425 ((-650 (-1168)) $)) (-15 -1572 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -1813 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -3488 ((-650 (-1168)) $ (-650 (-1168))))))
-((-2237 (((-1282) $) 7)) (-2869 (((-868) $) 8)))
-(((-401) (-141)) (T -401))
-((-2237 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1282)))))
-(-13 (-1227) (-619 (-868)) (-10 -8 (-15 -2237 ((-1282) $))))
-(((-619 (-868)) . T) ((-1227) . T))
-((-2435 (((-3 $ "failed") (-320 (-384))) 21) (((-3 $ "failed") (-320 (-570))) 19) (((-3 $ "failed") (-959 (-384))) 17) (((-3 $ "failed") (-959 (-570))) 15) (((-3 $ "failed") (-413 (-959 (-384)))) 13) (((-3 $ "failed") (-413 (-959 (-570)))) 11)) (-4387 (($ (-320 (-384))) 22) (($ (-320 (-570))) 20) (($ (-959 (-384))) 18) (($ (-959 (-570))) 16) (($ (-413 (-959 (-384)))) 14) (($ (-413 (-959 (-570)))) 12)) (-2237 (((-1282) $) 7)) (-2869 (((-868) $) 8) (($ (-650 (-334))) 25) (($ (-334)) 24) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 23)))
-(((-402) (-141)) (T -402))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-402)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-402)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) (-4 *1 (-402)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-4 *1 (-402)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-384))) (-4 *1 (-402)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-4 *1 (-402)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-570))) (-4 *1 (-402)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-959 (-384))) (-4 *1 (-402)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-384))) (-4 *1 (-402)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-402)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-570))) (-4 *1 (-402)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402)))))
-(-13 (-401) (-10 -8 (-15 -2869 ($ (-650 (-334)))) (-15 -2869 ($ (-334))) (-15 -2869 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))) (-15 -4387 ($ (-320 (-384)))) (-15 -2435 ((-3 $ "failed") (-320 (-384)))) (-15 -4387 ($ (-320 (-570)))) (-15 -2435 ((-3 $ "failed") (-320 (-570)))) (-15 -4387 ($ (-959 (-384)))) (-15 -2435 ((-3 $ "failed") (-959 (-384)))) (-15 -4387 ($ (-959 (-570)))) (-15 -2435 ((-3 $ "failed") (-959 (-570)))) (-15 -4387 ($ (-413 (-959 (-384))))) (-15 -2435 ((-3 $ "failed") (-413 (-959 (-384))))) (-15 -4387 ($ (-413 (-959 (-570))))) (-15 -2435 ((-3 $ "failed") (-413 (-959 (-570)))))))
-(((-619 (-868)) . T) ((-401) . T) ((-1227) . T))
-((-3713 (((-650 (-1168)) (-650 (-1168))) 9)) (-2237 (((-1282) (-394)) 26)) (-2332 (((-1113) (-1186) (-650 (-1186)) (-1189) (-650 (-1186))) 59) (((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)) (-1186)) 34) (((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186))) 33)))
-(((-403) (-10 -7 (-15 -2332 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)))) (-15 -2332 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)) (-1186))) (-15 -2332 ((-1113) (-1186) (-650 (-1186)) (-1189) (-650 (-1186)))) (-15 -2237 ((-1282) (-394))) (-15 -3713 ((-650 (-1168)) (-650 (-1168)))))) (T -403))
-((-3713 (*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-403)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1282)) (-5 *1 (-403)))) (-2332 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-650 (-1186))) (-5 *5 (-1189)) (-5 *3 (-1186)) (-5 *2 (-1113)) (-5 *1 (-403)))) (-2332 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186))))) (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113)) (-5 *1 (-403)))) (-2332 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186))))) (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113)) (-5 *1 (-403)))))
-(-10 -7 (-15 -2332 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)))) (-15 -2332 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)) (-1186))) (-15 -2332 ((-1113) (-1186) (-650 (-1186)) (-1189) (-650 (-1186)))) (-15 -2237 ((-1282) (-394))) (-15 -3713 ((-650 (-1168)) (-650 (-1168)))))
-((-2237 (((-1282) $) 35)) (-2869 (((-868) $) 97) (($ (-334)) 99) (($ (-650 (-334))) 98) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 96) (($ (-320 (-707))) 52) (($ (-320 (-705))) 72) (($ (-320 (-700))) 85) (($ (-298 (-320 (-707)))) 67) (($ (-298 (-320 (-705)))) 80) (($ (-298 (-320 (-700)))) 93) (($ (-320 (-570))) 104) (($ (-320 (-384))) 117) (($ (-320 (-171 (-384)))) 130) (($ (-298 (-320 (-570)))) 112) (($ (-298 (-320 (-384)))) 125) (($ (-298 (-320 (-171 (-384))))) 138)))
-(((-404 |#1| |#2| |#3| |#4|) (-13 (-401) (-10 -8 (-15 -2869 ($ (-334))) (-15 -2869 ($ (-650 (-334)))) (-15 -2869 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))) (-15 -2869 ($ (-320 (-707)))) (-15 -2869 ($ (-320 (-705)))) (-15 -2869 ($ (-320 (-700)))) (-15 -2869 ($ (-298 (-320 (-707))))) (-15 -2869 ($ (-298 (-320 (-705))))) (-15 -2869 ($ (-298 (-320 (-700))))) (-15 -2869 ($ (-320 (-570)))) (-15 -2869 ($ (-320 (-384)))) (-15 -2869 ($ (-320 (-171 (-384))))) (-15 -2869 ($ (-298 (-320 (-570))))) (-15 -2869 ($ (-298 (-320 (-384))))) (-15 -2869 ($ (-298 (-320 (-171 (-384)))))))) (-1186) (-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-650 (-1186)) (-1190)) (T -404))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-334)) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-320 (-707))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-320 (-705))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-320 (-700))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-707)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-705)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-700)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-570)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-384)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-171 (-384))))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))))
-(-13 (-401) (-10 -8 (-15 -2869 ($ (-334))) (-15 -2869 ($ (-650 (-334)))) (-15 -2869 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))) (-15 -2869 ($ (-320 (-707)))) (-15 -2869 ($ (-320 (-705)))) (-15 -2869 ($ (-320 (-700)))) (-15 -2869 ($ (-298 (-320 (-707))))) (-15 -2869 ($ (-298 (-320 (-705))))) (-15 -2869 ($ (-298 (-320 (-700))))) (-15 -2869 ($ (-320 (-570)))) (-15 -2869 ($ (-320 (-384)))) (-15 -2869 ($ (-320 (-171 (-384))))) (-15 -2869 ($ (-298 (-320 (-570))))) (-15 -2869 ($ (-298 (-320 (-384))))) (-15 -2869 ($ (-298 (-320 (-171 (-384))))))))
-((-2847 (((-112) $ $) NIL)) (-2436 ((|#2| $) 38)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-4033 (($ (-413 |#2|)) 93)) (-3922 (((-650 (-2 (|:| -2940 (-777)) (|:| -1744 |#2|) (|:| |num| |#2|))) $) 39)) (-2375 (($ $) 34) (($ $ (-777)) 36)) (-2601 (((-413 |#2|) $) 49)) (-2881 (($ (-650 (-2 (|:| -2940 (-777)) (|:| -1744 |#2|) (|:| |num| |#2|)))) 33)) (-2869 (((-868) $) 131)) (-1344 (((-112) $ $) NIL)) (-3414 (($ $) 35) (($ $ (-777)) 37)) (-3892 (((-112) $ $) NIL)) (-3992 (($ |#2| $) 41)))
-(((-405 |#1| |#2|) (-13 (-1109) (-620 (-413 |#2|)) (-10 -8 (-15 -3992 ($ |#2| $)) (-15 -4033 ($ (-413 |#2|))) (-15 -2436 (|#2| $)) (-15 -3922 ((-650 (-2 (|:| -2940 (-777)) (|:| -1744 |#2|) (|:| |num| |#2|))) $)) (-15 -2881 ($ (-650 (-2 (|:| -2940 (-777)) (|:| -1744 |#2|) (|:| |num| |#2|))))) (-15 -2375 ($ $)) (-15 -3414 ($ $)) (-15 -2375 ($ $ (-777))) (-15 -3414 ($ $ (-777))))) (-13 (-368) (-148)) (-1253 |#1|)) (T -405))
-((-3992 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *2)) (-4 *2 (-1253 *3)))) (-4033 (*1 *1 *2) (-12 (-5 *2 (-413 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)))) (-2436 (*1 *2 *1) (-12 (-4 *2 (-1253 *3)) (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-368) (-148))))) (-3922 (*1 *2 *1) (-12 (-4 *3 (-13 (-368) (-148))) (-5 *2 (-650 (-2 (|:| -2940 (-777)) (|:| -1744 *4) (|:| |num| *4)))) (-5 *1 (-405 *3 *4)) (-4 *4 (-1253 *3)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -2940 (-777)) (|:| -1744 *4) (|:| |num| *4)))) (-4 *4 (-1253 *3)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)))) (-2375 (*1 *1 *1) (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3)) (-4 *3 (-1253 *2)))) (-3414 (*1 *1 *1) (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3)) (-4 *3 (-1253 *2)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)) (-4 *4 (-1253 *3)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)) (-4 *4 (-1253 *3)))))
-(-13 (-1109) (-620 (-413 |#2|)) (-10 -8 (-15 -3992 ($ |#2| $)) (-15 -4033 ($ (-413 |#2|))) (-15 -2436 (|#2| $)) (-15 -3922 ((-650 (-2 (|:| -2940 (-777)) (|:| -1744 |#2|) (|:| |num| |#2|))) $)) (-15 -2881 ($ (-650 (-2 (|:| -2940 (-777)) (|:| -1744 |#2|) (|:| |num| |#2|))))) (-15 -2375 ($ $)) (-15 -3414 ($ $)) (-15 -2375 ($ $ (-777))) (-15 -3414 ($ $ (-777)))))
-((-2847 (((-112) $ $) 9 (-3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 16 (|has| |#1| (-893 (-384)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 15 (|has| |#1| (-893 (-570))))) (-3240 (((-1168) $) 13 (-3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-3891 (((-1129) $) 12 (-3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-2869 (((-868) $) 11 (-3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-1344 (((-112) $ $) 14 (-3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-3892 (((-112) $ $) 10 (-3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))))
-(((-406 |#1|) (-141) (-1227)) (T -406))
-NIL
-(-13 (-1227) (-10 -7 (IF (|has| |t#1| (-893 (-570))) (-6 (-893 (-570))) |%noBranch|) (IF (|has| |t#1| (-893 (-384))) (-6 (-893 (-384))) |%noBranch|)))
-(((-102) -3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))) ((-619 (-868)) -3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-1109) -3749 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))) ((-1227) . T))
-((-2118 (($ $) 10) (($ $ (-777)) 12)))
-(((-407 |#1|) (-10 -8 (-15 -2118 (|#1| |#1| (-777))) (-15 -2118 (|#1| |#1|))) (-408)) (T -407))
-NIL
-(-10 -8 (-15 -2118 (|#1| |#1| (-777))) (-15 -2118 (|#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-1799 (((-112) $ $) 65)) (-2333 (($) 18 T CONST)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2118 (($ $) 87) (($ $ (-777)) 86)) (-2145 (((-112) $) 79)) (-3995 (((-839 (-928)) $) 89)) (-2005 (((-112) $) 35)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-4058 (((-3 (-777) "failed") $ $) 88)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-1660 (((-3 $ "failed") $) 90)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75)))
-(((-408) (-141)) (T -408))
-((-3995 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-839 (-928))))) (-4058 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-408)) (-5 *2 (-777)))) (-2118 (*1 *1 *1) (-4 *1 (-408))) (-2118 (*1 *1 *1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-777)))))
-(-13 (-368) (-146) (-10 -8 (-15 -3995 ((-839 (-928)) $)) (-15 -4058 ((-3 (-777) "failed") $ $)) (-15 -2118 ($ $)) (-15 -2118 ($ $ (-777)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T))
-((-1531 (($ (-570) (-570)) 11) (($ (-570) (-570) (-928)) NIL)) (-3961 (((-928)) 19) (((-928) (-928)) NIL)))
-(((-409 |#1|) (-10 -8 (-15 -3961 ((-928) (-928))) (-15 -3961 ((-928))) (-15 -1531 (|#1| (-570) (-570) (-928))) (-15 -1531 (|#1| (-570) (-570)))) (-410)) (T -409))
-((-3961 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410)))))
-(-10 -8 (-15 -3961 ((-928) (-928))) (-15 -3961 ((-928))) (-15 -1531 (|#1| (-570) (-570) (-928))) (-15 -1531 (|#1| (-570) (-570))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3150 (((-570) $) 97)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3025 (($ $) 95)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-2459 (($ $) 105)) (-1799 (((-112) $ $) 65)) (-2419 (((-570) $) 122)) (-2333 (($) 18 T CONST)) (-3325 (($ $) 94)) (-2435 (((-3 (-570) "failed") $) 110) (((-3 (-413 (-570)) "failed") $) 107)) (-4387 (((-570) $) 111) (((-413 (-570)) $) 108)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2145 (((-112) $) 79)) (-1492 (((-928)) 138) (((-928) (-928)) 135 (|has| $ (-6 -4443)))) (-2811 (((-112) $) 120)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 101)) (-3995 (((-570) $) 144)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 104)) (-3046 (($ $) 100)) (-2746 (((-112) $) 121)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1908 (($ $ $) 119) (($) 132 (-12 (-3201 (|has| $ (-6 -4443))) (-3201 (|has| $ (-6 -4435)))))) (-1764 (($ $ $) 118) (($) 131 (-12 (-3201 (|has| $ (-6 -4443))) (-3201 (|has| $ (-6 -4435)))))) (-3646 (((-570) $) 141)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-2083 (((-928) (-570)) 134 (|has| $ (-6 -4443)))) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-4113 (($ $) 96)) (-2037 (($ $) 98)) (-1531 (($ (-570) (-570)) 146) (($ (-570) (-570) (-928)) 145)) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2940 (((-570) $) 142)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-3961 (((-928)) 139) (((-928) (-928)) 136 (|has| $ (-6 -4443)))) (-4060 (((-928) (-570)) 133 (|has| $ (-6 -4443)))) (-2601 (((-384) $) 113) (((-227) $) 112) (((-899 (-384)) $) 102)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ (-570)) 109) (($ (-413 (-570))) 106)) (-2294 (((-777)) 32 T CONST)) (-3850 (($ $) 99)) (-3529 (((-928)) 140) (((-928) (-928)) 137 (|has| $ (-6 -4443)))) (-1344 (((-112) $ $) 9)) (-1540 (((-928)) 143)) (-2939 (((-112) $ $) 45)) (-2521 (($ $) 123)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3959 (((-112) $ $) 116)) (-3933 (((-112) $ $) 115)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 117)) (-3918 (((-112) $ $) 114)) (-4013 (($ $ $) 73)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 103)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75)))
+NIL
+(-13 (-564) (-858) (-1049 (-572)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-858) . T) ((-1049 (-572)) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3413 (((-112) $) 25)) (-1350 (((-112) $) 22)) (-2924 (($ (-1170) (-1170) (-1170)) 26)) (-2402 (((-1170) $) 16)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1660 (($ (-1170) (-1170) (-1170)) 14)) (-1951 (((-1170) $) 17)) (-4281 (((-112) $) 18)) (-1858 (((-1170) $) 15)) (-3491 (((-870) $) 12) (($ (-1170)) 13) (((-1170) $) 9)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 7)))
+(((-396) (-397)) (T -396))
+NIL
+(-397)
+((-3464 (((-112) $ $) 7)) (-3413 (((-112) $) 17)) (-1350 (((-112) $) 18)) (-2924 (($ (-1170) (-1170) (-1170)) 16)) (-2402 (((-1170) $) 21)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1660 (($ (-1170) (-1170) (-1170)) 23)) (-1951 (((-1170) $) 20)) (-4281 (((-112) $) 19)) (-1858 (((-1170) $) 22)) (-3491 (((-870) $) 12) (($ (-1170)) 25) (((-1170) $) 24)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-397) (-141)) (T -397))
+((-1660 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))) (-1951 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))) (-2924 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397)))))
+(-13 (-1111) (-498 (-1170)) (-10 -8 (-15 -1660 ($ (-1170) (-1170) (-1170))) (-15 -1858 ((-1170) $)) (-15 -2402 ((-1170) $)) (-15 -1951 ((-1170) $)) (-15 -4281 ((-112) $)) (-15 -1350 ((-112) $)) (-15 -3413 ((-112) $)) (-15 -2924 ($ (-1170) (-1170) (-1170)))))
+(((-102) . T) ((-624 #0=(-1170)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2562 (((-870) $) 63)) (-1586 (($) NIL T CONST)) (-4203 (($ $ (-930)) NIL)) (-3100 (($ $ (-930)) NIL)) (-3962 (($ $ (-930)) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4267 (($ (-779)) 38)) (-1670 (((-779)) 18)) (-4138 (((-870) $) 65)) (-1433 (($ $ $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-1541 (($ $ $ $) NIL)) (-1923 (($ $ $) NIL)) (-2602 (($) 24 T CONST)) (-3921 (((-112) $ $) 41)) (-4018 (($ $) 48) (($ $ $) 50)) (-4005 (($ $ $) 51)) (** (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-398 |#1| |#2| |#3|) (-13 (-752 |#3|) (-10 -8 (-15 -1670 ((-779))) (-15 -4138 ((-870) $)) (-15 -2562 ((-870) $)) (-15 -4267 ($ (-779))))) (-779) (-779) (-174)) (T -398))
+((-1670 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779)) (-14 *4 (-779)) (-4 *5 (-174)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779)) (-14 *4 (-779)) (-4 *5 (-174)))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
+(-13 (-752 |#3|) (-10 -8 (-15 -1670 ((-779))) (-15 -4138 ((-870) $)) (-15 -2562 ((-870) $)) (-15 -4267 ($ (-779)))))
+((-3695 (((-1170)) 12)) (-4389 (((-1158 (-1170))) 30)) (-2837 (((-1284) (-1170)) 27) (((-1284) (-396)) 26)) (-2851 (((-1284)) 28)) (-4175 (((-1158 (-1170))) 29)))
+(((-399) (-10 -7 (-15 -4175 ((-1158 (-1170)))) (-15 -4389 ((-1158 (-1170)))) (-15 -2851 ((-1284))) (-15 -2837 ((-1284) (-396))) (-15 -2837 ((-1284) (-1170))) (-15 -3695 ((-1170))))) (T -399))
+((-3695 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-399)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-399)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-399)))) (-2851 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-399)))) (-4389 (*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))) (-4175 (*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))))
+(-10 -7 (-15 -4175 ((-1158 (-1170)))) (-15 -4389 ((-1158 (-1170)))) (-15 -2851 ((-1284))) (-15 -2837 ((-1284) (-396))) (-15 -2837 ((-1284) (-1170))) (-15 -3695 ((-1170))))
+((-2068 (((-779) (-343 |#1| |#2| |#3| |#4|)) 16)))
+(((-400 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2068 ((-779) (-343 |#1| |#2| |#3| |#4|)))) (-13 (-375) (-370)) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -400))
+((-2068 (*1 *2 *3) (-12 (-5 *3 (-343 *4 *5 *6 *7)) (-4 *4 (-13 (-375) (-370))) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *7 (-349 *4 *5 *6)) (-5 *2 (-779)) (-5 *1 (-400 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2068 ((-779) (-343 |#1| |#2| |#3| |#4|))))
+((-3491 (((-402) |#1|) 11)))
+(((-401 |#1|) (-10 -7 (-15 -3491 ((-402) |#1|))) (-1111)) (T -401))
+((-3491 (*1 *2 *3) (-12 (-5 *2 (-402)) (-5 *1 (-401 *3)) (-4 *3 (-1111)))))
+(-10 -7 (-15 -3491 ((-402) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-4265 (((-652 (-1170)) $ (-652 (-1170))) 42)) (-3211 (((-652 (-1170)) $ (-652 (-1170))) 43)) (-2703 (((-652 (-1170)) $ (-652 (-1170))) 44)) (-1763 (((-652 (-1170)) $) 39)) (-2924 (($) 30)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2322 (((-652 (-1170)) $) 40)) (-2923 (((-652 (-1170)) $) 41)) (-3105 (((-1284) $ (-572)) 37) (((-1284) $) 38)) (-3222 (($ (-870) (-572)) 35)) (-3491 (((-870) $) 49) (($ (-870)) 32)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-402) (-13 (-1111) (-624 (-870)) (-10 -8 (-15 -3222 ($ (-870) (-572))) (-15 -3105 ((-1284) $ (-572))) (-15 -3105 ((-1284) $)) (-15 -2923 ((-652 (-1170)) $)) (-15 -2322 ((-652 (-1170)) $)) (-15 -2924 ($)) (-15 -1763 ((-652 (-1170)) $)) (-15 -2703 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -3211 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -4265 ((-652 (-1170)) $ (-652 (-1170))))))) (T -402))
+((-3222 (*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-402)))) (-3105 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-402)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-402)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-2924 (*1 *1) (-5 *1 (-402))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-2703 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-3211 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))) (-4265 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))))
+(-13 (-1111) (-624 (-870)) (-10 -8 (-15 -3222 ($ (-870) (-572))) (-15 -3105 ((-1284) $ (-572))) (-15 -3105 ((-1284) $)) (-15 -2923 ((-652 (-1170)) $)) (-15 -2322 ((-652 (-1170)) $)) (-15 -2924 ($)) (-15 -1763 ((-652 (-1170)) $)) (-15 -2703 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -3211 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -4265 ((-652 (-1170)) $ (-652 (-1170))))))
+((-2864 (((-1284) $) 7)) (-3491 (((-870) $) 8)))
+(((-403) (-141)) (T -403))
+((-2864 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1284)))))
+(-13 (-1229) (-621 (-870)) (-10 -8 (-15 -2864 ((-1284) $))))
+(((-621 (-870)) . T) ((-1229) . T))
+((-3072 (((-3 $ "failed") (-322 (-386))) 21) (((-3 $ "failed") (-322 (-572))) 19) (((-3 $ "failed") (-961 (-386))) 17) (((-3 $ "failed") (-961 (-572))) 15) (((-3 $ "failed") (-415 (-961 (-386)))) 13) (((-3 $ "failed") (-415 (-961 (-572)))) 11)) (-1869 (($ (-322 (-386))) 22) (($ (-322 (-572))) 20) (($ (-961 (-386))) 18) (($ (-961 (-572))) 16) (($ (-415 (-961 (-386)))) 14) (($ (-415 (-961 (-572)))) 12)) (-2864 (((-1284) $) 7)) (-3491 (((-870) $) 8) (($ (-652 (-336))) 25) (($ (-336)) 24) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 23)))
+(((-404) (-141)) (T -404))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-404)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-404)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) (-4 *1 (-404)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-4 *1 (-404)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-386))) (-4 *1 (-404)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-4 *1 (-404)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-572))) (-4 *1 (-404)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-961 (-386))) (-4 *1 (-404)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-386))) (-4 *1 (-404)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-404)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-572))) (-4 *1 (-404)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404)))))
+(-13 (-403) (-10 -8 (-15 -3491 ($ (-652 (-336)))) (-15 -3491 ($ (-336))) (-15 -3491 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))) (-15 -1869 ($ (-322 (-386)))) (-15 -3072 ((-3 $ "failed") (-322 (-386)))) (-15 -1869 ($ (-322 (-572)))) (-15 -3072 ((-3 $ "failed") (-322 (-572)))) (-15 -1869 ($ (-961 (-386)))) (-15 -3072 ((-3 $ "failed") (-961 (-386)))) (-15 -1869 ($ (-961 (-572)))) (-15 -3072 ((-3 $ "failed") (-961 (-572)))) (-15 -1869 ($ (-415 (-961 (-386))))) (-15 -3072 ((-3 $ "failed") (-415 (-961 (-386))))) (-15 -1869 ($ (-415 (-961 (-572))))) (-15 -3072 ((-3 $ "failed") (-415 (-961 (-572)))))))
+(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
+((-1496 (((-652 (-1170)) (-652 (-1170))) 9)) (-2864 (((-1284) (-396)) 26)) (-1576 (((-1115) (-1188) (-652 (-1188)) (-1191) (-652 (-1188))) 59) (((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)) (-1188)) 34) (((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188))) 33)))
+(((-405) (-10 -7 (-15 -1576 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)))) (-15 -1576 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)) (-1188))) (-15 -1576 ((-1115) (-1188) (-652 (-1188)) (-1191) (-652 (-1188)))) (-15 -2864 ((-1284) (-396))) (-15 -1496 ((-652 (-1170)) (-652 (-1170)))))) (T -405))
+((-1496 (*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-405)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-405)))) (-1576 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-652 (-1188))) (-5 *5 (-1191)) (-5 *3 (-1188)) (-5 *2 (-1115)) (-5 *1 (-405)))) (-1576 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188))))) (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115)) (-5 *1 (-405)))) (-1576 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188))))) (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115)) (-5 *1 (-405)))))
+(-10 -7 (-15 -1576 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)))) (-15 -1576 ((-1115) (-1188) (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188)))) (-652 (-652 (-3 (|:| |array| (-652 (-1188))) (|:| |scalar| (-1188))))) (-652 (-1188)) (-1188))) (-15 -1576 ((-1115) (-1188) (-652 (-1188)) (-1191) (-652 (-1188)))) (-15 -2864 ((-1284) (-396))) (-15 -1496 ((-652 (-1170)) (-652 (-1170)))))
+((-2864 (((-1284) $) 35)) (-3491 (((-870) $) 97) (($ (-336)) 99) (($ (-652 (-336))) 98) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 96) (($ (-322 (-709))) 52) (($ (-322 (-707))) 72) (($ (-322 (-702))) 85) (($ (-300 (-322 (-709)))) 67) (($ (-300 (-322 (-707)))) 80) (($ (-300 (-322 (-702)))) 93) (($ (-322 (-572))) 104) (($ (-322 (-386))) 117) (($ (-322 (-171 (-386)))) 130) (($ (-300 (-322 (-572)))) 112) (($ (-300 (-322 (-386)))) 125) (($ (-300 (-322 (-171 (-386))))) 138)))
+(((-406 |#1| |#2| |#3| |#4|) (-13 (-403) (-10 -8 (-15 -3491 ($ (-336))) (-15 -3491 ($ (-652 (-336)))) (-15 -3491 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))) (-15 -3491 ($ (-322 (-709)))) (-15 -3491 ($ (-322 (-707)))) (-15 -3491 ($ (-322 (-702)))) (-15 -3491 ($ (-300 (-322 (-709))))) (-15 -3491 ($ (-300 (-322 (-707))))) (-15 -3491 ($ (-300 (-322 (-702))))) (-15 -3491 ($ (-322 (-572)))) (-15 -3491 ($ (-322 (-386)))) (-15 -3491 ($ (-322 (-171 (-386))))) (-15 -3491 ($ (-300 (-322 (-572))))) (-15 -3491 ($ (-300 (-322 (-386))))) (-15 -3491 ($ (-300 (-322 (-171 (-386)))))))) (-1188) (-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-652 (-1188)) (-1192)) (T -406))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-336)) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-322 (-709))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-322 (-707))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-322 (-702))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-709)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-707)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-702)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-572)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-386)))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-300 (-322 (-171 (-386))))) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-14 *5 (-652 (-1188))) (-14 *6 (-1192)))))
+(-13 (-403) (-10 -8 (-15 -3491 ($ (-336))) (-15 -3491 ($ (-652 (-336)))) (-15 -3491 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))) (-15 -3491 ($ (-322 (-709)))) (-15 -3491 ($ (-322 (-707)))) (-15 -3491 ($ (-322 (-702)))) (-15 -3491 ($ (-300 (-322 (-709))))) (-15 -3491 ($ (-300 (-322 (-707))))) (-15 -3491 ($ (-300 (-322 (-702))))) (-15 -3491 ($ (-322 (-572)))) (-15 -3491 ($ (-322 (-386)))) (-15 -3491 ($ (-322 (-171 (-386))))) (-15 -3491 ($ (-300 (-322 (-572))))) (-15 -3491 ($ (-300 (-322 (-386))))) (-15 -3491 ($ (-300 (-322 (-171 (-386))))))))
+((-3464 (((-112) $ $) NIL)) (-3278 ((|#2| $) 38)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2445 (($ (-415 |#2|)) 93)) (-2707 (((-652 (-2 (|:| -2477 (-779)) (|:| -2376 |#2|) (|:| |num| |#2|))) $) 39)) (-3011 (($ $) 34) (($ $ (-779)) 36)) (-3222 (((-415 |#2|) $) 49)) (-3503 (($ (-652 (-2 (|:| -2477 (-779)) (|:| -2376 |#2|) (|:| |num| |#2|)))) 33)) (-3491 (((-870) $) 131)) (-3424 (((-112) $ $) NIL)) (-4019 (($ $) 35) (($ $ (-779)) 37)) (-3921 (((-112) $ $) NIL)) (-4005 (($ |#2| $) 41)))
+(((-407 |#1| |#2|) (-13 (-1111) (-622 (-415 |#2|)) (-10 -8 (-15 -4005 ($ |#2| $)) (-15 -2445 ($ (-415 |#2|))) (-15 -3278 (|#2| $)) (-15 -2707 ((-652 (-2 (|:| -2477 (-779)) (|:| -2376 |#2|) (|:| |num| |#2|))) $)) (-15 -3503 ($ (-652 (-2 (|:| -2477 (-779)) (|:| -2376 |#2|) (|:| |num| |#2|))))) (-15 -3011 ($ $)) (-15 -4019 ($ $)) (-15 -3011 ($ $ (-779))) (-15 -4019 ($ $ (-779))))) (-13 (-370) (-148)) (-1255 |#1|)) (T -407))
+((-4005 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *2)) (-4 *2 (-1255 *3)))) (-2445 (*1 *1 *2) (-12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)))) (-3278 (*1 *2 *1) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-407 *3 *2)) (-4 *3 (-13 (-370) (-148))))) (-2707 (*1 *2 *1) (-12 (-4 *3 (-13 (-370) (-148))) (-5 *2 (-652 (-2 (|:| -2477 (-779)) (|:| -2376 *4) (|:| |num| *4)))) (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -2477 (-779)) (|:| -2376 *4) (|:| |num| *4)))) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)))) (-3011 (*1 *1 *1) (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3)) (-4 *3 (-1255 *2)))) (-4019 (*1 *1 *1) (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3)) (-4 *3 (-1255 *2)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))) (-4019 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))))
+(-13 (-1111) (-622 (-415 |#2|)) (-10 -8 (-15 -4005 ($ |#2| $)) (-15 -2445 ($ (-415 |#2|))) (-15 -3278 (|#2| $)) (-15 -2707 ((-652 (-2 (|:| -2477 (-779)) (|:| -2376 |#2|) (|:| |num| |#2|))) $)) (-15 -3503 ($ (-652 (-2 (|:| -2477 (-779)) (|:| -2376 |#2|) (|:| |num| |#2|))))) (-15 -3011 ($ $)) (-15 -4019 ($ $)) (-15 -3011 ($ $ (-779))) (-15 -4019 ($ $ (-779)))))
+((-3464 (((-112) $ $) 9 (-3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 16 (|has| |#1| (-895 (-386)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 15 (|has| |#1| (-895 (-572))))) (-3618 (((-1170) $) 13 (-3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-2614 (((-1131) $) 12 (-3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-3491 (((-870) $) 11 (-3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-3424 (((-112) $ $) 14 (-3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))) (-3921 (((-112) $ $) 10 (-3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))))))
+(((-408 |#1|) (-141) (-1229)) (T -408))
+NIL
+(-13 (-1229) (-10 -7 (IF (|has| |t#1| (-895 (-572))) (-6 (-895 (-572))) |%noBranch|) (IF (|has| |t#1| (-895 (-386))) (-6 (-895 (-386))) |%noBranch|)))
+(((-102) -3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))) ((-621 (-870)) -3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-1111) -3783 (|has| |#1| (-895 (-572))) (|has| |#1| (-895 (-386)))) ((-1229) . T))
+((-3156 (($ $) 10) (($ $ (-779)) 12)))
+(((-409 |#1|) (-10 -8 (-15 -3156 (|#1| |#1| (-779))) (-15 -3156 (|#1| |#1|))) (-410)) (T -409))
+NIL
+(-10 -8 (-15 -3156 (|#1| |#1| (-779))) (-15 -3156 (|#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-4252 (((-112) $ $) 65)) (-1586 (($) 18 T CONST)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3156 (($ $) 87) (($ $ (-779)) 86)) (-3439 (((-112) $) 79)) (-2068 (((-841 (-930)) $) 89)) (-4422 (((-112) $) 35)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-1468 (((-3 (-779) "failed") $ $) 88)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74)) (-2210 (((-3 $ "failed") $) 90)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
(((-410) (-141)) (T -410))
-((-1531 (*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-410)))) (-1531 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-4 *1 (-410)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) (-1540 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-2940 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) (-3529 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-3961 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-1492 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-3529 (*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4443)) (-4 *1 (-410)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4443)) (-4 *1 (-410)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4443)) (-4 *1 (-410)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-570)) (|has| *1 (-6 -4443)) (-4 *1 (-410)) (-5 *2 (-928)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-570)) (|has| *1 (-6 -4443)) (-4 *1 (-410)) (-5 *2 (-928)))) (-1908 (*1 *1) (-12 (-4 *1 (-410)) (-3201 (|has| *1 (-6 -4443))) (-3201 (|has| *1 (-6 -4435))))) (-1764 (*1 *1) (-12 (-4 *1 (-410)) (-3201 (|has| *1 (-6 -4443))) (-3201 (|has| *1 (-6 -4435))))))
-(-13 (-1069) (-10 -8 (-6 -3478) (-15 -1531 ($ (-570) (-570))) (-15 -1531 ($ (-570) (-570) (-928))) (-15 -3995 ((-570) $)) (-15 -1540 ((-928))) (-15 -2940 ((-570) $)) (-15 -3646 ((-570) $)) (-15 -3529 ((-928))) (-15 -3961 ((-928))) (-15 -1492 ((-928))) (IF (|has| $ (-6 -4443)) (PROGN (-15 -3529 ((-928) (-928))) (-15 -3961 ((-928) (-928))) (-15 -1492 ((-928) (-928))) (-15 -2083 ((-928) (-570))) (-15 -4060 ((-928) (-570)))) |%noBranch|) (IF (|has| $ (-6 -4435)) |%noBranch| (IF (|has| $ (-6 -4443)) |%noBranch| (PROGN (-15 -1908 ($)) (-15 -1764 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-227)) . T) ((-620 (-384)) . T) ((-620 (-899 (-384))) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-893 (-384)) . T) ((-927) . T) ((-1011) . T) ((-1031) . T) ((-1069) . T) ((-1047 (-413 (-570))) . T) ((-1047 (-570)) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T))
-((-2536 (((-424 |#2|) (-1 |#2| |#1|) (-424 |#1|)) 20)))
-(((-411 |#1| |#2|) (-10 -7 (-15 -2536 ((-424 |#2|) (-1 |#2| |#1|) (-424 |#1|)))) (-562) (-562)) (T -411))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-424 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-5 *2 (-424 *6)) (-5 *1 (-411 *5 *6)))))
-(-10 -7 (-15 -2536 ((-424 |#2|) (-1 |#2| |#1|) (-424 |#1|))))
-((-2536 (((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)) 13)))
-(((-412 |#1| |#2|) (-10 -7 (-15 -2536 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) (-562) (-562)) (T -412))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-5 *2 (-413 *6)) (-5 *1 (-412 *5 *6)))))
-(-10 -7 (-15 -2536 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 13)) (-3150 ((|#1| $) 21 (|has| |#1| (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| |#1| (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 17) (((-3 (-1186) "failed") $) NIL (|has| |#1| (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) 72 (|has| |#1| (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570))))) (-4387 ((|#1| $) 15) (((-1186) $) NIL (|has| |#1| (-1047 (-1186)))) (((-413 (-570)) $) 69 (|has| |#1| (-1047 (-570)))) (((-570) $) NIL (|has| |#1| (-1047 (-570))))) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) 51)) (-2066 (($) NIL (|has| |#1| (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| |#1| (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| |#1| (-893 (-384))))) (-2005 (((-112) $) 57)) (-3249 (($ $) NIL)) (-1587 ((|#1| $) 73)) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-2746 (((-112) $) NIL (|has| |#1| (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| |#1| (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 100)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| |#1| (-311)))) (-2037 ((|#1| $) 28 (|has| |#1| (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) 145 (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 138 (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-2002 (((-777) $) NIL)) (-2057 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-4424 (($ $) NIL)) (-1599 ((|#1| $) 75)) (-2601 (((-899 (-570)) $) NIL (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#1| (-620 (-899 (-384))))) (((-542) $) NIL (|has| |#1| (-620 (-542)))) (((-384) $) NIL (|has| |#1| (-1031))) (((-227) $) NIL (|has| |#1| (-1031)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 10) (($ (-1186)) NIL (|has| |#1| (-1047 (-1186))))) (-1660 (((-3 $ "failed") $) 102 (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) 103 T CONST)) (-3850 ((|#1| $) 26 (|has| |#1| (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| |#1| (-826)))) (-1981 (($) 22 T CONST)) (-1998 (($) 8 T CONST)) (-4245 (((-1168) $) 44 (-12 (|has| |#1| (-551)) (|has| |#1| (-834)))) (((-1168) $ (-112)) 45 (-12 (|has| |#1| (-551)) (|has| |#1| (-834)))) (((-1282) (-828) $) 46 (-12 (|has| |#1| (-551)) (|has| |#1| (-834)))) (((-1282) (-828) $ (-112)) 47 (-12 (|has| |#1| (-551)) (|has| |#1| (-834))))) (-3414 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) 66)) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) 24 (|has| |#1| (-856)))) (-4013 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4003 (($ $) 25) (($ $ $) 56)) (-3992 (($ $ $) 54)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 132)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 61) (($ $ $) 58) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-413 |#1|) (-13 (-1001 |#1|) (-10 -7 (IF (|has| |#1| (-551)) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4439)) (IF (|has| |#1| (-458)) (IF (|has| |#1| (-6 -4450)) (-6 -4439) |%noBranch|) |%noBranch|) |%noBranch|))) (-562)) (T -413))
-NIL
-(-13 (-1001 |#1|) (-10 -7 (IF (|has| |#1| (-551)) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4439)) (IF (|has| |#1| (-458)) (IF (|has| |#1| (-6 -4450)) (-6 -4439) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3524 (((-695 |#2|) (-1277 $)) NIL) (((-695 |#2|)) 18)) (-2615 (($ (-1277 |#2|) (-1277 $)) NIL) (($ (-1277 |#2|)) 24)) (-4385 (((-695 |#2|) $ (-1277 $)) NIL) (((-695 |#2|) $) 40)) (-3658 ((|#3| $) 69)) (-2896 ((|#2| (-1277 $)) NIL) ((|#2|) 20)) (-2987 (((-1277 |#2|) $ (-1277 $)) NIL) (((-695 |#2|) (-1277 $) (-1277 $)) NIL) (((-1277 |#2|) $) 22) (((-695 |#2|) (-1277 $)) 38)) (-2601 (((-1277 |#2|) $) 11) (($ (-1277 |#2|)) 13)) (-1816 ((|#3| $) 55)))
-(((-414 |#1| |#2| |#3|) (-10 -8 (-15 -4385 ((-695 |#2|) |#1|)) (-15 -2896 (|#2|)) (-15 -3524 ((-695 |#2|))) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2615 (|#1| (-1277 |#2|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -3658 (|#3| |#1|)) (-15 -1816 (|#3| |#1|)) (-15 -3524 ((-695 |#2|) (-1277 |#1|))) (-15 -2896 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -4385 ((-695 |#2|) |#1| (-1277 |#1|)))) (-415 |#2| |#3|) (-174) (-1253 |#2|)) (T -414))
-((-3524 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-695 *4)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-415 *4 *5)))) (-2896 (*1 *2) (-12 (-4 *4 (-1253 *2)) (-4 *2 (-174)) (-5 *1 (-414 *3 *2 *4)) (-4 *3 (-415 *2 *4)))))
-(-10 -8 (-15 -4385 ((-695 |#2|) |#1|)) (-15 -2896 (|#2|)) (-15 -3524 ((-695 |#2|))) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2615 (|#1| (-1277 |#2|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -3658 (|#3| |#1|)) (-15 -1816 (|#3| |#1|)) (-15 -3524 ((-695 |#2|) (-1277 |#1|))) (-15 -2896 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -4385 ((-695 |#2|) |#1| (-1277 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3524 (((-695 |#1|) (-1277 $)) 53) (((-695 |#1|)) 68)) (-1439 ((|#1| $) 59)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2615 (($ (-1277 |#1|) (-1277 $)) 55) (($ (-1277 |#1|)) 71)) (-4385 (((-695 |#1|) $ (-1277 $)) 60) (((-695 |#1|) $) 66)) (-3957 (((-3 $ "failed") $) 37)) (-4412 (((-928)) 61)) (-2005 (((-112) $) 35)) (-3046 ((|#1| $) 58)) (-3658 ((|#2| $) 51 (|has| |#1| (-368)))) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2896 ((|#1| (-1277 $)) 54) ((|#1|) 67)) (-2987 (((-1277 |#1|) $ (-1277 $)) 57) (((-695 |#1|) (-1277 $) (-1277 $)) 56) (((-1277 |#1|) $) 73) (((-695 |#1|) (-1277 $)) 72)) (-2601 (((-1277 |#1|) $) 70) (($ (-1277 |#1|)) 69)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44)) (-1660 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1816 ((|#2| $) 52)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2681 (((-1277 $)) 74)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-415 |#1| |#2|) (-141) (-174) (-1253 |t#1|)) (T -415))
-((-2681 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1253 *3)) (-5 *2 (-1277 *1)) (-4 *1 (-415 *3 *4)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3)) (-5 *2 (-1277 *3)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-415 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-695 *4)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4)) (-4 *4 (-1253 *3)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3)) (-5 *2 (-1277 *3)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4)) (-4 *4 (-1253 *3)))) (-3524 (*1 *2) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3)) (-5 *2 (-695 *3)))) (-2896 (*1 *2) (-12 (-4 *1 (-415 *2 *3)) (-4 *3 (-1253 *2)) (-4 *2 (-174)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3)) (-5 *2 (-695 *3)))))
-(-13 (-375 |t#1| |t#2|) (-10 -8 (-15 -2681 ((-1277 $))) (-15 -2987 ((-1277 |t#1|) $)) (-15 -2987 ((-695 |t#1|) (-1277 $))) (-15 -2615 ($ (-1277 |t#1|))) (-15 -2601 ((-1277 |t#1|) $)) (-15 -2601 ($ (-1277 |t#1|))) (-15 -3524 ((-695 |t#1|))) (-15 -2896 (|t#1|)) (-15 -4385 ((-695 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-375 |#1| |#2|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) 27) (((-3 (-570) "failed") $) 19)) (-4387 ((|#2| $) NIL) (((-413 (-570)) $) 24) (((-570) $) 14)) (-2869 (($ |#2|) NIL) (($ (-413 (-570))) 22) (($ (-570)) 11)))
-(((-416 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| (-570))) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|))) (-417 |#2|) (-1227)) (T -416))
-NIL
-(-10 -8 (-15 -2869 (|#1| (-570))) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|)))
-((-2435 (((-3 |#1| "failed") $) 9) (((-3 (-413 (-570)) "failed") $) 16 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 13 (|has| |#1| (-1047 (-570))))) (-4387 ((|#1| $) 8) (((-413 (-570)) $) 17 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 14 (|has| |#1| (-1047 (-570))))) (-2869 (($ |#1|) 6) (($ (-413 (-570))) 15 (|has| |#1| (-1047 (-413 (-570))))) (($ (-570)) 12 (|has| |#1| (-1047 (-570))))))
-(((-417 |#1|) (-141) (-1227)) (T -417))
-NIL
-(-13 (-1047 |t#1|) (-10 -7 (IF (|has| |t#1| (-1047 (-570))) (-6 (-1047 (-570))) |%noBranch|) (IF (|has| |t#1| (-1047 (-413 (-570)))) (-6 (-1047 (-413 (-570)))) |%noBranch|)))
-(((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 #1=(-570)) |has| |#1| (-1047 (-570))) ((-622 |#1|) . T) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 #1#) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T))
-((-2536 (((-419 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-419 |#1| |#2| |#3| |#4|)) 35)))
-(((-418 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2536 ((-419 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-419 |#1| |#2| |#3| |#4|)))) (-311) (-1001 |#1|) (-1253 |#2|) (-13 (-415 |#2| |#3|) (-1047 |#2|)) (-311) (-1001 |#5|) (-1253 |#6|) (-13 (-415 |#6| |#7|) (-1047 |#6|))) (T -418))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-419 *5 *6 *7 *8)) (-4 *5 (-311)) (-4 *6 (-1001 *5)) (-4 *7 (-1253 *6)) (-4 *8 (-13 (-415 *6 *7) (-1047 *6))) (-4 *9 (-311)) (-4 *10 (-1001 *9)) (-4 *11 (-1253 *10)) (-5 *2 (-419 *9 *10 *11 *12)) (-5 *1 (-418 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-415 *10 *11) (-1047 *10))))))
-(-10 -7 (-15 -2536 ((-419 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-419 |#1| |#2| |#3| |#4|))))
-((-2847 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-3274 ((|#4| (-777) (-1277 |#4|)) 55)) (-2005 (((-112) $) NIL)) (-1587 (((-1277 |#4|) $) 15)) (-3046 ((|#2| $) 53)) (-4175 (($ $) 157)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 103)) (-2252 (($ (-1277 |#4|)) 102)) (-3891 (((-1129) $) NIL)) (-1599 ((|#1| $) 16)) (-2733 (($ $ $) NIL)) (-2319 (($ $ $) NIL)) (-2869 (((-868) $) 148)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 |#4|) $) 141)) (-1998 (($) 11 T CONST)) (-3892 (((-112) $ $) 39)) (-4013 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 134)) (* (($ $ $) 130)))
-(((-419 |#1| |#2| |#3| |#4|) (-13 (-479) (-10 -8 (-15 -2252 ($ (-1277 |#4|))) (-15 -2681 ((-1277 |#4|) $)) (-15 -3046 (|#2| $)) (-15 -1587 ((-1277 |#4|) $)) (-15 -1599 (|#1| $)) (-15 -4175 ($ $)) (-15 -3274 (|#4| (-777) (-1277 |#4|))))) (-311) (-1001 |#1|) (-1253 |#2|) (-13 (-415 |#2| |#3|) (-1047 |#2|))) (T -419))
-((-2252 (*1 *1 *2) (-12 (-5 *2 (-1277 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4))) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-4 *3 (-311)) (-5 *1 (-419 *3 *4 *5 *6)))) (-2681 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-5 *2 (-1277 *6)) (-5 *1 (-419 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4))))) (-3046 (*1 *2 *1) (-12 (-4 *4 (-1253 *2)) (-4 *2 (-1001 *3)) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *3 (-311)) (-4 *5 (-13 (-415 *2 *4) (-1047 *2))))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-5 *2 (-1277 *6)) (-5 *1 (-419 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4))))) (-1599 (*1 *2 *1) (-12 (-4 *3 (-1001 *2)) (-4 *4 (-1253 *3)) (-4 *2 (-311)) (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3))))) (-4175 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-1001 *2)) (-4 *4 (-1253 *3)) (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3))))) (-3274 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-1277 *2)) (-4 *5 (-311)) (-4 *6 (-1001 *5)) (-4 *2 (-13 (-415 *6 *7) (-1047 *6))) (-5 *1 (-419 *5 *6 *7 *2)) (-4 *7 (-1253 *6)))))
-(-13 (-479) (-10 -8 (-15 -2252 ($ (-1277 |#4|))) (-15 -2681 ((-1277 |#4|) $)) (-15 -3046 (|#2| $)) (-15 -1587 ((-1277 |#4|) $)) (-15 -1599 (|#1| $)) (-15 -4175 ($ $)) (-15 -3274 (|#4| (-777) (-1277 |#4|)))))
-((-2847 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-3046 ((|#2| $) 71)) (-2117 (($ (-1277 |#4|)) 27) (($ (-419 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1047 |#2|)))) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 37)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 |#4|) $) 28)) (-1998 (($) 25 T CONST)) (-3892 (((-112) $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ $ $) 82)))
-(((-420 |#1| |#2| |#3| |#4| |#5|) (-13 (-732) (-10 -8 (-15 -2681 ((-1277 |#4|) $)) (-15 -3046 (|#2| $)) (-15 -2117 ($ (-1277 |#4|))) (IF (|has| |#4| (-1047 |#2|)) (-15 -2117 ($ (-419 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-311) (-1001 |#1|) (-1253 |#2|) (-415 |#2| |#3|) (-1277 |#4|)) (T -420))
-((-2681 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-5 *2 (-1277 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7)) (-4 *6 (-415 *4 *5)) (-14 *7 *2))) (-3046 (*1 *2 *1) (-12 (-4 *4 (-1253 *2)) (-4 *2 (-1001 *3)) (-5 *1 (-420 *3 *2 *4 *5 *6)) (-4 *3 (-311)) (-4 *5 (-415 *2 *4)) (-14 *6 (-1277 *5)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-1277 *6)) (-4 *6 (-415 *4 *5)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-4 *3 (-311)) (-5 *1 (-420 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-419 *3 *4 *5 *6)) (-4 *6 (-1047 *4)) (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-4 *6 (-415 *4 *5)) (-14 *7 (-1277 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7)))))
-(-13 (-732) (-10 -8 (-15 -2681 ((-1277 |#4|) $)) (-15 -3046 (|#2| $)) (-15 -2117 ($ (-1277 |#4|))) (IF (|has| |#4| (-1047 |#2|)) (-15 -2117 ($ (-419 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2536 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
-(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#3| (-1 |#4| |#2|) |#1|))) (-423 |#2|) (-174) (-423 |#4|) (-174)) (T -421))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-423 *6)) (-5 *1 (-421 *4 *5 *2 *6)) (-4 *4 (-423 *5)))))
-(-10 -7 (-15 -2536 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1347 (((-3 $ "failed")) 98)) (-1757 (((-1277 (-695 |#2|)) (-1277 $)) NIL) (((-1277 (-695 |#2|))) 103)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) 96)) (-3929 (((-3 $ "failed")) 95)) (-3237 (((-695 |#2|) (-1277 $)) NIL) (((-695 |#2|)) 114)) (-2713 (((-695 |#2|) $ (-1277 $)) NIL) (((-695 |#2|) $) 122)) (-3260 (((-1182 (-959 |#2|))) 63)) (-1885 ((|#2| (-1277 $)) NIL) ((|#2|) 118)) (-2615 (($ (-1277 |#2|) (-1277 $)) NIL) (($ (-1277 |#2|)) 124)) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) 94)) (-3489 (((-3 $ "failed")) 86)) (-3592 (((-695 |#2|) (-1277 $)) NIL) (((-695 |#2|)) 112)) (-2256 (((-695 |#2|) $ (-1277 $)) NIL) (((-695 |#2|) $) 120)) (-4019 (((-1182 (-959 |#2|))) 62)) (-1965 ((|#2| (-1277 $)) NIL) ((|#2|) 116)) (-2987 (((-1277 |#2|) $ (-1277 $)) NIL) (((-695 |#2|) (-1277 $) (-1277 $)) NIL) (((-1277 |#2|) $) 123) (((-695 |#2|) (-1277 $)) 132)) (-2601 (((-1277 |#2|) $) 108) (($ (-1277 |#2|)) 110)) (-4259 (((-650 (-959 |#2|)) (-1277 $)) NIL) (((-650 (-959 |#2|))) 106)) (-1936 (($ (-695 |#2|) $) 102)))
-(((-422 |#1| |#2|) (-10 -8 (-15 -1936 (|#1| (-695 |#2|) |#1|)) (-15 -3260 ((-1182 (-959 |#2|)))) (-15 -4019 ((-1182 (-959 |#2|)))) (-15 -2713 ((-695 |#2|) |#1|)) (-15 -2256 ((-695 |#2|) |#1|)) (-15 -3237 ((-695 |#2|))) (-15 -3592 ((-695 |#2|))) (-15 -1885 (|#2|)) (-15 -1965 (|#2|)) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2615 (|#1| (-1277 |#2|))) (-15 -4259 ((-650 (-959 |#2|)))) (-15 -1757 ((-1277 (-695 |#2|)))) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -1347 ((-3 |#1| "failed"))) (-15 -3929 ((-3 |#1| "failed"))) (-15 -3489 ((-3 |#1| "failed"))) (-15 -3339 ((-3 (-2 (|:| |particular| |#1|) (|:| -2681 (-650 |#1|))) "failed"))) (-15 -4405 ((-3 (-2 (|:| |particular| |#1|) (|:| -2681 (-650 |#1|))) "failed"))) (-15 -3237 ((-695 |#2|) (-1277 |#1|))) (-15 -3592 ((-695 |#2|) (-1277 |#1|))) (-15 -1885 (|#2| (-1277 |#1|))) (-15 -1965 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -2713 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -2256 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -1757 ((-1277 (-695 |#2|)) (-1277 |#1|))) (-15 -4259 ((-650 (-959 |#2|)) (-1277 |#1|)))) (-423 |#2|) (-174)) (T -422))
-((-1757 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1277 (-695 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-4259 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-650 (-959 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-1965 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) (-1885 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) (-3592 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-3237 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-4019 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-3260 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))))
-(-10 -8 (-15 -1936 (|#1| (-695 |#2|) |#1|)) (-15 -3260 ((-1182 (-959 |#2|)))) (-15 -4019 ((-1182 (-959 |#2|)))) (-15 -2713 ((-695 |#2|) |#1|)) (-15 -2256 ((-695 |#2|) |#1|)) (-15 -3237 ((-695 |#2|))) (-15 -3592 ((-695 |#2|))) (-15 -1885 (|#2|)) (-15 -1965 (|#2|)) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2615 (|#1| (-1277 |#2|))) (-15 -4259 ((-650 (-959 |#2|)))) (-15 -1757 ((-1277 (-695 |#2|)))) (-15 -2987 ((-695 |#2|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1|)) (-15 -1347 ((-3 |#1| "failed"))) (-15 -3929 ((-3 |#1| "failed"))) (-15 -3489 ((-3 |#1| "failed"))) (-15 -3339 ((-3 (-2 (|:| |particular| |#1|) (|:| -2681 (-650 |#1|))) "failed"))) (-15 -4405 ((-3 (-2 (|:| |particular| |#1|) (|:| -2681 (-650 |#1|))) "failed"))) (-15 -3237 ((-695 |#2|) (-1277 |#1|))) (-15 -3592 ((-695 |#2|) (-1277 |#1|))) (-15 -1885 (|#2| (-1277 |#1|))) (-15 -1965 (|#2| (-1277 |#1|))) (-15 -2615 (|#1| (-1277 |#2|) (-1277 |#1|))) (-15 -2987 ((-695 |#2|) (-1277 |#1|) (-1277 |#1|))) (-15 -2987 ((-1277 |#2|) |#1| (-1277 |#1|))) (-15 -2713 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -2256 ((-695 |#2|) |#1| (-1277 |#1|))) (-15 -1757 ((-1277 (-695 |#2|)) (-1277 |#1|))) (-15 -4259 ((-650 (-959 |#2|)) (-1277 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1347 (((-3 $ "failed")) 42 (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) 20)) (-1757 (((-1277 (-695 |#1|)) (-1277 $)) 83) (((-1277 (-695 |#1|))) 106)) (-3266 (((-1277 $)) 86)) (-2333 (($) 18 T CONST)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) 45 (|has| |#1| (-562)))) (-3929 (((-3 $ "failed")) 43 (|has| |#1| (-562)))) (-3237 (((-695 |#1|) (-1277 $)) 70) (((-695 |#1|)) 98)) (-4071 ((|#1| $) 79)) (-2713 (((-695 |#1|) $ (-1277 $)) 81) (((-695 |#1|) $) 96)) (-2075 (((-3 $ "failed") $) 50 (|has| |#1| (-562)))) (-3260 (((-1182 (-959 |#1|))) 94 (|has| |#1| (-368)))) (-1794 (($ $ (-928)) 31)) (-2095 ((|#1| $) 77)) (-2770 (((-1182 |#1|) $) 47 (|has| |#1| (-562)))) (-1885 ((|#1| (-1277 $)) 72) ((|#1|) 100)) (-4236 (((-1182 |#1|) $) 68)) (-2027 (((-112)) 62)) (-2615 (($ (-1277 |#1|) (-1277 $)) 74) (($ (-1277 |#1|)) 104)) (-3957 (((-3 $ "failed") $) 52 (|has| |#1| (-562)))) (-4412 (((-928)) 85)) (-2462 (((-112)) 59)) (-3969 (($ $ (-928)) 38)) (-1991 (((-112)) 55)) (-1939 (((-112)) 53)) (-3505 (((-112)) 57)) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) 46 (|has| |#1| (-562)))) (-3489 (((-3 $ "failed")) 44 (|has| |#1| (-562)))) (-3592 (((-695 |#1|) (-1277 $)) 71) (((-695 |#1|)) 99)) (-2790 ((|#1| $) 80)) (-2256 (((-695 |#1|) $ (-1277 $)) 82) (((-695 |#1|) $) 97)) (-1760 (((-3 $ "failed") $) 51 (|has| |#1| (-562)))) (-4019 (((-1182 (-959 |#1|))) 95 (|has| |#1| (-368)))) (-3454 (($ $ (-928)) 32)) (-2168 ((|#1| $) 78)) (-1700 (((-1182 |#1|) $) 48 (|has| |#1| (-562)))) (-1965 ((|#1| (-1277 $)) 73) ((|#1|) 101)) (-4281 (((-1182 |#1|) $) 69)) (-2476 (((-112)) 63)) (-3240 (((-1168) $) 10)) (-3084 (((-112)) 54)) (-2451 (((-112)) 56)) (-3692 (((-112)) 58)) (-3891 (((-1129) $) 11)) (-2808 (((-112)) 61)) (-2057 ((|#1| $ (-570)) 110)) (-2987 (((-1277 |#1|) $ (-1277 $)) 76) (((-695 |#1|) (-1277 $) (-1277 $)) 75) (((-1277 |#1|) $) 108) (((-695 |#1|) (-1277 $)) 107)) (-2601 (((-1277 |#1|) $) 103) (($ (-1277 |#1|)) 102)) (-4259 (((-650 (-959 |#1|)) (-1277 $)) 84) (((-650 (-959 |#1|))) 105)) (-2319 (($ $ $) 28)) (-3143 (((-112)) 67)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-2681 (((-1277 $)) 109)) (-2013 (((-650 (-1277 |#1|))) 49 (|has| |#1| (-562)))) (-4373 (($ $ $ $) 29)) (-2125 (((-112)) 65)) (-1936 (($ (-695 |#1|) $) 93)) (-2885 (($ $ $) 27)) (-4099 (((-112)) 66)) (-4235 (((-112)) 64)) (-1849 (((-112)) 60)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-423 |#1|) (-141) (-174)) (T -423))
-((-2681 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1277 *1)) (-4 *1 (-423 *3)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1277 *3)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-423 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-1757 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1277 (-695 *3))))) (-4259 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-650 (-959 *3))))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1277 *3)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3)))) (-1965 (*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174)))) (-1885 (*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174)))) (-3592 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-3237 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-4019 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368)) (-5 *2 (-1182 (-959 *3))))) (-3260 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368)) (-5 *2 (-1182 (-959 *3))))) (-1936 (*1 *1 *2 *1) (-12 (-5 *2 (-695 *3)) (-4 *1 (-423 *3)) (-4 *3 (-174)))))
-(-13 (-372 |t#1|) (-290 (-570) |t#1|) (-10 -8 (-15 -2681 ((-1277 $))) (-15 -2987 ((-1277 |t#1|) $)) (-15 -2987 ((-695 |t#1|) (-1277 $))) (-15 -1757 ((-1277 (-695 |t#1|)))) (-15 -4259 ((-650 (-959 |t#1|)))) (-15 -2615 ($ (-1277 |t#1|))) (-15 -2601 ((-1277 |t#1|) $)) (-15 -2601 ($ (-1277 |t#1|))) (-15 -1965 (|t#1|)) (-15 -1885 (|t#1|)) (-15 -3592 ((-695 |t#1|))) (-15 -3237 ((-695 |t#1|))) (-15 -2256 ((-695 |t#1|) $)) (-15 -2713 ((-695 |t#1|) $)) (IF (|has| |t#1| (-368)) (PROGN (-15 -4019 ((-1182 (-959 |t#1|)))) (-15 -3260 ((-1182 (-959 |t#1|))))) |%noBranch|) (-15 -1936 ($ (-695 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-290 (-570) |#1|) . T) ((-372 |#1|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-726) . T) ((-750 |#1|) . T) ((-767) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 60)) (-1786 (($ $) 78)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 192)) (-2046 (($ $) NIL)) (-3426 (((-112) $) 48)) (-1347 ((|#1| $) 16)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-1231)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-1231)))) (-3912 (($ |#1| (-570)) 42)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 149)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 74)) (-3957 (((-3 $ "failed") $) 165)) (-2477 (((-3 (-413 (-570)) "failed") $) 85 (|has| |#1| (-551)))) (-3994 (((-112) $) 81 (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) 92 (|has| |#1| (-551)))) (-2850 (($ |#1| (-570)) 44)) (-2145 (((-112) $) 212 (|has| |#1| (-1231)))) (-2005 (((-112) $) 62)) (-2654 (((-777) $) 51)) (-3926 (((-3 "nil" "sqfr" "irred" "prime") $ (-570)) 176)) (-2245 ((|#1| $ (-570)) 175)) (-4162 (((-570) $ (-570)) 174)) (-1851 (($ |#1| (-570)) 41)) (-2536 (($ (-1 |#1| |#1|) $) 184)) (-4382 (($ |#1| (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570))))) 79)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-4255 (($ |#1| (-570)) 43)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) 193 (|has| |#1| (-458)))) (-2672 (($ |#1| (-570) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2660 (((-650 (-2 (|:| -2340 |#1|) (|:| -2940 (-570)))) $) 73)) (-1450 (((-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))) $) 12)) (-2340 (((-424 $) $) NIL (|has| |#1| (-1231)))) (-2837 (((-3 $ "failed") $ $) 177)) (-2940 (((-570) $) 168)) (-3920 ((|#1| $) 75)) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 101 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 107 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) $) NIL (|has| |#1| (-520 (-1186) $))) (($ $ (-650 (-1186)) (-650 $)) 108 (|has| |#1| (-520 (-1186) $))) (($ $ (-650 (-298 $))) 104 (|has| |#1| (-313 $))) (($ $ (-298 $)) NIL (|has| |#1| (-313 $))) (($ $ $ $) NIL (|has| |#1| (-313 $))) (($ $ (-650 $) (-650 $)) NIL (|has| |#1| (-313 $)))) (-2057 (($ $ |#1|) 93 (|has| |#1| (-290 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-290 $ $)))) (-2375 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-2601 (((-542) $) 39 (|has| |#1| (-620 (-542)))) (((-384) $) 114 (|has| |#1| (-1031))) (((-227) $) 120 (|has| |#1| (-1031)))) (-2869 (((-868) $) 147) (($ (-570)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570)))))) (-2294 (((-777)) 67 T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) 53 T CONST)) (-1998 (($) 52 T CONST)) (-3414 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3892 (((-112) $ $) 160)) (-4003 (($ $) 162) (($ $ $) NIL)) (-3992 (($ $ $) 181)) (** (($ $ (-928)) NIL) (($ $ (-777)) 126)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-424 |#1|) (-13 (-562) (-233 |#1|) (-38 |#1|) (-343 |#1|) (-417 |#1|) (-10 -8 (-15 -3920 (|#1| $)) (-15 -2940 ((-570) $)) (-15 -4382 ($ |#1| (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))))) (-15 -1450 ((-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))) $)) (-15 -1851 ($ |#1| (-570))) (-15 -2660 ((-650 (-2 (|:| -2340 |#1|) (|:| -2940 (-570)))) $)) (-15 -4255 ($ |#1| (-570))) (-15 -4162 ((-570) $ (-570))) (-15 -2245 (|#1| $ (-570))) (-15 -3926 ((-3 "nil" "sqfr" "irred" "prime") $ (-570))) (-15 -2654 ((-777) $)) (-15 -2850 ($ |#1| (-570))) (-15 -3912 ($ |#1| (-570))) (-15 -2672 ($ |#1| (-570) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1347 (|#1| $)) (-15 -1786 ($ $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-458)) (-6 (-458)) |%noBranch|) (IF (|has| |#1| (-1031)) (-6 (-1031)) |%noBranch|) (IF (|has| |#1| (-1231)) (-6 (-1231)) |%noBranch|) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-290 $ $)) (-6 (-290 $ $)) |%noBranch|) (IF (|has| |#1| (-313 $)) (-6 (-313 $)) |%noBranch|) (IF (|has| |#1| (-520 (-1186) $)) (-6 (-520 (-1186) $)) |%noBranch|))) (-562)) (T -424))
-((-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-562)) (-5 *1 (-424 *3)))) (-3920 (*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-4382 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-570))))) (-4 *2 (-562)) (-5 *1 (-424 *2)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-570))))) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-1851 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -2340 *3) (|:| -2940 (-570))))) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-4255 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-4162 (*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3926 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-424 *4)) (-4 *4 (-562)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-2850 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3912 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-2672 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-570)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-1347 (*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562)))) (-2477 (*1 *2 *1) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562)))))
-(-13 (-562) (-233 |#1|) (-38 |#1|) (-343 |#1|) (-417 |#1|) (-10 -8 (-15 -3920 (|#1| $)) (-15 -2940 ((-570) $)) (-15 -4382 ($ |#1| (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))))) (-15 -1450 ((-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))) $)) (-15 -1851 ($ |#1| (-570))) (-15 -2660 ((-650 (-2 (|:| -2340 |#1|) (|:| -2940 (-570)))) $)) (-15 -4255 ($ |#1| (-570))) (-15 -4162 ((-570) $ (-570))) (-15 -2245 (|#1| $ (-570))) (-15 -3926 ((-3 "nil" "sqfr" "irred" "prime") $ (-570))) (-15 -2654 ((-777) $)) (-15 -2850 ($ |#1| (-570))) (-15 -3912 ($ |#1| (-570))) (-15 -2672 ($ |#1| (-570) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1347 (|#1| $)) (-15 -1786 ($ $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-458)) (-6 (-458)) |%noBranch|) (IF (|has| |#1| (-1031)) (-6 (-1031)) |%noBranch|) (IF (|has| |#1| (-1231)) (-6 (-1231)) |%noBranch|) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-290 $ $)) (-6 (-290 $ $)) |%noBranch|) (IF (|has| |#1| (-313 $)) (-6 (-313 $)) |%noBranch|) (IF (|has| |#1| (-520 (-1186) $)) (-6 (-520 (-1186) $)) |%noBranch|)))
-((-1501 (((-424 |#1|) (-424 |#1|) (-1 (-424 |#1|) |#1|)) 28)) (-2957 (((-424 |#1|) (-424 |#1|) (-424 |#1|)) 17)))
-(((-425 |#1|) (-10 -7 (-15 -1501 ((-424 |#1|) (-424 |#1|) (-1 (-424 |#1|) |#1|))) (-15 -2957 ((-424 |#1|) (-424 |#1|) (-424 |#1|)))) (-562)) (T -425))
-((-2957 (*1 *2 *2 *2) (-12 (-5 *2 (-424 *3)) (-4 *3 (-562)) (-5 *1 (-425 *3)))) (-1501 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-424 *4) *4)) (-4 *4 (-562)) (-5 *2 (-424 *4)) (-5 *1 (-425 *4)))))
-(-10 -7 (-15 -1501 ((-424 |#1|) (-424 |#1|) (-1 (-424 |#1|) |#1|))) (-15 -2957 ((-424 |#1|) (-424 |#1|) (-424 |#1|))))
-((-3227 ((|#2| |#2|) 183)) (-1996 (((-3 (|:| |%expansion| (-317 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112)) 60)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 ((-3 (|:| |%expansion| (-317 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112))) (-15 -3227 (|#2| |#2|))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|)) (-1186) |#2|) (T -426))
-((-3227 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1212) (-436 *3))) (-14 *4 (-1186)) (-14 *5 *2))) (-1996 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |%expansion| (-317 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1212) (-436 *5))) (-14 *6 (-1186)) (-14 *7 *3))))
-(-10 -7 (-15 -1996 ((-3 (|:| |%expansion| (-317 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112))) (-15 -3227 (|#2| |#2|)))
-((-2536 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|))) (-1058) (-436 |#1|) (-1058) (-436 |#3|)) (T -427))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *2 (-436 *6)) (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-436 *5)))))
-(-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3227 ((|#2| |#2|) 106)) (-3607 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168)) 52)) (-2490 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168)) 170)))
-(((-428 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3607 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -2490 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -3227 (|#2| |#2|))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|) (-10 -8 (-15 -2869 ($ |#3|)))) (-854) (-13 (-1255 |#2| |#3|) (-368) (-1212) (-10 -8 (-15 -2375 ($ $)) (-15 -1363 ($ $)))) (-992 |#4|) (-1186)) (T -428))
-((-3227 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *2 (-13 (-27) (-1212) (-436 *3) (-10 -8 (-15 -2869 ($ *4))))) (-4 *4 (-854)) (-4 *5 (-13 (-1255 *2 *4) (-368) (-1212) (-10 -8 (-15 -2375 ($ $)) (-15 -1363 ($ $))))) (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *6 (-992 *5)) (-14 *7 (-1186)))) (-2490 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *3 (-13 (-27) (-1212) (-436 *6) (-10 -8 (-15 -2869 ($ *7))))) (-4 *7 (-854)) (-4 *8 (-13 (-1255 *3 *7) (-368) (-1212) (-10 -8 (-15 -2375 ($ $)) (-15 -1363 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8)) (-14 *10 (-1186)))) (-3607 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *3 (-13 (-27) (-1212) (-436 *6) (-10 -8 (-15 -2869 ($ *7))))) (-4 *7 (-854)) (-4 *8 (-13 (-1255 *3 *7) (-368) (-1212) (-10 -8 (-15 -2375 ($ $)) (-15 -1363 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8)) (-14 *10 (-1186)))))
-(-10 -7 (-15 -3607 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -2490 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -3227 (|#2| |#2|)))
-((-3693 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2295 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2536 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2295 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3693 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1109) (-431 |#1|) (-1109) (-431 |#3|)) (T -429))
-((-3693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-4 *2 (-431 *5)) (-5 *1 (-429 *6 *4 *5 *2)) (-4 *4 (-431 *6)))) (-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-429 *5 *4 *2 *6)) (-4 *4 (-431 *5)) (-4 *6 (-431 *2)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-431 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-431 *5)))))
-(-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2295 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3693 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3965 (($) 51)) (-1637 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-1832 (($ $ $) 46)) (-3198 (((-112) $ $) 35)) (-2401 (((-777)) 55)) (-1322 (($ (-650 |#2|)) 23) (($) NIL)) (-2066 (($) 66)) (-2994 (((-112) $ $) 15)) (-1908 ((|#2| $) 77)) (-1764 ((|#2| $) 75)) (-1997 (((-928) $) 70)) (-3502 (($ $ $) 42)) (-4298 (($ (-928)) 60)) (-1565 (($ $ |#2|) NIL) (($ $ $) 45)) (-3901 (((-777) (-1 (-112) |#2|) $) NIL) (((-777) |#2| $) 31)) (-2881 (($ (-650 |#2|)) 27)) (-2137 (($ $) 53)) (-2869 (((-868) $) 40)) (-2293 (((-777) $) 24)) (-2542 (($ (-650 |#2|)) 22) (($) NIL)) (-3892 (((-112) $ $) 19)))
-(((-430 |#1| |#2|) (-10 -8 (-15 -2401 ((-777))) (-15 -4298 (|#1| (-928))) (-15 -1997 ((-928) |#1|)) (-15 -2066 (|#1|)) (-15 -1908 (|#2| |#1|)) (-15 -1764 (|#2| |#1|)) (-15 -3965 (|#1|)) (-15 -2137 (|#1| |#1|)) (-15 -2293 ((-777) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -2994 ((-112) |#1| |#1|)) (-15 -2542 (|#1|)) (-15 -2542 (|#1| (-650 |#2|))) (-15 -1322 (|#1|)) (-15 -1322 (|#1| (-650 |#2|))) (-15 -3502 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -3198 ((-112) |#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -2881 (|#1| (-650 |#2|))) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|))) (-431 |#2|) (-1109)) (T -430))
-((-2401 (*1 *2) (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4)))))
-(-10 -8 (-15 -2401 ((-777))) (-15 -4298 (|#1| (-928))) (-15 -1997 ((-928) |#1|)) (-15 -2066 (|#1|)) (-15 -1908 (|#2| |#1|)) (-15 -1764 (|#2| |#1|)) (-15 -3965 (|#1|)) (-15 -2137 (|#1| |#1|)) (-15 -2293 ((-777) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -2994 ((-112) |#1| |#1|)) (-15 -2542 (|#1|)) (-15 -2542 (|#1| (-650 |#2|))) (-15 -1322 (|#1|)) (-15 -1322 (|#1| (-650 |#2|))) (-15 -3502 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -3198 ((-112) |#1| |#1|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1637 (|#1| |#2| |#1|)) (-15 -2881 (|#1| (-650 |#2|))) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)))
-((-2847 (((-112) $ $) 19)) (-3965 (($) 68 (|has| |#1| (-373)))) (-1637 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-1832 (($ $ $) 79)) (-3198 (((-112) $ $) 80)) (-2855 (((-112) $ (-777)) 8)) (-2401 (((-777)) 62 (|has| |#1| (-373)))) (-1322 (($ (-650 |#1|)) 75) (($) 74)) (-3350 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-3153 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ |#1| $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4452)))) (-2066 (($) 65 (|has| |#1| (-373)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2994 (((-112) $ $) 71)) (-2497 (((-112) $ (-777)) 9)) (-1908 ((|#1| $) 66 (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1764 ((|#1| $) 67 (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-1997 (((-928) $) 64 (|has| |#1| (-373)))) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22)) (-3502 (($ $ $) 76)) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41)) (-4298 (($ (-928)) 63 (|has| |#1| (-373)))) (-3891 (((-1129) $) 21)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-1565 (($ $ |#1|) 78) (($ $ $) 77)) (-2910 (($) 50) (($ (-650 |#1|)) 49)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 51)) (-2137 (($ $) 69 (|has| |#1| (-373)))) (-2869 (((-868) $) 18)) (-2293 (((-777) $) 70)) (-2542 (($ (-650 |#1|)) 73) (($) 72)) (-1344 (((-112) $ $) 23)) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20)) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-431 |#1|) (-141) (-1109)) (T -431))
-((-2293 (*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-1109)) (-5 *2 (-777)))) (-2137 (*1 *1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-373)))) (-3965 (*1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-373)) (-4 *2 (-1109)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856)))))
-(-13 (-231 |t#1|) (-1107 |t#1|) (-10 -8 (-6 -4452) (-15 -2293 ((-777) $)) (IF (|has| |t#1| (-373)) (PROGN (-6 (-373)) (-15 -2137 ($ $)) (-15 -3965 ($))) |%noBranch|) (IF (|has| |t#1| (-856)) (PROGN (-15 -1764 (|t#1| $)) (-15 -1908 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-231 |#1|) . T) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-373) |has| |#1| (-373)) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1107 |#1|) . T) ((-1109) . T) ((-1227) . T))
-((-2103 (((-592 |#2|) |#2| (-1186)) 36)) (-2817 (((-592 |#2|) |#2| (-1186)) 21)) (-3627 ((|#2| |#2| (-1186)) 26)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -2817 ((-592 |#2|) |#2| (-1186))) (-15 -2103 ((-592 |#2|) |#2| (-1186))) (-15 -3627 (|#2| |#2| (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-29 |#1|))) (T -432))
-((-3627 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-432 *4 *2)) (-4 *2 (-13 (-1212) (-29 *4))))) (-2103 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1212) (-29 *5))))) (-2817 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1212) (-29 *5))))))
-(-10 -7 (-15 -2817 ((-592 |#2|) |#2| (-1186))) (-15 -2103 ((-592 |#2|) |#2| (-1186))) (-15 -3627 (|#2| |#2| (-1186))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-1525 (($ |#2| |#1|) 37)) (-4025 (($ |#2| |#1|) 35)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-335 |#2|)) 25)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 10 T CONST)) (-1998 (($) 16 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 36)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-433 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4439)) (IF (|has| |#1| (-6 -4439)) (-6 -4439) |%noBranch|) |%noBranch|) (-15 -2869 ($ |#1|)) (-15 -2869 ($ (-335 |#2|))) (-15 -1525 ($ |#2| |#1|)) (-15 -4025 ($ |#2| |#1|)))) (-13 (-174) (-38 (-413 (-570)))) (-13 (-856) (-21))) (T -433))
-((-2869 (*1 *1 *2) (-12 (-5 *1 (-433 *2 *3)) (-4 *2 (-13 (-174) (-38 (-413 (-570))))) (-4 *3 (-13 (-856) (-21))))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-335 *4)) (-4 *4 (-13 (-856) (-21))) (-5 *1 (-433 *3 *4)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))))) (-1525 (*1 *1 *2 *3) (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))) (-4 *2 (-13 (-856) (-21))))) (-4025 (*1 *1 *2 *3) (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))) (-4 *2 (-13 (-856) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4439)) (IF (|has| |#1| (-6 -4439)) (-6 -4439) |%noBranch|) |%noBranch|) (-15 -2869 ($ |#1|)) (-15 -2869 ($ (-335 |#2|))) (-15 -1525 ($ |#2| |#1|)) (-15 -4025 ($ |#2| |#1|))))
-((-1363 (((-3 |#2| (-650 |#2|)) |#2| (-1186)) 115)))
-(((-434 |#1| |#2|) (-10 -7 (-15 -1363 ((-3 |#2| (-650 |#2|)) |#2| (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-966) (-29 |#1|))) (T -434))
-((-1363 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 *3 (-650 *3))) (-5 *1 (-434 *5 *3)) (-4 *3 (-13 (-1212) (-966) (-29 *5))))))
-(-10 -7 (-15 -1363 ((-3 |#2| (-650 |#2|)) |#2| (-1186))))
-((-1598 (((-650 (-1186)) $) 81)) (-3449 (((-413 (-1182 $)) $ (-618 $)) 313)) (-1465 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) 277)) (-2435 (((-3 (-618 $) "failed") $) NIL) (((-3 (-1186) "failed") $) 84) (((-3 (-570) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-413 (-959 |#2|)) "failed") $) 363) (((-3 (-959 |#2|) "failed") $) 275) (((-3 (-413 (-570)) "failed") $) NIL)) (-4387 (((-618 $) $) NIL) (((-1186) $) 28) (((-570) $) NIL) ((|#2| $) 271) (((-413 (-959 |#2|)) $) 345) (((-959 |#2|) $) 272) (((-413 (-570)) $) NIL)) (-2558 (((-115) (-115)) 47)) (-3249 (($ $) 99)) (-1954 (((-3 (-618 $) "failed") $) 268)) (-2543 (((-650 (-618 $)) $) 269)) (-3235 (((-3 (-650 $) "failed") $) 287)) (-4095 (((-3 (-2 (|:| |val| $) (|:| -2940 (-570))) "failed") $) 294)) (-3055 (((-3 (-650 $) "failed") $) 285)) (-3490 (((-3 (-2 (|:| -1747 (-570)) (|:| |var| (-618 $))) "failed") $) 304)) (-3353 (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $) 291) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-1186)) 257)) (-4326 (((-112) $) 17)) (-4337 ((|#2| $) 19)) (-3034 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) 276) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 109) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1186)) 62) (($ $ (-650 (-1186))) 280) (($ $) 281) (($ $ (-115) $ (-1186)) 65) (($ $ (-650 (-115)) (-650 $) (-1186)) 72) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) 120) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) 282) (($ $ (-1186) (-777) (-1 $ (-650 $))) 105) (($ $ (-1186) (-777) (-1 $ $)) 104)) (-2057 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) 119)) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) 278)) (-4424 (($ $) 324)) (-2601 (((-899 (-570)) $) 297) (((-899 (-384)) $) 301) (($ (-424 $)) 359) (((-542) $) NIL)) (-2869 (((-868) $) 279) (($ (-618 $)) 93) (($ (-1186)) 24) (($ |#2|) NIL) (($ (-1134 |#2| (-618 $))) NIL) (($ (-413 |#2|)) 329) (($ (-959 (-413 |#2|))) 368) (($ (-413 (-959 (-413 |#2|)))) 341) (($ (-413 (-959 |#2|))) 335) (($ $) NIL) (($ (-959 |#2|)) 216) (($ (-413 (-570))) 373) (($ (-570)) NIL)) (-2294 (((-777)) 88)) (-1475 (((-112) (-115)) 42)) (-1620 (($ (-1186) $) 31) (($ (-1186) $ $) 32) (($ (-1186) $ $ $) 33) (($ (-1186) $ $ $ $) 34) (($ (-1186) (-650 $)) 39)) (* (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ |#2| $) 306) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL)))
-(((-435 |#1| |#2|) (-10 -8 (-15 * (|#1| (-928) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2869 (|#1| (-570))) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2869 (|#1| (-959 |#2|))) (-15 -2435 ((-3 (-959 |#2|) "failed") |#1|)) (-15 -4387 ((-959 |#2|) |#1|)) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -2869 (|#1| (-413 (-959 |#2|)))) (-15 -2435 ((-3 (-413 (-959 |#2|)) "failed") |#1|)) (-15 -4387 ((-413 (-959 |#2|)) |#1|)) (-15 -3449 ((-413 (-1182 |#1|)) |#1| (-618 |#1|))) (-15 -2869 (|#1| (-413 (-959 (-413 |#2|))))) (-15 -2869 (|#1| (-959 (-413 |#2|)))) (-15 -2869 (|#1| (-413 |#2|))) (-15 -4424 (|#1| |#1|)) (-15 -2601 (|#1| (-424 |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-777) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-777) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| |#1|)))) (-15 -4095 ((-3 (-2 (|:| |val| |#1|) (|:| -2940 (-570))) "failed") |#1|)) (-15 -3353 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -2940 (-570))) "failed") |#1| (-1186))) (-15 -3353 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -2940 (-570))) "failed") |#1| (-115))) (-15 -3249 (|#1| |#1|)) (-15 -2869 (|#1| (-1134 |#2| (-618 |#1|)))) (-15 -3490 ((-3 (-2 (|:| -1747 (-570)) (|:| |var| (-618 |#1|))) "failed") |#1|)) (-15 -3055 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3353 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -2940 (-570))) "failed") |#1|)) (-15 -3235 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 |#1|) (-1186))) (-15 -3034 (|#1| |#1| (-115) |#1| (-1186))) (-15 -3034 (|#1| |#1|)) (-15 -3034 (|#1| |#1| (-650 (-1186)))) (-15 -3034 (|#1| |#1| (-1186))) (-15 -1620 (|#1| (-1186) (-650 |#1|))) (-15 -1620 (|#1| (-1186) |#1| |#1| |#1| |#1|)) (-15 -1620 (|#1| (-1186) |#1| |#1| |#1|)) (-15 -1620 (|#1| (-1186) |#1| |#1|)) (-15 -1620 (|#1| (-1186) |#1|)) (-15 -1598 ((-650 (-1186)) |#1|)) (-15 -4337 (|#2| |#1|)) (-15 -4326 ((-112) |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2869 (|#1| (-1186))) (-15 -2435 ((-3 (-1186) "failed") |#1|)) (-15 -4387 ((-1186) |#1|)) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -2543 ((-650 (-618 |#1|)) |#1|)) (-15 -1954 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -1465 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1465 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1465 (|#1| |#1| (-298 |#1|))) (-15 -2057 (|#1| (-115) (-650 |#1|))) (-15 -2057 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -3034 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -2869 (|#1| (-618 |#1|))) (-15 -2435 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4387 ((-618 |#1|) |#1|)) (-15 -2869 ((-868) |#1|))) (-436 |#2|) (-1109)) (T -435))
-((-2558 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1109)) (-5 *1 (-435 *3 *4)) (-4 *3 (-436 *4)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-435 *4 *5)) (-4 *4 (-436 *5)))) (-2294 (*1 *2) (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-435 *3 *4)) (-4 *3 (-436 *4)))))
-(-10 -8 (-15 * (|#1| (-928) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2869 (|#1| (-570))) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2869 (|#1| (-959 |#2|))) (-15 -2435 ((-3 (-959 |#2|) "failed") |#1|)) (-15 -4387 ((-959 |#2|) |#1|)) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2869 (|#1| |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -2869 (|#1| (-413 (-959 |#2|)))) (-15 -2435 ((-3 (-413 (-959 |#2|)) "failed") |#1|)) (-15 -4387 ((-413 (-959 |#2|)) |#1|)) (-15 -3449 ((-413 (-1182 |#1|)) |#1| (-618 |#1|))) (-15 -2869 (|#1| (-413 (-959 (-413 |#2|))))) (-15 -2869 (|#1| (-959 (-413 |#2|)))) (-15 -2869 (|#1| (-413 |#2|))) (-15 -4424 (|#1| |#1|)) (-15 -2601 (|#1| (-424 |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-777) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-777) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| |#1|)))) (-15 -4095 ((-3 (-2 (|:| |val| |#1|) (|:| -2940 (-570))) "failed") |#1|)) (-15 -3353 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -2940 (-570))) "failed") |#1| (-1186))) (-15 -3353 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -2940 (-570))) "failed") |#1| (-115))) (-15 -3249 (|#1| |#1|)) (-15 -2869 (|#1| (-1134 |#2| (-618 |#1|)))) (-15 -3490 ((-3 (-2 (|:| -1747 (-570)) (|:| |var| (-618 |#1|))) "failed") |#1|)) (-15 -3055 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3353 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -2940 (-570))) "failed") |#1|)) (-15 -3235 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 |#1|) (-1186))) (-15 -3034 (|#1| |#1| (-115) |#1| (-1186))) (-15 -3034 (|#1| |#1|)) (-15 -3034 (|#1| |#1| (-650 (-1186)))) (-15 -3034 (|#1| |#1| (-1186))) (-15 -1620 (|#1| (-1186) (-650 |#1|))) (-15 -1620 (|#1| (-1186) |#1| |#1| |#1| |#1|)) (-15 -1620 (|#1| (-1186) |#1| |#1| |#1|)) (-15 -1620 (|#1| (-1186) |#1| |#1|)) (-15 -1620 (|#1| (-1186) |#1|)) (-15 -1598 ((-650 (-1186)) |#1|)) (-15 -4337 (|#2| |#1|)) (-15 -4326 ((-112) |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2869 (|#1| (-1186))) (-15 -2435 ((-3 (-1186) "failed") |#1|)) (-15 -4387 ((-1186) |#1|)) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -3034 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3034 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -2543 ((-650 (-618 |#1|)) |#1|)) (-15 -1954 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -1465 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1465 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1465 (|#1| |#1| (-298 |#1|))) (-15 -2057 (|#1| (-115) (-650 |#1|))) (-15 -2057 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1| |#1|)) (-15 -2057 (|#1| (-115) |#1|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3034 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -3034 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -2869 (|#1| (-618 |#1|))) (-15 -2435 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4387 ((-618 |#1|) |#1|)) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 116 (|has| |#1| (-25)))) (-1598 (((-650 (-1186)) $) 203)) (-3449 (((-413 (-1182 $)) $ (-618 $)) 171 (|has| |#1| (-562)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 143 (|has| |#1| (-562)))) (-2046 (($ $) 144 (|has| |#1| (-562)))) (-3426 (((-112) $) 146 (|has| |#1| (-562)))) (-4246 (((-650 (-618 $)) $) 39)) (-3997 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1465 (($ $ (-298 $)) 51) (($ $ (-650 (-298 $))) 50) (($ $ (-650 (-618 $)) (-650 $)) 49)) (-3312 (($ $) 163 (|has| |#1| (-562)))) (-2929 (((-424 $) $) 164 (|has| |#1| (-562)))) (-1799 (((-112) $ $) 154 (|has| |#1| (-562)))) (-2333 (($) 104 (-3749 (|has| |#1| (-1121)) (|has| |#1| (-25))) CONST)) (-2435 (((-3 (-618 $) "failed") $) 64) (((-3 (-1186) "failed") $) 216) (((-3 (-570) "failed") $) 210 (|has| |#1| (-1047 (-570)))) (((-3 |#1| "failed") $) 207) (((-3 (-413 (-959 |#1|)) "failed") $) 169 (|has| |#1| (-562))) (((-3 (-959 |#1|) "failed") $) 123 (|has| |#1| (-1058))) (((-3 (-413 (-570)) "failed") $) 98 (-3749 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-4387 (((-618 $) $) 65) (((-1186) $) 217) (((-570) $) 209 (|has| |#1| (-1047 (-570)))) ((|#1| $) 208) (((-413 (-959 |#1|)) $) 170 (|has| |#1| (-562))) (((-959 |#1|) $) 124 (|has| |#1| (-1058))) (((-413 (-570)) $) 99 (-3749 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-2788 (($ $ $) 158 (|has| |#1| (-562)))) (-3054 (((-695 (-570)) (-695 $)) 137 (-3212 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 136 (-3212 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 135 (|has| |#1| (-1058))) (((-695 |#1|) (-695 $)) 134 (|has| |#1| (-1058)))) (-3957 (((-3 $ "failed") $) 106 (|has| |#1| (-1121)))) (-2799 (($ $ $) 157 (|has| |#1| (-562)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 152 (|has| |#1| (-562)))) (-2145 (((-112) $) 165 (|has| |#1| (-562)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 212 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 211 (|has| |#1| (-893 (-384))))) (-3244 (($ $) 46) (($ (-650 $)) 45)) (-3380 (((-650 (-115)) $) 38)) (-2558 (((-115) (-115)) 37)) (-2005 (((-112) $) 105 (|has| |#1| (-1121)))) (-1973 (((-112) $) 17 (|has| $ (-1047 (-570))))) (-3249 (($ $) 186 (|has| |#1| (-1058)))) (-1587 (((-1134 |#1| (-618 $)) $) 187 (|has| |#1| (-1058)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 161 (|has| |#1| (-562)))) (-1413 (((-1182 $) (-618 $)) 20 (|has| $ (-1058)))) (-2536 (($ (-1 $ $) (-618 $)) 31)) (-1954 (((-3 (-618 $) "failed") $) 41)) (-3867 (($ (-650 $)) 150 (|has| |#1| (-562))) (($ $ $) 149 (|has| |#1| (-562)))) (-3240 (((-1168) $) 10)) (-2543 (((-650 (-618 $)) $) 40)) (-1665 (($ (-115) $) 33) (($ (-115) (-650 $)) 32)) (-3235 (((-3 (-650 $) "failed") $) 192 (|has| |#1| (-1121)))) (-4095 (((-3 (-2 (|:| |val| $) (|:| -2940 (-570))) "failed") $) 183 (|has| |#1| (-1058)))) (-3055 (((-3 (-650 $) "failed") $) 190 (|has| |#1| (-25)))) (-3490 (((-3 (-2 (|:| -1747 (-570)) (|:| |var| (-618 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3353 (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $) 191 (|has| |#1| (-1121))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-115)) 185 (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-1186)) 184 (|has| |#1| (-1058)))) (-3917 (((-112) $ (-115)) 35) (((-112) $ (-1186)) 34)) (-4315 (($ $) 108 (-3749 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-3326 (((-777) $) 42)) (-3891 (((-1129) $) 11)) (-4326 (((-112) $) 205)) (-4337 ((|#1| $) 204)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 151 (|has| |#1| (-562)))) (-3903 (($ (-650 $)) 148 (|has| |#1| (-562))) (($ $ $) 147 (|has| |#1| (-562)))) (-2483 (((-112) $ $) 30) (((-112) $ (-1186)) 29)) (-2340 (((-424 $) $) 162 (|has| |#1| (-562)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-562))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 159 (|has| |#1| (-562)))) (-2837 (((-3 $ "failed") $ $) 142 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 153 (|has| |#1| (-562)))) (-2160 (((-112) $) 18 (|has| $ (-1047 (-570))))) (-3034 (($ $ (-618 $) $) 62) (($ $ (-650 (-618 $)) (-650 $)) 61) (($ $ (-650 (-298 $))) 60) (($ $ (-298 $)) 59) (($ $ $ $) 58) (($ $ (-650 $) (-650 $)) 57) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 28) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 27) (($ $ (-1186) (-1 $ (-650 $))) 26) (($ $ (-1186) (-1 $ $)) 25) (($ $ (-650 (-115)) (-650 (-1 $ $))) 24) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 23) (($ $ (-115) (-1 $ (-650 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1186)) 197 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186))) 196 (|has| |#1| (-620 (-542)))) (($ $) 195 (|has| |#1| (-620 (-542)))) (($ $ (-115) $ (-1186)) 194 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-115)) (-650 $) (-1186)) 193 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) 182 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) 181 (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ (-650 $))) 180 (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ $)) 179 (|has| |#1| (-1058)))) (-2002 (((-777) $) 155 (|has| |#1| (-562)))) (-2057 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-650 $)) 52)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 156 (|has| |#1| (-562)))) (-3047 (($ $) 44) (($ $ $) 43)) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) 128 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 127 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 126 (|has| |#1| (-1058))) (($ $ (-1186)) 125 (|has| |#1| (-1058)))) (-4424 (($ $) 176 (|has| |#1| (-562)))) (-1599 (((-1134 |#1| (-618 $)) $) 177 (|has| |#1| (-562)))) (-3144 (($ $) 19 (|has| $ (-1058)))) (-2601 (((-899 (-570)) $) 214 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 213 (|has| |#1| (-620 (-899 (-384))))) (($ (-424 $)) 178 (|has| |#1| (-562))) (((-542) $) 100 (|has| |#1| (-620 (-542))))) (-2733 (($ $ $) 111 (|has| |#1| (-479)))) (-2319 (($ $ $) 112 (|has| |#1| (-479)))) (-2869 (((-868) $) 12) (($ (-618 $)) 63) (($ (-1186)) 215) (($ |#1|) 206) (($ (-1134 |#1| (-618 $))) 188 (|has| |#1| (-1058))) (($ (-413 |#1|)) 174 (|has| |#1| (-562))) (($ (-959 (-413 |#1|))) 173 (|has| |#1| (-562))) (($ (-413 (-959 (-413 |#1|)))) 172 (|has| |#1| (-562))) (($ (-413 (-959 |#1|))) 168 (|has| |#1| (-562))) (($ $) 141 (|has| |#1| (-562))) (($ (-959 |#1|)) 122 (|has| |#1| (-1058))) (($ (-413 (-570))) 97 (-3749 (|has| |#1| (-562)) (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570)))))) (($ (-570)) 96 (-3749 (|has| |#1| (-1058)) (|has| |#1| (-1047 (-570)))))) (-1660 (((-3 $ "failed") $) 138 (|has| |#1| (-146)))) (-2294 (((-777)) 133 (|has| |#1| (-1058)) CONST)) (-1613 (($ $) 48) (($ (-650 $)) 47)) (-1475 (((-112) (-115)) 36)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 145 (|has| |#1| (-562)))) (-1620 (($ (-1186) $) 202) (($ (-1186) $ $) 201) (($ (-1186) $ $ $) 200) (($ (-1186) $ $ $ $) 199) (($ (-1186) (-650 $)) 198)) (-1981 (($) 115 (|has| |#1| (-25)) CONST)) (-1998 (($) 103 (|has| |#1| (-1121)) CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) 132 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 131 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 130 (|has| |#1| (-1058))) (($ $ (-1186)) 129 (|has| |#1| (-1058)))) (-3892 (((-112) $ $) 6)) (-4013 (($ (-1134 |#1| (-618 $)) (-1134 |#1| (-618 $))) 175 (|has| |#1| (-562))) (($ $ $) 109 (-3749 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-4003 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3992 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-570)) 110 (-3749 (|has| |#1| (-479)) (|has| |#1| (-562)))) (($ $ (-777)) 107 (|has| |#1| (-1121))) (($ $ (-928)) 102 (|has| |#1| (-1121)))) (* (($ (-413 (-570)) $) 167 (|has| |#1| (-562))) (($ $ (-413 (-570))) 166 (|has| |#1| (-562))) (($ |#1| $) 140 (|has| |#1| (-174))) (($ $ |#1|) 139 (|has| |#1| (-174))) (($ (-570) $) 119 (|has| |#1| (-21))) (($ (-777) $) 117 (|has| |#1| (-25))) (($ (-928) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1121)))))
-(((-436 |#1|) (-141) (-1109)) (T -436))
-((-4326 (*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-1186))))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-1620 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-1620 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-1620 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-1620 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-650 *1)) (-4 *1 (-436 *4)) (-4 *4 (-1109)))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-4 *3 (-620 (-542))))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1186))) (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-4 *3 (-620 (-542))))) (-3034 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-620 (-542))))) (-3034 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1186)) (-4 *1 (-436 *4)) (-4 *4 (-1109)) (-4 *4 (-620 (-542))))) (-3034 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 *1)) (-5 *4 (-1186)) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-620 (-542))))) (-3235 (*1 *2 *1) (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-436 *3)))) (-3353 (*1 *2 *1) (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109)) (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -2940 (-570)))) (-4 *1 (-436 *3)))) (-3055 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-436 *3)))) (-3490 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109)) (-5 *2 (-2 (|:| -1747 (-570)) (|:| |var| (-618 *1)))) (-4 *1 (-436 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-1058)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1))) (-4 *1 (-436 *3)))) (-3249 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-1058)))) (-3353 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1058)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -2940 (-570)))) (-4 *1 (-436 *4)))) (-3353 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-1058)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -2940 (-570)))) (-4 *1 (-436 *4)))) (-4095 (*1 *2 *1) (|partial| -12 (-4 *3 (-1058)) (-4 *3 (-1109)) (-5 *2 (-2 (|:| |val| *1) (|:| -2940 (-570)))) (-4 *1 (-436 *3)))) (-3034 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777))) (-5 *4 (-650 (-1 *1 *1))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-3034 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777))) (-5 *4 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-3034 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 (-650 *1))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-3034 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 *1)) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-424 *1)) (-4 *1 (-436 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))) (-1599 (*1 *2 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1))) (-4 *1 (-436 *3)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-562)))) (-4013 (*1 *1 *2 *2) (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-959 (-413 *3))) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-413 *3)))) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-436 *4)) (-4 *4 (-1109)) (-4 *4 (-562)) (-5 *2 (-413 (-1182 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-4 *3 (-1121)))))
-(-13 (-306) (-1047 (-1186)) (-891 |t#1|) (-406 |t#1|) (-417 |t#1|) (-10 -8 (-15 -4326 ((-112) $)) (-15 -4337 (|t#1| $)) (-15 -1598 ((-650 (-1186)) $)) (-15 -1620 ($ (-1186) $)) (-15 -1620 ($ (-1186) $ $)) (-15 -1620 ($ (-1186) $ $ $)) (-15 -1620 ($ (-1186) $ $ $ $)) (-15 -1620 ($ (-1186) (-650 $))) (IF (|has| |t#1| (-620 (-542))) (PROGN (-6 (-620 (-542))) (-15 -3034 ($ $ (-1186))) (-15 -3034 ($ $ (-650 (-1186)))) (-15 -3034 ($ $)) (-15 -3034 ($ $ (-115) $ (-1186))) (-15 -3034 ($ $ (-650 (-115)) (-650 $) (-1186)))) |%noBranch|) (IF (|has| |t#1| (-1121)) (PROGN (-6 (-732)) (-15 ** ($ $ (-777))) (-15 -3235 ((-3 (-650 $) "failed") $)) (-15 -3353 ((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-479)) (-6 (-479)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3055 ((-3 (-650 $) "failed") $)) (-15 -3490 ((-3 (-2 (|:| -1747 (-570)) (|:| |var| (-618 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1058)) (PROGN (-6 (-1058)) (-6 (-1047 (-959 |t#1|))) (-6 (-907 (-1186))) (-6 (-382 |t#1|)) (-15 -2869 ($ (-1134 |t#1| (-618 $)))) (-15 -1587 ((-1134 |t#1| (-618 $)) $)) (-15 -3249 ($ $)) (-15 -3353 ((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-115))) (-15 -3353 ((-3 (-2 (|:| |var| (-618 $)) (|:| -2940 (-570))) "failed") $ (-1186))) (-15 -4095 ((-3 (-2 (|:| |val| $) (|:| -2940 (-570))) "failed") $)) (-15 -3034 ($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $)))) (-15 -3034 ($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $))))) (-15 -3034 ($ $ (-1186) (-777) (-1 $ (-650 $)))) (-15 -3034 ($ $ (-1186) (-777) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-6 (-368)) (-6 (-1047 (-413 (-959 |t#1|)))) (-15 -2601 ($ (-424 $))) (-15 -1599 ((-1134 |t#1| (-618 $)) $)) (-15 -4424 ($ $)) (-15 -4013 ($ (-1134 |t#1| (-618 $)) (-1134 |t#1| (-618 $)))) (-15 -2869 ($ (-413 |t#1|))) (-15 -2869 ($ (-959 (-413 |t#1|)))) (-15 -2869 ($ (-413 (-959 (-413 |t#1|))))) (-15 -3449 ((-413 (-1182 $)) $ (-618 $))) (IF (|has| |t#1| (-1047 (-570))) (-6 (-1047 (-413 (-570)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-413 (-570))) |has| |#1| (-562)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-562)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-562)) ((-132) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-562))) ((-622 #1=(-413 (-959 |#1|))) |has| |#1| (-562)) ((-622 (-570)) -3749 (|has| |#1| (-1058)) (|has| |#1| (-1047 (-570))) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-622 #2=(-618 $)) . T) ((-622 #3=(-959 |#1|)) |has| |#1| (-1058)) ((-622 #4=(-1186)) . T) ((-622 |#1|) . T) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) |has| |#1| (-562)) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-245) |has| |#1| (-562)) ((-294) |has| |#1| (-562)) ((-311) |has| |#1| (-562)) ((-313 $) . T) ((-306) . T) ((-368) |has| |#1| (-562)) ((-382 |#1|) |has| |#1| (-1058)) ((-406 |#1|) . T) ((-417 |#1|) . T) ((-458) |has| |#1| (-562)) ((-479) |has| |#1| (-479)) ((-520 (-618 $) $) . T) ((-520 $ $) . T) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-562)) ((-652 (-570)) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-654 #0#) |has| |#1| (-562)) ((-654 |#1|) |has| |#1| (-174)) ((-654 $) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-646 #0#) |has| |#1| (-562)) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-645 (-570)) -12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) ((-645 |#1|) |has| |#1| (-1058)) ((-723 #0#) |has| |#1| (-562)) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) -3749 (|has| |#1| (-1121)) (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-479)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-907 (-1186)) |has| |#1| (-1058)) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-927) |has| |#1| (-562)) ((-1047 (-413 (-570))) -3749 (|has| |#1| (-1047 (-413 (-570)))) (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) ((-1047 #1#) |has| |#1| (-562)) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #2#) . T) ((-1047 #3#) |has| |#1| (-1058)) ((-1047 #4#) . T) ((-1047 |#1|) . T) ((-1060 #0#) |has| |#1| (-562)) ((-1060 |#1|) |has| |#1| (-174)) ((-1060 $) |has| |#1| (-562)) ((-1065 #0#) |has| |#1| (-562)) ((-1065 |#1|) |has| |#1| (-174)) ((-1065 $) |has| |#1| (-562)) ((-1058) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1067) -3749 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1121) -3749 (|has| |#1| (-1121)) (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-479)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1109) . T) ((-1227) . T) ((-1231) |has| |#1| (-562)))
-((-2133 ((|#2| |#2| |#2|) 31)) (-2558 (((-115) (-115)) 43)) (-2241 ((|#2| |#2|) 63)) (-1742 ((|#2| |#2|) 66)) (-2550 ((|#2| |#2|) 30)) (-2742 ((|#2| |#2| |#2|) 33)) (-3471 ((|#2| |#2| |#2|) 35)) (-2786 ((|#2| |#2| |#2|) 32)) (-2413 ((|#2| |#2| |#2|) 34)) (-1475 (((-112) (-115)) 41)) (-3937 ((|#2| |#2|) 37)) (-4386 ((|#2| |#2|) 36)) (-2521 ((|#2| |#2|) 25)) (-4285 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-4036 ((|#2| |#2| |#2|) 29)))
-(((-437 |#1| |#2|) (-10 -7 (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -2521 (|#2| |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -4285 (|#2| |#2| |#2|)) (-15 -4036 (|#2| |#2| |#2|)) (-15 -2550 (|#2| |#2|)) (-15 -2133 (|#2| |#2| |#2|)) (-15 -2786 (|#2| |#2| |#2|)) (-15 -2742 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2|)) (-15 -3471 (|#2| |#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -2241 (|#2| |#2|))) (-562) (-436 |#1|)) (T -437))
-((-2241 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3471 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2413 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2742 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2786 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2133 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2550 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-4036 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-4285 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-4285 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-437 *3 *4)) (-4 *4 (-436 *3)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-437 *4 *5)) (-4 *5 (-436 *4)))))
-(-10 -7 (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -2521 (|#2| |#2|)) (-15 -4285 (|#2| |#2|)) (-15 -4285 (|#2| |#2| |#2|)) (-15 -4036 (|#2| |#2| |#2|)) (-15 -2550 (|#2| |#2|)) (-15 -2133 (|#2| |#2| |#2|)) (-15 -2786 (|#2| |#2| |#2|)) (-15 -2742 (|#2| |#2| |#2|)) (-15 -2413 (|#2| |#2| |#2|)) (-15 -3471 (|#2| |#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)))
-((-2310 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1182 |#2|)) (|:| |pol2| (-1182 |#2|)) (|:| |prim| (-1182 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-650 (-1182 |#2|))) (|:| |prim| (-1182 |#2|))) (-650 |#2|)) 65)))
-(((-438 |#1| |#2|) (-10 -7 (-15 -2310 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-650 (-1182 |#2|))) (|:| |prim| (-1182 |#2|))) (-650 |#2|))) (IF (|has| |#2| (-27)) (-15 -2310 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1182 |#2|)) (|:| |pol2| (-1182 |#2|)) (|:| |prim| (-1182 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-562) (-148)) (-436 |#1|)) (T -438))
-((-2310 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1182 *3)) (|:| |pol2| (-1182 *3)) (|:| |prim| (-1182 *3)))) (-5 *1 (-438 *4 *3)) (-4 *3 (-27)) (-4 *3 (-436 *4)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-13 (-562) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-650 (-1182 *5))) (|:| |prim| (-1182 *5)))) (-5 *1 (-438 *4 *5)))))
-(-10 -7 (-15 -2310 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-650 (-1182 |#2|))) (|:| |prim| (-1182 |#2|))) (-650 |#2|))) (IF (|has| |#2| (-27)) (-15 -2310 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1182 |#2|)) (|:| |pol2| (-1182 |#2|)) (|:| |prim| (-1182 |#2|))) |#2| |#2|)) |%noBranch|))
-((-4150 (((-1282)) 18)) (-1821 (((-1182 (-413 (-570))) |#2| (-618 |#2|)) 40) (((-413 (-570)) |#2|) 24)))
-(((-439 |#1| |#2|) (-10 -7 (-15 -1821 ((-413 (-570)) |#2|)) (-15 -1821 ((-1182 (-413 (-570))) |#2| (-618 |#2|))) (-15 -4150 ((-1282)))) (-13 (-562) (-1047 (-570))) (-436 |#1|)) (T -439))
-((-4150 (*1 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1282)) (-5 *1 (-439 *3 *4)) (-4 *4 (-436 *3)))) (-1821 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-436 *5)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-439 *5 *3)))) (-1821 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 (-570))) (-5 *1 (-439 *4 *3)) (-4 *3 (-436 *4)))))
-(-10 -7 (-15 -1821 ((-413 (-570)) |#2|)) (-15 -1821 ((-1182 (-413 (-570))) |#2| (-618 |#2|))) (-15 -4150 ((-1282))))
-((-3736 (((-112) $) 32)) (-3659 (((-112) $) 34)) (-3081 (((-112) $) 35)) (-1356 (((-112) $) 38)) (-3121 (((-112) $) 33)) (-3765 (((-112) $) 37)) (-2869 (((-868) $) 20) (($ (-1168)) 31) (($ (-1186)) 26) (((-1186) $) 24) (((-1113) $) 23)) (-4143 (((-112) $) 36)) (-3892 (((-112) $ $) 17)))
-(((-440) (-13 (-619 (-868)) (-10 -8 (-15 -2869 ($ (-1168))) (-15 -2869 ($ (-1186))) (-15 -2869 ((-1186) $)) (-15 -2869 ((-1113) $)) (-15 -3736 ((-112) $)) (-15 -3121 ((-112) $)) (-15 -3081 ((-112) $)) (-15 -3765 ((-112) $)) (-15 -1356 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -3659 ((-112) $)) (-15 -3892 ((-112) $ $))))) (T -440))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-440)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-440)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3659 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3892 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2869 ($ (-1168))) (-15 -2869 ($ (-1186))) (-15 -2869 ((-1186) $)) (-15 -2869 ((-1113) $)) (-15 -3736 ((-112) $)) (-15 -3121 ((-112) $)) (-15 -3081 ((-112) $)) (-15 -3765 ((-112) $)) (-15 -1356 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -3659 ((-112) $)) (-15 -3892 ((-112) $ $))))
-((-2365 (((-3 (-424 (-1182 (-413 (-570)))) "failed") |#3|) 72)) (-3750 (((-424 |#3|) |#3|) 34)) (-1663 (((-3 (-424 (-1182 (-48))) "failed") |#3|) 46 (|has| |#2| (-1047 (-48))))) (-4351 (((-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -3405 (-112))) |#3|) 37)))
-(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -3750 ((-424 |#3|) |#3|)) (-15 -2365 ((-3 (-424 (-1182 (-413 (-570)))) "failed") |#3|)) (-15 -4351 ((-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -3405 (-112))) |#3|)) (IF (|has| |#2| (-1047 (-48))) (-15 -1663 ((-3 (-424 (-1182 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-562) (-1047 (-570))) (-436 |#1|) (-1253 |#2|)) (T -441))
-((-1663 (*1 *2 *3) (|partial| -12 (-4 *5 (-1047 (-48))) (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-424 (-1182 (-48)))) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1253 *5)))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -3405 (-112)))) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1253 *5)))) (-2365 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-424 (-1182 (-413 (-570))))) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1253 *5)))) (-3750 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-424 *3)) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1253 *5)))))
-(-10 -7 (-15 -3750 ((-424 |#3|) |#3|)) (-15 -2365 ((-3 (-424 (-1182 (-413 (-570)))) "failed") |#3|)) (-15 -4351 ((-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -3405 (-112))) |#3|)) (IF (|has| |#2| (-1047 (-48))) (-15 -1663 ((-3 (-424 (-1182 (-48))) "failed") |#3|)) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-3185 (((-1168) $ (-1168)) NIL)) (-2873 (($ $ (-1168)) NIL)) (-3262 (((-1168) $) NIL)) (-2977 (((-394) (-394) (-394)) 17) (((-394) (-394)) 15)) (-2965 (($ (-394)) NIL) (($ (-394) (-1168)) NIL)) (-1770 (((-394) $) NIL)) (-3240 (((-1168) $) NIL)) (-2116 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1539 (((-1282) (-1168)) 9)) (-2783 (((-1282) (-1168)) 10)) (-3530 (((-1282)) 11)) (-2869 (((-868) $) NIL)) (-1740 (($ $) 39)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-442) (-13 (-369 (-394) (-1168)) (-10 -7 (-15 -2977 ((-394) (-394) (-394))) (-15 -2977 ((-394) (-394))) (-15 -1539 ((-1282) (-1168))) (-15 -2783 ((-1282) (-1168))) (-15 -3530 ((-1282)))))) (T -442))
-((-2977 (*1 *2 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442)))) (-2977 (*1 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-442)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-442)))) (-3530 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-442)))))
-(-13 (-369 (-394) (-1168)) (-10 -7 (-15 -2977 ((-394) (-394) (-394))) (-15 -2977 ((-394) (-394))) (-15 -1539 ((-1282) (-1168))) (-15 -2783 ((-1282) (-1168))) (-15 -3530 ((-1282)))))
-((-2847 (((-112) $ $) NIL)) (-3942 (((-3 (|:| |fst| (-440)) (|:| -1994 "void")) $) 11)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1918 (($) 35)) (-3565 (($) 41)) (-4105 (($) 37)) (-2647 (($) 39)) (-3062 (($) 36)) (-2871 (($) 38)) (-2683 (($) 40)) (-4046 (((-112) $) 8)) (-2021 (((-650 (-959 (-570))) $) 19)) (-2881 (($ (-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-650 (-1186)) (-112)) 29) (($ (-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-650 (-959 (-570))) (-112)) 30)) (-2869 (((-868) $) 24) (($ (-440)) 32)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-443) (-13 (-1109) (-10 -8 (-15 -2869 ($ (-440))) (-15 -3942 ((-3 (|:| |fst| (-440)) (|:| -1994 "void")) $)) (-15 -2021 ((-650 (-959 (-570))) $)) (-15 -4046 ((-112) $)) (-15 -2881 ($ (-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-650 (-1186)) (-112))) (-15 -2881 ($ (-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-650 (-959 (-570))) (-112))) (-15 -1918 ($)) (-15 -3062 ($)) (-15 -4105 ($)) (-15 -3565 ($)) (-15 -2871 ($)) (-15 -2647 ($)) (-15 -2683 ($))))) (T -443))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-443)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *1 (-443)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-650 (-959 (-570)))) (-5 *1 (-443)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-2881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *3 (-650 (-1186))) (-5 *4 (-112)) (-5 *1 (-443)))) (-2881 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-112)) (-5 *1 (-443)))) (-1918 (*1 *1) (-5 *1 (-443))) (-3062 (*1 *1) (-5 *1 (-443))) (-4105 (*1 *1) (-5 *1 (-443))) (-3565 (*1 *1) (-5 *1 (-443))) (-2871 (*1 *1) (-5 *1 (-443))) (-2647 (*1 *1) (-5 *1 (-443))) (-2683 (*1 *1) (-5 *1 (-443))))
-(-13 (-1109) (-10 -8 (-15 -2869 ($ (-440))) (-15 -3942 ((-3 (|:| |fst| (-440)) (|:| -1994 "void")) $)) (-15 -2021 ((-650 (-959 (-570))) $)) (-15 -4046 ((-112) $)) (-15 -2881 ($ (-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-650 (-1186)) (-112))) (-15 -2881 ($ (-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-650 (-959 (-570))) (-112))) (-15 -1918 ($)) (-15 -3062 ($)) (-15 -4105 ($)) (-15 -3565 ($)) (-15 -2871 ($)) (-15 -2647 ($)) (-15 -2683 ($))))
-((-2847 (((-112) $ $) NIL)) (-1770 (((-1186) $) 8)) (-3240 (((-1168) $) 17)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 11)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 14)))
-(((-444 |#1|) (-13 (-1109) (-10 -8 (-15 -1770 ((-1186) $)))) (-1186)) (T -444))
-((-1770 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-444 *3)) (-14 *3 *2))))
-(-13 (-1109) (-10 -8 (-15 -1770 ((-1186) $))))
-((-2847 (((-112) $ $) NIL)) (-1372 (((-1127) $) 7)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 13)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 9)))
-(((-445) (-13 (-1109) (-10 -8 (-15 -1372 ((-1127) $))))) (T -445))
-((-1372 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-445)))))
-(-13 (-1109) (-10 -8 (-15 -1372 ((-1127) $))))
-((-2237 (((-1282) $) 7)) (-2869 (((-868) $) 8) (($ (-1277 (-705))) 14) (($ (-650 (-334))) 13) (($ (-334)) 12) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 11)))
-(((-446) (-141)) (T -446))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-705))) (-4 *1 (-446)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-446)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-446)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) (-4 *1 (-446)))))
-(-13 (-401) (-10 -8 (-15 -2869 ($ (-1277 (-705)))) (-15 -2869 ($ (-650 (-334)))) (-15 -2869 ($ (-334))) (-15 -2869 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))))))
-(((-619 (-868)) . T) ((-401) . T) ((-1227) . T))
-((-2435 (((-3 $ "failed") (-1277 (-320 (-384)))) 21) (((-3 $ "failed") (-1277 (-320 (-570)))) 19) (((-3 $ "failed") (-1277 (-959 (-384)))) 17) (((-3 $ "failed") (-1277 (-959 (-570)))) 15) (((-3 $ "failed") (-1277 (-413 (-959 (-384))))) 13) (((-3 $ "failed") (-1277 (-413 (-959 (-570))))) 11)) (-4387 (($ (-1277 (-320 (-384)))) 22) (($ (-1277 (-320 (-570)))) 20) (($ (-1277 (-959 (-384)))) 18) (($ (-1277 (-959 (-570)))) 16) (($ (-1277 (-413 (-959 (-384))))) 14) (($ (-1277 (-413 (-959 (-570))))) 12)) (-2237 (((-1282) $) 7)) (-2869 (((-868) $) 8) (($ (-650 (-334))) 25) (($ (-334)) 24) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) 23)))
-(((-447) (-141)) (T -447))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-447)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-447)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334))))) (-4 *1 (-447)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-1277 (-320 (-384)))) (-4 *1 (-447)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 (-320 (-384)))) (-4 *1 (-447)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-1277 (-320 (-570)))) (-4 *1 (-447)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 (-320 (-570)))) (-4 *1 (-447)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-1277 (-959 (-384)))) (-4 *1 (-447)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 (-959 (-384)))) (-4 *1 (-447)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-1277 (-959 (-570)))) (-4 *1 (-447)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 (-959 (-570)))) (-4 *1 (-447)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-1277 (-413 (-959 (-384))))) (-4 *1 (-447)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 (-413 (-959 (-384))))) (-4 *1 (-447)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-1277 (-413 (-959 (-570))))) (-4 *1 (-447)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-1277 (-413 (-959 (-570))))) (-4 *1 (-447)))))
-(-13 (-401) (-10 -8 (-15 -2869 ($ (-650 (-334)))) (-15 -2869 ($ (-334))) (-15 -2869 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))) (-15 -4387 ($ (-1277 (-320 (-384))))) (-15 -2435 ((-3 $ "failed") (-1277 (-320 (-384))))) (-15 -4387 ($ (-1277 (-320 (-570))))) (-15 -2435 ((-3 $ "failed") (-1277 (-320 (-570))))) (-15 -4387 ($ (-1277 (-959 (-384))))) (-15 -2435 ((-3 $ "failed") (-1277 (-959 (-384))))) (-15 -4387 ($ (-1277 (-959 (-570))))) (-15 -2435 ((-3 $ "failed") (-1277 (-959 (-570))))) (-15 -4387 ($ (-1277 (-413 (-959 (-384)))))) (-15 -2435 ((-3 $ "failed") (-1277 (-413 (-959 (-384)))))) (-15 -4387 ($ (-1277 (-413 (-959 (-570)))))) (-15 -2435 ((-3 $ "failed") (-1277 (-413 (-959 (-570))))))))
-(((-619 (-868)) . T) ((-401) . T) ((-1227) . T))
-((-3641 (((-112)) 18)) (-4145 (((-112) (-112)) 19)) (-3461 (((-112)) 14)) (-2978 (((-112) (-112)) 15)) (-4229 (((-112)) 16)) (-3497 (((-112) (-112)) 17)) (-1778 (((-928) (-928)) 22) (((-928)) 21)) (-2654 (((-777) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570))))) 52)) (-3140 (((-928) (-928)) 24) (((-928)) 23)) (-3004 (((-2 (|:| -1869 (-570)) (|:| -2660 (-650 |#1|))) |#1|) 94)) (-4382 (((-424 |#1|) (-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570))))))) 174)) (-3441 (((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112)) 207)) (-3644 (((-424 |#1|) |#1| (-777) (-777)) 222) (((-424 |#1|) |#1| (-650 (-777)) (-777)) 219) (((-424 |#1|) |#1| (-650 (-777))) 221) (((-424 |#1|) |#1| (-777)) 220) (((-424 |#1|) |#1|) 218)) (-2289 (((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777) (-112)) 224) (((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777)) 225) (((-3 |#1| "failed") (-928) |#1| (-650 (-777))) 227) (((-3 |#1| "failed") (-928) |#1| (-777)) 226) (((-3 |#1| "failed") (-928) |#1|) 228)) (-2340 (((-424 |#1|) |#1| (-777) (-777)) 217) (((-424 |#1|) |#1| (-650 (-777)) (-777)) 213) (((-424 |#1|) |#1| (-650 (-777))) 215) (((-424 |#1|) |#1| (-777)) 214) (((-424 |#1|) |#1|) 212)) (-4265 (((-112) |#1|) 44)) (-3096 (((-743 (-777)) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570))))) 99)) (-2638 (((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112) (-1111 (-777)) (-777)) 211)))
-(((-448 |#1|) (-10 -7 (-15 -4382 ((-424 |#1|) (-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))))) (-15 -3096 ((-743 (-777)) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))))) (-15 -3140 ((-928))) (-15 -3140 ((-928) (-928))) (-15 -1778 ((-928))) (-15 -1778 ((-928) (-928))) (-15 -2654 ((-777) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))))) (-15 -3004 ((-2 (|:| -1869 (-570)) (|:| -2660 (-650 |#1|))) |#1|)) (-15 -3641 ((-112))) (-15 -4145 ((-112) (-112))) (-15 -3461 ((-112))) (-15 -2978 ((-112) (-112))) (-15 -4265 ((-112) |#1|)) (-15 -4229 ((-112))) (-15 -3497 ((-112) (-112))) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2340 ((-424 |#1|) |#1| (-777))) (-15 -2340 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -2340 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -2340 ((-424 |#1|) |#1| (-777) (-777))) (-15 -3644 ((-424 |#1|) |#1|)) (-15 -3644 ((-424 |#1|) |#1| (-777))) (-15 -3644 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -3644 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -3644 ((-424 |#1|) |#1| (-777) (-777))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1|)) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-777))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777) (-112))) (-15 -3441 ((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112))) (-15 -2638 ((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112) (-1111 (-777)) (-777)))) (-1253 (-570))) (T -448))
-((-2638 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1111 (-777))) (-5 *6 (-777)) (-5 *2 (-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570))))))) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3441 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570))))))) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2289 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *6 (-112)) (-5 *1 (-448 *2)) (-4 *2 (-1253 (-570))))) (-2289 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *1 (-448 *2)) (-4 *2 (-1253 (-570))))) (-2289 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *1 (-448 *2)) (-4 *2 (-1253 (-570))))) (-2289 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-777)) (-5 *1 (-448 *2)) (-4 *2 (-1253 (-570))))) (-2289 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-928)) (-5 *1 (-448 *2)) (-4 *2 (-1253 (-570))))) (-3644 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3644 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3644 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3644 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2340 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2340 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-4229 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-4265 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2978 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3461 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-4145 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3641 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3004 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1869 (-570)) (|:| -2660 (-650 *3)))) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -2340 *4) (|:| -2650 (-570))))) (-4 *4 (-1253 (-570))) (-5 *2 (-777)) (-5 *1 (-448 *4)))) (-1778 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-1778 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3140 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -2340 *4) (|:| -2650 (-570))))) (-4 *4 (-1253 (-570))) (-5 *2 (-743 (-777))) (-5 *1 (-448 *4)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| *4) (|:| -3634 (-570))))))) (-4 *4 (-1253 (-570))) (-5 *2 (-424 *4)) (-5 *1 (-448 *4)))))
-(-10 -7 (-15 -4382 ((-424 |#1|) (-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))))) (-15 -3096 ((-743 (-777)) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))))) (-15 -3140 ((-928))) (-15 -3140 ((-928) (-928))) (-15 -1778 ((-928))) (-15 -1778 ((-928) (-928))) (-15 -2654 ((-777) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))))) (-15 -3004 ((-2 (|:| -1869 (-570)) (|:| -2660 (-650 |#1|))) |#1|)) (-15 -3641 ((-112))) (-15 -4145 ((-112) (-112))) (-15 -3461 ((-112))) (-15 -2978 ((-112) (-112))) (-15 -4265 ((-112) |#1|)) (-15 -4229 ((-112))) (-15 -3497 ((-112) (-112))) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2340 ((-424 |#1|) |#1| (-777))) (-15 -2340 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -2340 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -2340 ((-424 |#1|) |#1| (-777) (-777))) (-15 -3644 ((-424 |#1|) |#1|)) (-15 -3644 ((-424 |#1|) |#1| (-777))) (-15 -3644 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -3644 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -3644 ((-424 |#1|) |#1| (-777) (-777))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1|)) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-777))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777))) (-15 -2289 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777) (-112))) (-15 -3441 ((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112))) (-15 -2638 ((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112) (-1111 (-777)) (-777))))
-((-1495 (((-570) |#2|) 52) (((-570) |#2| (-777)) 51)) (-3966 (((-570) |#2|) 64)) (-4206 ((|#3| |#2|) 26)) (-3046 ((|#3| |#2| (-928)) 15)) (-1831 ((|#3| |#2|) 16)) (-3138 ((|#3| |#2|) 9)) (-3326 ((|#3| |#2|) 10)) (-2970 ((|#3| |#2| (-928)) 71) ((|#3| |#2|) 34)) (-4274 (((-570) |#2|) 66)))
-(((-449 |#1| |#2| |#3|) (-10 -7 (-15 -4274 ((-570) |#2|)) (-15 -2970 (|#3| |#2|)) (-15 -2970 (|#3| |#2| (-928))) (-15 -3966 ((-570) |#2|)) (-15 -1495 ((-570) |#2| (-777))) (-15 -1495 ((-570) |#2|)) (-15 -3046 (|#3| |#2| (-928))) (-15 -4206 (|#3| |#2|)) (-15 -3138 (|#3| |#2|)) (-15 -3326 (|#3| |#2|)) (-15 -1831 (|#3| |#2|))) (-1058) (-1253 |#1|) (-13 (-410) (-1047 |#1|) (-368) (-1212) (-288))) (T -449))
-((-1831 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4)))) (-3138 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4)))) (-4206 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1212) (-288))) (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1253 *5)))) (-1495 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) (-4 *3 (-1253 *4)) (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))))) (-1495 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *5 *3 *6)) (-4 *3 (-1253 *5)) (-4 *6 (-13 (-410) (-1047 *5) (-368) (-1212) (-288))))) (-3966 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) (-4 *3 (-1253 *4)) (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))))) (-2970 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1212) (-288))) (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1253 *5)))) (-2970 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) (-4 *3 (-1253 *4)) (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))))))
-(-10 -7 (-15 -4274 ((-570) |#2|)) (-15 -2970 (|#3| |#2|)) (-15 -2970 (|#3| |#2| (-928))) (-15 -3966 ((-570) |#2|)) (-15 -1495 ((-570) |#2| (-777))) (-15 -1495 ((-570) |#2|)) (-15 -3046 (|#3| |#2| (-928))) (-15 -4206 (|#3| |#2|)) (-15 -3138 (|#3| |#2|)) (-15 -3326 (|#3| |#2|)) (-15 -1831 (|#3| |#2|)))
-((-2775 ((|#2| (-1277 |#1|)) 42)) (-4290 ((|#2| |#2| |#1|) 58)) (-3358 ((|#2| |#2| |#1|) 49)) (-4366 ((|#2| |#2|) 44)) (-1858 (((-112) |#2|) 32)) (-2194 (((-650 |#2|) (-928) (-424 |#2|)) 21)) (-2289 ((|#2| (-928) (-424 |#2|)) 25)) (-3096 (((-743 (-777)) (-424 |#2|)) 29)))
-(((-450 |#1| |#2|) (-10 -7 (-15 -1858 ((-112) |#2|)) (-15 -2775 (|#2| (-1277 |#1|))) (-15 -4366 (|#2| |#2|)) (-15 -3358 (|#2| |#2| |#1|)) (-15 -4290 (|#2| |#2| |#1|)) (-15 -3096 ((-743 (-777)) (-424 |#2|))) (-15 -2289 (|#2| (-928) (-424 |#2|))) (-15 -2194 ((-650 |#2|) (-928) (-424 |#2|)))) (-1058) (-1253 |#1|)) (T -450))
-((-2194 (*1 *2 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-424 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-1058)) (-5 *2 (-650 *6)) (-5 *1 (-450 *5 *6)))) (-2289 (*1 *2 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-424 *2)) (-4 *2 (-1253 *5)) (-5 *1 (-450 *5 *2)) (-4 *5 (-1058)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-424 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-1058)) (-5 *2 (-743 (-777))) (-5 *1 (-450 *4 *5)))) (-4290 (*1 *2 *2 *3) (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1253 *3)))) (-3358 (*1 *2 *2 *3) (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1253 *3)))) (-4366 (*1 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1253 *3)))) (-2775 (*1 *2 *3) (-12 (-5 *3 (-1277 *4)) (-4 *4 (-1058)) (-4 *2 (-1253 *4)) (-5 *1 (-450 *4 *2)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-112)) (-5 *1 (-450 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -1858 ((-112) |#2|)) (-15 -2775 (|#2| (-1277 |#1|))) (-15 -4366 (|#2| |#2|)) (-15 -3358 (|#2| |#2| |#1|)) (-15 -4290 (|#2| |#2| |#1|)) (-15 -3096 ((-743 (-777)) (-424 |#2|))) (-15 -2289 (|#2| (-928) (-424 |#2|))) (-15 -2194 ((-650 |#2|) (-928) (-424 |#2|))))
-((-3958 (((-777)) 59)) (-1545 (((-777)) 29 (|has| |#1| (-410))) (((-777) (-777)) 28 (|has| |#1| (-410)))) (-3068 (((-570) |#1|) 25 (|has| |#1| (-410)))) (-1966 (((-570) |#1|) 27 (|has| |#1| (-410)))) (-1586 (((-777)) 58) (((-777) (-777)) 57)) (-4096 ((|#1| (-777) (-570)) 37)) (-3526 (((-1282)) 61)))
-(((-451 |#1|) (-10 -7 (-15 -4096 (|#1| (-777) (-570))) (-15 -1586 ((-777) (-777))) (-15 -1586 ((-777))) (-15 -3958 ((-777))) (-15 -3526 ((-1282))) (IF (|has| |#1| (-410)) (PROGN (-15 -1966 ((-570) |#1|)) (-15 -3068 ((-570) |#1|)) (-15 -1545 ((-777) (-777))) (-15 -1545 ((-777)))) |%noBranch|)) (-1058)) (T -451))
-((-1545 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-3068 (*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-1966 (*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-3526 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-3958 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-1586 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-570)) (-5 *1 (-451 *2)) (-4 *2 (-1058)))))
-(-10 -7 (-15 -4096 (|#1| (-777) (-570))) (-15 -1586 ((-777) (-777))) (-15 -1586 ((-777))) (-15 -3958 ((-777))) (-15 -3526 ((-1282))) (IF (|has| |#1| (-410)) (PROGN (-15 -1966 ((-570) |#1|)) (-15 -3068 ((-570) |#1|)) (-15 -1545 ((-777) (-777))) (-15 -1545 ((-777)))) |%noBranch|))
-((-2752 (((-650 (-570)) (-570)) 76)) (-2145 (((-112) (-171 (-570))) 82)) (-2340 (((-424 (-171 (-570))) (-171 (-570))) 75)))
-(((-452) (-10 -7 (-15 -2340 ((-424 (-171 (-570))) (-171 (-570)))) (-15 -2752 ((-650 (-570)) (-570))) (-15 -2145 ((-112) (-171 (-570)))))) (T -452))
-((-2145 (*1 *2 *3) (-12 (-5 *3 (-171 (-570))) (-5 *2 (-112)) (-5 *1 (-452)))) (-2752 (*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-452)) (-5 *3 (-570)))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-424 (-171 (-570)))) (-5 *1 (-452)) (-5 *3 (-171 (-570))))))
-(-10 -7 (-15 -2340 ((-424 (-171 (-570))) (-171 (-570)))) (-15 -2752 ((-650 (-570)) (-570))) (-15 -2145 ((-112) (-171 (-570)))))
-((-2230 ((|#4| |#4| (-650 |#4|)) 82)) (-4231 (((-650 |#4|) (-650 |#4|) (-1168) (-1168)) 22) (((-650 |#4|) (-650 |#4|) (-1168)) 21) (((-650 |#4|) (-650 |#4|)) 13)))
-(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2230 (|#4| |#4| (-650 |#4|))) (-15 -4231 ((-650 |#4|) (-650 |#4|))) (-15 -4231 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -4231 ((-650 |#4|) (-650 |#4|) (-1168) (-1168)))) (-311) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -453))
-((-4231 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *7)))) (-4231 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *7)))) (-4231 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2230 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2230 (|#4| |#4| (-650 |#4|))) (-15 -4231 ((-650 |#4|) (-650 |#4|))) (-15 -4231 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -4231 ((-650 |#4|) (-650 |#4|) (-1168) (-1168))))
-((-1788 (((-650 (-650 |#4|)) (-650 |#4|) (-112)) 89) (((-650 (-650 |#4|)) (-650 |#4|)) 88) (((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|) (-112)) 82) (((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|)) 83)) (-1394 (((-650 (-650 |#4|)) (-650 |#4|) (-112)) 55) (((-650 (-650 |#4|)) (-650 |#4|)) 77)))
-(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1394 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -1394 ((-650 (-650 |#4|)) (-650 |#4|) (-112))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|) (-112))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|) (-112)))) (-13 (-311) (-148)) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -454))
-((-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-1788 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) (-1788 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-1394 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))))
-(-10 -7 (-15 -1394 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -1394 ((-650 (-650 |#4|)) (-650 |#4|) (-112))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|) (-112))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -1788 ((-650 (-650 |#4|)) (-650 |#4|) (-112))))
-((-3052 (((-777) |#4|) 12)) (-2535 (((-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|))) |#4| (-777) (-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|)))) 39)) (-2480 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3769 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1447 ((|#4| |#4| (-650 |#4|)) 54)) (-1888 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-650 |#4|)) 96)) (-1701 (((-1282) |#4|) 59)) (-2500 (((-1282) (-650 |#4|)) 69)) (-2053 (((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570)) 66)) (-2054 (((-1282) (-570)) 110)) (-2973 (((-650 |#4|) (-650 |#4|)) 104)) (-3112 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|)) |#4| (-777)) 31)) (-2889 (((-570) |#4|) 109)) (-1756 ((|#4| |#4|) 37)) (-1865 (((-650 |#4|) (-650 |#4|) (-570) (-570)) 74)) (-3018 (((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570) (-570)) 123)) (-3187 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2175 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2538 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1485 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3618 (((-112) |#2| |#2|) 75)) (-3116 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2730 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1800 ((|#4| |#4| (-650 |#4|)) 97)))
-(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1800 (|#4| |#4| (-650 |#4|))) (-15 -1447 (|#4| |#4| (-650 |#4|))) (-15 -1865 ((-650 |#4|) (-650 |#4|) (-570) (-570))) (-15 -2175 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3618 ((-112) |#2| |#2|)) (-15 -2730 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3116 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1485 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2538 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1888 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-650 |#4|))) (-15 -1756 (|#4| |#4|)) (-15 -2535 ((-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|))) |#4| (-777) (-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|))))) (-15 -3769 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2480 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2973 ((-650 |#4|) (-650 |#4|))) (-15 -2889 ((-570) |#4|)) (-15 -1701 ((-1282) |#4|)) (-15 -2053 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570))) (-15 -3018 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570) (-570))) (-15 -2500 ((-1282) (-650 |#4|))) (-15 -2054 ((-1282) (-570))) (-15 -3187 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3112 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|)) |#4| (-777))) (-15 -3052 ((-777) |#4|))) (-458) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -455))
-((-3052 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-3112 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-777)) (|:| -3147 *4))) (-5 *5 (-777)) (-4 *4 (-956 *6 *7 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-455 *6 *7 *8 *4)))) (-3187 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1282)) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1282)) (-5 *1 (-455 *4 *5 *6 *7)))) (-3018 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *4)))) (-2053 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *4)))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1282)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2889 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-570)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-799)) (-4 *2 (-956 *4 *5 *6)) (-5 *1 (-455 *4 *5 *6 *2)) (-4 *4 (-458)) (-4 *6 (-856)))) (-2535 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 *3)))) (-5 *4 (-777)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *3)))) (-1756 (*1 *2 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-455 *5 *6 *7 *3)))) (-2538 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-777)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-799)) (-4 *6 (-956 *4 *3 *5)) (-4 *4 (-458)) (-4 *5 (-856)) (-5 *1 (-455 *4 *3 *5 *6)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6)))) (-3116 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-799)) (-4 *3 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *3)))) (-2730 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))) (-1865 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *7)))) (-1447 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2)))) (-1800 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1800 (|#4| |#4| (-650 |#4|))) (-15 -1447 (|#4| |#4| (-650 |#4|))) (-15 -1865 ((-650 |#4|) (-650 |#4|) (-570) (-570))) (-15 -2175 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3618 ((-112) |#2| |#2|)) (-15 -2730 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3116 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1485 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2538 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1888 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-650 |#4|))) (-15 -1756 (|#4| |#4|)) (-15 -2535 ((-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|))) |#4| (-777) (-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|))))) (-15 -3769 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2480 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2973 ((-650 |#4|) (-650 |#4|))) (-15 -2889 ((-570) |#4|)) (-15 -1701 ((-1282) |#4|)) (-15 -2053 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570))) (-15 -3018 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570) (-570))) (-15 -2500 ((-1282) (-650 |#4|))) (-15 -2054 ((-1282) (-570))) (-15 -3187 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3112 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-777)) (|:| -3147 |#4|)) |#4| (-777))) (-15 -3052 ((-777) |#4|)))
-((-2826 ((|#4| |#4| (-650 |#4|)) 20 (|has| |#1| (-368)))) (-2348 (((-650 |#4|) (-650 |#4|) (-1168) (-1168)) 46) (((-650 |#4|) (-650 |#4|) (-1168)) 45) (((-650 |#4|) (-650 |#4|)) 34)))
-(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2348 ((-650 |#4|) (-650 |#4|))) (-15 -2348 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -2348 ((-650 |#4|) (-650 |#4|) (-1168) (-1168))) (IF (|has| |#1| (-368)) (-15 -2826 (|#4| |#4| (-650 |#4|))) |%noBranch|)) (-458) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -456))
-((-2826 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-368)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-456 *4 *5 *6 *2)))) (-2348 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-456 *4 *5 *6 *7)))) (-2348 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-456 *4 *5 *6 *7)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-456 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2348 ((-650 |#4|) (-650 |#4|))) (-15 -2348 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -2348 ((-650 |#4|) (-650 |#4|) (-1168) (-1168))) (IF (|has| |#1| (-368)) (-15 -2826 (|#4| |#4| (-650 |#4|))) |%noBranch|))
-((-3867 (($ $ $) 14) (($ (-650 $)) 21)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 46)) (-3903 (($ $ $) NIL) (($ (-650 $)) 22)))
-(((-457 |#1|) (-10 -8 (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3867 (|#1| (-650 |#1|))) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3903 (|#1| (-650 |#1|))) (-15 -3903 (|#1| |#1| |#1|))) (-458)) (T -457))
-NIL
-(-10 -8 (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3867 (|#1| (-650 |#1|))) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3903 (|#1| (-650 |#1|))) (-15 -3903 (|#1| |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-458) (-141)) (T -458))
-((-3903 (*1 *1 *1 *1) (-4 *1 (-458))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458)))) (-3867 (*1 *1 *1 *1) (-4 *1 (-458))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-458)))))
-(-13 (-562) (-10 -8 (-15 -3903 ($ $ $)) (-15 -3903 ($ (-650 $))) (-15 -3867 ($ $ $)) (-15 -3867 ($ (-650 $))) (-15 -2942 ((-1182 $) (-1182 $) (-1182 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1347 (((-3 $ "failed")) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-1757 (((-1277 (-695 (-413 (-959 |#1|)))) (-1277 $)) NIL) (((-1277 (-695 (-413 (-959 |#1|))))) NIL)) (-3266 (((-1277 $)) NIL)) (-2333 (($) NIL T CONST)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL)) (-3929 (((-3 $ "failed")) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3237 (((-695 (-413 (-959 |#1|))) (-1277 $)) NIL) (((-695 (-413 (-959 |#1|)))) NIL)) (-4071 (((-413 (-959 |#1|)) $) NIL)) (-2713 (((-695 (-413 (-959 |#1|))) $ (-1277 $)) NIL) (((-695 (-413 (-959 |#1|))) $) NIL)) (-2075 (((-3 $ "failed") $) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3260 (((-1182 (-959 (-413 (-959 |#1|))))) NIL (|has| (-413 (-959 |#1|)) (-368))) (((-1182 (-413 (-959 |#1|)))) 90 (|has| |#1| (-562)))) (-1794 (($ $ (-928)) NIL)) (-2095 (((-413 (-959 |#1|)) $) NIL)) (-2770 (((-1182 (-413 (-959 |#1|))) $) 88 (|has| (-413 (-959 |#1|)) (-562)))) (-1885 (((-413 (-959 |#1|)) (-1277 $)) NIL) (((-413 (-959 |#1|))) NIL)) (-4236 (((-1182 (-413 (-959 |#1|))) $) NIL)) (-2027 (((-112)) NIL)) (-2615 (($ (-1277 (-413 (-959 |#1|))) (-1277 $)) 114) (($ (-1277 (-413 (-959 |#1|)))) NIL)) (-3957 (((-3 $ "failed") $) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-4412 (((-928)) NIL)) (-2462 (((-112)) NIL)) (-3969 (($ $ (-928)) NIL)) (-1991 (((-112)) NIL)) (-1939 (((-112)) NIL)) (-3505 (((-112)) NIL)) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL)) (-3489 (((-3 $ "failed")) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3592 (((-695 (-413 (-959 |#1|))) (-1277 $)) NIL) (((-695 (-413 (-959 |#1|)))) NIL)) (-2790 (((-413 (-959 |#1|)) $) NIL)) (-2256 (((-695 (-413 (-959 |#1|))) $ (-1277 $)) NIL) (((-695 (-413 (-959 |#1|))) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-4019 (((-1182 (-959 (-413 (-959 |#1|))))) NIL (|has| (-413 (-959 |#1|)) (-368))) (((-1182 (-413 (-959 |#1|)))) 89 (|has| |#1| (-562)))) (-3454 (($ $ (-928)) NIL)) (-2168 (((-413 (-959 |#1|)) $) NIL)) (-1700 (((-1182 (-413 (-959 |#1|))) $) 85 (|has| (-413 (-959 |#1|)) (-562)))) (-1965 (((-413 (-959 |#1|)) (-1277 $)) NIL) (((-413 (-959 |#1|))) NIL)) (-4281 (((-1182 (-413 (-959 |#1|))) $) NIL)) (-2476 (((-112)) NIL)) (-3240 (((-1168) $) NIL)) (-3084 (((-112)) NIL)) (-2451 (((-112)) NIL)) (-3692 (((-112)) NIL)) (-3891 (((-1129) $) NIL)) (-2270 (((-413 (-959 |#1|)) $ $) 76 (|has| |#1| (-562)))) (-2387 (((-413 (-959 |#1|)) $) 100 (|has| |#1| (-562)))) (-2891 (((-413 (-959 |#1|)) $) 104 (|has| |#1| (-562)))) (-1717 (((-1182 (-413 (-959 |#1|))) $) 94 (|has| |#1| (-562)))) (-2042 (((-413 (-959 |#1|))) 77 (|has| |#1| (-562)))) (-3562 (((-413 (-959 |#1|)) $ $) 69 (|has| |#1| (-562)))) (-3863 (((-413 (-959 |#1|)) $) 99 (|has| |#1| (-562)))) (-1890 (((-413 (-959 |#1|)) $) 103 (|has| |#1| (-562)))) (-2044 (((-1182 (-413 (-959 |#1|))) $) 93 (|has| |#1| (-562)))) (-1364 (((-413 (-959 |#1|))) 73 (|has| |#1| (-562)))) (-3313 (($) 110) (($ (-1186)) 118) (($ (-1277 (-1186))) 117) (($ (-1277 $)) 105) (($ (-1186) (-1277 $)) 116) (($ (-1277 (-1186)) (-1277 $)) 115)) (-2808 (((-112)) NIL)) (-2057 (((-413 (-959 |#1|)) $ (-570)) NIL)) (-2987 (((-1277 (-413 (-959 |#1|))) $ (-1277 $)) 107) (((-695 (-413 (-959 |#1|))) (-1277 $) (-1277 $)) NIL) (((-1277 (-413 (-959 |#1|))) $) 43) (((-695 (-413 (-959 |#1|))) (-1277 $)) NIL)) (-2601 (((-1277 (-413 (-959 |#1|))) $) NIL) (($ (-1277 (-413 (-959 |#1|)))) 40)) (-4259 (((-650 (-959 (-413 (-959 |#1|)))) (-1277 $)) NIL) (((-650 (-959 (-413 (-959 |#1|))))) NIL) (((-650 (-959 |#1|)) (-1277 $)) 108 (|has| |#1| (-562))) (((-650 (-959 |#1|))) 109 (|has| |#1| (-562)))) (-2319 (($ $ $) NIL)) (-3143 (((-112)) NIL)) (-2869 (((-868) $) NIL) (($ (-1277 (-413 (-959 |#1|)))) NIL)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) 65)) (-2013 (((-650 (-1277 (-413 (-959 |#1|))))) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-4373 (($ $ $ $) NIL)) (-2125 (((-112)) NIL)) (-1936 (($ (-695 (-413 (-959 |#1|))) $) NIL)) (-2885 (($ $ $) NIL)) (-4099 (((-112)) NIL)) (-4235 (((-112)) NIL)) (-1849 (((-112)) NIL)) (-1981 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) 106)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 61) (($ $ (-413 (-959 |#1|))) NIL) (($ (-413 (-959 |#1|)) $) NIL) (($ (-1151 |#2| (-413 (-959 |#1|))) $) NIL)))
-(((-459 |#1| |#2| |#3| |#4|) (-13 (-423 (-413 (-959 |#1|))) (-654 (-1151 |#2| (-413 (-959 |#1|)))) (-10 -8 (-15 -2869 ($ (-1277 (-413 (-959 |#1|))))) (-15 -4405 ((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed"))) (-15 -3339 ((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed"))) (-15 -3313 ($)) (-15 -3313 ($ (-1186))) (-15 -3313 ($ (-1277 (-1186)))) (-15 -3313 ($ (-1277 $))) (-15 -3313 ($ (-1186) (-1277 $))) (-15 -3313 ($ (-1277 (-1186)) (-1277 $))) (IF (|has| |#1| (-562)) (PROGN (-15 -4019 ((-1182 (-413 (-959 |#1|))))) (-15 -2044 ((-1182 (-413 (-959 |#1|))) $)) (-15 -3863 ((-413 (-959 |#1|)) $)) (-15 -1890 ((-413 (-959 |#1|)) $)) (-15 -3260 ((-1182 (-413 (-959 |#1|))))) (-15 -1717 ((-1182 (-413 (-959 |#1|))) $)) (-15 -2387 ((-413 (-959 |#1|)) $)) (-15 -2891 ((-413 (-959 |#1|)) $)) (-15 -3562 ((-413 (-959 |#1|)) $ $)) (-15 -1364 ((-413 (-959 |#1|)))) (-15 -2270 ((-413 (-959 |#1|)) $ $)) (-15 -2042 ((-413 (-959 |#1|)))) (-15 -4259 ((-650 (-959 |#1|)) (-1277 $))) (-15 -4259 ((-650 (-959 |#1|))))) |%noBranch|))) (-174) (-928) (-650 (-1186)) (-1277 (-695 |#1|))) (T -459))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1277 (-413 (-959 *3)))) (-4 *3 (-174)) (-14 *6 (-1277 (-695 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))))) (-4405 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-459 *3 *4 *5 *6)) (|:| -2681 (-650 (-459 *3 *4 *5 *6))))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-3339 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-459 *3 *4 *5 *6)) (|:| -2681 (-650 (-459 *3 *4 *5 *6))))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-3313 (*1 *1) (-12 (-5 *1 (-459 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-928)) (-14 *4 (-650 (-1186))) (-14 *5 (-1277 (-695 *2))))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 *2)) (-14 *6 (-1277 (-695 *3))))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-1277 (-1186))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-3313 (*1 *1 *2) (-12 (-5 *2 (-1277 (-459 *3 *4 *5 *6))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-3313 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-459 *4 *5 *6 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928)) (-14 *6 (-650 *2)) (-14 *7 (-1277 (-695 *4))))) (-3313 (*1 *1 *2 *3) (-12 (-5 *2 (-1277 (-1186))) (-5 *3 (-1277 (-459 *4 *5 *6 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928)) (-14 *6 (-650 (-1186))) (-14 *7 (-1277 (-695 *4))))) (-4019 (*1 *2) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-3260 (*1 *2) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-3562 (*1 *2 *1 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-1364 (*1 *2) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-2270 (*1 *2 *1 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-2042 (*1 *2) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1277 (-459 *4 *5 *6 *7))) (-5 *2 (-650 (-959 *4))) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *4 (-174)) (-14 *5 (-928)) (-14 *6 (-650 (-1186))) (-14 *7 (-1277 (-695 *4))))) (-4259 (*1 *2) (-12 (-5 *2 (-650 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(-13 (-423 (-413 (-959 |#1|))) (-654 (-1151 |#2| (-413 (-959 |#1|)))) (-10 -8 (-15 -2869 ($ (-1277 (-413 (-959 |#1|))))) (-15 -4405 ((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed"))) (-15 -3339 ((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed"))) (-15 -3313 ($)) (-15 -3313 ($ (-1186))) (-15 -3313 ($ (-1277 (-1186)))) (-15 -3313 ($ (-1277 $))) (-15 -3313 ($ (-1186) (-1277 $))) (-15 -3313 ($ (-1277 (-1186)) (-1277 $))) (IF (|has| |#1| (-562)) (PROGN (-15 -4019 ((-1182 (-413 (-959 |#1|))))) (-15 -2044 ((-1182 (-413 (-959 |#1|))) $)) (-15 -3863 ((-413 (-959 |#1|)) $)) (-15 -1890 ((-413 (-959 |#1|)) $)) (-15 -3260 ((-1182 (-413 (-959 |#1|))))) (-15 -1717 ((-1182 (-413 (-959 |#1|))) $)) (-15 -2387 ((-413 (-959 |#1|)) $)) (-15 -2891 ((-413 (-959 |#1|)) $)) (-15 -3562 ((-413 (-959 |#1|)) $ $)) (-15 -1364 ((-413 (-959 |#1|)))) (-15 -2270 ((-413 (-959 |#1|)) $ $)) (-15 -2042 ((-413 (-959 |#1|)))) (-15 -4259 ((-650 (-959 |#1|)) (-1277 $))) (-15 -4259 ((-650 (-959 |#1|))))) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 18)) (-1598 (((-650 (-870 |#1|)) $) 87)) (-3449 (((-1182 $) $ (-870 |#1|)) 52) (((-1182 |#2|) $) 138)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2046 (($ $) NIL (|has| |#2| (-562)))) (-3426 (((-112) $) NIL (|has| |#2| (-562)))) (-4205 (((-777) $) 27) (((-777) $ (-650 (-870 |#1|))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3312 (($ $) NIL (|has| |#2| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#2| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) 50) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-4387 ((|#2| $) 48) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2067 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-3652 (($ $ (-650 (-570))) 93)) (-4394 (($ $) 80)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#2| (-916)))) (-2425 (($ $ |#2| |#3| $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) 65)) (-2417 (($ (-1182 |#2|) (-870 |#1|)) 143) (($ (-1182 $) (-870 |#1|)) 58)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) 68)) (-2402 (($ |#2| |#3|) 35) (($ $ (-870 |#1|) (-777)) 37) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-870 |#1|)) NIL)) (-2689 ((|#3| $) NIL) (((-777) $ (-870 |#1|)) 56) (((-650 (-777)) $ (-650 (-870 |#1|))) 63)) (-3989 (($ (-1 |#3| |#3|) $) NIL)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-3168 (((-3 (-870 |#1|) "failed") $) 45)) (-4355 (($ $) NIL)) (-4369 ((|#2| $) 47)) (-3867 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3240 (((-1168) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -2940 (-777))) "failed") $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) 46)) (-4337 ((|#2| $) 136)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) 149 (|has| |#2| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) 100) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) 106) (($ $ (-870 |#1|) $) 98) (($ $ (-650 (-870 |#1|)) (-650 $)) 124)) (-2896 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-2375 (($ $ (-870 |#1|)) 59) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2650 ((|#3| $) 79) (((-777) $ (-870 |#1|)) 42) (((-650 (-777)) $ (-650 (-870 |#1|))) 62)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-2128 ((|#2| $) 145 (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-2869 (((-868) $) 174) (($ (-570)) NIL) (($ |#2|) 99) (($ (-870 |#1|)) 39) (($ (-413 (-570))) NIL (-3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ |#3|) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1981 (($) 22 T CONST)) (-1998 (($) 31 T CONST)) (-3414 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) 76 (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 131)) (** (($ $ (-928)) NIL) (($ $ (-777)) 129)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 36) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
-(((-460 |#1| |#2| |#3|) (-13 (-956 |#2| |#3| (-870 |#1|)) (-10 -8 (-15 -3652 ($ $ (-650 (-570)))))) (-650 (-1186)) (-1058) (-240 (-2857 |#1|) (-777))) (T -460))
-((-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-14 *3 (-650 (-1186))) (-5 *1 (-460 *3 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-240 (-2857 *3) (-777))))))
-(-13 (-956 |#2| |#3| (-870 |#1|)) (-10 -8 (-15 -3652 ($ $ (-650 (-570))))))
-((-2816 (((-112) |#1| (-650 |#2|)) 91)) (-2001 (((-3 (-1277 (-650 |#2|)) "failed") (-777) |#1| (-650 |#2|)) 100)) (-3896 (((-3 (-650 |#2|) "failed") |#2| |#1| (-1277 (-650 |#2|))) 102)) (-2723 ((|#2| |#2| |#1|) 35)) (-3006 (((-777) |#2| (-650 |#2|)) 26)))
-(((-461 |#1| |#2|) (-10 -7 (-15 -2723 (|#2| |#2| |#1|)) (-15 -3006 ((-777) |#2| (-650 |#2|))) (-15 -2001 ((-3 (-1277 (-650 |#2|)) "failed") (-777) |#1| (-650 |#2|))) (-15 -3896 ((-3 (-650 |#2|) "failed") |#2| |#1| (-1277 (-650 |#2|)))) (-15 -2816 ((-112) |#1| (-650 |#2|)))) (-311) (-1253 |#1|)) (T -461))
-((-2816 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *5)) (-4 *5 (-1253 *3)) (-4 *3 (-311)) (-5 *2 (-112)) (-5 *1 (-461 *3 *5)))) (-3896 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1277 (-650 *3))) (-4 *4 (-311)) (-5 *2 (-650 *3)) (-5 *1 (-461 *4 *3)) (-4 *3 (-1253 *4)))) (-2001 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-777)) (-4 *4 (-311)) (-4 *6 (-1253 *4)) (-5 *2 (-1277 (-650 *6))) (-5 *1 (-461 *4 *6)) (-5 *5 (-650 *6)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-311)) (-5 *2 (-777)) (-5 *1 (-461 *5 *3)))) (-2723 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-461 *3 *2)) (-4 *2 (-1253 *3)))))
-(-10 -7 (-15 -2723 (|#2| |#2| |#1|)) (-15 -3006 ((-777) |#2| (-650 |#2|))) (-15 -2001 ((-3 (-1277 (-650 |#2|)) "failed") (-777) |#1| (-650 |#2|))) (-15 -3896 ((-3 (-650 |#2|) "failed") |#2| |#1| (-1277 (-650 |#2|)))) (-15 -2816 ((-112) |#1| (-650 |#2|))))
-((-2340 (((-424 |#5|) |#5|) 24)))
-(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2340 ((-424 |#5|) |#5|))) (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186))))) (-799) (-562) (-562) (-956 |#4| |#2| |#1|)) (T -462))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186)))))) (-4 *5 (-799)) (-4 *7 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-462 *4 *5 *6 *7 *3)) (-4 *6 (-562)) (-4 *3 (-956 *7 *5 *4)))))
-(-10 -7 (-15 -2340 ((-424 |#5|) |#5|)))
-((-1582 ((|#3|) 38)) (-2942 (((-1182 |#4|) (-1182 |#4|) (-1182 |#4|)) 34)))
-(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2942 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -1582 (|#3|))) (-799) (-856) (-916) (-956 |#3| |#1| |#2|)) (T -463))
-((-1582 (*1 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916)) (-5 *1 (-463 *3 *4 *2 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-916)) (-5 *1 (-463 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2942 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -1582 (|#3|)))
-((-2340 (((-424 (-1182 |#1|)) (-1182 |#1|)) 43)))
-(((-464 |#1|) (-10 -7 (-15 -2340 ((-424 (-1182 |#1|)) (-1182 |#1|)))) (-311)) (T -464))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-424 (-1182 *4))) (-5 *1 (-464 *4)) (-5 *3 (-1182 *4)))))
-(-10 -7 (-15 -2340 ((-424 (-1182 |#1|)) (-1182 |#1|))))
-((-4268 (((-52) |#2| (-1186) (-298 |#2|) (-1244 (-777))) 44) (((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-777))) 43) (((-52) |#2| (-1186) (-298 |#2|)) 36) (((-52) (-1 |#2| (-570)) (-298 |#2|)) 29)) (-1866 (((-52) |#2| (-1186) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570))) 88) (((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570))) 87) (((-52) |#2| (-1186) (-298 |#2|) (-1244 (-570))) 86) (((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-570))) 85) (((-52) |#2| (-1186) (-298 |#2|)) 80) (((-52) (-1 |#2| (-570)) (-298 |#2|)) 79)) (-4291 (((-52) |#2| (-1186) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570))) 74) (((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570))) 72)) (-4280 (((-52) |#2| (-1186) (-298 |#2|) (-1244 (-570))) 51) (((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-570))) 50)))
-(((-465 |#1| |#2|) (-10 -7 (-15 -4268 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -4268 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -4268 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-777)))) (-15 -4268 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-777)))) (-15 -4280 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-570)))) (-15 -4280 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-570)))) (-15 -4291 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570)))) (-15 -4291 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570)))) (-15 -1866 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -1866 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -1866 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-570)))) (-15 -1866 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-570)))) (-15 -1866 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570)))) (-15 -1866 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570))))) (-13 (-562) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|))) (T -465))
-((-1866 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-413 (-570)))) (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *8))) (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *8 *3)))) (-1866 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8)) (-5 *5 (-1244 (-413 (-570)))) (-5 *6 (-413 (-570))) (-4 *8 (-13 (-27) (-1212) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *8)))) (-1866 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *3)))) (-1866 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1244 (-570))) (-4 *7 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *7)))) (-1866 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *3)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6)) (-4 *6 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *5 *6)))) (-4291 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-413 (-570)))) (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *8))) (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *8 *3)))) (-4291 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8)) (-5 *5 (-1244 (-413 (-570)))) (-5 *6 (-413 (-570))) (-4 *8 (-13 (-27) (-1212) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *8)))) (-4280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *3)))) (-4280 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1244 (-570))) (-4 *7 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *7)))) (-4268 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-777))) (-4 *3 (-13 (-27) (-1212) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *3)))) (-4268 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1244 (-777))) (-4 *7 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *7)))) (-4268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *3)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6)) (-4 *6 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *5 *6)))))
-(-10 -7 (-15 -4268 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -4268 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -4268 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-777)))) (-15 -4268 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-777)))) (-15 -4280 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-570)))) (-15 -4280 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-570)))) (-15 -4291 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570)))) (-15 -4291 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570)))) (-15 -1866 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -1866 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -1866 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1244 (-570)))) (-15 -1866 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-570)))) (-15 -1866 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570)))) (-15 -1866 ((-52) |#2| (-1186) (-298 |#2|) (-1244 (-413 (-570))) (-413 (-570)))))
-((-2723 ((|#2| |#2| |#1|) 15)) (-2025 (((-650 |#2|) |#2| (-650 |#2|) |#1| (-928)) 82)) (-2269 (((-2 (|:| |plist| (-650 |#2|)) (|:| |modulo| |#1|)) |#2| (-650 |#2|) |#1| (-928)) 72)))
-(((-466 |#1| |#2|) (-10 -7 (-15 -2269 ((-2 (|:| |plist| (-650 |#2|)) (|:| |modulo| |#1|)) |#2| (-650 |#2|) |#1| (-928))) (-15 -2025 ((-650 |#2|) |#2| (-650 |#2|) |#1| (-928))) (-15 -2723 (|#2| |#2| |#1|))) (-311) (-1253 |#1|)) (T -466))
-((-2723 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1253 *3)))) (-2025 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-650 *3)) (-5 *5 (-928)) (-4 *3 (-1253 *4)) (-4 *4 (-311)) (-5 *1 (-466 *4 *3)))) (-2269 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-928)) (-4 *5 (-311)) (-4 *3 (-1253 *5)) (-5 *2 (-2 (|:| |plist| (-650 *3)) (|:| |modulo| *5))) (-5 *1 (-466 *5 *3)) (-5 *4 (-650 *3)))))
-(-10 -7 (-15 -2269 ((-2 (|:| |plist| (-650 |#2|)) (|:| |modulo| |#1|)) |#2| (-650 |#2|) |#1| (-928))) (-15 -2025 ((-650 |#2|) |#2| (-650 |#2|) |#1| (-928))) (-15 -2723 (|#2| |#2| |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 28)) (-3720 (($ |#3|) 25)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-4394 (($ $) 32)) (-1340 (($ |#2| |#4| $) 33)) (-2402 (($ |#2| (-719 |#3| |#4| |#5|)) 24)) (-4355 (((-719 |#3| |#4| |#5|) $) 15)) (-2714 ((|#3| $) 19)) (-2049 ((|#4| $) 17)) (-4369 ((|#2| $) 29)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-4124 (($ |#2| |#3| |#4|) 26)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 36 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 34)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-467 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-723 |#6|) (-723 |#2|) (-10 -8 (-15 -4369 (|#2| $)) (-15 -4355 ((-719 |#3| |#4| |#5|) $)) (-15 -2049 (|#4| $)) (-15 -2714 (|#3| $)) (-15 -4394 ($ $)) (-15 -2402 ($ |#2| (-719 |#3| |#4| |#5|))) (-15 -3720 ($ |#3|)) (-15 -4124 ($ |#2| |#3| |#4|)) (-15 -1340 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-650 (-1186)) (-174) (-856) (-240 (-2857 |#1|) (-777)) (-1 (-112) (-2 (|:| -4298 |#3|) (|:| -2940 |#4|)) (-2 (|:| -4298 |#3|) (|:| -2940 |#4|))) (-956 |#2| |#4| (-870 |#1|))) (T -467))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *6 (-240 (-2857 *3) (-777))) (-14 *7 (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *6)) (-2 (|:| -4298 *5) (|:| -2940 *6)))) (-5 *1 (-467 *3 *4 *5 *6 *7 *2)) (-4 *5 (-856)) (-4 *2 (-956 *4 *6 (-870 *3))))) (-4369 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *5 (-240 (-2857 *3) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -4298 *4) (|:| -2940 *5)) (-2 (|:| -4298 *4) (|:| -2940 *5)))) (-4 *2 (-174)) (-5 *1 (-467 *3 *2 *4 *5 *6 *7)) (-4 *4 (-856)) (-4 *7 (-956 *2 *5 (-870 *3))))) (-4355 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *6 (-240 (-2857 *3) (-777))) (-14 *7 (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *6)) (-2 (|:| -4298 *5) (|:| -2940 *6)))) (-5 *2 (-719 *5 *6 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8)) (-4 *5 (-856)) (-4 *8 (-956 *4 *6 (-870 *3))))) (-2049 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *2)) (-2 (|:| -4298 *5) (|:| -2940 *2)))) (-4 *2 (-240 (-2857 *3) (-777))) (-5 *1 (-467 *3 *4 *5 *2 *6 *7)) (-4 *5 (-856)) (-4 *7 (-956 *4 *2 (-870 *3))))) (-2714 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *5 (-240 (-2857 *3) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *5)) (-2 (|:| -4298 *2) (|:| -2940 *5)))) (-4 *2 (-856)) (-5 *1 (-467 *3 *4 *2 *5 *6 *7)) (-4 *7 (-956 *4 *5 (-870 *3))))) (-4394 (*1 *1 *1) (-12 (-14 *2 (-650 (-1186))) (-4 *3 (-174)) (-4 *5 (-240 (-2857 *2) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -4298 *4) (|:| -2940 *5)) (-2 (|:| -4298 *4) (|:| -2940 *5)))) (-5 *1 (-467 *2 *3 *4 *5 *6 *7)) (-4 *4 (-856)) (-4 *7 (-956 *3 *5 (-870 *2))))) (-2402 (*1 *1 *2 *3) (-12 (-5 *3 (-719 *5 *6 *7)) (-4 *5 (-856)) (-4 *6 (-240 (-2857 *4) (-777))) (-14 *7 (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *6)) (-2 (|:| -4298 *5) (|:| -2940 *6)))) (-14 *4 (-650 (-1186))) (-4 *2 (-174)) (-5 *1 (-467 *4 *2 *5 *6 *7 *8)) (-4 *8 (-956 *2 *6 (-870 *4))))) (-3720 (*1 *1 *2) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *5 (-240 (-2857 *3) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *5)) (-2 (|:| -4298 *2) (|:| -2940 *5)))) (-5 *1 (-467 *3 *4 *2 *5 *6 *7)) (-4 *2 (-856)) (-4 *7 (-956 *4 *5 (-870 *3))))) (-4124 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-650 (-1186))) (-4 *2 (-174)) (-4 *4 (-240 (-2857 *5) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -4298 *3) (|:| -2940 *4)) (-2 (|:| -4298 *3) (|:| -2940 *4)))) (-5 *1 (-467 *5 *2 *3 *4 *6 *7)) (-4 *3 (-856)) (-4 *7 (-956 *2 *4 (-870 *5))))) (-1340 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-650 (-1186))) (-4 *2 (-174)) (-4 *3 (-240 (-2857 *4) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *3)) (-2 (|:| -4298 *5) (|:| -2940 *3)))) (-5 *1 (-467 *4 *2 *5 *3 *6 *7)) (-4 *5 (-856)) (-4 *7 (-956 *2 *3 (-870 *4))))))
-(-13 (-723 |#6|) (-723 |#2|) (-10 -8 (-15 -4369 (|#2| $)) (-15 -4355 ((-719 |#3| |#4| |#5|) $)) (-15 -2049 (|#4| $)) (-15 -2714 (|#3| $)) (-15 -4394 ($ $)) (-15 -2402 ($ |#2| (-719 |#3| |#4| |#5|))) (-15 -3720 ($ |#3|)) (-15 -4124 ($ |#2| |#3| |#4|)) (-15 -1340 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2108 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2108 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-799) (-856) (-562) (-956 |#3| |#1| |#2|) (-13 (-1047 (-413 (-570))) (-368) (-10 -8 (-15 -2869 ($ |#4|)) (-15 -1587 (|#4| $)) (-15 -1599 (|#4| $))))) (T -468))
-((-2108 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-856)) (-4 *5 (-799)) (-4 *6 (-562)) (-4 *7 (-956 *6 *5 *3)) (-5 *1 (-468 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1047 (-413 (-570))) (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))))
-(-10 -7 (-15 -2108 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2847 (((-112) $ $) NIL)) (-1598 (((-650 |#3|) $) 41)) (-3330 (((-112) $) NIL)) (-2114 (((-112) $) NIL (|has| |#1| (-562)))) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3960 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-2157 (((-112) $) NIL (|has| |#1| (-562)))) (-3303 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3580 (((-112) $) NIL (|has| |#1| (-562)))) (-2303 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) 49)) (-4387 (($ (-650 |#4|)) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-3617 (($ |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4452)))) (-3976 (((-650 |#4|) $) 18 (|has| $ (-6 -4452)))) (-2486 ((|#3| $) 47)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#4|) $) 14 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-2833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 21)) (-3734 (((-650 |#3|) $) NIL)) (-3640 (((-112) |#3| $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-3891 (((-1129) $) NIL)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2231 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 39)) (-1698 (($) 17)) (-3901 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) 16)) (-2601 (((-542) $) NIL (|has| |#4| (-620 (-542)))) (($ (-650 |#4|)) 51)) (-2881 (($ (-650 |#4|)) 13)) (-1342 (($ $ |#3|) NIL)) (-2691 (($ $ |#3|) NIL)) (-3130 (($ $ |#3|) NIL)) (-2869 (((-868) $) 38) (((-650 |#4|) $) 50)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 30)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-469 |#1| |#2| |#3| |#4|) (-13 (-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2601 ($ (-650 |#4|))) (-6 -4452) (-6 -4453))) (-1058) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -469))
-((-2601 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-469 *3 *4 *5 *6)))))
-(-13 (-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2601 ($ (-650 |#4|))) (-6 -4452) (-6 -4453)))
-((-1981 (($) 11)) (-1998 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-470 |#1| |#2| |#3|) (-10 -8 (-15 -1998 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1981 (|#1|))) (-471 |#2| |#3|) (-174) (-23)) (T -470))
-NIL
-(-10 -8 (-15 -1998 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1981 (|#1|)))
-((-2847 (((-112) $ $) 7)) (-2435 (((-3 |#1| "failed") $) 27)) (-4387 ((|#1| $) 28)) (-2584 (($ $ $) 24)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2650 ((|#2| $) 20)) (-2869 (((-868) $) 12) (($ |#1|) 26)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 25 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 16) (($ $ $) 14)) (-3992 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-471 |#1| |#2|) (-141) (-174) (-23)) (T -471))
-((-1998 (*1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2584 (*1 *1 *1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-476 |t#1| |t#2|) (-1047 |t#1|) (-10 -8 (-15 (-1998) ($) -3722) (-15 -2584 ($ $ $))))
-(((-102) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-476 |#1| |#2|) . T) ((-1047 |#1|) . T) ((-1109) . T))
-((-3137 (((-1277 (-1277 (-570))) (-1277 (-1277 (-570))) (-928)) 26)) (-4262 (((-1277 (-1277 (-570))) (-928)) 21)))
-(((-472) (-10 -7 (-15 -3137 ((-1277 (-1277 (-570))) (-1277 (-1277 (-570))) (-928))) (-15 -4262 ((-1277 (-1277 (-570))) (-928))))) (T -472))
-((-4262 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1277 (-1277 (-570)))) (-5 *1 (-472)))) (-3137 (*1 *2 *2 *3) (-12 (-5 *2 (-1277 (-1277 (-570)))) (-5 *3 (-928)) (-5 *1 (-472)))))
-(-10 -7 (-15 -3137 ((-1277 (-1277 (-570))) (-1277 (-1277 (-570))) (-928))) (-15 -4262 ((-1277 (-1277 (-570))) (-928))))
-((-1636 (((-570) (-570)) 32) (((-570)) 24)) (-2772 (((-570) (-570)) 28) (((-570)) 20)) (-3906 (((-570) (-570)) 30) (((-570)) 22)) (-4063 (((-112) (-112)) 14) (((-112)) 12)) (-2701 (((-112) (-112)) 13) (((-112)) 11)) (-4301 (((-112) (-112)) 26) (((-112)) 17)))
-(((-473) (-10 -7 (-15 -2701 ((-112))) (-15 -4063 ((-112))) (-15 -2701 ((-112) (-112))) (-15 -4063 ((-112) (-112))) (-15 -4301 ((-112))) (-15 -3906 ((-570))) (-15 -2772 ((-570))) (-15 -1636 ((-570))) (-15 -4301 ((-112) (-112))) (-15 -3906 ((-570) (-570))) (-15 -2772 ((-570) (-570))) (-15 -1636 ((-570) (-570))))) (T -473))
-((-1636 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-4301 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-1636 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-2772 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-3906 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-4301 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-4063 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-2701 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))))
-(-10 -7 (-15 -2701 ((-112))) (-15 -4063 ((-112))) (-15 -2701 ((-112) (-112))) (-15 -4063 ((-112) (-112))) (-15 -4301 ((-112))) (-15 -3906 ((-570))) (-15 -2772 ((-570))) (-15 -1636 ((-570))) (-15 -4301 ((-112) (-112))) (-15 -3906 ((-570) (-570))) (-15 -2772 ((-570) (-570))) (-15 -1636 ((-570) (-570))))
-((-2847 (((-112) $ $) NIL)) (-2482 (((-650 (-384)) $) 34) (((-650 (-384)) $ (-650 (-384))) 146)) (-2130 (((-650 (-1103 (-384))) $) 16) (((-650 (-1103 (-384))) $ (-650 (-1103 (-384)))) 142)) (-3566 (((-650 (-650 (-950 (-227)))) (-650 (-650 (-950 (-227)))) (-650 (-880))) 58)) (-3625 (((-650 (-650 (-950 (-227)))) $) 137)) (-1830 (((-1282) $ (-950 (-227)) (-880)) 163)) (-3161 (($ $) 136) (($ (-650 (-650 (-950 (-227))))) 149) (($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928))) 148) (($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)) (-650 (-266))) 150)) (-3240 (((-1168) $) NIL)) (-4144 (((-570) $) 110)) (-3891 (((-1129) $) NIL)) (-2102 (($) 147)) (-1940 (((-650 (-227)) (-650 (-650 (-950 (-227))))) 89)) (-1785 (((-1282) $ (-650 (-950 (-227))) (-880) (-880) (-928)) 155) (((-1282) $ (-950 (-227))) 157) (((-1282) $ (-950 (-227)) (-880) (-880) (-928)) 156)) (-2869 (((-868) $) 169) (($ (-650 (-650 (-950 (-227))))) 164)) (-1344 (((-112) $ $) NIL)) (-3710 (((-1282) $ (-950 (-227))) 162)) (-3892 (((-112) $ $) NIL)))
-(((-474) (-13 (-1109) (-10 -8 (-15 -2102 ($)) (-15 -3161 ($ $)) (-15 -3161 ($ (-650 (-650 (-950 (-227)))))) (-15 -3161 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)))) (-15 -3161 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)) (-650 (-266)))) (-15 -3625 ((-650 (-650 (-950 (-227)))) $)) (-15 -4144 ((-570) $)) (-15 -2130 ((-650 (-1103 (-384))) $)) (-15 -2130 ((-650 (-1103 (-384))) $ (-650 (-1103 (-384))))) (-15 -2482 ((-650 (-384)) $)) (-15 -2482 ((-650 (-384)) $ (-650 (-384)))) (-15 -1785 ((-1282) $ (-650 (-950 (-227))) (-880) (-880) (-928))) (-15 -1785 ((-1282) $ (-950 (-227)))) (-15 -1785 ((-1282) $ (-950 (-227)) (-880) (-880) (-928))) (-15 -3710 ((-1282) $ (-950 (-227)))) (-15 -1830 ((-1282) $ (-950 (-227)) (-880))) (-15 -2869 ($ (-650 (-650 (-950 (-227)))))) (-15 -2869 ((-868) $)) (-15 -3566 ((-650 (-650 (-950 (-227)))) (-650 (-650 (-950 (-227)))) (-650 (-880)))) (-15 -1940 ((-650 (-227)) (-650 (-650 (-950 (-227))))))))) (T -474))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-474)))) (-2102 (*1 *1) (-5 *1 (-474))) (-3161 (*1 *1 *1) (-5 *1 (-474))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) (-3161 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) (-5 *4 (-650 (-928))) (-5 *1 (-474)))) (-3161 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) (-5 *4 (-650 (-928))) (-5 *5 (-650 (-266))) (-5 *1 (-474)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-474)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474)))) (-2130 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474)))) (-2482 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474)))) (-1785 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *2 (-1282)) (-5 *1 (-474)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1282)) (-5 *1 (-474)))) (-1785 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *2 (-1282)) (-5 *1 (-474)))) (-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1282)) (-5 *1 (-474)))) (-1830 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *2 (-1282)) (-5 *1 (-474)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) (-3566 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) (-5 *1 (-474)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-650 (-227))) (-5 *1 (-474)))))
-(-13 (-1109) (-10 -8 (-15 -2102 ($)) (-15 -3161 ($ $)) (-15 -3161 ($ (-650 (-650 (-950 (-227)))))) (-15 -3161 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)))) (-15 -3161 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)) (-650 (-266)))) (-15 -3625 ((-650 (-650 (-950 (-227)))) $)) (-15 -4144 ((-570) $)) (-15 -2130 ((-650 (-1103 (-384))) $)) (-15 -2130 ((-650 (-1103 (-384))) $ (-650 (-1103 (-384))))) (-15 -2482 ((-650 (-384)) $)) (-15 -2482 ((-650 (-384)) $ (-650 (-384)))) (-15 -1785 ((-1282) $ (-650 (-950 (-227))) (-880) (-880) (-928))) (-15 -1785 ((-1282) $ (-950 (-227)))) (-15 -1785 ((-1282) $ (-950 (-227)) (-880) (-880) (-928))) (-15 -3710 ((-1282) $ (-950 (-227)))) (-15 -1830 ((-1282) $ (-950 (-227)) (-880))) (-15 -2869 ($ (-650 (-650 (-950 (-227)))))) (-15 -2869 ((-868) $)) (-15 -3566 ((-650 (-650 (-950 (-227)))) (-650 (-650 (-950 (-227)))) (-650 (-880)))) (-15 -1940 ((-650 (-227)) (-650 (-650 (-950 (-227))))))))
-((-4003 (($ $) NIL) (($ $ $) 11)))
-(((-475 |#1| |#2| |#3|) (-10 -8 (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|))) (-476 |#2| |#3|) (-174) (-23)) (T -475))
-NIL
-(-10 -8 (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2650 ((|#2| $) 20)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 16) (($ $ $) 14)) (-3992 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-476 |#1| |#2|) (-141) (-174) (-23)) (T -476))
-((-2650 (*1 *2 *1) (-12 (-4 *1 (-476 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-1981 (*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4003 (*1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3992 (*1 *1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4003 (*1 *1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-1109) (-10 -8 (-15 -2650 (|t#2| $)) (-15 (-1981) ($) -3722) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4003 ($ $)) (-15 -3992 ($ $ $)) (-15 -4003 ($ $ $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2653 (((-3 (-650 (-487 |#1| |#2|)) "failed") (-650 (-487 |#1| |#2|)) (-650 (-870 |#1|))) 134)) (-2104 (((-650 (-650 (-249 |#1| |#2|))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|))) 131)) (-3019 (((-2 (|:| |dpolys| (-650 (-249 |#1| |#2|))) (|:| |coords| (-650 (-570)))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|))) 86)))
-(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2104 ((-650 (-650 (-249 |#1| |#2|))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -2653 ((-3 (-650 (-487 |#1| |#2|)) "failed") (-650 (-487 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -3019 ((-2 (|:| |dpolys| (-650 (-249 |#1| |#2|))) (|:| |coords| (-650 (-570)))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|))))) (-650 (-1186)) (-458) (-458)) (T -477))
-((-3019 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-2 (|:| |dpolys| (-650 (-249 *5 *6))) (|:| |coords| (-650 (-570))))) (-5 *1 (-477 *5 *6 *7)) (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458)))) (-2653 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-650 (-870 *4))) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-477 *4 *5 *6)) (-4 *6 (-458)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-650 (-650 (-249 *5 *6)))) (-5 *1 (-477 *5 *6 *7)) (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458)))))
-(-10 -7 (-15 -2104 ((-650 (-650 (-249 |#1| |#2|))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -2653 ((-3 (-650 (-487 |#1| |#2|)) "failed") (-650 (-487 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -3019 ((-2 (|:| |dpolys| (-650 (-249 |#1| |#2|))) (|:| |coords| (-650 (-570)))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|)))))
-((-3957 (((-3 $ "failed") $) 11)) (-2733 (($ $ $) 23)) (-2319 (($ $ $) 24)) (-4013 (($ $ $) 9)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 22)))
-(((-478 |#1|) (-10 -8 (-15 -2319 (|#1| |#1| |#1|)) (-15 -2733 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -4013 (|#1| |#1| |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928)))) (-479)) (T -478))
-NIL
-(-10 -8 (-15 -2319 (|#1| |#1| |#1|)) (-15 -2733 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -4013 (|#1| |#1| |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))))
-((-2847 (((-112) $ $) 7)) (-2333 (($) 19 T CONST)) (-3957 (((-3 $ "failed") $) 16)) (-2005 (((-112) $) 18)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 25)) (-3891 (((-1129) $) 11)) (-2733 (($ $ $) 22)) (-2319 (($ $ $) 21)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1998 (($) 20 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 24)) (** (($ $ (-928)) 14) (($ $ (-777)) 17) (($ $ (-570)) 23)) (* (($ $ $) 15)))
-(((-479) (-141)) (T -479))
-((-4315 (*1 *1 *1) (-4 *1 (-479))) (-4013 (*1 *1 *1 *1) (-4 *1 (-479))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-479)) (-5 *2 (-570)))) (-2733 (*1 *1 *1 *1) (-4 *1 (-479))) (-2319 (*1 *1 *1 *1) (-4 *1 (-479))))
-(-13 (-732) (-10 -8 (-15 -4315 ($ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ (-570))) (-6 -4449) (-15 -2733 ($ $ $)) (-15 -2319 ($ $ $))))
-(((-102) . T) ((-619 (-868)) . T) ((-732) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 18)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-2972 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-1513 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) NIL)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-413 (-570))) NIL) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) 25)) (-3447 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-1363 (($ $) 29 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 35 (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212))))) (($ $ (-1273 |#2|)) 30 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-413 (-570))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2651 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) 28 (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $ (-1273 |#2|)) 16)) (-2650 (((-413 (-570)) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1273 |#2|)) NIL) (($ (-1262 |#1| |#2| |#3|)) 9) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3481 ((|#1| $ (-413 (-570))) NIL)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) 21)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) 27)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-480 |#1| |#2| |#3|) (-13 (-1258 |#1|) (-10 -8 (-15 -2869 ($ (-1273 |#2|))) (-15 -2869 ($ (-1262 |#1| |#2| |#3|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -480))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1262 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-480 *3 *4 *5)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(-13 (-1258 |#1|) (-10 -8 (-15 -2869 ($ (-1273 |#2|))) (-15 -2869 ($ (-1262 |#1| |#2| |#3|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|)))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2204 (((-1282) $ |#1| |#1|) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#2| $ |#1| |#2|) 18)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) 19)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) 16)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) NIL)) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 ((|#1| $) NIL (|has| |#1| (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 ((|#1| $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1988 (((-650 |#1|) $) NIL)) (-2093 (((-112) |#1| $) NIL)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-4075 (((-650 |#1|) $) NIL)) (-4276 (((-112) |#1| $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#2| $) NIL (|has| |#1| (-856)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-481 |#1| |#2| |#3| |#4|) (-1203 |#1| |#2|) (-1109) (-1109) (-1203 |#1| |#2|) |#2|) (T -481))
-NIL
-(-1203 |#1| |#2|)
-((-2847 (((-112) $ $) NIL)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) NIL)) (-1510 (((-650 $) (-650 |#4|)) NIL)) (-1598 (((-650 |#3|) $) NIL)) (-3330 (((-112) $) NIL)) (-2114 (((-112) $) NIL (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3067 ((|#4| |#4| $) NIL)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3960 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2333 (($) NIL T CONST)) (-2157 (((-112) $) 29 (|has| |#1| (-562)))) (-3303 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3580 (((-112) $) NIL (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2303 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) NIL)) (-4387 (($ (-650 |#4|)) NIL)) (-1962 (((-3 $ "failed") $) 45)) (-2360 ((|#4| |#4| $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-3617 (($ |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) NIL)) (-3976 (((-650 |#4|) $) 18 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2486 ((|#3| $) 38)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#4|) $) 19 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-2833 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 23)) (-3734 (((-650 |#3|) $) NIL)) (-3640 (((-112) |#3| $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3637 (((-3 |#4| "failed") $) 42)) (-4083 (((-650 |#4|) $) NIL)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1478 ((|#4| |#4| $) NIL)) (-1693 (((-112) $ $) NIL)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2899 ((|#4| |#4| $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-3 |#4| "failed") $) 40)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3484 (((-3 $ "failed") $ |#4|) 58)) (-3308 (($ $ |#4|) NIL)) (-2231 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 17)) (-1698 (($) 14)) (-2650 (((-777) $) NIL)) (-3901 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) 13)) (-2601 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 22)) (-1342 (($ $ |#3|) 52)) (-2691 (($ $ |#3|) 54)) (-2990 (($ $) NIL)) (-3130 (($ $ |#3|) NIL)) (-2869 (((-868) $) 35) (((-650 |#4|) $) 46)) (-3982 (((-777) $) NIL (|has| |#3| (-373)))) (-1344 (((-112) $ $) NIL)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-2061 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) NIL)) (-1600 (((-112) |#3| $) NIL)) (-3892 (((-112) $ $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-482 |#1| |#2| |#3| |#4|) (-1220 |#1| |#2| |#3| |#4|) (-562) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -482))
-NIL
-(-1220 |#1| |#2| |#3| |#4|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL)) (-4387 (((-570) $) NIL) (((-413 (-570)) $) NIL)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-1625 (($) 17)) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2601 (((-384) $) 21) (((-227) $) 24) (((-413 (-1182 (-570))) $) 18) (((-542) $) 53)) (-2869 (((-868) $) 51) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (((-227) $) 23) (((-384) $) 20)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) 37 T CONST)) (-1998 (($) 8 T CONST)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-483) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))) (-1031) (-619 (-227)) (-619 (-384)) (-620 (-413 (-1182 (-570)))) (-620 (-542)) (-10 -8 (-15 -1625 ($))))) (T -483))
-((-1625 (*1 *1) (-5 *1 (-483))))
-(-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))) (-1031) (-619 (-227)) (-619 (-384)) (-620 (-413 (-1182 (-570)))) (-620 (-542)) (-10 -8 (-15 -1625 ($))))
-((-2847 (((-112) $ $) NIL)) (-3871 (((-1144) $) 11)) (-3859 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-484) (-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))) (T -484))
-((-3859 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484)))))
-(-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2204 (((-1282) $ |#1| |#1|) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#2| $ |#1| |#2|) 16)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) 20)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) 18)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) NIL)) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 ((|#1| $) NIL (|has| |#1| (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 ((|#1| $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1988 (((-650 |#1|) $) 13)) (-2093 (((-112) |#1| $) NIL)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-4075 (((-650 |#1|) $) NIL)) (-4276 (((-112) |#1| $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#2| $) NIL (|has| |#1| (-856)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 19)) (-2057 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 11 (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2857 (((-777) $) 15 (|has| $ (-6 -4452)))))
-(((-485 |#1| |#2| |#3|) (-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452))) (-1109) (-1109) (-1168)) (T -485))
-NIL
-(-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452)))
-((-1892 (((-570) (-570) (-570)) 19)) (-2578 (((-112) (-570) (-570) (-570) (-570)) 28)) (-3881 (((-1277 (-650 (-570))) (-777) (-777)) 41)))
-(((-486) (-10 -7 (-15 -1892 ((-570) (-570) (-570))) (-15 -2578 ((-112) (-570) (-570) (-570) (-570))) (-15 -3881 ((-1277 (-650 (-570))) (-777) (-777))))) (T -486))
-((-3881 (*1 *2 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1277 (-650 (-570)))) (-5 *1 (-486)))) (-2578 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-486)))) (-1892 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-486)))))
-(-10 -7 (-15 -1892 ((-570) (-570) (-570))) (-15 -2578 ((-112) (-570) (-570) (-570) (-570))) (-15 -3881 ((-1277 (-650 (-570))) (-777) (-777))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-870 |#1|)) $) NIL)) (-3449 (((-1182 $) $ (-870 |#1|)) NIL) (((-1182 |#2|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2046 (($ $) NIL (|has| |#2| (-562)))) (-3426 (((-112) $) NIL (|has| |#2| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-870 |#1|))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3312 (($ $) NIL (|has| |#2| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#2| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-4387 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2067 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-3652 (($ $ (-650 (-570))) NIL)) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#2| (-916)))) (-2425 (($ $ |#2| (-488 (-2857 |#1|) (-777)) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-2417 (($ (-1182 |#2|) (-870 |#1|)) NIL) (($ (-1182 $) (-870 |#1|)) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#2| (-488 (-2857 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-870 |#1|)) NIL)) (-2689 (((-488 (-2857 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-3989 (($ (-1 (-488 (-2857 |#1|) (-777)) (-488 (-2857 |#1|) (-777))) $) NIL)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-3168 (((-3 (-870 |#1|) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#2| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3240 (((-1168) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -2940 (-777))) "failed") $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#2| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) NIL) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) NIL) (($ $ (-870 |#1|) $) NIL) (($ $ (-650 (-870 |#1|)) (-650 $)) NIL)) (-2896 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-2375 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2650 (((-488 (-2857 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-2128 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-870 |#1|)) NIL) (($ (-413 (-570))) NIL (-3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-488 (-2857 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-487 |#1| |#2|) (-13 (-956 |#2| (-488 (-2857 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -3652 ($ $ (-650 (-570)))))) (-650 (-1186)) (-1058)) (T -487))
-((-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-487 *3 *4)) (-14 *3 (-650 (-1186))) (-4 *4 (-1058)))))
-(-13 (-956 |#2| (-488 (-2857 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -3652 ($ $ (-650 (-570))))))
-((-2847 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2564 (((-112) $) NIL (|has| |#2| (-132)))) (-3720 (($ (-928)) NIL (|has| |#2| (-1058)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-1548 (($ $ $) NIL (|has| |#2| (-799)))) (-3997 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| |#2| (-373)))) (-2419 (((-570) $) NIL (|has| |#2| (-854)))) (-3040 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1109)))) (-4387 (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) NIL (|has| |#2| (-1109)))) (-3054 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) NIL (|has| |#2| (-1058)))) (-3957 (((-3 $ "failed") $) NIL (|has| |#2| (-732)))) (-2066 (($) NIL (|has| |#2| (-373)))) (-2845 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ (-570)) 11)) (-2811 (((-112) $) NIL (|has| |#2| (-854)))) (-3976 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL (|has| |#2| (-732)))) (-2746 (((-112) $) NIL (|has| |#2| (-854)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3069 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#2| (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#2| (-1109)))) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-4298 (($ (-928)) NIL (|has| |#2| (-373)))) (-3891 (((-1129) $) NIL (|has| |#2| (-1109)))) (-1948 ((|#2| $) NIL (|has| (-570) (-856)))) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) NIL)) (-3407 ((|#2| $ $) NIL (|has| |#2| (-1058)))) (-1968 (($ (-1277 |#2|)) NIL)) (-4388 (((-135)) NIL (|has| |#2| (-368)))) (-2375 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3901 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-1277 |#2|) $) NIL) (($ (-570)) NIL (-3749 (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) NIL (|has| |#2| (-1109))) (((-868) $) NIL (|has| |#2| (-619 (-868))))) (-2294 (((-777)) NIL (|has| |#2| (-1058)) CONST)) (-1344 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2061 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-2521 (($ $) NIL (|has| |#2| (-854)))) (-1981 (($) NIL (|has| |#2| (-132)) CONST)) (-1998 (($) NIL (|has| |#2| (-732)) CONST)) (-3414 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3959 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3933 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3892 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-3945 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3918 (((-112) $ $) 17 (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $ $) NIL (|has| |#2| (-1058))) (($ $) NIL (|has| |#2| (-1058)))) (-3992 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-777)) NIL (|has| |#2| (-732))) (($ $ (-928)) NIL (|has| |#2| (-732)))) (* (($ (-570) $) NIL (|has| |#2| (-1058))) (($ $ $) NIL (|has| |#2| (-732))) (($ $ |#2|) NIL (|has| |#2| (-732))) (($ |#2| $) NIL (|has| |#2| (-732))) (($ (-777) $) NIL (|has| |#2| (-132))) (($ (-928) $) NIL (|has| |#2| (-25)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-488 |#1| |#2|) (-240 |#1| |#2|) (-777) (-799)) (T -488))
-NIL
-(-240 |#1| |#2|)
-((-2847 (((-112) $ $) NIL)) (-2498 (((-650 (-882)) $) 15)) (-1770 (((-512) $) 13)) (-3240 (((-1168) $) NIL)) (-2033 (($ (-512) (-650 (-882))) 11)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 22) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-489) (-13 (-1092) (-10 -8 (-15 -2033 ($ (-512) (-650 (-882)))) (-15 -1770 ((-512) $)) (-15 -2498 ((-650 (-882)) $))))) (T -489))
-((-2033 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-882))) (-5 *1 (-489)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-489)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-650 (-882))) (-5 *1 (-489)))))
-(-13 (-1092) (-10 -8 (-15 -2033 ($ (-512) (-650 (-882)))) (-15 -1770 ((-512) $)) (-15 -2498 ((-650 (-882)) $))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) NIL)) (-2333 (($) NIL T CONST)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-3675 (($ $ $) 48)) (-4356 (($ $ $) 47)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1764 ((|#1| $) 40)) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3398 ((|#1| $) 41)) (-2801 (($ |#1| $) 18)) (-2763 (($ (-650 |#1|)) 19)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4126 ((|#1| $) 34)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 11)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 45)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) 29 (|has| $ (-6 -4452)))))
-(((-490 |#1|) (-13 (-977 |#1|) (-10 -8 (-15 -2763 ($ (-650 |#1|))))) (-856)) (T -490))
-((-2763 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-490 *3)))))
-(-13 (-977 |#1|) (-10 -8 (-15 -2763 ($ (-650 |#1|)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2295 (($ $) 71)) (-2959 (((-112) $) NIL)) (-3240 (((-1168) $) NIL)) (-2252 (((-419 |#2| (-413 |#2|) |#3| |#4|) $) 45)) (-3891 (((-1129) $) NIL)) (-3643 (((-3 |#4| "failed") $) 117)) (-2345 (($ (-419 |#2| (-413 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-570)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2182 (((-2 (|:| -2047 (-419 |#2| (-413 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2869 (((-868) $) 110)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 32 T CONST)) (-3892 (((-112) $ $) 121)) (-4003 (($ $) 77) (($ $ $) NIL)) (-3992 (($ $ $) 72)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 78)))
-(((-491 |#1| |#2| |#3| |#4|) (-340 |#1| |#2| |#3| |#4|) (-368) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -491))
-NIL
-(-340 |#1| |#2| |#3| |#4|)
-((-3342 (((-570) (-650 (-570))) 53)) (-4358 ((|#1| (-650 |#1|)) 94)) (-2428 (((-650 |#1|) (-650 |#1|)) 95)) (-4371 (((-650 |#1|) (-650 |#1|)) 97)) (-3903 ((|#1| (-650 |#1|)) 96)) (-2128 (((-650 (-570)) (-650 |#1|)) 56)))
-(((-492 |#1|) (-10 -7 (-15 -3903 (|#1| (-650 |#1|))) (-15 -4358 (|#1| (-650 |#1|))) (-15 -4371 ((-650 |#1|) (-650 |#1|))) (-15 -2428 ((-650 |#1|) (-650 |#1|))) (-15 -2128 ((-650 (-570)) (-650 |#1|))) (-15 -3342 ((-570) (-650 (-570))))) (-1253 (-570))) (T -492))
-((-3342 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-570)) (-5 *1 (-492 *4)) (-4 *4 (-1253 *2)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1253 (-570))) (-5 *2 (-650 (-570))) (-5 *1 (-492 *4)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1253 (-570))) (-5 *1 (-492 *3)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1253 (-570))) (-5 *1 (-492 *3)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1253 (-570))))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1253 (-570))))))
-(-10 -7 (-15 -3903 (|#1| (-650 |#1|))) (-15 -4358 (|#1| (-650 |#1|))) (-15 -4371 ((-650 |#1|) (-650 |#1|))) (-15 -2428 ((-650 |#1|) (-650 |#1|))) (-15 -2128 ((-650 (-570)) (-650 |#1|))) (-15 -3342 ((-570) (-650 (-570)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 (((-570) $) NIL (|has| (-570) (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| (-570) (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-570) (-1047 (-570))))) (-4387 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-570) (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| (-570) (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 (((-570) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-2746 (((-112) $) NIL (|has| (-570) (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-570) (-856)))) (-2536 (($ (-1 (-570) (-570)) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-570) (-1161)) CONST)) (-1374 (($ (-413 (-570))) 9)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) NIL)) (-2037 (((-570) $) NIL (|has| (-570) (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-2002 (((-777) $) NIL)) (-2057 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-4424 (($ $) NIL)) (-1599 (((-570) $) NIL)) (-2601 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 8) (($ (-570)) NIL) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL) (((-1013 16) $) 10)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2294 (((-777)) NIL T CONST)) (-3850 (((-570) $) NIL (|has| (-570) (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| (-570) (-826)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-3959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-570) (-856)))) (-4013 (($ $ $) NIL) (($ (-570) (-570)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL)))
-(((-493) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 16)) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -1374 ($ (-413 (-570))))))) (T -493))
-((-4113 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493)))) (-1374 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493)))))
-(-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 16)) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -1374 ($ (-413 (-570))))))
-((-3069 (((-650 |#2|) $) 31)) (-1314 (((-112) |#2| $) 36)) (-2231 (((-112) (-1 (-112) |#2|) $) 26)) (-3034 (($ $ (-650 (-298 |#2|))) 13) (($ $ (-298 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-650 |#2|) (-650 |#2|)) NIL)) (-3901 (((-777) (-1 (-112) |#2|) $) 30) (((-777) |#2| $) 34)) (-2869 (((-868) $) 45)) (-2061 (((-112) (-1 (-112) |#2|) $) 23)) (-3892 (((-112) $ $) 39)) (-2857 (((-777) $) 18)))
-(((-494 |#1| |#2|) (-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#2| |#2|)) (-15 -3034 (|#1| |#1| (-298 |#2|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1314 ((-112) |#2| |#1|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3069 ((-650 |#2|) |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2857 ((-777) |#1|))) (-495 |#2|) (-1227)) (T -494))
-NIL
-(-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#2| |#2|)) (-15 -3034 (|#1| |#1| (-298 |#2|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1314 ((-112) |#2| |#1|)) (-15 -3901 ((-777) |#2| |#1|)) (-15 -3069 ((-650 |#2|) |#1|)) (-15 -3901 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2857 ((-777) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-2333 (($) 7 T CONST)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-495 |#1|) (-141) (-1227)) (T -495))
-((-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-495 *3)) (-4 *3 (-1227)))) (-2833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4453)) (-4 *1 (-495 *3)) (-4 *3 (-1227)))) (-2061 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4452)) (-4 *1 (-495 *4)) (-4 *4 (-1227)) (-5 *2 (-112)))) (-2231 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4452)) (-4 *1 (-495 *4)) (-4 *4 (-1227)) (-5 *2 (-112)))) (-3901 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4452)) (-4 *1 (-495 *4)) (-4 *4 (-1227)) (-5 *2 (-777)))) (-3976 (*1 *2 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227)) (-5 *2 (-650 *3)))) (-3069 (*1 *2 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227)) (-5 *2 (-650 *3)))) (-3901 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227)) (-4 *3 (-1109)) (-5 *2 (-777)))) (-1314 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) (IF (|has| |t#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |t#1| (-1109)) (IF (|has| |t#1| (-313 |t#1|)) (-6 (-313 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2536 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4453)) (-15 -2833 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4452)) (PROGN (-15 -2061 ((-112) (-1 (-112) |t#1|) $)) (-15 -2231 ((-112) (-1 (-112) |t#1|) $)) (-15 -3901 ((-777) (-1 (-112) |t#1|) $)) (-15 -3976 ((-650 |t#1|) $)) (-15 -3069 ((-650 |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -3901 ((-777) |t#1| $)) (-15 -1314 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2869 ((|#1| $) 6) (($ |#1|) 9)))
-(((-496 |#1|) (-141) (-1227)) (T -496))
-NIL
-(-13 (-619 |t#1|) (-622 |t#1|))
-(((-622 |#1|) . T) ((-619 |#1|) . T))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-1624 (($ (-1168)) 8)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 15) (((-1168) $) 12)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 11)))
-(((-497) (-13 (-1109) (-619 (-1168)) (-10 -8 (-15 -1624 ($ (-1168)))))) (T -497))
-((-1624 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-497)))))
-(-13 (-1109) (-619 (-1168)) (-10 -8 (-15 -1624 ($ (-1168)))))
-((-3900 (($ $) 15)) (-3876 (($ $) 24)) (-1513 (($ $) 12)) (-1523 (($ $) 10)) (-3913 (($ $) 17)) (-3887 (($ $) 22)))
-(((-498 |#1|) (-10 -8 (-15 -3887 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3900 (|#1| |#1|))) (-499)) (T -498))
-NIL
-(-10 -8 (-15 -3887 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)))
-((-3900 (($ $) 11)) (-3876 (($ $) 10)) (-1513 (($ $) 9)) (-1523 (($ $) 8)) (-3913 (($ $) 7)) (-3887 (($ $) 6)))
-(((-499) (-141)) (T -499))
-((-3900 (*1 *1 *1) (-4 *1 (-499))) (-3876 (*1 *1 *1) (-4 *1 (-499))) (-1513 (*1 *1 *1) (-4 *1 (-499))) (-1523 (*1 *1 *1) (-4 *1 (-499))) (-3913 (*1 *1 *1) (-4 *1 (-499))) (-3887 (*1 *1 *1) (-4 *1 (-499))))
-(-13 (-10 -8 (-15 -3887 ($ $)) (-15 -3913 ($ $)) (-15 -1523 ($ $)) (-15 -1513 ($ $)) (-15 -3876 ($ $)) (-15 -3900 ($ $))))
-((-2340 (((-424 |#4|) |#4| (-1 (-424 |#2|) |#2|)) 54)))
-(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-424 |#4|) |#4| (-1 (-424 |#2|) |#2|)))) (-368) (-1253 |#1|) (-13 (-368) (-148) (-730 |#1| |#2|)) (-1253 |#3|)) (T -500))
-((-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368)) (-4 *7 (-13 (-368) (-148) (-730 *5 *6))) (-5 *2 (-424 *3)) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-1253 *7)))))
-(-10 -7 (-15 -2340 ((-424 |#4|) |#4| (-1 (-424 |#2|) |#2|))))
-((-2847 (((-112) $ $) NIL)) (-2842 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-4121 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-2564 (((-112) $) 39)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-4314 (((-112) $ $) 73)) (-4246 (((-650 (-618 $)) $) 50)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1465 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-2459 (($ $) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-4088 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-2056 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-2435 (((-3 (-618 $) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL)) (-4387 (((-618 $) $) NIL) (((-570) $) NIL) (((-413 (-570)) $) 55)) (-2788 (($ $ $) NIL)) (-3054 (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-413 (-570)))) (|:| |vec| (-1277 (-413 (-570))))) (-695 $) (-1277 $)) NIL) (((-695 (-413 (-570))) (-695 $)) NIL)) (-2295 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-3244 (($ $) NIL) (($ (-650 $)) NIL)) (-3380 (((-650 (-115)) $) NIL)) (-2558 (((-115) (-115)) NIL)) (-2005 (((-112) $) 42)) (-1973 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-1587 (((-1134 (-570) (-618 $)) $) 37)) (-3035 (($ $ (-570)) NIL)) (-3046 (((-1182 $) (-1182 $) (-618 $)) 87) (((-1182 $) (-1182 $) (-650 (-618 $))) 62) (($ $ (-618 $)) 76) (($ $ (-650 (-618 $))) 77)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1413 (((-1182 $) (-618 $)) 74 (|has| $ (-1058)))) (-2536 (($ (-1 $ $) (-618 $)) NIL)) (-1954 (((-3 (-618 $) "failed") $) NIL)) (-3867 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-2543 (((-650 (-618 $)) $) NIL)) (-1665 (($ (-115) $) NIL) (($ (-115) (-650 $)) NIL)) (-3917 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) NIL)) (-4315 (($ $) NIL)) (-3326 (((-777) $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ (-650 $)) NIL) (($ $ $) NIL)) (-2483 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2160 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-3034 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2002 (((-777) $) NIL)) (-2057 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3047 (($ $) NIL) (($ $ $) NIL)) (-2375 (($ $ (-777)) NIL) (($ $) 36)) (-1599 (((-1134 (-570) (-618 $)) $) 20)) (-3144 (($ $) NIL (|has| $ (-1058)))) (-2601 (((-384) $) 101) (((-227) $) 109) (((-171 (-384)) $) 117)) (-2869 (((-868) $) NIL) (($ (-618 $)) NIL) (($ (-413 (-570))) NIL) (($ $) NIL) (($ (-570)) NIL) (($ (-1134 (-570) (-618 $))) 21)) (-2294 (((-777)) NIL T CONST)) (-1613 (($ $) NIL) (($ (-650 $)) NIL)) (-1475 (((-112) (-115)) 93)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) 10 T CONST)) (-1998 (($) 22 T CONST)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3892 (((-112) $ $) 24)) (-4013 (($ $ $) 44)) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-413 (-570))) NIL) (($ $ (-570)) 48) (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ $ $) 27) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL)))
-(((-501) (-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -2869 ($ (-1134 (-570) (-618 $)))) (-15 -1587 ((-1134 (-570) (-618 $)) $)) (-15 -1599 ((-1134 (-570) (-618 $)) $)) (-15 -2295 ($ $)) (-15 -4314 ((-112) $ $)) (-15 -3046 ((-1182 $) (-1182 $) (-618 $))) (-15 -3046 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -3046 ($ $ (-618 $))) (-15 -3046 ($ $ (-650 (-618 $))))))) (T -501))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) (-2295 (*1 *1 *1) (-5 *1 (-501))) (-4314 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-501)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-618 (-501))) (-5 *1 (-501)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-650 (-618 (-501)))) (-5 *1 (-501)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-501))) (-5 *1 (-501)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-501)))) (-5 *1 (-501)))))
-(-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -2869 ($ (-1134 (-570) (-618 $)))) (-15 -1587 ((-1134 (-570) (-618 $)) $)) (-15 -1599 ((-1134 (-570) (-618 $)) $)) (-15 -2295 ($ $)) (-15 -4314 ((-112) $ $)) (-15 -3046 ((-1182 $) (-1182 $) (-618 $))) (-15 -3046 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -3046 ($ $ (-618 $))) (-15 -3046 ($ $ (-650 (-618 $))))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) |#1|) 44 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 39 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 38)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) 21)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 17 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) 41 (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) 15 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 19)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 43) (($ $ (-1244 (-570))) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 24)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) 11 (|has| $ (-6 -4452)))))
-(((-502 |#1| |#2|) (-19 |#1|) (-1227) (-570)) (T -502))
+((-2068 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-841 (-930))))) (-1468 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-410)) (-5 *2 (-779)))) (-3156 (*1 *1 *1) (-4 *1 (-410))) (-3156 (*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-779)))))
+(-13 (-370) (-146) (-10 -8 (-15 -2068 ((-841 (-930)) $)) (-15 -1468 ((-3 (-779) "failed") $ $)) (-15 -3156 ($ $)) (-15 -3156 ($ $ (-779)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
+((-2150 (($ (-572) (-572)) 11) (($ (-572) (-572) (-930)) NIL)) (-3005 (((-930)) 19) (((-930) (-930)) NIL)))
+(((-411 |#1|) (-10 -8 (-15 -3005 ((-930) (-930))) (-15 -3005 ((-930))) (-15 -2150 (|#1| (-572) (-572) (-930))) (-15 -2150 (|#1| (-572) (-572)))) (-412)) (T -411))
+((-3005 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412)))))
+(-10 -8 (-15 -3005 ((-930) (-930))) (-15 -3005 ((-930))) (-15 -2150 (|#1| (-572) (-572) (-930))) (-15 -2150 (|#1| (-572) (-572))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3923 (((-572) $) 97)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-1957 (($ $) 95)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-3093 (($ $) 105)) (-4252 (((-112) $ $) 65)) (-4304 (((-572) $) 122)) (-1586 (($) 18 T CONST)) (-1984 (($ $) 94)) (-3072 (((-3 (-572) "failed") $) 110) (((-3 (-415 (-572)) "failed") $) 107)) (-1869 (((-572) $) 111) (((-415 (-572)) $) 108)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3439 (((-112) $) 79)) (-1722 (((-930)) 138) (((-930) (-930)) 135 (|has| $ (-6 -4445)))) (-3778 (((-112) $) 120)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 101)) (-2068 (((-572) $) 144)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 104)) (-2140 (($ $) 100)) (-4354 (((-112) $) 121)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2536 (($ $ $) 119) (($) 132 (-12 (-3795 (|has| $ (-6 -4445))) (-3795 (|has| $ (-6 -4437)))))) (-3928 (($ $ $) 118) (($) 131 (-12 (-3795 (|has| $ (-6 -4445))) (-3795 (|has| $ (-6 -4437)))))) (-4269 (((-572) $) 141)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-3987 (((-930) (-572)) 134 (|has| $ (-6 -4445)))) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3964 (($ $) 96)) (-1609 (($ $) 98)) (-2150 (($ (-572) (-572)) 146) (($ (-572) (-572) (-930)) 145)) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-2477 (((-572) $) 142)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-3005 (((-930)) 139) (((-930) (-930)) 136 (|has| $ (-6 -4445)))) (-1491 (((-930) (-572)) 133 (|has| $ (-6 -4445)))) (-3222 (((-386) $) 113) (((-227) $) 112) (((-901 (-386)) $) 102)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ (-572)) 109) (($ (-415 (-572))) 106)) (-2455 (((-779)) 32 T CONST)) (-3441 (($ $) 99)) (-3444 (((-930)) 140) (((-930) (-930)) 137 (|has| $ (-6 -4445)))) (-3424 (((-112) $ $) 9)) (-1556 (((-930)) 143)) (-2466 (((-112) $ $) 45)) (-2775 (($ $) 123)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3976 (((-112) $ $) 116)) (-3954 (((-112) $ $) 115)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 117)) (-3943 (((-112) $ $) 114)) (-4029 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 103)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
+(((-412) (-141)) (T -412))
+((-2150 (*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-412)))) (-2150 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-4 *1 (-412)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572)))) (-1556 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-2477 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572)))) (-3444 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-3005 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-1722 (*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412)) (-5 *2 (-930)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412)) (-5 *2 (-930)))) (-2536 (*1 *1) (-12 (-4 *1 (-412)) (-3795 (|has| *1 (-6 -4445))) (-3795 (|has| *1 (-6 -4437))))) (-3928 (*1 *1) (-12 (-4 *1 (-412)) (-3795 (|has| *1 (-6 -4445))) (-3795 (|has| *1 (-6 -4437))))))
+(-13 (-1071) (-10 -8 (-6 -4090) (-15 -2150 ($ (-572) (-572))) (-15 -2150 ($ (-572) (-572) (-930))) (-15 -2068 ((-572) $)) (-15 -1556 ((-930))) (-15 -2477 ((-572) $)) (-15 -4269 ((-572) $)) (-15 -3444 ((-930))) (-15 -3005 ((-930))) (-15 -1722 ((-930))) (IF (|has| $ (-6 -4445)) (PROGN (-15 -3444 ((-930) (-930))) (-15 -3005 ((-930) (-930))) (-15 -1722 ((-930) (-930))) (-15 -3987 ((-930) (-572))) (-15 -1491 ((-930) (-572)))) |%noBranch|) (IF (|has| $ (-6 -4437)) |%noBranch| (IF (|has| $ (-6 -4445)) |%noBranch| (PROGN (-15 -2536 ($)) (-15 -3928 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-227)) . T) ((-622 (-386)) . T) ((-622 (-901 (-386))) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-895 (-386)) . T) ((-929) . T) ((-1013) . T) ((-1033) . T) ((-1071) . T) ((-1049 (-415 (-572))) . T) ((-1049 (-572)) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
+((-3161 (((-426 |#2|) (-1 |#2| |#1|) (-426 |#1|)) 20)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -3161 ((-426 |#2|) (-1 |#2| |#1|) (-426 |#1|)))) (-564) (-564)) (T -413))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-426 *5)) (-4 *5 (-564)) (-4 *6 (-564)) (-5 *2 (-426 *6)) (-5 *1 (-413 *5 *6)))))
+(-10 -7 (-15 -3161 ((-426 |#2|) (-1 |#2| |#1|) (-426 |#1|))))
+((-3161 (((-415 |#2|) (-1 |#2| |#1|) (-415 |#1|)) 13)))
+(((-414 |#1| |#2|) (-10 -7 (-15 -3161 ((-415 |#2|) (-1 |#2| |#1|) (-415 |#1|)))) (-564) (-564)) (T -414))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-415 *5)) (-4 *5 (-564)) (-4 *6 (-564)) (-5 *2 (-415 *6)) (-5 *1 (-414 *5 *6)))))
+(-10 -7 (-15 -3161 ((-415 |#2|) (-1 |#2| |#1|) (-415 |#1|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 13)) (-3923 ((|#1| $) 21 (|has| |#1| (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| |#1| (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 17) (((-3 (-1188) "failed") $) NIL (|has| |#1| (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) 72 (|has| |#1| (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572))))) (-1869 ((|#1| $) 15) (((-1188) $) NIL (|has| |#1| (-1049 (-1188)))) (((-415 (-572)) $) 69 (|has| |#1| (-1049 (-572)))) (((-572) $) NIL (|has| |#1| (-1049 (-572))))) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) 51)) (-2688 (($) NIL (|has| |#1| (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| |#1| (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| |#1| (-895 (-386))))) (-4422 (((-112) $) 57)) (-3710 (($ $) NIL)) (-2209 ((|#1| $) 73)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-4354 (((-112) $) NIL (|has| |#1| (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| |#1| (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 100)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| |#1| (-313)))) (-1609 ((|#1| $) 28 (|has| |#1| (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) 145 (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 138 (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-4395 (((-779) $) NIL)) (-2679 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3982 (($ $) NIL)) (-2224 ((|#1| $) 75)) (-3222 (((-901 (-572)) $) NIL (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#1| (-622 (-901 (-386))))) (((-544) $) NIL (|has| |#1| (-622 (-544)))) (((-386) $) NIL (|has| |#1| (-1033))) (((-227) $) NIL (|has| |#1| (-1033)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 10) (($ (-1188)) NIL (|has| |#1| (-1049 (-1188))))) (-2210 (((-3 $ "failed") $) 102 (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) 103 T CONST)) (-3441 ((|#1| $) 26 (|has| |#1| (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| |#1| (-828)))) (-2602 (($) 22 T CONST)) (-2619 (($) 8 T CONST)) (-2810 (((-1170) $) 44 (-12 (|has| |#1| (-553)) (|has| |#1| (-836)))) (((-1170) $ (-112)) 45 (-12 (|has| |#1| (-553)) (|has| |#1| (-836)))) (((-1284) (-830) $) 46 (-12 (|has| |#1| (-553)) (|has| |#1| (-836)))) (((-1284) (-830) $ (-112)) 47 (-12 (|has| |#1| (-553)) (|has| |#1| (-836))))) (-4019 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) 66)) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) 24 (|has| |#1| (-858)))) (-4029 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4018 (($ $) 25) (($ $ $) 56)) (-4005 (($ $ $) 54)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 132)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 61) (($ $ $) 58) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-415 |#1|) (-13 (-1003 |#1|) (-10 -7 (IF (|has| |#1| (-553)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (IF (|has| |#1| (-460)) (IF (|has| |#1| (-6 -4452)) (-6 -4441) |%noBranch|) |%noBranch|) |%noBranch|))) (-564)) (T -415))
+NIL
+(-13 (-1003 |#1|) (-10 -7 (IF (|has| |#1| (-553)) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (IF (|has| |#1| (-460)) (IF (|has| |#1| (-6 -4452)) (-6 -4441) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3385 (((-697 |#2|) (-1279 $)) NIL) (((-697 |#2|)) 18)) (-2372 (($ (-1279 |#2|) (-1279 $)) NIL) (($ (-1279 |#2|)) 24)) (-1649 (((-697 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) $) 40)) (-2179 ((|#3| $) 69)) (-2020 ((|#2| (-1279 $)) NIL) ((|#2|) 20)) (-2862 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $) 22) (((-697 |#2|) (-1279 $)) 38)) (-3222 (((-1279 |#2|) $) 11) (($ (-1279 |#2|)) 13)) (-3245 ((|#3| $) 55)))
+(((-416 |#1| |#2| |#3|) (-10 -8 (-15 -1649 ((-697 |#2|) |#1|)) (-15 -2020 (|#2|)) (-15 -3385 ((-697 |#2|))) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -2372 (|#1| (-1279 |#2|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -2179 (|#3| |#1|)) (-15 -3245 (|#3| |#1|)) (-15 -3385 ((-697 |#2|) (-1279 |#1|))) (-15 -2020 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -1649 ((-697 |#2|) |#1| (-1279 |#1|)))) (-417 |#2| |#3|) (-174) (-1255 |#2|)) (T -416))
+((-3385 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)) (-5 *1 (-416 *3 *4 *5)) (-4 *3 (-417 *4 *5)))) (-2020 (*1 *2) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-174)) (-5 *1 (-416 *3 *2 *4)) (-4 *3 (-417 *2 *4)))))
+(-10 -8 (-15 -1649 ((-697 |#2|) |#1|)) (-15 -2020 (|#2|)) (-15 -3385 ((-697 |#2|))) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -2372 (|#1| (-1279 |#2|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -2179 (|#3| |#1|)) (-15 -3245 (|#3| |#1|)) (-15 -3385 ((-697 |#2|) (-1279 |#1|))) (-15 -2020 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -1649 ((-697 |#2|) |#1| (-1279 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3385 (((-697 |#1|) (-1279 $)) 53) (((-697 |#1|)) 68)) (-2055 ((|#1| $) 59)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2372 (($ (-1279 |#1|) (-1279 $)) 55) (($ (-1279 |#1|)) 71)) (-1649 (((-697 |#1|) $ (-1279 $)) 60) (((-697 |#1|) $) 66)) (-2982 (((-3 $ "failed") $) 37)) (-1526 (((-930)) 61)) (-4422 (((-112) $) 35)) (-2140 ((|#1| $) 58)) (-2179 ((|#2| $) 51 (|has| |#1| (-370)))) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2020 ((|#1| (-1279 $)) 54) ((|#1|) 67)) (-2862 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56) (((-1279 |#1|) $) 73) (((-697 |#1|) (-1279 $)) 72)) (-3222 (((-1279 |#1|) $) 70) (($ (-1279 |#1|)) 69)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44)) (-2210 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3245 ((|#2| $) 52)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-1769 (((-1279 $)) 74)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-417 |#1| |#2|) (-141) (-174) (-1255 |t#1|)) (T -417))
+((-1769 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *1)) (-4 *1 (-417 *3 *4)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *3)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-417 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4)))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4)) (-4 *4 (-1255 *3)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *3)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4)) (-4 *4 (-1255 *3)))) (-3385 (*1 *2) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-697 *3)))) (-2020 (*1 *2) (-12 (-4 *1 (-417 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174)))) (-1649 (*1 *2 *1) (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-697 *3)))))
+(-13 (-377 |t#1| |t#2|) (-10 -8 (-15 -1769 ((-1279 $))) (-15 -2862 ((-1279 |t#1|) $)) (-15 -2862 ((-697 |t#1|) (-1279 $))) (-15 -2372 ($ (-1279 |t#1|))) (-15 -3222 ((-1279 |t#1|) $)) (-15 -3222 ($ (-1279 |t#1|))) (-15 -3385 ((-697 |t#1|))) (-15 -2020 (|t#1|)) (-15 -1649 ((-697 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-377 |#1| |#2|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) 27) (((-3 (-572) "failed") $) 19)) (-1869 ((|#2| $) NIL) (((-415 (-572)) $) 24) (((-572) $) 14)) (-3491 (($ |#2|) NIL) (($ (-415 (-572))) 22) (($ (-572)) 11)))
+(((-418 |#1| |#2|) (-10 -8 (-15 -3491 (|#1| (-572))) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|))) (-419 |#2|) (-1229)) (T -418))
+NIL
+(-10 -8 (-15 -3491 (|#1| (-572))) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|)))
+((-3072 (((-3 |#1| "failed") $) 9) (((-3 (-415 (-572)) "failed") $) 16 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 13 (|has| |#1| (-1049 (-572))))) (-1869 ((|#1| $) 8) (((-415 (-572)) $) 17 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 14 (|has| |#1| (-1049 (-572))))) (-3491 (($ |#1|) 6) (($ (-415 (-572))) 15 (|has| |#1| (-1049 (-415 (-572))))) (($ (-572)) 12 (|has| |#1| (-1049 (-572))))))
+(((-419 |#1|) (-141) (-1229)) (T -419))
+NIL
+(-13 (-1049 |t#1|) (-10 -7 (IF (|has| |t#1| (-1049 (-572))) (-6 (-1049 (-572))) |%noBranch|) (IF (|has| |t#1| (-1049 (-415 (-572)))) (-6 (-1049 (-415 (-572)))) |%noBranch|)))
+(((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 #1=(-572)) |has| |#1| (-1049 (-572))) ((-624 |#1|) . T) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 #1#) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T))
+((-3161 (((-421 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-421 |#1| |#2| |#3| |#4|)) 35)))
+(((-420 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3161 ((-421 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-421 |#1| |#2| |#3| |#4|)))) (-313) (-1003 |#1|) (-1255 |#2|) (-13 (-417 |#2| |#3|) (-1049 |#2|)) (-313) (-1003 |#5|) (-1255 |#6|) (-13 (-417 |#6| |#7|) (-1049 |#6|))) (T -420))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-421 *5 *6 *7 *8)) (-4 *5 (-313)) (-4 *6 (-1003 *5)) (-4 *7 (-1255 *6)) (-4 *8 (-13 (-417 *6 *7) (-1049 *6))) (-4 *9 (-313)) (-4 *10 (-1003 *9)) (-4 *11 (-1255 *10)) (-5 *2 (-421 *9 *10 *11 *12)) (-5 *1 (-420 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-417 *10 *11) (-1049 *10))))))
+(-10 -7 (-15 -3161 ((-421 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-421 |#1| |#2| |#3| |#4|))))
+((-3464 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-2735 ((|#4| (-779) (-1279 |#4|)) 55)) (-4422 (((-112) $) NIL)) (-2209 (((-1279 |#4|) $) 15)) (-2140 ((|#2| $) 53)) (-3387 (($ $) 157)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 103)) (-1994 (($ (-1279 |#4|)) 102)) (-2614 (((-1131) $) NIL)) (-2224 ((|#1| $) 16)) (-4242 (($ $ $) NIL)) (-1433 (($ $ $) NIL)) (-3491 (((-870) $) 148)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 |#4|) $) 141)) (-2619 (($) 11 T CONST)) (-3921 (((-112) $ $) 39)) (-4029 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 134)) (* (($ $ $) 130)))
+(((-421 |#1| |#2| |#3| |#4|) (-13 (-481) (-10 -8 (-15 -1994 ($ (-1279 |#4|))) (-15 -1769 ((-1279 |#4|) $)) (-15 -2140 (|#2| $)) (-15 -2209 ((-1279 |#4|) $)) (-15 -2224 (|#1| $)) (-15 -3387 ($ $)) (-15 -2735 (|#4| (-779) (-1279 |#4|))))) (-313) (-1003 |#1|) (-1255 |#2|) (-13 (-417 |#2| |#3|) (-1049 |#2|))) (T -421))
+((-1994 (*1 *1 *2) (-12 (-5 *2 (-1279 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4))) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *3 (-313)) (-5 *1 (-421 *3 *4 *5 *6)))) (-1769 (*1 *2 *1) (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4))))) (-2140 (*1 *2 *1) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3)) (-5 *1 (-421 *3 *2 *4 *5)) (-4 *3 (-313)) (-4 *5 (-13 (-417 *2 *4) (-1049 *2))))) (-2209 (*1 *2 *1) (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4))))) (-2224 (*1 *2 *1) (-12 (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3)) (-4 *2 (-313)) (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3))))) (-3387 (*1 *1 *1) (-12 (-4 *2 (-313)) (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3)) (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3))))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1279 *2)) (-4 *5 (-313)) (-4 *6 (-1003 *5)) (-4 *2 (-13 (-417 *6 *7) (-1049 *6))) (-5 *1 (-421 *5 *6 *7 *2)) (-4 *7 (-1255 *6)))))
+(-13 (-481) (-10 -8 (-15 -1994 ($ (-1279 |#4|))) (-15 -1769 ((-1279 |#4|) $)) (-15 -2140 (|#2| $)) (-15 -2209 ((-1279 |#4|) $)) (-15 -2224 (|#1| $)) (-15 -3387 ($ $)) (-15 -2735 (|#4| (-779) (-1279 |#4|)))))
+((-3464 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-2140 ((|#2| $) 71)) (-3147 (($ (-1279 |#4|)) 27) (($ (-421 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1049 |#2|)))) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 37)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 |#4|) $) 28)) (-2619 (($) 25 T CONST)) (-3921 (((-112) $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ $ $) 82)))
+(((-422 |#1| |#2| |#3| |#4| |#5|) (-13 (-734) (-10 -8 (-15 -1769 ((-1279 |#4|) $)) (-15 -2140 (|#2| $)) (-15 -3147 ($ (-1279 |#4|))) (IF (|has| |#4| (-1049 |#2|)) (-15 -3147 ($ (-421 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-313) (-1003 |#1|) (-1255 |#2|) (-417 |#2| |#3|) (-1279 |#4|)) (T -422))
+((-1769 (*1 *2 *1) (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7)) (-4 *6 (-417 *4 *5)) (-14 *7 *2))) (-2140 (*1 *2 *1) (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3)) (-5 *1 (-422 *3 *2 *4 *5 *6)) (-4 *3 (-313)) (-4 *5 (-417 *2 *4)) (-14 *6 (-1279 *5)))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-1279 *6)) (-4 *6 (-417 *4 *5)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *3 (-313)) (-5 *1 (-422 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3147 (*1 *1 *2) (-12 (-5 *2 (-421 *3 *4 *5 *6)) (-4 *6 (-1049 *4)) (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *6 (-417 *4 *5)) (-14 *7 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7)))))
+(-13 (-734) (-10 -8 (-15 -1769 ((-1279 |#4|) $)) (-15 -2140 (|#2| $)) (-15 -3147 ($ (-1279 |#4|))) (IF (|has| |#4| (-1049 |#2|)) (-15 -3147 ($ (-421 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3161 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#3| (-1 |#4| |#2|) |#1|))) (-425 |#2|) (-174) (-425 |#4|) (-174)) (T -423))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-425 *6)) (-5 *1 (-423 *4 *5 *2 *6)) (-4 *4 (-425 *5)))))
+(-10 -7 (-15 -3161 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3457 (((-3 $ "failed")) 98)) (-3862 (((-1279 (-697 |#2|)) (-1279 $)) NIL) (((-1279 (-697 |#2|))) 103)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) 96)) (-2771 (((-3 $ "failed")) 95)) (-3590 (((-697 |#2|) (-1279 $)) NIL) (((-697 |#2|)) 114)) (-4043 (((-697 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) $) 122)) (-2571 (((-1184 (-961 |#2|))) 63)) (-2650 ((|#2| (-1279 $)) NIL) ((|#2|) 118)) (-2372 (($ (-1279 |#2|) (-1279 $)) NIL) (($ (-1279 |#2|)) 124)) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) 94)) (-4277 (((-3 $ "failed")) 86)) (-2808 (((-697 |#2|) (-1279 $)) NIL) (((-697 |#2|)) 112)) (-2037 (((-697 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) $) 120)) (-2312 (((-1184 (-961 |#2|))) 62)) (-2190 ((|#2| (-1279 $)) NIL) ((|#2|) 116)) (-2862 (((-1279 |#2|) $ (-1279 $)) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $) 123) (((-697 |#2|) (-1279 $)) 132)) (-3222 (((-1279 |#2|) $) 108) (($ (-1279 |#2|)) 110)) (-2956 (((-652 (-961 |#2|)) (-1279 $)) NIL) (((-652 (-961 |#2|))) 106)) (-2558 (($ (-697 |#2|) $) 102)))
+(((-424 |#1| |#2|) (-10 -8 (-15 -2558 (|#1| (-697 |#2|) |#1|)) (-15 -2571 ((-1184 (-961 |#2|)))) (-15 -2312 ((-1184 (-961 |#2|)))) (-15 -4043 ((-697 |#2|) |#1|)) (-15 -2037 ((-697 |#2|) |#1|)) (-15 -3590 ((-697 |#2|))) (-15 -2808 ((-697 |#2|))) (-15 -2650 (|#2|)) (-15 -2190 (|#2|)) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -2372 (|#1| (-1279 |#2|))) (-15 -2956 ((-652 (-961 |#2|)))) (-15 -3862 ((-1279 (-697 |#2|)))) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -3457 ((-3 |#1| "failed"))) (-15 -2771 ((-3 |#1| "failed"))) (-15 -4277 ((-3 |#1| "failed"))) (-15 -2123 ((-3 (-2 (|:| |particular| |#1|) (|:| -1769 (-652 |#1|))) "failed"))) (-15 -1835 ((-3 (-2 (|:| |particular| |#1|) (|:| -1769 (-652 |#1|))) "failed"))) (-15 -3590 ((-697 |#2|) (-1279 |#1|))) (-15 -2808 ((-697 |#2|) (-1279 |#1|))) (-15 -2650 (|#2| (-1279 |#1|))) (-15 -2190 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -4043 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2037 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -3862 ((-1279 (-697 |#2|)) (-1279 |#1|))) (-15 -2956 ((-652 (-961 |#2|)) (-1279 |#1|)))) (-425 |#2|) (-174)) (T -424))
+((-3862 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-2956 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-652 (-961 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-2190 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2)))) (-2650 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2)))) (-2808 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-3590 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-2312 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-2571 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))))
+(-10 -8 (-15 -2558 (|#1| (-697 |#2|) |#1|)) (-15 -2571 ((-1184 (-961 |#2|)))) (-15 -2312 ((-1184 (-961 |#2|)))) (-15 -4043 ((-697 |#2|) |#1|)) (-15 -2037 ((-697 |#2|) |#1|)) (-15 -3590 ((-697 |#2|))) (-15 -2808 ((-697 |#2|))) (-15 -2650 (|#2|)) (-15 -2190 (|#2|)) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -2372 (|#1| (-1279 |#2|))) (-15 -2956 ((-652 (-961 |#2|)))) (-15 -3862 ((-1279 (-697 |#2|)))) (-15 -2862 ((-697 |#2|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1|)) (-15 -3457 ((-3 |#1| "failed"))) (-15 -2771 ((-3 |#1| "failed"))) (-15 -4277 ((-3 |#1| "failed"))) (-15 -2123 ((-3 (-2 (|:| |particular| |#1|) (|:| -1769 (-652 |#1|))) "failed"))) (-15 -1835 ((-3 (-2 (|:| |particular| |#1|) (|:| -1769 (-652 |#1|))) "failed"))) (-15 -3590 ((-697 |#2|) (-1279 |#1|))) (-15 -2808 ((-697 |#2|) (-1279 |#1|))) (-15 -2650 (|#2| (-1279 |#1|))) (-15 -2190 (|#2| (-1279 |#1|))) (-15 -2372 (|#1| (-1279 |#2|) (-1279 |#1|))) (-15 -2862 ((-697 |#2|) (-1279 |#1|) (-1279 |#1|))) (-15 -2862 ((-1279 |#2|) |#1| (-1279 |#1|))) (-15 -4043 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -2037 ((-697 |#2|) |#1| (-1279 |#1|))) (-15 -3862 ((-1279 (-697 |#2|)) (-1279 |#1|))) (-15 -2956 ((-652 (-961 |#2|)) (-1279 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3457 (((-3 $ "failed")) 42 (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) 20)) (-3862 (((-1279 (-697 |#1|)) (-1279 $)) 83) (((-1279 (-697 |#1|))) 106)) (-2646 (((-1279 $)) 86)) (-1586 (($) 18 T CONST)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) 45 (|has| |#1| (-564)))) (-2771 (((-3 $ "failed")) 43 (|has| |#1| (-564)))) (-3590 (((-697 |#1|) (-1279 $)) 70) (((-697 |#1|)) 98)) (-1597 ((|#1| $) 79)) (-4043 (((-697 |#1|) $ (-1279 $)) 81) (((-697 |#1|) $) 96)) (-3899 (((-3 $ "failed") $) 50 (|has| |#1| (-564)))) (-2571 (((-1184 (-961 |#1|))) 94 (|has| |#1| (-370)))) (-4203 (($ $ (-930)) 31)) (-4114 ((|#1| $) 77)) (-3440 (((-1184 |#1|) $) 47 (|has| |#1| (-564)))) (-2650 ((|#1| (-1279 $)) 72) ((|#1|) 100)) (-2712 (((-1184 |#1|) $) 68)) (-1515 (((-112)) 62)) (-2372 (($ (-1279 |#1|) (-1279 $)) 74) (($ (-1279 |#1|)) 104)) (-2982 (((-3 $ "failed") $) 52 (|has| |#1| (-564)))) (-1526 (((-930)) 85)) (-3538 (((-112)) 59)) (-3100 (($ $ (-930)) 38)) (-4325 (((-112)) 55)) (-1936 (((-112)) 53)) (-3246 (((-112)) 57)) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) 46 (|has| |#1| (-564)))) (-4277 (((-3 $ "failed")) 44 (|has| |#1| (-564)))) (-2808 (((-697 |#1|) (-1279 $)) 71) (((-697 |#1|)) 99)) (-3611 ((|#1| $) 80)) (-2037 (((-697 |#1|) $ (-1279 $)) 82) (((-697 |#1|) $) 97)) (-3882 (((-3 $ "failed") $) 51 (|has| |#1| (-564)))) (-2312 (((-1184 (-961 |#1|))) 95 (|has| |#1| (-370)))) (-3962 (($ $ (-930)) 32)) (-3686 ((|#1| $) 78)) (-1342 (((-1184 |#1|) $) 48 (|has| |#1| (-564)))) (-2190 ((|#1| (-1279 $)) 73) ((|#1|) 101)) (-3177 (((-1184 |#1|) $) 69)) (-3614 (((-112)) 63)) (-3618 (((-1170) $) 10)) (-4412 (((-112)) 54)) (-3421 (((-112)) 56)) (-4413 (((-112)) 58)) (-2614 (((-1131) $) 11)) (-3749 (((-112)) 61)) (-2679 ((|#1| $ (-572)) 110)) (-2862 (((-1279 |#1|) $ (-1279 $)) 76) (((-697 |#1|) (-1279 $) (-1279 $)) 75) (((-1279 |#1|) $) 108) (((-697 |#1|) (-1279 $)) 107)) (-3222 (((-1279 |#1|) $) 103) (($ (-1279 |#1|)) 102)) (-2956 (((-652 (-961 |#1|)) (-1279 $)) 84) (((-652 (-961 |#1|))) 105)) (-1433 (($ $ $) 28)) (-3846 (((-112)) 67)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-1769 (((-1279 $)) 109)) (-1373 (((-652 (-1279 |#1|))) 49 (|has| |#1| (-564)))) (-1541 (($ $ $ $) 29)) (-3229 (((-112)) 65)) (-2558 (($ (-697 |#1|) $) 93)) (-1923 (($ $ $) 27)) (-1873 (((-112)) 66)) (-2702 (((-112)) 64)) (-3565 (((-112)) 60)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-425 |#1|) (-141) (-174)) (T -425))
+((-1769 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-425 *3)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-425 *4)) (-4 *4 (-174)) (-5 *2 (-697 *4)))) (-3862 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 (-697 *3))))) (-2956 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-652 (-961 *3))))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3)))) (-2190 (*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))) (-2650 (*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))) (-2808 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-3590 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))) (-2312 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370)) (-5 *2 (-1184 (-961 *3))))) (-2571 (*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370)) (-5 *2 (-1184 (-961 *3))))) (-2558 (*1 *1 *2 *1) (-12 (-5 *2 (-697 *3)) (-4 *1 (-425 *3)) (-4 *3 (-174)))))
+(-13 (-374 |t#1|) (-292 (-572) |t#1|) (-10 -8 (-15 -1769 ((-1279 $))) (-15 -2862 ((-1279 |t#1|) $)) (-15 -2862 ((-697 |t#1|) (-1279 $))) (-15 -3862 ((-1279 (-697 |t#1|)))) (-15 -2956 ((-652 (-961 |t#1|)))) (-15 -2372 ($ (-1279 |t#1|))) (-15 -3222 ((-1279 |t#1|) $)) (-15 -3222 ($ (-1279 |t#1|))) (-15 -2190 (|t#1|)) (-15 -2650 (|t#1|)) (-15 -2808 ((-697 |t#1|))) (-15 -3590 ((-697 |t#1|))) (-15 -2037 ((-697 |t#1|) $)) (-15 -4043 ((-697 |t#1|) $)) (IF (|has| |t#1| (-370)) (PROGN (-15 -2312 ((-1184 (-961 |t#1|)))) (-15 -2571 ((-1184 (-961 |t#1|))))) |%noBranch|) (-15 -2558 ($ (-697 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-292 (-572) |#1|) . T) ((-374 |#1|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-728) . T) ((-752 |#1|) . T) ((-769) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 60)) (-4142 (($ $) 78)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 192)) (-1697 (($ $) NIL)) (-1774 (((-112) $) 48)) (-3457 ((|#1| $) 16)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-1233)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-1233)))) (-2656 (($ |#1| (-572)) 42)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 149)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 74)) (-2982 (((-3 $ "failed") $) 165)) (-3624 (((-3 (-415 (-572)) "failed") $) 85 (|has| |#1| (-553)))) (-2054 (((-112) $) 81 (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) 92 (|has| |#1| (-553)))) (-2881 (($ |#1| (-572)) 44)) (-3439 (((-112) $) 212 (|has| |#1| (-1233)))) (-4422 (((-112) $) 62)) (-1529 (((-779) $) 51)) (-2737 (((-3 "nil" "sqfr" "irred" "prime") $ (-572)) 176)) (-1932 ((|#1| $ (-572)) 175)) (-3258 (((-572) $ (-572)) 174)) (-3583 (($ |#1| (-572)) 41)) (-3161 (($ (-1 |#1| |#1|) $) 184)) (-1621 (($ |#1| (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572))))) 79)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-2907 (($ |#1| (-572)) 43)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) 193 (|has| |#1| (-460)))) (-1687 (($ |#1| (-572) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1591 (((-652 (-2 (|:| -2972 |#1|) (|:| -2477 (-572)))) $) 73)) (-1381 (((-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))) $) 12)) (-2972 (((-426 $) $) NIL (|has| |#1| (-1233)))) (-3453 (((-3 $ "failed") $ $) 177)) (-2477 (((-572) $) 168)) (-1386 ((|#1| $) 75)) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 101 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 107 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) $) NIL (|has| |#1| (-522 (-1188) $))) (($ $ (-652 (-1188)) (-652 $)) 108 (|has| |#1| (-522 (-1188) $))) (($ $ (-652 (-300 $))) 104 (|has| |#1| (-315 $))) (($ $ (-300 $)) NIL (|has| |#1| (-315 $))) (($ $ $ $) NIL (|has| |#1| (-315 $))) (($ $ (-652 $) (-652 $)) NIL (|has| |#1| (-315 $)))) (-2679 (($ $ |#1|) 93 (|has| |#1| (-292 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-292 $ $)))) (-3011 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) 183)) (-3222 (((-544) $) 39 (|has| |#1| (-622 (-544)))) (((-386) $) 114 (|has| |#1| (-1033))) (((-227) $) 120 (|has| |#1| (-1033)))) (-3491 (((-870) $) 147) (($ (-572)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572)))))) (-2455 (((-779)) 67 T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) 53 T CONST)) (-2619 (($) 52 T CONST)) (-4019 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3921 (((-112) $ $) 160)) (-4018 (($ $) 162) (($ $ $) NIL)) (-4005 (($ $ $) 181)) (** (($ $ (-930)) NIL) (($ $ (-779)) 126)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-426 |#1|) (-13 (-564) (-233 |#1|) (-38 |#1|) (-345 |#1|) (-419 |#1|) (-10 -8 (-15 -1386 (|#1| $)) (-15 -2477 ((-572) $)) (-15 -1621 ($ |#1| (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))))) (-15 -1381 ((-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))) $)) (-15 -3583 ($ |#1| (-572))) (-15 -1591 ((-652 (-2 (|:| -2972 |#1|) (|:| -2477 (-572)))) $)) (-15 -2907 ($ |#1| (-572))) (-15 -3258 ((-572) $ (-572))) (-15 -1932 (|#1| $ (-572))) (-15 -2737 ((-3 "nil" "sqfr" "irred" "prime") $ (-572))) (-15 -1529 ((-779) $)) (-15 -2881 ($ |#1| (-572))) (-15 -2656 ($ |#1| (-572))) (-15 -1687 ($ |#1| (-572) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3457 (|#1| $)) (-15 -4142 ($ $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-460)) (-6 (-460)) |%noBranch|) (IF (|has| |#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |#1| (-1233)) (-6 (-1233)) |%noBranch|) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-292 $ $)) (-6 (-292 $ $)) |%noBranch|) (IF (|has| |#1| (-315 $)) (-6 (-315 $)) |%noBranch|) (IF (|has| |#1| (-522 (-1188) $)) (-6 (-522 (-1188) $)) |%noBranch|))) (-564)) (T -426))
+((-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-564)) (-5 *1 (-426 *3)))) (-1386 (*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-1621 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-572))))) (-4 *2 (-564)) (-5 *1 (-426 *2)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-572))))) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-3583 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -2972 *3) (|:| -2477 (-572))))) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-2907 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-3258 (*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-2737 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-426 *4)) (-4 *4 (-564)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-426 *3)) (-4 *3 (-564)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-2656 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-1687 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-572)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-3457 (*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-4142 (*1 *1 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564)))) (-3624 (*1 *2 *1) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564)))))
+(-13 (-564) (-233 |#1|) (-38 |#1|) (-345 |#1|) (-419 |#1|) (-10 -8 (-15 -1386 (|#1| $)) (-15 -2477 ((-572) $)) (-15 -1621 ($ |#1| (-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))))) (-15 -1381 ((-652 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-572)))) $)) (-15 -3583 ($ |#1| (-572))) (-15 -1591 ((-652 (-2 (|:| -2972 |#1|) (|:| -2477 (-572)))) $)) (-15 -2907 ($ |#1| (-572))) (-15 -3258 ((-572) $ (-572))) (-15 -1932 (|#1| $ (-572))) (-15 -2737 ((-3 "nil" "sqfr" "irred" "prime") $ (-572))) (-15 -1529 ((-779) $)) (-15 -2881 ($ |#1| (-572))) (-15 -2656 ($ |#1| (-572))) (-15 -1687 ($ |#1| (-572) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3457 (|#1| $)) (-15 -4142 ($ $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-460)) (-6 (-460)) |%noBranch|) (IF (|has| |#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |#1| (-1233)) (-6 (-1233)) |%noBranch|) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-292 $ $)) (-6 (-292 $ $)) |%noBranch|) (IF (|has| |#1| (-315 $)) (-6 (-315 $)) |%noBranch|) (IF (|has| |#1| (-522 (-1188) $)) (-6 (-522 (-1188) $)) |%noBranch|)))
+((-3348 (((-426 |#1|) (-426 |#1|) (-1 (-426 |#1|) |#1|)) 28)) (-2552 (((-426 |#1|) (-426 |#1|) (-426 |#1|)) 17)))
+(((-427 |#1|) (-10 -7 (-15 -3348 ((-426 |#1|) (-426 |#1|) (-1 (-426 |#1|) |#1|))) (-15 -2552 ((-426 |#1|) (-426 |#1|) (-426 |#1|)))) (-564)) (T -427))
+((-2552 (*1 *2 *2 *2) (-12 (-5 *2 (-426 *3)) (-4 *3 (-564)) (-5 *1 (-427 *3)))) (-3348 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-426 *4) *4)) (-4 *4 (-564)) (-5 *2 (-426 *4)) (-5 *1 (-427 *4)))))
+(-10 -7 (-15 -3348 ((-426 |#1|) (-426 |#1|) (-1 (-426 |#1|) |#1|))) (-15 -2552 ((-426 |#1|) (-426 |#1|) (-426 |#1|))))
+((-3483 ((|#2| |#2|) 183)) (-4361 (((-3 (|:| |%expansion| (-319 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112)) 60)))
+(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4361 ((-3 (|:| |%expansion| (-319 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112))) (-15 -3483 (|#2| |#2|))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|)) (-1188) |#2|) (T -428))
+((-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-428 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1214) (-438 *3))) (-14 *4 (-1188)) (-14 *5 *2))) (-4361 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (|:| |%expansion| (-319 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170)))))) (-5 *1 (-428 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-14 *6 (-1188)) (-14 *7 *3))))
+(-10 -7 (-15 -4361 ((-3 (|:| |%expansion| (-319 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112))) (-15 -3483 (|#2| |#2|)))
+((-3161 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|))) (-1060) (-438 |#1|) (-1060) (-438 |#3|)) (T -429))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *2 (-438 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-438 *5)))))
+(-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3483 ((|#2| |#2|) 106)) (-2964 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170)) 52)) (-3735 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170)) 170)))
+(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2964 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -3735 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -3483 (|#2| |#2|))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|) (-10 -8 (-15 -3491 ($ |#3|)))) (-856) (-13 (-1257 |#2| |#3|) (-370) (-1214) (-10 -8 (-15 -3011 ($ $)) (-15 -4161 ($ $)))) (-994 |#4|) (-1188)) (T -430))
+((-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *2 (-13 (-27) (-1214) (-438 *3) (-10 -8 (-15 -3491 ($ *4))))) (-4 *4 (-856)) (-4 *5 (-13 (-1257 *2 *4) (-370) (-1214) (-10 -8 (-15 -3011 ($ $)) (-15 -4161 ($ $))))) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *6 (-994 *5)) (-14 *7 (-1188)))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -3491 ($ *7))))) (-4 *7 (-856)) (-4 *8 (-13 (-1257 *3 *7) (-370) (-1214) (-10 -8 (-15 -3011 ($ $)) (-15 -4161 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170)))))) (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8)) (-14 *10 (-1188)))) (-2964 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -3491 ($ *7))))) (-4 *7 (-856)) (-4 *8 (-13 (-1257 *3 *7) (-370) (-1214) (-10 -8 (-15 -3011 ($ $)) (-15 -4161 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170)))))) (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8)) (-14 *10 (-1188)))))
+(-10 -7 (-15 -2964 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -3735 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))) |#2| (-112) (-1170))) (-15 -3483 (|#2| |#2|)))
+((-4424 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2925 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3161 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2925 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4424 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1111) (-433 |#1|) (-1111) (-433 |#3|)) (T -431))
+((-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1111)) (-4 *5 (-1111)) (-4 *2 (-433 *5)) (-5 *1 (-431 *6 *4 *5 *2)) (-4 *4 (-433 *6)))) (-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1111)) (-4 *2 (-1111)) (-5 *1 (-431 *5 *4 *2 *6)) (-4 *4 (-433 *5)) (-4 *6 (-433 *2)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-433 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-433 *5)))))
+(-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2925 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4424 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3054 (($) 51)) (-2266 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3395 (($ $ $) 46)) (-3219 (((-112) $ $) 35)) (-3037 (((-779)) 55)) (-1926 (($ (-652 |#2|)) 23) (($) NIL)) (-2688 (($) 66)) (-2942 (((-112) $ $) 15)) (-2536 ((|#2| $) 77)) (-3928 ((|#2| $) 75)) (-4370 (((-930) $) 70)) (-3225 (($ $ $) 42)) (-1795 (($ (-930)) 60)) (-2645 (($ $ |#2|) NIL) (($ $ $) 45)) (-1371 (((-779) (-1 (-112) |#2|) $) NIL) (((-779) |#2| $) 31)) (-3503 (($ (-652 |#2|)) 27)) (-3347 (($ $) 53)) (-3491 (((-870) $) 40)) (-2443 (((-779) $) 24)) (-3826 (($ (-652 |#2|)) 22) (($) NIL)) (-3921 (((-112) $ $) 19)))
+(((-432 |#1| |#2|) (-10 -8 (-15 -3037 ((-779))) (-15 -1795 (|#1| (-930))) (-15 -4370 ((-930) |#1|)) (-15 -2688 (|#1|)) (-15 -2536 (|#2| |#1|)) (-15 -3928 (|#2| |#1|)) (-15 -3054 (|#1|)) (-15 -3347 (|#1| |#1|)) (-15 -2443 ((-779) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3826 (|#1|)) (-15 -3826 (|#1| (-652 |#2|))) (-15 -1926 (|#1|)) (-15 -1926 (|#1| (-652 |#2|))) (-15 -3225 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| |#2|)) (-15 -3395 (|#1| |#1| |#1|)) (-15 -3219 ((-112) |#1| |#1|)) (-15 -2266 (|#1| |#1| |#1|)) (-15 -2266 (|#1| |#1| |#2|)) (-15 -2266 (|#1| |#2| |#1|)) (-15 -3503 (|#1| (-652 |#2|))) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|))) (-433 |#2|) (-1111)) (T -432))
+((-3037 (*1 *2) (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))))
+(-10 -8 (-15 -3037 ((-779))) (-15 -1795 (|#1| (-930))) (-15 -4370 ((-930) |#1|)) (-15 -2688 (|#1|)) (-15 -2536 (|#2| |#1|)) (-15 -3928 (|#2| |#1|)) (-15 -3054 (|#1|)) (-15 -3347 (|#1| |#1|)) (-15 -2443 ((-779) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -2942 ((-112) |#1| |#1|)) (-15 -3826 (|#1|)) (-15 -3826 (|#1| (-652 |#2|))) (-15 -1926 (|#1|)) (-15 -1926 (|#1| (-652 |#2|))) (-15 -3225 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| |#2|)) (-15 -3395 (|#1| |#1| |#1|)) (-15 -3219 ((-112) |#1| |#1|)) (-15 -2266 (|#1| |#1| |#1|)) (-15 -2266 (|#1| |#1| |#2|)) (-15 -2266 (|#1| |#2| |#1|)) (-15 -3503 (|#1| (-652 |#2|))) (-15 -1371 ((-779) |#2| |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)))
+((-3464 (((-112) $ $) 19)) (-3054 (($) 68 (|has| |#1| (-375)))) (-2266 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3395 (($ $ $) 79)) (-3219 (((-112) $ $) 80)) (-2938 (((-112) $ (-779)) 8)) (-3037 (((-779)) 62 (|has| |#1| (-375)))) (-1926 (($ (-652 |#1|)) 75) (($) 74)) (-2265 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-3955 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-2688 (($) 65 (|has| |#1| (-375)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2942 (((-112) $ $) 71)) (-2545 (((-112) $ (-779)) 9)) (-2536 ((|#1| $) 66 (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3928 ((|#1| $) 67 (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-4370 (((-930) $) 64 (|has| |#1| (-375)))) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22)) (-3225 (($ $ $) 76)) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41)) (-1795 (($ (-930)) 63 (|has| |#1| (-375)))) (-2614 (((-1131) $) 21)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2645 (($ $ |#1|) 78) (($ $ $) 77)) (-2145 (($) 50) (($ (-652 |#1|)) 49)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 51)) (-3347 (($ $) 69 (|has| |#1| (-375)))) (-3491 (((-870) $) 18)) (-2443 (((-779) $) 70)) (-3826 (($ (-652 |#1|)) 73) (($) 72)) (-3424 (((-112) $ $) 23)) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20)) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-433 |#1|) (-141) (-1111)) (T -433))
+((-2443 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1111)) (-5 *2 (-779)))) (-3347 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-375)))) (-3054 (*1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-375)) (-4 *2 (-1111)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858)))))
+(-13 (-231 |t#1|) (-1109 |t#1|) (-10 -8 (-6 -4454) (-15 -2443 ((-779) $)) (IF (|has| |t#1| (-375)) (PROGN (-6 (-375)) (-15 -3347 ($ $)) (-15 -3054 ($))) |%noBranch|) (IF (|has| |t#1| (-858)) (PROGN (-15 -3928 (|t#1| $)) (-15 -2536 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-231 |#1|) . T) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-375) |has| |#1| (-375)) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1109 |#1|) . T) ((-1111) . T) ((-1229) . T))
+((-4199 (((-594 |#2|) |#2| (-1188)) 36)) (-2584 (((-594 |#2|) |#2| (-1188)) 21)) (-1889 ((|#2| |#2| (-1188)) 26)))
+(((-434 |#1| |#2|) (-10 -7 (-15 -2584 ((-594 |#2|) |#2| (-1188))) (-15 -4199 ((-594 |#2|) |#2| (-1188))) (-15 -1889 (|#2| |#2| (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-29 |#1|))) (T -434))
+((-1889 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-434 *4 *2)) (-4 *2 (-13 (-1214) (-29 *4))))) (-4199 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3)) (-4 *3 (-13 (-1214) (-29 *5))))) (-2584 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3)) (-4 *3 (-13 (-1214) (-29 *5))))))
+(-10 -7 (-15 -2584 ((-594 |#2|) |#2| (-1188))) (-15 -4199 ((-594 |#2|) |#2| (-1188))) (-15 -1889 (|#2| |#2| (-1188))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-3560 (($ |#2| |#1|) 37)) (-2370 (($ |#2| |#1|) 35)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-337 |#2|)) 25)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 10 T CONST)) (-2619 (($) 16 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 36)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-435 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4441)) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) |%noBranch|) (-15 -3491 ($ |#1|)) (-15 -3491 ($ (-337 |#2|))) (-15 -3560 ($ |#2| |#1|)) (-15 -2370 ($ |#2| |#1|)))) (-13 (-174) (-38 (-415 (-572)))) (-13 (-858) (-21))) (T -435))
+((-3491 (*1 *1 *2) (-12 (-5 *1 (-435 *2 *3)) (-4 *2 (-13 (-174) (-38 (-415 (-572))))) (-4 *3 (-13 (-858) (-21))))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-337 *4)) (-4 *4 (-13 (-858) (-21))) (-5 *1 (-435 *3 *4)) (-4 *3 (-13 (-174) (-38 (-415 (-572))))))) (-3560 (*1 *1 *2 *3) (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572))))) (-4 *2 (-13 (-858) (-21))))) (-2370 (*1 *1 *2 *3) (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572))))) (-4 *2 (-13 (-858) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4441)) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) |%noBranch|) (-15 -3491 ($ |#1|)) (-15 -3491 ($ (-337 |#2|))) (-15 -3560 ($ |#2| |#1|)) (-15 -2370 ($ |#2| |#1|))))
+((-4161 (((-3 |#2| (-652 |#2|)) |#2| (-1188)) 115)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -4161 ((-3 |#2| (-652 |#2|)) |#2| (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-29 |#1|))) (T -436))
+((-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 *3 (-652 *3))) (-5 *1 (-436 *5 *3)) (-4 *3 (-13 (-1214) (-968) (-29 *5))))))
+(-10 -7 (-15 -4161 ((-3 |#2| (-652 |#2|)) |#2| (-1188))))
+((-2220 (((-652 (-1188)) $) 81)) (-4063 (((-415 (-1184 $)) $ (-620 $)) 313)) (-1480 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) 277)) (-3072 (((-3 (-620 $) "failed") $) NIL) (((-3 (-1188) "failed") $) 84) (((-3 (-572) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-415 (-961 |#2|)) "failed") $) 363) (((-3 (-961 |#2|) "failed") $) 275) (((-3 (-415 (-572)) "failed") $) NIL)) (-1869 (((-620 $) $) NIL) (((-1188) $) 28) (((-572) $) NIL) ((|#2| $) 271) (((-415 (-961 |#2|)) $) 345) (((-961 |#2|) $) 272) (((-415 (-572)) $) NIL)) (-3181 (((-115) (-115)) 47)) (-3710 (($ $) 99)) (-2094 (((-3 (-620 $) "failed") $) 268)) (-3165 (((-652 (-620 $)) $) 269)) (-3570 (((-3 (-652 $) "failed") $) 287)) (-1828 (((-3 (-2 (|:| |val| $) (|:| -2477 (-572))) "failed") $) 294)) (-2257 (((-3 (-652 $) "failed") $) 285)) (-4285 (((-3 (-2 (|:| -2379 (-572)) (|:| |var| (-620 $))) "failed") $) 304)) (-2298 (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $) 291) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-1188)) 257)) (-1817 (((-112) $) 17)) (-1829 ((|#2| $) 19)) (-3654 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) 276) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 109) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1188)) 62) (($ $ (-652 (-1188))) 280) (($ $) 281) (($ $ (-115) $ (-1188)) 65) (($ $ (-652 (-115)) (-652 $) (-1188)) 72) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) 120) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) 282) (($ $ (-1188) (-779) (-1 $ (-652 $))) 105) (($ $ (-1188) (-779) (-1 $ $)) 104)) (-2679 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) 119)) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) 278)) (-3982 (($ $) 324)) (-3222 (((-901 (-572)) $) 297) (((-901 (-386)) $) 301) (($ (-426 $)) 359) (((-544) $) NIL)) (-3491 (((-870) $) 279) (($ (-620 $)) 93) (($ (-1188)) 24) (($ |#2|) NIL) (($ (-1136 |#2| (-620 $))) NIL) (($ (-415 |#2|)) 329) (($ (-961 (-415 |#2|))) 368) (($ (-415 (-961 (-415 |#2|)))) 341) (($ (-415 (-961 |#2|))) 335) (($ $) NIL) (($ (-961 |#2|)) 216) (($ (-415 (-572))) 373) (($ (-572)) NIL)) (-2455 (((-779)) 88)) (-3088 (((-112) (-115)) 42)) (-2244 (($ (-1188) $) 31) (($ (-1188) $ $) 32) (($ (-1188) $ $ $) 33) (($ (-1188) $ $ $ $) 34) (($ (-1188) (-652 $)) 39)) (* (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ |#2| $) 306) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
+(((-437 |#1| |#2|) (-10 -8 (-15 * (|#1| (-930) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3491 (|#1| (-572))) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3491 (|#1| (-961 |#2|))) (-15 -3072 ((-3 (-961 |#2|) "failed") |#1|)) (-15 -1869 ((-961 |#2|) |#1|)) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3491 (|#1| (-415 (-961 |#2|)))) (-15 -3072 ((-3 (-415 (-961 |#2|)) "failed") |#1|)) (-15 -1869 ((-415 (-961 |#2|)) |#1|)) (-15 -4063 ((-415 (-1184 |#1|)) |#1| (-620 |#1|))) (-15 -3491 (|#1| (-415 (-961 (-415 |#2|))))) (-15 -3491 (|#1| (-961 (-415 |#2|)))) (-15 -3491 (|#1| (-415 |#2|))) (-15 -3982 (|#1| |#1|)) (-15 -3222 (|#1| (-426 |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-779) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-779) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| |#1|)))) (-15 -1828 ((-3 (-2 (|:| |val| |#1|) (|:| -2477 (-572))) "failed") |#1|)) (-15 -2298 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -2477 (-572))) "failed") |#1| (-1188))) (-15 -2298 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -2477 (-572))) "failed") |#1| (-115))) (-15 -3710 (|#1| |#1|)) (-15 -3491 (|#1| (-1136 |#2| (-620 |#1|)))) (-15 -4285 ((-3 (-2 (|:| -2379 (-572)) (|:| |var| (-620 |#1|))) "failed") |#1|)) (-15 -2257 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -2298 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -2477 (-572))) "failed") |#1|)) (-15 -3570 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 |#1|) (-1188))) (-15 -3654 (|#1| |#1| (-115) |#1| (-1188))) (-15 -3654 (|#1| |#1|)) (-15 -3654 (|#1| |#1| (-652 (-1188)))) (-15 -3654 (|#1| |#1| (-1188))) (-15 -2244 (|#1| (-1188) (-652 |#1|))) (-15 -2244 (|#1| (-1188) |#1| |#1| |#1| |#1|)) (-15 -2244 (|#1| (-1188) |#1| |#1| |#1|)) (-15 -2244 (|#1| (-1188) |#1| |#1|)) (-15 -2244 (|#1| (-1188) |#1|)) (-15 -2220 ((-652 (-1188)) |#1|)) (-15 -1829 (|#2| |#1|)) (-15 -1817 ((-112) |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3491 (|#1| (-1188))) (-15 -3072 ((-3 (-1188) "failed") |#1|)) (-15 -1869 ((-1188) |#1|)) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -3165 ((-652 (-620 |#1|)) |#1|)) (-15 -2094 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1480 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -1480 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1480 (|#1| |#1| (-300 |#1|))) (-15 -2679 (|#1| (-115) (-652 |#1|))) (-15 -2679 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -3654 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -3491 (|#1| (-620 |#1|))) (-15 -3072 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1869 ((-620 |#1|) |#1|)) (-15 -3491 ((-870) |#1|))) (-438 |#2|) (-1111)) (T -437))
+((-3181 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1111)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-437 *4 *5)) (-4 *4 (-438 *5)))) (-2455 (*1 *2) (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))))
+(-10 -8 (-15 * (|#1| (-930) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3491 (|#1| (-572))) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3491 (|#1| (-961 |#2|))) (-15 -3072 ((-3 (-961 |#2|) "failed") |#1|)) (-15 -1869 ((-961 |#2|) |#1|)) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -3491 (|#1| (-415 (-961 |#2|)))) (-15 -3072 ((-3 (-415 (-961 |#2|)) "failed") |#1|)) (-15 -1869 ((-415 (-961 |#2|)) |#1|)) (-15 -4063 ((-415 (-1184 |#1|)) |#1| (-620 |#1|))) (-15 -3491 (|#1| (-415 (-961 (-415 |#2|))))) (-15 -3491 (|#1| (-961 (-415 |#2|)))) (-15 -3491 (|#1| (-415 |#2|))) (-15 -3982 (|#1| |#1|)) (-15 -3222 (|#1| (-426 |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-779) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-779) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-779)) (-652 (-1 |#1| |#1|)))) (-15 -1828 ((-3 (-2 (|:| |val| |#1|) (|:| -2477 (-572))) "failed") |#1|)) (-15 -2298 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -2477 (-572))) "failed") |#1| (-1188))) (-15 -2298 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -2477 (-572))) "failed") |#1| (-115))) (-15 -3710 (|#1| |#1|)) (-15 -3491 (|#1| (-1136 |#2| (-620 |#1|)))) (-15 -4285 ((-3 (-2 (|:| -2379 (-572)) (|:| |var| (-620 |#1|))) "failed") |#1|)) (-15 -2257 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -2298 ((-3 (-2 (|:| |var| (-620 |#1|)) (|:| -2477 (-572))) "failed") |#1|)) (-15 -3570 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 |#1|) (-1188))) (-15 -3654 (|#1| |#1| (-115) |#1| (-1188))) (-15 -3654 (|#1| |#1|)) (-15 -3654 (|#1| |#1| (-652 (-1188)))) (-15 -3654 (|#1| |#1| (-1188))) (-15 -2244 (|#1| (-1188) (-652 |#1|))) (-15 -2244 (|#1| (-1188) |#1| |#1| |#1| |#1|)) (-15 -2244 (|#1| (-1188) |#1| |#1| |#1|)) (-15 -2244 (|#1| (-1188) |#1| |#1|)) (-15 -2244 (|#1| (-1188) |#1|)) (-15 -2220 ((-652 (-1188)) |#1|)) (-15 -1829 (|#2| |#1|)) (-15 -1817 ((-112) |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3491 (|#1| (-1188))) (-15 -3072 ((-3 (-1188) "failed") |#1|)) (-15 -1869 ((-1188) |#1|)) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-115) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-115)) (-652 (-1 |#1| |#1|)))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| |#1|))) (-15 -3654 (|#1| |#1| (-1188) (-1 |#1| (-652 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| (-652 |#1|))))) (-15 -3654 (|#1| |#1| (-652 (-1188)) (-652 (-1 |#1| |#1|)))) (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -3165 ((-652 (-620 |#1|)) |#1|)) (-15 -2094 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1480 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -1480 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1480 (|#1| |#1| (-300 |#1|))) (-15 -2679 (|#1| (-115) (-652 |#1|))) (-15 -2679 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1| |#1|)) (-15 -2679 (|#1| (-115) |#1|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -3654 (|#1| |#1| (-652 (-620 |#1|)) (-652 |#1|))) (-15 -3654 (|#1| |#1| (-620 |#1|) |#1|)) (-15 -3491 (|#1| (-620 |#1|))) (-15 -3072 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -1869 ((-620 |#1|) |#1|)) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 116 (|has| |#1| (-25)))) (-2220 (((-652 (-1188)) $) 203)) (-4063 (((-415 (-1184 $)) $ (-620 $)) 171 (|has| |#1| (-564)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 143 (|has| |#1| (-564)))) (-1697 (($ $) 144 (|has| |#1| (-564)))) (-1774 (((-112) $) 146 (|has| |#1| (-564)))) (-1746 (((-652 (-620 $)) $) 39)) (-2092 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1480 (($ $ (-300 $)) 51) (($ $ (-652 (-300 $))) 50) (($ $ (-652 (-620 $)) (-652 $)) 49)) (-1861 (($ $) 163 (|has| |#1| (-564)))) (-2359 (((-426 $) $) 164 (|has| |#1| (-564)))) (-4252 (((-112) $ $) 154 (|has| |#1| (-564)))) (-1586 (($) 104 (-3783 (|has| |#1| (-1123)) (|has| |#1| (-25))) CONST)) (-3072 (((-3 (-620 $) "failed") $) 64) (((-3 (-1188) "failed") $) 216) (((-3 (-572) "failed") $) 210 (|has| |#1| (-1049 (-572)))) (((-3 |#1| "failed") $) 207) (((-3 (-415 (-961 |#1|)) "failed") $) 169 (|has| |#1| (-564))) (((-3 (-961 |#1|) "failed") $) 123 (|has| |#1| (-1060))) (((-3 (-415 (-572)) "failed") $) 98 (-3783 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-1869 (((-620 $) $) 65) (((-1188) $) 217) (((-572) $) 209 (|has| |#1| (-1049 (-572)))) ((|#1| $) 208) (((-415 (-961 |#1|)) $) 170 (|has| |#1| (-564))) (((-961 |#1|) $) 124 (|has| |#1| (-1060))) (((-415 (-572)) $) 99 (-3783 (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572))))))) (-3407 (($ $ $) 158 (|has| |#1| (-564)))) (-2245 (((-697 (-572)) (-697 $)) 137 (-3804 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 136 (-3804 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 135 (|has| |#1| (-1060))) (((-697 |#1|) (-697 $)) 134 (|has| |#1| (-1060)))) (-2982 (((-3 $ "failed") $) 106 (|has| |#1| (-1123)))) (-3418 (($ $ $) 157 (|has| |#1| (-564)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 152 (|has| |#1| (-564)))) (-3439 (((-112) $) 165 (|has| |#1| (-564)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 212 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 211 (|has| |#1| (-895 (-386))))) (-3666 (($ $) 46) (($ (-652 $)) 45)) (-1323 (((-652 (-115)) $) 38)) (-3181 (((-115) (-115)) 37)) (-4422 (((-112) $) 105 (|has| |#1| (-1123)))) (-2270 (((-112) $) 17 (|has| $ (-1049 (-572))))) (-3710 (($ $) 186 (|has| |#1| (-1060)))) (-2209 (((-1136 |#1| (-620 $)) $) 187 (|has| |#1| (-1060)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 161 (|has| |#1| (-564)))) (-2328 (((-1184 $) (-620 $)) 20 (|has| $ (-1060)))) (-3161 (($ (-1 $ $) (-620 $)) 31)) (-2094 (((-3 (-620 $) "failed") $) 41)) (-1335 (($ (-652 $)) 150 (|has| |#1| (-564))) (($ $ $) 149 (|has| |#1| (-564)))) (-3618 (((-1170) $) 10)) (-3165 (((-652 (-620 $)) $) 40)) (-2296 (($ (-115) $) 33) (($ (-115) (-652 $)) 32)) (-3570 (((-3 (-652 $) "failed") $) 192 (|has| |#1| (-1123)))) (-1828 (((-3 (-2 (|:| |val| $) (|:| -2477 (-572))) "failed") $) 183 (|has| |#1| (-1060)))) (-2257 (((-3 (-652 $) "failed") $) 190 (|has| |#1| (-25)))) (-4285 (((-3 (-2 (|:| -2379 (-572)) (|:| |var| (-620 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2298 (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $) 191 (|has| |#1| (-1123))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-115)) 185 (|has| |#1| (-1060))) (((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-1188)) 184 (|has| |#1| (-1060)))) (-2685 (((-112) $ (-115)) 35) (((-112) $ (-1188)) 34)) (-1809 (($ $) 108 (-3783 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-3920 (((-779) $) 42)) (-2614 (((-1131) $) 11)) (-1817 (((-112) $) 205)) (-1829 ((|#1| $) 204)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 151 (|has| |#1| (-564)))) (-1370 (($ (-652 $)) 148 (|has| |#1| (-564))) (($ $ $) 147 (|has| |#1| (-564)))) (-3681 (((-112) $ $) 30) (((-112) $ (-1188)) 29)) (-2972 (((-426 $) $) 162 (|has| |#1| (-564)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-564))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 159 (|has| |#1| (-564)))) (-3453 (((-3 $ "failed") $ $) 142 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 153 (|has| |#1| (-564)))) (-3601 (((-112) $) 18 (|has| $ (-1049 (-572))))) (-3654 (($ $ (-620 $) $) 62) (($ $ (-652 (-620 $)) (-652 $)) 61) (($ $ (-652 (-300 $))) 60) (($ $ (-300 $)) 59) (($ $ $ $) 58) (($ $ (-652 $) (-652 $)) 57) (($ $ (-652 (-1188)) (-652 (-1 $ $))) 28) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) 27) (($ $ (-1188) (-1 $ (-652 $))) 26) (($ $ (-1188) (-1 $ $)) 25) (($ $ (-652 (-115)) (-652 (-1 $ $))) 24) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) 23) (($ $ (-115) (-1 $ (-652 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1188)) 197 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188))) 196 (|has| |#1| (-622 (-544)))) (($ $) 195 (|has| |#1| (-622 (-544)))) (($ $ (-115) $ (-1188)) 194 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-115)) (-652 $) (-1188)) 193 (|has| |#1| (-622 (-544)))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $))) 182 (|has| |#1| (-1060))) (($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $)))) 181 (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ (-652 $))) 180 (|has| |#1| (-1060))) (($ $ (-1188) (-779) (-1 $ $)) 179 (|has| |#1| (-1060)))) (-4395 (((-779) $) 155 (|has| |#1| (-564)))) (-2679 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-652 $)) 52)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 156 (|has| |#1| (-564)))) (-2151 (($ $) 44) (($ $ $) 43)) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) 128 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 127 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 126 (|has| |#1| (-1060))) (($ $ (-1188)) 125 (|has| |#1| (-1060)))) (-3982 (($ $) 176 (|has| |#1| (-564)))) (-2224 (((-1136 |#1| (-620 $)) $) 177 (|has| |#1| (-564)))) (-3858 (($ $) 19 (|has| $ (-1060)))) (-3222 (((-901 (-572)) $) 214 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 213 (|has| |#1| (-622 (-901 (-386))))) (($ (-426 $)) 178 (|has| |#1| (-564))) (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-4242 (($ $ $) 111 (|has| |#1| (-481)))) (-1433 (($ $ $) 112 (|has| |#1| (-481)))) (-3491 (((-870) $) 12) (($ (-620 $)) 63) (($ (-1188)) 215) (($ |#1|) 206) (($ (-1136 |#1| (-620 $))) 188 (|has| |#1| (-1060))) (($ (-415 |#1|)) 174 (|has| |#1| (-564))) (($ (-961 (-415 |#1|))) 173 (|has| |#1| (-564))) (($ (-415 (-961 (-415 |#1|)))) 172 (|has| |#1| (-564))) (($ (-415 (-961 |#1|))) 168 (|has| |#1| (-564))) (($ $) 141 (|has| |#1| (-564))) (($ (-961 |#1|)) 122 (|has| |#1| (-1060))) (($ (-415 (-572))) 97 (-3783 (|has| |#1| (-564)) (-12 (|has| |#1| (-1049 (-572))) (|has| |#1| (-564))) (|has| |#1| (-1049 (-415 (-572)))))) (($ (-572)) 96 (-3783 (|has| |#1| (-1060)) (|has| |#1| (-1049 (-572)))))) (-2210 (((-3 $ "failed") $) 138 (|has| |#1| (-146)))) (-2455 (((-779)) 133 (|has| |#1| (-1060)) CONST)) (-1850 (($ $) 48) (($ (-652 $)) 47)) (-3088 (((-112) (-115)) 36)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 145 (|has| |#1| (-564)))) (-2244 (($ (-1188) $) 202) (($ (-1188) $ $) 201) (($ (-1188) $ $ $) 200) (($ (-1188) $ $ $ $) 199) (($ (-1188) (-652 $)) 198)) (-2602 (($) 115 (|has| |#1| (-25)) CONST)) (-2619 (($) 103 (|has| |#1| (-1123)) CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) 132 (|has| |#1| (-1060))) (($ $ (-1188) (-779)) 131 (|has| |#1| (-1060))) (($ $ (-652 (-1188))) 130 (|has| |#1| (-1060))) (($ $ (-1188)) 129 (|has| |#1| (-1060)))) (-3921 (((-112) $ $) 6)) (-4029 (($ (-1136 |#1| (-620 $)) (-1136 |#1| (-620 $))) 175 (|has| |#1| (-564))) (($ $ $) 109 (-3783 (|has| |#1| (-481)) (|has| |#1| (-564))))) (-4018 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-4005 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-572)) 110 (-3783 (|has| |#1| (-481)) (|has| |#1| (-564)))) (($ $ (-779)) 107 (|has| |#1| (-1123))) (($ $ (-930)) 102 (|has| |#1| (-1123)))) (* (($ (-415 (-572)) $) 167 (|has| |#1| (-564))) (($ $ (-415 (-572))) 166 (|has| |#1| (-564))) (($ |#1| $) 140 (|has| |#1| (-174))) (($ $ |#1|) 139 (|has| |#1| (-174))) (($ (-572) $) 119 (|has| |#1| (-21))) (($ (-779) $) 117 (|has| |#1| (-25))) (($ (-930) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1123)))))
+(((-438 |#1|) (-141) (-1111)) (T -438))
+((-1817 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-1188))))) (-2244 (*1 *1 *2 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2244 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2244 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2244 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))) (-2244 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-652 *1)) (-4 *1 (-438 *4)) (-4 *4 (-1111)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-4 *3 (-622 (-544))))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1188))) (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-4 *3 (-622 (-544))))) (-3654 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-622 (-544))))) (-3654 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1188)) (-4 *1 (-438 *4)) (-4 *4 (-1111)) (-4 *4 (-622 (-544))))) (-3654 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 *1)) (-5 *4 (-1188)) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-622 (-544))))) (-3570 (*1 *2 *1) (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-438 *3)))) (-2298 (*1 *2 *1) (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111)) (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -2477 (-572)))) (-4 *1 (-438 *3)))) (-2257 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-438 *3)))) (-4285 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111)) (-5 *2 (-2 (|:| -2379 (-572)) (|:| |var| (-620 *1)))) (-4 *1 (-438 *3)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-1060)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-2209 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1))) (-4 *1 (-438 *3)))) (-3710 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-1060)))) (-2298 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1060)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -2477 (-572)))) (-4 *1 (-438 *4)))) (-2298 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-1060)) (-4 *4 (-1111)) (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -2477 (-572)))) (-4 *1 (-438 *4)))) (-1828 (*1 *2 *1) (|partial| -12 (-4 *3 (-1060)) (-4 *3 (-1111)) (-5 *2 (-2 (|:| |val| *1) (|:| -2477 (-572)))) (-4 *1 (-438 *3)))) (-3654 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779))) (-5 *4 (-652 (-1 *1 *1))) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-3654 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779))) (-5 *4 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-3654 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 (-652 *1))) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-3654 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 *1)) (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-426 *1)) (-4 *1 (-438 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))) (-2224 (*1 *2 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1))) (-4 *1 (-438 *3)))) (-3982 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-564)))) (-4029 (*1 *1 *2 *2) (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-415 *3)) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-961 (-415 *3))) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-415 *3)))) (-4 *3 (-564)) (-4 *3 (-1111)) (-4 *1 (-438 *3)))) (-4063 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-438 *4)) (-4 *4 (-1111)) (-4 *4 (-564)) (-5 *2 (-415 (-1184 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-4 *3 (-1123)))))
+(-13 (-308) (-1049 (-1188)) (-893 |t#1|) (-408 |t#1|) (-419 |t#1|) (-10 -8 (-15 -1817 ((-112) $)) (-15 -1829 (|t#1| $)) (-15 -2220 ((-652 (-1188)) $)) (-15 -2244 ($ (-1188) $)) (-15 -2244 ($ (-1188) $ $)) (-15 -2244 ($ (-1188) $ $ $)) (-15 -2244 ($ (-1188) $ $ $ $)) (-15 -2244 ($ (-1188) (-652 $))) (IF (|has| |t#1| (-622 (-544))) (PROGN (-6 (-622 (-544))) (-15 -3654 ($ $ (-1188))) (-15 -3654 ($ $ (-652 (-1188)))) (-15 -3654 ($ $)) (-15 -3654 ($ $ (-115) $ (-1188))) (-15 -3654 ($ $ (-652 (-115)) (-652 $) (-1188)))) |%noBranch|) (IF (|has| |t#1| (-1123)) (PROGN (-6 (-734)) (-15 ** ($ $ (-779))) (-15 -3570 ((-3 (-652 $) "failed") $)) (-15 -2298 ((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-481)) (-6 (-481)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2257 ((-3 (-652 $) "failed") $)) (-15 -4285 ((-3 (-2 (|:| -2379 (-572)) (|:| |var| (-620 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1060)) (PROGN (-6 (-1060)) (-6 (-1049 (-961 |t#1|))) (-6 (-909 (-1188))) (-6 (-384 |t#1|)) (-15 -3491 ($ (-1136 |t#1| (-620 $)))) (-15 -2209 ((-1136 |t#1| (-620 $)) $)) (-15 -3710 ($ $)) (-15 -2298 ((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-115))) (-15 -2298 ((-3 (-2 (|:| |var| (-620 $)) (|:| -2477 (-572))) "failed") $ (-1188))) (-15 -1828 ((-3 (-2 (|:| |val| $) (|:| -2477 (-572))) "failed") $)) (-15 -3654 ($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ $)))) (-15 -3654 ($ $ (-652 (-1188)) (-652 (-779)) (-652 (-1 $ (-652 $))))) (-15 -3654 ($ $ (-1188) (-779) (-1 $ (-652 $)))) (-15 -3654 ($ $ (-1188) (-779) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-6 (-370)) (-6 (-1049 (-415 (-961 |t#1|)))) (-15 -3222 ($ (-426 $))) (-15 -2224 ((-1136 |t#1| (-620 $)) $)) (-15 -3982 ($ $)) (-15 -4029 ($ (-1136 |t#1| (-620 $)) (-1136 |t#1| (-620 $)))) (-15 -3491 ($ (-415 |t#1|))) (-15 -3491 ($ (-961 (-415 |t#1|)))) (-15 -3491 ($ (-415 (-961 (-415 |t#1|))))) (-15 -4063 ((-415 (-1184 $)) $ (-620 $))) (IF (|has| |t#1| (-1049 (-572))) (-6 (-1049 (-415 (-572)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-415 (-572))) |has| |#1| (-564)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-564)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-564)) ((-132) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-564))) ((-624 #1=(-415 (-961 |#1|))) |has| |#1| (-564)) ((-624 (-572)) -3783 (|has| |#1| (-1060)) (|has| |#1| (-1049 (-572))) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-624 #2=(-620 $)) . T) ((-624 #3=(-961 |#1|)) |has| |#1| (-1060)) ((-624 #4=(-1188)) . T) ((-624 |#1|) . T) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) |has| |#1| (-564)) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-247) |has| |#1| (-564)) ((-296) |has| |#1| (-564)) ((-313) |has| |#1| (-564)) ((-315 $) . T) ((-308) . T) ((-370) |has| |#1| (-564)) ((-384 |#1|) |has| |#1| (-1060)) ((-408 |#1|) . T) ((-419 |#1|) . T) ((-460) |has| |#1| (-564)) ((-481) |has| |#1| (-481)) ((-522 (-620 $) $) . T) ((-522 $ $) . T) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-564)) ((-654 (-572)) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-654 |#1|) |has| |#1| (-174)) ((-654 $) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-656 #0#) |has| |#1| (-564)) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-648 #0#) |has| |#1| (-564)) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-647 (-572)) -12 (|has| |#1| (-647 (-572))) (|has| |#1| (-1060))) ((-647 |#1|) |has| |#1| (-1060)) ((-725 #0#) |has| |#1| (-564)) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) -3783 (|has| |#1| (-1123)) (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-481)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-909 (-1188)) |has| |#1| (-1060)) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-929) |has| |#1| (-564)) ((-1049 (-415 (-572))) -3783 (|has| |#1| (-1049 (-415 (-572)))) (-12 (|has| |#1| (-564)) (|has| |#1| (-1049 (-572))))) ((-1049 #1#) |has| |#1| (-564)) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #2#) . T) ((-1049 #3#) |has| |#1| (-1060)) ((-1049 #4#) . T) ((-1049 |#1|) . T) ((-1062 #0#) |has| |#1| (-564)) ((-1062 |#1|) |has| |#1| (-174)) ((-1062 $) |has| |#1| (-564)) ((-1067 #0#) |has| |#1| (-564)) ((-1067 |#1|) |has| |#1| (-174)) ((-1067 $) |has| |#1| (-564)) ((-1060) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1069) -3783 (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1123) -3783 (|has| |#1| (-1123)) (|has| |#1| (-1060)) (|has| |#1| (-564)) (|has| |#1| (-481)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1111) . T) ((-1229) . T) ((-1233) |has| |#1| (-564)))
+((-3318 ((|#2| |#2| |#2|) 31)) (-3181 (((-115) (-115)) 43)) (-1894 ((|#2| |#2|) 63)) (-3743 ((|#2| |#2|) 66)) (-3032 ((|#2| |#2|) 30)) (-4317 ((|#2| |#2| |#2|) 33)) (-4122 ((|#2| |#2| |#2|) 35)) (-3582 ((|#2| |#2| |#2|) 32)) (-4264 ((|#2| |#2| |#2|) 34)) (-3088 (((-112) (-115)) 41)) (-2815 ((|#2| |#2|) 37)) (-1659 ((|#2| |#2|) 36)) (-2775 ((|#2| |#2|) 25)) (-3227 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2478 ((|#2| |#2| |#2|) 29)))
+(((-439 |#1| |#2|) (-10 -7 (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -2775 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -3227 (|#2| |#2| |#2|)) (-15 -2478 (|#2| |#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -3318 (|#2| |#2| |#2|)) (-15 -3582 (|#2| |#2| |#2|)) (-15 -4317 (|#2| |#2| |#2|)) (-15 -4264 (|#2| |#2| |#2|)) (-15 -4122 (|#2| |#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -1894 (|#2| |#2|))) (-564) (-438 |#1|)) (T -439))
+((-1894 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-4122 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-4264 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-4317 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3582 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3318 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3032 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-2478 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3227 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-439 *3 *4)) (-4 *4 (-438 *3)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-439 *4 *5)) (-4 *5 (-438 *4)))))
+(-10 -7 (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -2775 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -3227 (|#2| |#2| |#2|)) (-15 -2478 (|#2| |#2| |#2|)) (-15 -3032 (|#2| |#2|)) (-15 -3318 (|#2| |#2| |#2|)) (-15 -3582 (|#2| |#2| |#2|)) (-15 -4317 (|#2| |#2| |#2|)) (-15 -4264 (|#2| |#2| |#2|)) (-15 -4122 (|#2| |#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -1894 (|#2| |#2|)))
+((-1345 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1184 |#2|)) (|:| |pol2| (-1184 |#2|)) (|:| |prim| (-1184 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-652 (-1184 |#2|))) (|:| |prim| (-1184 |#2|))) (-652 |#2|)) 65)))
+(((-440 |#1| |#2|) (-10 -7 (-15 -1345 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-652 (-1184 |#2|))) (|:| |prim| (-1184 |#2|))) (-652 |#2|))) (IF (|has| |#2| (-27)) (-15 -1345 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1184 |#2|)) (|:| |pol2| (-1184 |#2|)) (|:| |prim| (-1184 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-564) (-148)) (-438 |#1|)) (T -440))
+((-1345 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1184 *3)) (|:| |pol2| (-1184 *3)) (|:| |prim| (-1184 *3)))) (-5 *1 (-440 *4 *3)) (-4 *3 (-27)) (-4 *3 (-438 *4)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-13 (-564) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-652 (-1184 *5))) (|:| |prim| (-1184 *5)))) (-5 *1 (-440 *4 *5)))))
+(-10 -7 (-15 -1345 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-652 (-1184 |#2|))) (|:| |prim| (-1184 |#2|))) (-652 |#2|))) (IF (|has| |#2| (-27)) (-15 -1345 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1184 |#2|)) (|:| |pol2| (-1184 |#2|)) (|:| |prim| (-1184 |#2|))) |#2| |#2|)) |%noBranch|))
+((-4333 (((-1284)) 18)) (-3300 (((-1184 (-415 (-572))) |#2| (-620 |#2|)) 40) (((-415 (-572)) |#2|) 24)))
+(((-441 |#1| |#2|) (-10 -7 (-15 -3300 ((-415 (-572)) |#2|)) (-15 -3300 ((-1184 (-415 (-572))) |#2| (-620 |#2|))) (-15 -4333 ((-1284)))) (-13 (-564) (-1049 (-572))) (-438 |#1|)) (T -441))
+((-4333 (*1 *2) (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1284)) (-5 *1 (-441 *3 *4)) (-4 *4 (-438 *3)))) (-3300 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-438 *5)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-441 *5 *3)))) (-3300 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 (-572))) (-5 *1 (-441 *4 *3)) (-4 *3 (-438 *4)))))
+(-10 -7 (-15 -3300 ((-415 (-572)) |#2|)) (-15 -3300 ((-1184 (-415 (-572))) |#2| (-620 |#2|))) (-15 -4333 ((-1284))))
+((-1688 (((-112) $) 32)) (-2194 (((-112) $) 34)) (-4387 (((-112) $) 35)) (-1771 (((-112) $) 38)) (-1666 (((-112) $) 33)) (-3859 (((-112) $) 37)) (-3491 (((-870) $) 20) (($ (-1170)) 31) (($ (-1188)) 26) (((-1188) $) 24) (((-1115) $) 23)) (-4279 (((-112) $) 36)) (-3921 (((-112) $ $) 17)))
+(((-442) (-13 (-621 (-870)) (-10 -8 (-15 -3491 ($ (-1170))) (-15 -3491 ($ (-1188))) (-15 -3491 ((-1188) $)) (-15 -3491 ((-1115) $)) (-15 -1688 ((-112) $)) (-15 -1666 ((-112) $)) (-15 -4387 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -1771 ((-112) $)) (-15 -4279 ((-112) $)) (-15 -2194 ((-112) $)) (-15 -3921 ((-112) $ $))))) (T -442))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-442)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-442)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-442)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-442)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3921 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -3491 ($ (-1170))) (-15 -3491 ($ (-1188))) (-15 -3491 ((-1188) $)) (-15 -3491 ((-1115) $)) (-15 -1688 ((-112) $)) (-15 -1666 ((-112) $)) (-15 -4387 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -1771 ((-112) $)) (-15 -4279 ((-112) $)) (-15 -2194 ((-112) $)) (-15 -3921 ((-112) $ $))))
+((-3843 (((-3 (-426 (-1184 (-415 (-572)))) "failed") |#3|) 72)) (-1790 (((-426 |#3|) |#3|) 34)) (-2251 (((-3 (-426 (-1184 (-48))) "failed") |#3|) 46 (|has| |#2| (-1049 (-48))))) (-1330 (((-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -4011 (-112))) |#3|) 37)))
+(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -1790 ((-426 |#3|) |#3|)) (-15 -3843 ((-3 (-426 (-1184 (-415 (-572)))) "failed") |#3|)) (-15 -1330 ((-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -4011 (-112))) |#3|)) (IF (|has| |#2| (-1049 (-48))) (-15 -2251 ((-3 (-426 (-1184 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-564) (-1049 (-572))) (-438 |#1|) (-1255 |#2|)) (T -443))
+((-2251 (*1 *2 *3) (|partial| -12 (-4 *5 (-1049 (-48))) (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-426 (-1184 (-48)))) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -4011 (-112)))) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-3843 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-426 (-1184 (-415 (-572))))) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-1790 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4)) (-5 *2 (-426 *3)) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))))
+(-10 -7 (-15 -1790 ((-426 |#3|) |#3|)) (-15 -3843 ((-3 (-426 (-1184 (-415 (-572)))) "failed") |#3|)) (-15 -1330 ((-3 (|:| |overq| (-1184 (-415 (-572)))) (|:| |overan| (-1184 (-48))) (|:| -4011 (-112))) |#3|)) (IF (|has| |#2| (-1049 (-48))) (-15 -2251 ((-3 (-426 (-1184 (-48))) "failed") |#3|)) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-4280 (((-1170) $ (-1170)) NIL)) (-3098 (($ $ (-1170)) NIL)) (-2594 (((-1170) $) NIL)) (-2750 (((-396) (-396) (-396)) 17) (((-396) (-396)) 15)) (-3589 (($ (-396)) NIL) (($ (-396) (-1170)) NIL)) (-2402 (((-396) $) NIL)) (-3618 (((-1170) $) NIL)) (-3134 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2412 (((-1284) (-1170)) 9)) (-3554 (((-1284) (-1170)) 10)) (-3455 (((-1284)) 11)) (-3491 (((-870) $) NIL)) (-3725 (($ $) 39)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-444) (-13 (-371 (-396) (-1170)) (-10 -7 (-15 -2750 ((-396) (-396) (-396))) (-15 -2750 ((-396) (-396))) (-15 -2412 ((-1284) (-1170))) (-15 -3554 ((-1284) (-1170))) (-15 -3455 ((-1284)))))) (T -444))
+((-2750 (*1 *2 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))) (-3455 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-444)))))
+(-13 (-371 (-396) (-1170)) (-10 -7 (-15 -2750 ((-396) (-396) (-396))) (-15 -2750 ((-396) (-396))) (-15 -2412 ((-1284) (-1170))) (-15 -3554 ((-1284) (-1170))) (-15 -3455 ((-1284)))))
+((-3464 (((-112) $ $) NIL)) (-2858 (((-3 (|:| |fst| (-442)) (|:| -2613 "void")) $) 11)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3007 (($) 35)) (-2544 (($) 41)) (-3875 (($) 37)) (-1461 (($) 39)) (-2329 (($) 36)) (-3079 (($) 38)) (-1791 (($) 40)) (-1324 (((-112) $) 8)) (-1449 (((-652 (-961 (-572))) $) 19)) (-3503 (($ (-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-652 (-1188)) (-112)) 29) (($ (-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-652 (-961 (-572))) (-112)) 30)) (-3491 (((-870) $) 24) (($ (-442)) 32)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-445) (-13 (-1111) (-10 -8 (-15 -3491 ($ (-442))) (-15 -2858 ((-3 (|:| |fst| (-442)) (|:| -2613 "void")) $)) (-15 -1449 ((-652 (-961 (-572))) $)) (-15 -1324 ((-112) $)) (-15 -3503 ($ (-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-652 (-1188)) (-112))) (-15 -3503 ($ (-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-652 (-961 (-572))) (-112))) (-15 -3007 ($)) (-15 -2329 ($)) (-15 -3875 ($)) (-15 -2544 ($)) (-15 -3079 ($)) (-15 -1461 ($)) (-15 -1791 ($))))) (T -445))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-442)) (-5 *1 (-445)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *1 (-445)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-652 (-961 (-572)))) (-5 *1 (-445)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-3503 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *3 (-652 (-1188))) (-5 *4 (-112)) (-5 *1 (-445)))) (-3503 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-112)) (-5 *1 (-445)))) (-3007 (*1 *1) (-5 *1 (-445))) (-2329 (*1 *1) (-5 *1 (-445))) (-3875 (*1 *1) (-5 *1 (-445))) (-2544 (*1 *1) (-5 *1 (-445))) (-3079 (*1 *1) (-5 *1 (-445))) (-1461 (*1 *1) (-5 *1 (-445))) (-1791 (*1 *1) (-5 *1 (-445))))
+(-13 (-1111) (-10 -8 (-15 -3491 ($ (-442))) (-15 -2858 ((-3 (|:| |fst| (-442)) (|:| -2613 "void")) $)) (-15 -1449 ((-652 (-961 (-572))) $)) (-15 -1324 ((-112) $)) (-15 -3503 ($ (-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-652 (-1188)) (-112))) (-15 -3503 ($ (-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-652 (-961 (-572))) (-112))) (-15 -3007 ($)) (-15 -2329 ($)) (-15 -3875 ($)) (-15 -2544 ($)) (-15 -3079 ($)) (-15 -1461 ($)) (-15 -1791 ($))))
+((-3464 (((-112) $ $) NIL)) (-2402 (((-1188) $) 8)) (-3618 (((-1170) $) 17)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 11)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 14)))
+(((-446 |#1|) (-13 (-1111) (-10 -8 (-15 -2402 ((-1188) $)))) (-1188)) (T -446))
+((-2402 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-446 *3)) (-14 *3 *2))))
+(-13 (-1111) (-10 -8 (-15 -2402 ((-1188) $))))
+((-3464 (((-112) $ $) NIL)) (-1980 (((-1129) $) 7)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 13)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 9)))
+(((-447) (-13 (-1111) (-10 -8 (-15 -1980 ((-1129) $))))) (T -447))
+((-1980 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447)))))
+(-13 (-1111) (-10 -8 (-15 -1980 ((-1129) $))))
+((-2864 (((-1284) $) 7)) (-3491 (((-870) $) 8) (($ (-1279 (-707))) 14) (($ (-652 (-336))) 13) (($ (-336)) 12) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 11)))
+(((-448) (-141)) (T -448))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-707))) (-4 *1 (-448)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-448)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-448)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) (-4 *1 (-448)))))
+(-13 (-403) (-10 -8 (-15 -3491 ($ (-1279 (-707)))) (-15 -3491 ($ (-652 (-336)))) (-15 -3491 ($ (-336))) (-15 -3491 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))))))
+(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
+((-3072 (((-3 $ "failed") (-1279 (-322 (-386)))) 21) (((-3 $ "failed") (-1279 (-322 (-572)))) 19) (((-3 $ "failed") (-1279 (-961 (-386)))) 17) (((-3 $ "failed") (-1279 (-961 (-572)))) 15) (((-3 $ "failed") (-1279 (-415 (-961 (-386))))) 13) (((-3 $ "failed") (-1279 (-415 (-961 (-572))))) 11)) (-1869 (($ (-1279 (-322 (-386)))) 22) (($ (-1279 (-322 (-572)))) 20) (($ (-1279 (-961 (-386)))) 18) (($ (-1279 (-961 (-572)))) 16) (($ (-1279 (-415 (-961 (-386))))) 14) (($ (-1279 (-415 (-961 (-572))))) 12)) (-2864 (((-1284) $) 7)) (-3491 (((-870) $) 8) (($ (-652 (-336))) 25) (($ (-336)) 24) (($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) 23)))
+(((-449) (-141)) (T -449))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-449)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-449)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336))))) (-4 *1 (-449)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449)))))
+(-13 (-403) (-10 -8 (-15 -3491 ($ (-652 (-336)))) (-15 -3491 ($ (-336))) (-15 -3491 ($ (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))) (-15 -1869 ($ (-1279 (-322 (-386))))) (-15 -3072 ((-3 $ "failed") (-1279 (-322 (-386))))) (-15 -1869 ($ (-1279 (-322 (-572))))) (-15 -3072 ((-3 $ "failed") (-1279 (-322 (-572))))) (-15 -1869 ($ (-1279 (-961 (-386))))) (-15 -3072 ((-3 $ "failed") (-1279 (-961 (-386))))) (-15 -1869 ($ (-1279 (-961 (-572))))) (-15 -3072 ((-3 $ "failed") (-1279 (-961 (-572))))) (-15 -1869 ($ (-1279 (-415 (-961 (-386)))))) (-15 -3072 ((-3 $ "failed") (-1279 (-415 (-961 (-386)))))) (-15 -1869 ($ (-1279 (-415 (-961 (-572)))))) (-15 -3072 ((-3 $ "failed") (-1279 (-415 (-961 (-572))))))))
+(((-621 (-870)) . T) ((-403) . T) ((-1229) . T))
+((-2013 (((-112)) 18)) (-4287 (((-112) (-112)) 19)) (-4026 (((-112)) 14)) (-2761 (((-112) (-112)) 15)) (-2644 (((-112)) 16)) (-3164 (((-112) (-112)) 17)) (-4070 (((-930) (-930)) 22) (((-930)) 21)) (-1529 (((-779) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572))))) 52)) (-3816 (((-930) (-930)) 24) (((-930)) 23)) (-3047 (((-2 (|:| -2480 (-572)) (|:| -1591 (-652 |#1|))) |#1|) 94)) (-1621 (((-426 |#1|) (-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572))))))) 174)) (-3874 (((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112)) 207)) (-2035 (((-426 |#1|) |#1| (-779) (-779)) 222) (((-426 |#1|) |#1| (-652 (-779)) (-779)) 219) (((-426 |#1|) |#1| (-652 (-779))) 221) (((-426 |#1|) |#1| (-779)) 220) (((-426 |#1|) |#1|) 218)) (-2403 (((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779) (-112)) 224) (((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779)) 225) (((-3 |#1| "failed") (-930) |#1| (-652 (-779))) 227) (((-3 |#1| "failed") (-930) |#1| (-779)) 226) (((-3 |#1| "failed") (-930) |#1|) 228)) (-2972 (((-426 |#1|) |#1| (-779) (-779)) 217) (((-426 |#1|) |#1| (-652 (-779)) (-779)) 213) (((-426 |#1|) |#1| (-652 (-779))) 215) (((-426 |#1|) |#1| (-779)) 214) (((-426 |#1|) |#1|) 212)) (-3024 (((-112) |#1|) 44)) (-1425 (((-745 (-779)) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572))))) 99)) (-1362 (((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112) (-1113 (-779)) (-779)) 211)))
+(((-450 |#1|) (-10 -7 (-15 -1621 ((-426 |#1|) (-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))))) (-15 -1425 ((-745 (-779)) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))))) (-15 -3816 ((-930))) (-15 -3816 ((-930) (-930))) (-15 -4070 ((-930))) (-15 -4070 ((-930) (-930))) (-15 -1529 ((-779) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))))) (-15 -3047 ((-2 (|:| -2480 (-572)) (|:| -1591 (-652 |#1|))) |#1|)) (-15 -2013 ((-112))) (-15 -4287 ((-112) (-112))) (-15 -4026 ((-112))) (-15 -2761 ((-112) (-112))) (-15 -3024 ((-112) |#1|)) (-15 -2644 ((-112))) (-15 -3164 ((-112) (-112))) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2972 ((-426 |#1|) |#1| (-779))) (-15 -2972 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -2972 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -2972 ((-426 |#1|) |#1| (-779) (-779))) (-15 -2035 ((-426 |#1|) |#1|)) (-15 -2035 ((-426 |#1|) |#1| (-779))) (-15 -2035 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -2035 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -2035 ((-426 |#1|) |#1| (-779) (-779))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1|)) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-779))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779) (-112))) (-15 -3874 ((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112))) (-15 -1362 ((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112) (-1113 (-779)) (-779)))) (-1255 (-572))) (T -450))
+((-1362 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1113 (-779))) (-5 *6 (-779)) (-5 *2 (-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572))))))) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3874 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572))))))) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2403 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *6 (-112)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-2403 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-2403 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-2403 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-930)) (-5 *4 (-779)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-2403 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-930)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572))))) (-2035 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2035 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2035 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2035 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2035 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2972 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2972 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2972 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3164 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2644 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4026 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4287 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-2013 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3047 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2480 (-572)) (|:| -1591 (-652 *3)))) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -2972 *4) (|:| -1497 (-572))))) (-4 *4 (-1255 (-572))) (-5 *2 (-779)) (-5 *1 (-450 *4)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-4070 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-3816 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -2972 *4) (|:| -1497 (-572))))) (-4 *4 (-1255 (-572))) (-5 *2 (-745 (-779))) (-5 *1 (-450 *4)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| *4) (|:| -1948 (-572))))))) (-4 *4 (-1255 (-572))) (-5 *2 (-426 *4)) (-5 *1 (-450 *4)))))
+(-10 -7 (-15 -1621 ((-426 |#1|) (-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))))) (-15 -1425 ((-745 (-779)) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))))) (-15 -3816 ((-930))) (-15 -3816 ((-930) (-930))) (-15 -4070 ((-930))) (-15 -4070 ((-930) (-930))) (-15 -1529 ((-779) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))))) (-15 -3047 ((-2 (|:| -2480 (-572)) (|:| -1591 (-652 |#1|))) |#1|)) (-15 -2013 ((-112))) (-15 -4287 ((-112) (-112))) (-15 -4026 ((-112))) (-15 -2761 ((-112) (-112))) (-15 -3024 ((-112) |#1|)) (-15 -2644 ((-112))) (-15 -3164 ((-112) (-112))) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2972 ((-426 |#1|) |#1| (-779))) (-15 -2972 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -2972 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -2972 ((-426 |#1|) |#1| (-779) (-779))) (-15 -2035 ((-426 |#1|) |#1|)) (-15 -2035 ((-426 |#1|) |#1| (-779))) (-15 -2035 ((-426 |#1|) |#1| (-652 (-779)))) (-15 -2035 ((-426 |#1|) |#1| (-652 (-779)) (-779))) (-15 -2035 ((-426 |#1|) |#1| (-779) (-779))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1|)) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-779))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779))) (-15 -2403 ((-3 |#1| "failed") (-930) |#1| (-652 (-779)) (-779) (-112))) (-15 -3874 ((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112))) (-15 -1362 ((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112) (-1113 (-779)) (-779))))
+((-3282 (((-572) |#2|) 52) (((-572) |#2| (-779)) 51)) (-3070 (((-572) |#2|) 64)) (-3673 ((|#3| |#2|) 26)) (-2140 ((|#3| |#2| (-930)) 15)) (-2040 ((|#3| |#2|) 16)) (-3797 ((|#3| |#2|) 9)) (-3920 ((|#3| |#2|) 10)) (-2686 ((|#3| |#2| (-930)) 71) ((|#3| |#2|) 34)) (-3112 (((-572) |#2|) 66)))
+(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -3112 ((-572) |#2|)) (-15 -2686 (|#3| |#2|)) (-15 -2686 (|#3| |#2| (-930))) (-15 -3070 ((-572) |#2|)) (-15 -3282 ((-572) |#2| (-779))) (-15 -3282 ((-572) |#2|)) (-15 -2140 (|#3| |#2| (-930))) (-15 -3673 (|#3| |#2|)) (-15 -3797 (|#3| |#2|)) (-15 -3920 (|#3| |#2|)) (-15 -2040 (|#3| |#2|))) (-1060) (-1255 |#1|) (-13 (-412) (-1049 |#1|) (-370) (-1214) (-290))) (T -451))
+((-2040 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-3920 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-3673 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290))) (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5)))) (-3282 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5)) (-4 *3 (-1255 *4)) (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))) (-3282 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *5 *3 *6)) (-4 *3 (-1255 *5)) (-4 *6 (-13 (-412) (-1049 *5) (-370) (-1214) (-290))))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5)) (-4 *3 (-1255 *4)) (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))) (-2686 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290))) (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5)))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))) (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5)) (-4 *3 (-1255 *4)) (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
+(-10 -7 (-15 -3112 ((-572) |#2|)) (-15 -2686 (|#3| |#2|)) (-15 -2686 (|#3| |#2| (-930))) (-15 -3070 ((-572) |#2|)) (-15 -3282 ((-572) |#2| (-779))) (-15 -3282 ((-572) |#2|)) (-15 -2140 (|#3| |#2| (-930))) (-15 -3673 (|#3| |#2|)) (-15 -3797 (|#3| |#2|)) (-15 -3920 (|#3| |#2|)) (-15 -2040 (|#3| |#2|)))
+((-3486 ((|#2| (-1279 |#1|)) 42)) (-1981 ((|#2| |#2| |#1|) 58)) (-2346 ((|#2| |#2| |#1|) 49)) (-1852 ((|#2| |#2|) 44)) (-3647 (((-112) |#2|) 32)) (-2704 (((-652 |#2|) (-930) (-426 |#2|)) 21)) (-2403 ((|#2| (-930) (-426 |#2|)) 25)) (-1425 (((-745 (-779)) (-426 |#2|)) 29)))
+(((-452 |#1| |#2|) (-10 -7 (-15 -3647 ((-112) |#2|)) (-15 -3486 (|#2| (-1279 |#1|))) (-15 -1852 (|#2| |#2|)) (-15 -2346 (|#2| |#2| |#1|)) (-15 -1981 (|#2| |#2| |#1|)) (-15 -1425 ((-745 (-779)) (-426 |#2|))) (-15 -2403 (|#2| (-930) (-426 |#2|))) (-15 -2704 ((-652 |#2|) (-930) (-426 |#2|)))) (-1060) (-1255 |#1|)) (T -452))
+((-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-426 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-1060)) (-5 *2 (-652 *6)) (-5 *1 (-452 *5 *6)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-426 *2)) (-4 *2 (-1255 *5)) (-5 *1 (-452 *5 *2)) (-4 *5 (-1060)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-426 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1060)) (-5 *2 (-745 (-779))) (-5 *1 (-452 *4 *5)))) (-1981 (*1 *2 *2 *3) (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))) (-2346 (*1 *2 *2 *3) (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))) (-1852 (*1 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-1060)) (-4 *2 (-1255 *4)) (-5 *1 (-452 *4 *2)))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -3647 ((-112) |#2|)) (-15 -3486 (|#2| (-1279 |#1|))) (-15 -1852 (|#2| |#2|)) (-15 -2346 (|#2| |#2| |#1|)) (-15 -1981 (|#2| |#2| |#1|)) (-15 -1425 ((-745 (-779)) (-426 |#2|))) (-15 -2403 (|#2| (-930) (-426 |#2|))) (-15 -2704 ((-652 |#2|) (-930) (-426 |#2|))))
+((-2992 (((-779)) 59)) (-2465 (((-779)) 29 (|has| |#1| (-412))) (((-779) (-779)) 28 (|has| |#1| (-412)))) (-2386 (((-572) |#1|) 25 (|has| |#1| (-412)))) (-2203 (((-572) |#1|) 27 (|has| |#1| (-412)))) (-2832 (((-779)) 58) (((-779) (-779)) 57)) (-1839 ((|#1| (-779) (-572)) 37)) (-3410 (((-1284)) 61)))
+(((-453 |#1|) (-10 -7 (-15 -1839 (|#1| (-779) (-572))) (-15 -2832 ((-779) (-779))) (-15 -2832 ((-779))) (-15 -2992 ((-779))) (-15 -3410 ((-1284))) (IF (|has| |#1| (-412)) (PROGN (-15 -2203 ((-572) |#1|)) (-15 -2386 ((-572) |#1|)) (-15 -2465 ((-779) (-779))) (-15 -2465 ((-779)))) |%noBranch|)) (-1060)) (T -453))
+((-2465 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-2386 (*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-2203 (*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))) (-3410 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-2992 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-2832 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-2832 (*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-572)) (-5 *1 (-453 *2)) (-4 *2 (-1060)))))
+(-10 -7 (-15 -1839 (|#1| (-779) (-572))) (-15 -2832 ((-779) (-779))) (-15 -2832 ((-779))) (-15 -2992 ((-779))) (-15 -3410 ((-1284))) (IF (|has| |#1| (-412)) (PROGN (-15 -2203 ((-572) |#1|)) (-15 -2386 ((-572) |#1|)) (-15 -2465 ((-779) (-779))) (-15 -2465 ((-779)))) |%noBranch|))
+((-3243 (((-652 (-572)) (-572)) 76)) (-3439 (((-112) (-171 (-572))) 82)) (-2972 (((-426 (-171 (-572))) (-171 (-572))) 75)))
+(((-454) (-10 -7 (-15 -2972 ((-426 (-171 (-572))) (-171 (-572)))) (-15 -3243 ((-652 (-572)) (-572))) (-15 -3439 ((-112) (-171 (-572)))))) (T -454))
+((-3439 (*1 *2 *3) (-12 (-5 *3 (-171 (-572))) (-5 *2 (-112)) (-5 *1 (-454)))) (-3243 (*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-454)) (-5 *3 (-572)))) (-2972 (*1 *2 *3) (-12 (-5 *2 (-426 (-171 (-572)))) (-5 *1 (-454)) (-5 *3 (-171 (-572))))))
+(-10 -7 (-15 -2972 ((-426 (-171 (-572))) (-171 (-572)))) (-15 -3243 ((-652 (-572)) (-572))) (-15 -3439 ((-112) (-171 (-572)))))
+((-3080 ((|#4| |#4| (-652 |#4|)) 82)) (-2655 (((-652 |#4|) (-652 |#4|) (-1170) (-1170)) 22) (((-652 |#4|) (-652 |#4|) (-1170)) 21) (((-652 |#4|) (-652 |#4|)) 13)))
+(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| |#4| (-652 |#4|))) (-15 -2655 ((-652 |#4|) (-652 |#4|))) (-15 -2655 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -2655 ((-652 |#4|) (-652 |#4|) (-1170) (-1170)))) (-313) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -455))
+((-2655 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2655 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2655 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-455 *3 *4 *5 *6)))) (-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3080 (|#4| |#4| (-652 |#4|))) (-15 -2655 ((-652 |#4|) (-652 |#4|))) (-15 -2655 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -2655 ((-652 |#4|) (-652 |#4|) (-1170) (-1170))))
+((-4159 (((-652 (-652 |#4|)) (-652 |#4|) (-112)) 89) (((-652 (-652 |#4|)) (-652 |#4|)) 88) (((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|) (-112)) 82) (((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|)) 83)) (-2672 (((-652 (-652 |#4|)) (-652 |#4|) (-112)) 55) (((-652 (-652 |#4|)) (-652 |#4|)) 77)))
+(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2672 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -2672 ((-652 (-652 |#4|)) (-652 |#4|) (-112))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|) (-112))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|) (-112)))) (-13 (-313) (-148)) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -456))
+((-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8))) (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-4159 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8))) (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))) (-4159 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8))) (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))) (-2672 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
+(-10 -7 (-15 -2672 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -2672 ((-652 (-652 |#4|)) (-652 |#4|) (-112))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|) (-652 |#4|) (-112))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|))) (-15 -4159 ((-652 (-652 |#4|)) (-652 |#4|) (-112))))
+((-2215 (((-779) |#4|) 12)) (-2918 (((-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|))) |#4| (-779) (-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|)))) 39)) (-3663 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3901 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3640 ((|#4| |#4| (-652 |#4|)) 54)) (-2687 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-652 |#4|)) 96)) (-1353 (((-1284) |#4|) 59)) (-2566 (((-1284) (-652 |#4|)) 69)) (-1756 (((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572)) 66)) (-1767 (((-1284) (-572)) 110)) (-2718 (((-652 |#4|) (-652 |#4|)) 104)) (-1599 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|)) |#4| (-779)) 31)) (-1954 (((-572) |#4|) 109)) (-3851 ((|#4| |#4|) 37)) (-2448 (((-652 |#4|) (-652 |#4|) (-572) (-572)) 74)) (-1886 (((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572) (-572)) 123)) (-4299 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2498 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2940 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3195 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3073 (((-112) |#2| |#2|) 75)) (-1626 (((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-4209 (((-112) |#2| |#2| |#2| |#2|) 80)) (-4263 ((|#4| |#4| (-652 |#4|)) 97)))
+(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4263 (|#4| |#4| (-652 |#4|))) (-15 -3640 (|#4| |#4| (-652 |#4|))) (-15 -2448 ((-652 |#4|) (-652 |#4|) (-572) (-572))) (-15 -2498 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3073 ((-112) |#2| |#2|)) (-15 -4209 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1626 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3195 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2940 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2687 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-652 |#4|))) (-15 -3851 (|#4| |#4|)) (-15 -2918 ((-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|))) |#4| (-779) (-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|))))) (-15 -3901 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3663 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2718 ((-652 |#4|) (-652 |#4|))) (-15 -1954 ((-572) |#4|)) (-15 -1353 ((-1284) |#4|)) (-15 -1756 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572))) (-15 -1886 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572) (-572))) (-15 -2566 ((-1284) (-652 |#4|))) (-15 -1767 ((-1284) (-572))) (-15 -4299 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1599 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|)) |#4| (-779))) (-15 -2215 ((-779) |#4|))) (-460) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -457))
+((-2215 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779)) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-1599 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-779)) (|:| -3888 *4))) (-5 *5 (-779)) (-4 *4 (-958 *6 *7 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-457 *6 *7 *8 *4)))) (-4299 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *7)))) (-1886 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *4)))) (-1756 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *4)))) (-1353 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-572)) (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))) (-3663 (*1 *2 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-801)) (-4 *2 (-958 *4 *5 *6)) (-5 *1 (-457 *4 *5 *6 *2)) (-4 *4 (-460)) (-4 *6 (-858)))) (-2918 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 *3)))) (-5 *4 (-779)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *3)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-457 *5 *6 *7 *3)))) (-2940 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-779)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-801)) (-4 *6 (-958 *4 *3 *5)) (-4 *4 (-460)) (-4 *5 (-858)) (-5 *1 (-457 *4 *3 *5 *6)))) (-3195 (*1 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))) (-1626 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-801)) (-4 *3 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *3)))) (-4209 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))) (-3073 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))) (-2448 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *7)))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))) (-4263 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))))
+(-10 -7 (-15 -4263 (|#4| |#4| (-652 |#4|))) (-15 -3640 (|#4| |#4| (-652 |#4|))) (-15 -2448 ((-652 |#4|) (-652 |#4|) (-572) (-572))) (-15 -2498 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3073 ((-112) |#2| |#2|)) (-15 -4209 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1626 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3195 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2940 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2687 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-652 |#4|))) (-15 -3851 (|#4| |#4|)) (-15 -2918 ((-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|))) |#4| (-779) (-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|))))) (-15 -3901 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3663 ((-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-652 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2718 ((-652 |#4|) (-652 |#4|))) (-15 -1954 ((-572) |#4|)) (-15 -1353 ((-1284) |#4|)) (-15 -1756 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572))) (-15 -1886 ((-572) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-572) (-572) (-572) (-572))) (-15 -2566 ((-1284) (-652 |#4|))) (-15 -1767 ((-1284) (-572))) (-15 -4299 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1599 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-779)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-779)) (|:| -3888 |#4|)) |#4| (-779))) (-15 -2215 ((-779) |#4|)))
+((-2661 ((|#4| |#4| (-652 |#4|)) 20 (|has| |#1| (-370)))) (-1726 (((-652 |#4|) (-652 |#4|) (-1170) (-1170)) 46) (((-652 |#4|) (-652 |#4|) (-1170)) 45) (((-652 |#4|) (-652 |#4|)) 34)))
+(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1726 ((-652 |#4|) (-652 |#4|))) (-15 -1726 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -1726 ((-652 |#4|) (-652 |#4|) (-1170) (-1170))) (IF (|has| |#1| (-370)) (-15 -2661 (|#4| |#4| (-652 |#4|))) |%noBranch|)) (-460) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -458))
+((-2661 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-370)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-458 *4 *5 *6 *2)))) (-1726 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-458 *4 *5 *6 *7)))) (-1726 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-458 *4 *5 *6 *7)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-458 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1726 ((-652 |#4|) (-652 |#4|))) (-15 -1726 ((-652 |#4|) (-652 |#4|) (-1170))) (-15 -1726 ((-652 |#4|) (-652 |#4|) (-1170) (-1170))) (IF (|has| |#1| (-370)) (-15 -2661 (|#4| |#4| (-652 |#4|))) |%noBranch|))
+((-1335 (($ $ $) 14) (($ (-652 $)) 21)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 46)) (-1370 (($ $ $) NIL) (($ (-652 $)) 22)))
+(((-459 |#1|) (-10 -8 (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -1335 (|#1| (-652 |#1|))) (-15 -1335 (|#1| |#1| |#1|)) (-15 -1370 (|#1| (-652 |#1|))) (-15 -1370 (|#1| |#1| |#1|))) (-460)) (T -459))
+NIL
+(-10 -8 (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -1335 (|#1| (-652 |#1|))) (-15 -1335 (|#1| |#1| |#1|)) (-15 -1370 (|#1| (-652 |#1|))) (-15 -1370 (|#1| |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3453 (((-3 $ "failed") $ $) 48)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-460) (-141)) (T -460))
+((-1370 (*1 *1 *1 *1) (-4 *1 (-460))) (-1370 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460)))) (-1335 (*1 *1 *1 *1) (-4 *1 (-460))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460)))) (-2500 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-460)))))
+(-13 (-564) (-10 -8 (-15 -1370 ($ $ $)) (-15 -1370 ($ (-652 $))) (-15 -1335 ($ $ $)) (-15 -1335 ($ (-652 $))) (-15 -2500 ((-1184 $) (-1184 $) (-1184 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3457 (((-3 $ "failed")) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3862 (((-1279 (-697 (-415 (-961 |#1|)))) (-1279 $)) NIL) (((-1279 (-697 (-415 (-961 |#1|))))) NIL)) (-2646 (((-1279 $)) NIL)) (-1586 (($) NIL T CONST)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL)) (-2771 (((-3 $ "failed")) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-3590 (((-697 (-415 (-961 |#1|))) (-1279 $)) NIL) (((-697 (-415 (-961 |#1|)))) NIL)) (-1597 (((-415 (-961 |#1|)) $) NIL)) (-4043 (((-697 (-415 (-961 |#1|))) $ (-1279 $)) NIL) (((-697 (-415 (-961 |#1|))) $) NIL)) (-3899 (((-3 $ "failed") $) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2571 (((-1184 (-961 (-415 (-961 |#1|))))) NIL (|has| (-415 (-961 |#1|)) (-370))) (((-1184 (-415 (-961 |#1|)))) 90 (|has| |#1| (-564)))) (-4203 (($ $ (-930)) NIL)) (-4114 (((-415 (-961 |#1|)) $) NIL)) (-3440 (((-1184 (-415 (-961 |#1|))) $) 88 (|has| (-415 (-961 |#1|)) (-564)))) (-2650 (((-415 (-961 |#1|)) (-1279 $)) NIL) (((-415 (-961 |#1|))) NIL)) (-2712 (((-1184 (-415 (-961 |#1|))) $) NIL)) (-1515 (((-112)) NIL)) (-2372 (($ (-1279 (-415 (-961 |#1|))) (-1279 $)) 114) (($ (-1279 (-415 (-961 |#1|)))) NIL)) (-2982 (((-3 $ "failed") $) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-1526 (((-930)) NIL)) (-3538 (((-112)) NIL)) (-3100 (($ $ (-930)) NIL)) (-4325 (((-112)) NIL)) (-1936 (((-112)) NIL)) (-3246 (((-112)) NIL)) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL)) (-4277 (((-3 $ "failed")) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2808 (((-697 (-415 (-961 |#1|))) (-1279 $)) NIL) (((-697 (-415 (-961 |#1|)))) NIL)) (-3611 (((-415 (-961 |#1|)) $) NIL)) (-2037 (((-697 (-415 (-961 |#1|))) $ (-1279 $)) NIL) (((-697 (-415 (-961 |#1|))) $) NIL)) (-3882 (((-3 $ "failed") $) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-2312 (((-1184 (-961 (-415 (-961 |#1|))))) NIL (|has| (-415 (-961 |#1|)) (-370))) (((-1184 (-415 (-961 |#1|)))) 89 (|has| |#1| (-564)))) (-3962 (($ $ (-930)) NIL)) (-3686 (((-415 (-961 |#1|)) $) NIL)) (-1342 (((-1184 (-415 (-961 |#1|))) $) 85 (|has| (-415 (-961 |#1|)) (-564)))) (-2190 (((-415 (-961 |#1|)) (-1279 $)) NIL) (((-415 (-961 |#1|))) NIL)) (-3177 (((-1184 (-415 (-961 |#1|))) $) NIL)) (-3614 (((-112)) NIL)) (-3618 (((-1170) $) NIL)) (-4412 (((-112)) NIL)) (-3421 (((-112)) NIL)) (-4413 (((-112)) NIL)) (-2614 (((-1131) $) NIL)) (-2211 (((-415 (-961 |#1|)) $ $) 76 (|has| |#1| (-564)))) (-4060 (((-415 (-961 |#1|)) $) 100 (|has| |#1| (-564)))) (-1974 (((-415 (-961 |#1|)) $) 104 (|has| |#1| (-564)))) (-1542 (((-1184 (-415 (-961 |#1|))) $) 94 (|has| |#1| (-564)))) (-1655 (((-415 (-961 |#1|))) 77 (|has| |#1| (-564)))) (-2523 (((-415 (-961 |#1|)) $ $) 69 (|has| |#1| (-564)))) (-3555 (((-415 (-961 |#1|)) $) 99 (|has| |#1| (-564)))) (-2708 (((-415 (-961 |#1|)) $) 103 (|has| |#1| (-564)))) (-1676 (((-1184 (-415 (-961 |#1|))) $) 93 (|has| |#1| (-564)))) (-4171 (((-415 (-961 |#1|))) 73 (|has| |#1| (-564)))) (-1871 (($) 110) (($ (-1188)) 118) (($ (-1279 (-1188))) 117) (($ (-1279 $)) 105) (($ (-1188) (-1279 $)) 116) (($ (-1279 (-1188)) (-1279 $)) 115)) (-3749 (((-112)) NIL)) (-2679 (((-415 (-961 |#1|)) $ (-572)) NIL)) (-2862 (((-1279 (-415 (-961 |#1|))) $ (-1279 $)) 107) (((-697 (-415 (-961 |#1|))) (-1279 $) (-1279 $)) NIL) (((-1279 (-415 (-961 |#1|))) $) 43) (((-697 (-415 (-961 |#1|))) (-1279 $)) NIL)) (-3222 (((-1279 (-415 (-961 |#1|))) $) NIL) (($ (-1279 (-415 (-961 |#1|)))) 40)) (-2956 (((-652 (-961 (-415 (-961 |#1|)))) (-1279 $)) NIL) (((-652 (-961 (-415 (-961 |#1|))))) NIL) (((-652 (-961 |#1|)) (-1279 $)) 108 (|has| |#1| (-564))) (((-652 (-961 |#1|))) 109 (|has| |#1| (-564)))) (-1433 (($ $ $) NIL)) (-3846 (((-112)) NIL)) (-3491 (((-870) $) NIL) (($ (-1279 (-415 (-961 |#1|)))) NIL)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) 65)) (-1373 (((-652 (-1279 (-415 (-961 |#1|))))) NIL (|has| (-415 (-961 |#1|)) (-564)))) (-1541 (($ $ $ $) NIL)) (-3229 (((-112)) NIL)) (-2558 (($ (-697 (-415 (-961 |#1|))) $) NIL)) (-1923 (($ $ $) NIL)) (-1873 (((-112)) NIL)) (-2702 (((-112)) NIL)) (-3565 (((-112)) NIL)) (-2602 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) 106)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 61) (($ $ (-415 (-961 |#1|))) NIL) (($ (-415 (-961 |#1|)) $) NIL) (($ (-1153 |#2| (-415 (-961 |#1|))) $) NIL)))
+(((-461 |#1| |#2| |#3| |#4|) (-13 (-425 (-415 (-961 |#1|))) (-656 (-1153 |#2| (-415 (-961 |#1|)))) (-10 -8 (-15 -3491 ($ (-1279 (-415 (-961 |#1|))))) (-15 -1835 ((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed"))) (-15 -2123 ((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed"))) (-15 -1871 ($)) (-15 -1871 ($ (-1188))) (-15 -1871 ($ (-1279 (-1188)))) (-15 -1871 ($ (-1279 $))) (-15 -1871 ($ (-1188) (-1279 $))) (-15 -1871 ($ (-1279 (-1188)) (-1279 $))) (IF (|has| |#1| (-564)) (PROGN (-15 -2312 ((-1184 (-415 (-961 |#1|))))) (-15 -1676 ((-1184 (-415 (-961 |#1|))) $)) (-15 -3555 ((-415 (-961 |#1|)) $)) (-15 -2708 ((-415 (-961 |#1|)) $)) (-15 -2571 ((-1184 (-415 (-961 |#1|))))) (-15 -1542 ((-1184 (-415 (-961 |#1|))) $)) (-15 -4060 ((-415 (-961 |#1|)) $)) (-15 -1974 ((-415 (-961 |#1|)) $)) (-15 -2523 ((-415 (-961 |#1|)) $ $)) (-15 -4171 ((-415 (-961 |#1|)))) (-15 -2211 ((-415 (-961 |#1|)) $ $)) (-15 -1655 ((-415 (-961 |#1|)))) (-15 -2956 ((-652 (-961 |#1|)) (-1279 $))) (-15 -2956 ((-652 (-961 |#1|))))) |%noBranch|))) (-174) (-930) (-652 (-1188)) (-1279 (-697 |#1|))) (T -461))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 *3)))) (-4 *3 (-174)) (-14 *6 (-1279 (-697 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))))) (-1835 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-461 *3 *4 *5 *6)) (|:| -1769 (-652 (-461 *3 *4 *5 *6))))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2123 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-461 *3 *4 *5 *6)) (|:| -1769 (-652 (-461 *3 *4 *5 *6))))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1871 (*1 *1) (-12 (-5 *1 (-461 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-930)) (-14 *4 (-652 (-1188))) (-14 *5 (-1279 (-697 *2))))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 *2)) (-14 *6 (-1279 (-697 *3))))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-1279 (-1188))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-1279 (-461 *3 *4 *5 *6))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1871 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930)) (-14 *6 (-652 *2)) (-14 *7 (-1279 (-697 *4))))) (-1871 (*1 *1 *2 *3) (-12 (-5 *2 (-1279 (-1188))) (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930)) (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4))))) (-2312 (*1 *2) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2571 (*1 *2) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2523 (*1 *2 *1 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-4171 (*1 *2) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2211 (*1 *2 *1 *1) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-1655 (*1 *2) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *2 (-652 (-961 *4))) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-564)) (-4 *4 (-174)) (-14 *5 (-930)) (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4))))) (-2956 (*1 *2) (-12 (-5 *2 (-652 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(-13 (-425 (-415 (-961 |#1|))) (-656 (-1153 |#2| (-415 (-961 |#1|)))) (-10 -8 (-15 -3491 ($ (-1279 (-415 (-961 |#1|))))) (-15 -1835 ((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed"))) (-15 -2123 ((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed"))) (-15 -1871 ($)) (-15 -1871 ($ (-1188))) (-15 -1871 ($ (-1279 (-1188)))) (-15 -1871 ($ (-1279 $))) (-15 -1871 ($ (-1188) (-1279 $))) (-15 -1871 ($ (-1279 (-1188)) (-1279 $))) (IF (|has| |#1| (-564)) (PROGN (-15 -2312 ((-1184 (-415 (-961 |#1|))))) (-15 -1676 ((-1184 (-415 (-961 |#1|))) $)) (-15 -3555 ((-415 (-961 |#1|)) $)) (-15 -2708 ((-415 (-961 |#1|)) $)) (-15 -2571 ((-1184 (-415 (-961 |#1|))))) (-15 -1542 ((-1184 (-415 (-961 |#1|))) $)) (-15 -4060 ((-415 (-961 |#1|)) $)) (-15 -1974 ((-415 (-961 |#1|)) $)) (-15 -2523 ((-415 (-961 |#1|)) $ $)) (-15 -4171 ((-415 (-961 |#1|)))) (-15 -2211 ((-415 (-961 |#1|)) $ $)) (-15 -1655 ((-415 (-961 |#1|)))) (-15 -2956 ((-652 (-961 |#1|)) (-1279 $))) (-15 -2956 ((-652 (-961 |#1|))))) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 18)) (-2220 (((-652 (-872 |#1|)) $) 87)) (-4063 (((-1184 $) $ (-872 |#1|)) 52) (((-1184 |#2|) $) 138)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-1697 (($ $) NIL (|has| |#2| (-564)))) (-1774 (((-112) $) NIL (|has| |#2| (-564)))) (-3664 (((-779) $) 27) (((-779) $ (-652 (-872 |#1|))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1861 (($ $) NIL (|has| |#2| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) 50) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-1869 ((|#2| $) 48) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-3829 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-2105 (($ $ (-652 (-572))) 93)) (-1874 (($ $) 80)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#2| (-918)))) (-3163 (($ $ |#2| |#3| $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) 65)) (-3060 (($ (-1184 |#2|) (-872 |#1|)) 143) (($ (-1184 $) (-872 |#1|)) 58)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) 68)) (-3042 (($ |#2| |#3|) 35) (($ $ (-872 |#1|) (-779)) 37) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-872 |#1|)) NIL)) (-3808 ((|#3| $) NIL) (((-779) $ (-872 |#1|)) 56) (((-652 (-779)) $ (-652 (-872 |#1|))) 63)) (-2008 (($ (-1 |#3| |#3|) $) NIL)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-4107 (((-3 (-872 |#1|) "failed") $) 45)) (-1840 (($ $) NIL)) (-1853 ((|#2| $) 47)) (-1335 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3618 (((-1170) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -2477 (-779))) "failed") $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) 46)) (-1829 ((|#2| $) 136)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) 149 (|has| |#2| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#2| (-918)))) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) 100) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) 106) (($ $ (-872 |#1|) $) 98) (($ $ (-652 (-872 |#1|)) (-652 $)) 124)) (-2020 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3011 (($ $ (-872 |#1|)) 59) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1497 ((|#3| $) 79) (((-779) $ (-872 |#1|)) 42) (((-652 (-779)) $ (-652 (-872 |#1|))) 62)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-3262 ((|#2| $) 145 (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-3491 (((-870) $) 174) (($ (-572)) NIL) (($ |#2|) 99) (($ (-872 |#1|)) 39) (($ (-415 (-572))) NIL (-3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ |#3|) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2602 (($) 22 T CONST)) (-2619 (($) 31 T CONST)) (-4019 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#2|) 76 (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 131)) (** (($ $ (-930)) NIL) (($ $ (-779)) 129)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 36) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
+(((-462 |#1| |#2| |#3|) (-13 (-958 |#2| |#3| (-872 |#1|)) (-10 -8 (-15 -2105 ($ $ (-652 (-572)))))) (-652 (-1188)) (-1060) (-242 (-3475 |#1|) (-779))) (T -462))
+((-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-14 *3 (-652 (-1188))) (-5 *1 (-462 *3 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-242 (-3475 *3) (-779))))))
+(-13 (-958 |#2| |#3| (-872 |#1|)) (-10 -8 (-15 -2105 ($ $ (-652 (-572))))))
+((-2573 (((-112) |#1| (-652 |#2|)) 91)) (-4386 (((-3 (-1279 (-652 |#2|)) "failed") (-779) |#1| (-652 |#2|)) 100)) (-3777 (((-3 (-652 |#2|) "failed") |#2| |#1| (-1279 (-652 |#2|))) 102)) (-4149 ((|#2| |#2| |#1|) 35)) (-1789 (((-779) |#2| (-652 |#2|)) 26)))
+(((-463 |#1| |#2|) (-10 -7 (-15 -4149 (|#2| |#2| |#1|)) (-15 -1789 ((-779) |#2| (-652 |#2|))) (-15 -4386 ((-3 (-1279 (-652 |#2|)) "failed") (-779) |#1| (-652 |#2|))) (-15 -3777 ((-3 (-652 |#2|) "failed") |#2| |#1| (-1279 (-652 |#2|)))) (-15 -2573 ((-112) |#1| (-652 |#2|)))) (-313) (-1255 |#1|)) (T -463))
+((-2573 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *5)) (-4 *5 (-1255 *3)) (-4 *3 (-313)) (-5 *2 (-112)) (-5 *1 (-463 *3 *5)))) (-3777 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1279 (-652 *3))) (-4 *4 (-313)) (-5 *2 (-652 *3)) (-5 *1 (-463 *4 *3)) (-4 *3 (-1255 *4)))) (-4386 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-779)) (-4 *4 (-313)) (-4 *6 (-1255 *4)) (-5 *2 (-1279 (-652 *6))) (-5 *1 (-463 *4 *6)) (-5 *5 (-652 *6)))) (-1789 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-313)) (-5 *2 (-779)) (-5 *1 (-463 *5 *3)))) (-4149 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1255 *3)))))
+(-10 -7 (-15 -4149 (|#2| |#2| |#1|)) (-15 -1789 ((-779) |#2| (-652 |#2|))) (-15 -4386 ((-3 (-1279 (-652 |#2|)) "failed") (-779) |#1| (-652 |#2|))) (-15 -3777 ((-3 (-652 |#2|) "failed") |#2| |#1| (-1279 (-652 |#2|)))) (-15 -2573 ((-112) |#1| (-652 |#2|))))
+((-2972 (((-426 |#5|) |#5|) 24)))
+(((-464 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2972 ((-426 |#5|) |#5|))) (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188))))) (-801) (-564) (-564) (-958 |#4| |#2| |#1|)) (T -464))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188)))))) (-4 *5 (-801)) (-4 *7 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-464 *4 *5 *6 *7 *3)) (-4 *6 (-564)) (-4 *3 (-958 *7 *5 *4)))))
+(-10 -7 (-15 -2972 ((-426 |#5|) |#5|)))
+((-2800 ((|#3|) 38)) (-2500 (((-1184 |#4|) (-1184 |#4|) (-1184 |#4|)) 34)))
+(((-465 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -2800 (|#3|))) (-801) (-858) (-918) (-958 |#3| |#1| |#2|)) (T -465))
+((-2800 (*1 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918)) (-5 *1 (-465 *3 *4 *2 *5)) (-4 *5 (-958 *2 *3 *4)))) (-2500 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-918)) (-5 *1 (-465 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2500 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -2800 (|#3|)))
+((-2972 (((-426 (-1184 |#1|)) (-1184 |#1|)) 43)))
+(((-466 |#1|) (-10 -7 (-15 -2972 ((-426 (-1184 |#1|)) (-1184 |#1|)))) (-313)) (T -466))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-313)) (-5 *2 (-426 (-1184 *4))) (-5 *1 (-466 *4)) (-5 *3 (-1184 *4)))))
+(-10 -7 (-15 -2972 ((-426 (-1184 |#1|)) (-1184 |#1|))))
+((-1765 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-779))) 44) (((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-779))) 43) (((-52) |#2| (-1188) (-300 |#2|)) 36) (((-52) (-1 |#2| (-572)) (-300 |#2|)) 29)) (-2493 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 88) (((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 87) (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572))) 86) (((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572))) 85) (((-52) |#2| (-1188) (-300 |#2|)) 80) (((-52) (-1 |#2| (-572)) (-300 |#2|)) 79)) (-1787 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 74) (((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))) 72)) (-1778 (((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572))) 51) (((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572))) 50)))
+(((-467 |#1| |#2|) (-10 -7 (-15 -1765 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -1765 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -1765 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-779)))) (-15 -1765 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-779)))) (-15 -1778 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -1778 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -1787 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -1787 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -2493 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -2493 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -2493 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -2493 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -2493 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -2493 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572))))) (-13 (-564) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -467))
+((-2493 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572)))) (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8))) (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *8 *3)))) (-2493 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8)) (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572))) (-4 *8 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *8)))) (-2493 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *3)))) (-2493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572))) (-4 *7 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *7)))) (-2493 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *3)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6)) (-4 *6 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *5 *6)))) (-1787 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572)))) (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8))) (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *8 *3)))) (-1787 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8)) (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572))) (-4 *8 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *8)))) (-1778 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *3)))) (-1778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572))) (-4 *7 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *7)))) (-1765 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-779))) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *7 *3)))) (-1765 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-779))) (-4 *7 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *7)))) (-1765 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *6 *3)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6)) (-4 *6 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52)) (-5 *1 (-467 *5 *6)))))
+(-10 -7 (-15 -1765 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -1765 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -1765 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-779)))) (-15 -1765 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-779)))) (-15 -1778 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -1778 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -1787 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -1787 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -2493 ((-52) (-1 |#2| (-572)) (-300 |#2|))) (-15 -2493 ((-52) |#2| (-1188) (-300 |#2|))) (-15 -2493 ((-52) (-1 |#2| (-572)) (-300 |#2|) (-1246 (-572)))) (-15 -2493 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-572)))) (-15 -2493 ((-52) (-1 |#2| (-415 (-572))) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))) (-15 -2493 ((-52) |#2| (-1188) (-300 |#2|) (-1246 (-415 (-572))) (-415 (-572)))))
+((-4149 ((|#2| |#2| |#1|) 15)) (-1494 (((-652 |#2|) |#2| (-652 |#2|) |#1| (-930)) 82)) (-2198 (((-2 (|:| |plist| (-652 |#2|)) (|:| |modulo| |#1|)) |#2| (-652 |#2|) |#1| (-930)) 72)))
+(((-468 |#1| |#2|) (-10 -7 (-15 -2198 ((-2 (|:| |plist| (-652 |#2|)) (|:| |modulo| |#1|)) |#2| (-652 |#2|) |#1| (-930))) (-15 -1494 ((-652 |#2|) |#2| (-652 |#2|) |#1| (-930))) (-15 -4149 (|#2| |#2| |#1|))) (-313) (-1255 |#1|)) (T -468))
+((-4149 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1255 *3)))) (-1494 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-652 *3)) (-5 *5 (-930)) (-4 *3 (-1255 *4)) (-4 *4 (-313)) (-5 *1 (-468 *4 *3)))) (-2198 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-930)) (-4 *5 (-313)) (-4 *3 (-1255 *5)) (-5 *2 (-2 (|:| |plist| (-652 *3)) (|:| |modulo| *5))) (-5 *1 (-468 *5 *3)) (-5 *4 (-652 *3)))))
+(-10 -7 (-15 -2198 ((-2 (|:| |plist| (-652 |#2|)) (|:| |modulo| |#1|)) |#2| (-652 |#2|) |#1| (-930))) (-15 -1494 ((-652 |#2|) |#2| (-652 |#2|) |#1| (-930))) (-15 -4149 (|#2| |#2| |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 28)) (-1572 (($ |#3|) 25)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-1874 (($ $) 32)) (-3378 (($ |#2| |#4| $) 33)) (-3042 (($ |#2| (-721 |#3| |#4| |#5|)) 24)) (-1840 (((-721 |#3| |#4| |#5|) $) 15)) (-4053 ((|#3| $) 19)) (-1717 ((|#4| $) 17)) (-1853 ((|#2| $) 29)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-4083 (($ |#2| |#3| |#4|) 26)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 36 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 34)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-469 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-725 |#6|) (-725 |#2|) (-10 -8 (-15 -1853 (|#2| $)) (-15 -1840 ((-721 |#3| |#4| |#5|) $)) (-15 -1717 (|#4| $)) (-15 -4053 (|#3| $)) (-15 -1874 ($ $)) (-15 -3042 ($ |#2| (-721 |#3| |#4| |#5|))) (-15 -1572 ($ |#3|)) (-15 -4083 ($ |#2| |#3| |#4|)) (-15 -3378 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-652 (-1188)) (-174) (-858) (-242 (-3475 |#1|) (-779)) (-1 (-112) (-2 (|:| -1795 |#3|) (|:| -2477 |#4|)) (-2 (|:| -1795 |#3|) (|:| -2477 |#4|))) (-958 |#2| |#4| (-872 |#1|))) (T -469))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *6 (-242 (-3475 *3) (-779))) (-14 *7 (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *6)) (-2 (|:| -1795 *5) (|:| -2477 *6)))) (-5 *1 (-469 *3 *4 *5 *6 *7 *2)) (-4 *5 (-858)) (-4 *2 (-958 *4 *6 (-872 *3))))) (-1853 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *5 (-242 (-3475 *3) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -1795 *4) (|:| -2477 *5)) (-2 (|:| -1795 *4) (|:| -2477 *5)))) (-4 *2 (-174)) (-5 *1 (-469 *3 *2 *4 *5 *6 *7)) (-4 *4 (-858)) (-4 *7 (-958 *2 *5 (-872 *3))))) (-1840 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *6 (-242 (-3475 *3) (-779))) (-14 *7 (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *6)) (-2 (|:| -1795 *5) (|:| -2477 *6)))) (-5 *2 (-721 *5 *6 *7)) (-5 *1 (-469 *3 *4 *5 *6 *7 *8)) (-4 *5 (-858)) (-4 *8 (-958 *4 *6 (-872 *3))))) (-1717 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *2)) (-2 (|:| -1795 *5) (|:| -2477 *2)))) (-4 *2 (-242 (-3475 *3) (-779))) (-5 *1 (-469 *3 *4 *5 *2 *6 *7)) (-4 *5 (-858)) (-4 *7 (-958 *4 *2 (-872 *3))))) (-4053 (*1 *2 *1) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *5 (-242 (-3475 *3) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *5)) (-2 (|:| -1795 *2) (|:| -2477 *5)))) (-4 *2 (-858)) (-5 *1 (-469 *3 *4 *2 *5 *6 *7)) (-4 *7 (-958 *4 *5 (-872 *3))))) (-1874 (*1 *1 *1) (-12 (-14 *2 (-652 (-1188))) (-4 *3 (-174)) (-4 *5 (-242 (-3475 *2) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -1795 *4) (|:| -2477 *5)) (-2 (|:| -1795 *4) (|:| -2477 *5)))) (-5 *1 (-469 *2 *3 *4 *5 *6 *7)) (-4 *4 (-858)) (-4 *7 (-958 *3 *5 (-872 *2))))) (-3042 (*1 *1 *2 *3) (-12 (-5 *3 (-721 *5 *6 *7)) (-4 *5 (-858)) (-4 *6 (-242 (-3475 *4) (-779))) (-14 *7 (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *6)) (-2 (|:| -1795 *5) (|:| -2477 *6)))) (-14 *4 (-652 (-1188))) (-4 *2 (-174)) (-5 *1 (-469 *4 *2 *5 *6 *7 *8)) (-4 *8 (-958 *2 *6 (-872 *4))))) (-1572 (*1 *1 *2) (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174)) (-4 *5 (-242 (-3475 *3) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *5)) (-2 (|:| -1795 *2) (|:| -2477 *5)))) (-5 *1 (-469 *3 *4 *2 *5 *6 *7)) (-4 *2 (-858)) (-4 *7 (-958 *4 *5 (-872 *3))))) (-4083 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-652 (-1188))) (-4 *2 (-174)) (-4 *4 (-242 (-3475 *5) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -1795 *3) (|:| -2477 *4)) (-2 (|:| -1795 *3) (|:| -2477 *4)))) (-5 *1 (-469 *5 *2 *3 *4 *6 *7)) (-4 *3 (-858)) (-4 *7 (-958 *2 *4 (-872 *5))))) (-3378 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-652 (-1188))) (-4 *2 (-174)) (-4 *3 (-242 (-3475 *4) (-779))) (-14 *6 (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *3)) (-2 (|:| -1795 *5) (|:| -2477 *3)))) (-5 *1 (-469 *4 *2 *5 *3 *6 *7)) (-4 *5 (-858)) (-4 *7 (-958 *2 *3 (-872 *4))))))
+(-13 (-725 |#6|) (-725 |#2|) (-10 -8 (-15 -1853 (|#2| $)) (-15 -1840 ((-721 |#3| |#4| |#5|) $)) (-15 -1717 (|#4| $)) (-15 -4053 (|#3| $)) (-15 -1874 ($ $)) (-15 -3042 ($ |#2| (-721 |#3| |#4| |#5|))) (-15 -1572 ($ |#3|)) (-15 -4083 ($ |#2| |#3| |#4|)) (-15 -3378 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-4248 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-470 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4248 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-801) (-858) (-564) (-958 |#3| |#1| |#2|) (-13 (-1049 (-415 (-572))) (-370) (-10 -8 (-15 -3491 ($ |#4|)) (-15 -2209 (|#4| $)) (-15 -2224 (|#4| $))))) (T -470))
+((-4248 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-858)) (-4 *5 (-801)) (-4 *6 (-564)) (-4 *7 (-958 *6 *5 *3)) (-5 *1 (-470 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1049 (-415 (-572))) (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))))
+(-10 -7 (-15 -4248 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-3464 (((-112) $ $) NIL)) (-2220 (((-652 |#3|) $) 41)) (-2029 (((-112) $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-564)))) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-1424 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-3571 (((-112) $) NIL (|has| |#1| (-564)))) (-3057 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1528 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2690 (((-112) $) NIL (|has| |#1| (-564)))) (-4400 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) 49)) (-1869 (($ (-652 |#4|)) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-4243 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454)))) (-1442 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-3698 ((|#3| $) 47)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#4|) $) 14 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3049 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 21)) (-1677 (((-652 |#3|) $) NIL)) (-2002 (((-112) |#3| $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-2614 (((-1131) $) NIL)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3089 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 39)) (-1321 (($) 17)) (-1371 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) 16)) (-3222 (((-544) $) NIL (|has| |#4| (-622 (-544)))) (($ (-652 |#4|)) 51)) (-3503 (($ (-652 |#4|)) 13)) (-3399 (($ $ |#3|) NIL)) (-3831 (($ $ |#3|) NIL)) (-1757 (($ $ |#3|) NIL)) (-3491 (((-870) $) 38) (((-652 |#4|) $) 50)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 30)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-471 |#1| |#2| |#3| |#4|) (-13 (-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3222 ($ (-652 |#4|))) (-6 -4454) (-6 -4455))) (-1060) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -471))
+((-3222 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-471 *3 *4 *5 *6)))))
+(-13 (-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3222 ($ (-652 |#4|))) (-6 -4454) (-6 -4455)))
+((-2602 (($) 11)) (-2619 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -2619 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2602 (|#1|))) (-473 |#2| |#3|) (-174) (-23)) (T -472))
+NIL
+(-10 -8 (-15 -2619 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2602 (|#1|)))
+((-3464 (((-112) $ $) 7)) (-3072 (((-3 |#1| "failed") $) 27)) (-1869 ((|#1| $) 28)) (-2047 (($ $ $) 24)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1497 ((|#2| $) 20)) (-3491 (((-870) $) 12) (($ |#1|) 26)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 25 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 16) (($ $ $) 14)) (-4005 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-473 |#1| |#2|) (-141) (-174) (-23)) (T -473))
+((-2619 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2047 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-478 |t#1| |t#2|) (-1049 |t#1|) (-10 -8 (-15 (-2619) ($) -4338) (-15 -2047 ($ $ $))))
+(((-102) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-478 |#1| |#2|) . T) ((-1049 |#1|) . T) ((-1111) . T))
+((-3786 (((-1279 (-1279 (-572))) (-1279 (-1279 (-572))) (-930)) 26)) (-2988 (((-1279 (-1279 (-572))) (-930)) 21)))
+(((-474) (-10 -7 (-15 -3786 ((-1279 (-1279 (-572))) (-1279 (-1279 (-572))) (-930))) (-15 -2988 ((-1279 (-1279 (-572))) (-930))))) (T -474))
+((-2988 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 (-572)))) (-5 *1 (-474)))) (-3786 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 (-1279 (-572)))) (-5 *3 (-930)) (-5 *1 (-474)))))
+(-10 -7 (-15 -3786 ((-1279 (-1279 (-572))) (-1279 (-1279 (-572))) (-930))) (-15 -2988 ((-1279 (-1279 (-572))) (-930))))
+((-1971 (((-572) (-572)) 32) (((-572)) 24)) (-3462 (((-572) (-572)) 28) (((-572)) 20)) (-2597 (((-572) (-572)) 30) (((-572)) 22)) (-1524 (((-112) (-112)) 14) (((-112)) 12)) (-3924 (((-112) (-112)) 13) (((-112)) 11)) (-2075 (((-112) (-112)) 26) (((-112)) 17)))
+(((-475) (-10 -7 (-15 -3924 ((-112))) (-15 -1524 ((-112))) (-15 -3924 ((-112) (-112))) (-15 -1524 ((-112) (-112))) (-15 -2075 ((-112))) (-15 -2597 ((-572))) (-15 -3462 ((-572))) (-15 -1971 ((-572))) (-15 -2075 ((-112) (-112))) (-15 -2597 ((-572) (-572))) (-15 -3462 ((-572) (-572))) (-15 -1971 ((-572) (-572))))) (T -475))
+((-1971 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-1971 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-3462 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-2597 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475)))) (-2075 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-1524 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))) (-3924 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
+(-10 -7 (-15 -3924 ((-112))) (-15 -1524 ((-112))) (-15 -3924 ((-112) (-112))) (-15 -1524 ((-112) (-112))) (-15 -2075 ((-112))) (-15 -2597 ((-572))) (-15 -3462 ((-572))) (-15 -1971 ((-572))) (-15 -2075 ((-112) (-112))) (-15 -2597 ((-572) (-572))) (-15 -3462 ((-572) (-572))) (-15 -1971 ((-572) (-572))))
+((-3464 (((-112) $ $) NIL)) (-4309 (((-652 (-386)) $) 34) (((-652 (-386)) $ (-652 (-386))) 146)) (-3284 (((-652 (-1105 (-386))) $) 16) (((-652 (-1105 (-386))) $ (-652 (-1105 (-386)))) 142)) (-2554 (((-652 (-652 (-952 (-227)))) (-652 (-652 (-952 (-227)))) (-652 (-882))) 58)) (-1867 (((-652 (-652 (-952 (-227)))) $) 137)) (-2460 (((-1284) $ (-952 (-227)) (-882)) 163)) (-4041 (($ $) 136) (($ (-652 (-652 (-952 (-227))))) 149) (($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930))) 148) (($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)) (-652 (-268))) 150)) (-3618 (((-1170) $) NIL)) (-1640 (((-572) $) 110)) (-2614 (((-1131) $) NIL)) (-4185 (($) 147)) (-1947 (((-652 (-227)) (-652 (-652 (-952 (-227))))) 89)) (-4130 (((-1284) $ (-652 (-952 (-227))) (-882) (-882) (-930)) 155) (((-1284) $ (-952 (-227))) 157) (((-1284) $ (-952 (-227)) (-882) (-882) (-930)) 156)) (-3491 (((-870) $) 169) (($ (-652 (-652 (-952 (-227))))) 164)) (-3424 (((-112) $ $) NIL)) (-1462 (((-1284) $ (-952 (-227))) 162)) (-3921 (((-112) $ $) NIL)))
+(((-476) (-13 (-1111) (-10 -8 (-15 -4185 ($)) (-15 -4041 ($ $)) (-15 -4041 ($ (-652 (-652 (-952 (-227)))))) (-15 -4041 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)))) (-15 -4041 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)) (-652 (-268)))) (-15 -1867 ((-652 (-652 (-952 (-227)))) $)) (-15 -1640 ((-572) $)) (-15 -3284 ((-652 (-1105 (-386))) $)) (-15 -3284 ((-652 (-1105 (-386))) $ (-652 (-1105 (-386))))) (-15 -4309 ((-652 (-386)) $)) (-15 -4309 ((-652 (-386)) $ (-652 (-386)))) (-15 -4130 ((-1284) $ (-652 (-952 (-227))) (-882) (-882) (-930))) (-15 -4130 ((-1284) $ (-952 (-227)))) (-15 -4130 ((-1284) $ (-952 (-227)) (-882) (-882) (-930))) (-15 -1462 ((-1284) $ (-952 (-227)))) (-15 -2460 ((-1284) $ (-952 (-227)) (-882))) (-15 -3491 ($ (-652 (-652 (-952 (-227)))))) (-15 -3491 ((-870) $)) (-15 -2554 ((-652 (-652 (-952 (-227)))) (-652 (-652 (-952 (-227)))) (-652 (-882)))) (-15 -1947 ((-652 (-227)) (-652 (-652 (-952 (-227))))))))) (T -476))
+((-3491 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-476)))) (-4185 (*1 *1) (-5 *1 (-476))) (-4041 (*1 *1 *1) (-5 *1 (-476))) (-4041 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))) (-4041 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882))) (-5 *4 (-652 (-930))) (-5 *1 (-476)))) (-4041 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882))) (-5 *4 (-652 (-930))) (-5 *5 (-652 (-268))) (-5 *1 (-476)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-476)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476)))) (-3284 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476)))) (-4309 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476)))) (-4130 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *2 (-1284)) (-5 *1 (-476)))) (-4130 (*1 *2 *1 *3) (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476)))) (-4130 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *2 (-1284)) (-5 *1 (-476)))) (-1462 (*1 *2 *1 *3) (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476)))) (-2460 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-476)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))) (-2554 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882))) (-5 *1 (-476)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-652 (-227))) (-5 *1 (-476)))))
+(-13 (-1111) (-10 -8 (-15 -4185 ($)) (-15 -4041 ($ $)) (-15 -4041 ($ (-652 (-652 (-952 (-227)))))) (-15 -4041 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)))) (-15 -4041 ($ (-652 (-652 (-952 (-227)))) (-652 (-882)) (-652 (-882)) (-652 (-930)) (-652 (-268)))) (-15 -1867 ((-652 (-652 (-952 (-227)))) $)) (-15 -1640 ((-572) $)) (-15 -3284 ((-652 (-1105 (-386))) $)) (-15 -3284 ((-652 (-1105 (-386))) $ (-652 (-1105 (-386))))) (-15 -4309 ((-652 (-386)) $)) (-15 -4309 ((-652 (-386)) $ (-652 (-386)))) (-15 -4130 ((-1284) $ (-652 (-952 (-227))) (-882) (-882) (-930))) (-15 -4130 ((-1284) $ (-952 (-227)))) (-15 -4130 ((-1284) $ (-952 (-227)) (-882) (-882) (-930))) (-15 -1462 ((-1284) $ (-952 (-227)))) (-15 -2460 ((-1284) $ (-952 (-227)) (-882))) (-15 -3491 ($ (-652 (-652 (-952 (-227)))))) (-15 -3491 ((-870) $)) (-15 -2554 ((-652 (-652 (-952 (-227)))) (-652 (-652 (-952 (-227)))) (-652 (-882)))) (-15 -1947 ((-652 (-227)) (-652 (-652 (-952 (-227))))))))
+((-4018 (($ $) NIL) (($ $ $) 11)))
+(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|))) (-478 |#2| |#3|) (-174) (-23)) (T -477))
+NIL
+(-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1497 ((|#2| $) 20)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 16) (($ $ $) 14)) (-4005 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-478 |#1| |#2|) (-141) (-174) (-23)) (T -478))
+((-1497 (*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2602 (*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4018 (*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4005 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-1111) (-10 -8 (-15 -1497 (|t#2| $)) (-15 (-2602) ($) -4338) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4018 ($ $)) (-15 -4005 ($ $ $)) (-15 -4018 ($ $ $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-1519 (((-3 (-652 (-489 |#1| |#2|)) "failed") (-652 (-489 |#1| |#2|)) (-652 (-872 |#1|))) 134)) (-4210 (((-652 (-652 (-251 |#1| |#2|))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|))) 131)) (-1896 (((-2 (|:| |dpolys| (-652 (-251 |#1| |#2|))) (|:| |coords| (-652 (-572)))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|))) 86)))
+(((-479 |#1| |#2| |#3|) (-10 -7 (-15 -4210 ((-652 (-652 (-251 |#1| |#2|))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -1519 ((-3 (-652 (-489 |#1| |#2|)) "failed") (-652 (-489 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -1896 ((-2 (|:| |dpolys| (-652 (-251 |#1| |#2|))) (|:| |coords| (-652 (-572)))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|))))) (-652 (-1188)) (-460) (-460)) (T -479))
+((-1896 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-2 (|:| |dpolys| (-652 (-251 *5 *6))) (|:| |coords| (-652 (-572))))) (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))) (-1519 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-652 (-872 *4))) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-479 *4 *5 *6)) (-4 *6 (-460)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-652 (-652 (-251 *5 *6)))) (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))))
+(-10 -7 (-15 -4210 ((-652 (-652 (-251 |#1| |#2|))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -1519 ((-3 (-652 (-489 |#1| |#2|)) "failed") (-652 (-489 |#1| |#2|)) (-652 (-872 |#1|)))) (-15 -1896 ((-2 (|:| |dpolys| (-652 (-251 |#1| |#2|))) (|:| |coords| (-652 (-572)))) (-652 (-251 |#1| |#2|)) (-652 (-872 |#1|)))))
+((-2982 (((-3 $ "failed") $) 11)) (-4242 (($ $ $) 23)) (-1433 (($ $ $) 24)) (-4029 (($ $ $) 9)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 22)))
+(((-480 |#1|) (-10 -8 (-15 -1433 (|#1| |#1| |#1|)) (-15 -4242 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -4029 (|#1| |#1| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930)))) (-481)) (T -480))
+NIL
+(-10 -8 (-15 -1433 (|#1| |#1| |#1|)) (-15 -4242 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -4029 (|#1| |#1| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))))
+((-3464 (((-112) $ $) 7)) (-1586 (($) 19 T CONST)) (-2982 (((-3 $ "failed") $) 16)) (-4422 (((-112) $) 18)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 25)) (-2614 (((-1131) $) 11)) (-4242 (($ $ $) 22)) (-1433 (($ $ $) 21)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2619 (($) 20 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 24)) (** (($ $ (-930)) 14) (($ $ (-779)) 17) (($ $ (-572)) 23)) (* (($ $ $) 15)))
+(((-481) (-141)) (T -481))
+((-1809 (*1 *1 *1) (-4 *1 (-481))) (-4029 (*1 *1 *1 *1) (-4 *1 (-481))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-481)) (-5 *2 (-572)))) (-4242 (*1 *1 *1 *1) (-4 *1 (-481))) (-1433 (*1 *1 *1 *1) (-4 *1 (-481))))
+(-13 (-734) (-10 -8 (-15 -1809 ($ $)) (-15 -4029 ($ $ $)) (-15 ** ($ $ (-572))) (-6 -4451) (-15 -4242 ($ $ $)) (-15 -1433 ($ $ $))))
+(((-102) . T) ((-621 (-870)) . T) ((-734) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 18)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-2709 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) NIL)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-415 (-572))) NIL) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) 25)) (-4057 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-4161 (($ $) 29 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 35 (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 30 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-415 (-572))) NIL)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3272 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) 28 (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $ (-1275 |#2|)) 16)) (-1497 (((-415 (-572)) $) NIL)) (-2139 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1275 |#2|)) NIL) (($ (-1264 |#1| |#2| |#3|)) 9) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-4206 ((|#1| $ (-415 (-572))) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) 21)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) 27)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-482 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-10 -8 (-15 -3491 ($ (-1275 |#2|))) (-15 -3491 ($ (-1264 |#1| |#2| |#3|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -482))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-482 *3 *4 *5)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(-13 (-1260 |#1|) (-10 -8 (-15 -3491 ($ (-1275 |#2|))) (-15 -3491 ($ (-1264 |#1| |#2| |#3|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|)))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2812 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#2| $ |#1| |#2|) 18)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) 19)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 16)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) NIL)) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 ((|#1| $) NIL (|has| |#1| (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 ((|#1| $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2608 (((-652 |#1|) $) NIL)) (-4096 (((-112) |#1| $) NIL)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1634 (((-652 |#1|) $) NIL)) (-3132 (((-112) |#1| $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#2| $) NIL (|has| |#1| (-858)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-483 |#1| |#2| |#3| |#4|) (-1205 |#1| |#2|) (-1111) (-1111) (-1205 |#1| |#2|) |#2|) (T -483))
+NIL
+(-1205 |#1| |#2|)
+((-3464 (((-112) $ $) NIL)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) NIL)) (-3426 (((-652 $) (-652 |#4|)) NIL)) (-2220 (((-652 |#3|) $) NIL)) (-2029 (((-112) $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2373 ((|#4| |#4| $) NIL)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-1424 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1586 (($) NIL T CONST)) (-3571 (((-112) $) 29 (|has| |#1| (-564)))) (-3057 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1528 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2690 (((-112) $) NIL (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4400 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) NIL)) (-1869 (($ (-652 |#4|)) NIL)) (-2581 (((-3 $ "failed") $) 45)) (-3802 ((|#4| |#4| $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-4243 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1674 ((|#4| |#4| $) NIL)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) NIL)) (-1442 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3698 ((|#3| $) 38)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#4|) $) 19 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3049 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 23)) (-1677 (((-652 |#3|) $) NIL)) (-2002 (((-112) |#3| $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-4261 (((-3 |#4| "failed") $) 42)) (-1706 (((-652 |#4|) $) NIL)) (-1338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3113 ((|#4| |#4| $) NIL)) (-4398 (((-112) $ $) NIL)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2041 ((|#4| |#4| $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-3 |#4| "failed") $) 40)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4236 (((-3 $ "failed") $ |#4|) 58)) (-3103 (($ $ |#4|) NIL)) (-3089 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 17)) (-1321 (($) 14)) (-1497 (((-779) $) NIL)) (-1371 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) 13)) (-3222 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 22)) (-3399 (($ $ |#3|) 52)) (-3831 (($ $ |#3|) 54)) (-2894 (($ $) NIL)) (-1757 (($ $ |#3|) NIL)) (-3491 (((-870) $) 35) (((-652 |#4|) $) 46)) (-1935 (((-779) $) NIL (|has| |#3| (-375)))) (-3424 (((-112) $ $) NIL)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-3776 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) NIL)) (-2947 (((-112) |#3| $) NIL)) (-3921 (((-112) $ $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-484 |#1| |#2| |#3| |#4|) (-1222 |#1| |#2| |#3| |#4|) (-564) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -484))
+NIL
+(-1222 |#1| |#2| |#3| |#4|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL)) (-1869 (((-572) $) NIL) (((-415 (-572)) $) NIL)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-2250 (($) 17)) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3222 (((-386) $) 21) (((-227) $) 24) (((-415 (-1184 (-572))) $) 18) (((-544) $) 53)) (-3491 (((-870) $) 51) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (((-227) $) 23) (((-386) $) 20)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) 37 T CONST)) (-2619 (($) 8 T CONST)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-485) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))) (-1033) (-621 (-227)) (-621 (-386)) (-622 (-415 (-1184 (-572)))) (-622 (-544)) (-10 -8 (-15 -2250 ($))))) (T -485))
+((-2250 (*1 *1) (-5 *1 (-485))))
+(-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))) (-1033) (-621 (-227)) (-621 (-386)) (-622 (-415 (-1184 (-572)))) (-622 (-544)) (-10 -8 (-15 -2250 ($))))
+((-3464 (((-112) $ $) NIL)) (-1336 (((-1146) $) 11)) (-1325 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-486) (-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))) (T -486))
+((-1325 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486)))))
+(-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2812 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#2| $ |#1| |#2|) 16)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) 20)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 18)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) NIL)) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 ((|#1| $) NIL (|has| |#1| (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 ((|#1| $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2608 (((-652 |#1|) $) 13)) (-4096 (((-112) |#1| $) NIL)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1634 (((-652 |#1|) $) NIL)) (-3132 (((-112) |#1| $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#2| $) NIL (|has| |#1| (-858)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 19)) (-2679 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 11 (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3475 (((-779) $) 15 (|has| $ (-6 -4454)))))
+(((-487 |#1| |#2| |#3|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111) (-1170)) (T -487))
+NIL
+(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
+((-2728 (((-572) (-572) (-572)) 19)) (-1976 (((-112) (-572) (-572) (-572) (-572)) 28)) (-1347 (((-1279 (-652 (-572))) (-779) (-779)) 41)))
+(((-488) (-10 -7 (-15 -2728 ((-572) (-572) (-572))) (-15 -1976 ((-112) (-572) (-572) (-572) (-572))) (-15 -1347 ((-1279 (-652 (-572))) (-779) (-779))))) (T -488))
+((-1347 (*1 *2 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1279 (-652 (-572)))) (-5 *1 (-488)))) (-1976 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-488)))) (-2728 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-488)))))
+(-10 -7 (-15 -2728 ((-572) (-572) (-572))) (-15 -1976 ((-112) (-572) (-572) (-572) (-572))) (-15 -1347 ((-1279 (-652 (-572))) (-779) (-779))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-872 |#1|)) $) NIL)) (-4063 (((-1184 $) $ (-872 |#1|)) NIL) (((-1184 |#2|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-1697 (($ $) NIL (|has| |#2| (-564)))) (-1774 (((-112) $) NIL (|has| |#2| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-872 |#1|))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1861 (($ $) NIL (|has| |#2| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-1869 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-3829 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-2105 (($ $ (-652 (-572))) NIL)) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#2| (-918)))) (-3163 (($ $ |#2| (-490 (-3475 |#1|) (-779)) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3060 (($ (-1184 |#2|) (-872 |#1|)) NIL) (($ (-1184 $) (-872 |#1|)) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#2| (-490 (-3475 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-872 |#1|)) NIL)) (-3808 (((-490 (-3475 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-2008 (($ (-1 (-490 (-3475 |#1|) (-779)) (-490 (-3475 |#1|) (-779))) $) NIL)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-4107 (((-3 (-872 |#1|) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#2| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3618 (((-1170) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -2477 (-779))) "failed") $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#2| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#2| (-918)))) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) NIL) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) NIL) (($ $ (-872 |#1|) $) NIL) (($ $ (-652 (-872 |#1|)) (-652 $)) NIL)) (-2020 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3011 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1497 (((-490 (-3475 |#1|) (-779)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-3262 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-872 |#1|)) NIL) (($ (-415 (-572))) NIL (-3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-490 (-3475 |#1|) (-779))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-489 |#1| |#2|) (-13 (-958 |#2| (-490 (-3475 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -2105 ($ $ (-652 (-572)))))) (-652 (-1188)) (-1060)) (T -489))
+((-2105 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-489 *3 *4)) (-14 *3 (-652 (-1188))) (-4 *4 (-1060)))))
+(-13 (-958 |#2| (-490 (-3475 |#1|) (-779)) (-872 |#1|)) (-10 -8 (-15 -2105 ($ $ (-652 (-572))))))
+((-3464 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3143 (((-112) $) NIL (|has| |#2| (-132)))) (-1572 (($ (-930)) NIL (|has| |#2| (-1060)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2486 (($ $ $) NIL (|has| |#2| (-801)))) (-2092 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| |#2| (-375)))) (-4304 (((-572) $) NIL (|has| |#2| (-856)))) (-3659 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1111)))) (-1869 (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) NIL (|has| |#2| (-1111)))) (-2245 (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) NIL (|has| |#2| (-1060)))) (-2982 (((-3 $ "failed") $) NIL (|has| |#2| (-734)))) (-2688 (($) NIL (|has| |#2| (-375)))) (-3061 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ (-572)) 11)) (-3778 (((-112) $) NIL (|has| |#2| (-856)))) (-1442 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL (|has| |#2| (-734)))) (-4354 (((-112) $) NIL (|has| |#2| (-856)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2396 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3049 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#2| (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#2| (-1111)))) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-1795 (($ (-930)) NIL (|has| |#2| (-375)))) (-2614 (((-1131) $) NIL (|has| |#2| (-1111)))) (-2570 ((|#2| $) NIL (|has| (-572) (-858)))) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) NIL)) (-1606 ((|#2| $ $) NIL (|has| |#2| (-1060)))) (-3153 (($ (-1279 |#2|)) NIL)) (-1670 (((-135)) NIL (|has| |#2| (-370)))) (-3011 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-1371 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-1279 |#2|) $) NIL) (($ (-572)) NIL (-3783 (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) NIL (|has| |#2| (-1111))) (((-870) $) NIL (|has| |#2| (-621 (-870))))) (-2455 (((-779)) NIL (|has| |#2| (-1060)) CONST)) (-3424 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3776 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2775 (($ $) NIL (|has| |#2| (-856)))) (-2602 (($) NIL (|has| |#2| (-132)) CONST)) (-2619 (($) NIL (|has| |#2| (-734)) CONST)) (-4019 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3976 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3954 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3921 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3965 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3943 (((-112) $ $) 17 (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $ $) NIL (|has| |#2| (-1060))) (($ $) NIL (|has| |#2| (-1060)))) (-4005 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-779)) NIL (|has| |#2| (-734))) (($ $ (-930)) NIL (|has| |#2| (-734)))) (* (($ (-572) $) NIL (|has| |#2| (-1060))) (($ $ $) NIL (|has| |#2| (-734))) (($ $ |#2|) NIL (|has| |#2| (-734))) (($ |#2| $) NIL (|has| |#2| (-734))) (($ (-779) $) NIL (|has| |#2| (-132))) (($ (-930) $) NIL (|has| |#2| (-25)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-490 |#1| |#2|) (-242 |#1| |#2|) (-779) (-801)) (T -490))
+NIL
+(-242 |#1| |#2|)
+((-3464 (((-112) $ $) NIL)) (-3128 (((-652 (-884)) $) 15)) (-2402 (((-514) $) 13)) (-3618 (((-1170) $) NIL)) (-1570 (($ (-514) (-652 (-884))) 11)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 22) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-491) (-13 (-1094) (-10 -8 (-15 -1570 ($ (-514) (-652 (-884)))) (-15 -2402 ((-514) $)) (-15 -3128 ((-652 (-884)) $))))) (T -491))
+((-1570 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-884))) (-5 *1 (-491)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-491)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-652 (-884))) (-5 *1 (-491)))))
+(-13 (-1094) (-10 -8 (-15 -1570 ($ (-514) (-652 (-884)))) (-15 -2402 ((-514) $)) (-15 -3128 ((-652 (-884)) $))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) NIL)) (-1586 (($) NIL T CONST)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-2363 (($ $ $) 48)) (-1377 (($ $ $) 47)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3928 ((|#1| $) 40)) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1533 ((|#1| $) 41)) (-3704 (($ |#1| $) 18)) (-3362 (($ (-652 |#1|)) 19)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-4105 ((|#1| $) 34)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 11)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 45)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) 29 (|has| $ (-6 -4454)))))
+(((-492 |#1|) (-13 (-979 |#1|) (-10 -8 (-15 -3362 ($ (-652 |#1|))))) (-858)) (T -492))
+((-3362 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-492 *3)))))
+(-13 (-979 |#1|) (-10 -8 (-15 -3362 ($ (-652 |#1|)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2925 (($ $) 71)) (-2576 (((-112) $) NIL)) (-3618 (((-1170) $) NIL)) (-1994 (((-421 |#2| (-415 |#2|) |#3| |#4|) $) 45)) (-2614 (((-1131) $) NIL)) (-4267 (((-3 |#4| "failed") $) 117)) (-1692 (($ (-421 |#2| (-415 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-572)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2572 (((-2 (|:| -2667 (-421 |#2| (-415 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3491 (((-870) $) 110)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 32 T CONST)) (-3921 (((-112) $ $) 121)) (-4018 (($ $) 77) (($ $ $) NIL)) (-4005 (($ $ $) 72)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 78)))
+(((-493 |#1| |#2| |#3| |#4|) (-342 |#1| |#2| |#3| |#4|) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -493))
+NIL
+(-342 |#1| |#2| |#3| |#4|)
+((-2159 (((-572) (-652 (-572))) 53)) (-1405 ((|#1| (-652 |#1|)) 94)) (-3202 (((-652 |#1|) (-652 |#1|)) 95)) (-1520 (((-652 |#1|) (-652 |#1|)) 97)) (-1370 ((|#1| (-652 |#1|)) 96)) (-3262 (((-652 (-572)) (-652 |#1|)) 56)))
+(((-494 |#1|) (-10 -7 (-15 -1370 (|#1| (-652 |#1|))) (-15 -1405 (|#1| (-652 |#1|))) (-15 -1520 ((-652 |#1|) (-652 |#1|))) (-15 -3202 ((-652 |#1|) (-652 |#1|))) (-15 -3262 ((-652 (-572)) (-652 |#1|))) (-15 -2159 ((-572) (-652 (-572))))) (-1255 (-572))) (T -494))
+((-2159 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-572)) (-5 *1 (-494 *4)) (-4 *4 (-1255 *2)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1255 (-572))) (-5 *2 (-652 (-572))) (-5 *1 (-494 *4)))) (-3202 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572))))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572))))))
+(-10 -7 (-15 -1370 (|#1| (-652 |#1|))) (-15 -1405 (|#1| (-652 |#1|))) (-15 -1520 ((-652 |#1|) (-652 |#1|))) (-15 -3202 ((-652 |#1|) (-652 |#1|))) (-15 -3262 ((-652 (-572)) (-652 |#1|))) (-15 -2159 ((-572) (-652 (-572)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 (((-572) $) NIL (|has| (-572) (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| (-572) (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-572) (-1049 (-572))))) (-1869 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-572) (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| (-572) (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 (((-572) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-4354 (((-112) $) NIL (|has| (-572) (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-572) (-858)))) (-3161 (($ (-1 (-572) (-572)) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-572) (-1163)) CONST)) (-2132 (($ (-415 (-572))) 9)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) NIL)) (-1609 (((-572) $) NIL (|has| (-572) (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-4395 (((-779) $) NIL)) (-2679 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3982 (($ $) NIL)) (-2224 (((-572) $) NIL)) (-3222 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 8) (($ (-572)) NIL) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL) (((-1015 16) $) 10)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-2455 (((-779)) NIL T CONST)) (-3441 (((-572) $) NIL (|has| (-572) (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| (-572) (-828)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3976 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-572) (-858)))) (-4029 (($ $ $) NIL) (($ (-572) (-572)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) NIL) (($ $ (-572)) NIL)))
+(((-495) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 16)) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -2132 ($ (-415 (-572))))))) (T -495))
+((-3964 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495)))))
+(-13 (-1003 (-572)) (-621 (-415 (-572))) (-621 (-1015 16)) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -2132 ($ (-415 (-572))))))
+((-2396 (((-652 |#2|) $) 31)) (-4211 (((-112) |#2| $) 36)) (-3089 (((-112) (-1 (-112) |#2|) $) 26)) (-3654 (($ $ (-652 (-300 |#2|))) 13) (($ $ (-300 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-652 |#2|) (-652 |#2|)) NIL)) (-1371 (((-779) (-1 (-112) |#2|) $) 30) (((-779) |#2| $) 34)) (-3491 (((-870) $) 45)) (-3776 (((-112) (-1 (-112) |#2|) $) 23)) (-3921 (((-112) $ $) 39)) (-3475 (((-779) $) 18)))
+(((-496 |#1| |#2|) (-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#2| |#2|)) (-15 -3654 (|#1| |#1| (-300 |#2|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -4211 ((-112) |#2| |#1|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -2396 ((-652 |#2|) |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3475 ((-779) |#1|))) (-497 |#2|) (-1229)) (T -496))
+NIL
+(-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#2| |#2|)) (-15 -3654 (|#1| |#1| (-300 |#2|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#2|)))) (-15 -4211 ((-112) |#2| |#1|)) (-15 -1371 ((-779) |#2| |#1|)) (-15 -2396 ((-652 |#2|) |#1|)) (-15 -1371 ((-779) (-1 (-112) |#2|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3475 ((-779) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-1586 (($) 7 T CONST)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-497 |#1|) (-141) (-1229)) (T -497))
+((-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-497 *3)) (-4 *3 (-1229)))) (-3049 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4455)) (-4 *1 (-497 *3)) (-4 *3 (-1229)))) (-3776 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-3089 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-1371 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4)) (-4 *4 (-1229)) (-5 *2 (-779)))) (-1442 (*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))) (-2396 (*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))) (-1371 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-779)))) (-4211 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) (IF (|has| |t#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |t#1| (-1111)) (IF (|has| |t#1| (-315 |t#1|)) (-6 (-315 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3161 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4455)) (-15 -3049 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4454)) (PROGN (-15 -3776 ((-112) (-1 (-112) |t#1|) $)) (-15 -3089 ((-112) (-1 (-112) |t#1|) $)) (-15 -1371 ((-779) (-1 (-112) |t#1|) $)) (-15 -1442 ((-652 |t#1|) $)) (-15 -2396 ((-652 |t#1|) $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -1371 ((-779) |t#1| $)) (-15 -4211 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3491 ((|#1| $) 6) (($ |#1|) 9)))
+(((-498 |#1|) (-141) (-1229)) (T -498))
+NIL
+(-13 (-621 |t#1|) (-624 |t#1|))
+(((-624 |#1|) . T) ((-621 |#1|) . T))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-1881 (($ (-1170)) 8)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 15) (((-1170) $) 12)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 11)))
+(((-499) (-13 (-1111) (-621 (-1170)) (-10 -8 (-15 -1881 ($ (-1170)))))) (T -499))
+((-1881 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-499)))))
+(-13 (-1111) (-621 (-1170)) (-10 -8 (-15 -1881 ($ (-1170)))))
+((-3915 (($ $) 15)) (-3893 (($ $) 24)) (-3939 (($ $) 12)) (-2139 (($ $) 10)) (-3927 (($ $) 17)) (-3905 (($ $) 22)))
+(((-500 |#1|) (-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -2139 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3915 (|#1| |#1|))) (-501)) (T -500))
+NIL
+(-10 -8 (-15 -3905 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -2139 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)))
+((-3915 (($ $) 11)) (-3893 (($ $) 10)) (-3939 (($ $) 9)) (-2139 (($ $) 8)) (-3927 (($ $) 7)) (-3905 (($ $) 6)))
+(((-501) (-141)) (T -501))
+((-3915 (*1 *1 *1) (-4 *1 (-501))) (-3893 (*1 *1 *1) (-4 *1 (-501))) (-3939 (*1 *1 *1) (-4 *1 (-501))) (-2139 (*1 *1 *1) (-4 *1 (-501))) (-3927 (*1 *1 *1) (-4 *1 (-501))) (-3905 (*1 *1 *1) (-4 *1 (-501))))
+(-13 (-10 -8 (-15 -3905 ($ $)) (-15 -3927 ($ $)) (-15 -2139 ($ $)) (-15 -3939 ($ $)) (-15 -3893 ($ $)) (-15 -3915 ($ $))))
+((-2972 (((-426 |#4|) |#4| (-1 (-426 |#2|) |#2|)) 54)))
+(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-426 |#4|) |#4| (-1 (-426 |#2|) |#2|)))) (-370) (-1255 |#1|) (-13 (-370) (-148) (-732 |#1| |#2|)) (-1255 |#3|)) (T -502))
+((-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-4 *7 (-13 (-370) (-148) (-732 *5 *6))) (-5 *2 (-426 *3)) (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-1255 *7)))))
+(-10 -7 (-15 -2972 ((-426 |#4|) |#4| (-1 (-426 |#2|) |#2|))))
+((-3464 (((-112) $ $) NIL)) (-2814 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-4049 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-3143 (((-112) $) 39)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2238 (((-112) $ $) 73)) (-1746 (((-652 (-620 $)) $) 50)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1480 (($ $ (-300 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3093 (($ $) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-1755 (((-652 $) (-1184 $) (-1188)) NIL) (((-652 $) (-1184 $)) NIL) (((-652 $) (-961 $)) NIL)) (-3748 (($ (-1184 $) (-1188)) NIL) (($ (-1184 $)) NIL) (($ (-961 $)) NIL)) (-3072 (((-3 (-620 $) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL)) (-1869 (((-620 $) $) NIL) (((-572) $) NIL) (((-415 (-572)) $) 55)) (-3407 (($ $ $) NIL)) (-2245 (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-415 (-572)))) (|:| |vec| (-1279 (-415 (-572))))) (-697 $) (-1279 $)) NIL) (((-697 (-415 (-572))) (-697 $)) NIL)) (-2925 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3666 (($ $) NIL) (($ (-652 $)) NIL)) (-1323 (((-652 (-115)) $) NIL)) (-3181 (((-115) (-115)) NIL)) (-4422 (((-112) $) 42)) (-2270 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-2209 (((-1136 (-572) (-620 $)) $) 37)) (-2033 (($ $ (-572)) NIL)) (-2140 (((-1184 $) (-1184 $) (-620 $)) 87) (((-1184 $) (-1184 $) (-652 (-620 $))) 62) (($ $ (-620 $)) 76) (($ $ (-652 (-620 $))) 77)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2328 (((-1184 $) (-620 $)) 74 (|has| $ (-1060)))) (-3161 (($ (-1 $ $) (-620 $)) NIL)) (-2094 (((-3 (-620 $) "failed") $) NIL)) (-1335 (($ (-652 $)) NIL) (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-3165 (((-652 (-620 $)) $) NIL)) (-2296 (($ (-115) $) NIL) (($ (-115) (-652 $)) NIL)) (-2685 (((-112) $ (-115)) NIL) (((-112) $ (-1188)) NIL)) (-1809 (($ $) NIL)) (-3920 (((-779) $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ (-652 $)) NIL) (($ $ $) NIL)) (-3681 (((-112) $ $) NIL) (((-112) $ (-1188)) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3601 (((-112) $) NIL (|has| $ (-1049 (-572))))) (-3654 (($ $ (-620 $) $) NIL) (($ $ (-652 (-620 $)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-1188)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-1188) (-1 $ (-652 $))) NIL) (($ $ (-1188) (-1 $ $)) NIL) (($ $ (-652 (-115)) (-652 (-1 $ $))) NIL) (($ $ (-652 (-115)) (-652 (-1 $ (-652 $)))) NIL) (($ $ (-115) (-1 $ (-652 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4395 (((-779) $) NIL)) (-2679 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-652 $)) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-2151 (($ $) NIL) (($ $ $) NIL)) (-3011 (($ $ (-779)) NIL) (($ $) 36)) (-2224 (((-1136 (-572) (-620 $)) $) 20)) (-3858 (($ $) NIL (|has| $ (-1060)))) (-3222 (((-386) $) 101) (((-227) $) 109) (((-171 (-386)) $) 117)) (-3491 (((-870) $) NIL) (($ (-620 $)) NIL) (($ (-415 (-572))) NIL) (($ $) NIL) (($ (-572)) NIL) (($ (-1136 (-572) (-620 $))) 21)) (-2455 (((-779)) NIL T CONST)) (-1850 (($ $) NIL) (($ (-652 $)) NIL)) (-3088 (((-112) (-115)) 93)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) 10 T CONST)) (-2619 (($) 22 T CONST)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3921 (((-112) $ $) 24)) (-4029 (($ $ $) 44)) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-415 (-572))) NIL) (($ $ (-572)) 48) (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ $ $) 27) (($ (-572) $) NIL) (($ (-779) $) NIL) (($ (-930) $) NIL)))
+(((-503) (-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -3491 ($ (-1136 (-572) (-620 $)))) (-15 -2209 ((-1136 (-572) (-620 $)) $)) (-15 -2224 ((-1136 (-572) (-620 $)) $)) (-15 -2925 ($ $)) (-15 -2238 ((-112) $ $)) (-15 -2140 ((-1184 $) (-1184 $) (-620 $))) (-15 -2140 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2140 ($ $ (-620 $))) (-15 -2140 ($ $ (-652 (-620 $))))))) (T -503))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503)))) (-2925 (*1 *1 *1) (-5 *1 (-503))) (-2238 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-503)))) (-2140 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-620 (-503))) (-5 *1 (-503)))) (-2140 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-652 (-620 (-503)))) (-5 *1 (-503)))) (-2140 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-503))) (-5 *1 (-503)))) (-2140 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-503)))) (-5 *1 (-503)))))
+(-13 (-308) (-27) (-1049 (-572)) (-1049 (-415 (-572))) (-647 (-572)) (-1033) (-647 (-415 (-572))) (-148) (-622 (-171 (-386))) (-237) (-10 -8 (-15 -3491 ($ (-1136 (-572) (-620 $)))) (-15 -2209 ((-1136 (-572) (-620 $)) $)) (-15 -2224 ((-1136 (-572) (-620 $)) $)) (-15 -2925 ($ $)) (-15 -2238 ((-112) $ $)) (-15 -2140 ((-1184 $) (-1184 $) (-620 $))) (-15 -2140 ((-1184 $) (-1184 $) (-652 (-620 $)))) (-15 -2140 ($ $ (-620 $))) (-15 -2140 ($ $ (-652 (-620 $))))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) |#1|) 44 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 39 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 38)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) 21)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 17 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) 41 (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) 15 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 19)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 43) (($ $ (-1246 (-572))) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 24)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) 11 (|has| $ (-6 -4454)))))
+(((-504 |#1| |#2|) (-19 |#1|) (-1229) (-572)) (T -504))
NIL
(-19 |#1|)
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2951 (($ $ (-570) (-502 |#1| |#3|)) NIL)) (-2605 (($ $ (-570) (-502 |#1| |#2|)) NIL)) (-2333 (($) NIL T CONST)) (-3598 (((-502 |#1| |#3|) $ (-570)) NIL)) (-2845 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2774 ((|#1| $ (-570) (-570)) NIL)) (-3976 (((-650 |#1|) $) NIL)) (-4218 (((-777) $) NIL)) (-2296 (($ (-777) (-777) |#1|) NIL)) (-4230 (((-777) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-1863 (((-570) $) NIL)) (-2554 (((-570) $) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2163 (((-570) $) NIL)) (-1448 (((-570) $) NIL)) (-2833 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-4101 (((-502 |#1| |#2|) $ (-570)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-503 |#1| |#2| |#3|) (-57 |#1| (-502 |#1| |#3|) (-502 |#1| |#2|)) (-1227) (-570) (-570)) (T -503))
-NIL
-(-57 |#1| (-502 |#1| |#3|) (-502 |#1| |#2|))
-((-2905 (((-650 (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-777) (-777)) 32)) (-1450 (((-650 (-1182 |#1|)) |#1| (-777) (-777) (-777)) 43)) (-2976 (((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-650 |#3|) (-650 (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-777)) 107)))
-(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -1450 ((-650 (-1182 |#1|)) |#1| (-777) (-777) (-777))) (-15 -2905 ((-650 (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-777) (-777))) (-15 -2976 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-650 |#3|) (-650 (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-777)))) (-354) (-1253 |#1|) (-1253 |#2|)) (T -504))
-((-2976 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-2 (|:| -2681 (-695 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-695 *7))))) (-5 *5 (-777)) (-4 *8 (-1253 *7)) (-4 *7 (-1253 *6)) (-4 *6 (-354)) (-5 *2 (-2 (|:| -2681 (-695 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-695 *7)))) (-5 *1 (-504 *6 *7 *8)))) (-2905 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-777)) (-4 *5 (-354)) (-4 *6 (-1253 *5)) (-5 *2 (-650 (-2 (|:| -2681 (-695 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-695 *6))))) (-5 *1 (-504 *5 *6 *7)) (-5 *3 (-2 (|:| -2681 (-695 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-695 *6)))) (-4 *7 (-1253 *6)))) (-1450 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-777)) (-4 *3 (-354)) (-4 *5 (-1253 *3)) (-5 *2 (-650 (-1182 *3))) (-5 *1 (-504 *3 *5 *6)) (-4 *6 (-1253 *5)))))
-(-10 -7 (-15 -1450 ((-650 (-1182 |#1|)) |#1| (-777) (-777) (-777))) (-15 -2905 ((-650 (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-777) (-777))) (-15 -2976 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-650 |#3|) (-650 (-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-777))))
-((-1949 (((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|)))) 70)) (-2743 ((|#1| (-695 |#1|) |#1| (-777)) 24)) (-1635 (((-777) (-777) (-777)) 34)) (-1649 (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 50)) (-3704 (((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|) 58) (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 55)) (-2759 ((|#1| (-695 |#1|) (-695 |#1|) |#1| (-570)) 28)) (-2186 ((|#1| (-695 |#1|)) 18)))
-(((-505 |#1| |#2| |#3|) (-10 -7 (-15 -2186 (|#1| (-695 |#1|))) (-15 -2743 (|#1| (-695 |#1|) |#1| (-777))) (-15 -2759 (|#1| (-695 |#1|) (-695 |#1|) |#1| (-570))) (-15 -1635 ((-777) (-777) (-777))) (-15 -3704 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -3704 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -1649 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1949 ((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|)))))) (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))) (-1253 |#1|) (-415 |#1| |#2|)) (T -505))
-((-1949 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-1649 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-3704 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-3704 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-1635 (*1 *2 *2 *2) (-12 (-5 *2 (-777)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2759 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-695 *2)) (-5 *4 (-570)) (-4 *2 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *5 (-1253 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5)))) (-2743 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-695 *2)) (-5 *4 (-777)) (-4 *2 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-4 *5 (-1253 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-695 *2)) (-4 *4 (-1253 *2)) (-4 *2 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $))))) (-5 *1 (-505 *2 *4 *5)) (-4 *5 (-415 *2 *4)))))
-(-10 -7 (-15 -2186 (|#1| (-695 |#1|))) (-15 -2743 (|#1| (-695 |#1|) |#1| (-777))) (-15 -2759 (|#1| (-695 |#1|) (-695 |#1|) |#1| (-570))) (-15 -1635 ((-777) (-777) (-777))) (-15 -3704 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -3704 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -1649 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1949 ((-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2681 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))))))
-((-2847 (((-112) $ $) NIL)) (-2867 (($ $) NIL)) (-1958 (($ $ $) 40)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) $) NIL (|has| (-112) (-856))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2778 (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| (-112) (-856)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4453)))) (-2018 (($ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3040 (((-112) $ (-1244 (-570)) (-112)) NIL (|has| $ (-6 -4453))) (((-112) $ (-570) (-112)) 42 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-3617 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-2295 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-2845 (((-112) $ (-570) (-112)) NIL (|has| $ (-6 -4453)))) (-2774 (((-112) $ (-570)) NIL)) (-2619 (((-570) (-112) $ (-570)) NIL (|has| (-112) (-1109))) (((-570) (-112) $) NIL (|has| (-112) (-1109))) (((-570) (-1 (-112) (-112)) $) NIL)) (-3976 (((-650 (-112)) $) NIL (|has| $ (-6 -4452)))) (-3224 (($ $ $) 38)) (-3201 (($ $) NIL)) (-2032 (($ $ $) NIL)) (-2296 (($ (-777) (-112)) 27)) (-2916 (($ $ $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 8 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL)) (-4356 (($ $ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3069 (((-650 (-112)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL)) (-2833 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-2119 (($ $ $ (-570)) NIL) (($ (-112) $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-112) $) NIL (|has| (-570) (-856)))) (-2115 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4222 (($ $ (-112)) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-112)) (-650 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-298 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-650 (-298 (-112)))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109))))) (-2856 (((-650 (-112)) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 28)) (-2057 (($ $ (-1244 (-570))) NIL) (((-112) $ (-570)) 22) (((-112) $ (-570) (-112)) NIL)) (-3225 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-3901 (((-777) (-112) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-112) (-1109)))) (((-777) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) 29)) (-2601 (((-542) $) NIL (|has| (-112) (-620 (-542))))) (-2881 (($ (-650 (-112))) NIL)) (-1505 (($ (-650 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2869 (((-868) $) 26)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4452)))) (-3212 (($ $ $) 36)) (-2911 (($ $ $) NIL)) (-2898 (($ $ $) 45)) (-2909 (($ $) 43)) (-2886 (($ $ $) 44)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 30)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 31)) (-2895 (($ $ $) NIL)) (-2857 (((-777) $) 13 (|has| $ (-6 -4452)))))
-(((-506 |#1|) (-13 (-124) (-10 -8 (-15 -2909 ($ $)) (-15 -2898 ($ $ $)) (-15 -2886 ($ $ $)))) (-570)) (T -506))
-((-2909 (*1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))) (-2898 (*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))) (-2886 (*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))))
-(-13 (-124) (-10 -8 (-15 -2909 ($ $)) (-15 -2898 ($ $ $)) (-15 -2886 ($ $ $))))
-((-3714 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1182 |#4|)) 35)) (-3757 (((-1182 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1182 |#4|)) 22)) (-4418 (((-3 (-695 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-695 (-1182 |#4|))) 46)) (-2767 (((-1182 (-1182 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3757 (|#2| (-1 |#1| |#4|) (-1182 |#4|))) (-15 -3757 ((-1182 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3714 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1182 |#4|))) (-15 -4418 ((-3 (-695 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-695 (-1182 |#4|)))) (-15 -2767 ((-1182 (-1182 |#4|)) (-1 |#4| |#1|) |#3|))) (-1058) (-1253 |#1|) (-1253 |#2|) (-1058)) (T -507))
-((-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *6 (-1253 *5)) (-5 *2 (-1182 (-1182 *7))) (-5 *1 (-507 *5 *6 *4 *7)) (-4 *4 (-1253 *6)))) (-4418 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-695 (-1182 *8))) (-4 *5 (-1058)) (-4 *8 (-1058)) (-4 *6 (-1253 *5)) (-5 *2 (-695 *6)) (-5 *1 (-507 *5 *6 *7 *8)) (-4 *7 (-1253 *6)))) (-3714 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1182 *7)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *2 (-1253 *5)) (-5 *1 (-507 *5 *2 *6 *7)) (-4 *6 (-1253 *2)))) (-3757 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *4 (-1253 *5)) (-5 *2 (-1182 *7)) (-5 *1 (-507 *5 *4 *6 *7)) (-4 *6 (-1253 *4)))) (-3757 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1182 *7)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *2 (-1253 *5)) (-5 *1 (-507 *5 *2 *6 *7)) (-4 *6 (-1253 *2)))))
-(-10 -7 (-15 -3757 (|#2| (-1 |#1| |#4|) (-1182 |#4|))) (-15 -3757 ((-1182 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3714 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1182 |#4|))) (-15 -4418 ((-3 (-695 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-695 (-1182 |#4|)))) (-15 -2767 ((-1182 (-1182 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2847 (((-112) $ $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1919 (((-1282) $) 25)) (-2057 (((-1168) $ (-1186)) 30)) (-2467 (((-1282) $) 17)) (-2869 (((-868) $) 27) (($ (-1168)) 26)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 11)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 9)))
-(((-508) (-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $)) (-15 -2869 ($ (-1168)))))) (T -508))
-((-2057 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1168)) (-5 *1 (-508)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-508)))) (-1919 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-508)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-508)))))
-(-13 (-856) (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $)) (-15 -1919 ((-1282) $)) (-15 -2869 ($ (-1168)))))
-((-3184 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2223 ((|#1| |#4|) 10)) (-3462 ((|#3| |#4|) 17)))
-(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2223 (|#1| |#4|)) (-15 -3462 (|#3| |#4|)) (-15 -3184 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-562) (-1001 |#1|) (-378 |#1|) (-378 |#2|)) (T -509))
-((-3184 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *6 (-378 *4)) (-4 *3 (-378 *5)))) (-3462 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-4 *2 (-378 *4)) (-5 *1 (-509 *4 *5 *2 *3)) (-4 *3 (-378 *5)))) (-2223 (*1 *2 *3) (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-509 *2 *4 *5 *3)) (-4 *5 (-378 *2)) (-4 *3 (-378 *4)))))
-(-10 -7 (-15 -2223 (|#1| |#4|)) (-15 -3462 (|#3| |#4|)) (-15 -3184 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2847 (((-112) $ $) NIL)) (-3256 (((-112) $ (-650 |#3|)) 126) (((-112) $) 127)) (-2564 (((-112) $) 178)) (-3368 (($ $ |#4|) 117) (($ $ |#4| (-650 |#3|)) 121)) (-2852 (((-1175 (-650 (-959 |#1|)) (-650 (-298 (-959 |#1|)))) (-650 |#4|)) 171 (|has| |#3| (-620 (-1186))))) (-1437 (($ $ $) 107) (($ $ |#4|) 105)) (-2005 (((-112) $) 177)) (-2465 (($ $) 131)) (-3240 (((-1168) $) NIL)) (-3502 (($ $ $) 99) (($ (-650 $)) 101)) (-2887 (((-112) |#4| $) 129)) (-1593 (((-112) $ $) 82)) (-2252 (($ (-650 |#4|)) 106)) (-3891 (((-1129) $) NIL)) (-2813 (($ (-650 |#4|)) 175)) (-1697 (((-112) $) 176)) (-2348 (($ $) 85)) (-3146 (((-650 |#4|) $) 73)) (-2533 (((-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)) $ (-650 |#3|)) NIL)) (-3374 (((-112) |#4| $) 89)) (-4388 (((-570) $ (-650 |#3|)) 133) (((-570) $) 134)) (-2869 (((-868) $) 174) (($ (-650 |#4|)) 102)) (-1344 (((-112) $ $) NIL)) (-3252 (($ (-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $))) NIL)) (-3892 (((-112) $ $) 84)) (-3992 (($ $ $) 109)) (** (($ $ (-777)) 115)) (* (($ $ $) 113)))
-(((-510 |#1| |#2| |#3| |#4|) (-13 (-1109) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 -3992 ($ $ $)) (-15 -2005 ((-112) $)) (-15 -2564 ((-112) $)) (-15 -3374 ((-112) |#4| $)) (-15 -1593 ((-112) $ $)) (-15 -2887 ((-112) |#4| $)) (-15 -3256 ((-112) $ (-650 |#3|))) (-15 -3256 ((-112) $)) (-15 -3502 ($ $ $)) (-15 -3502 ($ (-650 $))) (-15 -1437 ($ $ $)) (-15 -1437 ($ $ |#4|)) (-15 -2348 ($ $)) (-15 -2533 ((-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)) $ (-650 |#3|))) (-15 -3252 ($ (-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)))) (-15 -4388 ((-570) $ (-650 |#3|))) (-15 -4388 ((-570) $)) (-15 -2465 ($ $)) (-15 -2252 ($ (-650 |#4|))) (-15 -2813 ($ (-650 |#4|))) (-15 -1697 ((-112) $)) (-15 -3146 ((-650 |#4|) $)) (-15 -2869 ($ (-650 |#4|))) (-15 -3368 ($ $ |#4|)) (-15 -3368 ($ $ |#4| (-650 |#3|))) (IF (|has| |#3| (-620 (-1186))) (-15 -2852 ((-1175 (-650 (-959 |#1|)) (-650 (-298 (-959 |#1|)))) (-650 |#4|))) |%noBranch|))) (-368) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -510))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3992 (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2005 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2564 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3374 (*1 *2 *3 *1) (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-1593 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2887 (*1 *2 *3 *1) (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-3256 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-3256 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3502 (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-650 (-510 *3 *4 *5 *6))) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-1437 (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-1437 (*1 *1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-2348 (*1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2533 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *2 (-2 (|:| |mval| (-695 *4)) (|:| |invmval| (-695 *4)) (|:| |genIdeal| (-510 *4 *5 *6 *7)))) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-3252 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-695 *3)) (|:| |invmval| (-695 *3)) (|:| |genIdeal| (-510 *3 *4 *5 *6)))) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-4388 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *2 (-570)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-4388 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2465 (*1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))) (-2813 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))) (-1697 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3146 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *6)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))) (-3368 (*1 *1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-3368 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *1 (-510 *4 *5 *6 *2)) (-4 *2 (-956 *4 *5 *6)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *6 (-620 (-1186))) (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1175 (-650 (-959 *4)) (-650 (-298 (-959 *4))))) (-5 *1 (-510 *4 *5 *6 *7)))))
-(-13 (-1109) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 -3992 ($ $ $)) (-15 -2005 ((-112) $)) (-15 -2564 ((-112) $)) (-15 -3374 ((-112) |#4| $)) (-15 -1593 ((-112) $ $)) (-15 -2887 ((-112) |#4| $)) (-15 -3256 ((-112) $ (-650 |#3|))) (-15 -3256 ((-112) $)) (-15 -3502 ($ $ $)) (-15 -3502 ($ (-650 $))) (-15 -1437 ($ $ $)) (-15 -1437 ($ $ |#4|)) (-15 -2348 ($ $)) (-15 -2533 ((-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)) $ (-650 |#3|))) (-15 -3252 ($ (-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)))) (-15 -4388 ((-570) $ (-650 |#3|))) (-15 -4388 ((-570) $)) (-15 -2465 ($ $)) (-15 -2252 ($ (-650 |#4|))) (-15 -2813 ($ (-650 |#4|))) (-15 -1697 ((-112) $)) (-15 -3146 ((-650 |#4|) $)) (-15 -2869 ($ (-650 |#4|))) (-15 -3368 ($ $ |#4|)) (-15 -3368 ($ $ |#4| (-650 |#3|))) (IF (|has| |#3| (-620 (-1186))) (-15 -2852 ((-1175 (-650 (-959 |#1|)) (-650 (-298 (-959 |#1|)))) (-650 |#4|))) |%noBranch|)))
-((-3822 (((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 176)) (-1750 (((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 177)) (-2674 (((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 129)) (-2145 (((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) NIL)) (-3930 (((-650 (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 179)) (-3186 (((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-650 (-870 |#1|))) 195)))
-(((-511 |#1| |#2|) (-10 -7 (-15 -3822 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -1750 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -2145 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -2674 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3930 ((-650 (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3186 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-650 (-870 |#1|))))) (-650 (-1186)) (-777)) (T -511))
-((-3186 (*1 *2 *2 *3) (-12 (-5 *2 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-5 *3 (-650 (-870 *4))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *1 (-511 *4 *5)))) (-3930 (*1 *2 *3) (-12 (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-650 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570)))))) (-5 *1 (-511 *4 *5)) (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))))) (-2674 (*1 *2 *2) (-12 (-5 *2 (-510 (-413 (-570)) (-242 *4 (-777)) (-870 *3) (-249 *3 (-413 (-570))))) (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-511 *3 *4)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) (-5 *1 (-511 *4 *5)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) (-5 *1 (-511 *4 *5)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) (-5 *1 (-511 *4 *5)))))
-(-10 -7 (-15 -3822 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -1750 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -2145 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -2674 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3930 ((-650 (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3186 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-650 (-870 |#1|)))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2631 (($) 6)) (-2869 (((-868) $) 12) (((-1186) $) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 8)))
-(((-512) (-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -2631 ($))))) (T -512))
-((-2631 (*1 *1) (-5 *1 (-512))))
-(-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -2631 ($))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-2402 (($ |#1| |#2|) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2336 ((|#2| $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 12 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) 11) (($ $ $) 35)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 21)))
-(((-513 |#1| |#2|) (-13 (-21) (-515 |#1| |#2|)) (-21) (-856)) (T -513))
-NIL
-(-13 (-21) (-515 |#1| |#2|))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 13)) (-2333 (($) NIL T CONST)) (-4394 (($ $) 41)) (-2402 (($ |#1| |#2|) 38)) (-2536 (($ (-1 |#1| |#1|) $) 40)) (-2336 ((|#2| $) NIL)) (-4369 ((|#1| $) 42)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 10 T CONST)) (-3892 (((-112) $ $) NIL)) (-3992 (($ $ $) 26)) (* (($ (-928) $) NIL) (($ (-777) $) 36)))
-(((-514 |#1| |#2|) (-13 (-23) (-515 |#1| |#2|)) (-23) (-856)) (T -514))
-NIL
-(-13 (-23) (-515 |#1| |#2|))
-((-2847 (((-112) $ $) 7)) (-4394 (($ $) 14)) (-2402 (($ |#1| |#2|) 17)) (-2536 (($ (-1 |#1| |#1|) $) 18)) (-2336 ((|#2| $) 15)) (-4369 ((|#1| $) 16)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-515 |#1| |#2|) (-141) (-1109) (-856)) (T -515))
-((-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-515 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-856)))) (-2402 (*1 *1 *2 *3) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1109)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-515 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-856)))) (-4394 (*1 *1 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856)))))
-(-13 (-1109) (-10 -8 (-15 -2536 ($ (-1 |t#1| |t#1|) $)) (-15 -2402 ($ |t#1| |t#2|)) (-15 -4369 (|t#1| $)) (-15 -2336 (|t#2| $)) (-15 -4394 ($ $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-2402 (($ |#1| |#2|) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2336 ((|#2| $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 22)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL)))
-(((-516 |#1| |#2|) (-13 (-798) (-515 |#1| |#2|)) (-798) (-856)) (T -516))
-NIL
-(-13 (-798) (-515 |#1| |#2|))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1548 (($ $ $) 23)) (-3997 (((-3 $ "failed") $ $) 19)) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-2402 (($ |#1| |#2|) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2336 ((|#2| $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL)))
-(((-517 |#1| |#2|) (-13 (-799) (-515 |#1| |#2|)) (-799) (-856)) (T -517))
-NIL
-(-13 (-799) (-515 |#1| |#2|))
-((-2847 (((-112) $ $) NIL)) (-4394 (($ $) 32)) (-2402 (($ |#1| |#2|) 28)) (-2536 (($ (-1 |#1| |#1|) $) 30)) (-2336 ((|#2| $) 34)) (-4369 ((|#1| $) 33)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 27)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 20)))
-(((-518 |#1| |#2|) (-515 |#1| |#2|) (-1109) (-856)) (T -518))
-NIL
-(-515 |#1| |#2|)
-((-3034 (($ $ (-650 |#2|) (-650 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-519 |#1| |#2| |#3|) (-10 -8 (-15 -3034 (|#1| |#1| |#2| |#3|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#3|)))) (-520 |#2| |#3|) (-1109) (-1227)) (T -519))
-NIL
-(-10 -8 (-15 -3034 (|#1| |#1| |#2| |#3|)) (-15 -3034 (|#1| |#1| (-650 |#2|) (-650 |#3|))))
-((-3034 (($ $ (-650 |#1|) (-650 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-520 |#1| |#2|) (-141) (-1109) (-1227)) (T -520))
-((-3034 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *5)) (-4 *1 (-520 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1227)))) (-3034 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1227)))))
-(-13 (-10 -8 (-15 -3034 ($ $ |t#1| |t#2|)) (-15 -3034 ($ $ (-650 |t#1|) (-650 |t#2|)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 17)) (-2972 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|))) $) 19)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2401 (((-777) $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-2245 ((|#1| $ (-570)) 24)) (-2525 ((|#2| $ (-570)) 22)) (-4249 (($ (-1 |#1| |#1|) $) 48)) (-1986 (($ (-1 |#2| |#2|) $) 45)) (-3240 (((-1168) $) NIL)) (-1792 (($ $ $) 55 (|has| |#2| (-798)))) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 44) (($ |#1|) NIL)) (-3481 ((|#2| |#1| $) 51)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 11 T CONST)) (-3892 (((-112) $ $) 30)) (-3992 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-928) $) NIL) (($ (-777) $) 37) (($ |#2| |#1|) 32)))
-(((-521 |#1| |#2| |#3|) (-327 |#1| |#2|) (-1109) (-132) |#2|) (T -521))
-NIL
-(-327 |#1| |#2|)
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3022 (((-112) (-112)) 32)) (-3040 ((|#1| $ (-570) |#1|) 42 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) |#1|) $) 77)) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-1381 (($ $) 81 (|has| |#1| (-1109)))) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) 64)) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-2604 (($ $ (-570)) 19)) (-4069 (((-777) $) 13)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) 31)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 29 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-3675 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) 28 (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2801 (($ $ $ (-570)) 73) (($ |#1| $ (-570)) 57)) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3148 (($ (-650 |#1|)) 43)) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) 24 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 60)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 21)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 53) (($ $ (-1244 (-570))) NIL)) (-3332 (($ $ (-1244 (-570))) 71) (($ $ (-570)) 65)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) 61 (|has| $ (-6 -4453)))) (-3064 (($ $) 51)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) NIL)) (-1674 (($ $ $) 62) (($ $ |#1|) 59)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) 22 (|has| $ (-6 -4452)))))
-(((-522 |#1| |#2|) (-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3148 ($ (-650 |#1|))) (-15 -4069 ((-777) $)) (-15 -2604 ($ $ (-570))) (-15 -3022 ((-112) (-112))))) (-1227) (-570)) (T -522))
-((-3148 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-522 *3 *4)) (-14 *4 (-570)))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1227)) (-14 *4 (-570)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1227)) (-14 *4 *2))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1227)) (-14 *4 (-570)))))
-(-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3148 ($ (-650 |#1|))) (-15 -4069 ((-777) $)) (-15 -2604 ($ $ (-570))) (-15 -3022 ((-112) (-112)))))
-((-2847 (((-112) $ $) NIL)) (-2373 (((-1144) $) 11)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1957 (((-1144) $) 13)) (-3673 (((-1144) $) 9)) (-2869 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-523) (-13 (-1092) (-10 -8 (-15 -3673 ((-1144) $)) (-15 -2373 ((-1144) $)) (-15 -1957 ((-1144) $))))) (T -523))
-((-3673 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))))
-(-13 (-1092) (-10 -8 (-15 -3673 ((-1144) $)) (-15 -2373 ((-1144) $)) (-15 -1957 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 (((-587 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-587 |#1|) (-373)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL (|has| (-587 |#1|) (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-587 |#1|) "failed") $) NIL)) (-4387 (((-587 |#1|) $) NIL)) (-2615 (($ (-1277 (-587 |#1|))) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-587 |#1|) (-373)))) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-587 |#1|) (-373)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL (|has| (-587 |#1|) (-373)))) (-4240 (((-112) $) NIL (|has| (-587 |#1|) (-373)))) (-2118 (($ $ (-777)) NIL (-3749 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373)))) (($ $) NIL (-3749 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-2145 (((-112) $) NIL)) (-3995 (((-928) $) NIL (|has| (-587 |#1|) (-373))) (((-839 (-928)) $) NIL (-3749 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| (-587 |#1|) (-373)))) (-3531 (((-112) $) NIL (|has| (-587 |#1|) (-373)))) (-3046 (((-587 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-3525 (((-3 $ "failed") $) NIL (|has| (-587 |#1|) (-373)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 (-587 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-1997 (((-928) $) NIL (|has| (-587 |#1|) (-373)))) (-1716 (((-1182 (-587 |#1|)) $) NIL (|has| (-587 |#1|) (-373)))) (-3051 (((-1182 (-587 |#1|)) $) NIL (|has| (-587 |#1|) (-373))) (((-3 (-1182 (-587 |#1|)) "failed") $ $) NIL (|has| (-587 |#1|) (-373)))) (-4333 (($ $ (-1182 (-587 |#1|))) NIL (|has| (-587 |#1|) (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-587 |#1|) (-373)) CONST)) (-4298 (($ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-3643 (($) NIL (|has| (-587 |#1|) (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| (-587 |#1|) (-373)))) (-2340 (((-424 $) $) NIL)) (-3172 (((-839 (-928))) NIL) (((-928)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-777) $) NIL (|has| (-587 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-3749 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-4388 (((-135)) NIL)) (-2375 (($ $) NIL (|has| (-587 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-587 |#1|) (-373)))) (-2650 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-3144 (((-1182 (-587 |#1|))) NIL)) (-1900 (($) NIL (|has| (-587 |#1|) (-373)))) (-2229 (($) NIL (|has| (-587 |#1|) (-373)))) (-2987 (((-1277 (-587 |#1|)) $) NIL) (((-695 (-587 |#1|)) (-1277 $)) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| (-587 |#1|) (-373)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-587 |#1|)) NIL)) (-1660 (($ $) NIL (|has| (-587 |#1|) (-373))) (((-3 $ "failed") $) NIL (-3749 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL) (((-1277 $) (-928)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $) NIL (|has| (-587 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-587 |#1|) (-373)))) (-3414 (($ $) NIL (|has| (-587 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-587 |#1|) (-373)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-587 |#1|)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-587 |#1|)) NIL) (($ (-587 |#1|) $) NIL)))
-(((-524 |#1| |#2|) (-333 (-587 |#1|)) (-928) (-928)) (T -524))
-NIL
-(-333 (-587 |#1|))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) (-570) |#1|) 51)) (-2951 (($ $ (-570) |#4|) NIL)) (-2605 (($ $ (-570) |#5|) NIL)) (-2333 (($) NIL T CONST)) (-3598 ((|#4| $ (-570)) NIL)) (-2845 ((|#1| $ (-570) (-570) |#1|) 50)) (-2774 ((|#1| $ (-570) (-570)) 45)) (-3976 (((-650 |#1|) $) NIL)) (-4218 (((-777) $) 33)) (-2296 (($ (-777) (-777) |#1|) 30)) (-4230 (((-777) $) 38)) (-2497 (((-112) $ (-777)) NIL)) (-1863 (((-570) $) 31)) (-2554 (((-570) $) 32)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2163 (((-570) $) 37)) (-1448 (((-570) $) 39)) (-2833 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) 55 (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 14)) (-1698 (($) 16)) (-2057 ((|#1| $ (-570) (-570)) 48) ((|#1| $ (-570) (-570) |#1|) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-4101 ((|#5| $ (-570)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-525 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1227) (-570) (-570) (-378 |#1|) (-378 |#1|)) (T -525))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2491 (($ $ (-572) (-504 |#1| |#3|)) NIL)) (-2283 (($ $ (-572) (-504 |#1| |#2|)) NIL)) (-1586 (($) NIL T CONST)) (-2863 (((-504 |#1| |#3|) $ (-572)) NIL)) (-3061 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2986 ((|#1| $ (-572) (-572)) NIL)) (-1442 (((-652 |#1|) $) NIL)) (-2366 (((-779) $) NIL)) (-2924 (($ (-779) (-779) |#1|) NIL)) (-2378 (((-779) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-3689 (((-572) $) NIL)) (-3086 (((-572) $) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3631 (((-572) $) NIL)) (-3652 (((-572) $) NIL)) (-3049 (($ (-1 |#1| |#1|) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3845 (((-504 |#1| |#2|) $ (-572)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-505 |#1| |#2| |#3|) (-57 |#1| (-504 |#1| |#3|) (-504 |#1| |#2|)) (-1229) (-572) (-572)) (T -505))
+NIL
+(-57 |#1| (-504 |#1| |#3|) (-504 |#1| |#2|))
+((-2103 (((-652 (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-779) (-779)) 32)) (-1381 (((-652 (-1184 |#1|)) |#1| (-779) (-779) (-779)) 43)) (-2739 (((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-652 |#3|) (-652 (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-779)) 107)))
+(((-506 |#1| |#2| |#3|) (-10 -7 (-15 -1381 ((-652 (-1184 |#1|)) |#1| (-779) (-779) (-779))) (-15 -2103 ((-652 (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-779) (-779))) (-15 -2739 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-652 |#3|) (-652 (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-779)))) (-356) (-1255 |#1|) (-1255 |#2|)) (T -506))
+((-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-2 (|:| -1769 (-697 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-697 *7))))) (-5 *5 (-779)) (-4 *8 (-1255 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -1769 (-697 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-697 *7)))) (-5 *1 (-506 *6 *7 *8)))) (-2103 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-779)) (-4 *5 (-356)) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -1769 (-697 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-697 *6))))) (-5 *1 (-506 *5 *6 *7)) (-5 *3 (-2 (|:| -1769 (-697 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-697 *6)))) (-4 *7 (-1255 *6)))) (-1381 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-779)) (-4 *3 (-356)) (-4 *5 (-1255 *3)) (-5 *2 (-652 (-1184 *3))) (-5 *1 (-506 *3 *5 *6)) (-4 *6 (-1255 *5)))))
+(-10 -7 (-15 -1381 ((-652 (-1184 |#1|)) |#1| (-779) (-779) (-779))) (-15 -2103 ((-652 (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-779) (-779))) (-15 -2739 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) (-652 |#3|) (-652 (-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) (-779))))
+((-2032 (((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|)))) 70)) (-4327 ((|#1| (-697 |#1|) |#1| (-779)) 24)) (-1961 (((-779) (-779) (-779)) 34)) (-2089 (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 50)) (-1415 (((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|) 58) (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 55)) (-3315 ((|#1| (-697 |#1|) (-697 |#1|) |#1| (-572)) 28)) (-2623 ((|#1| (-697 |#1|)) 18)))
+(((-507 |#1| |#2| |#3|) (-10 -7 (-15 -2623 (|#1| (-697 |#1|))) (-15 -4327 (|#1| (-697 |#1|) |#1| (-779))) (-15 -3315 (|#1| (-697 |#1|) (-697 |#1|) |#1| (-572))) (-15 -1961 ((-779) (-779) (-779))) (-15 -1415 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1415 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -2089 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2032 ((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|)))))) (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))) (-1255 |#1|) (-417 |#1| |#2|)) (T -507))
+((-2032 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-2089 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-1415 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-1415 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-1961 (*1 *2 *2 *2) (-12 (-5 *2 (-779)) (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))) (-3315 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-697 *2)) (-5 *4 (-572)) (-4 *2 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))) (-4327 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-697 *2)) (-5 *4 (-779)) (-4 *2 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-697 *2)) (-4 *4 (-1255 *2)) (-4 *2 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $))))) (-5 *1 (-507 *2 *4 *5)) (-4 *5 (-417 *2 *4)))))
+(-10 -7 (-15 -2623 (|#1| (-697 |#1|))) (-15 -4327 (|#1| (-697 |#1|) |#1| (-779))) (-15 -3315 (|#1| (-697 |#1|) (-697 |#1|) |#1| (-572))) (-15 -1961 ((-779) (-779) (-779))) (-15 -1415 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1415 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -2089 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2032 ((-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))) (-2 (|:| -1769 (-697 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-697 |#1|))))))
+((-3464 (((-112) $ $) NIL)) (-3489 (($ $) NIL)) (-3827 (($ $ $) 40)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) $) NIL (|has| (-112) (-858))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-112) (-858)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-2641 (($ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-3659 (((-112) $ (-1246 (-572)) (-112)) NIL (|has| $ (-6 -4455))) (((-112) $ (-572) (-112)) 42 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-4243 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2925 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-3061 (((-112) $ (-572) (-112)) NIL (|has| $ (-6 -4455)))) (-2986 (((-112) $ (-572)) NIL)) (-3239 (((-572) (-112) $ (-572)) NIL (|has| (-112) (-1111))) (((-572) (-112) $) NIL (|has| (-112) (-1111))) (((-572) (-1 (-112) (-112)) $) NIL)) (-1442 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-3814 (($ $ $) 38)) (-3795 (($ $) NIL)) (-1560 (($ $ $) NIL)) (-2924 (($ (-779) (-112)) 27)) (-2213 (($ $ $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 8 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL)) (-1377 (($ $ $) NIL (|has| (-112) (-858))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2396 (((-652 (-112)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL)) (-3049 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-2744 (($ $ $ (-572)) NIL) (($ (-112) $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-112) $) NIL (|has| (-572) (-858)))) (-3124 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3803 (($ $ (-112)) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-112)) (-652 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-300 (-112))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111)))) (($ $ (-652 (-300 (-112)))) NIL (-12 (|has| (-112) (-315 (-112))) (|has| (-112) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111))))) (-2950 (((-652 (-112)) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 28)) (-2679 (($ $ (-1246 (-572))) NIL) (((-112) $ (-572)) 22) (((-112) $ (-572) (-112)) NIL)) (-3817 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-1371 (((-779) (-112) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-112) (-1111)))) (((-779) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) 29)) (-3222 (((-544) $) NIL (|has| (-112) (-622 (-544))))) (-3503 (($ (-652 (-112))) NIL)) (-2121 (($ (-652 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3491 (((-870) $) 26)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4454)))) (-3804 (($ $ $) 36)) (-3536 (($ $ $) NIL)) (-3523 (($ $ $) 45)) (-3534 (($ $) 43)) (-3514 (($ $ $) 44)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 30)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 31)) (-3525 (($ $ $) NIL)) (-3475 (((-779) $) 13 (|has| $ (-6 -4454)))))
+(((-508 |#1|) (-13 (-124) (-10 -8 (-15 -3534 ($ $)) (-15 -3523 ($ $ $)) (-15 -3514 ($ $ $)))) (-572)) (T -508))
+((-3534 (*1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572)))) (-3523 (*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572)))) (-3514 (*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572)))))
+(-13 (-124) (-10 -8 (-15 -3534 ($ $)) (-15 -3523 ($ $ $)) (-15 -3514 ($ $ $))))
+((-1508 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1184 |#4|)) 35)) (-3807 (((-1184 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1184 |#4|)) 22)) (-3914 (((-3 (-697 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-697 (-1184 |#4|))) 46)) (-3403 (((-1184 (-1184 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3807 (|#2| (-1 |#1| |#4|) (-1184 |#4|))) (-15 -3807 ((-1184 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1508 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1184 |#4|))) (-15 -3914 ((-3 (-697 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-697 (-1184 |#4|)))) (-15 -3403 ((-1184 (-1184 |#4|)) (-1 |#4| |#1|) |#3|))) (-1060) (-1255 |#1|) (-1255 |#2|) (-1060)) (T -509))
+((-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *6 (-1255 *5)) (-5 *2 (-1184 (-1184 *7))) (-5 *1 (-509 *5 *6 *4 *7)) (-4 *4 (-1255 *6)))) (-3914 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-697 (-1184 *8))) (-4 *5 (-1060)) (-4 *8 (-1060)) (-4 *6 (-1255 *5)) (-5 *2 (-697 *6)) (-5 *1 (-509 *5 *6 *7 *8)) (-4 *7 (-1255 *6)))) (-1508 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1184 *7)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-509 *5 *2 *6 *7)) (-4 *6 (-1255 *2)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *4 (-1255 *5)) (-5 *2 (-1184 *7)) (-5 *1 (-509 *5 *4 *6 *7)) (-4 *6 (-1255 *4)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1184 *7)) (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-509 *5 *2 *6 *7)) (-4 *6 (-1255 *2)))))
+(-10 -7 (-15 -3807 (|#2| (-1 |#1| |#4|) (-1184 |#4|))) (-15 -3807 ((-1184 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1508 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1184 |#4|))) (-15 -3914 ((-3 (-697 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-697 (-1184 |#4|)))) (-15 -3403 ((-1184 (-1184 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-3464 (((-112) $ $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3019 (((-1284) $) 25)) (-2679 (((-1170) $ (-1188)) 30)) (-3105 (((-1284) $) 17)) (-3491 (((-870) $) 27) (($ (-1170)) 26)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 11)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 9)))
+(((-510) (-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $)) (-15 -3491 ($ (-1170)))))) (T -510))
+((-2679 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1170)) (-5 *1 (-510)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-510)))))
+(-13 (-858) (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $)) (-15 -3019 ((-1284) $)) (-15 -3491 ($ (-1170)))))
+((-4270 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3015 ((|#1| |#4|) 10)) (-4037 ((|#3| |#4|) 17)))
+(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3015 (|#1| |#4|)) (-15 -4037 (|#3| |#4|)) (-15 -4270 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-564) (-1003 |#1|) (-380 |#1|) (-380 |#2|)) (T -511))
+((-4270 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-511 *4 *5 *6 *3)) (-4 *6 (-380 *4)) (-4 *3 (-380 *5)))) (-4037 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-4 *2 (-380 *4)) (-5 *1 (-511 *4 *5 *2 *3)) (-4 *3 (-380 *5)))) (-3015 (*1 *2 *3) (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-511 *2 *4 *5 *3)) (-4 *5 (-380 *2)) (-4 *3 (-380 *4)))))
+(-10 -7 (-15 -3015 (|#1| |#4|)) (-15 -4037 (|#3| |#4|)) (-15 -4270 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-3464 (((-112) $ $) NIL)) (-2527 (((-112) $ (-652 |#3|)) 126) (((-112) $) 127)) (-3143 (((-112) $) 178)) (-2444 (($ $ |#4|) 117) (($ $ |#4| (-652 |#3|)) 121)) (-2902 (((-1177 (-652 (-961 |#1|)) (-652 (-300 (-961 |#1|)))) (-652 |#4|)) 171 (|has| |#3| (-622 (-1188))))) (-1882 (($ $ $) 107) (($ $ |#4|) 105)) (-4422 (((-112) $) 177)) (-3566 (($ $) 131)) (-3618 (((-1170) $) NIL)) (-3225 (($ $ $) 99) (($ (-652 $)) 101)) (-1934 (((-112) |#4| $) 129)) (-2898 (((-112) $ $) 82)) (-1994 (($ (-652 |#4|)) 106)) (-2614 (((-1131) $) NIL)) (-3788 (($ (-652 |#4|)) 175)) (-1313 (((-112) $) 176)) (-1726 (($ $) 85)) (-3877 (((-652 |#4|) $) 73)) (-2906 (((-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)) $ (-652 |#3|)) NIL)) (-4392 (((-112) |#4| $) 89)) (-1670 (((-572) $ (-652 |#3|)) 133) (((-572) $) 134)) (-3491 (((-870) $) 174) (($ (-652 |#4|)) 102)) (-3424 (((-112) $ $) NIL)) (-2485 (($ (-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $))) NIL)) (-3921 (((-112) $ $) 84)) (-4005 (($ $ $) 109)) (** (($ $ (-779)) 115)) (* (($ $ $) 113)))
+(((-512 |#1| |#2| |#3| |#4|) (-13 (-1111) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 -4005 ($ $ $)) (-15 -4422 ((-112) $)) (-15 -3143 ((-112) $)) (-15 -4392 ((-112) |#4| $)) (-15 -2898 ((-112) $ $)) (-15 -1934 ((-112) |#4| $)) (-15 -2527 ((-112) $ (-652 |#3|))) (-15 -2527 ((-112) $)) (-15 -3225 ($ $ $)) (-15 -3225 ($ (-652 $))) (-15 -1882 ($ $ $)) (-15 -1882 ($ $ |#4|)) (-15 -1726 ($ $)) (-15 -2906 ((-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)) $ (-652 |#3|))) (-15 -2485 ($ (-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)))) (-15 -1670 ((-572) $ (-652 |#3|))) (-15 -1670 ((-572) $)) (-15 -3566 ($ $)) (-15 -1994 ($ (-652 |#4|))) (-15 -3788 ($ (-652 |#4|))) (-15 -1313 ((-112) $)) (-15 -3877 ((-652 |#4|) $)) (-15 -3491 ($ (-652 |#4|))) (-15 -2444 ($ $ |#4|)) (-15 -2444 ($ $ |#4| (-652 |#3|))) (IF (|has| |#3| (-622 (-1188))) (-15 -2902 ((-1177 (-652 (-961 |#1|)) (-652 (-300 (-961 |#1|)))) (-652 |#4|))) |%noBranch|))) (-370) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -512))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-4005 (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-4422 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3143 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-4392 (*1 *2 *3 *1) (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-2898 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-1934 (*1 *2 *3 *1) (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))) (-2527 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-2527 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3225 (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-652 (-512 *3 *4 *5 *6))) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-1882 (*1 *1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-1882 (*1 *1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))) (-1726 (*1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-2906 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *2 (-2 (|:| |mval| (-697 *4)) (|:| |invmval| (-697 *4)) (|:| |genIdeal| (-512 *4 *5 *6 *7)))) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-2485 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-697 *3)) (|:| |invmval| (-697 *3)) (|:| |genIdeal| (-512 *3 *4 *5 *6)))) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-1670 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *2 (-572)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))) (-1670 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3566 (*1 *1 *1) (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858)) (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-1994 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))) (-3788 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))) (-1313 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3877 (*1 *2 *1) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *6)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))) (-2444 (*1 *1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))) (-2444 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801)) (-5 *1 (-512 *4 *5 *6 *2)) (-4 *2 (-958 *4 *5 *6)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *6 (-622 (-1188))) (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1177 (-652 (-961 *4)) (-652 (-300 (-961 *4))))) (-5 *1 (-512 *4 *5 *6 *7)))))
+(-13 (-1111) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 -4005 ($ $ $)) (-15 -4422 ((-112) $)) (-15 -3143 ((-112) $)) (-15 -4392 ((-112) |#4| $)) (-15 -2898 ((-112) $ $)) (-15 -1934 ((-112) |#4| $)) (-15 -2527 ((-112) $ (-652 |#3|))) (-15 -2527 ((-112) $)) (-15 -3225 ($ $ $)) (-15 -3225 ($ (-652 $))) (-15 -1882 ($ $ $)) (-15 -1882 ($ $ |#4|)) (-15 -1726 ($ $)) (-15 -2906 ((-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)) $ (-652 |#3|))) (-15 -2485 ($ (-2 (|:| |mval| (-697 |#1|)) (|:| |invmval| (-697 |#1|)) (|:| |genIdeal| $)))) (-15 -1670 ((-572) $ (-652 |#3|))) (-15 -1670 ((-572) $)) (-15 -3566 ($ $)) (-15 -1994 ($ (-652 |#4|))) (-15 -3788 ($ (-652 |#4|))) (-15 -1313 ((-112) $)) (-15 -3877 ((-652 |#4|) $)) (-15 -3491 ($ (-652 |#4|))) (-15 -2444 ($ $ |#4|)) (-15 -2444 ($ $ |#4| (-652 |#3|))) (IF (|has| |#3| (-622 (-1188))) (-15 -2902 ((-1177 (-652 (-961 |#1|)) (-652 (-300 (-961 |#1|)))) (-652 |#4|))) |%noBranch|)))
+((-4353 (((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 176)) (-3799 (((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 177)) (-3299 (((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 129)) (-3439 (((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) NIL)) (-2782 (((-652 (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) 179)) (-4288 (((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-652 (-872 |#1|))) 195)))
+(((-513 |#1| |#2|) (-10 -7 (-15 -4353 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3799 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3439 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3299 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -2782 ((-652 (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -4288 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-652 (-872 |#1|))))) (-652 (-1188)) (-779)) (T -513))
+((-4288 (*1 *2 *2 *3) (-12 (-5 *2 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-5 *3 (-652 (-872 *4))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *1 (-513 *4 *5)))) (-2782 (*1 *2 *3) (-12 (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-652 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572)))))) (-5 *1 (-513 *4 *5)) (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-512 (-415 (-572)) (-244 *4 (-779)) (-872 *3) (-251 *3 (-415 (-572))))) (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-513 *3 *4)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4) (-251 *4 (-415 (-572))))) (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112)) (-5 *1 (-513 *4 *5)))))
+(-10 -7 (-15 -4353 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3799 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3439 ((-112) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -3299 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -2782 ((-652 (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572))))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))))) (-15 -4288 ((-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-512 (-415 (-572)) (-244 |#2| (-779)) (-872 |#1|) (-251 |#1| (-415 (-572)))) (-652 (-872 |#1|)))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4414 (($) 6)) (-3491 (((-870) $) 12) (((-1188) $) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 8)))
+(((-514) (-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -4414 ($))))) (T -514))
+((-4414 (*1 *1) (-5 *1 (-514))))
+(-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -4414 ($))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-3042 (($ |#1| |#2|) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1614 ((|#2| $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 12 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) 11) (($ $ $) 35)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 21)))
+(((-515 |#1| |#2|) (-13 (-21) (-517 |#1| |#2|)) (-21) (-858)) (T -515))
+NIL
+(-13 (-21) (-517 |#1| |#2|))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 13)) (-1586 (($) NIL T CONST)) (-1874 (($ $) 41)) (-3042 (($ |#1| |#2|) 38)) (-3161 (($ (-1 |#1| |#1|) $) 40)) (-1614 ((|#2| $) NIL)) (-1853 ((|#1| $) 42)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 10 T CONST)) (-3921 (((-112) $ $) NIL)) (-4005 (($ $ $) 26)) (* (($ (-930) $) NIL) (($ (-779) $) 36)))
+(((-516 |#1| |#2|) (-13 (-23) (-517 |#1| |#2|)) (-23) (-858)) (T -516))
+NIL
+(-13 (-23) (-517 |#1| |#2|))
+((-3464 (((-112) $ $) 7)) (-1874 (($ $) 14)) (-3042 (($ |#1| |#2|) 17)) (-3161 (($ (-1 |#1| |#1|) $) 18)) (-1614 ((|#2| $) 15)) (-1853 ((|#1| $) 16)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-517 |#1| |#2|) (-141) (-1111) (-858)) (T -517))
+((-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-517 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-858)))) (-3042 (*1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1111)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-517 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-858)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858)))))
+(-13 (-1111) (-10 -8 (-15 -3161 ($ (-1 |t#1| |t#1|) $)) (-15 -3042 ($ |t#1| |t#2|)) (-15 -1853 (|t#1| $)) (-15 -1614 (|t#2| $)) (-15 -1874 ($ $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-3042 (($ |#1| |#2|) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1614 ((|#2| $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 22)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL)))
+(((-518 |#1| |#2|) (-13 (-800) (-517 |#1| |#2|)) (-800) (-858)) (T -518))
+NIL
+(-13 (-800) (-517 |#1| |#2|))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2486 (($ $ $) 23)) (-2092 (((-3 $ "failed") $ $) 19)) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-3042 (($ |#1| |#2|) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1614 ((|#2| $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL)))
+(((-519 |#1| |#2|) (-13 (-801) (-517 |#1| |#2|)) (-801) (-858)) (T -519))
+NIL
+(-13 (-801) (-517 |#1| |#2|))
+((-3464 (((-112) $ $) NIL)) (-1874 (($ $) 32)) (-3042 (($ |#1| |#2|) 28)) (-3161 (($ (-1 |#1| |#1|) $) 30)) (-1614 ((|#2| $) 34)) (-1853 ((|#1| $) 33)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 27)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 20)))
+(((-520 |#1| |#2|) (-517 |#1| |#2|) (-1111) (-858)) (T -520))
+NIL
+(-517 |#1| |#2|)
+((-3654 (($ $ (-652 |#2|) (-652 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-521 |#1| |#2| |#3|) (-10 -8 (-15 -3654 (|#1| |#1| |#2| |#3|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#3|)))) (-522 |#2| |#3|) (-1111) (-1229)) (T -521))
+NIL
+(-10 -8 (-15 -3654 (|#1| |#1| |#2| |#3|)) (-15 -3654 (|#1| |#1| (-652 |#2|) (-652 |#3|))))
+((-3654 (($ $ (-652 |#1|) (-652 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-522 |#1| |#2|) (-141) (-1111) (-1229)) (T -522))
+((-3654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *5)) (-4 *1 (-522 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1229)))) (-3654 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1229)))))
+(-13 (-10 -8 (-15 -3654 ($ $ |t#1| |t#2|)) (-15 -3654 ($ $ (-652 |t#1|) (-652 |t#2|)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 17)) (-2709 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|))) $) 19)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3037 (((-779) $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-1932 ((|#1| $ (-572)) 24)) (-2816 ((|#2| $ (-572)) 22)) (-2842 (($ (-1 |#1| |#1|) $) 48)) (-2407 (($ (-1 |#2| |#2|) $) 45)) (-3618 (((-1170) $) NIL)) (-4192 (($ $ $) 55 (|has| |#2| (-800)))) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 44) (($ |#1|) NIL)) (-4206 ((|#2| |#1| $) 51)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 11 T CONST)) (-3921 (((-112) $ $) 30)) (-4005 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-930) $) NIL) (($ (-779) $) 37) (($ |#2| |#1|) 32)))
+(((-523 |#1| |#2| |#3|) (-329 |#1| |#2|) (-1111) (-132) |#2|) (T -523))
+NIL
+(-329 |#1| |#2|)
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-1927 (((-112) (-112)) 32)) (-3659 ((|#1| $ (-572) |#1|) 42 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) |#1|) $) 77)) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-1727 (($ $) 81 (|has| |#1| (-1111)))) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) 64)) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-2273 (($ $ (-572)) 19)) (-1578 (((-779) $) 13)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) 31)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 29 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-2363 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) 28 (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-3704 (($ $ $ (-572)) 73) (($ |#1| $ (-572)) 57)) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3898 (($ (-652 |#1|)) 43)) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) 24 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 60)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 21)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 53) (($ $ (-1246 (-572))) NIL)) (-2049 (($ $ (-1246 (-572))) 71) (($ $ (-572)) 65)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) 61 (|has| $ (-6 -4455)))) (-3679 (($ $) 51)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) NIL)) (-2355 (($ $ $) 62) (($ $ |#1|) 59)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) 22 (|has| $ (-6 -4454)))))
+(((-524 |#1| |#2|) (-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3898 ($ (-652 |#1|))) (-15 -1578 ((-779) $)) (-15 -2273 ($ $ (-572))) (-15 -1927 ((-112) (-112))))) (-1229) (-572)) (T -524))
+((-3898 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-524 *3 *4)) (-14 *4 (-572)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 (-572)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 *2))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 (-572)))))
+(-13 (-19 |#1|) (-288 |#1|) (-10 -8 (-15 -3898 ($ (-652 |#1|))) (-15 -1578 ((-779) $)) (-15 -2273 ($ $ (-572))) (-15 -1927 ((-112) (-112)))))
+((-3464 (((-112) $ $) NIL)) (-3929 (((-1146) $) 11)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2127 (((-1146) $) 13)) (-4296 (((-1146) $) 9)) (-3491 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-525) (-13 (-1094) (-10 -8 (-15 -4296 ((-1146) $)) (-15 -3929 ((-1146) $)) (-15 -2127 ((-1146) $))))) (T -525))
+((-4296 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))))
+(-13 (-1094) (-10 -8 (-15 -4296 ((-1146) $)) (-15 -3929 ((-1146) $)) (-15 -2127 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 (((-589 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-589 |#1|) (-375)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL (|has| (-589 |#1|) (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-589 |#1|) "failed") $) NIL)) (-1869 (((-589 |#1|) $) NIL)) (-2372 (($ (-1279 (-589 |#1|))) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-589 |#1|) (-375)))) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-589 |#1|) (-375)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL (|has| (-589 |#1|) (-375)))) (-2754 (((-112) $) NIL (|has| (-589 |#1|) (-375)))) (-3156 (($ $ (-779)) NIL (-3783 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375)))) (($ $) NIL (-3783 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-3439 (((-112) $) NIL)) (-2068 (((-930) $) NIL (|has| (-589 |#1|) (-375))) (((-841 (-930)) $) NIL (-3783 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| (-589 |#1|) (-375)))) (-3466 (((-112) $) NIL (|has| (-589 |#1|) (-375)))) (-2140 (((-589 |#1|) $) NIL) (($ $ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-589 |#1|) (-375)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 (-589 |#1|)) $) NIL) (((-1184 $) $ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-4370 (((-930) $) NIL (|has| (-589 |#1|) (-375)))) (-1532 (((-1184 (-589 |#1|)) $) NIL (|has| (-589 |#1|) (-375)))) (-2202 (((-1184 (-589 |#1|)) $) NIL (|has| (-589 |#1|) (-375))) (((-3 (-1184 (-589 |#1|)) "failed") $ $) NIL (|has| (-589 |#1|) (-375)))) (-2423 (($ $ (-1184 (-589 |#1|))) NIL (|has| (-589 |#1|) (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-589 |#1|) (-375)) CONST)) (-1795 (($ (-930)) NIL (|has| (-589 |#1|) (-375)))) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-4267 (($) NIL (|has| (-589 |#1|) (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| (-589 |#1|) (-375)))) (-2972 (((-426 $) $) NIL)) (-4148 (((-841 (-930))) NIL) (((-930)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-779) $) NIL (|has| (-589 |#1|) (-375))) (((-3 (-779) "failed") $ $) NIL (-3783 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-1670 (((-135)) NIL)) (-3011 (($ $) NIL (|has| (-589 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-589 |#1|) (-375)))) (-1497 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-3858 (((-1184 (-589 |#1|))) NIL)) (-2817 (($) NIL (|has| (-589 |#1|) (-375)))) (-3068 (($) NIL (|has| (-589 |#1|) (-375)))) (-2862 (((-1279 (-589 |#1|)) $) NIL) (((-697 (-589 |#1|)) (-1279 $)) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-589 |#1|) (-375)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-589 |#1|)) NIL)) (-2210 (($ $) NIL (|has| (-589 |#1|) (-375))) (((-3 $ "failed") $) NIL (-3783 (|has| (-589 |#1|) (-146)) (|has| (-589 |#1|) (-375))))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL) (((-1279 $) (-930)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $) NIL (|has| (-589 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-589 |#1|) (-375)))) (-4019 (($ $) NIL (|has| (-589 |#1|) (-375))) (($ $ (-779)) NIL (|has| (-589 |#1|) (-375)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL) (($ $ (-589 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-589 |#1|)) NIL) (($ (-589 |#1|) $) NIL)))
+(((-526 |#1| |#2|) (-335 (-589 |#1|)) (-930) (-930)) (T -526))
+NIL
+(-335 (-589 |#1|))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) (-572) |#1|) 51)) (-2491 (($ $ (-572) |#4|) NIL)) (-2283 (($ $ (-572) |#5|) NIL)) (-1586 (($) NIL T CONST)) (-2863 ((|#4| $ (-572)) NIL)) (-3061 ((|#1| $ (-572) (-572) |#1|) 50)) (-2986 ((|#1| $ (-572) (-572)) 45)) (-1442 (((-652 |#1|) $) NIL)) (-2366 (((-779) $) 33)) (-2924 (($ (-779) (-779) |#1|) 30)) (-2378 (((-779) $) 38)) (-2545 (((-112) $ (-779)) NIL)) (-3689 (((-572) $) 31)) (-3086 (((-572) $) 32)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3631 (((-572) $) 37)) (-3652 (((-572) $) 39)) (-3049 (($ (-1 |#1| |#1|) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) 55 (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 14)) (-1321 (($) 16)) (-2679 ((|#1| $ (-572) (-572)) 48) ((|#1| $ (-572) (-572) |#1|) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3845 ((|#5| $ (-572)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-527 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1229) (-572) (-572) (-380 |#1|) (-380 |#1|)) (T -527))
NIL
(-57 |#1| |#4| |#5|)
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) NIL)) (-2975 ((|#1| $) NIL)) (-3446 (($ $) NIL)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) 70 (|has| $ (-6 -4453)))) (-3134 (((-112) $) NIL (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2778 (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4453)))) (-2018 (($ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-2364 (($ $ $) 23 (|has| $ (-6 -4453)))) (-1639 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) 21 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4453))) (($ $ "rest" $) 24 (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) |#1|) $) NIL)) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2963 ((|#1| $) NIL)) (-2333 (($) NIL T CONST)) (-4125 (($ $) 28 (|has| $ (-6 -4453)))) (-4366 (($ $) 29)) (-1962 (($ $) 18) (($ $ (-777)) 32)) (-1381 (($ $) 62 (|has| |#1| (-1109)))) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-3617 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2836 (((-112) $) NIL)) (-2619 (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109))) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) NIL)) (-3976 (((-650 |#1|) $) 27 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 31 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-3675 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-4356 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1677 (($ |#1|) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) NIL)) (-3240 (((-1168) $) 58 (|has| |#1| (-1109)))) (-3637 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2801 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2119 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) 13) (($ $ (-777)) NIL)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-2655 (((-112) $) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 12)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) 17)) (-1698 (($) 16)) (-2057 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1244 (-570))) NIL) ((|#1| $ (-570)) NIL) ((|#1| $ (-570) |#1|) NIL)) (-2352 (((-570) $ $) NIL)) (-3332 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-3225 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-1355 (((-112) $) 35)) (-2288 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4453)))) (-2846 (((-777) $) NIL)) (-3522 (($ $) 40)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) 36)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 26)) (-1674 (($ $ $) 61) (($ $ |#1|) NIL)) (-1505 (($ $ $) NIL) (($ |#1| $) 10) (($ (-650 $)) NIL) (($ $ |#1|) NIL)) (-2869 (((-868) $) 50 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) 54 (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) 9 (|has| $ (-6 -4452)))))
-(((-526 |#1| |#2|) (-672 |#1|) (-1227) (-570)) (T -526))
-NIL
-(-672 |#1|)
-((-4085 ((|#4| |#4|) 38)) (-4412 (((-777) |#4|) 44)) (-2020 (((-777) |#4|) 45)) (-2244 (((-650 |#3|) |#4|) 55 (|has| |#3| (-6 -4453)))) (-4066 (((-3 |#4| "failed") |#4|) 67)) (-4406 ((|#4| |#4|) 59)) (-2439 ((|#1| |#4|) 58)))
-(((-527 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4085 (|#4| |#4|)) (-15 -4412 ((-777) |#4|)) (-15 -2020 ((-777) |#4|)) (IF (|has| |#3| (-6 -4453)) (-15 -2244 ((-650 |#3|) |#4|)) |%noBranch|) (-15 -2439 (|#1| |#4|)) (-15 -4406 (|#4| |#4|)) (-15 -4066 ((-3 |#4| "failed") |#4|))) (-368) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -527))
-((-4066 (*1 *2 *2) (|partial| -12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-4406 (*1 *2 *2) (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-2439 (*1 *2 *3) (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-368)) (-5 *1 (-527 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))) (-2244 (*1 *2 *3) (-12 (|has| *6 (-6 -4453)) (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-4412 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
-(-10 -7 (-15 -4085 (|#4| |#4|)) (-15 -4412 ((-777) |#4|)) (-15 -2020 ((-777) |#4|)) (IF (|has| |#3| (-6 -4453)) (-15 -2244 ((-650 |#3|) |#4|)) |%noBranch|) (-15 -2439 (|#1| |#4|)) (-15 -4406 (|#4| |#4|)) (-15 -4066 ((-3 |#4| "failed") |#4|)))
-((-4085 ((|#8| |#4|) 20)) (-2244 (((-650 |#3|) |#4|) 29 (|has| |#7| (-6 -4453)))) (-4066 (((-3 |#8| "failed") |#4|) 23)))
-(((-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4085 (|#8| |#4|)) (-15 -4066 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4453)) (-15 -2244 ((-650 |#3|) |#4|)) |%noBranch|)) (-562) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|) (-1001 |#1|) (-378 |#5|) (-378 |#5|) (-693 |#5| |#6| |#7|)) (T -528))
-((-2244 (*1 *2 *3) (-12 (|has| *9 (-6 -4453)) (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *8 (-378 *7)) (-4 *9 (-378 *7)) (-5 *2 (-650 *6)) (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-693 *4 *5 *6)) (-4 *10 (-693 *7 *8 *9)))) (-4066 (*1 *2 *3) (|partial| -12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9)) (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6)) (-4 *8 (-378 *7)) (-4 *9 (-378 *7)))) (-4085 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9)) (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6)) (-4 *8 (-378 *7)) (-4 *9 (-378 *7)))))
-(-10 -7 (-15 -4085 (|#8| |#4|)) (-15 -4066 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4453)) (-15 -2244 ((-650 |#3|) |#4|)) |%noBranch|))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2866 (($ (-777) (-777)) NIL)) (-2077 (($ $ $) NIL)) (-3412 (($ (-608 |#1| |#3|)) NIL) (($ $) NIL)) (-3919 (((-112) $) NIL)) (-2695 (($ $ (-570) (-570)) 21)) (-1479 (($ $ (-570) (-570)) NIL)) (-3533 (($ $ (-570) (-570) (-570) (-570)) NIL)) (-4106 (($ $) NIL)) (-3206 (((-112) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3039 (($ $ (-570) (-570) $) NIL)) (-3040 ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) NIL)) (-2951 (($ $ (-570) (-608 |#1| |#3|)) NIL)) (-2605 (($ $ (-570) (-608 |#1| |#2|)) NIL)) (-1990 (($ (-777) |#1|) NIL)) (-2333 (($) NIL T CONST)) (-4085 (($ $) 30 (|has| |#1| (-311)))) (-3598 (((-608 |#1| |#3|) $ (-570)) NIL)) (-4412 (((-777) $) 33 (|has| |#1| (-562)))) (-2845 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2774 ((|#1| $ (-570) (-570)) NIL)) (-3976 (((-650 |#1|) $) NIL)) (-2020 (((-777) $) 35 (|has| |#1| (-562)))) (-2244 (((-650 (-608 |#1| |#2|)) $) 38 (|has| |#1| (-562)))) (-4218 (((-777) $) NIL)) (-2296 (($ (-777) (-777) |#1|) NIL)) (-4230 (((-777) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-2728 ((|#1| $) 28 (|has| |#1| (-6 (-4454 "*"))))) (-1863 (((-570) $) 10)) (-2554 (((-570) $) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2163 (((-570) $) 13)) (-1448 (((-570) $) NIL)) (-4297 (($ (-650 (-650 |#1|))) NIL)) (-2833 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2247 (((-650 (-650 |#1|)) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4066 (((-3 $ "failed") $) 42 (|has| |#1| (-368)))) (-2491 (($ $ $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570))) NIL)) (-2776 (($ (-650 |#1|)) NIL) (($ (-650 $)) NIL)) (-2445 (((-112) $) NIL)) (-2439 ((|#1| $) 26 (|has| |#1| (-6 (-4454 "*"))))) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-4101 (((-608 |#1| |#2|) $ (-570)) NIL)) (-2869 (($ (-608 |#1| |#2|)) NIL) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2074 (((-112) $) NIL)) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-570) $) NIL) (((-608 |#1| |#2|) $ (-608 |#1| |#2|)) NIL) (((-608 |#1| |#3|) (-608 |#1| |#3|) $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-529 |#1| |#2| |#3|) (-693 |#1| (-608 |#1| |#3|) (-608 |#1| |#2|)) (-1058) (-570) (-570)) (T -529))
-NIL
-(-693 |#1| (-608 |#1| |#3|) (-608 |#1| |#2|))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-1581 (((-650 (-1226)) $) 13)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL) (($ (-650 (-1226))) 11)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-530) (-13 (-1092) (-10 -8 (-15 -2869 ($ (-650 (-1226)))) (-15 -1581 ((-650 (-1226)) $))))) (T -530))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-530)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-530)))))
-(-13 (-1092) (-10 -8 (-15 -2869 ($ (-650 (-1226)))) (-15 -1581 ((-650 (-1226)) $))))
-((-2847 (((-112) $ $) NIL)) (-3191 (((-1144) $) 14)) (-3240 (((-1168) $) NIL)) (-2814 (((-512) $) 11)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 21) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-531) (-13 (-1092) (-10 -8 (-15 -2814 ((-512) $)) (-15 -3191 ((-1144) $))))) (T -531))
-((-2814 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-531)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-531)))))
-(-13 (-1092) (-10 -8 (-15 -2814 ((-512) $)) (-15 -3191 ((-1144) $))))
-((-4327 (((-697 (-1235)) $) 15)) (-3253 (((-697 (-1233)) $) 38)) (-2986 (((-697 (-1232)) $) 29)) (-2062 (((-697 (-555)) $) 12)) (-4331 (((-697 (-553)) $) 42)) (-1839 (((-697 (-552)) $) 33)) (-1441 (((-777) $ (-129)) 54)))
-(((-532 |#1|) (-10 -8 (-15 -1441 ((-777) |#1| (-129))) (-15 -3253 ((-697 (-1233)) |#1|)) (-15 -4331 ((-697 (-553)) |#1|)) (-15 -2986 ((-697 (-1232)) |#1|)) (-15 -1839 ((-697 (-552)) |#1|)) (-15 -4327 ((-697 (-1235)) |#1|)) (-15 -2062 ((-697 (-555)) |#1|))) (-533)) (T -532))
-NIL
-(-10 -8 (-15 -1441 ((-777) |#1| (-129))) (-15 -3253 ((-697 (-1233)) |#1|)) (-15 -4331 ((-697 (-553)) |#1|)) (-15 -2986 ((-697 (-1232)) |#1|)) (-15 -1839 ((-697 (-552)) |#1|)) (-15 -4327 ((-697 (-1235)) |#1|)) (-15 -2062 ((-697 (-555)) |#1|)))
-((-4327 (((-697 (-1235)) $) 12)) (-3253 (((-697 (-1233)) $) 8)) (-2986 (((-697 (-1232)) $) 10)) (-2062 (((-697 (-555)) $) 13)) (-4331 (((-697 (-553)) $) 9)) (-1839 (((-697 (-552)) $) 11)) (-1441 (((-777) $ (-129)) 7)) (-1326 (((-697 (-130)) $) 14)) (-1740 (($ $) 6)))
-(((-533) (-141)) (T -533))
-((-1326 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-130))))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-555))))) (-4327 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1235))))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-552))))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1232))))) (-4331 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-553))))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1233))))) (-1441 (*1 *2 *1 *3) (-12 (-4 *1 (-533)) (-5 *3 (-129)) (-5 *2 (-777)))))
-(-13 (-175) (-10 -8 (-15 -1326 ((-697 (-130)) $)) (-15 -2062 ((-697 (-555)) $)) (-15 -4327 ((-697 (-1235)) $)) (-15 -1839 ((-697 (-552)) $)) (-15 -2986 ((-697 (-1232)) $)) (-15 -4331 ((-697 (-553)) $)) (-15 -3253 ((-697 (-1233)) $)) (-15 -1441 ((-777) $ (-129)))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) NIL)) (-3598 ((|#1| $) NIL)) (-4058 (($ $) NIL)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) 70 (|has| $ (-6 -4455)))) (-3755 (((-112) $) NIL (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4455)))) (-2641 (($ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3835 (($ $ $) 23 (|has| $ (-6 -4455)))) (-1993 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) 21 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4455))) (($ $ "rest" $) 24 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) |#1|) $) NIL)) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3587 ((|#1| $) NIL)) (-1586 (($) NIL T CONST)) (-4095 (($ $) 28 (|has| $ (-6 -4455)))) (-1852 (($ $) 29)) (-2581 (($ $) 18) (($ $ (-779)) 32)) (-1727 (($ $) 62 (|has| |#1| (-1111)))) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-4243 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-2760 (((-112) $) NIL)) (-3239 (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111))) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) NIL)) (-1442 (((-652 |#1|) $) 27 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 31 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-2363 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-1377 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2307 (($ |#1|) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) NIL)) (-3618 (((-1170) $) 58 (|has| |#1| (-1111)))) (-4261 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-3704 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-2744 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) 13) (($ $ (-779)) NIL)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-1540 (((-112) $) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 12)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) 17)) (-1321 (($) 16)) (-2679 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) NIL) ((|#1| $ (-572) |#1|) NIL)) (-1762 (((-572) $ $) NIL)) (-2049 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3817 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3727 (((-112) $) 35)) (-2393 (($ $) NIL)) (-2770 (($ $) NIL (|has| $ (-6 -4455)))) (-2847 (((-779) $) NIL)) (-3376 (($ $) 40)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) 36)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 26)) (-2355 (($ $ $) 61) (($ $ |#1|) NIL)) (-2121 (($ $ $) NIL) (($ |#1| $) 10) (($ (-652 $)) NIL) (($ $ |#1|) NIL)) (-3491 (((-870) $) 50 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) 54 (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) 9 (|has| $ (-6 -4454)))))
+(((-528 |#1| |#2|) (-674 |#1|) (-1229) (-572)) (T -528))
+NIL
+(-674 |#1|)
+((-1728 ((|#4| |#4|) 38)) (-1526 (((-779) |#4|) 44)) (-1438 (((-779) |#4|) 45)) (-1924 (((-652 |#3|) |#4|) 55 (|has| |#3| (-6 -4455)))) (-1558 (((-3 |#4| "failed") |#4|) 67)) (-1845 ((|#4| |#4|) 59)) (-3312 ((|#1| |#4|) 58)))
+(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1728 (|#4| |#4|)) (-15 -1526 ((-779) |#4|)) (-15 -1438 ((-779) |#4|)) (IF (|has| |#3| (-6 -4455)) (-15 -1924 ((-652 |#3|) |#4|)) |%noBranch|) (-15 -3312 (|#1| |#4|)) (-15 -1845 (|#4| |#4|)) (-15 -1558 ((-3 |#4| "failed") |#4|))) (-370) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -529))
+((-1558 (*1 *2 *2) (|partial| -12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-370)) (-5 *1 (-529 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5)))) (-1924 (*1 *2 *3) (-12 (|has| *6 (-6 -4455)) (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-1438 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-1526 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-1728 (*1 *2 *2) (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(-10 -7 (-15 -1728 (|#4| |#4|)) (-15 -1526 ((-779) |#4|)) (-15 -1438 ((-779) |#4|)) (IF (|has| |#3| (-6 -4455)) (-15 -1924 ((-652 |#3|) |#4|)) |%noBranch|) (-15 -3312 (|#1| |#4|)) (-15 -1845 (|#4| |#4|)) (-15 -1558 ((-3 |#4| "failed") |#4|)))
+((-1728 ((|#8| |#4|) 20)) (-1924 (((-652 |#3|) |#4|) 29 (|has| |#7| (-6 -4455)))) (-1558 (((-3 |#8| "failed") |#4|) 23)))
+(((-530 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1728 (|#8| |#4|)) (-15 -1558 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4455)) (-15 -1924 ((-652 |#3|) |#4|)) |%noBranch|)) (-564) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|) (-1003 |#1|) (-380 |#5|) (-380 |#5|) (-695 |#5| |#6| |#7|)) (T -530))
+((-1924 (*1 *2 *3) (-12 (|has| *9 (-6 -4455)) (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *8 (-380 *7)) (-4 *9 (-380 *7)) (-5 *2 (-652 *6)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-695 *4 *5 *6)) (-4 *10 (-695 *7 *8 *9)))) (-1558 (*1 *2 *3) (|partial| -12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6)) (-4 *8 (-380 *7)) (-4 *9 (-380 *7)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9)) (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6)) (-4 *8 (-380 *7)) (-4 *9 (-380 *7)))))
+(-10 -7 (-15 -1728 (|#8| |#4|)) (-15 -1558 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4455)) (-15 -1924 ((-652 |#3|) |#4|)) |%noBranch|))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3488 (($ (-779) (-779)) NIL)) (-3922 (($ $ $) NIL)) (-1652 (($ (-610 |#1| |#3|)) NIL) (($ $) NIL)) (-2696 (((-112) $) NIL)) (-3869 (($ $ (-572) (-572)) 21)) (-3123 (($ $ (-572) (-572)) NIL)) (-3493 (($ $ (-572) (-572) (-572) (-572)) NIL)) (-3886 (($ $) NIL)) (-3295 (((-112) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2085 (($ $ (-572) (-572) $) NIL)) (-3659 ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) NIL)) (-2491 (($ $ (-572) (-610 |#1| |#3|)) NIL)) (-2283 (($ $ (-572) (-610 |#1| |#2|)) NIL)) (-2420 (($ (-779) |#1|) NIL)) (-1586 (($) NIL T CONST)) (-1728 (($ $) 30 (|has| |#1| (-313)))) (-2863 (((-610 |#1| |#3|) $ (-572)) NIL)) (-1526 (((-779) $) 33 (|has| |#1| (-564)))) (-3061 ((|#1| $ (-572) (-572) |#1|) NIL)) (-2986 ((|#1| $ (-572) (-572)) NIL)) (-1442 (((-652 |#1|) $) NIL)) (-1438 (((-779) $) 35 (|has| |#1| (-564)))) (-1924 (((-652 (-610 |#1| |#2|)) $) 38 (|has| |#1| (-564)))) (-2366 (((-779) $) NIL)) (-2924 (($ (-779) (-779) |#1|) NIL)) (-2378 (((-779) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-4202 ((|#1| $) 28 (|has| |#1| (-6 (-4456 "*"))))) (-3689 (((-572) $) 10)) (-3086 (((-572) $) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3631 (((-572) $) 13)) (-3652 (((-572) $) NIL)) (-1793 (($ (-652 (-652 |#1|))) NIL)) (-3049 (($ (-1 |#1| |#1|) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1942 (((-652 (-652 |#1|)) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1558 (((-3 $ "failed") $) 42 (|has| |#1| (-370)))) (-3744 (($ $ $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) NIL)) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572))) NIL)) (-3502 (($ (-652 |#1|)) NIL) (($ (-652 $)) NIL)) (-3365 (((-112) $) NIL)) (-3312 ((|#1| $) 26 (|has| |#1| (-6 (-4456 "*"))))) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3845 (((-610 |#1| |#2|) $ (-572)) NIL)) (-3491 (($ (-610 |#1| |#2|)) NIL) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3889 (((-112) $) NIL)) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-572) $) NIL) (((-610 |#1| |#2|) $ (-610 |#1| |#2|)) NIL) (((-610 |#1| |#3|) (-610 |#1| |#3|) $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-531 |#1| |#2| |#3|) (-695 |#1| (-610 |#1| |#3|) (-610 |#1| |#2|)) (-1060) (-572) (-572)) (T -531))
+NIL
+(-695 |#1| (-610 |#1| |#3|) (-610 |#1| |#2|))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2789 (((-652 (-1228)) $) 13)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL) (($ (-652 (-1228))) 11)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-532) (-13 (-1094) (-10 -8 (-15 -3491 ($ (-652 (-1228)))) (-15 -2789 ((-652 (-1228)) $))))) (T -532))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532)))))
+(-13 (-1094) (-10 -8 (-15 -3491 ($ (-652 (-1228)))) (-15 -2789 ((-652 (-1228)) $))))
+((-3464 (((-112) $ $) NIL)) (-3135 (((-1146) $) 14)) (-3618 (((-1170) $) NIL)) (-2550 (((-514) $) 11)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 21) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-533) (-13 (-1094) (-10 -8 (-15 -2550 ((-514) $)) (-15 -3135 ((-1146) $))))) (T -533))
+((-2550 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-533)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-533)))))
+(-13 (-1094) (-10 -8 (-15 -2550 ((-514) $)) (-15 -3135 ((-1146) $))))
+((-2354 (((-699 (-1237)) $) 15)) (-2499 (((-699 (-1235)) $) 38)) (-2849 (((-699 (-1234)) $) 29)) (-3787 (((-699 (-557)) $) 12)) (-2400 (((-699 (-555)) $) 42)) (-3478 (((-699 (-554)) $) 33)) (-2575 (((-779) $ (-129)) 54)))
+(((-534 |#1|) (-10 -8 (-15 -2575 ((-779) |#1| (-129))) (-15 -2499 ((-699 (-1235)) |#1|)) (-15 -2400 ((-699 (-555)) |#1|)) (-15 -2849 ((-699 (-1234)) |#1|)) (-15 -3478 ((-699 (-554)) |#1|)) (-15 -2354 ((-699 (-1237)) |#1|)) (-15 -3787 ((-699 (-557)) |#1|))) (-535)) (T -534))
+NIL
+(-10 -8 (-15 -2575 ((-779) |#1| (-129))) (-15 -2499 ((-699 (-1235)) |#1|)) (-15 -2400 ((-699 (-555)) |#1|)) (-15 -2849 ((-699 (-1234)) |#1|)) (-15 -3478 ((-699 (-554)) |#1|)) (-15 -2354 ((-699 (-1237)) |#1|)) (-15 -3787 ((-699 (-557)) |#1|)))
+((-2354 (((-699 (-1237)) $) 12)) (-2499 (((-699 (-1235)) $) 8)) (-2849 (((-699 (-1234)) $) 10)) (-3787 (((-699 (-557)) $) 13)) (-2400 (((-699 (-555)) $) 9)) (-3478 (((-699 (-554)) $) 11)) (-2575 (((-779) $ (-129)) 7)) (-3226 (((-699 (-130)) $) 14)) (-3725 (($ $) 6)))
+(((-535) (-141)) (T -535))
+((-3226 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-130))))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-557))))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1237))))) (-3478 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-554))))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1234))))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-555))))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1235))))) (-2575 (*1 *2 *1 *3) (-12 (-4 *1 (-535)) (-5 *3 (-129)) (-5 *2 (-779)))))
+(-13 (-175) (-10 -8 (-15 -3226 ((-699 (-130)) $)) (-15 -3787 ((-699 (-557)) $)) (-15 -2354 ((-699 (-1237)) $)) (-15 -3478 ((-699 (-554)) $)) (-15 -2849 ((-699 (-1234)) $)) (-15 -2400 ((-699 (-555)) $)) (-15 -2499 ((-699 (-1235)) $)) (-15 -2575 ((-779) $ (-129)))))
(((-175) . T))
-((-3085 (((-1182 |#1|) (-777)) 115)) (-1439 (((-1277 |#1|) (-1277 |#1|) (-928)) 108)) (-2309 (((-1282) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) |#1|) 123)) (-3213 (((-1277 |#1|) (-1277 |#1|) (-777)) 53)) (-2066 (((-1277 |#1|) (-928)) 110)) (-3642 (((-1277 |#1|) (-1277 |#1|) (-570)) 30)) (-3147 (((-1182 |#1|) (-1277 |#1|)) 116)) (-3284 (((-1277 |#1|) (-928)) 137)) (-3531 (((-112) (-1277 |#1|)) 120)) (-3046 (((-1277 |#1|) (-1277 |#1|) (-928)) 100)) (-3658 (((-1182 |#1|) (-1277 |#1|)) 131)) (-1997 (((-928) (-1277 |#1|)) 96)) (-4315 (((-1277 |#1|) (-1277 |#1|)) 38)) (-4298 (((-1277 |#1|) (-928) (-928)) 140)) (-3139 (((-1277 |#1|) (-1277 |#1|) (-1129) (-1129)) 29)) (-3301 (((-1277 |#1|) (-1277 |#1|) (-777) (-1129)) 54)) (-2681 (((-1277 (-1277 |#1|)) (-928)) 136)) (-4013 (((-1277 |#1|) (-1277 |#1|) (-1277 |#1|)) 121)) (** (((-1277 |#1|) (-1277 |#1|) (-570)) 67)) (* (((-1277 |#1|) (-1277 |#1|) (-1277 |#1|)) 31)))
-(((-534 |#1|) (-10 -7 (-15 -2309 ((-1282) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) |#1|)) (-15 -2066 ((-1277 |#1|) (-928))) (-15 -4298 ((-1277 |#1|) (-928) (-928))) (-15 -3147 ((-1182 |#1|) (-1277 |#1|))) (-15 -3085 ((-1182 |#1|) (-777))) (-15 -3301 ((-1277 |#1|) (-1277 |#1|) (-777) (-1129))) (-15 -3213 ((-1277 |#1|) (-1277 |#1|) (-777))) (-15 -3139 ((-1277 |#1|) (-1277 |#1|) (-1129) (-1129))) (-15 -3642 ((-1277 |#1|) (-1277 |#1|) (-570))) (-15 ** ((-1277 |#1|) (-1277 |#1|) (-570))) (-15 * ((-1277 |#1|) (-1277 |#1|) (-1277 |#1|))) (-15 -4013 ((-1277 |#1|) (-1277 |#1|) (-1277 |#1|))) (-15 -3046 ((-1277 |#1|) (-1277 |#1|) (-928))) (-15 -1439 ((-1277 |#1|) (-1277 |#1|) (-928))) (-15 -4315 ((-1277 |#1|) (-1277 |#1|))) (-15 -1997 ((-928) (-1277 |#1|))) (-15 -3531 ((-112) (-1277 |#1|))) (-15 -2681 ((-1277 (-1277 |#1|)) (-928))) (-15 -3284 ((-1277 |#1|) (-928))) (-15 -3658 ((-1182 |#1|) (-1277 |#1|)))) (-354)) (T -534))
-((-3658 (*1 *2 *3) (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1277 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1277 (-1277 *4))) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-534 *4)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-928)) (-5 *1 (-534 *4)))) (-4315 (*1 *2 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-928)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-928)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-4013 (*1 *2 *2 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-570)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3642 (*1 *2 *2 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-570)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3139 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-1129)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3213 (*1 *2 *2 *3) (-12 (-5 *2 (-1277 *4)) (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3301 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1277 *5)) (-5 *3 (-777)) (-5 *4 (-1129)) (-4 *5 (-354)) (-5 *1 (-534 *5)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4)))) (-4298 (*1 *2 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1277 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1277 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129)))))) (-4 *4 (-354)) (-5 *2 (-1282)) (-5 *1 (-534 *4)))))
-(-10 -7 (-15 -2309 ((-1282) (-1277 (-650 (-2 (|:| -4156 |#1|) (|:| -4298 (-1129))))) |#1|)) (-15 -2066 ((-1277 |#1|) (-928))) (-15 -4298 ((-1277 |#1|) (-928) (-928))) (-15 -3147 ((-1182 |#1|) (-1277 |#1|))) (-15 -3085 ((-1182 |#1|) (-777))) (-15 -3301 ((-1277 |#1|) (-1277 |#1|) (-777) (-1129))) (-15 -3213 ((-1277 |#1|) (-1277 |#1|) (-777))) (-15 -3139 ((-1277 |#1|) (-1277 |#1|) (-1129) (-1129))) (-15 -3642 ((-1277 |#1|) (-1277 |#1|) (-570))) (-15 ** ((-1277 |#1|) (-1277 |#1|) (-570))) (-15 * ((-1277 |#1|) (-1277 |#1|) (-1277 |#1|))) (-15 -4013 ((-1277 |#1|) (-1277 |#1|) (-1277 |#1|))) (-15 -3046 ((-1277 |#1|) (-1277 |#1|) (-928))) (-15 -1439 ((-1277 |#1|) (-1277 |#1|) (-928))) (-15 -4315 ((-1277 |#1|) (-1277 |#1|))) (-15 -1997 ((-928) (-1277 |#1|))) (-15 -3531 ((-112) (-1277 |#1|))) (-15 -2681 ((-1277 (-1277 |#1|)) (-928))) (-15 -3284 ((-1277 |#1|) (-928))) (-15 -3658 ((-1182 |#1|) (-1277 |#1|))))
-((-4327 (((-697 (-1235)) $) NIL)) (-3253 (((-697 (-1233)) $) NIL)) (-2986 (((-697 (-1232)) $) NIL)) (-2062 (((-697 (-555)) $) NIL)) (-4331 (((-697 (-553)) $) NIL)) (-1839 (((-697 (-552)) $) NIL)) (-1441 (((-777) $ (-129)) NIL)) (-1326 (((-697 (-130)) $) 26)) (-1453 (((-1129) $ (-1129)) 31)) (-2619 (((-1129) $) 30)) (-1519 (((-112) $) 20)) (-2279 (($ (-394)) 14) (($ (-1168)) 16)) (-2059 (((-112) $) 27)) (-2869 (((-868) $) 34)) (-1740 (($ $) 28)))
-(((-535) (-13 (-533) (-619 (-868)) (-10 -8 (-15 -2279 ($ (-394))) (-15 -2279 ($ (-1168))) (-15 -2059 ((-112) $)) (-15 -1519 ((-112) $)) (-15 -2619 ((-1129) $)) (-15 -1453 ((-1129) $ (-1129)))))) (T -535))
-((-2279 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-535)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-535)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535)))) (-2619 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-535)))) (-1453 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-535)))))
-(-13 (-533) (-619 (-868)) (-10 -8 (-15 -2279 ($ (-394))) (-15 -2279 ($ (-1168))) (-15 -2059 ((-112) $)) (-15 -1519 ((-112) $)) (-15 -2619 ((-1129) $)) (-15 -1453 ((-1129) $ (-1129)))))
-((-3907 (((-1 |#1| |#1|) |#1|) 11)) (-2472 (((-1 |#1| |#1|)) 10)))
-(((-536 |#1|) (-10 -7 (-15 -2472 ((-1 |#1| |#1|))) (-15 -3907 ((-1 |#1| |#1|) |#1|))) (-13 (-732) (-25))) (T -536))
-((-3907 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25))))) (-2472 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25))))))
-(-10 -7 (-15 -2472 ((-1 |#1| |#1|))) (-15 -3907 ((-1 |#1| |#1|) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1548 (($ $ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-2402 (($ (-777) |#1|) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2536 (($ (-1 (-777) (-777)) $) NIL)) (-2336 ((|#1| $) NIL)) (-4369 (((-777) $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 27)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL)))
-(((-537 |#1|) (-13 (-799) (-515 (-777) |#1|)) (-856)) (T -537))
-NIL
-(-13 (-799) (-515 (-777) |#1|))
-((-1418 (((-650 |#2|) (-1182 |#1|) |#3|) 98)) (-3818 (((-650 (-2 (|:| |outval| |#2|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#2|))))) (-695 |#1|) |#3| (-1 (-424 (-1182 |#1|)) (-1182 |#1|))) 114)) (-3429 (((-1182 |#1|) (-695 |#1|)) 110)))
-(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -3429 ((-1182 |#1|) (-695 |#1|))) (-15 -1418 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -3818 ((-650 (-2 (|:| |outval| |#2|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#2|))))) (-695 |#1|) |#3| (-1 (-424 (-1182 |#1|)) (-1182 |#1|))))) (-368) (-368) (-13 (-368) (-854))) (T -538))
-((-3818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *6)) (-5 *5 (-1 (-424 (-1182 *6)) (-1182 *6))) (-4 *6 (-368)) (-5 *2 (-650 (-2 (|:| |outval| *7) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 *7)))))) (-5 *1 (-538 *6 *7 *4)) (-4 *7 (-368)) (-4 *4 (-13 (-368) (-854))))) (-1418 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *5)) (-4 *5 (-368)) (-5 *2 (-650 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-695 *4)) (-4 *4 (-368)) (-5 *2 (-1182 *4)) (-5 *1 (-538 *4 *5 *6)) (-4 *5 (-368)) (-4 *6 (-13 (-368) (-854))))))
-(-10 -7 (-15 -3429 ((-1182 |#1|) (-695 |#1|))) (-15 -1418 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -3818 ((-650 (-2 (|:| |outval| |#2|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#2|))))) (-695 |#1|) |#3| (-1 (-424 (-1182 |#1|)) (-1182 |#1|)))))
-((-2540 (((-697 (-1235)) $ (-1235)) NIL)) (-3155 (((-697 (-555)) $ (-555)) NIL)) (-3166 (((-777) $ (-129)) 39)) (-2085 (((-697 (-130)) $ (-130)) 40)) (-4327 (((-697 (-1235)) $) NIL)) (-3253 (((-697 (-1233)) $) NIL)) (-2986 (((-697 (-1232)) $) NIL)) (-2062 (((-697 (-555)) $) NIL)) (-4331 (((-697 (-553)) $) NIL)) (-1839 (((-697 (-552)) $) NIL)) (-1441 (((-777) $ (-129)) 35)) (-1326 (((-697 (-130)) $) 37)) (-3370 (((-112) $) 27)) (-2820 (((-697 $) (-585) (-961)) 18) (((-697 $) (-497) (-961)) 24)) (-2869 (((-868) $) 48)) (-1740 (($ $) 42)))
-(((-539) (-13 (-773 (-585)) (-619 (-868)) (-10 -8 (-15 -2820 ((-697 $) (-497) (-961)))))) (T -539))
-((-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-497)) (-5 *4 (-961)) (-5 *2 (-697 (-539))) (-5 *1 (-539)))))
-(-13 (-773 (-585)) (-619 (-868)) (-10 -8 (-15 -2820 ((-697 $) (-497) (-961)))))
-((-2019 (((-849 (-570))) 12)) (-2030 (((-849 (-570))) 14)) (-1634 (((-839 (-570))) 9)))
-(((-540) (-10 -7 (-15 -1634 ((-839 (-570)))) (-15 -2019 ((-849 (-570)))) (-15 -2030 ((-849 (-570)))))) (T -540))
-((-2030 (*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540)))) (-2019 (*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540)))) (-1634 (*1 *2) (-12 (-5 *2 (-839 (-570))) (-5 *1 (-540)))))
-(-10 -7 (-15 -1634 ((-839 (-570)))) (-15 -2019 ((-849 (-570)))) (-15 -2030 ((-849 (-570)))))
-((-4423 (((-542) (-1186)) 15)) (-1793 ((|#1| (-542)) 20)))
-(((-541 |#1|) (-10 -7 (-15 -4423 ((-542) (-1186))) (-15 -1793 (|#1| (-542)))) (-1227)) (T -541))
-((-1793 (*1 *2 *3) (-12 (-5 *3 (-542)) (-5 *1 (-541 *2)) (-4 *2 (-1227)))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-542)) (-5 *1 (-541 *4)) (-4 *4 (-1227)))))
-(-10 -7 (-15 -4423 ((-542) (-1186))) (-15 -1793 (|#1| (-542))))
-((-2847 (((-112) $ $) NIL)) (-2200 (((-1168) $) 55)) (-3149 (((-112) $) 51)) (-3802 (((-1186) $) 52)) (-2984 (((-112) $) 49)) (-1643 (((-1168) $) 50)) (-2805 (($ (-1168)) 56)) (-3753 (((-112) $) NIL)) (-3336 (((-112) $) NIL)) (-2823 (((-112) $) NIL)) (-3240 (((-1168) $) NIL)) (-4316 (($ $ (-650 (-1186))) 21)) (-1793 (((-52) $) 23)) (-3081 (((-112) $) NIL)) (-3823 (((-570) $) NIL)) (-3891 (((-1129) $) NIL)) (-3746 (($ $ (-650 (-1186)) (-1186)) 73)) (-3852 (((-112) $) NIL)) (-1531 (((-227) $) NIL)) (-3931 (($ $) 44)) (-1393 (((-868) $) NIL)) (-2557 (((-112) $ $) NIL)) (-2057 (($ $ (-570)) NIL) (($ $ (-650 (-570))) NIL)) (-3825 (((-650 $) $) 30)) (-3523 (((-1186) (-650 $)) 57)) (-2601 (($ (-1168)) NIL) (($ (-1186)) 19) (($ (-570)) 8) (($ (-227)) 28) (($ (-868)) NIL) (($ (-650 $)) 65) (((-1113) $) 12) (($ (-1113)) 13)) (-2645 (((-1186) (-1186) (-650 $)) 60)) (-2869 (((-868) $) 54)) (-2323 (($ $) 59)) (-3135 (($ $) 58)) (-2484 (($ $ (-650 $)) 66)) (-1344 (((-112) $ $) NIL)) (-2392 (((-112) $) 29)) (-1981 (($) 9 T CONST)) (-1998 (($) 11 T CONST)) (-3892 (((-112) $ $) 74)) (-4013 (($ $ $) 82)) (-3992 (($ $ $) 75)) (** (($ $ (-777)) 81) (($ $ (-570)) 80)) (* (($ $ $) 76)) (-2857 (((-570) $) NIL)))
-(((-542) (-13 (-1112 (-1168) (-1186) (-570) (-227) (-868)) (-620 (-1113)) (-10 -8 (-15 -1793 ((-52) $)) (-15 -2601 ($ (-1113))) (-15 -2484 ($ $ (-650 $))) (-15 -3746 ($ $ (-650 (-1186)) (-1186))) (-15 -4316 ($ $ (-650 (-1186)))) (-15 -3992 ($ $ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ (-570))) (-15 0 ($) -3722) (-15 1 ($) -3722) (-15 -3931 ($ $)) (-15 -2200 ((-1168) $)) (-15 -2805 ($ (-1168))) (-15 -3523 ((-1186) (-650 $))) (-15 -2645 ((-1186) (-1186) (-650 $)))))) (T -542))
-((-1793 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-542)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-542)))) (-2484 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-542))) (-5 *1 (-542)))) (-3746 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1186)) (-5 *1 (-542)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-542)))) (-3992 (*1 *1 *1 *1) (-5 *1 (-542))) (* (*1 *1 *1 *1) (-5 *1 (-542))) (-4013 (*1 *1 *1 *1) (-5 *1 (-542))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-542)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-542)))) (-1981 (*1 *1) (-5 *1 (-542))) (-1998 (*1 *1) (-5 *1 (-542))) (-3931 (*1 *1 *1) (-5 *1 (-542))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-542)))) (-2805 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-542)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-650 (-542))) (-5 *2 (-1186)) (-5 *1 (-542)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-542))) (-5 *1 (-542)))))
-(-13 (-1112 (-1168) (-1186) (-570) (-227) (-868)) (-620 (-1113)) (-10 -8 (-15 -1793 ((-52) $)) (-15 -2601 ($ (-1113))) (-15 -2484 ($ $ (-650 $))) (-15 -3746 ($ $ (-650 (-1186)) (-1186))) (-15 -4316 ($ $ (-650 (-1186)))) (-15 -3992 ($ $ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ (-570))) (-15 (-1981) ($) -3722) (-15 (-1998) ($) -3722) (-15 -3931 ($ $)) (-15 -2200 ((-1168) $)) (-15 -2805 ($ (-1168))) (-15 -3523 ((-1186) (-650 $))) (-15 -2645 ((-1186) (-1186) (-650 $)))))
-((-3506 ((|#2| |#2|) 17)) (-3287 ((|#2| |#2|) 13)) (-3649 ((|#2| |#2| (-570) (-570)) 20)) (-4414 ((|#2| |#2|) 15)))
-(((-543 |#1| |#2|) (-10 -7 (-15 -3287 (|#2| |#2|)) (-15 -4414 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3649 (|#2| |#2| (-570) (-570)))) (-13 (-562) (-148)) (-1268 |#1|)) (T -543))
-((-3649 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-543 *4 *2)) (-4 *2 (-1268 *4)))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) (-4 *2 (-1268 *3)))) (-4414 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) (-4 *2 (-1268 *3)))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) (-4 *2 (-1268 *3)))))
-(-10 -7 (-15 -3287 (|#2| |#2|)) (-15 -4414 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3649 (|#2| |#2| (-570) (-570))))
-((-1566 (((-650 (-298 (-959 |#2|))) (-650 |#2|) (-650 (-1186))) 32)) (-3503 (((-650 |#2|) (-959 |#1|) |#3|) 54) (((-650 |#2|) (-1182 |#1|) |#3|) 53)) (-4304 (((-650 (-650 |#2|)) (-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)) |#3|) 106)))
-(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -3503 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -3503 ((-650 |#2|) (-959 |#1|) |#3|)) (-15 -4304 ((-650 (-650 |#2|)) (-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)) |#3|)) (-15 -1566 ((-650 (-298 (-959 |#2|))) (-650 |#2|) (-650 (-1186))))) (-458) (-368) (-13 (-368) (-854))) (T -544))
-((-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1186))) (-4 *6 (-368)) (-5 *2 (-650 (-298 (-959 *6)))) (-5 *1 (-544 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-13 (-368) (-854))))) (-4304 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-544 *6 *7 *5)) (-4 *7 (-368)) (-4 *5 (-13 (-368) (-854))))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-959 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))))
-(-10 -7 (-15 -3503 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -3503 ((-650 |#2|) (-959 |#1|) |#3|)) (-15 -4304 ((-650 (-650 |#2|)) (-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)) |#3|)) (-15 -1566 ((-650 (-298 (-959 |#2|))) (-650 |#2|) (-650 (-1186)))))
-((-2723 ((|#2| |#2| |#1|) 17)) (-3383 ((|#2| (-650 |#2|)) 31)) (-4275 ((|#2| (-650 |#2|)) 52)))
-(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3383 (|#2| (-650 |#2|))) (-15 -4275 (|#2| (-650 |#2|))) (-15 -2723 (|#2| |#2| |#1|))) (-311) (-1253 |#1|) |#1| (-1 |#1| |#1| (-777))) (T -545))
-((-2723 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-777))) (-5 *1 (-545 *3 *2 *4 *5)) (-4 *2 (-1253 *3)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-545 *4 *2 *5 *6)) (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777))))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-545 *4 *2 *5 *6)) (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777))))))
-(-10 -7 (-15 -3383 (|#2| (-650 |#2|))) (-15 -4275 (|#2| (-650 |#2|))) (-15 -2723 (|#2| |#2| |#1|)))
-((-2340 (((-424 (-1182 |#4|)) (-1182 |#4|) (-1 (-424 (-1182 |#3|)) (-1182 |#3|))) 89) (((-424 |#4|) |#4| (-1 (-424 (-1182 |#3|)) (-1182 |#3|))) 210)))
-(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-424 |#4|) |#4| (-1 (-424 (-1182 |#3|)) (-1182 |#3|)))) (-15 -2340 ((-424 (-1182 |#4|)) (-1182 |#4|) (-1 (-424 (-1182 |#3|)) (-1182 |#3|))))) (-856) (-799) (-13 (-311) (-148)) (-956 |#3| |#2| |#1|)) (T -546))
-((-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7))) (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *8 (-956 *7 *6 *5)) (-5 *2 (-424 (-1182 *8))) (-5 *1 (-546 *5 *6 *7 *8)) (-5 *3 (-1182 *8)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7))) (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799)) (-5 *2 (-424 *3)) (-5 *1 (-546 *5 *6 *7 *3)) (-4 *3 (-956 *7 *6 *5)))))
-(-10 -7 (-15 -2340 ((-424 |#4|) |#4| (-1 (-424 (-1182 |#3|)) (-1182 |#3|)))) (-15 -2340 ((-424 (-1182 |#4|)) (-1182 |#4|) (-1 (-424 (-1182 |#3|)) (-1182 |#3|)))))
-((-3506 ((|#4| |#4|) 74)) (-3287 ((|#4| |#4|) 70)) (-3649 ((|#4| |#4| (-570) (-570)) 76)) (-4414 ((|#4| |#4|) 72)))
-(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3287 (|#4| |#4|)) (-15 -4414 (|#4| |#4|)) (-15 -3506 (|#4| |#4|)) (-15 -3649 (|#4| |#4| (-570) (-570)))) (-13 (-368) (-373) (-620 (-570))) (-1253 |#1|) (-730 |#1| |#2|) (-1268 |#3|)) (T -547))
-((-3649 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3))) (-4 *5 (-1253 *4)) (-4 *6 (-730 *4 *5)) (-5 *1 (-547 *4 *5 *6 *2)) (-4 *2 (-1268 *6)))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1253 *3)) (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1268 *5)))) (-4414 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1253 *3)) (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1268 *5)))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1253 *3)) (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1268 *5)))))
-(-10 -7 (-15 -3287 (|#4| |#4|)) (-15 -4414 (|#4| |#4|)) (-15 -3506 (|#4| |#4|)) (-15 -3649 (|#4| |#4| (-570) (-570))))
-((-3506 ((|#2| |#2|) 27)) (-3287 ((|#2| |#2|) 23)) (-3649 ((|#2| |#2| (-570) (-570)) 29)) (-4414 ((|#2| |#2|) 25)))
-(((-548 |#1| |#2|) (-10 -7 (-15 -3287 (|#2| |#2|)) (-15 -4414 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3649 (|#2| |#2| (-570) (-570)))) (-13 (-368) (-373) (-620 (-570))) (-1268 |#1|)) (T -548))
-((-3649 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3))) (-5 *1 (-548 *4 *2)) (-4 *2 (-1268 *4)))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1268 *3)))) (-4414 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1268 *3)))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1268 *3)))))
-(-10 -7 (-15 -3287 (|#2| |#2|)) (-15 -4414 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3649 (|#2| |#2| (-570) (-570))))
-((-3049 (((-3 (-570) "failed") |#2| |#1| (-1 (-3 (-570) "failed") |#1|)) 18) (((-3 (-570) "failed") |#2| |#1| (-570) (-1 (-3 (-570) "failed") |#1|)) 14) (((-3 (-570) "failed") |#2| (-570) (-1 (-3 (-570) "failed") |#1|)) 32)))
-(((-549 |#1| |#2|) (-10 -7 (-15 -3049 ((-3 (-570) "failed") |#2| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -3049 ((-3 (-570) "failed") |#2| |#1| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -3049 ((-3 (-570) "failed") |#2| |#1| (-1 (-3 (-570) "failed") |#1|)))) (-1058) (-1253 |#1|)) (T -549))
-((-3049 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1253 *4)))) (-3049 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1253 *4)))) (-3049 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-570) "failed") *5)) (-4 *5 (-1058)) (-5 *2 (-570)) (-5 *1 (-549 *5 *3)) (-4 *3 (-1253 *5)))))
-(-10 -7 (-15 -3049 ((-3 (-570) "failed") |#2| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -3049 ((-3 (-570) "failed") |#2| |#1| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -3049 ((-3 (-570) "failed") |#2| |#1| (-1 (-3 (-570) "failed") |#1|))))
-((-2198 (($ $ $) 84)) (-2929 (((-424 $) $) 52)) (-2435 (((-3 (-570) "failed") $) 64)) (-4387 (((-570) $) 42)) (-2477 (((-3 (-413 (-570)) "failed") $) 79)) (-3994 (((-112) $) 26)) (-1577 (((-413 (-570)) $) 77)) (-2145 (((-112) $) 55)) (-3879 (($ $ $ $) 92)) (-2811 (((-112) $) 17)) (-2614 (($ $ $) 62)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 74)) (-3525 (((-3 $ "failed") $) 69)) (-3520 (($ $) 24)) (-1659 (($ $ $) 90)) (-3458 (($) 65)) (-3459 (($ $) 58)) (-2340 (((-424 $) $) 50)) (-2160 (((-112) $) 15)) (-2002 (((-777) $) 32)) (-2375 (($ $ (-777)) NIL) (($ $) 11)) (-3064 (($ $) 18)) (-2601 (((-570) $) NIL) (((-542) $) 41) (((-899 (-570)) $) 45) (((-384) $) 35) (((-227) $) 38)) (-2294 (((-777)) 9)) (-1790 (((-112) $ $) 21)) (-1500 (($ $ $) 60)))
-(((-550 |#1|) (-10 -8 (-15 -1659 (|#1| |#1| |#1|)) (-15 -3879 (|#1| |#1| |#1| |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -1790 ((-112) |#1| |#1|)) (-15 -2160 ((-112) |#1|)) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-227) |#1|)) (-15 -2601 ((-384) |#1|)) (-15 -2614 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -1500 (|#1| |#1| |#1|)) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2601 ((-570) |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2811 ((-112) |#1|)) (-15 -2002 ((-777) |#1|)) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -2145 ((-112) |#1|)) (-15 -2294 ((-777)))) (-551)) (T -550))
-((-2294 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-550 *3)) (-4 *3 (-551)))))
-(-10 -8 (-15 -1659 (|#1| |#1| |#1|)) (-15 -3879 (|#1| |#1| |#1| |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3064 (|#1| |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2198 (|#1| |#1| |#1|)) (-15 -1790 ((-112) |#1| |#1|)) (-15 -2160 ((-112) |#1|)) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-227) |#1|)) (-15 -2601 ((-384) |#1|)) (-15 -2614 (|#1| |#1| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -1500 (|#1| |#1| |#1|)) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2601 ((-570) |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2811 ((-112) |#1|)) (-15 -2002 ((-777) |#1|)) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -2145 ((-112) |#1|)) (-15 -2294 ((-777))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-2198 (($ $ $) 90)) (-3997 (((-3 $ "failed") $ $) 20)) (-4396 (($ $ $ $) 79)) (-3312 (($ $) 57)) (-2929 (((-424 $) $) 58)) (-1799 (((-112) $ $) 130)) (-2419 (((-570) $) 119)) (-3609 (($ $ $) 93)) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 111)) (-4387 (((-570) $) 112)) (-2788 (($ $ $) 134)) (-3054 (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 109) (((-695 (-570)) (-695 $)) 108)) (-3957 (((-3 $ "failed") $) 37)) (-2477 (((-3 (-413 (-570)) "failed") $) 87)) (-3994 (((-112) $) 89)) (-1577 (((-413 (-570)) $) 88)) (-2066 (($) 86) (($ $) 85)) (-2799 (($ $ $) 133)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 128)) (-2145 (((-112) $) 59)) (-3879 (($ $ $ $) 77)) (-2711 (($ $ $) 91)) (-2811 (((-112) $) 121)) (-2614 (($ $ $) 102)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 105)) (-2005 (((-112) $) 35)) (-1973 (((-112) $) 97)) (-3525 (((-3 $ "failed") $) 99)) (-2746 (((-112) $) 120)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 137)) (-4258 (($ $ $ $) 78)) (-1908 (($ $ $) 122)) (-1764 (($ $ $) 123)) (-3520 (($ $) 81)) (-1831 (($ $) 94)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-1659 (($ $ $) 76)) (-3458 (($) 98 T CONST)) (-3032 (($ $) 83)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-3459 (($ $) 103)) (-2340 (((-424 $) $) 56)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 135)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 129)) (-2160 (((-112) $) 96)) (-2002 (((-777) $) 131)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 132)) (-2375 (($ $ (-777)) 116) (($ $) 114)) (-3337 (($ $) 82)) (-3064 (($ $) 84)) (-2601 (((-570) $) 113) (((-542) $) 107) (((-899 (-570)) $) 106) (((-384) $) 101) (((-227) $) 100)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-570)) 110)) (-2294 (((-777)) 32 T CONST)) (-1790 (((-112) $ $) 92)) (-1500 (($ $ $) 104)) (-1344 (((-112) $ $) 9)) (-1540 (($) 95)) (-2939 (((-112) $ $) 45)) (-2677 (($ $ $ $) 80)) (-2521 (($ $) 118)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-777)) 117) (($ $) 115)) (-3959 (((-112) $ $) 125)) (-3933 (((-112) $ $) 126)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 124)) (-3918 (((-112) $ $) 127)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-551) (-141)) (T -551))
-((-1973 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-1540 (*1 *1) (-4 *1 (-551))) (-1831 (*1 *1 *1) (-4 *1 (-551))) (-3609 (*1 *1 *1 *1) (-4 *1 (-551))) (-1790 (*1 *2 *1 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-2711 (*1 *1 *1 *1) (-4 *1 (-551))) (-2198 (*1 *1 *1 *1) (-4 *1 (-551))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-413 (-570))))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-551)) (-5 *2 (-413 (-570))))) (-2066 (*1 *1) (-4 *1 (-551))) (-2066 (*1 *1 *1) (-4 *1 (-551))) (-3064 (*1 *1 *1) (-4 *1 (-551))) (-3032 (*1 *1 *1) (-4 *1 (-551))) (-3337 (*1 *1 *1) (-4 *1 (-551))) (-3520 (*1 *1 *1) (-4 *1 (-551))) (-2677 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-4396 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-4258 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-3879 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-1659 (*1 *1 *1 *1) (-4 *1 (-551))))
-(-13 (-1231) (-311) (-826) (-235) (-620 (-570)) (-1047 (-570)) (-645 (-570)) (-620 (-542)) (-620 (-899 (-570))) (-893 (-570)) (-144) (-1031) (-148) (-1161) (-10 -8 (-15 -1973 ((-112) $)) (-15 -2160 ((-112) $)) (-6 -4451) (-15 -1540 ($)) (-15 -1831 ($ $)) (-15 -3609 ($ $ $)) (-15 -1790 ((-112) $ $)) (-15 -2711 ($ $ $)) (-15 -2198 ($ $ $)) (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $)) (-15 -2066 ($)) (-15 -2066 ($ $)) (-15 -3064 ($ $)) (-15 -3032 ($ $)) (-15 -3337 ($ $)) (-15 -3520 ($ $)) (-15 -2677 ($ $ $ $)) (-15 -4396 ($ $ $ $)) (-15 -4258 ($ $ $ $)) (-15 -3879 ($ $ $ $)) (-15 -1659 ($ $ $)) (-6 -4450)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-144) . T) ((-174) . T) ((-620 (-227)) . T) ((-620 (-384)) . T) ((-620 (-542)) . T) ((-620 (-570)) . T) ((-620 (-899 (-570))) . T) ((-235) . T) ((-294) . T) ((-311) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-645 (-570)) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-826) . T) ((-854) . T) ((-856) . T) ((-893 (-570)) . T) ((-927) . T) ((-1031) . T) ((-1047 (-570)) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) . T) ((-1231) . T))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-552) (-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))) (T -552))
-((-2333 (*1 *1) (-5 *1 (-552))))
-(-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))
+((-4421 (((-1184 |#1|) (-779)) 115)) (-2055 (((-1279 |#1|) (-1279 |#1|) (-930)) 108)) (-1332 (((-1284) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) |#1|) 123)) (-3358 (((-1279 |#1|) (-1279 |#1|) (-779)) 53)) (-2688 (((-1279 |#1|) (-930)) 110)) (-2023 (((-1279 |#1|) (-1279 |#1|) (-572)) 30)) (-3888 (((-1184 |#1|) (-1279 |#1|)) 116)) (-2833 (((-1279 |#1|) (-930)) 137)) (-3466 (((-112) (-1279 |#1|)) 120)) (-2140 (((-1279 |#1|) (-1279 |#1|) (-930)) 100)) (-2179 (((-1184 |#1|) (-1279 |#1|)) 131)) (-4370 (((-930) (-1279 |#1|)) 96)) (-1809 (((-1279 |#1|) (-1279 |#1|)) 38)) (-1795 (((-1279 |#1|) (-930) (-930)) 140)) (-3805 (((-1279 |#1|) (-1279 |#1|) (-1131) (-1131)) 29)) (-3025 (((-1279 |#1|) (-1279 |#1|) (-779) (-1131)) 54)) (-1769 (((-1279 (-1279 |#1|)) (-930)) 136)) (-4029 (((-1279 |#1|) (-1279 |#1|) (-1279 |#1|)) 121)) (** (((-1279 |#1|) (-1279 |#1|) (-572)) 67)) (* (((-1279 |#1|) (-1279 |#1|) (-1279 |#1|)) 31)))
+(((-536 |#1|) (-10 -7 (-15 -1332 ((-1284) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) |#1|)) (-15 -2688 ((-1279 |#1|) (-930))) (-15 -1795 ((-1279 |#1|) (-930) (-930))) (-15 -3888 ((-1184 |#1|) (-1279 |#1|))) (-15 -4421 ((-1184 |#1|) (-779))) (-15 -3025 ((-1279 |#1|) (-1279 |#1|) (-779) (-1131))) (-15 -3358 ((-1279 |#1|) (-1279 |#1|) (-779))) (-15 -3805 ((-1279 |#1|) (-1279 |#1|) (-1131) (-1131))) (-15 -2023 ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 ** ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 * ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -4029 ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -2140 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -2055 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -1809 ((-1279 |#1|) (-1279 |#1|))) (-15 -4370 ((-930) (-1279 |#1|))) (-15 -3466 ((-112) (-1279 |#1|))) (-15 -1769 ((-1279 (-1279 |#1|)) (-930))) (-15 -2833 ((-1279 |#1|) (-930))) (-15 -2179 ((-1184 |#1|) (-1279 |#1|)))) (-356)) (T -536))
+((-2179 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 *4))) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-536 *4)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-930)) (-5 *1 (-536 *4)))) (-1809 (*1 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-2140 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-3805 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1131)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-3358 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-536 *4)))) (-3025 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1279 *5)) (-5 *3 (-779)) (-5 *4 (-1131)) (-4 *5 (-356)) (-5 *1 (-536 *5)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4)))) (-1795 (*1 *2 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4)) (-4 *4 (-356)))) (-1332 (*1 *2 *3 *4) (-12 (-5 *3 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131)))))) (-4 *4 (-356)) (-5 *2 (-1284)) (-5 *1 (-536 *4)))))
+(-10 -7 (-15 -1332 ((-1284) (-1279 (-652 (-2 (|:| -1653 |#1|) (|:| -1795 (-1131))))) |#1|)) (-15 -2688 ((-1279 |#1|) (-930))) (-15 -1795 ((-1279 |#1|) (-930) (-930))) (-15 -3888 ((-1184 |#1|) (-1279 |#1|))) (-15 -4421 ((-1184 |#1|) (-779))) (-15 -3025 ((-1279 |#1|) (-1279 |#1|) (-779) (-1131))) (-15 -3358 ((-1279 |#1|) (-1279 |#1|) (-779))) (-15 -3805 ((-1279 |#1|) (-1279 |#1|) (-1131) (-1131))) (-15 -2023 ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 ** ((-1279 |#1|) (-1279 |#1|) (-572))) (-15 * ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -4029 ((-1279 |#1|) (-1279 |#1|) (-1279 |#1|))) (-15 -2140 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -2055 ((-1279 |#1|) (-1279 |#1|) (-930))) (-15 -1809 ((-1279 |#1|) (-1279 |#1|))) (-15 -4370 ((-930) (-1279 |#1|))) (-15 -3466 ((-112) (-1279 |#1|))) (-15 -1769 ((-1279 (-1279 |#1|)) (-930))) (-15 -2833 ((-1279 |#1|) (-930))) (-15 -2179 ((-1184 |#1|) (-1279 |#1|))))
+((-2354 (((-699 (-1237)) $) NIL)) (-2499 (((-699 (-1235)) $) NIL)) (-2849 (((-699 (-1234)) $) NIL)) (-3787 (((-699 (-557)) $) NIL)) (-2400 (((-699 (-555)) $) NIL)) (-3478 (((-699 (-554)) $) NIL)) (-2575 (((-779) $ (-129)) NIL)) (-3226 (((-699 (-130)) $) 26)) (-1422 (((-1131) $ (-1131)) 31)) (-3239 (((-1131) $) 30)) (-3520 (((-112) $) 20)) (-2310 (($ (-396)) 14) (($ (-1170)) 16)) (-3764 (((-112) $) 27)) (-3491 (((-870) $) 34)) (-3725 (($ $) 28)))
+(((-537) (-13 (-535) (-621 (-870)) (-10 -8 (-15 -2310 ($ (-396))) (-15 -2310 ($ (-1170))) (-15 -3764 ((-112) $)) (-15 -3520 ((-112) $)) (-15 -3239 ((-1131) $)) (-15 -1422 ((-1131) $ (-1131)))))) (T -537))
+((-2310 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-537)))) (-2310 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-537)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-537)))) (-1422 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-537)))))
+(-13 (-535) (-621 (-870)) (-10 -8 (-15 -2310 ($ (-396))) (-15 -2310 ($ (-1170))) (-15 -3764 ((-112) $)) (-15 -3520 ((-112) $)) (-15 -3239 ((-1131) $)) (-15 -1422 ((-1131) $ (-1131)))))
+((-1372 (((-1 |#1| |#1|) |#1|) 11)) (-3605 (((-1 |#1| |#1|)) 10)))
+(((-538 |#1|) (-10 -7 (-15 -3605 ((-1 |#1| |#1|))) (-15 -1372 ((-1 |#1| |#1|) |#1|))) (-13 (-734) (-25))) (T -538))
+((-1372 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))) (-3605 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))))
+(-10 -7 (-15 -3605 ((-1 |#1| |#1|))) (-15 -1372 ((-1 |#1| |#1|) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2486 (($ $ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-3042 (($ (-779) |#1|) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3161 (($ (-1 (-779) (-779)) $) NIL)) (-1614 ((|#1| $) NIL)) (-1853 (((-779) $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 27)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL)))
+(((-539 |#1|) (-13 (-801) (-517 (-779) |#1|)) (-858)) (T -539))
+NIL
+(-13 (-801) (-517 (-779) |#1|))
+((-4275 (((-652 |#2|) (-1184 |#1|) |#3|) 98)) (-4328 (((-652 (-2 (|:| |outval| |#2|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#2|))))) (-697 |#1|) |#3| (-1 (-426 (-1184 |#1|)) (-1184 |#1|))) 114)) (-1806 (((-1184 |#1|) (-697 |#1|)) 110)))
+(((-540 |#1| |#2| |#3|) (-10 -7 (-15 -1806 ((-1184 |#1|) (-697 |#1|))) (-15 -4275 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -4328 ((-652 (-2 (|:| |outval| |#2|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#2|))))) (-697 |#1|) |#3| (-1 (-426 (-1184 |#1|)) (-1184 |#1|))))) (-370) (-370) (-13 (-370) (-856))) (T -540))
+((-4328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *6)) (-5 *5 (-1 (-426 (-1184 *6)) (-1184 *6))) (-4 *6 (-370)) (-5 *2 (-652 (-2 (|:| |outval| *7) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 *7)))))) (-5 *1 (-540 *6 *7 *4)) (-4 *7 (-370)) (-4 *4 (-13 (-370) (-856))))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-370)) (-5 *2 (-652 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-697 *4)) (-4 *4 (-370)) (-5 *2 (-1184 *4)) (-5 *1 (-540 *4 *5 *6)) (-4 *5 (-370)) (-4 *6 (-13 (-370) (-856))))))
+(-10 -7 (-15 -1806 ((-1184 |#1|) (-697 |#1|))) (-15 -4275 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -4328 ((-652 (-2 (|:| |outval| |#2|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#2|))))) (-697 |#1|) |#3| (-1 (-426 (-1184 |#1|)) (-1184 |#1|)))))
+((-2965 (((-699 (-1237)) $ (-1237)) NIL)) (-3979 (((-699 (-557)) $ (-557)) NIL)) (-4087 (((-779) $ (-129)) 39)) (-4007 (((-699 (-130)) $ (-130)) 40)) (-2354 (((-699 (-1237)) $) NIL)) (-2499 (((-699 (-1235)) $) NIL)) (-2849 (((-699 (-1234)) $) NIL)) (-3787 (((-699 (-557)) $) NIL)) (-2400 (((-699 (-555)) $) NIL)) (-3478 (((-699 (-554)) $) NIL)) (-2575 (((-779) $ (-129)) 35)) (-3226 (((-699 (-130)) $) 37)) (-4357 (((-112) $) 27)) (-2607 (((-699 $) (-587) (-963)) 18) (((-699 $) (-499) (-963)) 24)) (-3491 (((-870) $) 48)) (-3725 (($ $) 42)))
+(((-541) (-13 (-775 (-587)) (-621 (-870)) (-10 -8 (-15 -2607 ((-699 $) (-499) (-963)))))) (T -541))
+((-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-499)) (-5 *4 (-963)) (-5 *2 (-699 (-541))) (-5 *1 (-541)))))
+(-13 (-775 (-587)) (-621 (-870)) (-10 -8 (-15 -2607 ((-699 $) (-499) (-963)))))
+((-2640 (((-851 (-572))) 12)) (-2651 (((-851 (-572))) 14)) (-2262 (((-841 (-572))) 9)))
+(((-542) (-10 -7 (-15 -2262 ((-841 (-572)))) (-15 -2640 ((-851 (-572)))) (-15 -2651 ((-851 (-572)))))) (T -542))
+((-2651 (*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542)))) (-2640 (*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542)))) (-2262 (*1 *2) (-12 (-5 *2 (-841 (-572))) (-5 *1 (-542)))))
+(-10 -7 (-15 -2262 ((-841 (-572)))) (-15 -2640 ((-851 (-572)))) (-15 -2651 ((-851 (-572)))))
+((-3971 (((-544) (-1188)) 15)) (-1777 ((|#1| (-544)) 20)))
+(((-543 |#1|) (-10 -7 (-15 -3971 ((-544) (-1188))) (-15 -1777 (|#1| (-544)))) (-1229)) (T -543))
+((-1777 (*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-543 *2)) (-4 *2 (-1229)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-544)) (-5 *1 (-543 *4)) (-4 *4 (-1229)))))
+(-10 -7 (-15 -3971 ((-544) (-1188))) (-15 -1777 (|#1| (-544))))
+((-3464 (((-112) $ $) NIL)) (-2769 (((-1170) $) 55)) (-3911 (((-112) $) 51)) (-4401 (((-1188) $) 52)) (-2828 (((-112) $) 49)) (-2271 (((-1170) $) 50)) (-3732 (($ (-1170)) 56)) (-1812 (((-112) $) NIL)) (-2101 (((-112) $) NIL)) (-2649 (((-112) $) NIL)) (-3618 (((-1170) $) NIL)) (-1810 (($ $ (-652 (-1188))) 21)) (-1777 (((-52) $) 23)) (-4387 (((-112) $) NIL)) (-4418 (((-572) $) NIL)) (-2614 (((-1131) $) NIL)) (-4358 (($ $ (-652 (-1188)) (-1188)) 73)) (-3463 (((-112) $) NIL)) (-2150 (((-227) $) NIL)) (-1398 (($ $) 44)) (-1999 (((-870) $) NIL)) (-3179 (((-112) $ $) NIL)) (-2679 (($ $ (-572)) NIL) (($ $ (-652 (-572))) NIL)) (-4420 (((-652 $) $) 30)) (-4137 (((-1188) (-652 $)) 57)) (-3222 (($ (-1170)) NIL) (($ (-1188)) 19) (($ (-572)) 8) (($ (-227)) 28) (($ (-870)) NIL) (($ (-652 $)) 65) (((-1115) $) 12) (($ (-1115)) 13)) (-3266 (((-1188) (-1188) (-652 $)) 60)) (-3491 (((-870) $) 54)) (-1479 (($ $) 59)) (-3765 (($ $) 58)) (-3690 (($ $ (-652 $)) 66)) (-3424 (((-112) $ $) NIL)) (-4112 (((-112) $) 29)) (-2602 (($) 9 T CONST)) (-2619 (($) 11 T CONST)) (-3921 (((-112) $ $) 74)) (-4029 (($ $ $) 82)) (-4005 (($ $ $) 75)) (** (($ $ (-779)) 81) (($ $ (-572)) 80)) (* (($ $ $) 76)) (-3475 (((-572) $) NIL)))
+(((-544) (-13 (-1114 (-1170) (-1188) (-572) (-227) (-870)) (-622 (-1115)) (-10 -8 (-15 -1777 ((-52) $)) (-15 -3222 ($ (-1115))) (-15 -3690 ($ $ (-652 $))) (-15 -4358 ($ $ (-652 (-1188)) (-1188))) (-15 -1810 ($ $ (-652 (-1188)))) (-15 -4005 ($ $ $)) (-15 * ($ $ $)) (-15 -4029 ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ (-572))) (-15 0 ($) -4338) (-15 1 ($) -4338) (-15 -1398 ($ $)) (-15 -2769 ((-1170) $)) (-15 -3732 ($ (-1170))) (-15 -4137 ((-1188) (-652 $))) (-15 -3266 ((-1188) (-1188) (-652 $)))))) (T -544))
+((-1777 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-544)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-544)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-544))) (-5 *1 (-544)))) (-4358 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1188)) (-5 *1 (-544)))) (-1810 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-544)))) (-4005 (*1 *1 *1 *1) (-5 *1 (-544))) (* (*1 *1 *1 *1) (-5 *1 (-544))) (-4029 (*1 *1 *1 *1) (-5 *1 (-544))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-544)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-544)))) (-2602 (*1 *1) (-5 *1 (-544))) (-2619 (*1 *1) (-5 *1 (-544))) (-1398 (*1 *1 *1) (-5 *1 (-544))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-652 (-544))) (-5 *2 (-1188)) (-5 *1 (-544)))) (-3266 (*1 *2 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-544))) (-5 *1 (-544)))))
+(-13 (-1114 (-1170) (-1188) (-572) (-227) (-870)) (-622 (-1115)) (-10 -8 (-15 -1777 ((-52) $)) (-15 -3222 ($ (-1115))) (-15 -3690 ($ $ (-652 $))) (-15 -4358 ($ $ (-652 (-1188)) (-1188))) (-15 -1810 ($ $ (-652 (-1188)))) (-15 -4005 ($ $ $)) (-15 * ($ $ $)) (-15 -4029 ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ (-572))) (-15 (-2602) ($) -4338) (-15 (-2619) ($) -4338) (-15 -1398 ($ $)) (-15 -2769 ((-1170) $)) (-15 -3732 ($ (-1170))) (-15 -4137 ((-1188) (-652 $))) (-15 -3266 ((-1188) (-1188) (-652 $)))))
+((-3257 ((|#2| |#2|) 17)) (-2869 ((|#2| |#2|) 13)) (-2087 ((|#2| |#2| (-572) (-572)) 20)) (-1920 ((|#2| |#2|) 15)))
+(((-545 |#1| |#2|) (-10 -7 (-15 -2869 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -2087 (|#2| |#2| (-572) (-572)))) (-13 (-564) (-148)) (-1270 |#1|)) (T -545))
+((-2087 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1270 *4)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1270 *3)))) (-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1270 *3)))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1270 *3)))))
+(-10 -7 (-15 -2869 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -2087 (|#2| |#2| (-572) (-572))))
+((-2657 (((-652 (-300 (-961 |#2|))) (-652 |#2|) (-652 (-1188))) 32)) (-3236 (((-652 |#2|) (-961 |#1|) |#3|) 54) (((-652 |#2|) (-1184 |#1|) |#3|) 53)) (-2109 (((-652 (-652 |#2|)) (-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)) |#3|) 106)))
+(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -3236 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -3236 ((-652 |#2|) (-961 |#1|) |#3|)) (-15 -2109 ((-652 (-652 |#2|)) (-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)) |#3|)) (-15 -2657 ((-652 (-300 (-961 |#2|))) (-652 |#2|) (-652 (-1188))))) (-460) (-370) (-13 (-370) (-856))) (T -546))
+((-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1188))) (-4 *6 (-370)) (-5 *2 (-652 (-300 (-961 *6)))) (-5 *1 (-546 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-13 (-370) (-856))))) (-2109 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-652 (-652 *7))) (-5 *1 (-546 *6 *7 *5)) (-4 *7 (-370)) (-4 *5 (-13 (-370) (-856))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-961 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))))
+(-10 -7 (-15 -3236 ((-652 |#2|) (-1184 |#1|) |#3|)) (-15 -3236 ((-652 |#2|) (-961 |#1|) |#3|)) (-15 -2109 ((-652 (-652 |#2|)) (-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)) |#3|)) (-15 -2657 ((-652 (-300 (-961 |#2|))) (-652 |#2|) (-652 (-1188)))))
+((-4149 ((|#2| |#2| |#1|) 17)) (-1354 ((|#2| (-652 |#2|)) 31)) (-3121 ((|#2| (-652 |#2|)) 52)))
+(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1354 (|#2| (-652 |#2|))) (-15 -3121 (|#2| (-652 |#2|))) (-15 -4149 (|#2| |#2| |#1|))) (-313) (-1255 |#1|) |#1| (-1 |#1| |#1| (-779))) (T -547))
+((-4149 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-779))) (-5 *1 (-547 *3 *2 *4 *5)) (-4 *2 (-1255 *3)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6)) (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6)) (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))))
+(-10 -7 (-15 -1354 (|#2| (-652 |#2|))) (-15 -3121 (|#2| (-652 |#2|))) (-15 -4149 (|#2| |#2| |#1|)))
+((-2972 (((-426 (-1184 |#4|)) (-1184 |#4|) (-1 (-426 (-1184 |#3|)) (-1184 |#3|))) 89) (((-426 |#4|) |#4| (-1 (-426 (-1184 |#3|)) (-1184 |#3|))) 210)))
+(((-548 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-426 |#4|) |#4| (-1 (-426 (-1184 |#3|)) (-1184 |#3|)))) (-15 -2972 ((-426 (-1184 |#4|)) (-1184 |#4|) (-1 (-426 (-1184 |#3|)) (-1184 |#3|))))) (-858) (-801) (-13 (-313) (-148)) (-958 |#3| |#2| |#1|)) (T -548))
+((-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7))) (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *8 (-958 *7 *6 *5)) (-5 *2 (-426 (-1184 *8))) (-5 *1 (-548 *5 *6 *7 *8)) (-5 *3 (-1184 *8)))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7))) (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801)) (-5 *2 (-426 *3)) (-5 *1 (-548 *5 *6 *7 *3)) (-4 *3 (-958 *7 *6 *5)))))
+(-10 -7 (-15 -2972 ((-426 |#4|) |#4| (-1 (-426 (-1184 |#3|)) (-1184 |#3|)))) (-15 -2972 ((-426 (-1184 |#4|)) (-1184 |#4|) (-1 (-426 (-1184 |#3|)) (-1184 |#3|)))))
+((-3257 ((|#4| |#4|) 74)) (-2869 ((|#4| |#4|) 70)) (-2087 ((|#4| |#4| (-572) (-572)) 76)) (-1920 ((|#4| |#4|) 72)))
+(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2869 (|#4| |#4|)) (-15 -1920 (|#4| |#4|)) (-15 -3257 (|#4| |#4|)) (-15 -2087 (|#4| |#4| (-572) (-572)))) (-13 (-370) (-375) (-622 (-572))) (-1255 |#1|) (-732 |#1| |#2|) (-1270 |#3|)) (T -549))
+((-2087 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3))) (-4 *5 (-1255 *4)) (-4 *6 (-732 *4 *5)) (-5 *1 (-549 *4 *5 *6 *2)) (-4 *2 (-1270 *6)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3)) (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5)))) (-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3)) (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5)))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3)) (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5)))))
+(-10 -7 (-15 -2869 (|#4| |#4|)) (-15 -1920 (|#4| |#4|)) (-15 -3257 (|#4| |#4|)) (-15 -2087 (|#4| |#4| (-572) (-572))))
+((-3257 ((|#2| |#2|) 27)) (-2869 ((|#2| |#2|) 23)) (-2087 ((|#2| |#2| (-572) (-572)) 29)) (-1920 ((|#2| |#2|) 25)))
+(((-550 |#1| |#2|) (-10 -7 (-15 -2869 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -2087 (|#2| |#2| (-572) (-572)))) (-13 (-370) (-375) (-622 (-572))) (-1270 |#1|)) (T -550))
+((-2087 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3))) (-5 *1 (-550 *4 *2)) (-4 *2 (-1270 *4)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1270 *3)))) (-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1270 *3)))) (-2869 (*1 *2 *2) (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1270 *3)))))
+(-10 -7 (-15 -2869 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (-15 -2087 (|#2| |#2| (-572) (-572))))
+((-2174 (((-3 (-572) "failed") |#2| |#1| (-1 (-3 (-572) "failed") |#1|)) 18) (((-3 (-572) "failed") |#2| |#1| (-572) (-1 (-3 (-572) "failed") |#1|)) 14) (((-3 (-572) "failed") |#2| (-572) (-1 (-3 (-572) "failed") |#1|)) 32)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -2174 ((-3 (-572) "failed") |#2| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -2174 ((-3 (-572) "failed") |#2| |#1| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -2174 ((-3 (-572) "failed") |#2| |#1| (-1 (-3 (-572) "failed") |#1|)))) (-1060) (-1255 |#1|)) (T -551))
+((-2174 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4)))) (-2174 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4)))) (-2174 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-572) "failed") *5)) (-4 *5 (-1060)) (-5 *2 (-572)) (-5 *1 (-551 *5 *3)) (-4 *3 (-1255 *5)))))
+(-10 -7 (-15 -2174 ((-3 (-572) "failed") |#2| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -2174 ((-3 (-572) "failed") |#2| |#1| (-572) (-1 (-3 (-572) "failed") |#1|))) (-15 -2174 ((-3 (-572) "failed") |#2| |#1| (-1 (-3 (-572) "failed") |#1|))))
+((-2746 (($ $ $) 84)) (-2359 (((-426 $) $) 52)) (-3072 (((-3 (-572) "failed") $) 64)) (-1869 (((-572) $) 42)) (-3624 (((-3 (-415 (-572)) "failed") $) 79)) (-2054 (((-112) $) 26)) (-2745 (((-415 (-572)) $) 77)) (-3439 (((-112) $) 55)) (-3677 (($ $ $ $) 92)) (-3778 (((-112) $) 17)) (-2362 (($ $ $) 62)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 74)) (-3396 (((-3 $ "failed") $) 69)) (-4135 (($ $) 24)) (-2197 (($ $ $) 90)) (-3477 (($) 65)) (-4002 (($ $) 58)) (-2972 (((-426 $) $) 50)) (-3601 (((-112) $) 15)) (-4395 (((-779) $) 32)) (-3011 (($ $ (-779)) NIL) (($ $) 11)) (-3679 (($ $) 18)) (-3222 (((-572) $) NIL) (((-544) $) 41) (((-901 (-572)) $) 45) (((-386) $) 35) (((-227) $) 38)) (-2455 (((-779)) 9)) (-4170 (((-112) $ $) 21)) (-3337 (($ $ $) 60)))
+(((-552 |#1|) (-10 -8 (-15 -2197 (|#1| |#1| |#1|)) (-15 -3677 (|#1| |#1| |#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -2746 (|#1| |#1| |#1|)) (-15 -4170 ((-112) |#1| |#1|)) (-15 -3601 ((-112) |#1|)) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -3222 ((-227) |#1|)) (-15 -3222 ((-386) |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3222 ((-572) |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3778 ((-112) |#1|)) (-15 -4395 ((-779) |#1|)) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -2455 ((-779)))) (-553)) (T -552))
+((-2455 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-552 *3)) (-4 *3 (-553)))))
+(-10 -8 (-15 -2197 (|#1| |#1| |#1|)) (-15 -3677 (|#1| |#1| |#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -2746 (|#1| |#1| |#1|)) (-15 -4170 ((-112) |#1| |#1|)) (-15 -3601 ((-112) |#1|)) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -3222 ((-227) |#1|)) (-15 -3222 ((-386) |#1|)) (-15 -2362 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3222 ((-572) |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3778 ((-112) |#1|)) (-15 -4395 ((-779) |#1|)) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -2455 ((-779))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2746 (($ $ $) 90)) (-2092 (((-3 $ "failed") $ $) 20)) (-1742 (($ $ $ $) 79)) (-1861 (($ $) 57)) (-2359 (((-426 $) $) 58)) (-4252 (((-112) $ $) 130)) (-4304 (((-572) $) 119)) (-4235 (($ $ $) 93)) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 111)) (-1869 (((-572) $) 112)) (-3407 (($ $ $) 134)) (-2245 (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 109) (((-697 (-572)) (-697 $)) 108)) (-2982 (((-3 $ "failed") $) 37)) (-3624 (((-3 (-415 (-572)) "failed") $) 87)) (-2054 (((-112) $) 89)) (-2745 (((-415 (-572)) $) 88)) (-2688 (($) 86) (($ $) 85)) (-3418 (($ $ $) 133)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 128)) (-3439 (((-112) $) 59)) (-3677 (($ $ $ $) 77)) (-4023 (($ $ $) 91)) (-3778 (((-112) $) 121)) (-2362 (($ $ $) 102)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 105)) (-4422 (((-112) $) 35)) (-2270 (((-112) $) 97)) (-3396 (((-3 $ "failed") $) 99)) (-4354 (((-112) $) 120)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 137)) (-2945 (($ $ $ $) 78)) (-2536 (($ $ $) 122)) (-3928 (($ $ $) 123)) (-4135 (($ $) 81)) (-2040 (($ $) 94)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2197 (($ $ $) 76)) (-3477 (($) 98 T CONST)) (-3651 (($ $) 83)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-4002 (($ $) 103)) (-2972 (((-426 $) $) 56)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 135)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 129)) (-3601 (((-112) $) 96)) (-4395 (((-779) $) 131)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 132)) (-3011 (($ $ (-779)) 116) (($ $) 114)) (-3935 (($ $) 82)) (-3679 (($ $) 84)) (-3222 (((-572) $) 113) (((-544) $) 107) (((-901 (-572)) $) 106) (((-386) $) 101) (((-227) $) 100)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-572)) 110)) (-2455 (((-779)) 32 T CONST)) (-4170 (((-112) $ $) 92)) (-3337 (($ $ $) 104)) (-3424 (((-112) $ $) 9)) (-1556 (($) 95)) (-2466 (((-112) $ $) 45)) (-1732 (($ $ $ $) 80)) (-2775 (($ $) 118)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-779)) 117) (($ $) 115)) (-3976 (((-112) $ $) 125)) (-3954 (((-112) $ $) 126)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 124)) (-3943 (((-112) $ $) 127)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-553) (-141)) (T -553))
+((-2270 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-1556 (*1 *1) (-4 *1 (-553))) (-2040 (*1 *1 *1) (-4 *1 (-553))) (-4235 (*1 *1 *1 *1) (-4 *1 (-553))) (-4170 (*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-4023 (*1 *1 *1 *1) (-4 *1 (-553))) (-2746 (*1 *1 *1 *1) (-4 *1 (-553))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-415 (-572))))) (-3624 (*1 *2 *1) (|partial| -12 (-4 *1 (-553)) (-5 *2 (-415 (-572))))) (-2688 (*1 *1) (-4 *1 (-553))) (-2688 (*1 *1 *1) (-4 *1 (-553))) (-3679 (*1 *1 *1) (-4 *1 (-553))) (-3651 (*1 *1 *1) (-4 *1 (-553))) (-3935 (*1 *1 *1) (-4 *1 (-553))) (-4135 (*1 *1 *1) (-4 *1 (-553))) (-1732 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-1742 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-2945 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-3677 (*1 *1 *1 *1 *1) (-4 *1 (-553))) (-2197 (*1 *1 *1 *1) (-4 *1 (-553))))
+(-13 (-1233) (-313) (-828) (-237) (-622 (-572)) (-1049 (-572)) (-647 (-572)) (-622 (-544)) (-622 (-901 (-572))) (-895 (-572)) (-144) (-1033) (-148) (-1163) (-10 -8 (-15 -2270 ((-112) $)) (-15 -3601 ((-112) $)) (-6 -4453) (-15 -1556 ($)) (-15 -2040 ($ $)) (-15 -4235 ($ $ $)) (-15 -4170 ((-112) $ $)) (-15 -4023 ($ $ $)) (-15 -2746 ($ $ $)) (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $)) (-15 -2688 ($)) (-15 -2688 ($ $)) (-15 -3679 ($ $)) (-15 -3651 ($ $)) (-15 -3935 ($ $)) (-15 -4135 ($ $)) (-15 -1732 ($ $ $ $)) (-15 -1742 ($ $ $ $)) (-15 -2945 ($ $ $ $)) (-15 -3677 ($ $ $ $)) (-15 -2197 ($ $ $)) (-6 -4452)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-144) . T) ((-174) . T) ((-622 (-227)) . T) ((-622 (-386)) . T) ((-622 (-544)) . T) ((-622 (-572)) . T) ((-622 (-901 (-572))) . T) ((-237) . T) ((-296) . T) ((-313) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-647 (-572)) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-828) . T) ((-856) . T) ((-858) . T) ((-895 (-572)) . T) ((-929) . T) ((-1033) . T) ((-1049 (-572)) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) . T) ((-1233) . T))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-554) (-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))) (T -554))
+((-1586 (*1 *1) (-5 *1 (-554))))
+(-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-553) (-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))) (T -553))
-((-2333 (*1 *1) (-5 *1 (-553))))
-(-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-555) (-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))) (T -555))
+((-1586 (*1 *1) (-5 *1 (-555))))
+(-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-554) (-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))) (T -554))
-((-2333 (*1 *1) (-5 *1 (-554))))
-(-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-556) (-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))) (T -556))
+((-1586 (*1 *1) (-5 *1 (-556))))
+(-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-555) (-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))) (T -555))
-((-2333 (*1 *1) (-5 *1 (-555))))
-(-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-557) (-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))) (T -557))
+((-1586 (*1 *1) (-5 *1 (-557))))
+(-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2204 (((-1282) $ |#1| |#1|) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#2| $ |#1| |#2|) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) NIL)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) NIL)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) NIL)) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 ((|#1| $) NIL (|has| |#1| (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 ((|#1| $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1988 (((-650 |#1|) $) NIL)) (-2093 (((-112) |#1| $) NIL)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-4075 (((-650 |#1|) $) NIL)) (-4276 (((-112) |#1| $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#2| $) NIL (|has| |#1| (-856)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-556 |#1| |#2| |#3|) (-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452))) (-1109) (-1109) (-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452)))) (T -556))
-NIL
-(-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452)))
-((-2693 (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-1 (-1182 |#2|) (-1182 |#2|))) 50)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -2693 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-1 (-1182 |#2|) (-1182 |#2|))))) (-562) (-13 (-27) (-436 |#1|))) (T -557))
-((-2693 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-618 *3)) (-5 *5 (-1 (-1182 *3) (-1182 *3))) (-4 *3 (-13 (-27) (-436 *6))) (-4 *6 (-562)) (-5 *2 (-592 *3)) (-5 *1 (-557 *6 *3)))))
-(-10 -7 (-15 -2693 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-1 (-1182 |#2|) (-1182 |#2|)))))
-((-3345 (((-592 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2902 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-3645 (((-592 |#5|) |#5| (-1 |#3| |#3|)) 220)))
-(((-558 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3645 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3345 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2902 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-562) (-1047 (-570))) (-13 (-27) (-436 |#1|)) (-1253 |#2|) (-1253 (-413 |#3|)) (-347 |#2| |#3| |#4|)) (T -558))
-((-2902 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-27) (-436 *4))) (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *7 (-1253 (-413 *6))) (-5 *1 (-558 *4 *5 *6 *7 *2)) (-4 *2 (-347 *5 *6 *7)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1253 *6)) (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) (-4 *8 (-1253 (-413 *7))) (-5 *2 (-592 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8)))) (-3645 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1253 *6)) (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) (-4 *8 (-1253 (-413 *7))) (-5 *2 (-592 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8)))))
-(-10 -7 (-15 -3645 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3345 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2902 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2454 (((-112) (-570) (-570)) 12)) (-4319 (((-570) (-570)) 7)) (-3977 (((-570) (-570) (-570)) 10)))
-(((-559) (-10 -7 (-15 -4319 ((-570) (-570))) (-15 -3977 ((-570) (-570) (-570))) (-15 -2454 ((-112) (-570) (-570))))) (T -559))
-((-2454 (*1 *2 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-559)))) (-3977 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559)))) (-4319 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559)))))
-(-10 -7 (-15 -4319 ((-570) (-570))) (-15 -3977 ((-570) (-570) (-570))) (-15 -2454 ((-112) (-570) (-570))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-2228 ((|#1| $) 67)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3900 (($ $) 97)) (-3770 (($ $) 80)) (-1548 ((|#1| $) 68)) (-3997 (((-3 $ "failed") $ $) 20)) (-2459 (($ $) 79)) (-3876 (($ $) 96)) (-3745 (($ $) 81)) (-1513 (($ $) 95)) (-3791 (($ $) 82)) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 75)) (-4387 (((-570) $) 76)) (-3957 (((-3 $ "failed") $) 37)) (-3590 (($ |#1| |#1|) 72)) (-2811 (((-112) $) 66)) (-1625 (($) 107)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 78)) (-2746 (((-112) $) 65)) (-1908 (($ $ $) 113)) (-1764 (($ $ $) 112)) (-3447 (($ $) 104)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-3364 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-413 (-570))) 70)) (-2091 ((|#1| $) 69)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-2651 (($ $) 105)) (-1523 (($ $) 94)) (-3801 (($ $) 83)) (-3913 (($ $) 93)) (-3781 (($ $) 84)) (-3887 (($ $) 92)) (-3758 (($ $) 85)) (-3631 (((-112) $ |#1|) 64)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-570)) 74)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1561 (($ $) 103)) (-3833 (($ $) 91)) (-2939 (((-112) $ $) 45)) (-1536 (($ $) 102)) (-3811 (($ $) 90)) (-1585 (($ $) 101)) (-3853 (($ $) 89)) (-2900 (($ $) 100)) (-3864 (($ $) 88)) (-1575 (($ $) 99)) (-3844 (($ $) 87)) (-1546 (($ $) 98)) (-3821 (($ $) 86)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3959 (((-112) $ $) 110)) (-3933 (((-112) $ $) 109)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 111)) (-3918 (((-112) $ $) 108)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ $) 106) (($ $ (-413 (-570))) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-560 |#1|) (-141) (-13 (-410) (-1212))) (T -560))
-((-3364 (*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))) (-3590 (*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))) (-3364 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1212))))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1212))) (-5 *2 (-112)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1212))) (-5 *2 (-112)))) (-3631 (*1 *2 *1 *3) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1212))) (-5 *2 (-112)))))
-(-13 (-458) (-856) (-1212) (-1011) (-1047 (-570)) (-10 -8 (-6 -3478) (-15 -3364 ($ |t#1| |t#1|)) (-15 -3590 ($ |t#1| |t#1|)) (-15 -3364 ($ |t#1|)) (-15 -3364 ($ (-413 (-570)))) (-15 -2091 (|t#1| $)) (-15 -1548 (|t#1| $)) (-15 -2228 (|t#1| $)) (-15 -2811 ((-112) $)) (-15 -2746 ((-112) $)) (-15 -3631 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-288) . T) ((-294) . T) ((-458) . T) ((-499) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-856) . T) ((-1011) . T) ((-1047 (-570)) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1212) . T) ((-1215) . T))
-((-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 9)) (-2046 (($ $) 11)) (-3426 (((-112) $) 20)) (-3957 (((-3 $ "failed") $) 16)) (-2939 (((-112) $ $) 22)))
-(((-561 |#1|) (-10 -8 (-15 -3426 ((-112) |#1|)) (-15 -2939 ((-112) |#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -1558 ((-2 (|:| -1347 |#1|) (|:| -4439 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|))) (-562)) (T -561))
-NIL
-(-10 -8 (-15 -3426 ((-112) |#1|)) (-15 -2939 ((-112) |#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -1558 ((-2 (|:| -1347 |#1|) (|:| -4439 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-562) (-141)) (T -562))
-((-2837 (*1 *1 *1 *1) (|partial| -4 *1 (-562))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1347 *1) (|:| -4439 *1) (|:| |associate| *1))) (-4 *1 (-562)))) (-2046 (*1 *1 *1) (-4 *1 (-562))) (-2939 (*1 *2 *1 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))))
-(-13 (-174) (-38 $) (-294) (-10 -8 (-15 -2837 ((-3 $ "failed") $ $)) (-15 -1558 ((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $)) (-15 -2046 ($ $)) (-15 -2939 ((-112) $ $)) (-15 -3426 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-3877 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1186) (-650 |#2|)) 38)) (-2784 (((-592 |#2|) |#2| (-1186)) 63)) (-2144 (((-3 |#2| "failed") |#2| (-1186)) 156)) (-2610 (((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) (-618 |#2|) (-650 (-618 |#2|))) 159)) (-3514 (((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) |#2|) 41)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -3514 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) |#2|)) (-15 -3877 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1186) (-650 |#2|))) (-15 -2144 ((-3 |#2| "failed") |#2| (-1186))) (-15 -2784 ((-592 |#2|) |#2| (-1186))) (-15 -2610 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) (-618 |#2|) (-650 (-618 |#2|))))) (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|))) (T -563))
-((-2610 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1186)) (-5 *6 (-650 (-618 *3))) (-5 *5 (-618 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *7))) (-4 *7 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3))) (-5 *1 (-563 *7 *3)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-2144 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))) (-3877 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *3)))) (-3514 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))))
-(-10 -7 (-15 -3514 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) |#2|)) (-15 -3877 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1186) (-650 |#2|))) (-15 -2144 ((-3 |#2| "failed") |#2| (-1186))) (-15 -2784 ((-592 |#2|) |#2| (-1186))) (-15 -2610 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) (-618 |#2|) (-650 (-618 |#2|)))))
-((-2929 (((-424 |#1|) |#1|) 19)) (-2340 (((-424 |#1|) |#1|) 34)) (-3434 (((-3 |#1| "failed") |#1|) 49)) (-4383 (((-424 |#1|) |#1|) 60)))
-(((-564 |#1|) (-10 -7 (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -4383 ((-424 |#1|) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|))) (-551)) (T -564))
-((-3434 (*1 *2 *2) (|partial| -12 (-5 *1 (-564 *2)) (-4 *2 (-551)))) (-4383 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))) (-2929 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))))
-(-10 -7 (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -4383 ((-424 |#1|) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|)))
-((-2865 (($) 9)) (-2611 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1988 (((-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2801 (($ (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3126 (($ (-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-3165 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2856 (((-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3847 (((-1282)) 11)))
-(((-565) (-10 -8 (-15 -2865 ($)) (-15 -3847 ((-1282))) (-15 -1988 ((-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3126 ($ (-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2801 ($ (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2611 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2856 ((-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3165 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -565))
-((-3165 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-565)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-565)))) (-2611 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-565)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-565)))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-565)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-565)))) (-3847 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-565)))) (-2865 (*1 *1) (-5 *1 (-565))))
-(-10 -8 (-15 -2865 ($)) (-15 -3847 ((-1282))) (-15 -1988 ((-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3126 ($ (-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2801 ($ (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2611 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2856 ((-650 (-2 (|:| -4144 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3165 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2744 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-3449 (((-1182 (-413 (-1182 |#2|))) |#2| (-618 |#2|) (-618 |#2|) (-1182 |#2|)) 35)) (-4293 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) |#2| (-1182 |#2|)) 115)) (-3372 (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 85) (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|)) 55)) (-2380 (((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| (-618 |#2|) |#2| (-413 (-1182 |#2|))) 92) (((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| |#2| (-1182 |#2|)) 114)) (-4296 (((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) |#2| (-1182 |#2|)) 116)) (-3415 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 133 (|has| |#3| (-662 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|)) 132 (|has| |#3| (-662 |#2|)))) (-2417 ((|#2| (-1182 (-413 (-1182 |#2|))) (-618 |#2|) |#2|) 53)) (-2283 (((-1182 (-413 (-1182 |#2|))) (-1182 |#2|) (-618 |#2|)) 34)))
-(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -3372 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -3372 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -2380 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| |#2| (-1182 |#2|))) (-15 -2380 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -4293 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) |#2| (-1182 |#2|))) (-15 -4293 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -4296 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) |#2| (-1182 |#2|))) (-15 -4296 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -3449 ((-1182 (-413 (-1182 |#2|))) |#2| (-618 |#2|) (-618 |#2|) (-1182 |#2|))) (-15 -2417 (|#2| (-1182 (-413 (-1182 |#2|))) (-618 |#2|) |#2|)) (-15 -2283 ((-1182 (-413 (-1182 |#2|))) (-1182 |#2|) (-618 |#2|))) (IF (|has| |#3| (-662 |#2|)) (PROGN (-15 -3415 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -3415 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))))) |%noBranch|)) (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))) (-13 (-436 |#1|) (-27) (-1212)) (-1109)) (T -566))
-((-3415 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-618 *4)) (-5 *6 (-413 (-1182 *4))) (-4 *4 (-13 (-436 *7) (-27) (-1212))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))) (-3415 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-618 *4)) (-5 *6 (-1182 *4)) (-4 *4 (-13 (-436 *7) (-27) (-1212))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *6)) (-4 *6 (-13 (-436 *5) (-27) (-1212))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-1182 (-413 (-1182 *6)))) (-5 *1 (-566 *5 *6 *7)) (-5 *3 (-1182 *6)) (-4 *7 (-1109)))) (-2417 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1182 (-413 (-1182 *2)))) (-5 *4 (-618 *2)) (-4 *2 (-13 (-436 *5) (-27) (-1212))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1109)))) (-3449 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-1182 (-413 (-1182 *3)))) (-5 *1 (-566 *6 *3 *7)) (-5 *5 (-1182 *3)) (-4 *7 (-1109)))) (-4296 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-5 *5 (-413 (-1182 *2))) (-4 *2 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109)))) (-4296 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-5 *5 (-1182 *2)) (-4 *2 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109)))) (-4293 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-5 *6 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *7) (-27) (-1212))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109)))) (-4293 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-5 *6 (-1182 *3)) (-4 *3 (-13 (-436 *7) (-27) (-1212))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109)))) (-2380 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) (-2380 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) (-3372 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) (-3372 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))))
-(-10 -7 (-15 -3372 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -3372 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -2380 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| |#2| (-1182 |#2|))) (-15 -2380 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -4293 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) |#2| (-1182 |#2|))) (-15 -4293 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -4296 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) |#2| (-1182 |#2|))) (-15 -4296 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -3449 ((-1182 (-413 (-1182 |#2|))) |#2| (-618 |#2|) (-618 |#2|) (-1182 |#2|))) (-15 -2417 (|#2| (-1182 (-413 (-1182 |#2|))) (-618 |#2|) |#2|)) (-15 -2283 ((-1182 (-413 (-1182 |#2|))) (-1182 |#2|) (-618 |#2|))) (IF (|has| |#3| (-662 |#2|)) (PROGN (-15 -3415 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -3415 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))))) |%noBranch|))
-((-3369 (((-570) (-570) (-777)) 85)) (-2727 (((-570) (-570)) 83)) (-4127 (((-570) (-570)) 81)) (-2552 (((-570) (-570)) 87)) (-1468 (((-570) (-570) (-570)) 65)) (-2265 (((-570) (-570) (-570)) 62)) (-1829 (((-413 (-570)) (-570)) 30)) (-1871 (((-570) (-570)) 34)) (-2014 (((-570) (-570)) 74)) (-4260 (((-570) (-570)) 46)) (-2522 (((-650 (-570)) (-570)) 80)) (-2976 (((-570) (-570) (-570) (-570) (-570)) 58)) (-1544 (((-413 (-570)) (-570)) 55)))
-(((-567) (-10 -7 (-15 -1544 ((-413 (-570)) (-570))) (-15 -2976 ((-570) (-570) (-570) (-570) (-570))) (-15 -2522 ((-650 (-570)) (-570))) (-15 -4260 ((-570) (-570))) (-15 -2014 ((-570) (-570))) (-15 -1871 ((-570) (-570))) (-15 -1829 ((-413 (-570)) (-570))) (-15 -2265 ((-570) (-570) (-570))) (-15 -1468 ((-570) (-570) (-570))) (-15 -2552 ((-570) (-570))) (-15 -4127 ((-570) (-570))) (-15 -2727 ((-570) (-570))) (-15 -3369 ((-570) (-570) (-777))))) (T -567))
-((-3369 (*1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-777)) (-5 *1 (-567)))) (-2727 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-2552 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-1468 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-2265 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-1829 (*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))) (-2976 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-1544 (*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))))
-(-10 -7 (-15 -1544 ((-413 (-570)) (-570))) (-15 -2976 ((-570) (-570) (-570) (-570) (-570))) (-15 -2522 ((-650 (-570)) (-570))) (-15 -4260 ((-570) (-570))) (-15 -2014 ((-570) (-570))) (-15 -1871 ((-570) (-570))) (-15 -1829 ((-413 (-570)) (-570))) (-15 -2265 ((-570) (-570) (-570))) (-15 -1468 ((-570) (-570) (-570))) (-15 -2552 ((-570) (-570))) (-15 -4127 ((-570) (-570))) (-15 -2727 ((-570) (-570))) (-15 -3369 ((-570) (-570) (-777))))
-((-3909 (((-2 (|:| |answer| |#4|) (|:| -1550 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-568 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3909 ((-2 (|:| |answer| |#4|) (|:| -1550 |#4|)) |#4| (-1 |#2| |#2|)))) (-368) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -568))
-((-3909 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368)) (-4 *7 (-1253 (-413 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1550 *3))) (-5 *1 (-568 *5 *6 *7 *3)) (-4 *3 (-347 *5 *6 *7)))))
-(-10 -7 (-15 -3909 ((-2 (|:| |answer| |#4|) (|:| -1550 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3909 (((-2 (|:| |answer| (-413 |#2|)) (|:| -1550 (-413 |#2|)) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|)) 18)))
-(((-569 |#1| |#2|) (-10 -7 (-15 -3909 ((-2 (|:| |answer| (-413 |#2|)) (|:| -1550 (-413 |#2|)) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|)))) (-368) (-1253 |#1|)) (T -569))
-((-3909 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |answer| (-413 *6)) (|:| -1550 (-413 *6)) (|:| |specpart| (-413 *6)) (|:| |polypart| *6))) (-5 *1 (-569 *5 *6)) (-5 *3 (-413 *6)))))
-(-10 -7 (-15 -3909 ((-2 (|:| |answer| (-413 |#2|)) (|:| -1550 (-413 |#2|)) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 30)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 96)) (-2046 (($ $) 97)) (-3426 (((-112) $) NIL)) (-2198 (($ $ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-4396 (($ $ $ $) 52)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL)) (-3609 (($ $ $) 91)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL)) (-4387 (((-570) $) NIL)) (-2788 (($ $ $) 54)) (-3054 (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 77) (((-695 (-570)) (-695 $)) 73)) (-3957 (((-3 $ "failed") $) 93)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-1577 (((-413 (-570)) $) NIL)) (-2066 (($) 79) (($ $) 80)) (-2799 (($ $ $) 90)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-3879 (($ $ $ $) NIL)) (-2711 (($ $ $) 70)) (-2811 (((-112) $) NIL)) (-2614 (($ $ $) NIL)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-2005 (((-112) $) 34)) (-1973 (((-112) $) 85)) (-3525 (((-3 $ "failed") $) NIL)) (-2746 (((-112) $) 43)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-4258 (($ $ $ $) 55)) (-1908 (($ $ $) 87)) (-1764 (($ $ $) 86)) (-3520 (($ $) NIL)) (-1831 (($ $) 49)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) 69)) (-1659 (($ $ $) NIL)) (-3458 (($) NIL T CONST)) (-3032 (($ $) 38)) (-3891 (((-1129) $) 42)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 128)) (-3903 (($ $ $) 94) (($ (-650 $)) NIL)) (-3459 (($ $) NIL)) (-2340 (((-424 $) $) 114)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 112)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2160 (((-112) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 89)) (-2375 (($ $ (-777)) NIL) (($ $) NIL)) (-3337 (($ $) 40)) (-3064 (($ $) 36)) (-2601 (((-570) $) 48) (((-542) $) 64) (((-899 (-570)) $) NIL) (((-384) $) 58) (((-227) $) 61) (((-1168) $) 66)) (-2869 (((-868) $) 46) (($ (-570)) 47) (($ $) NIL) (($ (-570)) 47)) (-2294 (((-777)) NIL T CONST)) (-1790 (((-112) $ $) NIL)) (-1500 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-1540 (($) 35)) (-2939 (((-112) $ $) NIL)) (-2677 (($ $ $ $) 51)) (-2521 (($ $) 78)) (-1981 (($) 6 T CONST)) (-1998 (($) 31 T CONST)) (-4245 (((-1168) $) 26) (((-1168) $ (-112)) 27) (((-1282) (-828) $) 28) (((-1282) (-828) $ (-112)) 29)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3959 (((-112) $ $) 50)) (-3933 (((-112) $ $) 81)) (-3892 (((-112) $ $) 33)) (-3945 (((-112) $ $) 82)) (-3918 (((-112) $ $) 10)) (-4003 (($ $) 16) (($ $ $) 39)) (-3992 (($ $ $) 37)) (** (($ $ (-928)) NIL) (($ $ (-777)) 84)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 83) (($ $ $) 53)))
-(((-570) (-13 (-551) (-620 (-1168)) (-834) (-10 -7 (-6 -4439) (-6 -4444) (-6 -4440) (-6 -4434)))) (T -570))
-NIL
-(-13 (-551) (-620 (-1168)) (-834) (-10 -7 (-6 -4439) (-6 -4444) (-6 -4440) (-6 -4434)))
-((-1319 (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775) (-1072)) 116) (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775)) 118)) (-1363 (((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1186)) 195) (((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1168)) 194) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384) (-1072)) 199) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384)) 200) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384)) 201) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384))))) 202) (((-1044) (-320 (-384)) (-1103 (-849 (-384)))) 190) (((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384)) 189) (((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384)) 185) (((-1044) (-775)) 177) (((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384) (-1072)) 184)))
-(((-571) (-10 -7 (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384) (-1072))) (-15 -1363 ((-1044) (-775))) (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384) (-1072))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775) (-1072))) (-15 -1363 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1168))) (-15 -1363 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1186))))) (T -571))
-((-1363 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384)))) (-5 *5 (-1186)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384)))) (-5 *5 (-1168)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) (-5 *1 (-571)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1363 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571)))))
-(-10 -7 (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384) (-1072))) (-15 -1363 ((-1044) (-775))) (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-1103 (-849 (-384))))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384))) (-15 -1363 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384) (-1072))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775) (-1072))) (-15 -1363 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1168))) (-15 -1363 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1186))))
-((-1907 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|)) 196)) (-1891 (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|)) 99)) (-2070 (((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2|) 192)) (-3261 (((-3 |#2| "failed") |#2| |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186))) 201)) (-1527 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-1186)) 210 (|has| |#3| (-662 |#2|)))))
-(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -1891 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|))) (-15 -2070 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2|)) (-15 -1907 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|))) (-15 -3261 ((-3 |#2| "failed") |#2| |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)))) (IF (|has| |#3| (-662 |#2|)) (-15 -1527 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-1186))) |%noBranch|)) (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))) (-13 (-436 |#1|) (-27) (-1212)) (-1109)) (T -572))
-((-1527 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-618 *4)) (-5 *6 (-1186)) (-4 *4 (-13 (-436 *7) (-27) (-1212))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))) (-3261 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-4 *2 (-13 (-436 *5) (-27) (-1212))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1109)))) (-1907 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1212))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1109)))) (-2070 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *5) (-27) (-1212))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109)))) (-1891 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *5) (-27) (-1212))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109)))))
-(-10 -7 (-15 -1891 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|))) (-15 -2070 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2|)) (-15 -1907 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|))) (-15 -3261 ((-3 |#2| "failed") |#2| |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)))) (IF (|has| |#3| (-662 |#2|)) (-15 -1527 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2681 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-1186))) |%noBranch|))
-((-1929 (((-2 (|:| -2791 |#2|) (|:| |nconst| |#2|)) |#2| (-1186)) 64)) (-3328 (((-3 |#2| "failed") |#2| (-1186) (-849 |#2|) (-849 |#2|)) 175 (-12 (|has| |#2| (-1148)) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-893 (-570))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)) 154 (-12 (|has| |#2| (-635)) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-893 (-570)))))) (-2132 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)) 156 (-12 (|has| |#2| (-635)) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-893 (-570)))))))
-(((-573 |#1| |#2|) (-10 -7 (-15 -1929 ((-2 (|:| -2791 |#2|) (|:| |nconst| |#2|)) |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (PROGN (IF (|has| |#2| (-635)) (PROGN (-15 -2132 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186))) (-15 -3328 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) (IF (|has| |#2| (-1148)) (-15 -3328 ((-3 |#2| "failed") |#2| (-1186) (-849 |#2|) (-849 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1047 (-570)) (-458) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|))) (T -573))
-((-3328 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1186)) (-5 *4 (-849 *2)) (-4 *2 (-1148)) (-4 *2 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570))) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *1 (-573 *5 *2)))) (-3328 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570))) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-573 *5 *3)) (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-2132 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570))) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-573 *5 *3)) (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |nconst| *3))) (-5 *1 (-573 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))))
-(-10 -7 (-15 -1929 ((-2 (|:| -2791 |#2|) (|:| |nconst| |#2|)) |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (PROGN (IF (|has| |#2| (-635)) (PROGN (-15 -2132 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186))) (-15 -3328 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) (IF (|has| |#2| (-1148)) (-15 -3328 ((-3 |#2| "failed") |#2| (-1186) (-849 |#2|) (-849 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3574 (((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-650 (-413 |#2|))) 41)) (-1363 (((-592 (-413 |#2|)) (-413 |#2|)) 28)) (-3089 (((-3 (-413 |#2|) "failed") (-413 |#2|)) 17)) (-4376 (((-3 (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-413 |#2|)) 48)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -1363 ((-592 (-413 |#2|)) (-413 |#2|))) (-15 -3089 ((-3 (-413 |#2|) "failed") (-413 |#2|))) (-15 -4376 ((-3 (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-413 |#2|))) (-15 -3574 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-650 (-413 |#2|))))) (-13 (-368) (-148) (-1047 (-570))) (-1253 |#1|)) (T -574))
-((-3574 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-650 (-413 *6))) (-5 *3 (-413 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *5 *6)))) (-4376 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| -3730 (-413 *5)) (|:| |coeff| (-413 *5)))) (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5)))) (-3089 (*1 *2 *2) (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-13 (-368) (-148) (-1047 (-570)))) (-5 *1 (-574 *3 *4)))) (-1363 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1253 *4)) (-5 *2 (-592 (-413 *5))) (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5)))))
-(-10 -7 (-15 -1363 ((-592 (-413 |#2|)) (-413 |#2|))) (-15 -3089 ((-3 (-413 |#2|) "failed") (-413 |#2|))) (-15 -4376 ((-3 (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-413 |#2|))) (-15 -3574 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-650 (-413 |#2|)))))
-((-2843 (((-3 (-570) "failed") |#1|) 14)) (-3081 (((-112) |#1|) 13)) (-3823 (((-570) |#1|) 9)))
-(((-575 |#1|) (-10 -7 (-15 -3823 ((-570) |#1|)) (-15 -3081 ((-112) |#1|)) (-15 -2843 ((-3 (-570) "failed") |#1|))) (-1047 (-570))) (T -575))
-((-2843 (*1 *2 *3) (|partial| -12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2)))) (-3081 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1047 (-570))))) (-3823 (*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2)))))
-(-10 -7 (-15 -3823 ((-570) |#1|)) (-15 -3081 ((-112) |#1|)) (-15 -2843 ((-3 (-570) "failed") |#1|)))
-((-4141 (((-3 (-2 (|:| |mainpart| (-413 (-959 |#1|))) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 (-959 |#1|))) (|:| |logand| (-413 (-959 |#1|))))))) "failed") (-413 (-959 |#1|)) (-1186) (-650 (-413 (-959 |#1|)))) 48)) (-2817 (((-592 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-1186)) 28)) (-2338 (((-3 (-413 (-959 |#1|)) "failed") (-413 (-959 |#1|)) (-1186)) 23)) (-3439 (((-3 (-2 (|:| -3730 (-413 (-959 |#1|))) (|:| |coeff| (-413 (-959 |#1|)))) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|))) 35)))
-(((-576 |#1|) (-10 -7 (-15 -2817 ((-592 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -2338 ((-3 (-413 (-959 |#1|)) "failed") (-413 (-959 |#1|)) (-1186))) (-15 -4141 ((-3 (-2 (|:| |mainpart| (-413 (-959 |#1|))) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 (-959 |#1|))) (|:| |logand| (-413 (-959 |#1|))))))) "failed") (-413 (-959 |#1|)) (-1186) (-650 (-413 (-959 |#1|))))) (-15 -3439 ((-3 (-2 (|:| -3730 (-413 (-959 |#1|))) (|:| |coeff| (-413 (-959 |#1|)))) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|))))) (-13 (-562) (-1047 (-570)) (-148))) (T -576))
-((-3439 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-148))) (-5 *2 (-2 (|:| -3730 (-413 (-959 *5))) (|:| |coeff| (-413 (-959 *5))))) (-5 *1 (-576 *5)) (-5 *3 (-413 (-959 *5))))) (-4141 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 (-413 (-959 *6)))) (-5 *3 (-413 (-959 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6)))) (-2338 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-148))) (-5 *1 (-576 *4)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-148))) (-5 *2 (-592 (-413 (-959 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-413 (-959 *5))))))
-(-10 -7 (-15 -2817 ((-592 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -2338 ((-3 (-413 (-959 |#1|)) "failed") (-413 (-959 |#1|)) (-1186))) (-15 -4141 ((-3 (-2 (|:| |mainpart| (-413 (-959 |#1|))) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 (-959 |#1|))) (|:| |logand| (-413 (-959 |#1|))))))) "failed") (-413 (-959 |#1|)) (-1186) (-650 (-413 (-959 |#1|))))) (-15 -3439 ((-3 (-2 (|:| -3730 (-413 (-959 |#1|))) (|:| |coeff| (-413 (-959 |#1|)))) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)))))
-((-2847 (((-112) $ $) 75)) (-2564 (((-112) $) 48)) (-2228 ((|#1| $) 39)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) 79)) (-3900 (($ $) 139)) (-3770 (($ $) 118)) (-1548 ((|#1| $) 37)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $) NIL)) (-3876 (($ $) 141)) (-3745 (($ $) 114)) (-1513 (($ $) 143)) (-3791 (($ $) 122)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) 93)) (-4387 (((-570) $) 95)) (-3957 (((-3 $ "failed") $) 78)) (-3590 (($ |#1| |#1|) 35)) (-2811 (((-112) $) 44)) (-1625 (($) 104)) (-2005 (((-112) $) 55)) (-3035 (($ $ (-570)) NIL)) (-2746 (((-112) $) 45)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3447 (($ $) 106)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-3364 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-413 (-570))) 92)) (-2091 ((|#1| $) 36)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) 81) (($ (-650 $)) NIL)) (-2837 (((-3 $ "failed") $ $) 80)) (-2651 (($ $) 108)) (-1523 (($ $) 147)) (-3801 (($ $) 120)) (-3913 (($ $) 149)) (-3781 (($ $) 124)) (-3887 (($ $) 145)) (-3758 (($ $) 116)) (-3631 (((-112) $ |#1|) 42)) (-2869 (((-868) $) 100) (($ (-570)) 83) (($ $) NIL) (($ (-570)) 83)) (-2294 (((-777)) 102 T CONST)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) 161)) (-3833 (($ $) 130)) (-2939 (((-112) $ $) NIL)) (-1536 (($ $) 159)) (-3811 (($ $) 126)) (-1585 (($ $) 157)) (-3853 (($ $) 137)) (-2900 (($ $) 155)) (-3864 (($ $) 135)) (-1575 (($ $) 153)) (-3844 (($ $) 132)) (-1546 (($ $) 151)) (-3821 (($ $) 128)) (-1981 (($) 30 T CONST)) (-1998 (($) 10 T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 49)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 47)) (-4003 (($ $) 53) (($ $ $) 54)) (-3992 (($ $ $) 52)) (** (($ $ (-928)) 71) (($ $ (-777)) NIL) (($ $ $) 110) (($ $ (-413 (-570))) 163)) (* (($ (-928) $) 66) (($ (-777) $) NIL) (($ (-570) $) 65) (($ $ $) 61)))
-(((-577 |#1|) (-560 |#1|) (-13 (-410) (-1212))) (T -577))
-NIL
-(-560 |#1|)
-((-3208 (((-3 (-650 (-1182 (-570))) "failed") (-650 (-1182 (-570))) (-1182 (-570))) 27)))
-(((-578) (-10 -7 (-15 -3208 ((-3 (-650 (-1182 (-570))) "failed") (-650 (-1182 (-570))) (-1182 (-570)))))) (T -578))
-((-3208 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 (-570)))) (-5 *3 (-1182 (-570))) (-5 *1 (-578)))))
-(-10 -7 (-15 -3208 ((-3 (-650 (-1182 (-570))) "failed") (-650 (-1182 (-570))) (-1182 (-570)))))
-((-2079 (((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-1186)) 19)) (-3472 (((-650 (-618 |#2|)) (-650 |#2|) (-1186)) 23)) (-1637 (((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-650 (-618 |#2|))) 11)) (-3378 ((|#2| |#2| (-1186)) 59 (|has| |#1| (-562)))) (-3410 ((|#2| |#2| (-1186)) 87 (-12 (|has| |#2| (-288)) (|has| |#1| (-458))))) (-3377 (((-618 |#2|) (-618 |#2|) (-650 (-618 |#2|)) (-1186)) 25)) (-3124 (((-618 |#2|) (-650 (-618 |#2|))) 24)) (-2393 (((-592 |#2|) |#2| (-1186) (-1 (-592 |#2|) |#2| (-1186)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186))) 115 (-12 (|has| |#2| (-288)) (|has| |#2| (-635)) (|has| |#2| (-1047 (-1186))) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-458)) (|has| |#1| (-893 (-570)))))))
-(((-579 |#1| |#2|) (-10 -7 (-15 -2079 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-1186))) (-15 -3124 ((-618 |#2|) (-650 (-618 |#2|)))) (-15 -3377 ((-618 |#2|) (-618 |#2|) (-650 (-618 |#2|)) (-1186))) (-15 -1637 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-650 (-618 |#2|)))) (-15 -3472 ((-650 (-618 |#2|)) (-650 |#2|) (-1186))) (IF (|has| |#1| (-562)) (-15 -3378 (|#2| |#2| (-1186))) |%noBranch|) (IF (|has| |#1| (-458)) (IF (|has| |#2| (-288)) (PROGN (-15 -3410 (|#2| |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (IF (|has| |#2| (-635)) (IF (|has| |#2| (-1047 (-1186))) (-15 -2393 ((-592 |#2|) |#2| (-1186) (-1 (-592 |#2|) |#2| (-1186)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1109) (-436 |#1|)) (T -579))
-((-2393 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-592 *3) *3 (-1186))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1186))) (-4 *3 (-288)) (-4 *3 (-635)) (-4 *3 (-1047 *4)) (-4 *3 (-436 *7)) (-5 *4 (-1186)) (-4 *7 (-620 (-899 (-570)))) (-4 *7 (-458)) (-4 *7 (-893 (-570))) (-4 *7 (-1109)) (-5 *2 (-592 *3)) (-5 *1 (-579 *7 *3)))) (-3410 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-458)) (-4 *4 (-1109)) (-5 *1 (-579 *4 *2)) (-4 *2 (-288)) (-4 *2 (-436 *4)))) (-3378 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-4 *4 (-1109)) (-5 *1 (-579 *4 *2)) (-4 *2 (-436 *4)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-1186)) (-4 *6 (-436 *5)) (-4 *5 (-1109)) (-5 *2 (-650 (-618 *6))) (-5 *1 (-579 *5 *6)))) (-1637 (*1 *2 *2 *2) (-12 (-5 *2 (-650 (-618 *4))) (-4 *4 (-436 *3)) (-4 *3 (-1109)) (-5 *1 (-579 *3 *4)))) (-3377 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-650 (-618 *6))) (-5 *4 (-1186)) (-5 *2 (-618 *6)) (-4 *6 (-436 *5)) (-4 *5 (-1109)) (-5 *1 (-579 *5 *6)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-650 (-618 *5))) (-4 *4 (-1109)) (-5 *2 (-618 *5)) (-5 *1 (-579 *4 *5)) (-4 *5 (-436 *4)))) (-2079 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-618 *5))) (-5 *3 (-1186)) (-4 *5 (-436 *4)) (-4 *4 (-1109)) (-5 *1 (-579 *4 *5)))))
-(-10 -7 (-15 -2079 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-1186))) (-15 -3124 ((-618 |#2|) (-650 (-618 |#2|)))) (-15 -3377 ((-618 |#2|) (-618 |#2|) (-650 (-618 |#2|)) (-1186))) (-15 -1637 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-650 (-618 |#2|)))) (-15 -3472 ((-650 (-618 |#2|)) (-650 |#2|) (-1186))) (IF (|has| |#1| (-562)) (-15 -3378 (|#2| |#2| (-1186))) |%noBranch|) (IF (|has| |#1| (-458)) (IF (|has| |#2| (-288)) (PROGN (-15 -3410 (|#2| |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (IF (|has| |#2| (-635)) (IF (|has| |#2| (-1047 (-1186))) (-15 -2393 ((-592 |#2|) |#2| (-1186) (-1 (-592 |#2|) |#2| (-1186)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2545 (((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-650 |#1|) "failed") (-570) |#1| |#1|)) 199)) (-2009 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-650 (-413 |#2|))) 174)) (-2878 (((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-650 (-413 |#2|))) 171)) (-1438 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2499 (((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3435 (((-3 (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-413 |#2|)) 202)) (-2045 (((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-413 |#2|)) 205)) (-4154 (((-2 (|:| |ir| (-592 (-413 |#2|))) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|)) 88)) (-2579 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-1765 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-650 (-413 |#2|))) 178)) (-2192 (((-3 (-629 |#1| |#2|) "failed") (-629 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|)) 166)) (-4199 (((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|)) 189)) (-4192 (((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-413 |#2|)) 210)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -2499 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4199 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -2545 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-650 |#1|) "failed") (-570) |#1| |#1|))) (-15 -2045 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-413 |#2|))) (-15 -4192 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-413 |#2|))) (-15 -2009 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-650 (-413 |#2|)))) (-15 -1765 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-650 (-413 |#2|)))) (-15 -3435 ((-3 (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-413 |#2|))) (-15 -2878 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-650 (-413 |#2|)))) (-15 -1438 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2192 ((-3 (-629 |#1| |#2|) "failed") (-629 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -4154 ((-2 (|:| |ir| (-592 (-413 |#2|))) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|))) (-15 -2579 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-368) (-1253 |#1|)) (T -580))
-((-2579 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-580 *5 *3)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |ir| (-592 (-413 *6))) (|:| |specpart| (-413 *6)) (|:| |polypart| *6))) (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6)))) (-2192 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2420 *4) (|:| |sol?| (-112))) (-570) *4)) (-4 *4 (-368)) (-4 *5 (-1253 *4)) (-5 *1 (-580 *4 *5)))) (-1438 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3730 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-368)) (-5 *1 (-580 *4 *2)) (-4 *2 (-1253 *4)))) (-2878 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-650 (-413 *7))) (-4 *7 (-1253 *6)) (-5 *3 (-413 *7)) (-4 *6 (-368)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6 *7)))) (-3435 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -3730 (-413 *6)) (|:| |coeff| (-413 *6)))) (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6)))) (-1765 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2420 *7) (|:| |sol?| (-112))) (-570) *7)) (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1253 *7)) (-5 *3 (-413 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-580 *7 *8)))) (-2009 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3730 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1253 *7)) (-5 *3 (-413 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-580 *7 *8)))) (-4192 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2420 *6) (|:| |sol?| (-112))) (-570) *6)) (-4 *6 (-368)) (-4 *7 (-1253 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6)) (-2 (|:| -3730 (-413 *7)) (|:| |coeff| (-413 *7))) "failed")) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-2045 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3730 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-368)) (-4 *7 (-1253 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6)) (-2 (|:| -3730 (-413 *7)) (|:| |coeff| (-413 *7))) "failed")) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-2545 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-650 *6) "failed") (-570) *6 *6)) (-4 *6 (-368)) (-4 *7 (-1253 *6)) (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-4199 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2420 *6) (|:| |sol?| (-112))) (-570) *6)) (-4 *6 (-368)) (-4 *7 (-1253 *6)) (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-2499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3730 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-368)) (-4 *7 (-1253 *6)) (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))))
-(-10 -7 (-15 -2499 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4199 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -2545 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-650 |#1|) "failed") (-570) |#1| |#1|))) (-15 -2045 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-413 |#2|))) (-15 -4192 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-413 |#2|))) (-15 -2009 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-650 (-413 |#2|)))) (-15 -1765 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-650 (-413 |#2|)))) (-15 -3435 ((-3 (-2 (|:| -3730 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-413 |#2|))) (-15 -2878 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-650 (-413 |#2|)))) (-15 -1438 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2192 ((-3 (-629 |#1| |#2|) "failed") (-629 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2420 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -4154 ((-2 (|:| |ir| (-592 (-413 |#2|))) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|))) (-15 -2579 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-2496 (((-3 |#2| "failed") |#2| (-1186) (-1186)) 10)))
-(((-581 |#1| |#2|) (-10 -7 (-15 -2496 ((-3 |#2| "failed") |#2| (-1186) (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-966) (-1148) (-29 |#1|))) (T -581))
-((-2496 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-581 *4 *2)) (-4 *2 (-13 (-1212) (-966) (-1148) (-29 *4))))))
-(-10 -7 (-15 -2496 ((-3 |#2| "failed") |#2| (-1186) (-1186))))
-((-2540 (((-697 (-1235)) $ (-1235)) 26)) (-3155 (((-697 (-555)) $ (-555)) 25)) (-3166 (((-777) $ (-129)) 27)) (-2085 (((-697 (-130)) $ (-130)) 24)) (-4327 (((-697 (-1235)) $) 12)) (-3253 (((-697 (-1233)) $) 8)) (-2986 (((-697 (-1232)) $) 10)) (-2062 (((-697 (-555)) $) 13)) (-4331 (((-697 (-553)) $) 9)) (-1839 (((-697 (-552)) $) 11)) (-1441 (((-777) $ (-129)) 7)) (-1326 (((-697 (-130)) $) 14)) (-1740 (($ $) 6)))
-(((-582) (-141)) (T -582))
-NIL
-(-13 (-533) (-866))
-(((-175) . T) ((-533) . T) ((-866) . T))
-((-2540 (((-697 (-1235)) $ (-1235)) NIL)) (-3155 (((-697 (-555)) $ (-555)) NIL)) (-3166 (((-777) $ (-129)) NIL)) (-2085 (((-697 (-130)) $ (-130)) NIL)) (-4327 (((-697 (-1235)) $) NIL)) (-3253 (((-697 (-1233)) $) NIL)) (-2986 (((-697 (-1232)) $) NIL)) (-2062 (((-697 (-555)) $) NIL)) (-4331 (((-697 (-553)) $) NIL)) (-1839 (((-697 (-552)) $) NIL)) (-1441 (((-777) $ (-129)) NIL)) (-1326 (((-697 (-130)) $) NIL)) (-1519 (((-112) $) NIL)) (-1549 (($ (-394)) 14) (($ (-1168)) 16)) (-2869 (((-868) $) NIL)) (-1740 (($ $) NIL)))
-(((-583) (-13 (-582) (-619 (-868)) (-10 -8 (-15 -1549 ($ (-394))) (-15 -1549 ($ (-1168))) (-15 -1519 ((-112) $))))) (T -583))
-((-1549 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-583)))) (-1549 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-583)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583)))))
-(-13 (-582) (-619 (-868)) (-10 -8 (-15 -1549 ($ (-394))) (-15 -1549 ($ (-1168))) (-15 -1519 ((-112) $))))
-((-2847 (((-112) $ $) NIL)) (-3706 (($) 7 T CONST)) (-3240 (((-1168) $) NIL)) (-2534 (($) 6 T CONST)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 15)) (-4413 (($) 9 T CONST)) (-1604 (($) 8 T CONST)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 11)))
-(((-584) (-13 (-1109) (-10 -8 (-15 -2534 ($) -3722) (-15 -3706 ($) -3722) (-15 -1604 ($) -3722) (-15 -4413 ($) -3722)))) (T -584))
-((-2534 (*1 *1) (-5 *1 (-584))) (-3706 (*1 *1) (-5 *1 (-584))) (-1604 (*1 *1) (-5 *1 (-584))) (-4413 (*1 *1) (-5 *1 (-584))))
-(-13 (-1109) (-10 -8 (-15 -2534 ($) -3722) (-15 -3706 ($) -3722) (-15 -1604 ($) -3722) (-15 -4413 ($) -3722)))
-((-2847 (((-112) $ $) NIL)) (-3515 (((-697 $) (-497)) 21)) (-3240 (((-1168) $) NIL)) (-3293 (($ (-1168)) 14)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 33)) (-3869 (((-215 4 (-130)) $) 24)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 26)))
-(((-585) (-13 (-1109) (-10 -8 (-15 -3293 ($ (-1168))) (-15 -3869 ((-215 4 (-130)) $)) (-15 -3515 ((-697 $) (-497)))))) (T -585))
-((-3293 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-585)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-585)))) (-3515 (*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *2 (-697 (-585))) (-5 *1 (-585)))))
-(-13 (-1109) (-10 -8 (-15 -3293 ($ (-1168))) (-15 -3869 ((-215 4 (-130)) $)) (-15 -3515 ((-697 $) (-497)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $ (-570)) 75)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-1695 (($ (-1182 (-570)) (-570)) 81)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) 66)) (-3738 (($ $) 43)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-3995 (((-777) $) 16)) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2291 (((-570)) 37)) (-3975 (((-570) $) 41)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3308 (($ $ (-570)) 24)) (-2837 (((-3 $ "failed") $ $) 71)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) 17)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 72)) (-3961 (((-1166 (-570)) $) 19)) (-2161 (($ $) 26)) (-2869 (((-868) $) 102) (($ (-570)) 61) (($ $) NIL)) (-2294 (((-777)) 15 T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-3478 (((-570) $ (-570)) 46)) (-1981 (($) 44 T CONST)) (-1998 (($) 21 T CONST)) (-3892 (((-112) $ $) 52)) (-4003 (($ $) 60) (($ $ $) 48)) (-3992 (($ $ $) 59)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 62) (($ $ $) 63)))
-(((-586 |#1| |#2|) (-875 |#1|) (-570) (-112)) (T -586))
-NIL
-(-875 |#1|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 30)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-2000 (((-1199 (-928) (-777)) (-570)) 59)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 $ "failed") $) 95)) (-4387 (($ $) 94)) (-2615 (($ (-1277 $)) 93)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) 44)) (-2066 (($) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) 61)) (-4240 (((-112) $) NIL)) (-2118 (($ $) NIL) (($ $ (-777)) NIL)) (-2145 (((-112) $) NIL)) (-3995 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-2005 (((-112) $) NIL)) (-3284 (($) 49 (|has| $ (-373)))) (-3531 (((-112) $) NIL (|has| $ (-373)))) (-3046 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-3525 (((-3 $ "failed") $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 $) $ (-928)) NIL (|has| $ (-373))) (((-1182 $) $) 104)) (-1997 (((-928) $) 67)) (-1716 (((-1182 $) $) NIL (|has| $ (-373)))) (-3051 (((-3 (-1182 $) "failed") $ $) NIL (|has| $ (-373))) (((-1182 $) $) NIL (|has| $ (-373)))) (-4333 (($ $ (-1182 $)) NIL (|has| $ (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL T CONST)) (-4298 (($ (-928)) 60)) (-3031 (((-112) $) 87)) (-3891 (((-1129) $) NIL)) (-3643 (($) 28 (|has| $ (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 54)) (-2340 (((-424 $) $) NIL)) (-3172 (((-928)) 86) (((-839 (-928))) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-3 (-777) "failed") $ $) NIL) (((-777) $) NIL)) (-4388 (((-135)) NIL)) (-2375 (($ $ (-777)) NIL) (($ $) NIL)) (-2650 (((-928) $) 85) (((-839 (-928)) $) NIL)) (-3144 (((-1182 $)) 102)) (-1900 (($) 66)) (-2229 (($) 50 (|has| $ (-373)))) (-2987 (((-695 $) (-1277 $)) NIL) (((-1277 $) $) 91)) (-2601 (((-570) $) 40)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) 42) (($ $) NIL) (($ (-413 (-570))) NIL)) (-1660 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2294 (((-777)) 51 T CONST)) (-1344 (((-112) $ $) 107)) (-2681 (((-1277 $) (-928)) 97) (((-1277 $)) 96)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) 31 T CONST)) (-1998 (($) 27 T CONST)) (-4257 (($ $ (-777)) NIL (|has| $ (-373))) (($ $) NIL (|has| $ (-373)))) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 34)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 81) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-587 |#1|) (-13 (-354) (-333 $) (-620 (-570))) (-928)) (T -587))
-NIL
-(-13 (-354) (-333 $) (-620 (-570)))
-((-3763 (((-1282) (-1168)) 10)))
-(((-588) (-10 -7 (-15 -3763 ((-1282) (-1168))))) (T -588))
-((-3763 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-588)))))
-(-10 -7 (-15 -3763 ((-1282) (-1168))))
-((-3210 (((-592 |#2|) (-592 |#2|)) 42)) (-3920 (((-650 |#2|) (-592 |#2|)) 44)) (-3694 ((|#2| (-592 |#2|)) 50)))
-(((-589 |#1| |#2|) (-10 -7 (-15 -3210 ((-592 |#2|) (-592 |#2|))) (-15 -3920 ((-650 |#2|) (-592 |#2|))) (-15 -3694 (|#2| (-592 |#2|)))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-29 |#1|) (-1212))) (T -589))
-((-3694 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-29 *4) (-1212))) (-5 *1 (-589 *4 *2)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-13 (-29 *4) (-1212))) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-650 *5)) (-5 *1 (-589 *4 *5)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-592 *4)) (-4 *4 (-13 (-29 *3) (-1212))) (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-589 *3 *4)))))
-(-10 -7 (-15 -3210 ((-592 |#2|) (-592 |#2|))) (-15 -3920 ((-650 |#2|) (-592 |#2|))) (-15 -3694 (|#2| (-592 |#2|))))
-((-2536 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)) 30)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -2536 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))) (-15 -2536 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2536 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2536 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-368) (-368)) (T -590))
-((-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-368)) (-4 *6 (-368)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-590 *5 *6)))) (-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-368)) (-4 *2 (-368)) (-5 *1 (-590 *5 *2)))) (-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3730 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-368)) (-4 *6 (-368)) (-5 *2 (-2 (|:| -3730 *6) (|:| |coeff| *6))) (-5 *1 (-590 *5 *6)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-368)) (-4 *6 (-368)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))))
-(-10 -7 (-15 -2536 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))) (-15 -2536 ((-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3730 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2536 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2536 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-4030 (($ (-512) (-603)) 14)) (-2307 (($ (-512) (-603) $) 16)) (-2281 (($ (-512) (-603)) 15)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ (-1191)) 7) (((-1191) $) 6)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-591) (-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -4030 ($ (-512) (-603))) (-15 -2281 ($ (-512) (-603))) (-15 -2307 ($ (-512) (-603) $))))) (T -591))
-((-4030 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))) (-2281 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))) (-2307 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))))
-(-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -4030 ($ (-512) (-603))) (-15 -2281 ($ (-512) (-603))) (-15 -2307 ($ (-512) (-603) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 76)) (-4387 ((|#1| $) NIL)) (-3730 ((|#1| $) 30)) (-3397 (((-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3991 (($ |#1| (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) (-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1550 (((-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) $) 31)) (-3240 (((-1168) $) NIL)) (-3726 (($ |#1| |#1|) 38) (($ |#1| (-1186)) 49 (|has| |#1| (-1047 (-1186))))) (-3891 (((-1129) $) NIL)) (-2320 (((-112) $) 35)) (-2375 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1186)) 89 (|has| |#1| (-907 (-1186))))) (-2869 (((-868) $) 110) (($ |#1|) 29)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 18 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) 17) (($ $ $) NIL)) (-3992 (($ $ $) 85)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 16) (($ (-413 (-570)) $) 41) (($ $ (-413 (-570))) NIL)))
-(((-592 |#1|) (-13 (-723 (-413 (-570))) (-1047 |#1|) (-10 -8 (-15 -3991 ($ |#1| (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) (-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3730 (|#1| $)) (-15 -1550 ((-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) $)) (-15 -3397 ((-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2320 ((-112) $)) (-15 -3726 ($ |#1| |#1|)) (-15 -2375 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-907 (-1186))) (-15 -2375 (|#1| $ (-1186))) |%noBranch|) (IF (|has| |#1| (-1047 (-1186))) (-15 -3726 ($ |#1| (-1186))) |%noBranch|))) (-368)) (T -592))
-((-3991 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *2)) (|:| |logand| (-1182 *2))))) (-5 *4 (-650 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-368)) (-5 *1 (-592 *2)))) (-3730 (*1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *3)) (|:| |logand| (-1182 *3))))) (-5 *1 (-592 *3)) (-4 *3 (-368)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-592 *3)) (-4 *3 (-368)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-368)))) (-3726 (*1 *1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368)))) (-2375 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-592 *2)) (-4 *2 (-368)))) (-2375 (*1 *2 *1 *3) (-12 (-4 *2 (-368)) (-4 *2 (-907 *3)) (-5 *1 (-592 *2)) (-5 *3 (-1186)))) (-3726 (*1 *1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *1 (-592 *2)) (-4 *2 (-1047 *3)) (-4 *2 (-368)))))
-(-13 (-723 (-413 (-570))) (-1047 |#1|) (-10 -8 (-15 -3991 ($ |#1| (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) (-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3730 (|#1| $)) (-15 -1550 ((-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) $)) (-15 -3397 ((-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2320 ((-112) $)) (-15 -3726 ($ |#1| |#1|)) (-15 -2375 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-907 (-1186))) (-15 -2375 (|#1| $ (-1186))) |%noBranch|) (IF (|has| |#1| (-1047 (-1186))) (-15 -3726 ($ |#1| (-1186))) |%noBranch|)))
-((-3141 (((-112) |#1|) 16)) (-1467 (((-3 |#1| "failed") |#1|) 14)) (-2789 (((-2 (|:| -1540 |#1|) (|:| -2940 (-777))) |#1|) 38) (((-3 |#1| "failed") |#1| (-777)) 18)) (-4232 (((-112) |#1| (-777)) 19)) (-1855 ((|#1| |#1|) 42)) (-4193 ((|#1| |#1| (-777)) 45)))
-(((-593 |#1|) (-10 -7 (-15 -4232 ((-112) |#1| (-777))) (-15 -2789 ((-3 |#1| "failed") |#1| (-777))) (-15 -2789 ((-2 (|:| -1540 |#1|) (|:| -2940 (-777))) |#1|)) (-15 -4193 (|#1| |#1| (-777))) (-15 -3141 ((-112) |#1|)) (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -1855 (|#1| |#1|))) (-551)) (T -593))
-((-1855 (*1 *2 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-1467 (*1 *2 *2) (|partial| -12 (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-3141 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551)))) (-4193 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-2789 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1540 *3) (|:| -2940 (-777)))) (-5 *1 (-593 *3)) (-4 *3 (-551)))) (-2789 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551)))))
-(-10 -7 (-15 -4232 ((-112) |#1| (-777))) (-15 -2789 ((-3 |#1| "failed") |#1| (-777))) (-15 -2789 ((-2 (|:| -1540 |#1|) (|:| -2940 (-777))) |#1|)) (-15 -4193 (|#1| |#1| (-777))) (-15 -3141 ((-112) |#1|)) (-15 -1467 ((-3 |#1| "failed") |#1|)) (-15 -1855 (|#1| |#1|)))
-((-1584 (((-1182 |#1|) (-928)) 44)))
-(((-594 |#1|) (-10 -7 (-15 -1584 ((-1182 |#1|) (-928)))) (-354)) (T -594))
-((-1584 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-594 *4)) (-4 *4 (-354)))))
-(-10 -7 (-15 -1584 ((-1182 |#1|) (-928))))
-((-3210 (((-592 (-413 (-959 |#1|))) (-592 (-413 (-959 |#1|)))) 27)) (-1363 (((-3 (-320 |#1|) (-650 (-320 |#1|))) (-413 (-959 |#1|)) (-1186)) 34 (|has| |#1| (-148)))) (-3920 (((-650 (-320 |#1|)) (-592 (-413 (-959 |#1|)))) 19)) (-3627 (((-320 |#1|) (-413 (-959 |#1|)) (-1186)) 32 (|has| |#1| (-148)))) (-3694 (((-320 |#1|) (-592 (-413 (-959 |#1|)))) 21)))
-(((-595 |#1|) (-10 -7 (-15 -3210 ((-592 (-413 (-959 |#1|))) (-592 (-413 (-959 |#1|))))) (-15 -3920 ((-650 (-320 |#1|)) (-592 (-413 (-959 |#1|))))) (-15 -3694 ((-320 |#1|) (-592 (-413 (-959 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1363 ((-3 (-320 |#1|) (-650 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -3627 ((-320 |#1|) (-413 (-959 |#1|)) (-1186)))) |%noBranch|)) (-13 (-458) (-1047 (-570)) (-645 (-570)))) (T -595))
-((-3627 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *5)) (-5 *1 (-595 *5)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (-320 *5) (-650 (-320 *5)))) (-5 *1 (-595 *5)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-592 (-413 (-959 *4)))) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *4)) (-5 *1 (-595 *4)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-592 (-413 (-959 *4)))) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-650 (-320 *4))) (-5 *1 (-595 *4)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-592 (-413 (-959 *3)))) (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-595 *3)))))
-(-10 -7 (-15 -3210 ((-592 (-413 (-959 |#1|))) (-592 (-413 (-959 |#1|))))) (-15 -3920 ((-650 (-320 |#1|)) (-592 (-413 (-959 |#1|))))) (-15 -3694 ((-320 |#1|) (-592 (-413 (-959 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1363 ((-3 (-320 |#1|) (-650 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -3627 ((-320 |#1|) (-413 (-959 |#1|)) (-1186)))) |%noBranch|))
-((-3776 (((-650 (-695 (-570))) (-650 (-928)) (-650 (-912 (-570)))) 78) (((-650 (-695 (-570))) (-650 (-928))) 79) (((-695 (-570)) (-650 (-928)) (-912 (-570))) 72)) (-3026 (((-777) (-650 (-928))) 69)))
-(((-596) (-10 -7 (-15 -3026 ((-777) (-650 (-928)))) (-15 -3776 ((-695 (-570)) (-650 (-928)) (-912 (-570)))) (-15 -3776 ((-650 (-695 (-570))) (-650 (-928)))) (-15 -3776 ((-650 (-695 (-570))) (-650 (-928)) (-650 (-912 (-570))))))) (T -596))
-((-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-928))) (-5 *4 (-650 (-912 (-570)))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-596)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-596)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-928))) (-5 *4 (-912 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-596)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *2 (-777)) (-5 *1 (-596)))))
-(-10 -7 (-15 -3026 ((-777) (-650 (-928)))) (-15 -3776 ((-695 (-570)) (-650 (-928)) (-912 (-570)))) (-15 -3776 ((-650 (-695 (-570))) (-650 (-928)))) (-15 -3776 ((-650 (-695 (-570))) (-650 (-928)) (-650 (-912 (-570))))))
-((-1506 (((-650 |#5|) |#5| (-112)) 100)) (-2756 (((-112) |#5| (-650 |#5|)) 34)))
-(((-597 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1506 ((-650 |#5|) |#5| (-112))) (-15 -2756 ((-112) |#5| (-650 |#5|)))) (-13 (-311) (-148)) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1118 |#1| |#2| |#3| |#4|)) (T -597))
-((-2756 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1118 *5 *6 *7 *8)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-597 *5 *6 *7 *8 *3)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-650 *3)) (-5 *1 (-597 *5 *6 *7 *8 *3)) (-4 *3 (-1118 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1506 ((-650 |#5|) |#5| (-112))) (-15 -2756 ((-112) |#5| (-650 |#5|))))
-((-2847 (((-112) $ $) NIL)) (-3871 (((-1144) $) 11)) (-3859 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-598) (-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))) (T -598))
-((-3859 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598)))))
-(-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))
-((-2847 (((-112) $ $) NIL (|has| (-145) (-1109)))) (-2721 (($ $) 38)) (-3532 (($ $) NIL)) (-2524 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3431 (((-112) $ $) 67)) (-3413 (((-112) $ $ (-570)) 62)) (-3210 (((-650 $) $ (-145)) 75) (((-650 $) $ (-142)) 76)) (-3134 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-856)))) (-2778 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| (-145) (-856))))) (-2018 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 (((-145) $ (-570) (-145)) 59 (|has| $ (-6 -4453))) (((-145) $ (-1244 (-570)) (-145)) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-3764 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3286 (($ $ (-1244 (-570)) $) 57)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-3617 (($ (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4452))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4452)))) (-2845 (((-145) $ (-570) (-145)) NIL (|has| $ (-6 -4453)))) (-2774 (((-145) $ (-570)) NIL)) (-3450 (((-112) $ $) 88)) (-2619 (((-570) (-1 (-112) (-145)) $) NIL) (((-570) (-145) $) NIL (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) 64 (|has| (-145) (-1109))) (((-570) $ $ (-570)) 63) (((-570) (-142) $ (-570)) 66)) (-3976 (((-650 (-145)) $) NIL (|has| $ (-6 -4452)))) (-2296 (($ (-777) (-145)) 9)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 32 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| (-145) (-856)))) (-4356 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-856)))) (-3069 (((-650 (-145)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-1894 (((-570) $) 47 (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-145) (-856)))) (-3114 (((-112) $ $ (-145)) 89)) (-1608 (((-777) $ $ (-145)) 86)) (-2833 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1538 (($ $) 41)) (-2276 (($ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3773 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3240 (((-1168) $) 43 (|has| (-145) (-1109)))) (-2119 (($ (-145) $ (-570)) NIL) (($ $ $ (-570)) 27)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) 85 (|has| (-145) (-1109)))) (-1948 (((-145) $) NIL (|has| (-570) (-856)))) (-2115 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4222 (($ $ (-145)) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-145)))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2856 (((-650 (-145)) $) NIL)) (-2171 (((-112) $) 15)) (-1698 (($) 10)) (-2057 (((-145) $ (-570) (-145)) NIL) (((-145) $ (-570)) 68) (($ $ (-1244 (-570))) 25) (($ $ $) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452))) (((-777) (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2181 (($ $ $ (-570)) 81 (|has| $ (-6 -4453)))) (-3064 (($ $) 20)) (-2601 (((-542) $) NIL (|has| (-145) (-620 (-542))))) (-2881 (($ (-650 (-145))) NIL)) (-1505 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-650 $)) 82)) (-2869 (($ (-145)) NIL) (((-868) $) 31 (|has| (-145) (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| (-145) (-1109)))) (-2061 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| (-145) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-145) (-856)))) (-3892 (((-112) $ $) 17 (|has| (-145) (-1109)))) (-3945 (((-112) $ $) NIL (|has| (-145) (-856)))) (-3918 (((-112) $ $) 18 (|has| (-145) (-856)))) (-2857 (((-777) $) 16 (|has| $ (-6 -4452)))))
-(((-599 |#1|) (-1153) (-570)) (T -599))
-NIL
-(-1153)
-((-4362 (((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2| (-1103 |#4|)) 32)))
-(((-600 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4362 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2| (-1103 |#4|))) (-15 -4362 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2|))) (-799) (-856) (-562) (-956 |#3| |#1| |#2|)) (T -600))
-((-4362 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570)))) (-5 *1 (-600 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) (-4362 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1103 *3)) (-4 *3 (-956 *7 *6 *4)) (-4 *6 (-799)) (-4 *4 (-856)) (-4 *7 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570)))) (-5 *1 (-600 *6 *4 *7 *3)))))
-(-10 -7 (-15 -4362 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2| (-1103 |#4|))) (-15 -4362 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 71)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-570)) 58) (($ $ (-570) (-570)) 59)) (-2972 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 65)) (-4365 (($ $) 109)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1942 (((-868) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) (-1035 (-849 (-570))) (-1186) |#1| (-413 (-570))) 241)) (-1866 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 36)) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3296 (((-112) $) NIL)) (-3995 (((-570) $) 63) (((-570) $ (-570)) 64)) (-2005 (((-112) $) NIL)) (-2529 (($ $ (-928)) 83)) (-3103 (($ (-1 |#1| (-570)) $) 80)) (-1338 (((-112) $) 26)) (-2402 (($ |#1| (-570)) 22) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-3601 (($ (-1035 (-849 (-570))) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 13)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-1363 (($ $) 161 (|has| |#1| (-38 (-413 (-570)))))) (-1473 (((-3 $ "failed") $ $ (-112)) 108)) (-3567 (($ $ $) 116)) (-3891 (((-1129) $) NIL)) (-4112 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 15)) (-2838 (((-1035 (-849 (-570))) $) 14)) (-3308 (($ $ (-570)) 47)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-570)))))) (-2057 ((|#1| $ (-570)) 62) (($ $ $) NIL (|has| (-570) (-1121)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-2650 (((-570) $) NIL)) (-2161 (($ $) 48)) (-2869 (((-868) $) NIL) (($ (-570)) 29) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3481 ((|#1| $ (-570)) 61)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) 39 T CONST)) (-1744 ((|#1| $) NIL)) (-1645 (($ $) 198 (|has| |#1| (-38 (-413 (-570)))))) (-2431 (($ $) 169 (|has| |#1| (-38 (-413 (-570)))))) (-3302 (($ $) 202 (|has| |#1| (-38 (-413 (-570)))))) (-1938 (($ $) 174 (|has| |#1| (-38 (-413 (-570)))))) (-3685 (($ $) 201 (|has| |#1| (-38 (-413 (-570)))))) (-2917 (($ $) 173 (|has| |#1| (-38 (-413 (-570)))))) (-3181 (($ $ (-413 (-570))) 177 (|has| |#1| (-38 (-413 (-570)))))) (-4357 (($ $ |#1|) 157 (|has| |#1| (-38 (-413 (-570)))))) (-3845 (($ $) 204 (|has| |#1| (-38 (-413 (-570)))))) (-1320 (($ $) 160 (|has| |#1| (-38 (-413 (-570)))))) (-2384 (($ $) 203 (|has| |#1| (-38 (-413 (-570)))))) (-2764 (($ $) 175 (|has| |#1| (-38 (-413 (-570)))))) (-4138 (($ $) 199 (|has| |#1| (-38 (-413 (-570)))))) (-4271 (($ $) 171 (|has| |#1| (-38 (-413 (-570)))))) (-4253 (($ $) 200 (|has| |#1| (-38 (-413 (-570)))))) (-3050 (($ $) 172 (|has| |#1| (-38 (-413 (-570)))))) (-1579 (($ $) 209 (|has| |#1| (-38 (-413 (-570)))))) (-3408 (($ $) 185 (|has| |#1| (-38 (-413 (-570)))))) (-1436 (($ $) 206 (|has| |#1| (-38 (-413 (-570)))))) (-3423 (($ $) 181 (|has| |#1| (-38 (-413 (-570)))))) (-2271 (($ $) 213 (|has| |#1| (-38 (-413 (-570)))))) (-3951 (($ $) 189 (|has| |#1| (-38 (-413 (-570)))))) (-2227 (($ $) 215 (|has| |#1| (-38 (-413 (-570)))))) (-3557 (($ $) 191 (|has| |#1| (-38 (-413 (-570)))))) (-2430 (($ $) 211 (|has| |#1| (-38 (-413 (-570)))))) (-2206 (($ $) 187 (|has| |#1| (-38 (-413 (-570)))))) (-3021 (($ $) 208 (|has| |#1| (-38 (-413 (-570)))))) (-1977 (($ $) 183 (|has| |#1| (-38 (-413 (-570)))))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3478 ((|#1| $ (-570)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-1981 (($) 30 T CONST)) (-1998 (($) 40 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-3892 (((-112) $ $) 73)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) 91) (($ $ $) 72)) (-3992 (($ $ $) 88)) (** (($ $ (-928)) NIL) (($ $ (-777)) 111)) (* (($ (-928) $) 98) (($ (-777) $) 96) (($ (-570) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-601 |#1|) (-13 (-1255 |#1| (-570)) (-10 -8 (-15 -3601 ($ (-1035 (-849 (-570))) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -2838 ((-1035 (-849 (-570))) $)) (-15 -4112 ((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $)) (-15 -1866 ($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -1338 ((-112) $)) (-15 -3103 ($ (-1 |#1| (-570)) $)) (-15 -1473 ((-3 $ "failed") $ $ (-112))) (-15 -4365 ($ $)) (-15 -3567 ($ $ $)) (-15 -1942 ((-868) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) (-1035 (-849 (-570))) (-1186) |#1| (-413 (-570)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $)) (-15 -4357 ($ $ |#1|)) (-15 -3181 ($ $ (-413 (-570)))) (-15 -1320 ($ $)) (-15 -3845 ($ $)) (-15 -1938 ($ $)) (-15 -3050 ($ $)) (-15 -2431 ($ $)) (-15 -4271 ($ $)) (-15 -2917 ($ $)) (-15 -2764 ($ $)) (-15 -3423 ($ $)) (-15 -1977 ($ $)) (-15 -3408 ($ $)) (-15 -2206 ($ $)) (-15 -3951 ($ $)) (-15 -3557 ($ $)) (-15 -3302 ($ $)) (-15 -4253 ($ $)) (-15 -1645 ($ $)) (-15 -4138 ($ $)) (-15 -3685 ($ $)) (-15 -2384 ($ $)) (-15 -1436 ($ $)) (-15 -3021 ($ $)) (-15 -1579 ($ $)) (-15 -2430 ($ $)) (-15 -2271 ($ $)) (-15 -2227 ($ $))) |%noBranch|))) (-1058)) (T -601))
-((-1338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-3601 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-849 (-570)))) (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *4)))) (-4 *4 (-1058)) (-5 *1 (-601 *4)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-1035 (-849 (-570)))) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) (-4 *3 (-1058)) (-5 *1 (-601 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-601 *3)))) (-1473 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-4365 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058)))) (-3567 (*1 *1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058)))) (-1942 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *6)))) (-5 *4 (-1035 (-849 (-570)))) (-5 *5 (-1186)) (-5 *7 (-413 (-570))) (-4 *6 (-1058)) (-5 *2 (-868)) (-5 *1 (-601 *6)))) (-1363 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4357 (*1 *1 *1 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3181 (*1 *1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-601 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1058)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3845 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1938 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3050 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2431 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4271 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2917 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2764 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3423 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2206 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4253 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1645 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3685 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1436 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3021 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1579 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2430 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2227 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(-13 (-1255 |#1| (-570)) (-10 -8 (-15 -3601 ($ (-1035 (-849 (-570))) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -2838 ((-1035 (-849 (-570))) $)) (-15 -4112 ((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $)) (-15 -1866 ($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -1338 ((-112) $)) (-15 -3103 ($ (-1 |#1| (-570)) $)) (-15 -1473 ((-3 $ "failed") $ $ (-112))) (-15 -4365 ($ $)) (-15 -3567 ($ $ $)) (-15 -1942 ((-868) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) (-1035 (-849 (-570))) (-1186) |#1| (-413 (-570)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $)) (-15 -4357 ($ $ |#1|)) (-15 -3181 ($ $ (-413 (-570)))) (-15 -1320 ($ $)) (-15 -3845 ($ $)) (-15 -1938 ($ $)) (-15 -3050 ($ $)) (-15 -2431 ($ $)) (-15 -4271 ($ $)) (-15 -2917 ($ $)) (-15 -2764 ($ $)) (-15 -3423 ($ $)) (-15 -1977 ($ $)) (-15 -3408 ($ $)) (-15 -2206 ($ $)) (-15 -3951 ($ $)) (-15 -3557 ($ $)) (-15 -3302 ($ $)) (-15 -4253 ($ $)) (-15 -1645 ($ $)) (-15 -4138 ($ $)) (-15 -3685 ($ $)) (-15 -2384 ($ $)) (-15 -1436 ($ $)) (-15 -3021 ($ $)) (-15 -1579 ($ $)) (-15 -2430 ($ $)) (-15 -2271 ($ $)) (-15 -2227 ($ $))) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 63)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-1866 (($ (-1166 |#1|)) 9)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) 44)) (-3296 (((-112) $) 56)) (-3995 (((-777) $) 61) (((-777) $ (-777)) 60)) (-2005 (((-112) $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ $) 46 (|has| |#1| (-562)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-1166 |#1|) $) 25)) (-2294 (((-777)) 55 T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) 10 T CONST)) (-1998 (($) 14 T CONST)) (-3892 (((-112) $ $) 24)) (-4003 (($ $) 32) (($ $ $) 16)) (-3992 (($ $ $) 27)) (** (($ $ (-928)) NIL) (($ $ (-777)) 53)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-570)) 38)))
-(((-602 |#1|) (-13 (-1058) (-111 |#1| |#1|) (-10 -8 (-15 -3125 ((-1166 |#1|) $)) (-15 -1866 ($ (-1166 |#1|))) (-15 -3296 ((-112) $)) (-15 -3995 ((-777) $)) (-15 -3995 ((-777) $ (-777))) (-15 * ($ $ (-570))) (IF (|has| |#1| (-562)) (-6 (-562)) |%noBranch|))) (-1058)) (T -602))
-((-3125 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-602 *3)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (-3995 (*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))))
-(-13 (-1058) (-111 |#1| |#1|) (-10 -8 (-15 -3125 ((-1166 |#1|) $)) (-15 -1866 ($ (-1166 |#1|))) (-15 -3296 ((-112) $)) (-15 -3995 ((-777) $)) (-15 -3995 ((-777) $ (-777))) (-15 * ($ $ (-570))) (IF (|has| |#1| (-562)) (-6 (-562)) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-4313 (($) 8 T CONST)) (-3605 (($) 7 T CONST)) (-2354 (($ $ (-650 $)) 16)) (-3240 (((-1168) $) NIL)) (-3036 (($) 6 T CONST)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ (-1191)) 15) (((-1191) $) 10)) (-2397 (($) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-603) (-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -3036 ($) -3722) (-15 -3605 ($) -3722) (-15 -4313 ($) -3722) (-15 -2397 ($) -3722) (-15 -2354 ($ $ (-650 $)))))) (T -603))
-((-3036 (*1 *1) (-5 *1 (-603))) (-3605 (*1 *1) (-5 *1 (-603))) (-4313 (*1 *1) (-5 *1 (-603))) (-2397 (*1 *1) (-5 *1 (-603))) (-2354 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-603))) (-5 *1 (-603)))))
-(-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -3036 ($) -3722) (-15 -3605 ($) -3722) (-15 -4313 ($) -3722) (-15 -2397 ($) -3722) (-15 -2354 ($ $ (-650 $)))))
-((-2536 (((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)) 15)))
-(((-604 |#1| |#2|) (-10 -7 (-15 -2536 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)))) (-1227) (-1227)) (T -604))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-607 *6)) (-5 *1 (-604 *5 *6)))))
-(-10 -7 (-15 -2536 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|))))
-((-2536 (((-1166 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-1166 |#2|)) 20) (((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-607 |#2|)) 19) (((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)) 18)))
-(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -2536 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|))) (-15 -2536 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-607 |#2|))) (-15 -2536 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-1166 |#2|)))) (-1227) (-1227) (-1227)) (T -605))
-((-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-1166 *7)) (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-1166 *8)) (-5 *1 (-605 *6 *7 *8)))) (-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-607 *7)) (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-1166 *8)) (-5 *1 (-605 *6 *7 *8)))) (-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7)) (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-607 *8)) (-5 *1 (-605 *6 *7 *8)))))
-(-10 -7 (-15 -2536 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|))) (-15 -2536 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-607 |#2|))) (-15 -2536 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-1166 |#2|))))
-((-2330 ((|#3| |#3| (-650 (-618 |#3|)) (-650 (-1186))) 57)) (-4072 (((-171 |#2|) |#3|) 122)) (-4054 ((|#3| (-171 |#2|)) 46)) (-3717 ((|#2| |#3|) 21)) (-2304 ((|#3| |#2|) 35)))
-(((-606 |#1| |#2| |#3|) (-10 -7 (-15 -4054 (|#3| (-171 |#2|))) (-15 -3717 (|#2| |#3|)) (-15 -2304 (|#3| |#2|)) (-15 -4072 ((-171 |#2|) |#3|)) (-15 -2330 (|#3| |#3| (-650 (-618 |#3|)) (-650 (-1186))))) (-562) (-13 (-436 |#1|) (-1011) (-1212)) (-13 (-436 (-171 |#1|)) (-1011) (-1212))) (T -606))
-((-2330 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-650 (-1186))) (-4 *2 (-13 (-436 (-171 *5)) (-1011) (-1212))) (-4 *5 (-562)) (-5 *1 (-606 *5 *6 *2)) (-4 *6 (-13 (-436 *5) (-1011) (-1212))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-171 *5)) (-5 *1 (-606 *4 *5 *3)) (-4 *5 (-13 (-436 *4) (-1011) (-1212))) (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1212))))) (-2304 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1212))) (-5 *1 (-606 *4 *3 *2)) (-4 *3 (-13 (-436 *4) (-1011) (-1212))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 *4) (-1011) (-1212))) (-5 *1 (-606 *4 *2 *3)) (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1212))))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1212))) (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1212))) (-5 *1 (-606 *4 *5 *2)))))
-(-10 -7 (-15 -4054 (|#3| (-171 |#2|))) (-15 -3717 (|#2| |#3|)) (-15 -2304 (|#3| |#2|)) (-15 -4072 ((-171 |#2|) |#3|)) (-15 -2330 (|#3| |#3| (-650 (-618 |#3|)) (-650 (-1186)))))
-((-3960 (($ (-1 (-112) |#1|) $) 17)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3881 (($ (-1 |#1| |#1|) |#1|) 9)) (-3934 (($ (-1 (-112) |#1|) $) 13)) (-3947 (($ (-1 (-112) |#1|) $) 15)) (-2881 (((-1166 |#1|) $) 18)) (-2869 (((-868) $) NIL)))
-(((-607 |#1|) (-13 (-619 (-868)) (-10 -8 (-15 -2536 ($ (-1 |#1| |#1|) $)) (-15 -3934 ($ (-1 (-112) |#1|) $)) (-15 -3947 ($ (-1 (-112) |#1|) $)) (-15 -3960 ($ (-1 (-112) |#1|) $)) (-15 -3881 ($ (-1 |#1| |#1|) |#1|)) (-15 -2881 ((-1166 |#1|) $)))) (-1227)) (T -607))
-((-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3)))) (-3947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1227)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2536 ($ (-1 |#1| |#1|) $)) (-15 -3934 ($ (-1 (-112) |#1|) $)) (-15 -3947 ($ (-1 (-112) |#1|) $)) (-15 -3960 ($ (-1 (-112) |#1|) $)) (-15 -3881 ($ (-1 |#1| |#1|) |#1|)) (-15 -2881 ((-1166 |#1|) $))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2866 (($ (-777)) NIL (|has| |#1| (-23)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-4031 (((-695 |#1|) $ $) NIL (|has| |#1| (-1058)))) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4234 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-2065 (((-112) $ (-777)) NIL)) (-1831 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3407 ((|#1| $ $) NIL (|has| |#1| (-1058)))) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3775 (($ $ $) NIL (|has| |#1| (-1058)))) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) NIL)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-4003 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3992 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-570) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-732))) (($ $ |#1|) NIL (|has| |#1| (-732)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-608 |#1| |#2|) (-1275 |#1|) (-1227) (-570)) (T -608))
-NIL
-(-1275 |#1|)
-((-2204 (((-1282) $ |#2| |#2|) 35)) (-4372 ((|#2| $) 23)) (-1894 ((|#2| $) 21)) (-2833 (($ (-1 |#3| |#3|) $) 32)) (-2536 (($ (-1 |#3| |#3|) $) 30)) (-1948 ((|#3| $) 26)) (-4222 (($ $ |#3|) 33)) (-1552 (((-112) |#3| $) 17)) (-2856 (((-650 |#3|) $) 15)) (-2057 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-609 |#1| |#2| |#3|) (-10 -8 (-15 -2204 ((-1282) |#1| |#2| |#2|)) (-15 -4222 (|#1| |#1| |#3|)) (-15 -1948 (|#3| |#1|)) (-15 -4372 (|#2| |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1552 ((-112) |#3| |#1|)) (-15 -2856 ((-650 |#3|) |#1|)) (-15 -2057 (|#3| |#1| |#2|)) (-15 -2057 (|#3| |#1| |#2| |#3|)) (-15 -2833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2536 (|#1| (-1 |#3| |#3|) |#1|))) (-610 |#2| |#3|) (-1109) (-1227)) (T -609))
-NIL
-(-10 -8 (-15 -2204 ((-1282) |#1| |#2| |#2|)) (-15 -4222 (|#1| |#1| |#3|)) (-15 -1948 (|#3| |#1|)) (-15 -4372 (|#2| |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1552 ((-112) |#3| |#1|)) (-15 -2856 ((-650 |#3|) |#1|)) (-15 -2057 (|#3| |#1| |#2|)) (-15 -2057 (|#3| |#1| |#2| |#3|)) (-15 -2833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2536 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#2| (-1109)))) (-2204 (((-1282) $ |#1| |#1|) 41 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4453)))) (-2333 (($) 7 T CONST)) (-2845 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) 52)) (-3976 (((-650 |#2|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-4372 ((|#1| $) 44 (|has| |#1| (-856)))) (-3069 (((-650 |#2|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452))))) (-1894 ((|#1| $) 45 (|has| |#1| (-856)))) (-2833 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#2| (-1109)))) (-4075 (((-650 |#1|) $) 47)) (-4276 (((-112) |#1| $) 48)) (-3891 (((-1129) $) 21 (|has| |#2| (-1109)))) (-1948 ((|#2| $) 43 (|has| |#1| (-856)))) (-4222 (($ $ |#2|) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) 27 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 26 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 24 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3901 (((-777) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4452))) (((-777) |#2| $) 29 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#2| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#2| (-1109)))) (-2061 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#2| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-610 |#1| |#2|) (-141) (-1109) (-1227)) (T -610))
-((-2856 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1227)) (-5 *2 (-650 *4)))) (-4276 (*1 *2 *3 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1227)) (-5 *2 (-112)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1227)) (-5 *2 (-650 *3)))) (-1552 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-610 *4 *3)) (-4 *4 (-1109)) (-4 *3 (-1227)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1227)) (-4 *2 (-1109)) (-4 *2 (-856)))) (-4372 (*1 *2 *1) (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1227)) (-4 *2 (-1109)) (-4 *2 (-856)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1109)) (-4 *3 (-856)) (-4 *2 (-1227)))) (-4222 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-610 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1227)))) (-2204 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1227)) (-5 *2 (-1282)))))
-(-13 (-495 |t#2|) (-292 |t#1| |t#2|) (-10 -8 (-15 -2856 ((-650 |t#2|) $)) (-15 -4276 ((-112) |t#1| $)) (-15 -4075 ((-650 |t#1|) $)) (IF (|has| |t#2| (-1109)) (IF (|has| $ (-6 -4452)) (-15 -1552 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-856)) (PROGN (-15 -1894 (|t#1| $)) (-15 -4372 (|t#1| $)) (-15 -1948 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4453)) (PROGN (-15 -4222 ($ $ |t#2|)) (-15 -2204 ((-1282) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1109)) ((-619 (-868)) -3749 (|has| |#2| (-1109)) (|has| |#2| (-619 (-868)))) ((-290 |#1| |#2|) . T) ((-292 |#1| |#2|) . T) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-495 |#2|) . T) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-1109) |has| |#2| (-1109)) ((-1227) . T))
-((-2869 (((-868) $) 19) (($ (-130)) 13) (((-130) $) 14)))
-(((-611) (-13 (-619 (-868)) (-496 (-130)))) (T -611))
-NIL
-(-13 (-619 (-868)) (-496 (-130)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ (-1191)) NIL) (((-1191) $) NIL) (((-1226) $) 14) (($ (-650 (-1226))) 13)) (-3218 (((-650 (-1226)) $) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-612) (-13 (-1092) (-619 (-1226)) (-10 -8 (-15 -2869 ($ (-650 (-1226)))) (-15 -3218 ((-650 (-1226)) $))))) (T -612))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-612)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-612)))))
-(-13 (-1092) (-619 (-1226)) (-10 -8 (-15 -2869 ($ (-650 (-1226)))) (-15 -3218 ((-650 (-1226)) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1347 (((-3 $ "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-1757 (((-1277 (-695 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-1277 (-695 |#1|)) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-3266 (((-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2333 (($) NIL T CONST)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3929 (((-3 $ "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3237 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-4071 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2713 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2075 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3260 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-1794 (($ $ (-928)) NIL)) (-2095 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2770 (((-1182 |#1|) $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1885 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-4236 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-2027 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2615 (($ (-1277 |#1|)) NIL (|has| |#2| (-423 |#1|))) (($ (-1277 |#1|) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-3957 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-4412 (((-928)) NIL (|has| |#2| (-372 |#1|)))) (-2462 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3969 (($ $ (-928)) NIL)) (-1991 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1939 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3505 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3489 (((-3 $ "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3592 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2790 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2256 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-1760 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-4019 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-3454 (($ $ (-928)) NIL)) (-2168 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-1700 (((-1182 |#1|) $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1965 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-4281 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-2476 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3240 (((-1168) $) NIL)) (-3084 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2451 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3692 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3891 (((-1129) $) NIL)) (-2808 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2057 ((|#1| $ (-570)) NIL (|has| |#2| (-423 |#1|)))) (-2987 (((-695 |#1|) (-1277 $)) NIL (|has| |#2| (-423 |#1|))) (((-1277 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1277 $) (-1277 $)) NIL (|has| |#2| (-372 |#1|))) (((-1277 |#1|) $ (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2601 (($ (-1277 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-1277 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-4259 (((-650 (-959 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-650 (-959 |#1|)) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2319 (($ $ $) NIL)) (-3143 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2869 (((-868) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL (|has| |#2| (-423 |#1|)))) (-2013 (((-650 (-1277 |#1|))) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-4373 (($ $ $ $) NIL)) (-2125 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1936 (($ (-695 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-2885 (($ $ $) NIL)) (-4099 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-4235 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1849 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1981 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) 24)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-613 |#1| |#2|) (-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -2869 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|))) (-174) (-750 |#1|)) (T -613))
-((-2869 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-613 *3 *2)) (-4 *2 (-750 *3)))))
-(-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -2869 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-3185 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) 39)) (-2284 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL) (($) NIL)) (-2204 (((-1282) $ (-1168) (-1168)) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-1168) |#1|) 49)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#1| "failed") (-1168) $) 52)) (-2333 (($) NIL T CONST)) (-2873 (($ $ (-1168)) 25)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109))))) (-3614 (((-3 |#1| "failed") (-1168) $) 53) (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (($ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (|has| $ (-6 -4452)))) (-3617 (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (($ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109))))) (-2295 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109))))) (-3262 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) 38)) (-2845 ((|#1| $ (-1168) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-1168)) NIL)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452))) (((-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-1722 (($ $) 54)) (-2965 (($ (-394)) 23) (($ (-394) (-1168)) 22)) (-1770 (((-394) $) 40)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-1168) $) NIL (|has| (-1168) (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452))) (((-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (((-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109))))) (-1894 (((-1168) $) NIL (|has| (-1168) (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-1988 (((-650 (-1168)) $) 45)) (-2093 (((-112) (-1168) $) NIL)) (-2116 (((-1168) $) 41)) (-3398 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL)) (-4075 (((-650 (-1168)) $) NIL)) (-4276 (((-112) (-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 ((|#1| $) NIL (|has| (-1168) (-856)))) (-2115 (((-3 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) "failed") (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ $ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ $ (-650 (-298 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 43)) (-2057 ((|#1| $ (-1168) |#1|) NIL) ((|#1| $ (-1168)) 48)) (-2910 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL) (($) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (((-777) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (((-777) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL)) (-2869 (((-868) $) 21)) (-1740 (($ $) 26)) (-1344 (((-112) $ $) NIL)) (-4132 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20)) (-2857 (((-777) $) 47 (|has| $ (-6 -4452)))))
-(((-614 |#1|) (-13 (-369 (-394) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) (-1203 (-1168) |#1|) (-10 -8 (-6 -4452) (-15 -1722 ($ $)))) (-1109)) (T -614))
-((-1722 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1109)))))
-(-13 (-369 (-394) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) (-1203 (-1168) |#1|) (-10 -8 (-6 -4452) (-15 -1722 ($ $))))
-((-1314 (((-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) $) 16)) (-1988 (((-650 |#2|) $) 20)) (-2093 (((-112) |#2| $) 12)))
-(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -1988 ((-650 |#2|) |#1|)) (-15 -2093 ((-112) |#2| |#1|)) (-15 -1314 ((-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|))) (-616 |#2| |#3|) (-1109) (-1109)) (T -615))
-NIL
-(-10 -8 (-15 -1988 ((-650 |#2|) |#1|)) (-15 -2093 ((-112) |#2| |#1|)) (-15 -1314 ((-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 56 (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) 62)) (-2333 (($) 7 T CONST)) (-3153 (($ $) 59 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 47 (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) 63)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 55 (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 57 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 54 (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 53 (|has| $ (-6 -4452)))) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-1988 (((-650 |#1|) $) 64)) (-2093 (((-112) |#1| $) 65)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 40)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 41)) (-3891 (((-1129) $) 21 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 52)) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 42)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) 27 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 26 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 25 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 24 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2910 (($) 50) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 49)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 32 (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 51)) (-2869 (((-868) $) 18 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 43)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-616 |#1| |#2|) (-141) (-1109) (-1109)) (T -616))
-((-2093 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-112)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-650 *3)))) (-3614 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-1390 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))))
-(-13 (-231 (-2 (|:| -4144 |t#1|) (|:| -3165 |t#2|))) (-10 -8 (-15 -2093 ((-112) |t#1| $)) (-15 -1988 ((-650 |t#1|) $)) (-15 -3614 ((-3 |t#2| "failed") |t#1| $)) (-15 -1390 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) ((-102) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) ((-619 (-868)) -3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868)))) ((-152 #0#) . T) ((-620 (-542)) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))) ((-231 #0#) . T) ((-237 #0#) . T) ((-313 #0#) -12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-495 #0#) . T) ((-520 #0# #0#) -12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-1109) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) ((-1227) . T))
-((-3604 (((-618 |#2|) |#1|) 17)) (-4042 (((-3 |#1| "failed") (-618 |#2|)) 21)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -3604 ((-618 |#2|) |#1|)) (-15 -4042 ((-3 |#1| "failed") (-618 |#2|)))) (-1109) (-1109)) (T -617))
-((-4042 (*1 *2 *3) (|partial| -12 (-5 *3 (-618 *4)) (-4 *4 (-1109)) (-4 *2 (-1109)) (-5 *1 (-617 *2 *4)))) (-3604 (*1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *1 (-617 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))))
-(-10 -7 (-15 -3604 ((-618 |#2|) |#1|)) (-15 -4042 ((-3 |#1| "failed") (-618 |#2|))))
-((-2847 (((-112) $ $) NIL)) (-3842 (((-3 (-1186) "failed") $) 46)) (-2966 (((-1282) $ (-777)) 22)) (-2619 (((-777) $) 20)) (-2558 (((-115) $) 9)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-1665 (($ (-115) (-650 |#1|) (-777)) 32) (($ (-1186)) 33)) (-3917 (((-112) $ (-115)) 15) (((-112) $ (-1186)) 13)) (-3326 (((-777) $) 17)) (-3891 (((-1129) $) NIL)) (-2601 (((-899 (-570)) $) 95 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 102 (|has| |#1| (-620 (-899 (-384))))) (((-542) $) 88 (|has| |#1| (-620 (-542))))) (-2869 (((-868) $) 72)) (-1344 (((-112) $ $) NIL)) (-2105 (((-650 |#1|) $) 19)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 51)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 53)))
-(((-618 |#1|) (-13 (-133) (-856) (-891 |#1|) (-10 -8 (-15 -2558 ((-115) $)) (-15 -2105 ((-650 |#1|) $)) (-15 -3326 ((-777) $)) (-15 -1665 ($ (-115) (-650 |#1|) (-777))) (-15 -1665 ($ (-1186))) (-15 -3842 ((-3 (-1186) "failed") $)) (-15 -3917 ((-112) $ (-115))) (-15 -3917 ((-112) $ (-1186))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|))) (-1109)) (T -618))
-((-2558 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-1665 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-1109)) (-5 *1 (-618 *5)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-3842 (*1 *2 *1) (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-3917 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-618 *4)) (-4 *4 (-1109)))) (-3917 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-112)) (-5 *1 (-618 *4)) (-4 *4 (-1109)))))
-(-13 (-133) (-856) (-891 |#1|) (-10 -8 (-15 -2558 ((-115) $)) (-15 -2105 ((-650 |#1|) $)) (-15 -3326 ((-777) $)) (-15 -1665 ($ (-115) (-650 |#1|) (-777))) (-15 -1665 ($ (-1186))) (-15 -3842 ((-3 (-1186) "failed") $)) (-15 -3917 ((-112) $ (-115))) (-15 -3917 ((-112) $ (-1186))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|)))
-((-2869 ((|#1| $) 6)))
-(((-619 |#1|) (-141) (-1227)) (T -619))
-((-2869 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1227)))))
-(-13 (-10 -8 (-15 -2869 (|t#1| $))))
-((-2601 ((|#1| $) 6)))
-(((-620 |#1|) (-141) (-1227)) (T -620))
-((-2601 (*1 *2 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1227)))))
-(-13 (-10 -8 (-15 -2601 (|t#1| $))))
-((-3686 (((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 (-424 |#2|) |#2|)) 15) (((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|)) 16)))
-(((-621 |#1| |#2|) (-10 -7 (-15 -3686 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|))) (-15 -3686 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 (-424 |#2|) |#2|)))) (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570)))) (-1253 |#1|)) (T -621))
-((-3686 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-1182 (-413 *6))) (-5 *1 (-621 *5 *6)) (-5 *3 (-413 *6)))) (-3686 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4)) (-5 *2 (-1182 (-413 *5))) (-5 *1 (-621 *4 *5)) (-5 *3 (-413 *5)))))
-(-10 -7 (-15 -3686 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|))) (-15 -3686 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 (-424 |#2|) |#2|))))
-((-2869 (($ |#1|) 6)))
-(((-622 |#1|) (-141) (-1227)) (T -622))
-((-2869 (*1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1227)))))
-(-13 (-10 -8 (-15 -2869 ($ |t#1|))))
-((-2847 (((-112) $ $) NIL)) (-1935 (($) 14 T CONST)) (-1989 (($) 15 T CONST)) (-3224 (($ $ $) 29)) (-3201 (($ $) 27)) (-3240 (((-1168) $) NIL)) (-1847 (($ $ $) 30)) (-3891 (((-1129) $) NIL)) (-3915 (($) 11 T CONST)) (-3889 (($ $ $) 31)) (-2869 (((-868) $) 35)) (-1970 (((-112) $ (|[\|\|]| -3915)) 24) (((-112) $ (|[\|\|]| -1935)) 26) (((-112) $ (|[\|\|]| -1989)) 21)) (-1344 (((-112) $ $) NIL)) (-3212 (($ $ $) 28)) (-3892 (((-112) $ $) 18)))
-(((-623) (-13 (-976) (-10 -8 (-15 -1935 ($) -3722) (-15 -1970 ((-112) $ (|[\|\|]| -3915))) (-15 -1970 ((-112) $ (|[\|\|]| -1935))) (-15 -1970 ((-112) $ (|[\|\|]| -1989)))))) (T -623))
-((-1935 (*1 *1) (-5 *1 (-623))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3915)) (-5 *2 (-112)) (-5 *1 (-623)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1935)) (-5 *2 (-112)) (-5 *1 (-623)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1989)) (-5 *2 (-112)) (-5 *1 (-623)))))
-(-13 (-976) (-10 -8 (-15 -1935 ($) -3722) (-15 -1970 ((-112) $ (|[\|\|]| -3915))) (-15 -1970 ((-112) $ (|[\|\|]| -1935))) (-15 -1970 ((-112) $ (|[\|\|]| -1989)))))
-((-2601 (($ |#1|) 6)))
-(((-624 |#1|) (-141) (-1227)) (T -624))
-((-2601 (*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1227)))))
-(-13 (-10 -8 (-15 -2601 ($ |t#1|))))
-((-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) 10)))
-(((-625 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-626 |#2|) (-1058)) (T -625))
-NIL
-(-10 -8 (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 41)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
-(((-626 |#1|) (-141) (-1058)) (T -626))
-((-2869 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1058)))))
-(-13 (-1058) (-654 |t#1|) (-10 -8 (-15 -2869 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2419 (((-570) $) NIL (|has| |#1| (-854)))) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2811 (((-112) $) NIL (|has| |#1| (-854)))) (-2005 (((-112) $) NIL)) (-1587 ((|#1| $) 13)) (-2746 (((-112) $) NIL (|has| |#1| (-854)))) (-1908 (($ $ $) NIL (|has| |#1| (-854)))) (-1764 (($ $ $) NIL (|has| |#1| (-854)))) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1599 ((|#3| $) 15)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL)) (-2294 (((-777)) 20 T CONST)) (-1344 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| |#1| (-854)))) (-1981 (($) NIL T CONST)) (-1998 (($) 12 T CONST)) (-3959 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-854)))) (-4013 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-627 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1587 (|#1| $)) (-15 -1599 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-732) |#2|)) (T -627))
-((-4013 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-732) *4)))) (-4013 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-627 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-732) *4)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-627 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-732) *3)))) (-1599 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4)) (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1587 (|#1| $)) (-15 -1599 (|#3| $))))
-((-4309 ((|#2| |#2| (-1186) (-1186)) 16)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -4309 (|#2| |#2| (-1186) (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-966) (-29 |#1|))) (T -628))
-((-4309 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-1212) (-966) (-29 *4))))))
-(-10 -7 (-15 -4309 (|#2| |#2| (-1186) (-1186))))
-((-2847 (((-112) $ $) 64)) (-2564 (((-112) $) 58)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-4149 ((|#1| $) 55)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2169 (((-2 (|:| -2436 $) (|:| -3922 (-413 |#2|))) (-413 |#2|)) 111 (|has| |#1| (-368)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) 27)) (-3957 (((-3 $ "failed") $) 88)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3995 (((-570) $) 22)) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) 40)) (-2402 (($ |#1| (-570)) 24)) (-4369 ((|#1| $) 57)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) 101 (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2837 (((-3 $ "failed") $ $) 93)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2002 (((-777) $) 115 (|has| |#1| (-368)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 114 (|has| |#1| (-368)))) (-2375 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-2650 (((-570) $) 38)) (-2601 (((-413 |#2|) $) 47)) (-2869 (((-868) $) 69) (($ (-570)) 35) (($ $) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 34) (($ |#2|) 25)) (-3481 ((|#1| $ (-570)) 72)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) 9 T CONST)) (-1998 (($) 14 T CONST)) (-3414 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-3892 (((-112) $ $) 21)) (-4003 (($ $) 51) (($ $ $) NIL)) (-3992 (($ $ $) 90)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 29) (($ $ $) 49)))
-(((-629 |#1| |#2|) (-13 (-233 |#2|) (-562) (-620 (-413 |#2|)) (-417 |#1|) (-1047 |#2|) (-10 -8 (-15 -1338 ((-112) $)) (-15 -2650 ((-570) $)) (-15 -3995 ((-570) $)) (-15 -4394 ($ $)) (-15 -4369 (|#1| $)) (-15 -4149 (|#1| $)) (-15 -3481 (|#1| $ (-570))) (-15 -2402 ($ |#1| (-570))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-311)) (-15 -2169 ((-2 (|:| -2436 $) (|:| -3922 (-413 |#2|))) (-413 |#2|)))) |%noBranch|))) (-562) (-1253 |#1|)) (T -629))
-((-1338 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-629 *3 *4)) (-4 *4 (-1253 *3)))) (-2650 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4)) (-4 *4 (-1253 *3)))) (-3995 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4)) (-4 *4 (-1253 *3)))) (-4394 (*1 *1 *1) (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1253 *2)))) (-4369 (*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1253 *2)))) (-4149 (*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1253 *2)))) (-3481 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4)) (-4 *4 (-1253 *2)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4)) (-4 *4 (-1253 *2)))) (-2169 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *4 (-562)) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| -2436 (-629 *4 *5)) (|:| -3922 (-413 *5)))) (-5 *1 (-629 *4 *5)) (-5 *3 (-413 *5)))))
-(-13 (-233 |#2|) (-562) (-620 (-413 |#2|)) (-417 |#1|) (-1047 |#2|) (-10 -8 (-15 -1338 ((-112) $)) (-15 -2650 ((-570) $)) (-15 -3995 ((-570) $)) (-15 -4394 ($ $)) (-15 -4369 (|#1| $)) (-15 -4149 (|#1| $)) (-15 -3481 (|#1| $ (-570))) (-15 -2402 ($ |#1| (-570))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-311)) (-15 -2169 ((-2 (|:| -2436 $) (|:| -3922 (-413 |#2|))) (-413 |#2|)))) |%noBranch|)))
-((-1510 (((-650 |#6|) (-650 |#4|) (-112)) 54)) (-1828 ((|#6| |#6|) 48)))
-(((-630 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1828 (|#6| |#6|)) (-15 -1510 ((-650 |#6|) (-650 |#4|) (-112)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|) (-1118 |#1| |#2| |#3| |#4|)) (T -630))
-((-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *10)) (-5 *1 (-630 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *10 (-1118 *5 *6 *7 *8)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-630 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *2 (-1118 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1828 (|#6| |#6|)) (-15 -1510 ((-650 |#6|) (-650 |#4|) (-112))))
-((-2366 (((-112) |#3| (-777) (-650 |#3|)) 29)) (-4103 (((-3 (-2 (|:| |polfac| (-650 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-650 (-1182 |#3|)))) "failed") |#3| (-650 (-1182 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2660 (-650 (-2 (|:| |irr| |#4|) (|:| -3634 (-570)))))) (-650 |#3|) (-650 |#1|) (-650 |#3|)) 69)))
-(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2366 ((-112) |#3| (-777) (-650 |#3|))) (-15 -4103 ((-3 (-2 (|:| |polfac| (-650 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-650 (-1182 |#3|)))) "failed") |#3| (-650 (-1182 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2660 (-650 (-2 (|:| |irr| |#4|) (|:| -3634 (-570)))))) (-650 |#3|) (-650 |#1|) (-650 |#3|)))) (-856) (-799) (-311) (-956 |#3| |#2| |#1|)) (T -631))
-((-4103 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2660 (-650 (-2 (|:| |irr| *10) (|:| -3634 (-570))))))) (-5 *6 (-650 *3)) (-5 *7 (-650 *8)) (-4 *8 (-856)) (-4 *3 (-311)) (-4 *10 (-956 *3 *9 *8)) (-4 *9 (-799)) (-5 *2 (-2 (|:| |polfac| (-650 *10)) (|:| |correct| *3) (|:| |corrfact| (-650 (-1182 *3))))) (-5 *1 (-631 *8 *9 *3 *10)) (-5 *4 (-650 (-1182 *3))))) (-2366 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-777)) (-5 *5 (-650 *3)) (-4 *3 (-311)) (-4 *6 (-856)) (-4 *7 (-799)) (-5 *2 (-112)) (-5 *1 (-631 *6 *7 *3 *8)) (-4 *8 (-956 *3 *7 *6)))))
-(-10 -7 (-15 -2366 ((-112) |#3| (-777) (-650 |#3|))) (-15 -4103 ((-3 (-2 (|:| |polfac| (-650 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-650 (-1182 |#3|)))) "failed") |#3| (-650 (-1182 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2660 (-650 (-2 (|:| |irr| |#4|) (|:| -3634 (-570)))))) (-650 |#3|) (-650 |#1|) (-650 |#3|))))
-((-2847 (((-112) $ $) NIL)) (-3871 (((-1144) $) 11)) (-3859 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-632) (-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))) (T -632))
-((-3859 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632)))))
-(-13 (-1092) (-10 -8 (-15 -3859 ((-1144) $)) (-15 -3871 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-3473 (((-650 |#1|) $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-3222 (($ $) 77)) (-3447 (((-670 |#1| |#2|) $) 60)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 81)) (-1837 (((-650 (-298 |#2|)) $ $) 42)) (-3891 (((-1129) $) NIL)) (-2651 (($ (-670 |#1| |#2|)) 56)) (-2733 (($ $ $) NIL)) (-2319 (($ $ $) NIL)) (-2869 (((-868) $) 66) (((-1292 |#1| |#2|) $) NIL) (((-1297 |#1| |#2|) $) 74)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 61 T CONST)) (-2879 (((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $) 41)) (-4324 (((-650 (-670 |#1| |#2|)) (-650 |#1|)) 73)) (-2255 (((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $) 46)) (-3892 (((-112) $ $) 62)) (-4013 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ $ $) 52)))
-(((-633 |#1| |#2| |#3|) (-13 (-479) (-10 -8 (-15 -2651 ($ (-670 |#1| |#2|))) (-15 -3447 ((-670 |#1| |#2|) $)) (-15 -2255 ((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $)) (-15 -2869 ((-1292 |#1| |#2|) $)) (-15 -2869 ((-1297 |#1| |#2|) $)) (-15 -3222 ($ $)) (-15 -3473 ((-650 |#1|) $)) (-15 -4324 ((-650 (-670 |#1| |#2|)) (-650 |#1|))) (-15 -2879 ((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $)) (-15 -1837 ((-650 (-298 |#2|)) $ $)))) (-856) (-13 (-174) (-723 (-413 (-570)))) (-928)) (T -633))
-((-2651 (*1 *1 *2) (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-5 *1 (-633 *3 *4 *5)) (-14 *5 (-928)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-670 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| (-900 *3)) (|:| |c| *4)))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-3222 (*1 *1 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-856)) (-4 *3 (-13 (-174) (-723 (-413 (-570))))) (-14 *4 (-928)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-670 *4 *5))) (-5 *1 (-633 *4 *5 *6)) (-4 *5 (-13 (-174) (-723 (-413 (-570))))) (-14 *6 (-928)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| (-678 *3)) (|:| |c| *4)))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-1837 (*1 *2 *1 *1) (-12 (-5 *2 (-650 (-298 *4))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))))
-(-13 (-479) (-10 -8 (-15 -2651 ($ (-670 |#1| |#2|))) (-15 -3447 ((-670 |#1| |#2|) $)) (-15 -2255 ((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $)) (-15 -2869 ((-1292 |#1| |#2|) $)) (-15 -2869 ((-1297 |#1| |#2|) $)) (-15 -3222 ($ $)) (-15 -3473 ((-650 |#1|) $)) (-15 -4324 ((-650 (-670 |#1| |#2|)) (-650 |#1|))) (-15 -2879 ((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $)) (-15 -1837 ((-650 (-298 |#2|)) $ $))))
-((-1510 (((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112)) 103) (((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112)) 77)) (-1912 (((-112) (-650 (-786 |#1| (-870 |#2|)))) 26)) (-1768 (((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112)) 102)) (-1332 (((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112)) 76)) (-2348 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|)))) 30)) (-2379 (((-3 (-650 (-786 |#1| (-870 |#2|))) "failed") (-650 (-786 |#1| (-870 |#2|)))) 29)))
-(((-634 |#1| |#2|) (-10 -7 (-15 -1912 ((-112) (-650 (-786 |#1| (-870 |#2|))))) (-15 -2379 ((-3 (-650 (-786 |#1| (-870 |#2|))) "failed") (-650 (-786 |#1| (-870 |#2|))))) (-15 -2348 ((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))))) (-15 -1332 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1768 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1510 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1510 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112)))) (-458) (-650 (-1186))) (T -634))
-((-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6))))) (-5 *1 (-634 *5 *6)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-634 *5 *6)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6))))) (-5 *1 (-634 *5 *6)))) (-1332 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-634 *5 *6)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458)) (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4)))) (-2379 (*1 *2 *2) (|partial| -12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458)) (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-650 (-786 *4 (-870 *5)))) (-4 *4 (-458)) (-14 *5 (-650 (-1186))) (-5 *2 (-112)) (-5 *1 (-634 *4 *5)))))
-(-10 -7 (-15 -1912 ((-112) (-650 (-786 |#1| (-870 |#2|))))) (-15 -2379 ((-3 (-650 (-786 |#1| (-870 |#2|))) "failed") (-650 (-786 |#1| (-870 |#2|))))) (-15 -2348 ((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))))) (-15 -1332 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1768 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1510 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1510 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112))))
-((-3900 (($ $) 38)) (-3770 (($ $) 21)) (-3876 (($ $) 37)) (-3745 (($ $) 22)) (-1513 (($ $) 36)) (-3791 (($ $) 23)) (-1625 (($) 48)) (-3447 (($ $) 45)) (-2316 (($ $) 17)) (-3726 (($ $ (-1101 $)) 7) (($ $ (-1186)) 6)) (-2651 (($ $) 46)) (-3701 (($ $) 15)) (-3733 (($ $) 16)) (-1523 (($ $) 35)) (-3801 (($ $) 24)) (-3913 (($ $) 34)) (-3781 (($ $) 25)) (-3887 (($ $) 33)) (-3758 (($ $) 26)) (-1561 (($ $) 44)) (-3833 (($ $) 32)) (-1536 (($ $) 43)) (-3811 (($ $) 31)) (-1585 (($ $) 42)) (-3853 (($ $) 30)) (-2900 (($ $) 41)) (-3864 (($ $) 29)) (-1575 (($ $) 40)) (-3844 (($ $) 28)) (-1546 (($ $) 39)) (-3821 (($ $) 27)) (-1834 (($ $) 19)) (-3695 (($ $) 20)) (-3338 (($ $) 18)) (** (($ $ $) 47)))
-(((-635) (-141)) (T -635))
-((-3695 (*1 *1 *1) (-4 *1 (-635))) (-1834 (*1 *1 *1) (-4 *1 (-635))) (-3338 (*1 *1 *1) (-4 *1 (-635))) (-2316 (*1 *1 *1) (-4 *1 (-635))) (-3733 (*1 *1 *1) (-4 *1 (-635))) (-3701 (*1 *1 *1) (-4 *1 (-635))))
-(-13 (-966) (-1212) (-10 -8 (-15 -3695 ($ $)) (-15 -1834 ($ $)) (-15 -3338 ($ $)) (-15 -2316 ($ $)) (-15 -3733 ($ $)) (-15 -3701 ($ $))))
-(((-35) . T) ((-95) . T) ((-288) . T) ((-499) . T) ((-966) . T) ((-1212) . T) ((-1215) . T))
-((-2558 (((-115) (-115)) 88)) (-2316 ((|#2| |#2|) 28)) (-3726 ((|#2| |#2| (-1101 |#2|)) 84) ((|#2| |#2| (-1186)) 50)) (-3701 ((|#2| |#2|) 27)) (-3733 ((|#2| |#2|) 29)) (-1475 (((-112) (-115)) 33)) (-1834 ((|#2| |#2|) 24)) (-3695 ((|#2| |#2|) 26)) (-3338 ((|#2| |#2|) 25)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -3695 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -2316 (|#2| |#2|)) (-15 -3701 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -3726 (|#2| |#2| (-1186))) (-15 -3726 (|#2| |#2| (-1101 |#2|)))) (-562) (-13 (-436 |#1|) (-1011) (-1212))) (T -636))
-((-3726 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-1011) (-1212))) (-4 *4 (-562)) (-5 *1 (-636 *4 *2)))) (-3726 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-636 *4 *2)) (-4 *2 (-13 (-436 *4) (-1011) (-1212))))) (-3733 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1212))))) (-3701 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1212))))) (-2316 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1212))))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1212))))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1212))))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1212))))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-636 *3 *4)) (-4 *4 (-13 (-436 *3) (-1011) (-1212))))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1212))))))
-(-10 -7 (-15 -1475 ((-112) (-115))) (-15 -2558 ((-115) (-115))) (-15 -3695 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -2316 (|#2| |#2|)) (-15 -3701 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -3726 (|#2| |#2| (-1186))) (-15 -3726 (|#2| |#2| (-1101 |#2|))))
-((-2982 (((-487 |#1| |#2|) (-249 |#1| |#2|)) 63)) (-2179 (((-650 (-249 |#1| |#2|)) (-650 (-487 |#1| |#2|))) 89)) (-1377 (((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-870 |#1|)) 91) (((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)) (-870 |#1|)) 90)) (-3053 (((-2 (|:| |gblist| (-650 (-249 |#1| |#2|))) (|:| |gvlist| (-650 (-570)))) (-650 (-487 |#1| |#2|))) 134)) (-2809 (((-650 (-487 |#1| |#2|)) (-870 |#1|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|))) 104)) (-3448 (((-2 (|:| |glbase| (-650 (-249 |#1| |#2|))) (|:| |glval| (-650 (-570)))) (-650 (-249 |#1| |#2|))) 145)) (-2219 (((-1277 |#2|) (-487 |#1| |#2|) (-650 (-487 |#1| |#2|))) 68)) (-3401 (((-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|))) 47)) (-1605 (((-249 |#1| |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|))) 60)) (-1719 (((-249 |#1| |#2|) (-650 |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|))) 112)))
-(((-637 |#1| |#2|) (-10 -7 (-15 -3053 ((-2 (|:| |gblist| (-650 (-249 |#1| |#2|))) (|:| |gvlist| (-650 (-570)))) (-650 (-487 |#1| |#2|)))) (-15 -3448 ((-2 (|:| |glbase| (-650 (-249 |#1| |#2|))) (|:| |glval| (-650 (-570)))) (-650 (-249 |#1| |#2|)))) (-15 -2179 ((-650 (-249 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1377 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -1377 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -3401 ((-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -2219 ((-1277 |#2|) (-487 |#1| |#2|) (-650 (-487 |#1| |#2|)))) (-15 -1719 ((-249 |#1| |#2|) (-650 |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -2809 ((-650 (-487 |#1| |#2|)) (-870 |#1|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1605 ((-249 |#1| |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -2982 ((-487 |#1| |#2|) (-249 |#1| |#2|)))) (-650 (-1186)) (-458)) (T -637))
-((-2982 (*1 *2 *3) (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-487 *4 *5)) (-5 *1 (-637 *4 *5)))) (-1605 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-249 *4 *5))) (-5 *2 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5)))) (-2809 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-870 *4)) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5)))) (-1719 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-249 *5 *6))) (-4 *6 (-458)) (-5 *2 (-249 *5 *6)) (-14 *5 (-650 (-1186))) (-5 *1 (-637 *5 *6)))) (-2219 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-487 *5 *6))) (-5 *3 (-487 *5 *6)) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-1277 *6)) (-5 *1 (-637 *5 *6)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-650 (-487 *3 *4))) (-14 *3 (-650 (-1186))) (-4 *4 (-458)) (-5 *1 (-637 *3 *4)))) (-1377 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5)) (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6)) (-4 *6 (-458)))) (-1377 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5)) (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6)) (-4 *6 (-458)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-650 (-249 *4 *5))) (-5 *1 (-637 *4 *5)))) (-3448 (*1 *2 *3) (-12 (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-2 (|:| |glbase| (-650 (-249 *4 *5))) (|:| |glval| (-650 (-570))))) (-5 *1 (-637 *4 *5)) (-5 *3 (-650 (-249 *4 *5))))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-2 (|:| |gblist| (-650 (-249 *4 *5))) (|:| |gvlist| (-650 (-570))))) (-5 *1 (-637 *4 *5)))))
-(-10 -7 (-15 -3053 ((-2 (|:| |gblist| (-650 (-249 |#1| |#2|))) (|:| |gvlist| (-650 (-570)))) (-650 (-487 |#1| |#2|)))) (-15 -3448 ((-2 (|:| |glbase| (-650 (-249 |#1| |#2|))) (|:| |glval| (-650 (-570)))) (-650 (-249 |#1| |#2|)))) (-15 -2179 ((-650 (-249 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1377 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -1377 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -3401 ((-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -2219 ((-1277 |#2|) (-487 |#1| |#2|) (-650 (-487 |#1| |#2|)))) (-15 -1719 ((-249 |#1| |#2|) (-650 |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -2809 ((-650 (-487 |#1| |#2|)) (-870 |#1|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1605 ((-249 |#1| |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -2982 ((-487 |#1| |#2|) (-249 |#1| |#2|))))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) NIL)) (-2204 (((-1282) $ (-1168) (-1168)) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 (((-52) $ (-1168) (-52)) 16) (((-52) $ (-1186) (-52)) 17)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 (-52) "failed") (-1168) $) NIL)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109))))) (-3614 (($ (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-3 (-52) "failed") (-1168) $) NIL)) (-3617 (($ (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $ (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (((-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $ (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-2845 (((-52) $ (-1168) (-52)) NIL (|has| $ (-6 -4453)))) (-2774 (((-52) $ (-1168)) NIL)) (-3976 (((-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-650 (-52)) $) NIL (|has| $ (-6 -4452)))) (-1722 (($ $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-1168) $) NIL (|has| (-1168) (-856)))) (-3069 (((-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-650 (-52)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109))))) (-1894 (((-1168) $) NIL (|has| (-1168) (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4453))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2548 (($ (-394)) 9)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109))))) (-1988 (((-650 (-1168)) $) NIL)) (-2093 (((-112) (-1168) $) NIL)) (-3398 (((-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) $) NIL)) (-2801 (($ (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) $) NIL)) (-4075 (((-650 (-1168)) $) NIL)) (-4276 (((-112) (-1168) $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109))))) (-1948 (((-52) $) NIL (|has| (-1168) (-856)))) (-2115 (((-3 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) "failed") (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL)) (-4222 (($ $ (-52)) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (($ $ (-298 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (($ $ (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (($ $ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (($ $ (-650 (-52)) (-650 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-298 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-650 (-298 (-52)))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109))))) (-2856 (((-650 (-52)) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 (((-52) $ (-1168)) 14) (((-52) $ (-1168) (-52)) NIL) (((-52) $ (-1186)) 15)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109)))) (((-777) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109)))) (((-777) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-52) (-619 (-868))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 (-52))) (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-638) (-13 (-1203 (-1168) (-52)) (-290 (-1186) (-52)) (-10 -8 (-15 -2548 ($ (-394))) (-15 -1722 ($ $)) (-15 -3040 ((-52) $ (-1186) (-52)))))) (T -638))
-((-2548 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-638)))) (-1722 (*1 *1 *1) (-5 *1 (-638))) (-3040 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1186)) (-5 *1 (-638)))))
-(-13 (-1203 (-1168) (-52)) (-290 (-1186) (-52)) (-10 -8 (-15 -2548 ($ (-394))) (-15 -1722 ($ $)) (-15 -3040 ((-52) $ (-1186) (-52)))))
-((-4013 (($ $ |#2|) 10)))
-(((-639 |#1| |#2|) (-10 -8 (-15 -4013 (|#1| |#1| |#2|))) (-640 |#2|) (-174)) (T -639))
-NIL
-(-10 -8 (-15 -4013 (|#1| |#1| |#2|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2881 (($ $ $) 34)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 33 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-640 |#1|) (-141) (-174)) (T -640))
-((-2881 (*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174)) (-4 *2 (-368)))))
-(-13 (-723 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2881 ($ $ $)) (IF (|has| |t#1| (-368)) (-15 -4013 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1347 (((-3 $ "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-1757 (((-1277 (-695 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-1277 (-695 |#1|)) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-3266 (((-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2333 (($) NIL T CONST)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3929 (((-3 $ "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3237 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-4071 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2713 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2075 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3260 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-1794 (($ $ (-928)) NIL)) (-2095 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2770 (((-1182 |#1|) $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1885 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-4236 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-2027 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2615 (($ (-1277 |#1|)) NIL (|has| |#2| (-423 |#1|))) (($ (-1277 |#1|) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-3957 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-4412 (((-928)) NIL (|has| |#2| (-372 |#1|)))) (-2462 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3969 (($ $ (-928)) NIL)) (-1991 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1939 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3505 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3489 (((-3 $ "failed")) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3592 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2790 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2256 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-1760 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-4019 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-3454 (($ $ (-928)) NIL)) (-2168 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-1700 (((-1182 |#1|) $) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1965 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-4281 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-2476 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3240 (((-1168) $) NIL)) (-3084 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2451 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3692 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3891 (((-1129) $) NIL)) (-2808 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2057 ((|#1| $ (-570)) NIL (|has| |#2| (-423 |#1|)))) (-2987 (((-695 |#1|) (-1277 $)) NIL (|has| |#2| (-423 |#1|))) (((-1277 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1277 $) (-1277 $)) NIL (|has| |#2| (-372 |#1|))) (((-1277 |#1|) $ (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2601 (($ (-1277 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-1277 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-4259 (((-650 (-959 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-650 (-959 |#1|)) (-1277 $)) NIL (|has| |#2| (-372 |#1|)))) (-2319 (($ $ $) NIL)) (-3143 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2869 (((-868) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL (|has| |#2| (-423 |#1|)))) (-2013 (((-650 (-1277 |#1|))) NIL (-3749 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-4373 (($ $ $ $) NIL)) (-2125 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1936 (($ (-695 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-2885 (($ $ $) NIL)) (-4099 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-4235 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1849 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) 20)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-641 |#1| |#2|) (-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -2869 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|))) (-174) (-750 |#1|)) (T -641))
-((-2869 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-641 *3 *2)) (-4 *2 (-750 *3)))))
-(-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -2869 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|)))
-((-4233 (((-3 (-849 |#2|) "failed") |#2| (-298 |#2|) (-1168)) 106) (((-3 (-849 |#2|) (-2 (|:| |leftHandLimit| (-3 (-849 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-849 |#2|) "failed"))) "failed") |#2| (-298 (-849 |#2|))) 131)) (-4391 (((-3 (-839 |#2|) "failed") |#2| (-298 (-839 |#2|))) 136)))
-(((-642 |#1| |#2|) (-10 -7 (-15 -4233 ((-3 (-849 |#2|) (-2 (|:| |leftHandLimit| (-3 (-849 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-849 |#2|) "failed"))) "failed") |#2| (-298 (-849 |#2|)))) (-15 -4391 ((-3 (-839 |#2|) "failed") |#2| (-298 (-839 |#2|)))) (-15 -4233 ((-3 (-849 |#2|) "failed") |#2| (-298 |#2|) (-1168)))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|))) (T -642))
-((-4233 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-298 *3)) (-5 *5 (-1168)) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-849 *3)) (-5 *1 (-642 *6 *3)))) (-4391 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-298 (-839 *3))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-839 *3)) (-5 *1 (-642 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))) (-4233 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-849 *3))) (-4 *3 (-13 (-27) (-1212) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (-849 *3) (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed")) (|:| |rightHandLimit| (-3 (-849 *3) "failed"))) "failed")) (-5 *1 (-642 *5 *3)))))
-(-10 -7 (-15 -4233 ((-3 (-849 |#2|) (-2 (|:| |leftHandLimit| (-3 (-849 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-849 |#2|) "failed"))) "failed") |#2| (-298 (-849 |#2|)))) (-15 -4391 ((-3 (-839 |#2|) "failed") |#2| (-298 (-839 |#2|)))) (-15 -4233 ((-3 (-849 |#2|) "failed") |#2| (-298 |#2|) (-1168))))
-((-4233 (((-3 (-849 (-413 (-959 |#1|))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))) (-1168)) 86) (((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|)))) 20) (((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-849 (-959 |#1|)))) 35)) (-4391 (((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|)))) 23) (((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-839 (-959 |#1|)))) 43)))
-(((-643 |#1|) (-10 -7 (-15 -4233 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-849 (-959 |#1|))))) (-15 -4233 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -4391 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-839 (-959 |#1|))))) (-15 -4391 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -4233 ((-3 (-849 (-413 (-959 |#1|))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))) (-1168)))) (-458)) (T -643))
-((-4233 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-298 (-413 (-959 *6)))) (-5 *5 (-1168)) (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-849 *3)) (-5 *1 (-643 *6)))) (-4391 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-458)) (-5 *2 (-839 *3)) (-5 *1 (-643 *5)))) (-4391 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-839 (-959 *5)))) (-4 *5 (-458)) (-5 *2 (-839 (-413 (-959 *5)))) (-5 *1 (-643 *5)) (-5 *3 (-413 (-959 *5))))) (-4233 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-458)) (-5 *2 (-3 (-849 *3) (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed")) (|:| |rightHandLimit| (-3 (-849 *3) "failed"))) "failed")) (-5 *1 (-643 *5)))) (-4233 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-849 (-959 *5)))) (-4 *5 (-458)) (-5 *2 (-3 (-849 (-413 (-959 *5))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 *5))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 *5))) "failed"))) "failed")) (-5 *1 (-643 *5)) (-5 *3 (-413 (-959 *5))))))
-(-10 -7 (-15 -4233 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-849 (-959 |#1|))))) (-15 -4233 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -4391 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-839 (-959 |#1|))))) (-15 -4391 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -4233 ((-3 (-849 (-413 (-959 |#1|))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))) (-1168))))
-((-4076 (((-3 (-1277 (-413 |#1|)) "failed") (-1277 |#2|) |#2|) 64 (-3201 (|has| |#1| (-368)))) (((-3 (-1277 |#1|) "failed") (-1277 |#2|) |#2|) 49 (|has| |#1| (-368)))) (-3880 (((-112) (-1277 |#2|)) 33)) (-3840 (((-3 (-1277 |#1|) "failed") (-1277 |#2|)) 40)))
-(((-644 |#1| |#2|) (-10 -7 (-15 -3880 ((-112) (-1277 |#2|))) (-15 -3840 ((-3 (-1277 |#1|) "failed") (-1277 |#2|))) (IF (|has| |#1| (-368)) (-15 -4076 ((-3 (-1277 |#1|) "failed") (-1277 |#2|) |#2|)) (-15 -4076 ((-3 (-1277 (-413 |#1|)) "failed") (-1277 |#2|) |#2|)))) (-562) (-645 |#1|)) (T -644))
-((-4076 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 *5)) (-3201 (-4 *5 (-368))) (-4 *5 (-562)) (-5 *2 (-1277 (-413 *5))) (-5 *1 (-644 *5 *4)))) (-4076 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 *5)) (-4 *5 (-368)) (-4 *5 (-562)) (-5 *2 (-1277 *5)) (-5 *1 (-644 *5 *4)))) (-3840 (*1 *2 *3) (|partial| -12 (-5 *3 (-1277 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562)) (-5 *2 (-1277 *4)) (-5 *1 (-644 *4 *5)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-1277 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-644 *4 *5)))))
-(-10 -7 (-15 -3880 ((-112) (-1277 |#2|))) (-15 -3840 ((-3 (-1277 |#1|) "failed") (-1277 |#2|))) (IF (|has| |#1| (-368)) (-15 -4076 ((-3 (-1277 |#1|) "failed") (-1277 |#2|) |#2|)) (-15 -4076 ((-3 (-1277 (-413 |#1|)) "failed") (-1277 |#2|) |#2|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3054 (((-695 |#1|) (-695 $)) 40) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 39)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-645 |#1|) (-141) (-1058)) (T -645))
-((-3054 (*1 *2 *3) (-12 (-5 *3 (-695 *1)) (-4 *1 (-645 *4)) (-4 *4 (-1058)) (-5 *2 (-695 *4)))) (-3054 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *1)) (-5 *4 (-1277 *1)) (-4 *1 (-645 *5)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -2565 (-695 *5)) (|:| |vec| (-1277 *5)))))))
-(-13 (-1058) (-10 -8 (-15 -3054 ((-695 |t#1|) (-695 $))) (-15 -3054 ((-2 (|:| -2565 (-695 |t#1|)) (|:| |vec| (-1277 |t#1|))) (-695 $) (-1277 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 16 T CONST)) (-3892 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
-(((-646 |#1|) (-141) (-1067)) (T -646))
-NIL
-(-13 (-652 |t#1|) (-1060 |t#1|))
-(((-102) . T) ((-619 (-868)) . T) ((-652 |#1|) . T) ((-1060 |#1|) . T) ((-1109) . T))
-((-1608 ((|#2| (-650 |#1|) (-650 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-650 |#1|) (-650 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) |#2|) 17) ((|#2| (-650 |#1|) (-650 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|)) 12)))
-(((-647 |#1| |#2|) (-10 -7 (-15 -1608 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|))) (-15 -1608 (|#2| (-650 |#1|) (-650 |#2|) |#1|)) (-15 -1608 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) |#2|)) (-15 -1608 (|#2| (-650 |#1|) (-650 |#2|) |#1| |#2|)) (-15 -1608 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) (-1 |#2| |#1|))) (-15 -1608 (|#2| (-650 |#1|) (-650 |#2|) |#1| (-1 |#2| |#1|)))) (-1109) (-1227)) (T -647))
-((-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1109)) (-4 *2 (-1227)) (-5 *1 (-647 *5 *2)))) (-1608 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-650 *5)) (-5 *4 (-650 *6)) (-4 *5 (-1109)) (-4 *6 (-1227)) (-5 *1 (-647 *5 *6)))) (-1608 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109)) (-4 *2 (-1227)) (-5 *1 (-647 *5 *2)))) (-1608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 *5)) (-4 *6 (-1109)) (-4 *5 (-1227)) (-5 *2 (-1 *5 *6)) (-5 *1 (-647 *6 *5)))) (-1608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109)) (-4 *2 (-1227)) (-5 *1 (-647 *5 *2)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *6)) (-4 *5 (-1109)) (-4 *6 (-1227)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *5 *6)))))
-(-10 -7 (-15 -1608 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|))) (-15 -1608 (|#2| (-650 |#1|) (-650 |#2|) |#1|)) (-15 -1608 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) |#2|)) (-15 -1608 (|#2| (-650 |#1|) (-650 |#2|) |#1| |#2|)) (-15 -1608 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) (-1 |#2| |#1|))) (-15 -1608 (|#2| (-650 |#1|) (-650 |#2|) |#1| (-1 |#2| |#1|))))
-((-3693 (((-650 |#2|) (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|) 16)) (-2295 ((|#2| (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|) 18)) (-2536 (((-650 |#2|) (-1 |#2| |#1|) (-650 |#1|)) 13)))
-(((-648 |#1| |#2|) (-10 -7 (-15 -3693 ((-650 |#2|) (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -2536 ((-650 |#2|) (-1 |#2| |#1|) (-650 |#1|)))) (-1227) (-1227)) (T -648))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-650 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-650 *6)) (-5 *1 (-648 *5 *6)))) (-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-650 *5)) (-4 *5 (-1227)) (-4 *2 (-1227)) (-5 *1 (-648 *5 *2)))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-650 *6)) (-4 *6 (-1227)) (-4 *5 (-1227)) (-5 *2 (-650 *5)) (-5 *1 (-648 *6 *5)))))
-(-10 -7 (-15 -3693 ((-650 |#2|) (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -2536 ((-650 |#2|) (-1 |#2| |#1|) (-650 |#1|))))
-((-2536 (((-650 |#3|) (-1 |#3| |#1| |#2|) (-650 |#1|) (-650 |#2|)) 21)))
-(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -2536 ((-650 |#3|) (-1 |#3| |#1| |#2|) (-650 |#1|) (-650 |#2|)))) (-1227) (-1227) (-1227)) (T -649))
-((-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-650 *6)) (-5 *5 (-650 *7)) (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-650 *8)) (-5 *1 (-649 *6 *7 *8)))))
-(-10 -7 (-15 -2536 ((-650 |#3|) (-1 |#3| |#1| |#2|) (-650 |#1|) (-650 |#2|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) NIL)) (-2975 ((|#1| $) NIL)) (-3446 (($ $) NIL)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) $) NIL (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2778 (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2018 (($ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-2364 (($ $ $) NIL (|has| $ (-6 -4453)))) (-1639 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4453))) (($ $ "rest" $) NIL (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-4393 (($ $ $) 37 (|has| |#1| (-1109)))) (-1336 (($ $ $) 41 (|has| |#1| (-1109)))) (-3073 (($ $ $) 44 (|has| |#1| (-1109)))) (-3350 (($ (-1 (-112) |#1|) $) NIL)) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2963 ((|#1| $) NIL)) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-1962 (($ $) 23) (($ $ (-777)) NIL)) (-1381 (($ $) NIL (|has| |#1| (-1109)))) (-3153 (($ $) 36 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-3617 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2836 (((-112) $) NIL)) (-2619 (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109))) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) NIL)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3189 (((-112) $) 11)) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3442 (($) 9 T CONST)) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-3675 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4356 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1677 (($ |#1|) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3637 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2801 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2119 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) 20) (($ $ (-777)) NIL)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-2655 (((-112) $) NIL)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) 39)) (-1698 (($) 38)) (-2057 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1244 (-570))) NIL) ((|#1| $ (-570)) 42) ((|#1| $ (-570) |#1|) NIL)) (-2352 (((-570) $ $) NIL)) (-3332 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-3225 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-1355 (((-112) $) NIL)) (-2288 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4453)))) (-2846 (((-777) $) NIL)) (-3522 (($ $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) 53 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) NIL)) (-2807 (($ |#1| $) 12)) (-1674 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1505 (($ $ $) 35) (($ |#1| $) 43) (($ (-650 $)) NIL) (($ $ |#1|) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3888 (($ $ $) 13)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-4245 (((-1168) $) 31 (|has| |#1| (-834))) (((-1168) $ (-112)) 32 (|has| |#1| (-834))) (((-1282) (-828) $) 33 (|has| |#1| (-834))) (((-1282) (-828) $ (-112)) 34 (|has| |#1| (-834)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-650 |#1|) (-13 (-672 |#1|) (-10 -8 (-15 -3442 ($) -3722) (-15 -3189 ((-112) $)) (-15 -2807 ($ |#1| $)) (-15 -3888 ($ $ $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -4393 ($ $ $)) (-15 -1336 ($ $ $)) (-15 -3073 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|))) (-1227)) (T -650))
-((-3442 (*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1227)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-1227)))) (-2807 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1227)))) (-3888 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1227)))) (-4393 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1227)))) (-1336 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1227)))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1227)))))
-(-13 (-672 |#1|) (-10 -8 (-15 -3442 ($) -3722) (-15 -3189 ((-112) $)) (-15 -2807 ($ |#1| $)) (-15 -3888 ($ $ $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -4393 ($ $ $)) (-15 -1336 ($ $ $)) (-15 -3073 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 11) (($ (-1191)) NIL) (((-1191) $) NIL) ((|#1| $) 8)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-651 |#1|) (-13 (-1092) (-619 |#1|)) (-1109)) (T -651))
-NIL
-(-13 (-1092) (-619 |#1|))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 16 T CONST)) (-3892 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
-(((-652 |#1|) (-141) (-1067)) (T -652))
-((-1981 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067)))))
-(-13 (-1109) (-10 -8 (-15 (-1981) ($) -3722) (-15 -2564 ((-112) $)) (-15 * ($ |t#1| $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2785 (($ |#1| |#1| $) 43)) (-2855 (((-112) $ (-777)) NIL)) (-3350 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-1381 (($ $) 45)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) 56 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 9 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 37)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3398 ((|#1| $) 47)) (-2801 (($ |#1| $) 29) (($ |#1| $ (-777)) 42)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4126 ((|#1| $) 50)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 23)) (-1698 (($) 28)) (-2920 (((-112) $) 54)) (-1553 (((-650 (-2 (|:| -3165 |#1|) (|:| -3901 (-777)))) $) 67)) (-2910 (($) 26) (($ (-650 |#1|)) 19)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) 63 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 20)) (-2601 (((-542) $) 34 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) NIL)) (-2869 (((-868) $) 14 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 24)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 69 (|has| |#1| (-1109)))) (-2857 (((-777) $) 17 (|has| $ (-6 -4452)))))
-(((-653 |#1|) (-13 (-701 |#1|) (-10 -8 (-6 -4452) (-15 -2920 ((-112) $)) (-15 -2785 ($ |#1| |#1| $)))) (-1109)) (T -653))
-((-2920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1109)))) (-2785 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1109)))))
-(-13 (-701 |#1|) (-10 -8 (-6 -4452) (-15 -2920 ((-112) $)) (-15 -2785 ($ |#1| |#1| $))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27)))
-(((-654 |#1|) (-141) (-1067)) (T -654))
-NIL
-(-13 (-21) (-652 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777) $) 17)) (-1806 (($ $ |#1|) 69)) (-4125 (($ $) 39)) (-4366 (($ $) 37)) (-2435 (((-3 |#1| "failed") $) 61)) (-4387 ((|#1| $) NIL)) (-3595 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-4012 (((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-570)) 56)) (-2245 ((|#1| $ (-570)) 35)) (-1762 ((|#2| $ (-570)) 34)) (-4249 (($ (-1 |#1| |#1|) $) 41)) (-1713 (($ (-1 |#2| |#2|) $) 47)) (-4384 (($) 11)) (-2629 (($ |#1| |#2|) 24)) (-4014 (($ (-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|)))) 25)) (-2915 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|))) $) 14)) (-2092 (($ |#1| $) 71)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2051 (((-112) $ $) 76)) (-2869 (((-868) $) 21) (($ |#1|) 18)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 27)))
-(((-655 |#1| |#2| |#3|) (-13 (-1109) (-1047 |#1|) (-10 -8 (-15 -4012 ((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-570))) (-15 -2915 ((-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|))) $)) (-15 -2629 ($ |#1| |#2|)) (-15 -4014 ($ (-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|))))) (-15 -1762 (|#2| $ (-570))) (-15 -2245 (|#1| $ (-570))) (-15 -4366 ($ $)) (-15 -4125 ($ $)) (-15 -2401 ((-777) $)) (-15 -4384 ($)) (-15 -1806 ($ $ |#1|)) (-15 -2092 ($ |#1| $)) (-15 -3595 ($ |#1| |#2| $)) (-15 -3595 ($ $ $)) (-15 -2051 ((-112) $ $)) (-15 -1713 ($ (-1 |#2| |#2|) $)) (-15 -4249 ($ (-1 |#1| |#1|) $)))) (-1109) (-23) |#2|) (T -655))
-((-4012 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-868) (-868) (-868))) (-5 *4 (-570)) (-5 *2 (-868)) (-5 *1 (-655 *5 *6 *7)) (-4 *5 (-1109)) (-4 *6 (-23)) (-14 *7 *6))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 *4)))) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))) (-2629 (*1 *1 *2 *3) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 *4)))) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-655 *3 *4 *5)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *2 (-23)) (-5 *1 (-655 *4 *2 *5)) (-4 *4 (-1109)) (-14 *5 *2))) (-2245 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *2 (-1109)) (-5 *1 (-655 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-4125 (*1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))) (-4384 (*1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-1806 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-2092 (*1 *1 *2 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-3595 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-3595 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-2051 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)))) (-4249 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-655 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1109) (-1047 |#1|) (-10 -8 (-15 -4012 ((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-570))) (-15 -2915 ((-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|))) $)) (-15 -2629 ($ |#1| |#2|)) (-15 -4014 ($ (-650 (-2 (|:| |gen| |#1|) (|:| -2651 |#2|))))) (-15 -1762 (|#2| $ (-570))) (-15 -2245 (|#1| $ (-570))) (-15 -4366 ($ $)) (-15 -4125 ($ $)) (-15 -2401 ((-777) $)) (-15 -4384 ($)) (-15 -1806 ($ $ |#1|)) (-15 -2092 ($ |#1| $)) (-15 -3595 ($ |#1| |#2| $)) (-15 -3595 ($ $ $)) (-15 -2051 ((-112) $ $)) (-15 -1713 ($ (-1 |#2| |#2|) $)) (-15 -4249 ($ (-1 |#1| |#1|) $))))
-((-1894 (((-570) $) 31)) (-2119 (($ |#2| $ (-570)) 27) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) 12)) (-4276 (((-112) (-570) $) 18)) (-1505 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-650 $)) NIL)))
-(((-656 |#1| |#2|) (-10 -8 (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -1505 (|#1| (-650 |#1|))) (-15 -1505 (|#1| |#1| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#2|)) (-15 -1894 ((-570) |#1|)) (-15 -4075 ((-650 (-570)) |#1|)) (-15 -4276 ((-112) (-570) |#1|))) (-657 |#2|) (-1227)) (T -656))
-NIL
-(-10 -8 (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -1505 (|#1| (-650 |#1|))) (-15 -1505 (|#1| |#1| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#2|)) (-15 -1894 ((-570) |#1|)) (-15 -4075 ((-650 (-570)) |#1|)) (-15 -4276 ((-112) (-570) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 60 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-3153 (($ $) 80 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#1| $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 52)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 43 (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4222 (($ $ |#1|) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1244 (-570))) 71)) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 72)) (-1505 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-657 |#1|) (-141) (-1227)) (T -657))
-((-2296 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-4 *1 (-657 *3)) (-4 *3 (-1227)))) (-1505 (*1 *1 *1 *2) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1227)))) (-1505 (*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1227)))) (-1505 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1227)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-657 *3)) (-4 *3 (-1227)))) (-2536 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-657 *3)) (-4 *3 (-1227)))) (-3225 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1227)))) (-3225 (*1 *1 *1 *2) (-12 (-5 *2 (-1244 (-570))) (-4 *1 (-657 *3)) (-4 *3 (-1227)))) (-2119 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-657 *2)) (-4 *2 (-1227)))) (-2119 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1227)))) (-3040 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1244 (-570))) (|has| *1 (-6 -4453)) (-4 *1 (-657 *2)) (-4 *2 (-1227)))))
-(-13 (-610 (-570) |t#1|) (-152 |t#1|) (-290 (-1244 (-570)) $) (-10 -8 (-15 -2296 ($ (-777) |t#1|)) (-15 -1505 ($ $ |t#1|)) (-15 -1505 ($ |t#1| $)) (-15 -1505 ($ $ $)) (-15 -1505 ($ (-650 $))) (-15 -2536 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3225 ($ $ (-570))) (-15 -3225 ($ $ (-1244 (-570)))) (-15 -2119 ($ |t#1| $ (-570))) (-15 -2119 ($ $ $ (-570))) (IF (|has| $ (-6 -4453)) (-15 -3040 (|t#1| $ (-1244 (-570)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2577 (((-3 |#2| "failed") |#3| |#2| (-1186) |#2| (-650 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) "failed") |#3| |#2| (-1186)) 44)))
-(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -2577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) "failed") |#3| |#2| (-1186))) (-15 -2577 ((-3 |#2| "failed") |#3| |#2| (-1186) |#2| (-650 |#2|)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1212) (-966)) (-662 |#2|)) (T -658))
-((-2577 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *2)) (-4 *2 (-13 (-29 *6) (-1212) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-658 *6 *2 *3)) (-4 *3 (-662 *2)))) (-2577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1186)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-4 *4 (-13 (-29 *6) (-1212) (-966))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2681 (-650 *4)))) (-5 *1 (-658 *6 *4 *3)) (-4 *3 (-662 *4)))))
-(-10 -7 (-15 -2577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) "failed") |#3| |#2| (-1186))) (-15 -2577 ((-3 |#2| "failed") |#3| |#2| (-1186) |#2| (-650 |#2|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1726 (($ $) NIL (|has| |#1| (-368)))) (-2039 (($ $ $) NIL (|has| |#1| (-368)))) (-2280 (($ $ (-777)) NIL (|has| |#1| (-368)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2960 (($ $ $) NIL (|has| |#1| (-368)))) (-2587 (($ $ $) NIL (|has| |#1| (-368)))) (-2264 (($ $ $) NIL (|has| |#1| (-368)))) (-3620 (($ $ $) NIL (|has| |#1| (-368)))) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2698 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458)))) (-2005 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) NIL)) (-3980 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-1880 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-2689 (((-777) $) NIL)) (-1862 (($ $ $) NIL (|has| |#1| (-368)))) (-2635 (($ $ $) NIL (|has| |#1| (-368)))) (-1730 (($ $ $) NIL (|has| |#1| (-368)))) (-1512 (($ $ $) NIL (|has| |#1| (-368)))) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2890 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2510 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2057 ((|#1| $ |#1|) NIL)) (-2539 (($ $ $) NIL (|has| |#1| (-368)))) (-2650 (((-777) $) NIL)) (-2128 ((|#1| $) NIL (|has| |#1| (-458)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1936 ((|#1| $ |#1| |#1|) NIL)) (-2096 (($ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($) NIL)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-659 |#1|) (-662 |#1|) (-235)) (T -659))
-NIL
-(-662 |#1|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1726 (($ $) NIL (|has| |#1| (-368)))) (-2039 (($ $ $) NIL (|has| |#1| (-368)))) (-2280 (($ $ (-777)) NIL (|has| |#1| (-368)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2960 (($ $ $) NIL (|has| |#1| (-368)))) (-2587 (($ $ $) NIL (|has| |#1| (-368)))) (-2264 (($ $ $) NIL (|has| |#1| (-368)))) (-3620 (($ $ $) NIL (|has| |#1| (-368)))) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2698 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458)))) (-2005 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) NIL)) (-3980 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-1880 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-2689 (((-777) $) NIL)) (-1862 (($ $ $) NIL (|has| |#1| (-368)))) (-2635 (($ $ $) NIL (|has| |#1| (-368)))) (-1730 (($ $ $) NIL (|has| |#1| (-368)))) (-1512 (($ $ $) NIL (|has| |#1| (-368)))) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2890 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2510 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2057 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2539 (($ $ $) NIL (|has| |#1| (-368)))) (-2650 (((-777) $) NIL)) (-2128 ((|#1| $) NIL (|has| |#1| (-458)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1936 ((|#1| $ |#1| |#1|) NIL)) (-2096 (($ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($) NIL)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-660 |#1| |#2|) (-13 (-662 |#1|) (-290 |#2| |#2|)) (-235) (-13 (-654 |#1|) (-10 -8 (-15 -2375 ($ $))))) (T -660))
-NIL
-(-13 (-662 |#1|) (-290 |#2| |#2|))
-((-1726 (($ $) 29)) (-2096 (($ $) 27)) (-3414 (($) 13)))
-(((-661 |#1| |#2|) (-10 -8 (-15 -1726 (|#1| |#1|)) (-15 -2096 (|#1| |#1|)) (-15 -3414 (|#1|))) (-662 |#2|) (-1058)) (T -661))
-NIL
-(-10 -8 (-15 -1726 (|#1| |#1|)) (-15 -2096 (|#1| |#1|)) (-15 -3414 (|#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1726 (($ $) 87 (|has| |#1| (-368)))) (-2039 (($ $ $) 89 (|has| |#1| (-368)))) (-2280 (($ $ (-777)) 88 (|has| |#1| (-368)))) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2960 (($ $ $) 50 (|has| |#1| (-368)))) (-2587 (($ $ $) 51 (|has| |#1| (-368)))) (-2264 (($ $ $) 53 (|has| |#1| (-368)))) (-3620 (($ $ $) 48 (|has| |#1| (-368)))) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 47 (|has| |#1| (-368)))) (-2760 (((-3 $ "failed") $ $) 49 (|has| |#1| (-368)))) (-2698 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 52 (|has| |#1| (-368)))) (-2435 (((-3 (-570) "failed") $) 80 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 77 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 74)) (-4387 (((-570) $) 79 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 76 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 75)) (-4394 (($ $) 69)) (-3957 (((-3 $ "failed") $) 37)) (-2211 (($ $) 60 (|has| |#1| (-458)))) (-2005 (((-112) $) 35)) (-2402 (($ |#1| (-777)) 67)) (-3980 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 62 (|has| |#1| (-562)))) (-1880 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63 (|has| |#1| (-562)))) (-2689 (((-777) $) 71)) (-1862 (($ $ $) 57 (|has| |#1| (-368)))) (-2635 (($ $ $) 58 (|has| |#1| (-368)))) (-1730 (($ $ $) 46 (|has| |#1| (-368)))) (-1512 (($ $ $) 55 (|has| |#1| (-368)))) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 54 (|has| |#1| (-368)))) (-2890 (((-3 $ "failed") $ $) 56 (|has| |#1| (-368)))) (-2510 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 59 (|has| |#1| (-368)))) (-4369 ((|#1| $) 70)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-562)))) (-2057 ((|#1| $ |#1|) 92)) (-2539 (($ $ $) 86 (|has| |#1| (-368)))) (-2650 (((-777) $) 72)) (-2128 ((|#1| $) 61 (|has| |#1| (-458)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 78 (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 73)) (-3125 (((-650 |#1|) $) 66)) (-3481 ((|#1| $ (-777)) 68)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1936 ((|#1| $ |#1| |#1|) 65)) (-2096 (($ $) 90)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($) 91)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-662 |#1|) (-141) (-1058)) (T -662))
-((-3414 (*1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)))) (-2096 (*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)))) (-2039 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2280 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-662 *3)) (-4 *3 (-1058)) (-4 *3 (-368)))) (-1726 (*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(-13 (-858 |t#1|) (-290 |t#1| |t#1|) (-10 -8 (-15 -3414 ($)) (-15 -2096 ($ $)) (IF (|has| |t#1| (-368)) (PROGN (-15 -2039 ($ $ $)) (-15 -2280 ($ $ (-777))) (-15 -1726 ($ $)) (-15 -2539 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-290 |#1| |#1|) . T) ((-417 |#1|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1227) . T) ((-858 |#1|) . T))
-((-3194 (((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))) 85 (|has| |#1| (-27)))) (-2340 (((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))) 84 (|has| |#1| (-27))) (((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 19)))
-(((-663 |#1| |#2|) (-10 -7 (-15 -2340 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2340 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)))) (-15 -3194 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))))) |%noBranch|)) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1253 |#1|)) (T -663))
-((-3194 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4)) (-5 *2 (-650 (-659 (-413 *5)))) (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5))))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4)) (-5 *2 (-650 (-659 (-413 *5)))) (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5))))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-5 *2 (-650 (-659 (-413 *6)))) (-5 *1 (-663 *5 *6)) (-5 *3 (-659 (-413 *6))))))
-(-10 -7 (-15 -2340 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2340 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)))) (-15 -3194 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))))) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1726 (($ $) NIL (|has| |#1| (-368)))) (-2039 (($ $ $) 28 (|has| |#1| (-368)))) (-2280 (($ $ (-777)) 31 (|has| |#1| (-368)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2960 (($ $ $) NIL (|has| |#1| (-368)))) (-2587 (($ $ $) NIL (|has| |#1| (-368)))) (-2264 (($ $ $) NIL (|has| |#1| (-368)))) (-3620 (($ $ $) NIL (|has| |#1| (-368)))) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2698 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458)))) (-2005 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) NIL)) (-3980 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-1880 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-2689 (((-777) $) NIL)) (-1862 (($ $ $) NIL (|has| |#1| (-368)))) (-2635 (($ $ $) NIL (|has| |#1| (-368)))) (-1730 (($ $ $) NIL (|has| |#1| (-368)))) (-1512 (($ $ $) NIL (|has| |#1| (-368)))) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2890 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2510 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2057 ((|#1| $ |#1|) 24)) (-2539 (($ $ $) 33 (|has| |#1| (-368)))) (-2650 (((-777) $) NIL)) (-2128 ((|#1| $) NIL (|has| |#1| (-458)))) (-2869 (((-868) $) 20) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1936 ((|#1| $ |#1| |#1|) 23)) (-2096 (($ $) NIL)) (-1981 (($) 21 T CONST)) (-1998 (($) 8 T CONST)) (-3414 (($) NIL)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-664 |#1| |#2|) (-662 |#1|) (-1058) (-1 |#1| |#1|)) (T -664))
-NIL
-(-662 |#1|)
-((-2039 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2280 ((|#2| |#2| (-777) (-1 |#1| |#1|)) 45)) (-2539 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
-(((-665 |#1| |#2|) (-10 -7 (-15 -2039 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2280 (|#2| |#2| (-777) (-1 |#1| |#1|))) (-15 -2539 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-368) (-662 |#1|)) (T -665))
-((-2539 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2)) (-4 *2 (-662 *4)))) (-2280 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) (-5 *1 (-665 *5 *2)) (-4 *2 (-662 *5)))) (-2039 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2)) (-4 *2 (-662 *4)))))
-(-10 -7 (-15 -2039 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2280 (|#2| |#2| (-777) (-1 |#1| |#1|))) (-15 -2539 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2911 (($ $ $) 9)))
-(((-666 |#1|) (-10 -8 (-15 -2911 (|#1| |#1| |#1|))) (-667)) (T -666))
-NIL
-(-10 -8 (-15 -2911 (|#1| |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2867 (($ $) 10)) (-2911 (($ $ $) 8)) (-3892 (((-112) $ $) 6)) (-2895 (($ $ $) 9)))
-(((-667) (-141)) (T -667))
-((-2867 (*1 *1 *1) (-4 *1 (-667))) (-2895 (*1 *1 *1 *1) (-4 *1 (-667))) (-2911 (*1 *1 *1 *1) (-4 *1 (-667))))
-(-13 (-102) (-10 -8 (-15 -2867 ($ $)) (-15 -2895 ($ $ $)) (-15 -2911 ($ $ $))))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2812 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#2| $ |#1| |#2|) NIL)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) NIL)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) NIL)) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 ((|#1| $) NIL (|has| |#1| (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 ((|#1| $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2608 (((-652 |#1|) $) NIL)) (-4096 (((-112) |#1| $) NIL)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1634 (((-652 |#1|) $) NIL)) (-3132 (((-112) |#1| $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#2| $) NIL (|has| |#1| (-858)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-558 |#1| |#2| |#3|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))) (T -558))
+NIL
+(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
+((-3848 (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-1 (-1184 |#2|) (-1184 |#2|))) 50)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -3848 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-1 (-1184 |#2|) (-1184 |#2|))))) (-564) (-13 (-27) (-438 |#1|))) (T -559))
+((-3848 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-620 *3)) (-5 *5 (-1 (-1184 *3) (-1184 *3))) (-4 *3 (-13 (-27) (-438 *6))) (-4 *6 (-564)) (-5 *2 (-594 *3)) (-5 *1 (-559 *6 *3)))))
+(-10 -7 (-15 -3848 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-1 (-1184 |#2|) (-1184 |#2|)))))
+((-2199 (((-594 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2067 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2046 (((-594 |#5|) |#5| (-1 |#3| |#3|)) 220)))
+(((-560 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2046 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2199 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2067 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-564) (-1049 (-572))) (-13 (-27) (-438 |#1|)) (-1255 |#2|) (-1255 (-415 |#3|)) (-349 |#2| |#3| |#4|)) (T -560))
+((-2067 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-27) (-438 *4))) (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *7 (-1255 (-415 *6))) (-5 *1 (-560 *4 *5 *6 *7 *2)) (-4 *2 (-349 *5 *6 *7)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)))) (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3)) (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))) (-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572)))) (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3)) (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))))
+(-10 -7 (-15 -2046 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2199 ((-594 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2067 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3456 (((-112) (-572) (-572)) 12)) (-2274 (((-572) (-572)) 7)) (-3172 (((-572) (-572) (-572)) 10)))
+(((-561) (-10 -7 (-15 -2274 ((-572) (-572))) (-15 -3172 ((-572) (-572) (-572))) (-15 -3456 ((-112) (-572) (-572))))) (T -561))
+((-3456 (*1 *2 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-561)))) (-3172 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))))
+(-10 -7 (-15 -2274 ((-572) (-572))) (-15 -3172 ((-572) (-572) (-572))) (-15 -3456 ((-112) (-572) (-572))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2854 ((|#1| $) 67)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-3915 (($ $) 97)) (-3790 (($ $) 80)) (-2486 ((|#1| $) 68)) (-2092 (((-3 $ "failed") $ $) 20)) (-3093 (($ $) 79)) (-3893 (($ $) 96)) (-3770 (($ $) 81)) (-3939 (($ $) 95)) (-3811 (($ $) 82)) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 75)) (-1869 (((-572) $) 76)) (-2982 (((-3 $ "failed") $) 37)) (-2786 (($ |#1| |#1|) 72)) (-3778 (((-112) $) 66)) (-2250 (($) 107)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 78)) (-4354 (((-112) $) 65)) (-2536 (($ $ $) 113)) (-3928 (($ $ $) 112)) (-4057 (($ $) 104)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2413 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-415 (-572))) 70)) (-4075 ((|#1| $) 69)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3453 (((-3 $ "failed") $ $) 48)) (-3272 (($ $) 105)) (-2139 (($ $) 94)) (-3822 (($ $) 83)) (-3927 (($ $) 93)) (-3800 (($ $) 84)) (-3905 (($ $) 92)) (-3780 (($ $) 85)) (-1929 (((-112) $ |#1|) 64)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-572)) 74)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2176 (($ $) 103)) (-3852 (($ $) 91)) (-2466 (((-112) $ $) 45)) (-2152 (($ $) 102)) (-3833 (($ $) 90)) (-2204 (($ $) 101)) (-3871 (($ $) 89)) (-3120 (($ $) 100)) (-3883 (($ $) 88)) (-2193 (($ $) 99)) (-3861 (($ $) 87)) (-2162 (($ $) 98)) (-3842 (($ $) 86)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3976 (((-112) $ $) 110)) (-3954 (((-112) $ $) 109)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 111)) (-3943 (((-112) $ $) 108)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ $) 106) (($ $ (-415 (-572))) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-562 |#1|) (-141) (-13 (-412) (-1214))) (T -562))
+((-2413 (*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-2786 (*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-2413 (*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))) (-1929 (*1 *2 *1 *3) (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))))
+(-13 (-460) (-858) (-1214) (-1013) (-1049 (-572)) (-10 -8 (-6 -4090) (-15 -2413 ($ |t#1| |t#1|)) (-15 -2786 ($ |t#1| |t#1|)) (-15 -2413 ($ |t#1|)) (-15 -2413 ($ (-415 (-572)))) (-15 -4075 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2854 (|t#1| $)) (-15 -3778 ((-112) $)) (-15 -4354 ((-112) $)) (-15 -1929 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-290) . T) ((-296) . T) ((-460) . T) ((-501) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-858) . T) ((-1013) . T) ((-1049 (-572)) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) . T) ((-1217) . T))
+((-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 9)) (-1697 (($ $) 11)) (-1774 (((-112) $) 20)) (-2982 (((-3 $ "failed") $) 16)) (-2466 (((-112) $ $) 22)))
+(((-563 |#1|) (-10 -8 (-15 -1774 ((-112) |#1|)) (-15 -2466 ((-112) |#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -2580 ((-2 (|:| -3457 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|))) (-564)) (T -563))
+NIL
+(-10 -8 (-15 -1774 ((-112) |#1|)) (-15 -2466 ((-112) |#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -2580 ((-2 (|:| -3457 |#1|) (|:| -4441 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ $) 48)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-564) (-141)) (T -564))
+((-3453 (*1 *1 *1 *1) (|partial| -4 *1 (-564))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3457 *1) (|:| -4441 *1) (|:| |associate| *1))) (-4 *1 (-564)))) (-1697 (*1 *1 *1) (-4 *1 (-564))) (-2466 (*1 *2 *1 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))))
+(-13 (-174) (-38 $) (-296) (-10 -8 (-15 -3453 ((-3 $ "failed") $ $)) (-15 -2580 ((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $)) (-15 -1697 ($ $)) (-15 -2466 ((-112) $ $)) (-15 -1774 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3657 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1188) (-652 |#2|)) 38)) (-3564 (((-594 |#2|) |#2| (-1188)) 63)) (-3428 (((-3 |#2| "failed") |#2| (-1188)) 156)) (-2342 (((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) (-620 |#2|) (-652 (-620 |#2|))) 159)) (-3323 (((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) |#2|) 41)))
+(((-565 |#1| |#2|) (-10 -7 (-15 -3323 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) |#2|)) (-15 -3657 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1188) (-652 |#2|))) (-15 -3428 ((-3 |#2| "failed") |#2| (-1188))) (-15 -3564 ((-594 |#2|) |#2| (-1188))) (-15 -2342 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) (-620 |#2|) (-652 (-620 |#2|))))) (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -565))
+((-2342 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1188)) (-5 *6 (-652 (-620 *3))) (-5 *5 (-620 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *7))) (-4 *7 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3))) (-5 *1 (-565 *7 *3)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-565 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-3428 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-3657 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *6 *3)))) (-3323 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
+(-10 -7 (-15 -3323 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) |#2|)) (-15 -3657 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1188) (-652 |#2|))) (-15 -3428 ((-3 |#2| "failed") |#2| (-1188))) (-15 -3564 ((-594 |#2|) |#2| (-1188))) (-15 -2342 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1188) (-620 |#2|) (-652 (-620 |#2|)))))
+((-2359 (((-426 |#1|) |#1|) 19)) (-2972 (((-426 |#1|) |#1|) 34)) (-3801 (((-3 |#1| "failed") |#1|) 49)) (-1630 (((-426 |#1|) |#1|) 60)))
+(((-566 |#1|) (-10 -7 (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -1630 ((-426 |#1|) |#1|)) (-15 -3801 ((-3 |#1| "failed") |#1|))) (-553)) (T -566))
+((-3801 (*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-553)))) (-1630 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))) (-2359 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))) (-2972 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))))
+(-10 -7 (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -1630 ((-426 |#1|) |#1|)) (-15 -3801 ((-3 |#1| "failed") |#1|)))
+((-3038 (($) 9)) (-3233 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2608 (((-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-3704 (($ (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-1718 (($ (-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-3762 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2950 (((-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3405 (((-1284)) 11)))
+(((-567) (-10 -8 (-15 -3038 ($)) (-15 -3405 ((-1284))) (-15 -2608 ((-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1718 ($ (-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3704 ($ (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3233 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ((-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3762 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -567))
+((-3762 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-567)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-567)))) (-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-567)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-567)))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-567)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-567)))) (-3405 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-567)))) (-3038 (*1 *1) (-5 *1 (-567))))
+(-10 -8 (-15 -3038 ($)) (-15 -3405 ((-1284))) (-15 -2608 ((-652 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1718 ($ (-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3704 ($ (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3233 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2950 ((-652 (-2 (|:| -1640 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3762 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1168 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4336 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-4063 (((-1184 (-415 (-1184 |#2|))) |#2| (-620 |#2|) (-620 |#2|) (-1184 |#2|)) 35)) (-2004 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) |#2| (-1184 |#2|)) 115)) (-4377 (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 85) (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|)) 55)) (-3993 (((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| (-620 |#2|) |#2| (-415 (-1184 |#2|))) 92) (((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| |#2| (-1184 |#2|)) 114)) (-2036 (((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) |#2| (-1184 |#2|)) 116)) (-1662 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))) 133 (|has| |#3| (-664 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|)) 132 (|has| |#3| (-664 |#2|)))) (-3060 ((|#2| (-1184 (-415 (-1184 |#2|))) (-620 |#2|) |#2|) 53)) (-2913 (((-1184 (-415 (-1184 |#2|))) (-1184 |#2|) (-620 |#2|)) 34)))
+(((-568 |#1| |#2| |#3|) (-10 -7 (-15 -4377 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -4377 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -3993 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| |#2| (-1184 |#2|))) (-15 -3993 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -2004 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) |#2| (-1184 |#2|))) (-15 -2004 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -2036 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) |#2| (-1184 |#2|))) (-15 -2036 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -4063 ((-1184 (-415 (-1184 |#2|))) |#2| (-620 |#2|) (-620 |#2|) (-1184 |#2|))) (-15 -3060 (|#2| (-1184 (-415 (-1184 |#2|))) (-620 |#2|) |#2|)) (-15 -2913 ((-1184 (-415 (-1184 |#2|))) (-1184 |#2|) (-620 |#2|))) (IF (|has| |#3| (-664 |#2|)) (PROGN (-15 -1662 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -1662 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))))) |%noBranch|)) (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))) (-13 (-438 |#1|) (-27) (-1214)) (-1111)) (T -568))
+((-1662 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-620 *4)) (-5 *6 (-415 (-1184 *4))) (-4 *4 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))) (-1662 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-620 *4)) (-5 *6 (-1184 *4)) (-4 *4 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *6)) (-4 *6 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-1184 (-415 (-1184 *6)))) (-5 *1 (-568 *5 *6 *7)) (-5 *3 (-1184 *6)) (-4 *7 (-1111)))) (-3060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1184 (-415 (-1184 *2)))) (-5 *4 (-620 *2)) (-4 *2 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1111)))) (-4063 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-1184 (-415 (-1184 *3)))) (-5 *1 (-568 *6 *3 *7)) (-5 *5 (-1184 *3)) (-4 *7 (-1111)))) (-2036 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-5 *5 (-415 (-1184 *2))) (-4 *2 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111)))) (-2036 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-5 *5 (-1184 *2)) (-4 *2 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111)))) (-2004 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-5 *6 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111)))) (-2004 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-5 *6 (-1184 *3)) (-4 *3 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111)))) (-3993 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))) (-3993 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))) (-4377 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))) (-4377 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))))
+(-10 -7 (-15 -4377 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -4377 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -3993 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| |#2| (-1184 |#2|))) (-15 -3993 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2| (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -2004 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) |#2| (-1184 |#2|))) (-15 -2004 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -2036 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) |#2| (-1184 |#2|))) (-15 -2036 ((-3 |#2| "failed") |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)) (-620 |#2|) |#2| (-415 (-1184 |#2|)))) (-15 -4063 ((-1184 (-415 (-1184 |#2|))) |#2| (-620 |#2|) (-620 |#2|) (-1184 |#2|))) (-15 -3060 (|#2| (-1184 (-415 (-1184 |#2|))) (-620 |#2|) |#2|)) (-15 -2913 ((-1184 (-415 (-1184 |#2|))) (-1184 |#2|) (-620 |#2|))) (IF (|has| |#3| (-664 |#2|)) (PROGN (-15 -1662 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) |#2| (-1184 |#2|))) (-15 -1662 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-620 |#2|) |#2| (-415 (-1184 |#2|))))) |%noBranch|))
+((-2454 (((-572) (-572) (-779)) 85)) (-4186 (((-572) (-572)) 83)) (-4113 (((-572) (-572)) 81)) (-3064 (((-572) (-572)) 87)) (-1536 (((-572) (-572) (-572)) 65)) (-2147 (((-572) (-572) (-572)) 62)) (-3384 (((-415 (-572)) (-572)) 30)) (-2502 (((-572) (-572)) 34)) (-1388 (((-572) (-572)) 74)) (-2966 (((-572) (-572)) 46)) (-2787 (((-652 (-572)) (-572)) 80)) (-2739 (((-572) (-572) (-572) (-572) (-572)) 58)) (-2452 (((-415 (-572)) (-572)) 55)))
+(((-569) (-10 -7 (-15 -2452 ((-415 (-572)) (-572))) (-15 -2739 ((-572) (-572) (-572) (-572) (-572))) (-15 -2787 ((-652 (-572)) (-572))) (-15 -2966 ((-572) (-572))) (-15 -1388 ((-572) (-572))) (-15 -2502 ((-572) (-572))) (-15 -3384 ((-415 (-572)) (-572))) (-15 -2147 ((-572) (-572) (-572))) (-15 -1536 ((-572) (-572) (-572))) (-15 -3064 ((-572) (-572))) (-15 -4113 ((-572) (-572))) (-15 -4186 ((-572) (-572))) (-15 -2454 ((-572) (-572) (-779))))) (T -569))
+((-2454 (*1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-779)) (-5 *1 (-569)))) (-4186 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-1536 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-2147 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-3384 (*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-2966 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-2787 (*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))) (-2739 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))) (-2452 (*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))))
+(-10 -7 (-15 -2452 ((-415 (-572)) (-572))) (-15 -2739 ((-572) (-572) (-572) (-572) (-572))) (-15 -2787 ((-652 (-572)) (-572))) (-15 -2966 ((-572) (-572))) (-15 -1388 ((-572) (-572))) (-15 -2502 ((-572) (-572))) (-15 -3384 ((-415 (-572)) (-572))) (-15 -2147 ((-572) (-572) (-572))) (-15 -1536 ((-572) (-572) (-572))) (-15 -3064 ((-572) (-572))) (-15 -4113 ((-572) (-572))) (-15 -4186 ((-572) (-572))) (-15 -2454 ((-572) (-572) (-779))))
+((-2624 (((-2 (|:| |answer| |#4|) (|:| -2505 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-570 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2624 ((-2 (|:| |answer| |#4|) (|:| -2505 |#4|)) |#4| (-1 |#2| |#2|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -570))
+((-2624 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-4 *7 (-1255 (-415 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2505 *3))) (-5 *1 (-570 *5 *6 *7 *3)) (-4 *3 (-349 *5 *6 *7)))))
+(-10 -7 (-15 -2624 ((-2 (|:| |answer| |#4|) (|:| -2505 |#4|)) |#4| (-1 |#2| |#2|))))
+((-2624 (((-2 (|:| |answer| (-415 |#2|)) (|:| -2505 (-415 |#2|)) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|)) 18)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2624 ((-2 (|:| |answer| (-415 |#2|)) (|:| -2505 (-415 |#2|)) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|)))) (-370) (-1255 |#1|)) (T -571))
+((-2624 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |answer| (-415 *6)) (|:| -2505 (-415 *6)) (|:| |specpart| (-415 *6)) (|:| |polypart| *6))) (-5 *1 (-571 *5 *6)) (-5 *3 (-415 *6)))))
+(-10 -7 (-15 -2624 ((-2 (|:| |answer| (-415 |#2|)) (|:| -2505 (-415 |#2|)) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 30)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 96)) (-1697 (($ $) 97)) (-1774 (((-112) $) NIL)) (-2746 (($ $ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1742 (($ $ $ $) 52)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL)) (-4235 (($ $ $) 91)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL)) (-1869 (((-572) $) NIL)) (-3407 (($ $ $) 54)) (-2245 (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 77) (((-697 (-572)) (-697 $)) 73)) (-2982 (((-3 $ "failed") $) 93)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL)) (-2054 (((-112) $) NIL)) (-2745 (((-415 (-572)) $) NIL)) (-2688 (($) 79) (($ $) 80)) (-3418 (($ $ $) 90)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3677 (($ $ $ $) NIL)) (-4023 (($ $ $) 70)) (-3778 (((-112) $) NIL)) (-2362 (($ $ $) NIL)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-4422 (((-112) $) 34)) (-2270 (((-112) $) 85)) (-3396 (((-3 $ "failed") $) NIL)) (-4354 (((-112) $) 43)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2945 (($ $ $ $) 55)) (-2536 (($ $ $) 87)) (-3928 (($ $ $) 86)) (-4135 (($ $) NIL)) (-2040 (($ $) 49)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) 69)) (-2197 (($ $ $) NIL)) (-3477 (($) NIL T CONST)) (-3651 (($ $) 38)) (-2614 (((-1131) $) 42)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 128)) (-1370 (($ $ $) 94) (($ (-652 $)) NIL)) (-4002 (($ $) NIL)) (-2972 (((-426 $) $) 114)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL)) (-3453 (((-3 $ "failed") $ $) 112)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3601 (((-112) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 89)) (-3011 (($ $ (-779)) NIL) (($ $) NIL)) (-3935 (($ $) 40)) (-3679 (($ $) 36)) (-3222 (((-572) $) 48) (((-544) $) 64) (((-901 (-572)) $) NIL) (((-386) $) 58) (((-227) $) 61) (((-1170) $) 66)) (-3491 (((-870) $) 46) (($ (-572)) 47) (($ $) NIL) (($ (-572)) 47)) (-2455 (((-779)) NIL T CONST)) (-4170 (((-112) $ $) NIL)) (-3337 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-1556 (($) 35)) (-2466 (((-112) $ $) NIL)) (-1732 (($ $ $ $) 51)) (-2775 (($ $) 78)) (-2602 (($) 6 T CONST)) (-2619 (($) 31 T CONST)) (-2810 (((-1170) $) 26) (((-1170) $ (-112)) 27) (((-1284) (-830) $) 28) (((-1284) (-830) $ (-112)) 29)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3976 (((-112) $ $) 50)) (-3954 (((-112) $ $) 81)) (-3921 (((-112) $ $) 33)) (-3965 (((-112) $ $) 82)) (-3943 (((-112) $ $) 10)) (-4018 (($ $) 16) (($ $ $) 39)) (-4005 (($ $ $) 37)) (** (($ $ (-930)) NIL) (($ $ (-779)) 84)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 83) (($ $ $) 53)))
+(((-572) (-13 (-553) (-622 (-1170)) (-836) (-10 -7 (-6 -4441) (-6 -4446) (-6 -4442) (-6 -4436)))) (T -572))
+NIL
+(-13 (-553) (-622 (-1170)) (-836) (-10 -7 (-6 -4441) (-6 -4446) (-6 -4442) (-6 -4436)))
+((-4329 (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777) (-1074)) 116) (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777)) 118)) (-4161 (((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1188)) 195) (((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1170)) 194) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386) (-1074)) 199) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386)) 200) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386)) 201) (((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386))))) 202) (((-1046) (-322 (-386)) (-1105 (-851 (-386)))) 190) (((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386)) 189) (((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386)) 185) (((-1046) (-777)) 177) (((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386) (-1074)) 184)))
+(((-573) (-10 -7 (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386) (-1074))) (-15 -4161 ((-1046) (-777))) (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386) (-1074))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777) (-1074))) (-15 -4161 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1170))) (-15 -4161 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1188))))) (T -573))
+((-4161 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386)))) (-5 *5 (-1188)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386)))) (-5 *5 (-1170)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) (-5 *1 (-573)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046)))) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386))))) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1046)) (-5 *1 (-573)))) (-4161 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386)))) (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573)))))
+(-10 -7 (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386) (-1074))) (-15 -4161 ((-1046) (-777))) (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-1105 (-851 (-386))))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386))) (-15 -4161 ((-1046) (-322 (-386)) (-652 (-1105 (-851 (-386)))) (-386) (-386) (-1074))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))) (-777) (-1074))) (-15 -4161 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1170))) (-15 -4161 ((-3 (-1046) "failed") (-322 (-386)) (-1103 (-851 (-386))) (-1188))))
+((-2893 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|)) 196)) (-2719 (((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|)) 99)) (-3857 (((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2|) 192)) (-2583 (((-3 |#2| "failed") |#2| |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188))) 201)) (-3578 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-1188)) 210 (|has| |#3| (-664 |#2|)))))
+(((-574 |#1| |#2| |#3|) (-10 -7 (-15 -2719 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|))) (-15 -3857 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2|)) (-15 -2893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|))) (-15 -2583 ((-3 |#2| "failed") |#2| |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)))) (IF (|has| |#3| (-664 |#2|)) (-15 -3578 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-1188))) |%noBranch|)) (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))) (-13 (-438 |#1|) (-27) (-1214)) (-1111)) (T -574))
+((-3578 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-620 *4)) (-5 *6 (-1188)) (-4 *4 (-13 (-438 *7) (-27) (-1214))) (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))) (-2583 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-4 *2 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *1 (-574 *5 *2 *6)) (-4 *6 (-1111)))) (-2893 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214))) (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1111)))) (-3857 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3))) (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))) (-2719 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *5) (-27) (-1214))) (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572)))) (-5 *2 (-594 *3)) (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))))
+(-10 -7 (-15 -2719 ((-594 |#2|) |#2| (-620 |#2|) (-620 |#2|))) (-15 -3857 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-620 |#2|) (-620 |#2|) |#2|)) (-15 -2893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|) (-620 |#2|) (-652 |#2|))) (-15 -2583 ((-3 |#2| "failed") |#2| |#2| |#2| (-620 |#2|) (-620 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1188)))) (IF (|has| |#3| (-664 |#2|)) (-15 -3578 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1769 (-652 |#2|))) |#3| |#2| (-620 |#2|) (-620 |#2|) (-1188))) |%noBranch|))
+((-1854 (((-2 (|:| -3620 |#2|) (|:| |nconst| |#2|)) |#2| (-1188)) 64)) (-2006 (((-3 |#2| "failed") |#2| (-1188) (-851 |#2|) (-851 |#2|)) 175 (-12 (|has| |#2| (-1150)) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-895 (-572))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)) 154 (-12 (|has| |#2| (-637)) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-895 (-572)))))) (-3307 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)) 156 (-12 (|has| |#2| (-637)) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-895 (-572)))))))
+(((-575 |#1| |#2|) (-10 -7 (-15 -1854 ((-2 (|:| -3620 |#2|) (|:| |nconst| |#2|)) |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (PROGN (IF (|has| |#2| (-637)) (PROGN (-15 -3307 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188))) (-15 -2006 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) (IF (|has| |#2| (-1150)) (-15 -2006 ((-3 |#2| "failed") |#2| (-1188) (-851 |#2|) (-851 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1049 (-572)) (-460) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -575))
+((-2006 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1188)) (-5 *4 (-851 *2)) (-4 *2 (-1150)) (-4 *2 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572))) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *1 (-575 *5 *2)))) (-2006 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572))) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-575 *5 *3)) (-4 *3 (-637)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-3307 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572))) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-575 *5 *3)) (-4 *3 (-637)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572)))) (-5 *2 (-2 (|:| -3620 *3) (|:| |nconst| *3))) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
+(-10 -7 (-15 -1854 ((-2 (|:| -3620 |#2|) (|:| |nconst| |#2|)) |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (PROGN (IF (|has| |#2| (-637)) (PROGN (-15 -3307 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188))) (-15 -2006 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) (IF (|has| |#2| (-1150)) (-15 -2006 ((-3 |#2| "failed") |#2| (-1188) (-851 |#2|) (-851 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2643 (((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-652 (-415 |#2|))) 41)) (-4161 (((-594 (-415 |#2|)) (-415 |#2|)) 28)) (-1337 (((-3 (-415 |#2|) "failed") (-415 |#2|)) 17)) (-1574 (((-3 (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-415 |#2|)) 48)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -4161 ((-594 (-415 |#2|)) (-415 |#2|))) (-15 -1337 ((-3 (-415 |#2|) "failed") (-415 |#2|))) (-15 -1574 ((-3 (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-415 |#2|))) (-15 -2643 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-652 (-415 |#2|))))) (-13 (-370) (-148) (-1049 (-572))) (-1255 |#1|)) (T -576))
+((-2643 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-652 (-415 *6))) (-5 *3 (-415 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *5 *6)))) (-1574 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -1647 (-415 *5)) (|:| |coeff| (-415 *5)))) (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5)))) (-1337 (*1 *2 *2) (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148) (-1049 (-572)))) (-5 *1 (-576 *3 *4)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-594 (-415 *5))) (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5)))))
+(-10 -7 (-15 -4161 ((-594 (-415 |#2|)) (-415 |#2|))) (-15 -1337 ((-3 (-415 |#2|) "failed") (-415 |#2|))) (-15 -1574 ((-3 (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-415 |#2|))) (-15 -2643 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-652 (-415 |#2|)))))
+((-2825 (((-3 (-572) "failed") |#1|) 14)) (-4387 (((-112) |#1|) 13)) (-4418 (((-572) |#1|) 9)))
+(((-577 |#1|) (-10 -7 (-15 -4418 ((-572) |#1|)) (-15 -4387 ((-112) |#1|)) (-15 -2825 ((-3 (-572) "failed") |#1|))) (-1049 (-572))) (T -577))
+((-2825 (*1 *2 *3) (|partial| -12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2)))) (-4387 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1049 (-572))))) (-4418 (*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2)))))
+(-10 -7 (-15 -4418 ((-572) |#1|)) (-15 -4387 ((-112) |#1|)) (-15 -2825 ((-3 (-572) "failed") |#1|)))
+((-4255 (((-3 (-2 (|:| |mainpart| (-415 (-961 |#1|))) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 (-961 |#1|))) (|:| |logand| (-415 (-961 |#1|))))))) "failed") (-415 (-961 |#1|)) (-1188) (-652 (-415 (-961 |#1|)))) 48)) (-2584 (((-594 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-1188)) 28)) (-1632 (((-3 (-415 (-961 |#1|)) "failed") (-415 (-961 |#1|)) (-1188)) 23)) (-3854 (((-3 (-2 (|:| -1647 (-415 (-961 |#1|))) (|:| |coeff| (-415 (-961 |#1|)))) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|))) 35)))
+(((-578 |#1|) (-10 -7 (-15 -2584 ((-594 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1632 ((-3 (-415 (-961 |#1|)) "failed") (-415 (-961 |#1|)) (-1188))) (-15 -4255 ((-3 (-2 (|:| |mainpart| (-415 (-961 |#1|))) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 (-961 |#1|))) (|:| |logand| (-415 (-961 |#1|))))))) "failed") (-415 (-961 |#1|)) (-1188) (-652 (-415 (-961 |#1|))))) (-15 -3854 ((-3 (-2 (|:| -1647 (-415 (-961 |#1|))) (|:| |coeff| (-415 (-961 |#1|)))) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|))))) (-13 (-564) (-1049 (-572)) (-148))) (T -578))
+((-3854 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-148))) (-5 *2 (-2 (|:| -1647 (-415 (-961 *5))) (|:| |coeff| (-415 (-961 *5))))) (-5 *1 (-578 *5)) (-5 *3 (-415 (-961 *5))))) (-4255 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 (-415 (-961 *6)))) (-5 *3 (-415 (-961 *6))) (-4 *6 (-13 (-564) (-1049 (-572)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6)))) (-1632 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-148))) (-5 *1 (-578 *4)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-148))) (-5 *2 (-594 (-415 (-961 *5)))) (-5 *1 (-578 *5)) (-5 *3 (-415 (-961 *5))))))
+(-10 -7 (-15 -2584 ((-594 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1632 ((-3 (-415 (-961 |#1|)) "failed") (-415 (-961 |#1|)) (-1188))) (-15 -4255 ((-3 (-2 (|:| |mainpart| (-415 (-961 |#1|))) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 (-961 |#1|))) (|:| |logand| (-415 (-961 |#1|))))))) "failed") (-415 (-961 |#1|)) (-1188) (-652 (-415 (-961 |#1|))))) (-15 -3854 ((-3 (-2 (|:| -1647 (-415 (-961 |#1|))) (|:| |coeff| (-415 (-961 |#1|)))) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)))))
+((-3464 (((-112) $ $) 75)) (-3143 (((-112) $) 48)) (-2854 ((|#1| $) 39)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) 79)) (-3915 (($ $) 139)) (-3790 (($ $) 118)) (-2486 ((|#1| $) 37)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $) NIL)) (-3893 (($ $) 141)) (-3770 (($ $) 114)) (-3939 (($ $) 143)) (-3811 (($ $) 122)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) 93)) (-1869 (((-572) $) 95)) (-2982 (((-3 $ "failed") $) 78)) (-2786 (($ |#1| |#1|) 35)) (-3778 (((-112) $) 44)) (-2250 (($) 104)) (-4422 (((-112) $) 55)) (-2033 (($ $ (-572)) NIL)) (-4354 (((-112) $) 45)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-4057 (($ $) 106)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-2413 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-415 (-572))) 92)) (-4075 ((|#1| $) 36)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) 81) (($ (-652 $)) NIL)) (-3453 (((-3 $ "failed") $ $) 80)) (-3272 (($ $) 108)) (-2139 (($ $) 147)) (-3822 (($ $) 120)) (-3927 (($ $) 149)) (-3800 (($ $) 124)) (-3905 (($ $) 145)) (-3780 (($ $) 116)) (-1929 (((-112) $ |#1|) 42)) (-3491 (((-870) $) 100) (($ (-572)) 83) (($ $) NIL) (($ (-572)) 83)) (-2455 (((-779)) 102 T CONST)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) 161)) (-3852 (($ $) 130)) (-2466 (((-112) $ $) NIL)) (-2152 (($ $) 159)) (-3833 (($ $) 126)) (-2204 (($ $) 157)) (-3871 (($ $) 137)) (-3120 (($ $) 155)) (-3883 (($ $) 135)) (-2193 (($ $) 153)) (-3861 (($ $) 132)) (-2162 (($ $) 151)) (-3842 (($ $) 128)) (-2602 (($) 30 T CONST)) (-2619 (($) 10 T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 49)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 47)) (-4018 (($ $) 53) (($ $ $) 54)) (-4005 (($ $ $) 52)) (** (($ $ (-930)) 71) (($ $ (-779)) NIL) (($ $ $) 110) (($ $ (-415 (-572))) 163)) (* (($ (-930) $) 66) (($ (-779) $) NIL) (($ (-572) $) 65) (($ $ $) 61)))
+(((-579 |#1|) (-562 |#1|) (-13 (-412) (-1214))) (T -579))
+NIL
+(-562 |#1|)
+((-3317 (((-3 (-652 (-1184 (-572))) "failed") (-652 (-1184 (-572))) (-1184 (-572))) 27)))
+(((-580) (-10 -7 (-15 -3317 ((-3 (-652 (-1184 (-572))) "failed") (-652 (-1184 (-572))) (-1184 (-572)))))) (T -580))
+((-3317 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 (-572)))) (-5 *3 (-1184 (-572))) (-5 *1 (-580)))))
+(-10 -7 (-15 -3317 ((-3 (-652 (-1184 (-572))) "failed") (-652 (-1184 (-572))) (-1184 (-572)))))
+((-3944 (((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-1188)) 19)) (-4133 (((-652 (-620 |#2|)) (-652 |#2|) (-1188)) 23)) (-2266 (((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-652 (-620 |#2|))) 11)) (-4428 ((|#2| |#2| (-1188)) 59 (|has| |#1| (-564)))) (-1633 ((|#2| |#2| (-1188)) 87 (-12 (|has| |#2| (-290)) (|has| |#1| (-460))))) (-4415 (((-620 |#2|) (-620 |#2|) (-652 (-620 |#2|)) (-1188)) 25)) (-1698 (((-620 |#2|) (-652 (-620 |#2|))) 24)) (-4121 (((-594 |#2|) |#2| (-1188) (-1 (-594 |#2|) |#2| (-1188)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188))) 115 (-12 (|has| |#2| (-290)) (|has| |#2| (-637)) (|has| |#2| (-1049 (-1188))) (|has| |#1| (-622 (-901 (-572)))) (|has| |#1| (-460)) (|has| |#1| (-895 (-572)))))))
+(((-581 |#1| |#2|) (-10 -7 (-15 -3944 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-1188))) (-15 -1698 ((-620 |#2|) (-652 (-620 |#2|)))) (-15 -4415 ((-620 |#2|) (-620 |#2|) (-652 (-620 |#2|)) (-1188))) (-15 -2266 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-652 (-620 |#2|)))) (-15 -4133 ((-652 (-620 |#2|)) (-652 |#2|) (-1188))) (IF (|has| |#1| (-564)) (-15 -4428 (|#2| |#2| (-1188))) |%noBranch|) (IF (|has| |#1| (-460)) (IF (|has| |#2| (-290)) (PROGN (-15 -1633 (|#2| |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (IF (|has| |#2| (-637)) (IF (|has| |#2| (-1049 (-1188))) (-15 -4121 ((-594 |#2|) |#2| (-1188) (-1 (-594 |#2|) |#2| (-1188)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1111) (-438 |#1|)) (T -581))
+((-4121 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-594 *3) *3 (-1188))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1188))) (-4 *3 (-290)) (-4 *3 (-637)) (-4 *3 (-1049 *4)) (-4 *3 (-438 *7)) (-5 *4 (-1188)) (-4 *7 (-622 (-901 (-572)))) (-4 *7 (-460)) (-4 *7 (-895 (-572))) (-4 *7 (-1111)) (-5 *2 (-594 *3)) (-5 *1 (-581 *7 *3)))) (-1633 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-460)) (-4 *4 (-1111)) (-5 *1 (-581 *4 *2)) (-4 *2 (-290)) (-4 *2 (-438 *4)))) (-4428 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-4 *4 (-1111)) (-5 *1 (-581 *4 *2)) (-4 *2 (-438 *4)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-1188)) (-4 *6 (-438 *5)) (-4 *5 (-1111)) (-5 *2 (-652 (-620 *6))) (-5 *1 (-581 *5 *6)))) (-2266 (*1 *2 *2 *2) (-12 (-5 *2 (-652 (-620 *4))) (-4 *4 (-438 *3)) (-4 *3 (-1111)) (-5 *1 (-581 *3 *4)))) (-4415 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-652 (-620 *6))) (-5 *4 (-1188)) (-5 *2 (-620 *6)) (-4 *6 (-438 *5)) (-4 *5 (-1111)) (-5 *1 (-581 *5 *6)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-652 (-620 *5))) (-4 *4 (-1111)) (-5 *2 (-620 *5)) (-5 *1 (-581 *4 *5)) (-4 *5 (-438 *4)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-620 *5))) (-5 *3 (-1188)) (-4 *5 (-438 *4)) (-4 *4 (-1111)) (-5 *1 (-581 *4 *5)))))
+(-10 -7 (-15 -3944 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-1188))) (-15 -1698 ((-620 |#2|) (-652 (-620 |#2|)))) (-15 -4415 ((-620 |#2|) (-620 |#2|) (-652 (-620 |#2|)) (-1188))) (-15 -2266 ((-652 (-620 |#2|)) (-652 (-620 |#2|)) (-652 (-620 |#2|)))) (-15 -4133 ((-652 (-620 |#2|)) (-652 |#2|) (-1188))) (IF (|has| |#1| (-564)) (-15 -4428 (|#2| |#2| (-1188))) |%noBranch|) (IF (|has| |#1| (-460)) (IF (|has| |#2| (-290)) (PROGN (-15 -1633 (|#2| |#2| (-1188))) (IF (|has| |#1| (-622 (-901 (-572)))) (IF (|has| |#1| (-895 (-572))) (IF (|has| |#2| (-637)) (IF (|has| |#2| (-1049 (-1188))) (-15 -4121 ((-594 |#2|) |#2| (-1188) (-1 (-594 |#2|) |#2| (-1188)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1188)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2985 (((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-652 |#1|) "failed") (-572) |#1| |#1|)) 199)) (-1326 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-652 (-415 |#2|))) 174)) (-3150 (((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-652 (-415 |#2|))) 171)) (-1893 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2555 (((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3812 (((-3 (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-415 |#2|)) 202)) (-1686 (((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-415 |#2|)) 205)) (-4368 (((-2 (|:| |ir| (-594 (-415 |#2|))) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|)) 88)) (-1989 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-3938 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-652 (-415 |#2|))) 178)) (-2694 (((-3 (-631 |#1| |#2|) "failed") (-631 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|)) 166)) (-3597 (((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|)) 189)) (-3549 (((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-415 |#2|)) 210)))
+(((-582 |#1| |#2|) (-10 -7 (-15 -2555 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3597 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -2985 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-652 |#1|) "failed") (-572) |#1| |#1|))) (-15 -1686 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-415 |#2|))) (-15 -3549 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-415 |#2|))) (-15 -1326 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-652 (-415 |#2|)))) (-15 -3938 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-652 (-415 |#2|)))) (-15 -3812 ((-3 (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-415 |#2|))) (-15 -3150 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-652 (-415 |#2|)))) (-15 -1893 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2694 ((-3 (-631 |#1| |#2|) "failed") (-631 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -4368 ((-2 (|:| |ir| (-594 (-415 |#2|))) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|))) (-15 -1989 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-370) (-1255 |#1|)) (T -582))
+((-1989 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-582 *5 *3)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |ir| (-594 (-415 *6))) (|:| |specpart| (-415 *6)) (|:| |polypart| *6))) (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))) (-2694 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-631 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3058 *4) (|:| |sol?| (-112))) (-572) *4)) (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *1 (-582 *4 *5)))) (-1893 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1647 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-370)) (-5 *1 (-582 *4 *2)) (-4 *2 (-1255 *4)))) (-3150 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-652 (-415 *7))) (-4 *7 (-1255 *6)) (-5 *3 (-415 *7)) (-4 *6 (-370)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6 *7)))) (-3812 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -1647 (-415 *6)) (|:| |coeff| (-415 *6)))) (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))) (-3938 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3058 *7) (|:| |sol?| (-112))) (-572) *7)) (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7)) (-5 *3 (-415 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-582 *7 *8)))) (-1326 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1647 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7)) (-5 *3 (-415 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-582 *7 *8)))) (-3549 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3058 *6) (|:| |sol?| (-112))) (-572) *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6)) (-2 (|:| -1647 (-415 *7)) (|:| |coeff| (-415 *7))) "failed")) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-1686 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1647 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6)) (-2 (|:| -1647 (-415 *7)) (|:| |coeff| (-415 *7))) "failed")) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-2985 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-652 *6) "failed") (-572) *6 *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6))) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3058 *6) (|:| |sol?| (-112))) (-572) *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6))) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))) (-2555 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1647 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6))) (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
+(-10 -7 (-15 -2555 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3597 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -2985 ((-2 (|:| |answer| (-594 (-415 |#2|))) (|:| |a0| |#1|)) (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-652 |#1|) "failed") (-572) |#1| |#1|))) (-15 -1686 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-415 |#2|))) (-15 -3549 ((-3 (-2 (|:| |answer| (-415 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-415 |#2|))) (-15 -1326 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-652 (-415 |#2|)))) (-15 -3938 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|))))))) (|:| |a0| |#1|)) "failed") (-415 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|) (-652 (-415 |#2|)))) (-15 -3812 ((-3 (-2 (|:| -1647 (-415 |#2|)) (|:| |coeff| (-415 |#2|))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-415 |#2|))) (-15 -3150 ((-3 (-2 (|:| |mainpart| (-415 |#2|)) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| (-415 |#2|)) (|:| |logand| (-415 |#2|)))))) "failed") (-415 |#2|) (-1 |#2| |#2|) (-652 (-415 |#2|)))) (-15 -1893 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2694 ((-3 (-631 |#1| |#2|) "failed") (-631 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3058 |#1|) (|:| |sol?| (-112))) (-572) |#1|))) (-15 -4368 ((-2 (|:| |ir| (-594 (-415 |#2|))) (|:| |specpart| (-415 |#2|)) (|:| |polypart| |#2|)) (-415 |#2|) (-1 |#2| |#2|))) (-15 -1989 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2531 (((-3 |#2| "failed") |#2| (-1188) (-1188)) 10)))
+(((-583 |#1| |#2|) (-10 -7 (-15 -2531 ((-3 |#2| "failed") |#2| (-1188) (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-1150) (-29 |#1|))) (T -583))
+((-2531 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-583 *4 *2)) (-4 *2 (-13 (-1214) (-968) (-1150) (-29 *4))))))
+(-10 -7 (-15 -2531 ((-3 |#2| "failed") |#2| (-1188) (-1188))))
+((-2965 (((-699 (-1237)) $ (-1237)) 26)) (-3979 (((-699 (-557)) $ (-557)) 25)) (-4087 (((-779) $ (-129)) 27)) (-4007 (((-699 (-130)) $ (-130)) 24)) (-2354 (((-699 (-1237)) $) 12)) (-2499 (((-699 (-1235)) $) 8)) (-2849 (((-699 (-1234)) $) 10)) (-3787 (((-699 (-557)) $) 13)) (-2400 (((-699 (-555)) $) 9)) (-3478 (((-699 (-554)) $) 11)) (-2575 (((-779) $ (-129)) 7)) (-3226 (((-699 (-130)) $) 14)) (-3725 (($ $) 6)))
+(((-584) (-141)) (T -584))
+NIL
+(-13 (-535) (-868))
+(((-175) . T) ((-535) . T) ((-868) . T))
+((-2965 (((-699 (-1237)) $ (-1237)) NIL)) (-3979 (((-699 (-557)) $ (-557)) NIL)) (-4087 (((-779) $ (-129)) NIL)) (-4007 (((-699 (-130)) $ (-130)) NIL)) (-2354 (((-699 (-1237)) $) NIL)) (-2499 (((-699 (-1235)) $) NIL)) (-2849 (((-699 (-1234)) $) NIL)) (-3787 (((-699 (-557)) $) NIL)) (-2400 (((-699 (-555)) $) NIL)) (-3478 (((-699 (-554)) $) NIL)) (-2575 (((-779) $ (-129)) NIL)) (-3226 (((-699 (-130)) $) NIL)) (-3520 (((-112) $) NIL)) (-2497 (($ (-396)) 14) (($ (-1170)) 16)) (-3491 (((-870) $) NIL)) (-3725 (($ $) NIL)))
+(((-585) (-13 (-584) (-621 (-870)) (-10 -8 (-15 -2497 ($ (-396))) (-15 -2497 ($ (-1170))) (-15 -3520 ((-112) $))))) (T -585))
+((-2497 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-585)))) (-2497 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-585)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585)))))
+(-13 (-584) (-621 (-870)) (-10 -8 (-15 -2497 ($ (-396))) (-15 -2497 ($ (-1170))) (-15 -3520 ((-112) $))))
+((-3464 (((-112) $ $) NIL)) (-4323 (($) 7 T CONST)) (-3618 (((-1170) $) NIL)) (-3158 (($) 6 T CONST)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 15)) (-1910 (($) 9 T CONST)) (-2989 (($) 8 T CONST)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 11)))
+(((-586) (-13 (-1111) (-10 -8 (-15 -3158 ($) -4338) (-15 -4323 ($) -4338) (-15 -2989 ($) -4338) (-15 -1910 ($) -4338)))) (T -586))
+((-3158 (*1 *1) (-5 *1 (-586))) (-4323 (*1 *1) (-5 *1 (-586))) (-2989 (*1 *1) (-5 *1 (-586))) (-1910 (*1 *1) (-5 *1 (-586))))
+(-13 (-1111) (-10 -8 (-15 -3158 ($) -4338) (-15 -4323 ($) -4338) (-15 -2989 ($) -4338) (-15 -1910 ($) -4338)))
+((-3464 (((-112) $ $) NIL)) (-4125 (((-699 $) (-499)) 21)) (-3618 (((-1170) $) NIL)) (-2936 (($ (-1170)) 14)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 33)) (-3592 (((-215 4 (-130)) $) 24)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 26)))
+(((-587) (-13 (-1111) (-10 -8 (-15 -2936 ($ (-1170))) (-15 -3592 ((-215 4 (-130)) $)) (-15 -4125 ((-699 $) (-499)))))) (T -587))
+((-2936 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-587)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-587)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-699 (-587))) (-5 *1 (-587)))))
+(-13 (-1111) (-10 -8 (-15 -2936 ($ (-1170))) (-15 -3592 ((-215 4 (-130)) $)) (-15 -4125 ((-699 $) (-499)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $ (-572)) 75)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-4416 (($ (-1184 (-572)) (-572)) 81)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 66)) (-1710 (($ $) 43)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-2068 (((-779) $) 16)) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2425 (((-572)) 37)) (-3160 (((-572) $) 41)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3103 (($ $ (-572)) 24)) (-3453 (((-3 $ "failed") $ $) 71)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) 17)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 72)) (-3005 (((-1168 (-572)) $) 19)) (-3610 (($ $) 26)) (-3491 (((-870) $) 102) (($ (-572)) 61) (($ $) NIL)) (-2455 (((-779)) 15 T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-4090 (((-572) $ (-572)) 46)) (-2602 (($) 44 T CONST)) (-2619 (($) 21 T CONST)) (-3921 (((-112) $ $) 52)) (-4018 (($ $) 60) (($ $ $) 48)) (-4005 (($ $ $) 59)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 62) (($ $ $) 63)))
+(((-588 |#1| |#2|) (-877 |#1|) (-572) (-112)) (T -588))
+NIL
+(-877 |#1|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 30)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-4380 (((-1201 (-930) (-779)) (-572)) 59)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 $ "failed") $) 95)) (-1869 (($ $) 94)) (-2372 (($ (-1279 $)) 93)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 44)) (-2688 (($) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) 61)) (-2754 (((-112) $) NIL)) (-3156 (($ $) NIL) (($ $ (-779)) NIL)) (-3439 (((-112) $) NIL)) (-2068 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-4422 (((-112) $) NIL)) (-2833 (($) 49 (|has| $ (-375)))) (-3466 (((-112) $) NIL (|has| $ (-375)))) (-2140 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 $) $ (-930)) NIL (|has| $ (-375))) (((-1184 $) $) 104)) (-4370 (((-930) $) 67)) (-1532 (((-1184 $) $) NIL (|has| $ (-375)))) (-2202 (((-3 (-1184 $) "failed") $ $) NIL (|has| $ (-375))) (((-1184 $) $) NIL (|has| $ (-375)))) (-2423 (($ $ (-1184 $)) NIL (|has| $ (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL T CONST)) (-1795 (($ (-930)) 60)) (-2011 (((-112) $) 87)) (-2614 (((-1131) $) NIL)) (-4267 (($) 28 (|has| $ (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 54)) (-2972 (((-426 $) $) NIL)) (-4148 (((-930)) 86) (((-841 (-930))) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-3 (-779) "failed") $ $) NIL) (((-779) $) NIL)) (-1670 (((-135)) NIL)) (-3011 (($ $ (-779)) NIL) (($ $) NIL)) (-1497 (((-930) $) 85) (((-841 (-930)) $) NIL)) (-3858 (((-1184 $)) 102)) (-2817 (($) 66)) (-3068 (($) 50 (|has| $ (-375)))) (-2862 (((-697 $) (-1279 $)) NIL) (((-1279 $) $) 91)) (-3222 (((-572) $) 40)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) 42) (($ $) NIL) (($ (-415 (-572))) NIL)) (-2210 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2455 (((-779)) 51 T CONST)) (-3424 (((-112) $ $) 107)) (-1769 (((-1279 $) (-930)) 97) (((-1279 $)) 96)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) 31 T CONST)) (-2619 (($) 27 T CONST)) (-2933 (($ $ (-779)) NIL (|has| $ (-375))) (($ $) NIL (|has| $ (-375)))) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 34)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 81) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-589 |#1|) (-13 (-356) (-335 $) (-622 (-572))) (-930)) (T -589))
+NIL
+(-13 (-356) (-335 $) (-622 (-572)))
+((-3849 (((-1284) (-1170)) 10)))
+(((-590) (-10 -7 (-15 -3849 ((-1284) (-1170))))) (T -590))
+((-3849 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-590)))))
+(-10 -7 (-15 -3849 ((-1284) (-1170))))
+((-3339 (((-594 |#2|) (-594 |#2|)) 42)) (-1386 (((-652 |#2|) (-594 |#2|)) 44)) (-4433 ((|#2| (-594 |#2|)) 50)))
+(((-591 |#1| |#2|) (-10 -7 (-15 -3339 ((-594 |#2|) (-594 |#2|))) (-15 -1386 ((-652 |#2|) (-594 |#2|))) (-15 -4433 (|#2| (-594 |#2|)))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-29 |#1|) (-1214))) (T -591))
+((-4433 (*1 *2 *3) (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-29 *4) (-1214))) (-5 *1 (-591 *4 *2)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-594 *5)) (-4 *5 (-13 (-29 *4) (-1214))) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-652 *5)) (-5 *1 (-591 *4 *5)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-594 *4)) (-4 *4 (-13 (-29 *3) (-1214))) (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-591 *3 *4)))))
+(-10 -7 (-15 -3339 ((-594 |#2|) (-594 |#2|))) (-15 -1386 ((-652 |#2|) (-594 |#2|))) (-15 -4433 (|#2| (-594 |#2|))))
+((-3161 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|)) 30)))
+(((-592 |#1| |#2|) (-10 -7 (-15 -3161 ((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|))) (-15 -3161 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3161 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3161 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-370) (-370)) (T -592))
+((-3161 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-370)) (-4 *6 (-370)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-592 *5 *6)))) (-3161 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-370)) (-4 *2 (-370)) (-5 *1 (-592 *5 *2)))) (-3161 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1647 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-370)) (-4 *6 (-370)) (-5 *2 (-2 (|:| -1647 *6) (|:| |coeff| *6))) (-5 *1 (-592 *5 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-370)) (-4 *6 (-370)) (-5 *2 (-594 *6)) (-5 *1 (-592 *5 *6)))))
+(-10 -7 (-15 -3161 ((-594 |#2|) (-1 |#2| |#1|) (-594 |#1|))) (-15 -3161 ((-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1647 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3161 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3161 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2427 (($ (-514) (-605)) 14)) (-1315 (($ (-514) (-605) $) 16)) (-2335 (($ (-514) (-605)) 15)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ (-1193)) 7) (((-1193) $) 6)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-593) (-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -2427 ($ (-514) (-605))) (-15 -2335 ($ (-514) (-605))) (-15 -1315 ($ (-514) (-605) $))))) (T -593))
+((-2427 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))) (-2335 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))) (-1315 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
+(-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -2427 ($ (-514) (-605))) (-15 -2335 ($ (-514) (-605))) (-15 -1315 ($ (-514) (-605) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 76)) (-1869 ((|#1| $) NIL)) (-1647 ((|#1| $) 30)) (-1522 (((-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2027 (($ |#1| (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) (-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2505 (((-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) $) 31)) (-3618 (((-1170) $) NIL)) (-1619 (($ |#1| |#1|) 38) (($ |#1| (-1188)) 49 (|has| |#1| (-1049 (-1188))))) (-2614 (((-1131) $) NIL)) (-1444 (((-112) $) 35)) (-3011 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1188)) 89 (|has| |#1| (-909 (-1188))))) (-3491 (((-870) $) 110) (($ |#1|) 29)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 18 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) 17) (($ $ $) NIL)) (-4005 (($ $ $) 85)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 16) (($ (-415 (-572)) $) 41) (($ $ (-415 (-572))) NIL)))
+(((-594 |#1|) (-13 (-725 (-415 (-572))) (-1049 |#1|) (-10 -8 (-15 -2027 ($ |#1| (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) (-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1647 (|#1| $)) (-15 -2505 ((-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) $)) (-15 -1522 ((-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1444 ((-112) $)) (-15 -1619 ($ |#1| |#1|)) (-15 -3011 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-909 (-1188))) (-15 -3011 (|#1| $ (-1188))) |%noBranch|) (IF (|has| |#1| (-1049 (-1188))) (-15 -1619 ($ |#1| (-1188))) |%noBranch|))) (-370)) (T -594))
+((-2027 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *2)) (|:| |logand| (-1184 *2))))) (-5 *4 (-652 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-370)) (-5 *1 (-594 *2)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *3)) (|:| |logand| (-1184 *3))))) (-5 *1 (-594 *3)) (-4 *3 (-370)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-370)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-370)))) (-1619 (*1 *1 *2 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-594 *2)) (-4 *2 (-370)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *2 (-370)) (-4 *2 (-909 *3)) (-5 *1 (-594 *2)) (-5 *3 (-1188)))) (-1619 (*1 *1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *1 (-594 *2)) (-4 *2 (-1049 *3)) (-4 *2 (-370)))))
+(-13 (-725 (-415 (-572))) (-1049 |#1|) (-10 -8 (-15 -2027 ($ |#1| (-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) (-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1647 (|#1| $)) (-15 -2505 ((-652 (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 |#1|)) (|:| |logand| (-1184 |#1|)))) $)) (-15 -1522 ((-652 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1444 ((-112) $)) (-15 -1619 ($ |#1| |#1|)) (-15 -3011 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-909 (-1188))) (-15 -3011 (|#1| $ (-1188))) |%noBranch|) (IF (|has| |#1| (-1049 (-1188))) (-15 -1619 ($ |#1| (-1188))) |%noBranch|)))
+((-3828 (((-112) |#1|) 16)) (-1525 (((-3 |#1| "failed") |#1|) 14)) (-3602 (((-2 (|:| -1556 |#1|) (|:| -2477 (-779))) |#1|) 38) (((-3 |#1| "failed") |#1| (-779)) 18)) (-2666 (((-112) |#1| (-779)) 19)) (-3613 ((|#1| |#1|) 42)) (-3559 ((|#1| |#1| (-779)) 45)))
+(((-595 |#1|) (-10 -7 (-15 -2666 ((-112) |#1| (-779))) (-15 -3602 ((-3 |#1| "failed") |#1| (-779))) (-15 -3602 ((-2 (|:| -1556 |#1|) (|:| -2477 (-779))) |#1|)) (-15 -3559 (|#1| |#1| (-779))) (-15 -3828 ((-112) |#1|)) (-15 -1525 ((-3 |#1| "failed") |#1|)) (-15 -3613 (|#1| |#1|))) (-553)) (T -595))
+((-3613 (*1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-1525 (*1 *2 *2) (|partial| -12 (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-3828 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))) (-3559 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-3602 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1556 *3) (|:| -2477 (-779)))) (-5 *1 (-595 *3)) (-4 *3 (-553)))) (-3602 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))))
+(-10 -7 (-15 -2666 ((-112) |#1| (-779))) (-15 -3602 ((-3 |#1| "failed") |#1| (-779))) (-15 -3602 ((-2 (|:| -1556 |#1|) (|:| -2477 (-779))) |#1|)) (-15 -3559 (|#1| |#1| (-779))) (-15 -3828 ((-112) |#1|)) (-15 -1525 ((-3 |#1| "failed") |#1|)) (-15 -3613 (|#1| |#1|)))
+((-2822 (((-1184 |#1|) (-930)) 44)))
+(((-596 |#1|) (-10 -7 (-15 -2822 ((-1184 |#1|) (-930)))) (-356)) (T -596))
+((-2822 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-596 *4)) (-4 *4 (-356)))))
+(-10 -7 (-15 -2822 ((-1184 |#1|) (-930))))
+((-3339 (((-594 (-415 (-961 |#1|))) (-594 (-415 (-961 |#1|)))) 27)) (-4161 (((-3 (-322 |#1|) (-652 (-322 |#1|))) (-415 (-961 |#1|)) (-1188)) 34 (|has| |#1| (-148)))) (-1386 (((-652 (-322 |#1|)) (-594 (-415 (-961 |#1|)))) 19)) (-1889 (((-322 |#1|) (-415 (-961 |#1|)) (-1188)) 32 (|has| |#1| (-148)))) (-4433 (((-322 |#1|) (-594 (-415 (-961 |#1|)))) 21)))
+(((-597 |#1|) (-10 -7 (-15 -3339 ((-594 (-415 (-961 |#1|))) (-594 (-415 (-961 |#1|))))) (-15 -1386 ((-652 (-322 |#1|)) (-594 (-415 (-961 |#1|))))) (-15 -4433 ((-322 |#1|) (-594 (-415 (-961 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4161 ((-3 (-322 |#1|) (-652 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1889 ((-322 |#1|) (-415 (-961 |#1|)) (-1188)))) |%noBranch|)) (-13 (-460) (-1049 (-572)) (-647 (-572)))) (T -597))
+((-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *5)) (-5 *1 (-597 *5)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (-322 *5) (-652 (-322 *5)))) (-5 *1 (-597 *5)))) (-4433 (*1 *2 *3) (-12 (-5 *3 (-594 (-415 (-961 *4)))) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *4)) (-5 *1 (-597 *4)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-594 (-415 (-961 *4)))) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-652 (-322 *4))) (-5 *1 (-597 *4)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-594 (-415 (-961 *3)))) (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-597 *3)))))
+(-10 -7 (-15 -3339 ((-594 (-415 (-961 |#1|))) (-594 (-415 (-961 |#1|))))) (-15 -1386 ((-652 (-322 |#1|)) (-594 (-415 (-961 |#1|))))) (-15 -4433 ((-322 |#1|) (-594 (-415 (-961 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4161 ((-3 (-322 |#1|) (-652 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -1889 ((-322 |#1|) (-415 (-961 |#1|)) (-1188)))) |%noBranch|))
+((-3959 (((-652 (-697 (-572))) (-652 (-930)) (-652 (-914 (-572)))) 78) (((-652 (-697 (-572))) (-652 (-930))) 79) (((-697 (-572)) (-652 (-930)) (-914 (-572))) 72)) (-1966 (((-779) (-652 (-930))) 69)))
+(((-598) (-10 -7 (-15 -1966 ((-779) (-652 (-930)))) (-15 -3959 ((-697 (-572)) (-652 (-930)) (-914 (-572)))) (-15 -3959 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -3959 ((-652 (-697 (-572))) (-652 (-930)) (-652 (-914 (-572))))))) (T -598))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-914 (-572)))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-598)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-598)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-930))) (-5 *4 (-914 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-598)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-779)) (-5 *1 (-598)))))
+(-10 -7 (-15 -1966 ((-779) (-652 (-930)))) (-15 -3959 ((-697 (-572)) (-652 (-930)) (-914 (-572)))) (-15 -3959 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -3959 ((-652 (-697 (-572))) (-652 (-930)) (-652 (-914 (-572))))))
+((-3379 (((-652 |#5|) |#5| (-112)) 100)) (-3286 (((-112) |#5| (-652 |#5|)) 34)))
+(((-599 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3379 ((-652 |#5|) |#5| (-112))) (-15 -3286 ((-112) |#5| (-652 |#5|)))) (-13 (-313) (-148)) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1120 |#1| |#2| |#3| |#4|)) (T -599))
+((-3286 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1120 *5 *6 *7 *8)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-599 *5 *6 *7 *8 *3)))) (-3379 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-652 *3)) (-5 *1 (-599 *5 *6 *7 *8 *3)) (-4 *3 (-1120 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3379 ((-652 |#5|) |#5| (-112))) (-15 -3286 ((-112) |#5| (-652 |#5|))))
+((-3464 (((-112) $ $) NIL)) (-1336 (((-1146) $) 11)) (-1325 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-600) (-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))) (T -600))
+((-1325 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600)))))
+(-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))
+((-3464 (((-112) $ $) NIL (|has| (-145) (-1111)))) (-4129 (($ $) 38)) (-3480 (($ $) NIL)) (-2809 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-4039 (((-112) $ $) 67)) (-4017 (((-112) $ $ (-572)) 62)) (-3339 (((-652 $) $ (-145)) 75) (((-652 $) $ (-142)) 76)) (-3755 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-858)))) (-3519 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-858))))) (-2641 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 (((-145) $ (-572) (-145)) 59 (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4369 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-2857 (($ $ (-1246 (-572)) $) 57)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4243 (($ (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3061 (((-145) $ (-572) (-145)) NIL (|has| $ (-6 -4455)))) (-2986 (((-145) $ (-572)) NIL)) (-4064 (((-112) $ $) 88)) (-3239 (((-572) (-1 (-112) (-145)) $) NIL) (((-572) (-145) $) NIL (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) 64 (|has| (-145) (-1111))) (((-572) $ $ (-572)) 63) (((-572) (-142) $ (-572)) 66)) (-1442 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-2924 (($ (-779) (-145)) 9)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 32 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| (-145) (-858)))) (-1377 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-858)))) (-2396 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2751 (((-572) $) 47 (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-145) (-858)))) (-3720 (((-112) $ $ (-145)) 89)) (-2234 (((-779) $ $ (-145)) 86)) (-3049 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2401 (($ $) 41)) (-2288 (($ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-4379 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3618 (((-1170) $) 43 (|has| (-145) (-1111)))) (-2744 (($ (-145) $ (-572)) NIL) (($ $ $ (-572)) 27)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) 85 (|has| (-145) (-1111)))) (-2570 (((-145) $) NIL (|has| (-572) (-858)))) (-3124 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3803 (($ $ (-145)) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-145)))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2950 (((-652 (-145)) $) NIL)) (-3712 (((-112) $) 15)) (-1321 (($) 10)) (-2679 (((-145) $ (-572) (-145)) NIL) (((-145) $ (-572)) 68) (($ $ (-1246 (-572))) 25) (($ $ $) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (((-779) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2561 (($ $ $ (-572)) 81 (|has| $ (-6 -4455)))) (-3679 (($ $) 20)) (-3222 (((-544) $) NIL (|has| (-145) (-622 (-544))))) (-3503 (($ (-652 (-145))) NIL)) (-2121 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-652 $)) 82)) (-3491 (($ (-145)) NIL) (((-870) $) 31 (|has| (-145) (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| (-145) (-1111)))) (-3776 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3921 (((-112) $ $) 17 (|has| (-145) (-1111)))) (-3965 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3943 (((-112) $ $) 18 (|has| (-145) (-858)))) (-3475 (((-779) $) 16 (|has| $ (-6 -4454)))))
+(((-601 |#1|) (-1155) (-572)) (T -601))
+NIL
+(-1155)
+((-1847 (((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2| (-1105 |#4|)) 32)))
+(((-602 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1847 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2| (-1105 |#4|))) (-15 -1847 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2|))) (-801) (-858) (-564) (-958 |#3| |#1| |#2|)) (T -602))
+((-1847 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-564)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572)))) (-5 *1 (-602 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4)))) (-1847 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1105 *3)) (-4 *3 (-958 *7 *6 *4)) (-4 *6 (-801)) (-4 *4 (-858)) (-4 *7 (-564)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572)))) (-5 *1 (-602 *6 *4 *7 *3)))))
+(-10 -7 (-15 -1847 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2| (-1105 |#4|))) (-15 -1847 ((-2 (|:| |num| |#4|) (|:| |den| (-572))) |#4| |#2|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 71)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-572)) 58) (($ $ (-572) (-572)) 59)) (-2709 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 65)) (-1474 (($ $) 109)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1967 (((-870) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) (-1037 (-851 (-572))) (-1188) |#1| (-415 (-572))) 241)) (-2493 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 36)) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2969 (((-112) $) NIL)) (-2068 (((-572) $) 63) (((-572) $ (-572)) 64)) (-4422 (((-112) $) NIL)) (-2865 (($ $ (-930)) 83)) (-1506 (($ (-1 |#1| (-572)) $) 80)) (-3357 (((-112) $) 26)) (-3042 (($ |#1| (-572)) 22) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-2895 (($ (-1037 (-851 (-572))) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 13)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-4161 (($ $) 161 (|has| |#1| (-38 (-415 (-572)))))) (-3067 (((-3 $ "failed") $ $ (-112)) 108)) (-2567 (($ $ $) 116)) (-2614 (((-1131) $) NIL)) (-3953 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 15)) (-2772 (((-1037 (-851 (-572))) $) 14)) (-3103 (($ $ (-572)) 47)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-572)))))) (-2679 ((|#1| $ (-572)) 62) (($ $ $) NIL (|has| (-572) (-1123)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-1497 (((-572) $) NIL)) (-3610 (($ $) 48)) (-3491 (((-870) $) NIL) (($ (-572)) 29) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 28 (|has| |#1| (-174)))) (-4206 ((|#1| $ (-572)) 61)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) 39 T CONST)) (-2376 ((|#1| $) NIL)) (-2038 (($ $) 198 (|has| |#1| (-38 (-415 (-572)))))) (-3237 (($ $) 169 (|has| |#1| (-38 (-415 (-572)))))) (-3039 (($ $) 202 (|has| |#1| (-38 (-415 (-572)))))) (-1928 (($ $) 174 (|has| |#1| (-38 (-415 (-572)))))) (-2461 (($ $) 201 (|has| |#1| (-38 (-415 (-572)))))) (-2229 (($ $) 173 (|has| |#1| (-38 (-415 (-572)))))) (-4240 (($ $ (-415 (-572))) 177 (|has| |#1| (-38 (-415 (-572)))))) (-1391 (($ $ |#1|) 157 (|has| |#1| (-38 (-415 (-572)))))) (-3383 (($ $) 204 (|has| |#1| (-38 (-415 (-572)))))) (-1464 (($ $) 160 (|has| |#1| (-38 (-415 (-572)))))) (-4027 (($ $) 203 (|has| |#1| (-38 (-415 (-572)))))) (-3372 (($ $) 175 (|has| |#1| (-38 (-415 (-572)))))) (-4226 (($ $) 199 (|has| |#1| (-38 (-415 (-572)))))) (-3076 (($ $) 171 (|has| |#1| (-38 (-415 (-572)))))) (-2887 (($ $) 200 (|has| |#1| (-38 (-415 (-572)))))) (-2191 (($ $) 172 (|has| |#1| (-38 (-415 (-572)))))) (-2768 (($ $) 209 (|has| |#1| (-38 (-415 (-572)))))) (-1615 (($ $) 185 (|has| |#1| (-38 (-415 (-572)))))) (-1445 (($ $) 206 (|has| |#1| (-38 (-415 (-572)))))) (-1743 (($ $) 181 (|has| |#1| (-38 (-415 (-572)))))) (-2227 (($ $) 213 (|has| |#1| (-38 (-415 (-572)))))) (-2926 (($ $) 189 (|has| |#1| (-38 (-415 (-572)))))) (-3055 (($ $) 215 (|has| |#1| (-38 (-415 (-572)))))) (-3728 (($ $) 191 (|has| |#1| (-38 (-415 (-572)))))) (-3224 (($ $) 211 (|has| |#1| (-38 (-415 (-572)))))) (-2834 (($ $) 187 (|has| |#1| (-38 (-415 (-572)))))) (-1917 (($ $) 208 (|has| |#1| (-38 (-415 (-572)))))) (-2314 (($ $) 183 (|has| |#1| (-38 (-415 (-572)))))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-4090 ((|#1| $ (-572)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-2602 (($) 30 T CONST)) (-2619 (($) 40 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-3921 (((-112) $ $) 73)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) 91) (($ $ $) 72)) (-4005 (($ $ $) 88)) (** (($ $ (-930)) NIL) (($ $ (-779)) 111)) (* (($ (-930) $) 98) (($ (-779) $) 96) (($ (-572) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-603 |#1|) (-13 (-1257 |#1| (-572)) (-10 -8 (-15 -2895 ($ (-1037 (-851 (-572))) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -2772 ((-1037 (-851 (-572))) $)) (-15 -3953 ((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $)) (-15 -2493 ($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -3357 ((-112) $)) (-15 -1506 ($ (-1 |#1| (-572)) $)) (-15 -3067 ((-3 $ "failed") $ $ (-112))) (-15 -1474 ($ $)) (-15 -2567 ($ $ $)) (-15 -1967 ((-870) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) (-1037 (-851 (-572))) (-1188) |#1| (-415 (-572)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $)) (-15 -1391 ($ $ |#1|)) (-15 -4240 ($ $ (-415 (-572)))) (-15 -1464 ($ $)) (-15 -3383 ($ $)) (-15 -1928 ($ $)) (-15 -2191 ($ $)) (-15 -3237 ($ $)) (-15 -3076 ($ $)) (-15 -2229 ($ $)) (-15 -3372 ($ $)) (-15 -1743 ($ $)) (-15 -2314 ($ $)) (-15 -1615 ($ $)) (-15 -2834 ($ $)) (-15 -2926 ($ $)) (-15 -3728 ($ $)) (-15 -3039 ($ $)) (-15 -2887 ($ $)) (-15 -2038 ($ $)) (-15 -4226 ($ $)) (-15 -2461 ($ $)) (-15 -4027 ($ $)) (-15 -1445 ($ $)) (-15 -1917 ($ $)) (-15 -2768 ($ $)) (-15 -3224 ($ $)) (-15 -2227 ($ $)) (-15 -3055 ($ $))) |%noBranch|))) (-1060)) (T -603))
+((-3357 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-851 (-572)))) (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *4)))) (-4 *4 (-1060)) (-5 *1 (-603 *4)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-1037 (-851 (-572)))) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3)))) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-2493 (*1 *1 *2) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3)))) (-4 *3 (-1060)) (-5 *1 (-603 *3)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-603 *3)))) (-3067 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060)))) (-1474 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))) (-2567 (*1 *1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))) (-1967 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *6)))) (-5 *4 (-1037 (-851 (-572)))) (-5 *5 (-1188)) (-5 *7 (-415 (-572))) (-4 *6 (-1060)) (-5 *2 (-870)) (-5 *1 (-603 *6)))) (-4161 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1391 (*1 *1 *1 *2) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-4240 (*1 *1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-603 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1060)))) (-1464 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3383 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1928 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2191 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3237 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3076 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2229 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3372 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1743 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2314 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1615 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2834 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2926 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3039 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2887 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2038 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-4226 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2461 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-4027 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2768 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3224 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-2227 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))) (-3055 (*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(-13 (-1257 |#1| (-572)) (-10 -8 (-15 -2895 ($ (-1037 (-851 (-572))) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -2772 ((-1037 (-851 (-572))) $)) (-15 -3953 ((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $)) (-15 -2493 ($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))))) (-15 -3357 ((-112) $)) (-15 -1506 ($ (-1 |#1| (-572)) $)) (-15 -3067 ((-3 $ "failed") $ $ (-112))) (-15 -1474 ($ $)) (-15 -2567 ($ $ $)) (-15 -1967 ((-870) (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) (-1037 (-851 (-572))) (-1188) |#1| (-415 (-572)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $)) (-15 -1391 ($ $ |#1|)) (-15 -4240 ($ $ (-415 (-572)))) (-15 -1464 ($ $)) (-15 -3383 ($ $)) (-15 -1928 ($ $)) (-15 -2191 ($ $)) (-15 -3237 ($ $)) (-15 -3076 ($ $)) (-15 -2229 ($ $)) (-15 -3372 ($ $)) (-15 -1743 ($ $)) (-15 -2314 ($ $)) (-15 -1615 ($ $)) (-15 -2834 ($ $)) (-15 -2926 ($ $)) (-15 -3728 ($ $)) (-15 -3039 ($ $)) (-15 -2887 ($ $)) (-15 -2038 ($ $)) (-15 -4226 ($ $)) (-15 -2461 ($ $)) (-15 -4027 ($ $)) (-15 -1445 ($ $)) (-15 -1917 ($ $)) (-15 -2768 ($ $)) (-15 -3224 ($ $)) (-15 -2227 ($ $)) (-15 -3055 ($ $))) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 63)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2493 (($ (-1168 |#1|)) 9)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) 44)) (-2969 (((-112) $) 56)) (-2068 (((-779) $) 61) (((-779) $ (-779)) 60)) (-4422 (((-112) $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ $) 46 (|has| |#1| (-564)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-1168 |#1|) $) 25)) (-2455 (((-779)) 55 T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) 10 T CONST)) (-2619 (($) 14 T CONST)) (-3921 (((-112) $ $) 24)) (-4018 (($ $) 32) (($ $ $) 16)) (-4005 (($ $ $) 27)) (** (($ $ (-930)) NIL) (($ $ (-779)) 53)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-572)) 38)))
+(((-604 |#1|) (-13 (-1060) (-111 |#1| |#1|) (-10 -8 (-15 -1708 ((-1168 |#1|) $)) (-15 -2493 ($ (-1168 |#1|))) (-15 -2969 ((-112) $)) (-15 -2068 ((-779) $)) (-15 -2068 ((-779) $ (-779))) (-15 * ($ $ (-572))) (IF (|has| |#1| (-564)) (-6 (-564)) |%noBranch|))) (-1060)) (T -604))
+((-1708 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (-2493 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-604 *3)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (-2068 (*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-604 *3)) (-4 *3 (-1060)))))
+(-13 (-1060) (-111 |#1| |#1|) (-10 -8 (-15 -1708 ((-1168 |#1|) $)) (-15 -2493 ($ (-1168 |#1|))) (-15 -2969 ((-112) $)) (-15 -2068 ((-779) $)) (-15 -2068 ((-779) $ (-779))) (-15 * ($ $ (-572))) (IF (|has| |#1| (-564)) (-6 (-564)) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-2222 (($) 8 T CONST)) (-2943 (($) 7 T CONST)) (-1785 (($ $ (-652 $)) 16)) (-3618 (((-1170) $) NIL)) (-2044 (($) 6 T CONST)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ (-1193)) 15) (((-1193) $) 10)) (-4160 (($) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-605) (-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -2044 ($) -4338) (-15 -2943 ($) -4338) (-15 -2222 ($) -4338) (-15 -4160 ($) -4338) (-15 -1785 ($ $ (-652 $)))))) (T -605))
+((-2044 (*1 *1) (-5 *1 (-605))) (-2943 (*1 *1) (-5 *1 (-605))) (-2222 (*1 *1) (-5 *1 (-605))) (-4160 (*1 *1) (-5 *1 (-605))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-605))) (-5 *1 (-605)))))
+(-13 (-1111) (-498 (-1193)) (-10 -8 (-15 -2044 ($) -4338) (-15 -2943 ($) -4338) (-15 -2222 ($) -4338) (-15 -4160 ($) -4338) (-15 -1785 ($ $ (-652 $)))))
+((-3161 (((-609 |#2|) (-1 |#2| |#1|) (-609 |#1|)) 15)))
+(((-606 |#1| |#2|) (-10 -7 (-15 -3161 ((-609 |#2|) (-1 |#2| |#1|) (-609 |#1|)))) (-1229) (-1229)) (T -606))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-609 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-609 *6)) (-5 *1 (-606 *5 *6)))))
+(-10 -7 (-15 -3161 ((-609 |#2|) (-1 |#2| |#1|) (-609 |#1|))))
+((-3161 (((-1168 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-1168 |#2|)) 20) (((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-609 |#2|)) 19) (((-609 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-609 |#2|)) 18)))
+(((-607 |#1| |#2| |#3|) (-10 -7 (-15 -3161 ((-609 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-609 |#2|))) (-15 -3161 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-609 |#2|))) (-15 -3161 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-1168 |#2|)))) (-1229) (-1229) (-1229)) (T -607))
+((-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-1168 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8)) (-5 *1 (-607 *6 *7 *8)))) (-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-609 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8)) (-5 *1 (-607 *6 *7 *8)))) (-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-609 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-609 *8)) (-5 *1 (-607 *6 *7 *8)))))
+(-10 -7 (-15 -3161 ((-609 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-609 |#2|))) (-15 -3161 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-609 |#2|))) (-15 -3161 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-609 |#1|) (-1168 |#2|))))
+((-1554 ((|#3| |#3| (-652 (-620 |#3|)) (-652 (-1188))) 57)) (-1607 (((-171 |#2|) |#3|) 122)) (-1423 ((|#3| (-171 |#2|)) 46)) (-1539 ((|#2| |#3|) 21)) (-4409 ((|#3| |#2|) 35)))
+(((-608 |#1| |#2| |#3|) (-10 -7 (-15 -1423 (|#3| (-171 |#2|))) (-15 -1539 (|#2| |#3|)) (-15 -4409 (|#3| |#2|)) (-15 -1607 ((-171 |#2|) |#3|)) (-15 -1554 (|#3| |#3| (-652 (-620 |#3|)) (-652 (-1188))))) (-564) (-13 (-438 |#1|) (-1013) (-1214)) (-13 (-438 (-171 |#1|)) (-1013) (-1214))) (T -608))
+((-1554 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-652 (-1188))) (-4 *2 (-13 (-438 (-171 *5)) (-1013) (-1214))) (-4 *5 (-564)) (-5 *1 (-608 *5 *6 *2)) (-4 *6 (-13 (-438 *5) (-1013) (-1214))))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-171 *5)) (-5 *1 (-608 *4 *5 *3)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))) (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))) (-4409 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214))) (-5 *1 (-608 *4 *3 *2)) (-4 *3 (-13 (-438 *4) (-1013) (-1214))))) (-1539 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 *4) (-1013) (-1214))) (-5 *1 (-608 *4 *2 *3)) (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))) (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214))) (-5 *1 (-608 *4 *5 *2)))))
+(-10 -7 (-15 -1423 (|#3| (-171 |#2|))) (-15 -1539 (|#2| |#3|)) (-15 -4409 (|#3| |#2|)) (-15 -1607 ((-171 |#2|) |#3|)) (-15 -1554 (|#3| |#3| (-652 (-620 |#3|)) (-652 (-1188)))))
+((-1424 (($ (-1 (-112) |#1|) $) 17)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) |#1|) 9)) (-1400 (($ (-1 (-112) |#1|) $) 13)) (-1412 (($ (-1 (-112) |#1|) $) 15)) (-3503 (((-1168 |#1|) $) 18)) (-3491 (((-870) $) NIL)))
+(((-609 |#1|) (-13 (-621 (-870)) (-10 -8 (-15 -3161 ($ (-1 |#1| |#1|) $)) (-15 -1400 ($ (-1 (-112) |#1|) $)) (-15 -1412 ($ (-1 (-112) |#1|) $)) (-15 -1424 ($ (-1 (-112) |#1|) $)) (-15 -1347 ($ (-1 |#1| |#1|) |#1|)) (-15 -3503 ((-1168 |#1|) $)))) (-1229)) (T -609))
+((-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-1400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-1412 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-1424 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-1347 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1229)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -3161 ($ (-1 |#1| |#1|) $)) (-15 -1400 ($ (-1 (-112) |#1|) $)) (-15 -1412 ($ (-1 (-112) |#1|) $)) (-15 -1424 ($ (-1 (-112) |#1|) $)) (-15 -1347 ($ (-1 |#1| |#1|) |#1|)) (-15 -3503 ((-1168 |#1|) $))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3488 (($ (-779)) NIL (|has| |#1| (-23)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1504 (((-697 |#1|) $ $) NIL (|has| |#1| (-1060)))) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2691 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-3818 (((-112) $ (-779)) NIL)) (-2040 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1606 ((|#1| $ $) NIL (|has| |#1| (-1060)))) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3947 (($ $ $) NIL (|has| |#1| (-1060)))) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) NIL)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-4018 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4005 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-572) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-734))) (($ $ |#1|) NIL (|has| |#1| (-734)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-610 |#1| |#2|) (-1277 |#1|) (-1229) (-572)) (T -610))
+NIL
+(-1277 |#1|)
+((-2812 (((-1284) $ |#2| |#2|) 35)) (-1531 ((|#2| $) 23)) (-2751 ((|#2| $) 21)) (-3049 (($ (-1 |#3| |#3|) $) 32)) (-3161 (($ (-1 |#3| |#3|) $) 30)) (-2570 ((|#3| $) 26)) (-3803 (($ $ |#3|) 33)) (-2516 (((-112) |#3| $) 17)) (-2950 (((-652 |#3|) $) 15)) (-2679 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-611 |#1| |#2| |#3|) (-10 -8 (-15 -2812 ((-1284) |#1| |#2| |#2|)) (-15 -3803 (|#1| |#1| |#3|)) (-15 -2570 (|#3| |#1|)) (-15 -1531 (|#2| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -2516 ((-112) |#3| |#1|)) (-15 -2950 ((-652 |#3|) |#1|)) (-15 -2679 (|#3| |#1| |#2|)) (-15 -2679 (|#3| |#1| |#2| |#3|)) (-15 -3049 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3161 (|#1| (-1 |#3| |#3|) |#1|))) (-612 |#2| |#3|) (-1111) (-1229)) (T -611))
+NIL
+(-10 -8 (-15 -2812 ((-1284) |#1| |#2| |#2|)) (-15 -3803 (|#1| |#1| |#3|)) (-15 -2570 (|#3| |#1|)) (-15 -1531 (|#2| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -2516 ((-112) |#3| |#1|)) (-15 -2950 ((-652 |#3|) |#1|)) (-15 -2679 (|#3| |#1| |#2|)) (-15 -2679 (|#3| |#1| |#2| |#3|)) (-15 -3049 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3161 (|#1| (-1 |#3| |#3|) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#2| (-1111)))) (-2812 (((-1284) $ |#1| |#1|) 41 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4455)))) (-1586 (($) 7 T CONST)) (-3061 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) 52)) (-1442 (((-652 |#2|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-1531 ((|#1| $) 44 (|has| |#1| (-858)))) (-2396 (((-652 |#2|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-2751 ((|#1| $) 45 (|has| |#1| (-858)))) (-3049 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#2| (-1111)))) (-1634 (((-652 |#1|) $) 47)) (-3132 (((-112) |#1| $) 48)) (-2614 (((-1131) $) 21 (|has| |#2| (-1111)))) (-2570 ((|#2| $) 43 (|has| |#1| (-858)))) (-3803 (($ $ |#2|) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) 27 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 26 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 24 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1371 (((-779) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4454))) (((-779) |#2| $) 29 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#2| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#2| (-1111)))) (-3776 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#2| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-612 |#1| |#2|) (-141) (-1111) (-1229)) (T -612))
+((-2950 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-652 *4)))) (-3132 (*1 *2 *3 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-112)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-652 *3)))) (-2516 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-612 *4 *3)) (-4 *4 (-1111)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111)) (-4 *2 (-858)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111)) (-4 *2 (-858)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1111)) (-4 *3 (-858)) (-4 *2 (-1229)))) (-3803 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229)))) (-2812 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229)) (-5 *2 (-1284)))))
+(-13 (-497 |t#2|) (-294 |t#1| |t#2|) (-10 -8 (-15 -2950 ((-652 |t#2|) $)) (-15 -3132 ((-112) |t#1| $)) (-15 -1634 ((-652 |t#1|) $)) (IF (|has| |t#2| (-1111)) (IF (|has| $ (-6 -4454)) (-15 -2516 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-858)) (PROGN (-15 -2751 (|t#1| $)) (-15 -1531 (|t#1| $)) (-15 -2570 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -3803 ($ $ |t#2|)) (-15 -2812 ((-1284) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1111)) ((-621 (-870)) -3783 (|has| |#2| (-1111)) (|has| |#2| (-621 (-870)))) ((-292 |#1| |#2|) . T) ((-294 |#1| |#2|) . T) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-497 |#2|) . T) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-1111) |has| |#2| (-1111)) ((-1229) . T))
+((-3491 (((-870) $) 19) (($ (-130)) 13) (((-130) $) 14)))
+(((-613) (-13 (-621 (-870)) (-498 (-130)))) (T -613))
+NIL
+(-13 (-621 (-870)) (-498 (-130)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ (-1193)) NIL) (((-1193) $) NIL) (((-1228) $) 14) (($ (-652 (-1228))) 13)) (-3809 (((-652 (-1228)) $) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-614) (-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -3491 ($ (-652 (-1228)))) (-15 -3809 ((-652 (-1228)) $))))) (T -614))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614)))))
+(-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -3491 ($ (-652 (-1228)))) (-15 -3809 ((-652 (-1228)) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3457 (((-3 $ "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3862 (((-1279 (-697 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-1279 (-697 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2646 (((-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1586 (($) NIL T CONST)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2771 (((-3 $ "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3590 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1597 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-4043 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3899 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2571 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-4203 (($ $ (-930)) NIL)) (-4114 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-3440 (((-1184 |#1|) $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2650 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2712 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-1515 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2372 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (($ (-1279 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2982 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-1526 (((-930)) NIL (|has| |#2| (-374 |#1|)))) (-3538 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3100 (($ $ (-930)) NIL)) (-4325 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1936 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3246 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-4277 (((-3 $ "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2808 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3611 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-2037 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3882 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2312 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-3962 (($ $ (-930)) NIL)) (-3686 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-1342 (((-1184 |#1|) $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2190 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3177 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-3614 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3618 (((-1170) $) NIL)) (-4412 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3421 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-4413 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2614 (((-1131) $) NIL)) (-3749 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2679 ((|#1| $ (-572)) NIL (|has| |#2| (-425 |#1|)))) (-2862 (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $) (-1279 $)) NIL (|has| |#2| (-374 |#1|))) (((-1279 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3222 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-2956 (((-652 (-961 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-652 (-961 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1433 (($ $ $) NIL)) (-3846 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3491 (((-870) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL (|has| |#2| (-425 |#1|)))) (-1373 (((-652 (-1279 |#1|))) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-1541 (($ $ $ $) NIL)) (-3229 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2558 (($ (-697 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-1923 (($ $ $) NIL)) (-1873 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2702 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3565 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2602 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) 24)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-615 |#1| |#2|) (-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -3491 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|))) (-174) (-752 |#1|)) (T -615))
+((-3491 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-615 *3 *2)) (-4 *2 (-752 *3)))))
+(-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -3491 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-4280 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) 39)) (-2912 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL) (($) NIL)) (-2812 (((-1284) $ (-1170) (-1170)) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-1170) |#1|) 49)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#1| "failed") (-1170) $) 52)) (-1586 (($) NIL T CONST)) (-3098 (($ $ (-1170)) 25)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111))))) (-3033 (((-3 |#1| "failed") (-1170) $) 53) (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (($ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (|has| $ (-6 -4454)))) (-4243 (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (($ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111))))) (-2925 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111))))) (-2594 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) 38)) (-3061 ((|#1| $ (-1170) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-1170)) NIL)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-1594 (($ $) 54)) (-3589 (($ (-396)) 23) (($ (-396) (-1170)) 22)) (-2402 (((-396) $) 40)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-1170) $) NIL (|has| (-1170) (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454))) (((-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (((-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111))))) (-2751 (((-1170) $) NIL (|has| (-1170) (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-2608 (((-652 (-1170)) $) 45)) (-4096 (((-112) (-1170) $) NIL)) (-3134 (((-1170) $) 41)) (-1533 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL)) (-1634 (((-652 (-1170)) $) NIL)) (-3132 (((-112) (-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 ((|#1| $) NIL (|has| (-1170) (-858)))) (-3124 (((-3 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) "failed") (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ $ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ $ (-652 (-300 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 43)) (-2679 ((|#1| $ (-1170) |#1|) NIL) ((|#1| $ (-1170)) 48)) (-2145 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL) (($) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (((-779) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (((-779) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL)) (-3491 (((-870) $) 21)) (-3725 (($ $) 26)) (-3424 (((-112) $ $) NIL)) (-4163 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20)) (-3475 (((-779) $) 47 (|has| $ (-6 -4454)))))
+(((-616 |#1|) (-13 (-371 (-396) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) (-1205 (-1170) |#1|) (-10 -8 (-6 -4454) (-15 -1594 ($ $)))) (-1111)) (T -616))
+((-1594 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1111)))))
+(-13 (-371 (-396) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) (-1205 (-1170) |#1|) (-10 -8 (-6 -4454) (-15 -1594 ($ $))))
+((-4211 (((-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) $) 16)) (-2608 (((-652 |#2|) $) 20)) (-4096 (((-112) |#2| $) 12)))
+(((-617 |#1| |#2| |#3|) (-10 -8 (-15 -2608 ((-652 |#2|) |#1|)) (-15 -4096 ((-112) |#2| |#1|)) (-15 -4211 ((-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|))) (-618 |#2| |#3|) (-1111) (-1111)) (T -617))
+NIL
+(-10 -8 (-15 -2608 ((-652 |#2|) |#1|)) (-15 -4096 ((-112) |#2| |#1|)) (-15 -4211 ((-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 56 (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) 62)) (-1586 (($) 7 T CONST)) (-3955 (($ $) 59 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 47 (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 63)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 55 (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 57 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 54 (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 53 (|has| $ (-6 -4454)))) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-2608 (((-652 |#1|) $) 64)) (-4096 (((-112) |#1| $) 65)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 40)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 41)) (-2614 (((-1131) $) 21 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 52)) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 42)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) 27 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 26 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 25 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 24 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2145 (($) 50) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 49)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 32 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 51)) (-3491 (((-870) $) 18 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 43)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-618 |#1| |#2|) (-141) (-1111) (-1111)) (T -618))
+((-4096 (*1 *2 *3 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-112)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-5 *2 (-652 *3)))) (-3033 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-1998 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
+(-13 (-231 (-2 (|:| -1640 |t#1|) (|:| -3762 |t#2|))) (-10 -8 (-15 -4096 ((-112) |t#1| $)) (-15 -2608 ((-652 |t#1|) $)) (-15 -3033 ((-3 |t#2| "failed") |t#1| $)) (-15 -1998 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) ((-102) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) ((-621 (-870)) -3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870)))) ((-152 #0#) . T) ((-622 (-544)) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))) ((-231 #0#) . T) ((-239 #0#) . T) ((-315 #0#) -12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-497 #0#) . T) ((-522 #0# #0#) -12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-1111) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) ((-1229) . T))
+((-2932 (((-620 |#2|) |#1|) 17)) (-2530 (((-3 |#1| "failed") (-620 |#2|)) 21)))
+(((-619 |#1| |#2|) (-10 -7 (-15 -2932 ((-620 |#2|) |#1|)) (-15 -2530 ((-3 |#1| "failed") (-620 |#2|)))) (-1111) (-1111)) (T -619))
+((-2530 (*1 *2 *3) (|partial| -12 (-5 *3 (-620 *4)) (-4 *4 (-1111)) (-4 *2 (-1111)) (-5 *1 (-619 *2 *4)))) (-2932 (*1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *1 (-619 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
+(-10 -7 (-15 -2932 ((-620 |#2|) |#1|)) (-15 -2530 ((-3 |#1| "failed") (-620 |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3363 (((-3 (-1188) "failed") $) 46)) (-2639 (((-1284) $ (-779)) 22)) (-3239 (((-779) $) 20)) (-3181 (((-115) $) 9)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2296 (($ (-115) (-652 |#1|) (-779)) 32) (($ (-1188)) 33)) (-2685 (((-112) $ (-115)) 15) (((-112) $ (-1188)) 13)) (-3920 (((-779) $) 17)) (-2614 (((-1131) $) NIL)) (-3222 (((-901 (-572)) $) 95 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 102 (|has| |#1| (-622 (-901 (-386))))) (((-544) $) 88 (|has| |#1| (-622 (-544))))) (-3491 (((-870) $) 72)) (-3424 (((-112) $ $) NIL)) (-4219 (((-652 |#1|) $) 19)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 51)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 53)))
+(((-620 |#1|) (-13 (-133) (-858) (-893 |#1|) (-10 -8 (-15 -3181 ((-115) $)) (-15 -4219 ((-652 |#1|) $)) (-15 -3920 ((-779) $)) (-15 -2296 ($ (-115) (-652 |#1|) (-779))) (-15 -2296 ($ (-1188))) (-15 -3363 ((-3 (-1188) "failed") $)) (-15 -2685 ((-112) $ (-115))) (-15 -2685 ((-112) $ (-1188))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|))) (-1111)) (T -620))
+((-3181 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-2296 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-1111)) (-5 *1 (-620 *5)))) (-2296 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-3363 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))) (-2685 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-620 *4)) (-4 *4 (-1111)))) (-2685 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-620 *4)) (-4 *4 (-1111)))))
+(-13 (-133) (-858) (-893 |#1|) (-10 -8 (-15 -3181 ((-115) $)) (-15 -4219 ((-652 |#1|) $)) (-15 -3920 ((-779) $)) (-15 -2296 ($ (-115) (-652 |#1|) (-779))) (-15 -2296 ($ (-1188))) (-15 -3363 ((-3 (-1188) "failed") $)) (-15 -2685 ((-112) $ (-115))) (-15 -2685 ((-112) $ (-1188))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|)))
+((-3491 ((|#1| $) 6)))
+(((-621 |#1|) (-141) (-1229)) (T -621))
+((-3491 (*1 *2 *1) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1229)))))
+(-13 (-10 -8 (-15 -3491 (|t#1| $))))
+((-3222 ((|#1| $) 6)))
+(((-622 |#1|) (-141) (-1229)) (T -622))
+((-3222 (*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1229)))))
+(-13 (-10 -8 (-15 -3222 (|t#1| $))))
+((-2470 (((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 (-426 |#2|) |#2|)) 15) (((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|)) 16)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -2470 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|))) (-15 -2470 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 (-426 |#2|) |#2|)))) (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -623))
+((-2470 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-1184 (-415 *6))) (-5 *1 (-623 *5 *6)) (-5 *3 (-415 *6)))) (-2470 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-1184 (-415 *5))) (-5 *1 (-623 *4 *5)) (-5 *3 (-415 *5)))))
+(-10 -7 (-15 -2470 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|))) (-15 -2470 ((-3 (-1184 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 (-426 |#2|) |#2|))))
+((-3491 (($ |#1|) 6)))
+(((-624 |#1|) (-141) (-1229)) (T -624))
+((-3491 (*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1229)))))
+(-13 (-10 -8 (-15 -3491 ($ |t#1|))))
+((-3464 (((-112) $ $) NIL)) (-2556 (($) 14 T CONST)) (-2611 (($) 15 T CONST)) (-3814 (($ $ $) 29)) (-3795 (($ $) 27)) (-3618 (((-1170) $) NIL)) (-3546 (($ $ $) 30)) (-2614 (((-1131) $) NIL)) (-1383 (($) 11 T CONST)) (-3742 (($ $ $) 31)) (-3491 (((-870) $) 35)) (-2591 (((-112) $ (|[\|\|]| -1383)) 24) (((-112) $ (|[\|\|]| -2556)) 26) (((-112) $ (|[\|\|]| -2611)) 21)) (-3424 (((-112) $ $) NIL)) (-3804 (($ $ $) 28)) (-3921 (((-112) $ $) 18)))
+(((-625) (-13 (-978) (-10 -8 (-15 -2556 ($) -4338) (-15 -2591 ((-112) $ (|[\|\|]| -1383))) (-15 -2591 ((-112) $ (|[\|\|]| -2556))) (-15 -2591 ((-112) $ (|[\|\|]| -2611)))))) (T -625))
+((-2556 (*1 *1) (-5 *1 (-625))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1383)) (-5 *2 (-112)) (-5 *1 (-625)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2556)) (-5 *2 (-112)) (-5 *1 (-625)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2611)) (-5 *2 (-112)) (-5 *1 (-625)))))
+(-13 (-978) (-10 -8 (-15 -2556 ($) -4338) (-15 -2591 ((-112) $ (|[\|\|]| -1383))) (-15 -2591 ((-112) $ (|[\|\|]| -2556))) (-15 -2591 ((-112) $ (|[\|\|]| -2611)))))
+((-3222 (($ |#1|) 6)))
+(((-626 |#1|) (-141) (-1229)) (T -626))
+((-3222 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1229)))))
+(-13 (-10 -8 (-15 -3222 ($ |t#1|))))
+((-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) 10)))
+(((-627 |#1| |#2|) (-10 -8 (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-628 |#2|) (-1060)) (T -627))
+NIL
+(-10 -8 (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 41)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-628 |#1|) (-141) (-1060)) (T -628))
+((-3491 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1060)))))
+(-13 (-1060) (-656 |t#1|) (-10 -8 (-15 -3491 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-4304 (((-572) $) NIL (|has| |#1| (-856)))) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-3778 (((-112) $) NIL (|has| |#1| (-856)))) (-4422 (((-112) $) NIL)) (-2209 ((|#1| $) 13)) (-4354 (((-112) $) NIL (|has| |#1| (-856)))) (-2536 (($ $ $) NIL (|has| |#1| (-856)))) (-3928 (($ $ $) NIL (|has| |#1| (-856)))) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2224 ((|#3| $) 15)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL)) (-2455 (((-779)) 20 T CONST)) (-3424 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| |#1| (-856)))) (-2602 (($) NIL T CONST)) (-2619 (($) 12 T CONST)) (-3976 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-856)))) (-4029 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-629 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (-15 -4029 ($ $ |#3|)) (-15 -4029 ($ |#1| |#3|)) (-15 -2209 (|#1| $)) (-15 -2224 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-734) |#2|)) (T -629))
+((-4029 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-734) *4)))) (-4029 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-629 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-734) *4)))) (-2209 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-629 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-734) *3)))) (-2224 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4)) (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (-15 -4029 ($ $ |#3|)) (-15 -4029 ($ |#1| |#3|)) (-15 -2209 (|#1| $)) (-15 -2224 (|#3| $))))
+((-2167 ((|#2| |#2| (-1188) (-1188)) 16)))
+(((-630 |#1| |#2|) (-10 -7 (-15 -2167 (|#2| |#2| (-1188) (-1188)))) (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-968) (-29 |#1|))) (T -630))
+((-2167 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-1214) (-968) (-29 *4))))))
+(-10 -7 (-15 -2167 (|#2| |#2| (-1188) (-1188))))
+((-3464 (((-112) $ $) 64)) (-3143 (((-112) $) 58)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-4322 ((|#1| $) 55)) (-2092 (((-3 $ "failed") $ $) NIL)) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3694 (((-2 (|:| -3278 $) (|:| -2707 (-415 |#2|))) (-415 |#2|)) 111 (|has| |#1| (-370)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) 27)) (-2982 (((-3 $ "failed") $) 88)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-2068 (((-572) $) 22)) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) 40)) (-3042 (($ |#1| (-572)) 24)) (-1853 ((|#1| $) 57)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) 101 (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3453 (((-3 $ "failed") $ $) 93)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-4395 (((-779) $) 115 (|has| |#1| (-370)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 114 (|has| |#1| (-370)))) (-3011 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-1497 (((-572) $) 38)) (-3222 (((-415 |#2|) $) 47)) (-3491 (((-870) $) 69) (($ (-572)) 35) (($ $) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 34) (($ |#2|) 25)) (-4206 ((|#1| $ (-572)) 72)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) 9 T CONST)) (-2619 (($) 14 T CONST)) (-4019 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-3921 (((-112) $ $) 21)) (-4018 (($ $) 51) (($ $ $) NIL)) (-4005 (($ $ $) 90)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 29) (($ $ $) 49)))
+(((-631 |#1| |#2|) (-13 (-233 |#2|) (-564) (-622 (-415 |#2|)) (-419 |#1|) (-1049 |#2|) (-10 -8 (-15 -3357 ((-112) $)) (-15 -1497 ((-572) $)) (-15 -2068 ((-572) $)) (-15 -1874 ($ $)) (-15 -1853 (|#1| $)) (-15 -4322 (|#1| $)) (-15 -4206 (|#1| $ (-572))) (-15 -3042 ($ |#1| (-572))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-313)) (-15 -3694 ((-2 (|:| -3278 $) (|:| -2707 (-415 |#2|))) (-415 |#2|)))) |%noBranch|))) (-564) (-1255 |#1|)) (T -631))
+((-3357 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-631 *3 *4)) (-4 *4 (-1255 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4)) (-4 *4 (-1255 *3)))) (-2068 (*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4)) (-4 *4 (-1255 *3)))) (-1874 (*1 *1 *1) (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))) (-1853 (*1 *2 *1) (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))) (-4322 (*1 *2 *1) (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4)) (-4 *4 (-1255 *2)))) (-3042 (*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4)) (-4 *4 (-1255 *2)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *4 (-564)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -3278 (-631 *4 *5)) (|:| -2707 (-415 *5)))) (-5 *1 (-631 *4 *5)) (-5 *3 (-415 *5)))))
+(-13 (-233 |#2|) (-564) (-622 (-415 |#2|)) (-419 |#1|) (-1049 |#2|) (-10 -8 (-15 -3357 ((-112) $)) (-15 -1497 ((-572) $)) (-15 -2068 ((-572) $)) (-15 -1874 ($ $)) (-15 -1853 (|#1| $)) (-15 -4322 (|#1| $)) (-15 -4206 (|#1| $ (-572))) (-15 -3042 ($ |#1| (-572))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-6 (-313)) (-15 -3694 ((-2 (|:| -3278 $) (|:| -2707 (-415 |#2|))) (-415 |#2|)))) |%noBranch|)))
+((-3426 (((-652 |#6|) (-652 |#4|) (-112)) 54)) (-3374 ((|#6| |#6|) 48)))
+(((-632 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3374 (|#6| |#6|)) (-15 -3426 ((-652 |#6|) (-652 |#4|) (-112)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|) (-1120 |#1| |#2| |#3| |#4|)) (T -632))
+((-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *10)) (-5 *1 (-632 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *10 (-1120 *5 *6 *7 *8)))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-632 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *2 (-1120 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3374 (|#6| |#6|)) (-15 -3426 ((-652 |#6|) (-652 |#4|) (-112))))
+((-3855 (((-112) |#3| (-779) (-652 |#3|)) 29)) (-3856 (((-3 (-2 (|:| |polfac| (-652 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-652 (-1184 |#3|)))) "failed") |#3| (-652 (-1184 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1591 (-652 (-2 (|:| |irr| |#4|) (|:| -1948 (-572)))))) (-652 |#3|) (-652 |#1|) (-652 |#3|)) 69)))
+(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3855 ((-112) |#3| (-779) (-652 |#3|))) (-15 -3856 ((-3 (-2 (|:| |polfac| (-652 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-652 (-1184 |#3|)))) "failed") |#3| (-652 (-1184 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1591 (-652 (-2 (|:| |irr| |#4|) (|:| -1948 (-572)))))) (-652 |#3|) (-652 |#1|) (-652 |#3|)))) (-858) (-801) (-313) (-958 |#3| |#2| |#1|)) (T -633))
+((-3856 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1591 (-652 (-2 (|:| |irr| *10) (|:| -1948 (-572))))))) (-5 *6 (-652 *3)) (-5 *7 (-652 *8)) (-4 *8 (-858)) (-4 *3 (-313)) (-4 *10 (-958 *3 *9 *8)) (-4 *9 (-801)) (-5 *2 (-2 (|:| |polfac| (-652 *10)) (|:| |correct| *3) (|:| |corrfact| (-652 (-1184 *3))))) (-5 *1 (-633 *8 *9 *3 *10)) (-5 *4 (-652 (-1184 *3))))) (-3855 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-779)) (-5 *5 (-652 *3)) (-4 *3 (-313)) (-4 *6 (-858)) (-4 *7 (-801)) (-5 *2 (-112)) (-5 *1 (-633 *6 *7 *3 *8)) (-4 *8 (-958 *3 *7 *6)))))
+(-10 -7 (-15 -3855 ((-112) |#3| (-779) (-652 |#3|))) (-15 -3856 ((-3 (-2 (|:| |polfac| (-652 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-652 (-1184 |#3|)))) "failed") |#3| (-652 (-1184 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1591 (-652 (-2 (|:| |irr| |#4|) (|:| -1948 (-572)))))) (-652 |#3|) (-652 |#1|) (-652 |#3|))))
+((-3464 (((-112) $ $) NIL)) (-1336 (((-1146) $) 11)) (-1325 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-634) (-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))) (T -634))
+((-1325 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634)))))
+(-13 (-1094) (-10 -8 (-15 -1325 ((-1146) $)) (-15 -1336 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-4084 (((-652 |#1|) $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-3450 (($ $) 77)) (-4057 (((-672 |#1| |#2|) $) 60)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 81)) (-3454 (((-652 (-300 |#2|)) $ $) 42)) (-2614 (((-1131) $) NIL)) (-3272 (($ (-672 |#1| |#2|)) 56)) (-4242 (($ $ $) NIL)) (-1433 (($ $ $) NIL)) (-3491 (((-870) $) 66) (((-1294 |#1| |#2|) $) NIL) (((-1299 |#1| |#2|) $) 74)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 61 T CONST)) (-3159 (((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $) 41)) (-2333 (((-652 (-672 |#1| |#2|)) (-652 |#1|)) 73)) (-2028 (((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $) 46)) (-3921 (((-112) $ $) 62)) (-4029 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ $ $) 52)))
+(((-635 |#1| |#2| |#3|) (-13 (-481) (-10 -8 (-15 -3272 ($ (-672 |#1| |#2|))) (-15 -4057 ((-672 |#1| |#2|) $)) (-15 -2028 ((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $)) (-15 -3491 ((-1294 |#1| |#2|) $)) (-15 -3491 ((-1299 |#1| |#2|) $)) (-15 -3450 ($ $)) (-15 -4084 ((-652 |#1|) $)) (-15 -2333 ((-652 (-672 |#1| |#2|)) (-652 |#1|))) (-15 -3159 ((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $)) (-15 -3454 ((-652 (-300 |#2|)) $ $)))) (-858) (-13 (-174) (-725 (-415 (-572)))) (-930)) (T -635))
+((-3272 (*1 *1 *2) (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-5 *1 (-635 *3 *4 *5)) (-14 *5 (-930)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-672 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| (-902 *3)) (|:| |c| *4)))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-858)) (-4 *3 (-13 (-174) (-725 (-415 (-572))))) (-14 *4 (-930)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-672 *4 *5))) (-5 *1 (-635 *4 *5 *6)) (-4 *5 (-13 (-174) (-725 (-415 (-572))))) (-14 *6 (-930)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| (-680 *3)) (|:| |c| *4)))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))) (-3454 (*1 *2 *1 *1) (-12 (-5 *2 (-652 (-300 *4))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858)) (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))))
+(-13 (-481) (-10 -8 (-15 -3272 ($ (-672 |#1| |#2|))) (-15 -4057 ((-672 |#1| |#2|) $)) (-15 -2028 ((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $)) (-15 -3491 ((-1294 |#1| |#2|) $)) (-15 -3491 ((-1299 |#1| |#2|) $)) (-15 -3450 ($ $)) (-15 -4084 ((-652 |#1|) $)) (-15 -2333 ((-652 (-672 |#1| |#2|)) (-652 |#1|))) (-15 -3159 ((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $)) (-15 -3454 ((-652 (-300 |#2|)) $ $))))
+((-3426 (((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112)) 103) (((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112)) 77)) (-2941 (((-112) (-652 (-788 |#1| (-872 |#2|)))) 26)) (-3972 (((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112)) 102)) (-3292 (((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112)) 76)) (-1726 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|)))) 30)) (-3984 (((-3 (-652 (-788 |#1| (-872 |#2|))) "failed") (-652 (-788 |#1| (-872 |#2|)))) 29)))
+(((-636 |#1| |#2|) (-10 -7 (-15 -2941 ((-112) (-652 (-788 |#1| (-872 |#2|))))) (-15 -3984 ((-3 (-652 (-788 |#1| (-872 |#2|))) "failed") (-652 (-788 |#1| (-872 |#2|))))) (-15 -1726 ((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))))) (-15 -3292 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -3972 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -3426 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -3426 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112)))) (-460) (-652 (-1188))) (T -636))
+((-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6))))) (-5 *1 (-636 *5 *6)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-636 *5 *6)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6))))) (-5 *1 (-636 *5 *6)))) (-3292 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-636 *5 *6)))) (-1726 (*1 *2 *2) (-12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460)) (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))) (-3984 (*1 *2 *2) (|partial| -12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460)) (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-652 (-788 *4 (-872 *5)))) (-4 *4 (-460)) (-14 *5 (-652 (-1188))) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
+(-10 -7 (-15 -2941 ((-112) (-652 (-788 |#1| (-872 |#2|))))) (-15 -3984 ((-3 (-652 (-788 |#1| (-872 |#2|))) "failed") (-652 (-788 |#1| (-872 |#2|))))) (-15 -1726 ((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))))) (-15 -3292 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -3972 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -3426 ((-652 (-1057 |#1| |#2|)) (-652 (-788 |#1| (-872 |#2|))) (-112))) (-15 -3426 ((-652 (-1157 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|)))) (-652 (-788 |#1| (-872 |#2|))) (-112))))
+((-3915 (($ $) 38)) (-3790 (($ $) 21)) (-3893 (($ $) 37)) (-3770 (($ $) 22)) (-3939 (($ $) 36)) (-3811 (($ $) 23)) (-2250 (($) 48)) (-4057 (($ $) 45)) (-2951 (($ $) 17)) (-1619 (($ $ (-1103 $)) 7) (($ $ (-1188)) 6)) (-3272 (($ $) 46)) (-3734 (($ $) 15)) (-3760 (($ $) 16)) (-2139 (($ $) 35)) (-3822 (($ $) 24)) (-3927 (($ $) 34)) (-3800 (($ $) 25)) (-3905 (($ $) 33)) (-3780 (($ $) 26)) (-2176 (($ $) 44)) (-3852 (($ $) 32)) (-2152 (($ $) 43)) (-3833 (($ $) 31)) (-2204 (($ $) 42)) (-3871 (($ $) 30)) (-3120 (($ $) 41)) (-3883 (($ $) 29)) (-2193 (($ $) 40)) (-3861 (($ $) 28)) (-2162 (($ $) 39)) (-3842 (($ $) 27)) (-3420 (($ $) 19)) (-1319 (($ $) 20)) (-2111 (($ $) 18)) (** (($ $ $) 47)))
+(((-637) (-141)) (T -637))
+((-1319 (*1 *1 *1) (-4 *1 (-637))) (-3420 (*1 *1 *1) (-4 *1 (-637))) (-2111 (*1 *1 *1) (-4 *1 (-637))) (-2951 (*1 *1 *1) (-4 *1 (-637))) (-3760 (*1 *1 *1) (-4 *1 (-637))) (-3734 (*1 *1 *1) (-4 *1 (-637))))
+(-13 (-968) (-1214) (-10 -8 (-15 -1319 ($ $)) (-15 -3420 ($ $)) (-15 -2111 ($ $)) (-15 -2951 ($ $)) (-15 -3760 ($ $)) (-15 -3734 ($ $))))
+(((-35) . T) ((-95) . T) ((-290) . T) ((-501) . T) ((-968) . T) ((-1214) . T) ((-1217) . T))
+((-3181 (((-115) (-115)) 88)) (-2951 ((|#2| |#2|) 28)) (-1619 ((|#2| |#2| (-1103 |#2|)) 84) ((|#2| |#2| (-1188)) 50)) (-3734 ((|#2| |#2|) 27)) (-3760 ((|#2| |#2|) 29)) (-3088 (((-112) (-115)) 33)) (-3420 ((|#2| |#2|) 24)) (-1319 ((|#2| |#2|) 26)) (-2111 ((|#2| |#2|) 25)))
+(((-638 |#1| |#2|) (-10 -7 (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -1319 (|#2| |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -1619 (|#2| |#2| (-1188))) (-15 -1619 (|#2| |#2| (-1103 |#2|)))) (-564) (-13 (-438 |#1|) (-1013) (-1214))) (T -638))
+((-1619 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-1013) (-1214))) (-4 *4 (-564)) (-5 *1 (-638 *4 *2)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-638 *4 *2)) (-4 *2 (-13 (-438 *4) (-1013) (-1214))))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-2951 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-2111 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-3420 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2)) (-4 *2 (-13 (-438 *3) (-1013) (-1214))))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-638 *3 *4)) (-4 *4 (-13 (-438 *3) (-1013) (-1214))))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-638 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))))))
+(-10 -7 (-15 -3088 ((-112) (-115))) (-15 -3181 ((-115) (-115))) (-15 -1319 (|#2| |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -1619 (|#2| |#2| (-1188))) (-15 -1619 (|#2| |#2| (-1103 |#2|))))
+((-2806 (((-489 |#1| |#2|) (-251 |#1| |#2|)) 63)) (-2539 (((-652 (-251 |#1| |#2|)) (-652 (-489 |#1| |#2|))) 89)) (-2223 (((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-872 |#1|)) 91) (((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)) (-872 |#1|)) 90)) (-2230 (((-2 (|:| |gblist| (-652 (-251 |#1| |#2|))) (|:| |gvlist| (-652 (-572)))) (-652 (-489 |#1| |#2|))) 134)) (-3758 (((-652 (-489 |#1| |#2|)) (-872 |#1|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|))) 104)) (-3918 (((-2 (|:| |glbase| (-652 (-251 |#1| |#2|))) (|:| |glval| (-652 (-572)))) (-652 (-251 |#1| |#2|))) 145)) (-2968 (((-1279 |#2|) (-489 |#1| |#2|) (-652 (-489 |#1| |#2|))) 68)) (-1566 (((-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|))) 47)) (-3001 (((-251 |#1| |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|))) 60)) (-1565 (((-251 |#1| |#2|) (-652 |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|))) 112)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -2230 ((-2 (|:| |gblist| (-652 (-251 |#1| |#2|))) (|:| |gvlist| (-652 (-572)))) (-652 (-489 |#1| |#2|)))) (-15 -3918 ((-2 (|:| |glbase| (-652 (-251 |#1| |#2|))) (|:| |glval| (-652 (-572)))) (-652 (-251 |#1| |#2|)))) (-15 -2539 ((-652 (-251 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2223 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -2223 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -1566 ((-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2968 ((-1279 |#2|) (-489 |#1| |#2|) (-652 (-489 |#1| |#2|)))) (-15 -1565 ((-251 |#1| |#2|) (-652 |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -3758 ((-652 (-489 |#1| |#2|)) (-872 |#1|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -3001 ((-251 |#1| |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -2806 ((-489 |#1| |#2|) (-251 |#1| |#2|)))) (-652 (-1188)) (-460)) (T -639))
+((-2806 (*1 *2 *3) (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-489 *4 *5)) (-5 *1 (-639 *4 *5)))) (-3001 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-251 *4 *5))) (-5 *2 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))) (-3758 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-872 *4)) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))) (-1565 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-251 *5 *6))) (-4 *6 (-460)) (-5 *2 (-251 *5 *6)) (-14 *5 (-652 (-1188))) (-5 *1 (-639 *5 *6)))) (-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-489 *5 *6))) (-5 *3 (-489 *5 *6)) (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-1279 *6)) (-5 *1 (-639 *5 *6)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-652 (-489 *3 *4))) (-14 *3 (-652 (-1188))) (-4 *4 (-460)) (-5 *1 (-639 *3 *4)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5)) (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6)) (-4 *6 (-460)))) (-2223 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5)) (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6)) (-4 *6 (-460)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-652 (-251 *4 *5))) (-5 *1 (-639 *4 *5)))) (-3918 (*1 *2 *3) (-12 (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-2 (|:| |glbase| (-652 (-251 *4 *5))) (|:| |glval| (-652 (-572))))) (-5 *1 (-639 *4 *5)) (-5 *3 (-652 (-251 *4 *5))))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *2 (-2 (|:| |gblist| (-652 (-251 *4 *5))) (|:| |gvlist| (-652 (-572))))) (-5 *1 (-639 *4 *5)))))
+(-10 -7 (-15 -2230 ((-2 (|:| |gblist| (-652 (-251 |#1| |#2|))) (|:| |gvlist| (-652 (-572)))) (-652 (-489 |#1| |#2|)))) (-15 -3918 ((-2 (|:| |glbase| (-652 (-251 |#1| |#2|))) (|:| |glval| (-652 (-572)))) (-652 (-251 |#1| |#2|)))) (-15 -2539 ((-652 (-251 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2223 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -2223 ((-489 |#1| |#2|) (-652 (-489 |#1| |#2|)) (-872 |#1|))) (-15 -1566 ((-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -2968 ((-1279 |#2|) (-489 |#1| |#2|) (-652 (-489 |#1| |#2|)))) (-15 -1565 ((-251 |#1| |#2|) (-652 |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -3758 ((-652 (-489 |#1| |#2|)) (-872 |#1|) (-652 (-489 |#1| |#2|)) (-652 (-489 |#1| |#2|)))) (-15 -3001 ((-251 |#1| |#2|) (-251 |#1| |#2|) (-652 (-251 |#1| |#2|)))) (-15 -2806 ((-489 |#1| |#2|) (-251 |#1| |#2|))))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) NIL)) (-2812 (((-1284) $ (-1170) (-1170)) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 (((-52) $ (-1170) (-52)) 16) (((-52) $ (-1188) (-52)) 17)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 (-52) "failed") (-1170) $) NIL)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111))))) (-3033 (($ (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-3 (-52) "failed") (-1170) $) NIL)) (-4243 (($ (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $ (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (((-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $ (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-3061 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4455)))) (-2986 (((-52) $ (-1170)) NIL)) (-1442 (((-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-1594 (($ $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-1170) $) NIL (|has| (-1170) (-858)))) (-2396 (((-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-2751 (((-1170) $) NIL (|has| (-1170) (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3173 (($ (-396)) 9)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111))))) (-2608 (((-652 (-1170)) $) NIL)) (-4096 (((-112) (-1170) $) NIL)) (-1533 (((-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) $) NIL)) (-3704 (($ (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) $) NIL)) (-1634 (((-652 (-1170)) $) NIL)) (-3132 (((-112) (-1170) $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111))))) (-2570 (((-52) $) NIL (|has| (-1170) (-858)))) (-3124 (((-3 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) "failed") (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL)) (-3803 (($ $ (-52)) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (($ $ (-300 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (($ $ (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (($ $ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (($ $ (-652 (-52)) (-652 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-300 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-652 (-300 (-52)))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-2950 (((-652 (-52)) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 (((-52) $ (-1170)) 14) (((-52) $ (-1170) (-52)) NIL) (((-52) $ (-1188)) 15)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111)))) (((-779) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111)))) (((-779) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-52) (-621 (-870))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 (-52))) (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-640) (-13 (-1205 (-1170) (-52)) (-292 (-1188) (-52)) (-10 -8 (-15 -3173 ($ (-396))) (-15 -1594 ($ $)) (-15 -3659 ((-52) $ (-1188) (-52)))))) (T -640))
+((-3173 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-640)))) (-1594 (*1 *1 *1) (-5 *1 (-640))) (-3659 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1188)) (-5 *1 (-640)))))
+(-13 (-1205 (-1170) (-52)) (-292 (-1188) (-52)) (-10 -8 (-15 -3173 ($ (-396))) (-15 -1594 ($ $)) (-15 -3659 ((-52) $ (-1188) (-52)))))
+((-4029 (($ $ |#2|) 10)))
+(((-641 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1| |#2|))) (-642 |#2|) (-174)) (T -641))
+NIL
+(-10 -8 (-15 -4029 (|#1| |#1| |#2|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3503 (($ $ $) 34)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 33 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-642 |#1|) (-141) (-174)) (T -642))
+((-3503 (*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174)))) (-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174)) (-4 *2 (-370)))))
+(-13 (-725 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3503 ($ $ $)) (IF (|has| |t#1| (-370)) (-15 -4029 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3457 (((-3 $ "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3862 (((-1279 (-697 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-1279 (-697 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2646 (((-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1586 (($) NIL T CONST)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2771 (((-3 $ "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-3590 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1597 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-4043 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3899 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2571 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-4203 (($ $ (-930)) NIL)) (-4114 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-3440 (((-1184 |#1|) $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2650 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2712 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-1515 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2372 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (($ (-1279 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-2982 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-1526 (((-930)) NIL (|has| |#2| (-374 |#1|)))) (-3538 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3100 (($ $ (-930)) NIL)) (-4325 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1936 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3246 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-4277 (((-3 $ "failed")) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2808 (((-697 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3611 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-2037 (((-697 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3882 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2312 (((-1184 (-961 |#1|))) NIL (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-370))))) (-3962 (($ $ (-930)) NIL)) (-3686 ((|#1| $) NIL (|has| |#2| (-374 |#1|)))) (-1342 (((-1184 |#1|) $) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-2190 ((|#1|) NIL (|has| |#2| (-425 |#1|))) ((|#1| (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3177 (((-1184 |#1|) $) NIL (|has| |#2| (-374 |#1|)))) (-3614 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3618 (((-1170) $) NIL)) (-4412 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3421 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-4413 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2614 (((-1131) $) NIL)) (-3749 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2679 ((|#1| $ (-572)) NIL (|has| |#2| (-425 |#1|)))) (-2862 (((-697 |#1|) (-1279 $)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|))) (((-697 |#1|) (-1279 $) (-1279 $)) NIL (|has| |#2| (-374 |#1|))) (((-1279 |#1|) $ (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-3222 (($ (-1279 |#1|)) NIL (|has| |#2| (-425 |#1|))) (((-1279 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-2956 (((-652 (-961 |#1|))) NIL (|has| |#2| (-425 |#1|))) (((-652 (-961 |#1|)) (-1279 $)) NIL (|has| |#2| (-374 |#1|)))) (-1433 (($ $ $) NIL)) (-3846 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3491 (((-870) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL (|has| |#2| (-425 |#1|)))) (-1373 (((-652 (-1279 |#1|))) NIL (-3783 (-12 (|has| |#2| (-374 |#1|)) (|has| |#1| (-564))) (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-564)))))) (-1541 (($ $ $ $) NIL)) (-3229 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2558 (($ (-697 |#1|) $) NIL (|has| |#2| (-425 |#1|)))) (-1923 (($ $ $) NIL)) (-1873 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2702 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-3565 (((-112)) NIL (|has| |#2| (-374 |#1|)))) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) 20)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-643 |#1| |#2|) (-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -3491 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|))) (-174) (-752 |#1|)) (T -643))
+((-3491 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-643 *3 *2)) (-4 *2 (-752 *3)))))
+(-13 (-752 |#1|) (-621 |#2|) (-10 -8 (-15 -3491 ($ |#2|)) (IF (|has| |#2| (-425 |#1|)) (-6 (-425 |#1|)) |%noBranch|) (IF (|has| |#2| (-374 |#1|)) (-6 (-374 |#1|)) |%noBranch|)))
+((-2678 (((-3 (-851 |#2|) "failed") |#2| (-300 |#2|) (-1170)) 106) (((-3 (-851 |#2|) (-2 (|:| |leftHandLimit| (-3 (-851 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-851 |#2|) "failed"))) "failed") |#2| (-300 (-851 |#2|))) 131)) (-1702 (((-3 (-841 |#2|) "failed") |#2| (-300 (-841 |#2|))) 136)))
+(((-644 |#1| |#2|) (-10 -7 (-15 -2678 ((-3 (-851 |#2|) (-2 (|:| |leftHandLimit| (-3 (-851 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-851 |#2|) "failed"))) "failed") |#2| (-300 (-851 |#2|)))) (-15 -1702 ((-3 (-841 |#2|) "failed") |#2| (-300 (-841 |#2|)))) (-15 -2678 ((-3 (-851 |#2|) "failed") |#2| (-300 |#2|) (-1170)))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -644))
+((-2678 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-300 *3)) (-5 *5 (-1170)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-851 *3)) (-5 *1 (-644 *6 *3)))) (-1702 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-300 (-841 *3))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-841 *3)) (-5 *1 (-644 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-851 *3))) (-4 *3 (-13 (-27) (-1214) (-438 *5))) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-3 (-851 *3) (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed")) (|:| |rightHandLimit| (-3 (-851 *3) "failed"))) "failed")) (-5 *1 (-644 *5 *3)))))
+(-10 -7 (-15 -2678 ((-3 (-851 |#2|) (-2 (|:| |leftHandLimit| (-3 (-851 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-851 |#2|) "failed"))) "failed") |#2| (-300 (-851 |#2|)))) (-15 -1702 ((-3 (-841 |#2|) "failed") |#2| (-300 (-841 |#2|)))) (-15 -2678 ((-3 (-851 |#2|) "failed") |#2| (-300 |#2|) (-1170))))
+((-2678 (((-3 (-851 (-415 (-961 |#1|))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))) (-1170)) 86) (((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|)))) 20) (((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-851 (-961 |#1|)))) 35)) (-1702 (((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|)))) 23) (((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-841 (-961 |#1|)))) 43)))
+(((-645 |#1|) (-10 -7 (-15 -2678 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-851 (-961 |#1|))))) (-15 -2678 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -1702 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-841 (-961 |#1|))))) (-15 -1702 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -2678 ((-3 (-851 (-415 (-961 |#1|))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))) (-1170)))) (-460)) (T -645))
+((-2678 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-300 (-415 (-961 *6)))) (-5 *5 (-1170)) (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-851 *3)) (-5 *1 (-645 *6)))) (-1702 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-460)) (-5 *2 (-841 *3)) (-5 *1 (-645 *5)))) (-1702 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-841 (-961 *5)))) (-4 *5 (-460)) (-5 *2 (-841 (-415 (-961 *5)))) (-5 *1 (-645 *5)) (-5 *3 (-415 (-961 *5))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-460)) (-5 *2 (-3 (-851 *3) (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed")) (|:| |rightHandLimit| (-3 (-851 *3) "failed"))) "failed")) (-5 *1 (-645 *5)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *4 (-300 (-851 (-961 *5)))) (-4 *5 (-460)) (-5 *2 (-3 (-851 (-415 (-961 *5))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 *5))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 *5))) "failed"))) "failed")) (-5 *1 (-645 *5)) (-5 *3 (-415 (-961 *5))))))
+(-10 -7 (-15 -2678 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-851 (-961 |#1|))))) (-15 -2678 ((-3 (-851 (-415 (-961 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-851 (-415 (-961 |#1|))) "failed"))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -1702 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-841 (-961 |#1|))))) (-15 -1702 ((-841 (-415 (-961 |#1|))) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -2678 ((-3 (-851 (-415 (-961 |#1|))) "failed") (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))) (-1170))))
+((-1644 (((-3 (-1279 (-415 |#1|)) "failed") (-1279 |#2|) |#2|) 64 (-3795 (|has| |#1| (-370)))) (((-3 (-1279 |#1|) "failed") (-1279 |#2|) |#2|) 49 (|has| |#1| (-370)))) (-3687 (((-112) (-1279 |#2|)) 33)) (-3340 (((-3 (-1279 |#1|) "failed") (-1279 |#2|)) 40)))
+(((-646 |#1| |#2|) (-10 -7 (-15 -3687 ((-112) (-1279 |#2|))) (-15 -3340 ((-3 (-1279 |#1|) "failed") (-1279 |#2|))) (IF (|has| |#1| (-370)) (-15 -1644 ((-3 (-1279 |#1|) "failed") (-1279 |#2|) |#2|)) (-15 -1644 ((-3 (-1279 (-415 |#1|)) "failed") (-1279 |#2|) |#2|)))) (-564) (-647 |#1|)) (T -646))
+((-1644 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 *5)) (-3795 (-4 *5 (-370))) (-4 *5 (-564)) (-5 *2 (-1279 (-415 *5))) (-5 *1 (-646 *5 *4)))) (-1644 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 *5)) (-4 *5 (-370)) (-4 *5 (-564)) (-5 *2 (-1279 *5)) (-5 *1 (-646 *5 *4)))) (-3340 (*1 *2 *3) (|partial| -12 (-5 *3 (-1279 *5)) (-4 *5 (-647 *4)) (-4 *4 (-564)) (-5 *2 (-1279 *4)) (-5 *1 (-646 *4 *5)))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-647 *4)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-646 *4 *5)))))
+(-10 -7 (-15 -3687 ((-112) (-1279 |#2|))) (-15 -3340 ((-3 (-1279 |#1|) "failed") (-1279 |#2|))) (IF (|has| |#1| (-370)) (-15 -1644 ((-3 (-1279 |#1|) "failed") (-1279 |#2|) |#2|)) (-15 -1644 ((-3 (-1279 (-415 |#1|)) "failed") (-1279 |#2|) |#2|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2245 (((-697 |#1|) (-697 $)) 40) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 39)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-647 |#1|) (-141) (-1060)) (T -647))
+((-2245 (*1 *2 *3) (-12 (-5 *3 (-697 *1)) (-4 *1 (-647 *4)) (-4 *4 (-1060)) (-5 *2 (-697 *4)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *1)) (-5 *4 (-1279 *1)) (-4 *1 (-647 *5)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -1866 (-697 *5)) (|:| |vec| (-1279 *5)))))))
+(-13 (-1060) (-10 -8 (-15 -2245 ((-697 |t#1|) (-697 $))) (-15 -2245 ((-2 (|:| -1866 (-697 |t#1|)) (|:| |vec| (-1279 |t#1|))) (-697 $) (-1279 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 16 T CONST)) (-3921 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-648 |#1|) (-141) (-1069)) (T -648))
+NIL
+(-13 (-654 |t#1|) (-1062 |t#1|))
+(((-102) . T) ((-621 (-870)) . T) ((-654 |#1|) . T) ((-1062 |#1|) . T) ((-1111) . T))
+((-2234 ((|#2| (-652 |#1|) (-652 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-652 |#1|) (-652 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) |#2|) 17) ((|#2| (-652 |#1|) (-652 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|)) 12)))
+(((-649 |#1| |#2|) (-10 -7 (-15 -2234 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|))) (-15 -2234 (|#2| (-652 |#1|) (-652 |#2|) |#1|)) (-15 -2234 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) |#2|)) (-15 -2234 (|#2| (-652 |#1|) (-652 |#2|) |#1| |#2|)) (-15 -2234 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) (-1 |#2| |#1|))) (-15 -2234 (|#2| (-652 |#1|) (-652 |#2|) |#1| (-1 |#2| |#1|)))) (-1111) (-1229)) (T -649))
+((-2234 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2)))) (-2234 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-652 *5)) (-5 *4 (-652 *6)) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *1 (-649 *5 *6)))) (-2234 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2)))) (-2234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 *5)) (-4 *6 (-1111)) (-4 *5 (-1229)) (-5 *2 (-1 *5 *6)) (-5 *1 (-649 *6 *5)))) (-2234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *6)) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *5 *6)))))
+(-10 -7 (-15 -2234 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|))) (-15 -2234 (|#2| (-652 |#1|) (-652 |#2|) |#1|)) (-15 -2234 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) |#2|)) (-15 -2234 (|#2| (-652 |#1|) (-652 |#2|) |#1| |#2|)) (-15 -2234 ((-1 |#2| |#1|) (-652 |#1|) (-652 |#2|) (-1 |#2| |#1|))) (-15 -2234 (|#2| (-652 |#1|) (-652 |#2|) |#1| (-1 |#2| |#1|))))
+((-4424 (((-652 |#2|) (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|) 16)) (-2925 ((|#2| (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|) 18)) (-3161 (((-652 |#2|) (-1 |#2| |#1|) (-652 |#1|)) 13)))
+(((-650 |#1| |#2|) (-10 -7 (-15 -4424 ((-652 |#2|) (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -3161 ((-652 |#2|) (-1 |#2| |#1|) (-652 |#1|)))) (-1229) (-1229)) (T -650))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-652 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-652 *6)) (-5 *1 (-650 *5 *6)))) (-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-652 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-650 *5 *2)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-652 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-652 *5)) (-5 *1 (-650 *6 *5)))))
+(-10 -7 (-15 -4424 ((-652 |#2|) (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-652 |#1|) |#2|)) (-15 -3161 ((-652 |#2|) (-1 |#2| |#1|) (-652 |#1|))))
+((-3161 (((-652 |#3|) (-1 |#3| |#1| |#2|) (-652 |#1|) (-652 |#2|)) 21)))
+(((-651 |#1| |#2| |#3|) (-10 -7 (-15 -3161 ((-652 |#3|) (-1 |#3| |#1| |#2|) (-652 |#1|) (-652 |#2|)))) (-1229) (-1229) (-1229)) (T -651))
+((-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-652 *6)) (-5 *5 (-652 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-652 *8)) (-5 *1 (-651 *6 *7 *8)))))
+(-10 -7 (-15 -3161 ((-652 |#3|) (-1 |#3| |#1| |#2|) (-652 |#1|) (-652 |#2|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) NIL)) (-3598 ((|#1| $) NIL)) (-4058 (($ $) NIL)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) $) NIL (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3519 (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-2641 (($ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3835 (($ $ $) NIL (|has| $ (-6 -4455)))) (-1993 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "rest" $) NIL (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-1721 (($ $ $) 37 (|has| |#1| (-1111)))) (-3335 (($ $ $) 41 (|has| |#1| (-1111)))) (-4326 (($ $ $) 44 (|has| |#1| (-1111)))) (-2265 (($ (-1 (-112) |#1|) $) NIL)) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3587 ((|#1| $) NIL)) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-2581 (($ $) 23) (($ $ (-779)) NIL)) (-1727 (($ $) NIL (|has| |#1| (-1111)))) (-3955 (($ $) 36 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) NIL (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) NIL)) (-4243 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-2760 (((-112) $) NIL)) (-3239 (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111))) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) NIL)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-3784 (((-112) $) 11)) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4055 (($) 9 T CONST)) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-2363 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1377 (($ $ $) NIL (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2307 (($ |#1|) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-4261 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-3704 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-2744 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) 20) (($ $ (-779)) NIL)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-1540 (((-112) $) NIL)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) 39)) (-1321 (($) 38)) (-2679 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) 42) ((|#1| $ (-572) |#1|) NIL)) (-1762 (((-572) $ $) NIL)) (-2049 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3817 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-3727 (((-112) $) NIL)) (-2393 (($ $) NIL)) (-2770 (($ $) NIL (|has| $ (-6 -4455)))) (-2847 (((-779) $) NIL)) (-3376 (($ $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) 53 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) NIL)) (-3425 (($ |#1| $) 12)) (-2355 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2121 (($ $ $) 35) (($ |#1| $) 43) (($ (-652 $)) NIL) (($ $ |#1|) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1357 (($ $ $) 13)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2810 (((-1170) $) 31 (|has| |#1| (-836))) (((-1170) $ (-112)) 32 (|has| |#1| (-836))) (((-1284) (-830) $) 33 (|has| |#1| (-836))) (((-1284) (-830) $ (-112)) 34 (|has| |#1| (-836)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-652 |#1|) (-13 (-674 |#1|) (-10 -8 (-15 -4055 ($) -4338) (-15 -3784 ((-112) $)) (-15 -3425 ($ |#1| $)) (-15 -1357 ($ $ $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -1721 ($ $ $)) (-15 -3335 ($ $ $)) (-15 -4326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|))) (-1229)) (T -652))
+((-4055 (*1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1229)))) (-3425 (*1 *1 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))) (-1357 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))) (-1721 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))) (-3335 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))) (-4326 (*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
+(-13 (-674 |#1|) (-10 -8 (-15 -4055 ($) -4338) (-15 -3784 ((-112) $)) (-15 -3425 ($ |#1| $)) (-15 -1357 ($ $ $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -1721 ($ $ $)) (-15 -3335 ($ $ $)) (-15 -4326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-836)) (-6 (-836)) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 11) (($ (-1193)) NIL) (((-1193) $) NIL) ((|#1| $) 8)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-653 |#1|) (-13 (-1094) (-621 |#1|)) (-1111)) (T -653))
+NIL
+(-13 (-1094) (-621 |#1|))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 16 T CONST)) (-3921 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-654 |#1|) (-141) (-1069)) (T -654))
+((-2602 (*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069)))))
+(-13 (-1111) (-10 -8 (-15 (-2602) ($) -4338) (-15 -3143 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3572 (($ |#1| |#1| $) 43)) (-2938 (((-112) $ (-779)) NIL)) (-2265 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-1727 (($ $) 45)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) 56 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 9 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 37)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1533 ((|#1| $) 47)) (-3704 (($ |#1| $) 29) (($ |#1| $ (-779)) 42)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4105 ((|#1| $) 50)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 23)) (-1321 (($) 28)) (-2267 (((-112) $) 54)) (-2526 (((-652 (-2 (|:| -3762 |#1|) (|:| -1371 (-779)))) $) 67)) (-2145 (($) 26) (($ (-652 |#1|)) 19)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) 63 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 20)) (-3222 (((-544) $) 34 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) NIL)) (-3491 (((-870) $) 14 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 24)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 69 (|has| |#1| (-1111)))) (-3475 (((-779) $) 17 (|has| $ (-6 -4454)))))
+(((-655 |#1|) (-13 (-703 |#1|) (-10 -8 (-6 -4454) (-15 -2267 ((-112) $)) (-15 -3572 ($ |#1| |#1| $)))) (-1111)) (T -655))
+((-2267 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1111)))) (-3572 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1111)))))
+(-13 (-703 |#1|) (-10 -8 (-6 -4454) (-15 -2267 ((-112) $)) (-15 -3572 ($ |#1| |#1| $))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27)))
+(((-656 |#1|) (-141) (-1069)) (T -656))
+NIL
+(-13 (-21) (-654 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779) $) 17)) (-3129 (($ $ |#1|) 69)) (-4095 (($ $) 39)) (-1852 (($ $) 37)) (-3072 (((-3 |#1| "failed") $) 61)) (-1869 ((|#1| $) NIL)) (-4217 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2255 (((-870) $ (-1 (-870) (-870) (-870)) (-1 (-870) (-870) (-870)) (-572)) 56)) (-1932 ((|#1| $ (-572)) 35)) (-3904 ((|#2| $ (-572)) 34)) (-2842 (($ (-1 |#1| |#1|) $) 41)) (-1499 (($ (-1 |#2| |#2|) $) 47)) (-1639 (($) 11)) (-4396 (($ |#1| |#2|) 24)) (-2268 (($ (-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|)))) 25)) (-2201 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|))) $) 14)) (-4086 (($ |#1| $) 71)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1738 (((-112) $ $) 76)) (-3491 (((-870) $) 21) (($ |#1|) 18)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 27)))
+(((-657 |#1| |#2| |#3|) (-13 (-1111) (-1049 |#1|) (-10 -8 (-15 -2255 ((-870) $ (-1 (-870) (-870) (-870)) (-1 (-870) (-870) (-870)) (-572))) (-15 -2201 ((-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|))) $)) (-15 -4396 ($ |#1| |#2|)) (-15 -2268 ($ (-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|))))) (-15 -3904 (|#2| $ (-572))) (-15 -1932 (|#1| $ (-572))) (-15 -1852 ($ $)) (-15 -4095 ($ $)) (-15 -3037 ((-779) $)) (-15 -1639 ($)) (-15 -3129 ($ $ |#1|)) (-15 -4086 ($ |#1| $)) (-15 -4217 ($ |#1| |#2| $)) (-15 -4217 ($ $ $)) (-15 -1738 ((-112) $ $)) (-15 -1499 ($ (-1 |#2| |#2|) $)) (-15 -2842 ($ (-1 |#1| |#1|) $)))) (-1111) (-23) |#2|) (T -657))
+((-2255 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-870) (-870) (-870))) (-5 *4 (-572)) (-5 *2 (-870)) (-5 *1 (-657 *5 *6 *7)) (-4 *5 (-1111)) (-4 *6 (-23)) (-14 *7 *6))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 *4)))) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))) (-4396 (*1 *1 *2 *3) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 *4)))) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-657 *3 *4 *5)))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *2 (-23)) (-5 *1 (-657 *4 *2 *5)) (-4 *4 (-1111)) (-14 *5 *2))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *2 (-1111)) (-5 *1 (-657 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1852 (*1 *1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-4095 (*1 *1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))) (-1639 (*1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-3129 (*1 *1 *1 *2) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-4086 (*1 *1 *2 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-4217 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-4217 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23)) (-14 *4 *3))) (-1738 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))) (-1499 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)))) (-2842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-657 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1111) (-1049 |#1|) (-10 -8 (-15 -2255 ((-870) $ (-1 (-870) (-870) (-870)) (-1 (-870) (-870) (-870)) (-572))) (-15 -2201 ((-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|))) $)) (-15 -4396 ($ |#1| |#2|)) (-15 -2268 ($ (-652 (-2 (|:| |gen| |#1|) (|:| -3272 |#2|))))) (-15 -3904 (|#2| $ (-572))) (-15 -1932 (|#1| $ (-572))) (-15 -1852 ($ $)) (-15 -4095 ($ $)) (-15 -3037 ((-779) $)) (-15 -1639 ($)) (-15 -3129 ($ $ |#1|)) (-15 -4086 ($ |#1| $)) (-15 -4217 ($ |#1| |#2| $)) (-15 -4217 ($ $ $)) (-15 -1738 ((-112) $ $)) (-15 -1499 ($ (-1 |#2| |#2|) $)) (-15 -2842 ($ (-1 |#1| |#1|) $))))
+((-2751 (((-572) $) 31)) (-2744 (($ |#2| $ (-572)) 27) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) 12)) (-3132 (((-112) (-572) $) 18)) (-2121 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-652 $)) NIL)))
+(((-658 |#1| |#2|) (-10 -8 (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -2121 (|#1| (-652 |#1|))) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#2|)) (-15 -2751 ((-572) |#1|)) (-15 -1634 ((-652 (-572)) |#1|)) (-15 -3132 ((-112) (-572) |#1|))) (-659 |#2|) (-1229)) (T -658))
+NIL
+(-10 -8 (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -2121 (|#1| (-652 |#1|))) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#2|)) (-15 -2751 ((-572) |#1|)) (-15 -1634 ((-652 (-572)) |#1|)) (-15 -3132 ((-112) (-572) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-3955 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 52)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 43 (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3803 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 72)) (-2121 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-659 |#1|) (-141) (-1229)) (T -659))
+((-2924 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-2121 (*1 *1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-2121 (*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-2121 (*1 *1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-2121 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-3161 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-2744 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-659 *2)) (-4 *2 (-1229)))) (-2744 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))) (-3659 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1246 (-572))) (|has| *1 (-6 -4455)) (-4 *1 (-659 *2)) (-4 *2 (-1229)))))
+(-13 (-612 (-572) |t#1|) (-152 |t#1|) (-292 (-1246 (-572)) $) (-10 -8 (-15 -2924 ($ (-779) |t#1|)) (-15 -2121 ($ $ |t#1|)) (-15 -2121 ($ |t#1| $)) (-15 -2121 ($ $ $)) (-15 -2121 ($ (-652 $))) (-15 -3161 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3817 ($ $ (-572))) (-15 -3817 ($ $ (-1246 (-572)))) (-15 -2744 ($ |t#1| $ (-572))) (-15 -2744 ($ $ $ (-572))) (IF (|has| $ (-6 -4455)) (-15 -3659 (|t#1| $ (-1246 (-572)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-1969 (((-3 |#2| "failed") |#3| |#2| (-1188) |#2| (-652 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) "failed") |#3| |#2| (-1188)) 44)))
+(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -1969 ((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) "failed") |#3| |#2| (-1188))) (-15 -1969 ((-3 |#2| "failed") |#3| |#2| (-1188) |#2| (-652 |#2|)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968)) (-664 |#2|)) (T -660))
+((-1969 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *2)) (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-660 *6 *2 *3)) (-4 *3 (-664 *2)))) (-1969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1188)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-4 *4 (-13 (-29 *6) (-1214) (-968))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1769 (-652 *4)))) (-5 *1 (-660 *6 *4 *3)) (-4 *3 (-664 *4)))))
+(-10 -7 (-15 -1969 ((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) "failed") |#3| |#2| (-1188))) (-15 -1969 ((-3 |#2| "failed") |#3| |#2| (-1188) |#2| (-652 |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-1631 (($ $) NIL (|has| |#1| (-370)))) (-1627 (($ $ $) NIL (|has| |#1| (-370)))) (-2324 (($ $ (-779)) NIL (|has| |#1| (-370)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2588 (($ $ $) NIL (|has| |#1| (-370)))) (-2086 (($ $ $) NIL (|has| |#1| (-370)))) (-2134 (($ $ $) NIL (|has| |#1| (-370)))) (-3095 (($ $ $) NIL (|has| |#1| (-370)))) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-3890 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460)))) (-4422 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) NIL)) (-1914 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-2598 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-3808 (((-779) $) NIL)) (-3680 (($ $ $) NIL (|has| |#1| (-370)))) (-1329 (($ $ $) NIL (|has| |#1| (-370)))) (-1671 (($ $ $) NIL (|has| |#1| (-370)))) (-3448 (($ $ $) NIL (|has| |#1| (-370)))) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-1964 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-2676 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-2679 ((|#1| $ |#1|) NIL)) (-2954 (($ $ $) NIL (|has| |#1| (-370)))) (-1497 (((-779) $) NIL)) (-3262 ((|#1| $) NIL (|has| |#1| (-460)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2558 ((|#1| $ |#1| |#1|) NIL)) (-4126 (($ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($) NIL)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-661 |#1|) (-664 |#1|) (-237)) (T -661))
+NIL
+(-664 |#1|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-1631 (($ $) NIL (|has| |#1| (-370)))) (-1627 (($ $ $) NIL (|has| |#1| (-370)))) (-2324 (($ $ (-779)) NIL (|has| |#1| (-370)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2588 (($ $ $) NIL (|has| |#1| (-370)))) (-2086 (($ $ $) NIL (|has| |#1| (-370)))) (-2134 (($ $ $) NIL (|has| |#1| (-370)))) (-3095 (($ $ $) NIL (|has| |#1| (-370)))) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-3890 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460)))) (-4422 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) NIL)) (-1914 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-2598 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-3808 (((-779) $) NIL)) (-3680 (($ $ $) NIL (|has| |#1| (-370)))) (-1329 (($ $ $) NIL (|has| |#1| (-370)))) (-1671 (($ $ $) NIL (|has| |#1| (-370)))) (-3448 (($ $ $) NIL (|has| |#1| (-370)))) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-1964 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-2676 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-2679 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2954 (($ $ $) NIL (|has| |#1| (-370)))) (-1497 (((-779) $) NIL)) (-3262 ((|#1| $) NIL (|has| |#1| (-460)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2558 ((|#1| $ |#1| |#1|) NIL)) (-4126 (($ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($) NIL)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-662 |#1| |#2|) (-13 (-664 |#1|) (-292 |#2| |#2|)) (-237) (-13 (-656 |#1|) (-10 -8 (-15 -3011 ($ $))))) (T -662))
+NIL
+(-13 (-664 |#1|) (-292 |#2| |#2|))
+((-1631 (($ $) 29)) (-4126 (($ $) 27)) (-4019 (($) 13)))
+(((-663 |#1| |#2|) (-10 -8 (-15 -1631 (|#1| |#1|)) (-15 -4126 (|#1| |#1|)) (-15 -4019 (|#1|))) (-664 |#2|) (-1060)) (T -663))
+NIL
+(-10 -8 (-15 -1631 (|#1| |#1|)) (-15 -4126 (|#1| |#1|)) (-15 -4019 (|#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-1631 (($ $) 87 (|has| |#1| (-370)))) (-1627 (($ $ $) 89 (|has| |#1| (-370)))) (-2324 (($ $ (-779)) 88 (|has| |#1| (-370)))) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2588 (($ $ $) 50 (|has| |#1| (-370)))) (-2086 (($ $ $) 51 (|has| |#1| (-370)))) (-2134 (($ $ $) 53 (|has| |#1| (-370)))) (-3095 (($ $ $) 48 (|has| |#1| (-370)))) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 47 (|has| |#1| (-370)))) (-3329 (((-3 $ "failed") $ $) 49 (|has| |#1| (-370)))) (-3890 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 52 (|has| |#1| (-370)))) (-3072 (((-3 (-572) "failed") $) 80 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 77 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 74)) (-1869 (((-572) $) 79 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 76 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 75)) (-1874 (($ $) 69)) (-2982 (((-3 $ "failed") $) 37)) (-2889 (($ $) 60 (|has| |#1| (-460)))) (-4422 (((-112) $) 35)) (-3042 (($ |#1| (-779)) 67)) (-1914 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 62 (|has| |#1| (-564)))) (-2598 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63 (|has| |#1| (-564)))) (-3808 (((-779) $) 71)) (-3680 (($ $ $) 57 (|has| |#1| (-370)))) (-1329 (($ $ $) 58 (|has| |#1| (-370)))) (-1671 (($ $ $) 46 (|has| |#1| (-370)))) (-3448 (($ $ $) 55 (|has| |#1| (-370)))) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 54 (|has| |#1| (-370)))) (-1964 (((-3 $ "failed") $ $) 56 (|has| |#1| (-370)))) (-2676 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 59 (|has| |#1| (-370)))) (-1853 ((|#1| $) 70)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-564)))) (-2679 ((|#1| $ |#1|) 92)) (-2954 (($ $ $) 86 (|has| |#1| (-370)))) (-1497 (((-779) $) 72)) (-3262 ((|#1| $) 61 (|has| |#1| (-460)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 78 (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 73)) (-1708 (((-652 |#1|) $) 66)) (-4206 ((|#1| $ (-779)) 68)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2558 ((|#1| $ |#1| |#1|) 65)) (-4126 (($ $) 90)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($) 91)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-664 |#1|) (-141) (-1060)) (T -664))
+((-4019 (*1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)))) (-4126 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)))) (-1627 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-664 *3)) (-4 *3 (-1060)) (-4 *3 (-370)))) (-1631 (*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-2954 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(-13 (-860 |t#1|) (-292 |t#1| |t#1|) (-10 -8 (-15 -4019 ($)) (-15 -4126 ($ $)) (IF (|has| |t#1| (-370)) (PROGN (-15 -1627 ($ $ $)) (-15 -2324 ($ $ (-779))) (-15 -1631 ($ $)) (-15 -2954 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-292 |#1| |#1|) . T) ((-419 |#1|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T) ((-860 |#1|) . T))
+((-3169 (((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))) 85 (|has| |#1| (-27)))) (-2972 (((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))) 84 (|has| |#1| (-27))) (((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 19)))
+(((-665 |#1| |#2|) (-10 -7 (-15 -2972 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2972 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)))) (-15 -3169 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))))) |%noBranch|)) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -665))
+((-3169 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5)))) (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5))))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5)))) (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5))))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-661 (-415 *6)))) (-5 *1 (-665 *5 *6)) (-5 *3 (-661 (-415 *6))))))
+(-10 -7 (-15 -2972 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2972 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|)))) (-15 -3169 ((-652 (-661 (-415 |#2|))) (-661 (-415 |#2|))))) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-1631 (($ $) NIL (|has| |#1| (-370)))) (-1627 (($ $ $) 28 (|has| |#1| (-370)))) (-2324 (($ $ (-779)) 31 (|has| |#1| (-370)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2588 (($ $ $) NIL (|has| |#1| (-370)))) (-2086 (($ $ $) NIL (|has| |#1| (-370)))) (-2134 (($ $ $) NIL (|has| |#1| (-370)))) (-3095 (($ $ $) NIL (|has| |#1| (-370)))) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-3890 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460)))) (-4422 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) NIL)) (-1914 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-2598 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-3808 (((-779) $) NIL)) (-3680 (($ $ $) NIL (|has| |#1| (-370)))) (-1329 (($ $ $) NIL (|has| |#1| (-370)))) (-1671 (($ $ $) NIL (|has| |#1| (-370)))) (-3448 (($ $ $) NIL (|has| |#1| (-370)))) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-1964 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-2676 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-2679 ((|#1| $ |#1|) 24)) (-2954 (($ $ $) 33 (|has| |#1| (-370)))) (-1497 (((-779) $) NIL)) (-3262 ((|#1| $) NIL (|has| |#1| (-460)))) (-3491 (((-870) $) 20) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2558 ((|#1| $ |#1| |#1|) 23)) (-4126 (($ $) NIL)) (-2602 (($) 21 T CONST)) (-2619 (($) 8 T CONST)) (-4019 (($) NIL)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-666 |#1| |#2|) (-664 |#1|) (-1060) (-1 |#1| |#1|)) (T -666))
+NIL
+(-664 |#1|)
+((-1627 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2324 ((|#2| |#2| (-779) (-1 |#1| |#1|)) 45)) (-2954 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
+(((-667 |#1| |#2|) (-10 -7 (-15 -1627 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2324 (|#2| |#2| (-779) (-1 |#1| |#1|))) (-15 -2954 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-370) (-664 |#1|)) (T -667))
+((-2954 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2)) (-4 *2 (-664 *4)))) (-2324 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370)) (-5 *1 (-667 *5 *2)) (-4 *2 (-664 *5)))) (-1627 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2)) (-4 *2 (-664 *4)))))
+(-10 -7 (-15 -1627 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2324 (|#2| |#2| (-779) (-1 |#1| |#1|))) (-15 -2954 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3536 (($ $ $) 9)))
+(((-668 |#1|) (-10 -8 (-15 -3536 (|#1| |#1| |#1|))) (-669)) (T -668))
+NIL
+(-10 -8 (-15 -3536 (|#1| |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3489 (($ $) 10)) (-3536 (($ $ $) 8)) (-3921 (((-112) $ $) 6)) (-3525 (($ $ $) 9)))
+(((-669) (-141)) (T -669))
+((-3489 (*1 *1 *1) (-4 *1 (-669))) (-3525 (*1 *1 *1 *1) (-4 *1 (-669))) (-3536 (*1 *1 *1 *1) (-4 *1 (-669))))
+(-13 (-102) (-10 -8 (-15 -3489 ($ $)) (-15 -3525 ($ $ $)) (-15 -3536 ($ $ $))))
(((-102) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 15)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-1587 ((|#1| $) 23)) (-1908 (($ $ $) NIL (|has| |#1| (-797)))) (-1764 (($ $ $) NIL (|has| |#1| (-797)))) (-3240 (((-1168) $) 48)) (-3891 (((-1129) $) NIL)) (-1599 ((|#3| $) 24)) (-2869 (((-868) $) 43)) (-1344 (((-112) $ $) 22)) (-1981 (($) 10 T CONST)) (-3959 (((-112) $ $) NIL (|has| |#1| (-797)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-797)))) (-3892 (((-112) $ $) 20)) (-3945 (((-112) $ $) NIL (|has| |#1| (-797)))) (-3918 (((-112) $ $) 26 (|has| |#1| (-797)))) (-4013 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4003 (($ $) 17) (($ $ $) NIL)) (-3992 (($ $ $) 29)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-668 |#1| |#2| |#3|) (-13 (-723 |#2|) (-10 -8 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1587 (|#1| $)) (-15 -1599 (|#3| $)))) (-723 |#2|) (-174) (|SubsetCategory| (-732) |#2|)) (T -668))
-((-4013 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4)) (-4 *2 (|SubsetCategory| (-732) *4)))) (-4013 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-668 *2 *4 *3)) (-4 *2 (-723 *4)) (-4 *3 (|SubsetCategory| (-732) *4)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-723 *3)) (-5 *1 (-668 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-732) *3)))) (-1599 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4)) (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4)))))
-(-13 (-723 |#2|) (-10 -8 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1587 (|#1| $)) (-15 -1599 (|#3| $))))
-((-2326 (((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|)) 33)))
-(((-669 |#1|) (-10 -7 (-15 -2326 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|)))) (-916)) (T -669))
-((-2326 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *4))) (-5 *3 (-1182 *4)) (-4 *4 (-916)) (-5 *1 (-669 *4)))))
-(-10 -7 (-15 -2326 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3473 (((-650 |#1|) $) 84)) (-3768 (($ $ (-777)) 94)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2720 (((-1301 |#1| |#2|) (-1301 |#1| |#2|) $) 50)) (-2435 (((-3 (-678 |#1|) "failed") $) NIL)) (-4387 (((-678 |#1|) $) NIL)) (-4394 (($ $) 93)) (-2928 (((-777) $) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-3677 (($ (-678 |#1|) |#2|) 70)) (-3222 (($ $) 89)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-2787 (((-1301 |#1| |#2|) (-1301 |#1| |#2|) $) 49)) (-3498 (((-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4355 (((-678 |#1|) $) NIL)) (-4369 ((|#2| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3034 (($ $ |#1| $) 32) (($ $ (-650 |#1|) (-650 $)) 34)) (-2650 (((-777) $) 91)) (-2881 (($ $ $) 20) (($ (-678 |#1|) (-678 |#1|)) 79) (($ (-678 |#1|) $) 77) (($ $ (-678 |#1|)) 78)) (-2869 (((-868) $) NIL) (($ |#1|) 76) (((-1292 |#1| |#2|) $) 60) (((-1301 |#1| |#2|) $) 43) (($ (-678 |#1|)) 27)) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-678 |#1|)) NIL)) (-1747 ((|#2| (-1301 |#1| |#2|) $) 45)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 23 T CONST)) (-2255 (((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3288 (((-3 $ "failed") (-1292 |#1| |#2|)) 62)) (-1960 (($ (-678 |#1|)) 14)) (-3892 (((-112) $ $) 46)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $) 68) (($ $ $) NIL)) (-3992 (($ $ $) 31)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-678 |#1|)) NIL)))
-(((-670 |#1| |#2|) (-13 (-379 |#1| |#2|) (-387 |#2| (-678 |#1|)) (-10 -8 (-15 -3288 ((-3 $ "failed") (-1292 |#1| |#2|))) (-15 -2881 ($ (-678 |#1|) (-678 |#1|))) (-15 -2881 ($ (-678 |#1|) $)) (-15 -2881 ($ $ (-678 |#1|))))) (-856) (-174)) (T -670))
-((-3288 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *1 (-670 *3 *4)))) (-2881 (*1 *1 *2 *2) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) (-4 *4 (-174)))) (-2881 (*1 *1 *2 *1) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) (-4 *4 (-174)))) (-2881 (*1 *1 *1 *2) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) (-4 *4 (-174)))))
-(-13 (-379 |#1| |#2|) (-387 |#2| (-678 |#1|)) (-10 -8 (-15 -3288 ((-3 $ "failed") (-1292 |#1| |#2|))) (-15 -2881 ($ (-678 |#1|) (-678 |#1|))) (-15 -2881 ($ (-678 |#1|) $)) (-15 -2881 ($ $ (-678 |#1|)))))
-((-3134 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-2778 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3350 (($ (-1 (-112) |#2|) $) 29)) (-4125 (($ $) 65)) (-1381 (($ $) 74)) (-3614 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2295 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-2619 (((-570) |#2| $ (-570)) 71) (((-570) |#2| $) NIL) (((-570) (-1 (-112) |#2|) $) 54)) (-2296 (($ (-777) |#2|) 63)) (-3675 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4356 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2536 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1677 (($ |#2|) 15)) (-2801 (($ $ $ (-570)) 42) (($ |#2| $ (-570)) 40)) (-2115 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3332 (($ $ (-1244 (-570))) 51) (($ $ (-570)) 44)) (-2181 (($ $ $ (-570)) 70)) (-3064 (($ $) 68)) (-3918 (((-112) $ $) 76)))
-(((-671 |#1| |#2|) (-10 -8 (-15 -1677 (|#1| |#2|)) (-15 -3332 (|#1| |#1| (-570))) (-15 -3332 (|#1| |#1| (-1244 (-570)))) (-15 -3614 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2801 (|#1| |#2| |#1| (-570))) (-15 -2801 (|#1| |#1| |#1| (-570))) (-15 -3675 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3614 (|#1| |#2| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -4356 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3134 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2619 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -2619 ((-570) |#2| |#1|)) (-15 -2619 ((-570) |#2| |#1| (-570))) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3134 ((-112) |#1|)) (-15 -2181 (|#1| |#1| |#1| (-570))) (-15 -4125 (|#1| |#1|)) (-15 -2778 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2778 (|#1| |#1|)) (-15 -3918 ((-112) |#1| |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2115 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2296 (|#1| (-777) |#2|)) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3064 (|#1| |#1|))) (-672 |#2|) (-1227)) (T -671))
-NIL
-(-10 -8 (-15 -1677 (|#1| |#2|)) (-15 -3332 (|#1| |#1| (-570))) (-15 -3332 (|#1| |#1| (-1244 (-570)))) (-15 -3614 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2801 (|#1| |#2| |#1| (-570))) (-15 -2801 (|#1| |#1| |#1| (-570))) (-15 -3675 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3350 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3614 (|#1| |#2| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -4356 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3134 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2619 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -2619 ((-570) |#2| |#1|)) (-15 -2619 ((-570) |#2| |#1| (-570))) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3134 ((-112) |#1|)) (-15 -2181 (|#1| |#1| |#1| (-570))) (-15 -4125 (|#1| |#1|)) (-15 -2778 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2778 (|#1| |#1|)) (-15 -3918 ((-112) |#1| |#1|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2295 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2115 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2296 (|#1| (-777) |#2|)) (-15 -2536 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3064 (|#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-2975 ((|#1| $) 66)) (-3446 (($ $) 68)) (-2204 (((-1282) $ (-570) (-570)) 99 (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) 53 (|has| $ (-6 -4453)))) (-3134 (((-112) $) 144 (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-2778 (($ $) 148 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4453)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4453)))) (-2018 (($ $) 143 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-2364 (($ $ $) 57 (|has| $ (-6 -4453)))) (-1639 ((|#1| $ |#1|) 55 (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) 59 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4453))) (($ $ "rest" $) 56 (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 119 (|has| $ (-6 -4453))) ((|#1| $ (-570) |#1|) 88 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-3350 (($ (-1 (-112) |#1|) $) 131)) (-3960 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4452)))) (-2963 ((|#1| $) 67)) (-2333 (($) 7 T CONST)) (-4125 (($ $) 146 (|has| $ (-6 -4453)))) (-4366 (($ $) 136)) (-1962 (($ $) 74) (($ $ (-777)) 72)) (-1381 (($ $) 133 (|has| |#1| (-1109)))) (-3153 (($ $) 101 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ |#1| $) 132 (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) 127)) (-3617 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4452))) (($ |#1| $) 102 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2845 ((|#1| $ (-570) |#1|) 87 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 89)) (-2836 (((-112) $) 85)) (-2619 (((-570) |#1| $ (-570)) 141 (|has| |#1| (-1109))) (((-570) |#1| $) 140 (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) 139)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2296 (($ (-777) |#1|) 111)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 97 (|has| (-570) (-856)))) (-1908 (($ $ $) 149 (|has| |#1| (-856)))) (-3675 (($ $ $) 134 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-4356 (($ $ $) 142 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 96 (|has| (-570) (-856)))) (-1764 (($ $ $) 150 (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1677 (($ |#1|) 124)) (-2065 (((-112) $ (-777)) 10)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3637 ((|#1| $) 71) (($ $ (-777)) 69)) (-2801 (($ $ $ (-570)) 129) (($ |#1| $ (-570)) 128)) (-2119 (($ $ $ (-570)) 118) (($ |#1| $ (-570)) 117)) (-4075 (((-650 (-570)) $) 94)) (-4276 (((-112) (-570) $) 93)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 77) (($ $ (-777)) 75)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4222 (($ $ |#1|) 98 (|has| $ (-6 -4453)))) (-2655 (((-112) $) 86)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 92)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1244 (-570))) 110) ((|#1| $ (-570)) 91) ((|#1| $ (-570) |#1|) 90)) (-2352 (((-570) $ $) 45)) (-3332 (($ $ (-1244 (-570))) 126) (($ $ (-570)) 125)) (-3225 (($ $ (-1244 (-570))) 116) (($ $ (-570)) 115)) (-1355 (((-112) $) 47)) (-2288 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4453)))) (-2846 (((-777) $) 64)) (-3522 (($ $) 65)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2181 (($ $ $ (-570)) 145 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 100 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 109)) (-1674 (($ $ $) 62) (($ $ |#1|) 61)) (-1505 (($ $ $) 79) (($ |#1| $) 78) (($ (-650 $)) 113) (($ $ |#1|) 112)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) 152 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 153 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-3945 (((-112) $ $) 151 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 154 (|has| |#1| (-856)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-672 |#1|) (-141) (-1227)) (T -672))
-((-1677 (*1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1227)))))
-(-13 (-1158 |t#1|) (-378 |t#1|) (-286 |t#1|) (-10 -8 (-15 -1677 ($ |t#1|))))
-(((-34) . T) ((-102) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-286 |#1|) . T) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1019 |#1|) . T) ((-1109) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1158 |#1|) . T) ((-1227) . T) ((-1265 |#1|) . T))
-((-2577 (((-650 (-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|))))) (-650 (-650 |#1|)) (-650 (-1277 |#1|))) 22) (((-650 (-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|))))) (-695 |#1|) (-650 (-1277 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-650 (-650 |#1|)) (-1277 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-695 |#1|) (-1277 |#1|)) 14)) (-4412 (((-777) (-695 |#1|) (-1277 |#1|)) 30)) (-1709 (((-3 (-1277 |#1|) "failed") (-695 |#1|) (-1277 |#1|)) 24)) (-2224 (((-112) (-695 |#1|) (-1277 |#1|)) 27)))
-(((-673 |#1|) (-10 -7 (-15 -2577 ((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-695 |#1|) (-1277 |#1|))) (-15 -2577 ((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-650 (-650 |#1|)) (-1277 |#1|))) (-15 -2577 ((-650 (-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|))))) (-695 |#1|) (-650 (-1277 |#1|)))) (-15 -2577 ((-650 (-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|))))) (-650 (-650 |#1|)) (-650 (-1277 |#1|)))) (-15 -1709 ((-3 (-1277 |#1|) "failed") (-695 |#1|) (-1277 |#1|))) (-15 -2224 ((-112) (-695 |#1|) (-1277 |#1|))) (-15 -4412 ((-777) (-695 |#1|) (-1277 |#1|)))) (-368)) (T -673))
-((-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-5 *4 (-1277 *5)) (-4 *5 (-368)) (-5 *2 (-777)) (-5 *1 (-673 *5)))) (-2224 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-5 *4 (-1277 *5)) (-4 *5 (-368)) (-5 *2 (-112)) (-5 *1 (-673 *5)))) (-1709 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1277 *4)) (-5 *3 (-695 *4)) (-4 *4 (-368)) (-5 *1 (-673 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368)) (-5 *2 (-650 (-2 (|:| |particular| (-3 (-1277 *5) "failed")) (|:| -2681 (-650 (-1277 *5)))))) (-5 *1 (-673 *5)) (-5 *4 (-650 (-1277 *5))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 (-650 (-2 (|:| |particular| (-3 (-1277 *5) "failed")) (|:| -2681 (-650 (-1277 *5)))))) (-5 *1 (-673 *5)) (-5 *4 (-650 (-1277 *5))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368)) (-5 *2 (-2 (|:| |particular| (-3 (-1277 *5) "failed")) (|:| -2681 (-650 (-1277 *5))))) (-5 *1 (-673 *5)) (-5 *4 (-1277 *5)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |particular| (-3 (-1277 *5) "failed")) (|:| -2681 (-650 (-1277 *5))))) (-5 *1 (-673 *5)) (-5 *4 (-1277 *5)))))
-(-10 -7 (-15 -2577 ((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-695 |#1|) (-1277 |#1|))) (-15 -2577 ((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-650 (-650 |#1|)) (-1277 |#1|))) (-15 -2577 ((-650 (-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|))))) (-695 |#1|) (-650 (-1277 |#1|)))) (-15 -2577 ((-650 (-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|))))) (-650 (-650 |#1|)) (-650 (-1277 |#1|)))) (-15 -1709 ((-3 (-1277 |#1|) "failed") (-695 |#1|) (-1277 |#1|))) (-15 -2224 ((-112) (-695 |#1|) (-1277 |#1|))) (-15 -4412 ((-777) (-695 |#1|) (-1277 |#1|))))
-((-2577 (((-650 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|)))) |#4| (-650 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|))) |#4| |#3|) 60)) (-4412 (((-777) |#4| |#3|) 18)) (-1709 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2224 (((-112) |#4| |#3|) 14)))
-(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2577 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|))) |#4| |#3|)) (-15 -2577 ((-650 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|)))) |#4| (-650 |#3|))) (-15 -1709 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2224 ((-112) |#4| |#3|)) (-15 -4412 ((-777) |#4| |#3|))) (-368) (-13 (-378 |#1|) (-10 -7 (-6 -4453))) (-13 (-378 |#1|) (-10 -7 (-6 -4453))) (-693 |#1| |#2| |#3|)) (T -674))
-((-4412 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-5 *2 (-777)) (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) (-2224 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-5 *2 (-112)) (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) (-1709 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-368)) (-4 *5 (-13 (-378 *4) (-10 -7 (-6 -4453)))) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453)))) (-5 *1 (-674 *4 *5 *2 *3)) (-4 *3 (-693 *4 *5 *2)))) (-2577 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-4 *7 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-5 *2 (-650 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2681 (-650 *7))))) (-5 *1 (-674 *5 *6 *7 *3)) (-5 *4 (-650 *7)) (-4 *3 (-693 *5 *6 *7)))) (-2577 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))))
-(-10 -7 (-15 -2577 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|))) |#4| |#3|)) (-15 -2577 ((-650 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|)))) |#4| (-650 |#3|))) (-15 -1709 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2224 ((-112) |#4| |#3|)) (-15 -4412 ((-777) |#4| |#3|)))
-((-3540 (((-2 (|:| |particular| (-3 (-1277 (-413 |#4|)) "failed")) (|:| -2681 (-650 (-1277 (-413 |#4|))))) (-650 |#4|) (-650 |#3|)) 51)))
-(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3540 ((-2 (|:| |particular| (-3 (-1277 (-413 |#4|)) "failed")) (|:| -2681 (-650 (-1277 (-413 |#4|))))) (-650 |#4|) (-650 |#3|)))) (-562) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -675))
-((-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *7)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-5 *2 (-2 (|:| |particular| (-3 (-1277 (-413 *8)) "failed")) (|:| -2681 (-650 (-1277 (-413 *8)))))) (-5 *1 (-675 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3540 ((-2 (|:| |particular| (-3 (-1277 (-413 |#4|)) "failed")) (|:| -2681 (-650 (-1277 (-413 |#4|))))) (-650 |#4|) (-650 |#3|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1347 (((-3 $ "failed")) NIL (|has| |#2| (-562)))) (-1439 ((|#2| $) NIL)) (-3919 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1757 (((-1277 (-695 |#2|))) NIL) (((-1277 (-695 |#2|)) (-1277 $)) NIL)) (-3206 (((-112) $) NIL)) (-3266 (((-1277 $)) 42)) (-2855 (((-112) $ (-777)) NIL)) (-1990 (($ |#2|) NIL)) (-2333 (($) NIL T CONST)) (-4085 (($ $) NIL (|has| |#2| (-311)))) (-3598 (((-242 |#1| |#2|) $ (-570)) NIL)) (-3339 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (|has| |#2| (-562)))) (-3929 (((-3 $ "failed")) NIL (|has| |#2| (-562)))) (-3237 (((-695 |#2|)) NIL) (((-695 |#2|) (-1277 $)) NIL)) (-4071 ((|#2| $) NIL)) (-2713 (((-695 |#2|) $) NIL) (((-695 |#2|) $ (-1277 $)) NIL)) (-2075 (((-3 $ "failed") $) NIL (|has| |#2| (-562)))) (-3260 (((-1182 (-959 |#2|))) NIL (|has| |#2| (-368)))) (-1794 (($ $ (-928)) NIL)) (-2095 ((|#2| $) NIL)) (-2770 (((-1182 |#2|) $) NIL (|has| |#2| (-562)))) (-1885 ((|#2|) NIL) ((|#2| (-1277 $)) NIL)) (-4236 (((-1182 |#2|) $) NIL)) (-2027 (((-112)) NIL)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) NIL)) (-2615 (($ (-1277 |#2|)) NIL) (($ (-1277 |#2|) (-1277 $)) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-4412 (((-777) $) NIL (|has| |#2| (-562))) (((-928)) 43)) (-2774 ((|#2| $ (-570) (-570)) NIL)) (-2462 (((-112)) NIL)) (-3969 (($ $ (-928)) NIL)) (-3976 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL)) (-2020 (((-777) $) NIL (|has| |#2| (-562)))) (-2244 (((-650 (-242 |#1| |#2|)) $) NIL (|has| |#2| (-562)))) (-4218 (((-777) $) NIL)) (-1991 (((-112)) NIL)) (-4230 (((-777) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-2728 ((|#2| $) NIL (|has| |#2| (-6 (-4454 "*"))))) (-1863 (((-570) $) NIL)) (-2554 (((-570) $) NIL)) (-3069 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2163 (((-570) $) NIL)) (-1448 (((-570) $) NIL)) (-4297 (($ (-650 (-650 |#2|))) NIL)) (-2833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2247 (((-650 (-650 |#2|)) $) NIL)) (-1939 (((-112)) NIL)) (-3505 (((-112)) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-4405 (((-3 (-2 (|:| |particular| $) (|:| -2681 (-650 $))) "failed")) NIL (|has| |#2| (-562)))) (-3489 (((-3 $ "failed")) NIL (|has| |#2| (-562)))) (-3592 (((-695 |#2|)) NIL) (((-695 |#2|) (-1277 $)) NIL)) (-2790 ((|#2| $) NIL)) (-2256 (((-695 |#2|) $) NIL) (((-695 |#2|) $ (-1277 $)) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#2| (-562)))) (-4019 (((-1182 (-959 |#2|))) NIL (|has| |#2| (-368)))) (-3454 (($ $ (-928)) NIL)) (-2168 ((|#2| $) NIL)) (-1700 (((-1182 |#2|) $) NIL (|has| |#2| (-562)))) (-1965 ((|#2|) NIL) ((|#2| (-1277 $)) NIL)) (-4281 (((-1182 |#2|) $) NIL)) (-2476 (((-112)) NIL)) (-3240 (((-1168) $) NIL)) (-3084 (((-112)) NIL)) (-2451 (((-112)) NIL)) (-3692 (((-112)) NIL)) (-4066 (((-3 $ "failed") $) NIL (|has| |#2| (-368)))) (-3891 (((-1129) $) NIL)) (-2808 (((-112)) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-2231 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ (-570) (-570) |#2|) NIL) ((|#2| $ (-570) (-570)) 28) ((|#2| $ (-570)) NIL)) (-2375 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-2186 ((|#2| $) NIL)) (-2776 (($ (-650 |#2|)) NIL)) (-2445 (((-112) $) NIL)) (-1992 (((-242 |#1| |#2|) $) NIL)) (-2439 ((|#2| $) NIL (|has| |#2| (-6 (-4454 "*"))))) (-3901 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-3064 (($ $) NIL)) (-2987 (((-695 |#2|) (-1277 $)) NIL) (((-1277 |#2|) $) NIL) (((-695 |#2|) (-1277 $) (-1277 $)) NIL) (((-1277 |#2|) $ (-1277 $)) 31)) (-2601 (($ (-1277 |#2|)) NIL) (((-1277 |#2|) $) NIL)) (-4259 (((-650 (-959 |#2|))) NIL) (((-650 (-959 |#2|)) (-1277 $)) NIL)) (-2319 (($ $ $) NIL)) (-3143 (((-112)) NIL)) (-4101 (((-242 |#1| |#2|) $ (-570)) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) NIL) (((-695 |#2|) $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) 41)) (-2013 (((-650 (-1277 |#2|))) NIL (|has| |#2| (-562)))) (-4373 (($ $ $ $) NIL)) (-2125 (((-112)) NIL)) (-1936 (($ (-695 |#2|) $) NIL)) (-2061 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-2074 (((-112) $) NIL)) (-2885 (($ $ $) NIL)) (-4099 (((-112)) NIL)) (-4235 (((-112)) NIL)) (-1849 (((-112)) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#2| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-242 |#1| |#2|) $ (-242 |#1| |#2|)) NIL) (((-242 |#1| |#2|) (-242 |#1| |#2|) $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-676 |#1| |#2|) (-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-423 |#2|)) (-928) (-174)) (T -676))
-NIL
-(-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-423 |#2|))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1889 (((-650 (-1144)) $) 10)) (-2869 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-677) (-13 (-1092) (-10 -8 (-15 -1889 ((-650 (-1144)) $))))) (T -677))
-((-1889 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-677)))))
-(-13 (-1092) (-10 -8 (-15 -1889 ((-650 (-1144)) $))))
-((-2847 (((-112) $ $) NIL)) (-3473 (((-650 |#1|) $) NIL)) (-2420 (($ $) 62)) (-4082 (((-112) $) NIL)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3806 (((-3 $ "failed") (-825 |#1|)) 27)) (-3243 (((-112) (-825 |#1|)) 17)) (-1657 (($ (-825 |#1|)) 28)) (-2390 (((-112) $ $) 36)) (-1831 (((-928) $) 43)) (-2403 (($ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2340 (((-650 $) (-825 |#1|)) 19)) (-2869 (((-868) $) 51) (($ |#1|) 40) (((-825 |#1|) $) 47) (((-683 |#1|) $) 52)) (-1344 (((-112) $ $) NIL)) (-3299 (((-59 (-650 $)) (-650 |#1|) (-928)) 67)) (-2839 (((-650 $) (-650 |#1|) (-928)) 70)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 63)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 46)))
-(((-678 |#1|) (-13 (-856) (-1047 |#1|) (-10 -8 (-15 -4082 ((-112) $)) (-15 -2403 ($ $)) (-15 -2420 ($ $)) (-15 -1831 ((-928) $)) (-15 -2390 ((-112) $ $)) (-15 -2869 ((-825 |#1|) $)) (-15 -2869 ((-683 |#1|) $)) (-15 -2340 ((-650 $) (-825 |#1|))) (-15 -3243 ((-112) (-825 |#1|))) (-15 -1657 ($ (-825 |#1|))) (-15 -3806 ((-3 $ "failed") (-825 |#1|))) (-15 -3473 ((-650 |#1|) $)) (-15 -3299 ((-59 (-650 $)) (-650 |#1|) (-928))) (-15 -2839 ((-650 $) (-650 |#1|) (-928))))) (-856)) (T -678))
-((-4082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856)))) (-2420 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-2390 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-678 *4))) (-5 *1 (-678 *4)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-112)) (-5 *1 (-678 *4)))) (-1657 (*1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3)))) (-3806 (*1 *1 *2) (|partial| -12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856)) (-5 *2 (-59 (-650 (-678 *5)))) (-5 *1 (-678 *5)))) (-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856)) (-5 *2 (-650 (-678 *5))) (-5 *1 (-678 *5)))))
-(-13 (-856) (-1047 |#1|) (-10 -8 (-15 -4082 ((-112) $)) (-15 -2403 ($ $)) (-15 -2420 ($ $)) (-15 -1831 ((-928) $)) (-15 -2390 ((-112) $ $)) (-15 -2869 ((-825 |#1|) $)) (-15 -2869 ((-683 |#1|) $)) (-15 -2340 ((-650 $) (-825 |#1|))) (-15 -3243 ((-112) (-825 |#1|))) (-15 -1657 ($ (-825 |#1|))) (-15 -3806 ((-3 $ "failed") (-825 |#1|))) (-15 -3473 ((-650 |#1|) $)) (-15 -3299 ((-59 (-650 $)) (-650 |#1|) (-928))) (-15 -2839 ((-650 $) (-650 |#1|) (-928)))))
-((-4156 ((|#2| $) 100)) (-3446 (($ $) 121)) (-2855 (((-112) $ (-777)) 35)) (-1962 (($ $) 109) (($ $ (-777)) 112)) (-2836 (((-112) $) 122)) (-3044 (((-650 $) $) 96)) (-1427 (((-112) $ $) 92)) (-2497 (((-112) $ (-777)) 33)) (-4372 (((-570) $) 66)) (-1894 (((-570) $) 65)) (-2065 (((-112) $ (-777)) 31)) (-2708 (((-112) $) 98)) (-3637 ((|#2| $) 113) (($ $ (-777)) 117)) (-2119 (($ $ $ (-570)) 83) (($ |#2| $ (-570)) 82)) (-4075 (((-650 (-570)) $) 64)) (-4276 (((-112) (-570) $) 59)) (-1948 ((|#2| $) NIL) (($ $ (-777)) 108)) (-3308 (($ $ (-570)) 125)) (-2655 (((-112) $) 124)) (-2231 (((-112) (-1 (-112) |#2|) $) 42)) (-2856 (((-650 |#2|) $) 46)) (-2057 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1244 (-570))) 79) ((|#2| $ (-570)) 57) ((|#2| $ (-570) |#2|) 58)) (-2352 (((-570) $ $) 91)) (-3225 (($ $ (-1244 (-570))) 78) (($ $ (-570)) 72)) (-1355 (((-112) $) 87)) (-2288 (($ $) 105)) (-2846 (((-777) $) 104)) (-3522 (($ $) 103)) (-2881 (($ (-650 |#2|)) 53)) (-2161 (($ $) 126)) (-2671 (((-650 $) $) 90)) (-3984 (((-112) $ $) 89)) (-2061 (((-112) (-1 (-112) |#2|) $) 41)) (-3892 (((-112) $ $) 20)) (-2857 (((-777) $) 39)))
-(((-679 |#1| |#2|) (-10 -8 (-15 -2161 (|#1| |#1|)) (-15 -3308 (|#1| |#1| (-570))) (-15 -2836 ((-112) |#1|)) (-15 -2655 ((-112) |#1|)) (-15 -2057 (|#2| |#1| (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570))) (-15 -2856 ((-650 |#2|) |#1|)) (-15 -4276 ((-112) (-570) |#1|)) (-15 -4075 ((-650 (-570)) |#1|)) (-15 -1894 ((-570) |#1|)) (-15 -4372 ((-570) |#1|)) (-15 -2881 (|#1| (-650 |#2|))) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -3225 (|#1| |#1| (-570))) (-15 -3225 (|#1| |#1| (-1244 (-570)))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2288 (|#1| |#1|)) (-15 -2846 ((-777) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3637 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "last")) (-15 -3637 (|#2| |#1|)) (-15 -1962 (|#1| |#1| (-777))) (-15 -2057 (|#1| |#1| "rest")) (-15 -1962 (|#1| |#1|)) (-15 -1948 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "first")) (-15 -1948 (|#2| |#1|)) (-15 -1427 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -2352 ((-570) |#1| |#1|)) (-15 -1355 ((-112) |#1|)) (-15 -2057 (|#2| |#1| "value")) (-15 -4156 (|#2| |#1|)) (-15 -2708 ((-112) |#1|)) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2671 ((-650 |#1|) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777)))) (-680 |#2|) (-1227)) (T -679))
-NIL
-(-10 -8 (-15 -2161 (|#1| |#1|)) (-15 -3308 (|#1| |#1| (-570))) (-15 -2836 ((-112) |#1|)) (-15 -2655 ((-112) |#1|)) (-15 -2057 (|#2| |#1| (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570))) (-15 -2856 ((-650 |#2|) |#1|)) (-15 -4276 ((-112) (-570) |#1|)) (-15 -4075 ((-650 (-570)) |#1|)) (-15 -1894 ((-570) |#1|)) (-15 -4372 ((-570) |#1|)) (-15 -2881 (|#1| (-650 |#2|))) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -3225 (|#1| |#1| (-570))) (-15 -3225 (|#1| |#1| (-1244 (-570)))) (-15 -2119 (|#1| |#2| |#1| (-570))) (-15 -2119 (|#1| |#1| |#1| (-570))) (-15 -2288 (|#1| |#1|)) (-15 -2846 ((-777) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3637 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "last")) (-15 -3637 (|#2| |#1|)) (-15 -1962 (|#1| |#1| (-777))) (-15 -2057 (|#1| |#1| "rest")) (-15 -1962 (|#1| |#1|)) (-15 -1948 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "first")) (-15 -1948 (|#2| |#1|)) (-15 -1427 ((-112) |#1| |#1|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -2352 ((-570) |#1| |#1|)) (-15 -1355 ((-112) |#1|)) (-15 -2057 (|#2| |#1| "value")) (-15 -4156 (|#2| |#1|)) (-15 -2708 ((-112) |#1|)) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2671 ((-650 |#1|) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -2231 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777))))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-2975 ((|#1| $) 66)) (-3446 (($ $) 68)) (-2204 (((-1282) $ (-570) (-570)) 99 (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) 53 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-2364 (($ $ $) 57 (|has| $ (-6 -4453)))) (-1639 ((|#1| $ |#1|) 55 (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) 59 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4453))) (($ $ "rest" $) 56 (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 119 (|has| $ (-6 -4453))) ((|#1| $ (-570) |#1|) 88 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 104)) (-2963 ((|#1| $) 67)) (-2333 (($) 7 T CONST)) (-4181 (($ $) 126)) (-1962 (($ $) 74) (($ $ (-777)) 72)) (-3153 (($ $) 101 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#1| $) 102 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 105)) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2845 ((|#1| $ (-570) |#1|) 87 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 89)) (-2836 (((-112) $) 85)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3777 (((-777) $) 125)) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2296 (($ (-777) |#1|) 111)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 97 (|has| (-570) (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 96 (|has| (-570) (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2065 (((-112) $ (-777)) 10)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3443 (($ $) 128)) (-4367 (((-112) $) 129)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3637 ((|#1| $) 71) (($ $ (-777)) 69)) (-2119 (($ $ $ (-570)) 118) (($ |#1| $ (-570)) 117)) (-4075 (((-650 (-570)) $) 94)) (-4276 (((-112) (-570) $) 93)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4288 ((|#1| $) 127)) (-1948 ((|#1| $) 77) (($ $ (-777)) 75)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4222 (($ $ |#1|) 98 (|has| $ (-6 -4453)))) (-3308 (($ $ (-570)) 124)) (-2655 (((-112) $) 86)) (-2361 (((-112) $) 130)) (-3460 (((-112) $) 131)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 92)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1244 (-570))) 110) ((|#1| $ (-570)) 91) ((|#1| $ (-570) |#1|) 90)) (-2352 (((-570) $ $) 45)) (-3225 (($ $ (-1244 (-570))) 116) (($ $ (-570)) 115)) (-1355 (((-112) $) 47)) (-2288 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4453)))) (-2846 (((-777) $) 64)) (-3522 (($ $) 65)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 100 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 109)) (-1674 (($ $ $) 62 (|has| $ (-6 -4453))) (($ $ |#1|) 61 (|has| $ (-6 -4453)))) (-1505 (($ $ $) 79) (($ |#1| $) 78) (($ (-650 $)) 113) (($ $ |#1|) 112)) (-2161 (($ $) 123)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-680 |#1|) (-141) (-1227)) (T -680))
-((-3617 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1227)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1227)))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))) (-4367 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227)))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))) (-3308 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-680 *3)) (-4 *3 (-1227)))) (-2161 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227)))))
-(-13 (-1158 |t#1|) (-10 -8 (-15 -3617 ($ (-1 (-112) |t#1|) $)) (-15 -3960 ($ (-1 (-112) |t#1|) $)) (-15 -3460 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -4367 ((-112) $)) (-15 -3443 ($ $)) (-15 -4288 (|t#1| $)) (-15 -4181 ($ $)) (-15 -3777 ((-777) $)) (-15 -3308 ($ $ (-570))) (-15 -2161 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1158 |#1|) . T) ((-1227) . T) ((-1265 |#1|) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2586 (($ (-777) (-777) (-777)) 53 (|has| |#1| (-1058)))) (-2855 (((-112) $ (-777)) NIL)) (-4338 ((|#1| $ (-777) (-777) (-777) |#1|) 47)) (-2333 (($) NIL T CONST)) (-3595 (($ $ $) 57 (|has| |#1| (-1058)))) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-4148 (((-1277 (-777)) $) 12)) (-2239 (($ (-1186) $ $) 34)) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4119 (($ (-777)) 55 (|has| |#1| (-1058)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-777) (-777) (-777)) 44)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2881 (($ (-650 (-650 (-650 |#1|)))) 67)) (-2869 (($ (-965 (-965 (-965 |#1|)))) 23) (((-965 (-965 (-965 |#1|))) $) 19) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-681 |#1|) (-13 (-495 |#1|) (-10 -8 (IF (|has| |#1| (-1058)) (PROGN (-15 -2586 ($ (-777) (-777) (-777))) (-15 -4119 ($ (-777))) (-15 -3595 ($ $ $))) |%noBranch|) (-15 -2881 ($ (-650 (-650 (-650 |#1|))))) (-15 -2057 (|#1| $ (-777) (-777) (-777))) (-15 -4338 (|#1| $ (-777) (-777) (-777) |#1|)) (-15 -2869 ($ (-965 (-965 (-965 |#1|))))) (-15 -2869 ((-965 (-965 (-965 |#1|))) $)) (-15 -2239 ($ (-1186) $ $)) (-15 -4148 ((-1277 (-777)) $)))) (-1109)) (T -681))
-((-2586 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058)) (-4 *3 (-1109)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058)) (-4 *3 (-1109)))) (-3595 (*1 *1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1058)) (-4 *2 (-1109)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-650 *3)))) (-4 *3 (-1109)) (-5 *1 (-681 *3)))) (-2057 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109)))) (-4338 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-4 *3 (-1109)) (-5 *1 (-681 *3)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-5 *1 (-681 *3)) (-4 *3 (-1109)))) (-2239 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-681 *3)) (-4 *3 (-1109)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1277 (-777))) (-5 *1 (-681 *3)) (-4 *3 (-1109)))))
-(-13 (-495 |#1|) (-10 -8 (IF (|has| |#1| (-1058)) (PROGN (-15 -2586 ($ (-777) (-777) (-777))) (-15 -4119 ($ (-777))) (-15 -3595 ($ $ $))) |%noBranch|) (-15 -2881 ($ (-650 (-650 (-650 |#1|))))) (-15 -2057 (|#1| $ (-777) (-777) (-777))) (-15 -4338 (|#1| $ (-777) (-777) (-777) |#1|)) (-15 -2869 ($ (-965 (-965 (-965 |#1|))))) (-15 -2869 ((-965 (-965 (-965 |#1|))) $)) (-15 -2239 ($ (-1186) $ $)) (-15 -4148 ((-1277 (-777)) $))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-2657 (((-489) $) 10)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-1144) $) 12)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-682) (-13 (-1092) (-10 -8 (-15 -2657 ((-489) $)) (-15 -1781 ((-1144) $))))) (T -682))
-((-2657 (*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-682)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-682)))))
-(-13 (-1092) (-10 -8 (-15 -2657 ((-489) $)) (-15 -1781 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-3473 (((-650 |#1|) $) 15)) (-2420 (($ $) 19)) (-4082 (((-112) $) 20)) (-2435 (((-3 |#1| "failed") $) 23)) (-4387 ((|#1| $) 21)) (-1962 (($ $) 37)) (-3222 (($ $) 25)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2390 (((-112) $ $) 47)) (-1831 (((-928) $) 40)) (-2403 (($ $) 18)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 ((|#1| $) 36)) (-2869 (((-868) $) 32) (($ |#1|) 24) (((-825 |#1|) $) 28)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 13)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-683 |#1|) (-13 (-856) (-1047 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2869 ((-825 |#1|) $)) (-15 -1948 (|#1| $)) (-15 -2403 ($ $)) (-15 -1831 ((-928) $)) (-15 -2390 ((-112) $ $)) (-15 -3222 ($ $)) (-15 -1962 ($ $)) (-15 -4082 ((-112) $)) (-15 -2420 ($ $)) (-15 -3473 ((-650 |#1|) $)))) (-856)) (T -683))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-1948 (*1 *2 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-2390 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-3222 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-1962 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-2420 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856)))))
-(-13 (-856) (-1047 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2869 ((-825 |#1|) $)) (-15 -1948 (|#1| $)) (-15 -2403 ($ $)) (-15 -1831 ((-928) $)) (-15 -2390 ((-112) $ $)) (-15 -3222 ($ $)) (-15 -1962 ($ $)) (-15 -4082 ((-112) $)) (-15 -2420 ($ $)) (-15 -3473 ((-650 |#1|) $))))
-((-4422 ((|#1| (-1 |#1| (-777) |#1|) (-777) |#1|) 11)) (-2572 ((|#1| (-1 |#1| |#1|) (-777) |#1|) 9)))
-(((-684 |#1|) (-10 -7 (-15 -2572 (|#1| (-1 |#1| |#1|) (-777) |#1|)) (-15 -4422 (|#1| (-1 |#1| (-777) |#1|) (-777) |#1|))) (-1109)) (T -684))
-((-4422 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-777) *2)) (-5 *4 (-777)) (-4 *2 (-1109)) (-5 *1 (-684 *2)))) (-2572 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-777)) (-4 *2 (-1109)) (-5 *1 (-684 *2)))))
-(-10 -7 (-15 -2572 (|#1| (-1 |#1| |#1|) (-777) |#1|)) (-15 -4422 (|#1| (-1 |#1| (-777) |#1|) (-777) |#1|)))
-((-1570 ((|#2| |#1| |#2|) 9)) (-1559 ((|#1| |#1| |#2|) 8)))
-(((-685 |#1| |#2|) (-10 -7 (-15 -1559 (|#1| |#1| |#2|)) (-15 -1570 (|#2| |#1| |#2|))) (-1109) (-1109)) (T -685))
-((-1570 (*1 *2 *3 *2) (-12 (-5 *1 (-685 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-1559 (*1 *2 *2 *3) (-12 (-5 *1 (-685 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -1559 (|#1| |#1| |#2|)) (-15 -1570 (|#2| |#1| |#2|)))
-((-1987 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-686 |#1| |#2| |#3|) (-10 -7 (-15 -1987 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1109) (-1109) (-1109)) (T -686))
-((-1987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-686 *5 *6 *2)))))
-(-10 -7 (-15 -1987 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2925 (((-1226) $) 21)) (-2876 (((-650 (-1226)) $) 19)) (-3038 (($ (-650 (-1226)) (-1226)) 14)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 29) (($ (-1191)) NIL) (((-1191) $) NIL) (((-1226) $) 22) (($ (-1127)) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-687) (-13 (-1092) (-619 (-1226)) (-10 -8 (-15 -2869 ($ (-1127))) (-15 -3038 ($ (-650 (-1226)) (-1226))) (-15 -2876 ((-650 (-1226)) $)) (-15 -2925 ((-1226) $))))) (T -687))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-687)))) (-3038 (*1 *1 *2 *3) (-12 (-5 *2 (-650 (-1226))) (-5 *3 (-1226)) (-5 *1 (-687)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-687)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-687)))))
-(-13 (-1092) (-619 (-1226)) (-10 -8 (-15 -2869 ($ (-1127))) (-15 -3038 ($ (-650 (-1226)) (-1226))) (-15 -2876 ((-650 (-1226)) $)) (-15 -2925 ((-1226) $))))
-((-4422 (((-1 |#1| (-777) |#1|) (-1 |#1| (-777) |#1|)) 26)) (-2709 (((-1 |#1|) |#1|) 8)) (-2047 ((|#1| |#1|) 19)) (-1367 (((-650 |#1|) (-1 (-650 |#1|) (-650 |#1|)) (-570)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2869 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-777)) 23)))
-(((-688 |#1|) (-10 -7 (-15 -2709 ((-1 |#1|) |#1|)) (-15 -2869 ((-1 |#1|) |#1|)) (-15 -1367 (|#1| (-1 |#1| |#1|))) (-15 -1367 ((-650 |#1|) (-1 (-650 |#1|) (-650 |#1|)) (-570))) (-15 -2047 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-777))) (-15 -4422 ((-1 |#1| (-777) |#1|) (-1 |#1| (-777) |#1|)))) (-1109)) (T -688))
-((-4422 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-777) *3)) (-4 *3 (-1109)) (-5 *1 (-688 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *4 (-1109)) (-5 *1 (-688 *4)))) (-2047 (*1 *2 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1109)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-650 *5) (-650 *5))) (-5 *4 (-570)) (-5 *2 (-650 *5)) (-5 *1 (-688 *5)) (-4 *5 (-1109)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-688 *2)) (-4 *2 (-1109)))) (-2869 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -2709 ((-1 |#1|) |#1|)) (-15 -2869 ((-1 |#1|) |#1|)) (-15 -1367 (|#1| (-1 |#1| |#1|))) (-15 -1367 ((-650 |#1|) (-1 (-650 |#1|) (-650 |#1|)) (-570))) (-15 -2047 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-777))) (-15 -4422 ((-1 |#1| (-777) |#1|) (-1 |#1| (-777) |#1|))))
-((-2955 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4266 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3722 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2791 (((-1 |#2| |#1|) |#2|) 11)))
-(((-689 |#1| |#2|) (-10 -7 (-15 -2791 ((-1 |#2| |#1|) |#2|)) (-15 -4266 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3722 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2955 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1109) (-1109)) (T -689))
-((-2955 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *4)) (-5 *1 (-689 *4 *5)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *4)) (-5 *1 (-689 *4 *5)) (-4 *4 (-1109)))) (-4266 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1 *5)) (-5 *1 (-689 *4 *5)))) (-2791 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-689 *4 *3)) (-4 *4 (-1109)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -2791 ((-1 |#2| |#1|) |#2|)) (-15 -4266 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3722 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2955 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3829 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3681 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3613 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3848 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4004 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -3681 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3613 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3848 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4004 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3829 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1109) (-1109) (-1109)) (T -690))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-1 *7 *5)) (-5 *1 (-690 *5 *6 *7)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-690 *4 *5 *6)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *4 (-1109)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *5 (-1109)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *4 *5 *6)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1109)) (-4 *4 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *5 *4 *6)))))
-(-10 -7 (-15 -3681 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3613 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3848 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4004 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3829 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2295 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2536 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-691 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2536 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2536 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2295 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1058) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|) (-1058) (-378 |#5|) (-378 |#5|) (-693 |#5| |#6| |#7|)) (T -691))
-((-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1058)) (-4 *2 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *8 (-378 *2)) (-4 *9 (-378 *2)) (-5 *1 (-691 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-693 *5 *6 *7)) (-4 *10 (-693 *2 *8 *9)))) (-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1058)) (-4 *8 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *2 (-693 *8 *9 *10)) (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-693 *5 *6 *7)) (-4 *9 (-378 *8)) (-4 *10 (-378 *8)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1058)) (-4 *8 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *2 (-693 *8 *9 *10)) (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-693 *5 *6 *7)) (-4 *9 (-378 *8)) (-4 *10 (-378 *8)))))
-(-10 -7 (-15 -2536 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2536 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2295 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2866 (($ (-777) (-777)) 42)) (-2077 (($ $ $) 71)) (-3412 (($ |#3|) 66) (($ $) 67)) (-3919 (((-112) $) 36)) (-2695 (($ $ (-570) (-570)) 82)) (-1479 (($ $ (-570) (-570)) 83)) (-3533 (($ $ (-570) (-570) (-570) (-570)) 88)) (-4106 (($ $) 69)) (-3206 (((-112) $) 15)) (-3039 (($ $ (-570) (-570) $) 89)) (-3040 ((|#2| $ (-570) (-570) |#2|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) 87)) (-1990 (($ (-777) |#2|) 53)) (-4297 (($ (-650 (-650 |#2|))) 51)) (-2247 (((-650 (-650 |#2|)) $) 78)) (-2491 (($ $ $) 70)) (-2837 (((-3 $ "failed") $ |#2|) 120)) (-2057 ((|#2| $ (-570) (-570)) NIL) ((|#2| $ (-570) (-570) |#2|) NIL) (($ $ (-650 (-570)) (-650 (-570))) 86)) (-2776 (($ (-650 |#2|)) 54) (($ (-650 $)) 56)) (-2445 (((-112) $) 28)) (-2869 (($ |#4|) 61) (((-868) $) NIL)) (-2074 (((-112) $) 38)) (-4013 (($ $ |#2|) 122)) (-4003 (($ $ $) 93) (($ $) 96)) (-3992 (($ $ $) 91)) (** (($ $ (-777)) 109) (($ $ (-570)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-570) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
-(((-692 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2869 ((-868) |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -4013 (|#1| |#1| |#2|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| (-570) (-570) |#1|)) (-15 -3533 (|#1| |#1| (-570) (-570) (-570) (-570))) (-15 -1479 (|#1| |#1| (-570) (-570))) (-15 -2695 (|#1| |#1| (-570) (-570))) (-15 -3040 (|#1| |#1| (-650 (-570)) (-650 (-570)) |#1|)) (-15 -2057 (|#1| |#1| (-650 (-570)) (-650 (-570)))) (-15 -2247 ((-650 (-650 |#2|)) |#1|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -2491 (|#1| |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3412 (|#1| |#3|)) (-15 -2869 (|#1| |#4|)) (-15 -2776 (|#1| (-650 |#1|))) (-15 -2776 (|#1| (-650 |#2|))) (-15 -1990 (|#1| (-777) |#2|)) (-15 -4297 (|#1| (-650 (-650 |#2|)))) (-15 -2866 (|#1| (-777) (-777))) (-15 -2074 ((-112) |#1|)) (-15 -3919 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -3040 (|#2| |#1| (-570) (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) (-570)))) (-693 |#2| |#3| |#4|) (-1058) (-378 |#2|) (-378 |#2|)) (T -692))
-NIL
-(-10 -8 (-15 -2869 ((-868) |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -4013 (|#1| |#1| |#2|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| (-570) (-570) |#1|)) (-15 -3533 (|#1| |#1| (-570) (-570) (-570) (-570))) (-15 -1479 (|#1| |#1| (-570) (-570))) (-15 -2695 (|#1| |#1| (-570) (-570))) (-15 -3040 (|#1| |#1| (-650 (-570)) (-650 (-570)) |#1|)) (-15 -2057 (|#1| |#1| (-650 (-570)) (-650 (-570)))) (-15 -2247 ((-650 (-650 |#2|)) |#1|)) (-15 -2077 (|#1| |#1| |#1|)) (-15 -2491 (|#1| |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -3412 (|#1| |#1|)) (-15 -3412 (|#1| |#3|)) (-15 -2869 (|#1| |#4|)) (-15 -2776 (|#1| (-650 |#1|))) (-15 -2776 (|#1| (-650 |#2|))) (-15 -1990 (|#1| (-777) |#2|)) (-15 -4297 (|#1| (-650 (-650 |#2|)))) (-15 -2866 (|#1| (-777) (-777))) (-15 -2074 ((-112) |#1|)) (-15 -3919 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -3206 ((-112) |#1|)) (-15 -3040 (|#2| |#1| (-570) (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) (-570))))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2866 (($ (-777) (-777)) 98)) (-2077 (($ $ $) 88)) (-3412 (($ |#2|) 92) (($ $) 91)) (-3919 (((-112) $) 100)) (-2695 (($ $ (-570) (-570)) 84)) (-1479 (($ $ (-570) (-570)) 83)) (-3533 (($ $ (-570) (-570) (-570) (-570)) 82)) (-4106 (($ $) 90)) (-3206 (((-112) $) 102)) (-2855 (((-112) $ (-777)) 8)) (-3039 (($ $ (-570) (-570) $) 81)) (-3040 ((|#1| $ (-570) (-570) |#1|) 45) (($ $ (-650 (-570)) (-650 (-570)) $) 85)) (-2951 (($ $ (-570) |#2|) 43)) (-2605 (($ $ (-570) |#3|) 42)) (-1990 (($ (-777) |#1|) 96)) (-2333 (($) 7 T CONST)) (-4085 (($ $) 68 (|has| |#1| (-311)))) (-3598 ((|#2| $ (-570)) 47)) (-4412 (((-777) $) 67 (|has| |#1| (-562)))) (-2845 ((|#1| $ (-570) (-570) |#1|) 44)) (-2774 ((|#1| $ (-570) (-570)) 49)) (-3976 (((-650 |#1|) $) 31)) (-2020 (((-777) $) 66 (|has| |#1| (-562)))) (-2244 (((-650 |#3|) $) 65 (|has| |#1| (-562)))) (-4218 (((-777) $) 52)) (-2296 (($ (-777) (-777) |#1|) 58)) (-4230 (((-777) $) 51)) (-2497 (((-112) $ (-777)) 9)) (-2728 ((|#1| $) 63 (|has| |#1| (-6 (-4454 "*"))))) (-1863 (((-570) $) 56)) (-2554 (((-570) $) 54)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2163 (((-570) $) 55)) (-1448 (((-570) $) 53)) (-4297 (($ (-650 (-650 |#1|))) 97)) (-2833 (($ (-1 |#1| |#1|) $) 35)) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2247 (((-650 (-650 |#1|)) $) 87)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-4066 (((-3 $ "failed") $) 62 (|has| |#1| (-368)))) (-2491 (($ $ $) 89)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) 57)) (-2837 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-562)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) (-570)) 50) ((|#1| $ (-570) (-570) |#1|) 48) (($ $ (-650 (-570)) (-650 (-570))) 86)) (-2776 (($ (-650 |#1|)) 95) (($ (-650 $)) 94)) (-2445 (((-112) $) 101)) (-2439 ((|#1| $) 64 (|has| |#1| (-6 (-4454 "*"))))) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-4101 ((|#3| $ (-570)) 46)) (-2869 (($ |#3|) 93) (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-2074 (((-112) $) 99)) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-4013 (($ $ |#1|) 69 (|has| |#1| (-368)))) (-4003 (($ $ $) 79) (($ $) 78)) (-3992 (($ $ $) 80)) (** (($ $ (-777)) 71) (($ $ (-570)) 61 (|has| |#1| (-368)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-570) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-693 |#1| |#2| |#3|) (-141) (-1058) (-378 |t#1|) (-378 |t#1|)) (T -693))
-((-3206 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-2074 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-2866 (*1 *1 *2 *2) (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-4297 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1990 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2869 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *2)) (-4 *4 (-378 *3)) (-4 *2 (-378 *3)))) (-3412 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *2 *4)) (-4 *2 (-378 *3)) (-4 *4 (-378 *3)))) (-3412 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-4106 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-2491 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-2077 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-650 (-650 *3))))) (-2057 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3040 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2695 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1479 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3533 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3039 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3992 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-4003 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-4003 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-693 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *2 (-378 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-693 *3 *2 *4)) (-4 *3 (-1058)) (-4 *2 (-378 *3)) (-4 *4 (-378 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-562)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-368)))) (-4085 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-311)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-650 *5)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058)))) (-4066 (*1 *1 *1) (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-368)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-368)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4453) (-6 -4452) (-15 -3206 ((-112) $)) (-15 -2445 ((-112) $)) (-15 -3919 ((-112) $)) (-15 -2074 ((-112) $)) (-15 -2866 ($ (-777) (-777))) (-15 -4297 ($ (-650 (-650 |t#1|)))) (-15 -1990 ($ (-777) |t#1|)) (-15 -2776 ($ (-650 |t#1|))) (-15 -2776 ($ (-650 $))) (-15 -2869 ($ |t#3|)) (-15 -3412 ($ |t#2|)) (-15 -3412 ($ $)) (-15 -4106 ($ $)) (-15 -2491 ($ $ $)) (-15 -2077 ($ $ $)) (-15 -2247 ((-650 (-650 |t#1|)) $)) (-15 -2057 ($ $ (-650 (-570)) (-650 (-570)))) (-15 -3040 ($ $ (-650 (-570)) (-650 (-570)) $)) (-15 -2695 ($ $ (-570) (-570))) (-15 -1479 ($ $ (-570) (-570))) (-15 -3533 ($ $ (-570) (-570) (-570) (-570))) (-15 -3039 ($ $ (-570) (-570) $)) (-15 -3992 ($ $ $)) (-15 -4003 ($ $ $)) (-15 -4003 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-570) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-777))) (IF (|has| |t#1| (-562)) (-15 -2837 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -4013 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -4085 ($ $)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -4412 ((-777) $)) (-15 -2020 ((-777) $)) (-15 -2244 ((-650 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4454 "*"))) (PROGN (-15 -2439 (|t#1| $)) (-15 -2728 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-15 -4066 ((-3 $ "failed") $)) (-15 ** ($ $ (-570)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-57 |#1| |#2| |#3|) . T) ((-1227) . T))
-((-4085 ((|#4| |#4|) 92 (|has| |#1| (-311)))) (-4412 (((-777) |#4|) 120 (|has| |#1| (-562)))) (-2020 (((-777) |#4|) 96 (|has| |#1| (-562)))) (-2244 (((-650 |#3|) |#4|) 103 (|has| |#1| (-562)))) (-2968 (((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|) 135 (|has| |#1| (-311)))) (-2728 ((|#1| |#4|) 52)) (-1897 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-562)))) (-4066 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-368)))) (-1562 ((|#4| |#4|) 88 (|has| |#1| (-562)))) (-2376 ((|#4| |#4| |#1| (-570) (-570)) 60)) (-2389 ((|#4| |#4| (-570) (-570)) 55)) (-3599 ((|#4| |#4| |#1| (-570) (-570)) 65)) (-2439 ((|#1| |#4|) 98)) (-2096 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-562)))))
-(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2439 (|#1| |#4|)) (-15 -2728 (|#1| |#4|)) (-15 -2389 (|#4| |#4| (-570) (-570))) (-15 -2376 (|#4| |#4| |#1| (-570) (-570))) (-15 -3599 (|#4| |#4| |#1| (-570) (-570))) (IF (|has| |#1| (-562)) (PROGN (-15 -4412 ((-777) |#4|)) (-15 -2020 ((-777) |#4|)) (-15 -2244 ((-650 |#3|) |#4|)) (-15 -1562 (|#4| |#4|)) (-15 -1897 ((-3 |#4| "failed") |#4|)) (-15 -2096 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -4085 (|#4| |#4|)) (-15 -2968 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4066 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -694))
-((-4066 (*1 *2 *2) (|partial| -12 (-4 *3 (-368)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-2968 (*1 *2 *3 *3) (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-694 *3 *4 *5 *6)) (-4 *6 (-693 *3 *4 *5)))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-1897 (*1 *2 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-2244 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-4412 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-3599 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3)) (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2)) (-4 *2 (-693 *3 *5 *6)))) (-2376 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3)) (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2)) (-4 *2 (-693 *3 *5 *6)))) (-2389 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *1 (-694 *4 *5 *6 *2)) (-4 *2 (-693 *4 *5 *6)))) (-2728 (*1 *2 *3) (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174)) (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))) (-2439 (*1 *2 *3) (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174)) (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))))
-(-10 -7 (-15 -2439 (|#1| |#4|)) (-15 -2728 (|#1| |#4|)) (-15 -2389 (|#4| |#4| (-570) (-570))) (-15 -2376 (|#4| |#4| |#1| (-570) (-570))) (-15 -3599 (|#4| |#4| |#1| (-570) (-570))) (IF (|has| |#1| (-562)) (PROGN (-15 -4412 ((-777) |#4|)) (-15 -2020 ((-777) |#4|)) (-15 -2244 ((-650 |#3|) |#4|)) (-15 -1562 (|#4| |#4|)) (-15 -1897 ((-3 |#4| "failed") |#4|)) (-15 -2096 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -4085 (|#4| |#4|)) (-15 -2968 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4066 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2866 (($ (-777) (-777)) 64)) (-2077 (($ $ $) NIL)) (-3412 (($ (-1277 |#1|)) NIL) (($ $) NIL)) (-3919 (((-112) $) NIL)) (-2695 (($ $ (-570) (-570)) 22)) (-1479 (($ $ (-570) (-570)) NIL)) (-3533 (($ $ (-570) (-570) (-570) (-570)) NIL)) (-4106 (($ $) NIL)) (-3206 (((-112) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3039 (($ $ (-570) (-570) $) NIL)) (-3040 ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) NIL)) (-2951 (($ $ (-570) (-1277 |#1|)) NIL)) (-2605 (($ $ (-570) (-1277 |#1|)) NIL)) (-1990 (($ (-777) |#1|) 37)) (-2333 (($) NIL T CONST)) (-4085 (($ $) 46 (|has| |#1| (-311)))) (-3598 (((-1277 |#1|) $ (-570)) NIL)) (-4412 (((-777) $) 48 (|has| |#1| (-562)))) (-2845 ((|#1| $ (-570) (-570) |#1|) 69)) (-2774 ((|#1| $ (-570) (-570)) NIL)) (-3976 (((-650 |#1|) $) NIL)) (-2020 (((-777) $) 50 (|has| |#1| (-562)))) (-2244 (((-650 (-1277 |#1|)) $) 53 (|has| |#1| (-562)))) (-4218 (((-777) $) 32)) (-2296 (($ (-777) (-777) |#1|) 28)) (-4230 (((-777) $) 33)) (-2497 (((-112) $ (-777)) NIL)) (-2728 ((|#1| $) 44 (|has| |#1| (-6 (-4454 "*"))))) (-1863 (((-570) $) 10)) (-2554 (((-570) $) 11)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2163 (((-570) $) 14)) (-1448 (((-570) $) 65)) (-4297 (($ (-650 (-650 |#1|))) NIL)) (-2833 (($ (-1 |#1| |#1|) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2247 (((-650 (-650 |#1|)) $) 76)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4066 (((-3 $ "failed") $) 60 (|has| |#1| (-368)))) (-2491 (($ $ $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4222 (($ $ |#1|) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570))) NIL)) (-2776 (($ (-650 |#1|)) NIL) (($ (-650 $)) NIL) (($ (-1277 |#1|)) 70)) (-2445 (((-112) $) NIL)) (-2439 ((|#1| $) 42 (|has| |#1| (-6 (-4454 "*"))))) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2601 (((-542) $) 80 (|has| |#1| (-620 (-542))))) (-4101 (((-1277 |#1|) $ (-570)) NIL)) (-2869 (($ (-1277 |#1|)) NIL) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2074 (((-112) $) NIL)) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $ $) NIL) (($ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) 38) (($ $ (-570)) 62 (|has| |#1| (-368)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-570) $) NIL) (((-1277 |#1|) $ (-1277 |#1|)) NIL) (((-1277 |#1|) (-1277 |#1|) $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-695 |#1|) (-13 (-693 |#1| (-1277 |#1|) (-1277 |#1|)) (-10 -8 (-15 -2776 ($ (-1277 |#1|))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4066 ((-3 $ "failed") $)) |%noBranch|))) (-1058)) (T -695))
-((-4066 (*1 *1 *1) (|partial| -12 (-5 *1 (-695 *2)) (-4 *2 (-368)) (-4 *2 (-1058)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1058)) (-5 *1 (-695 *3)))))
-(-13 (-693 |#1| (-1277 |#1|) (-1277 |#1|)) (-10 -8 (-15 -2776 ($ (-1277 |#1|))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4066 ((-3 $ "failed") $)) |%noBranch|)))
-((-3683 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|)) 37)) (-3392 (((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|) 32)) (-4064 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-777)) 43)) (-2427 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|)) 25)) (-2455 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|)) 29) (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 27)) (-2189 (((-695 |#1|) (-695 |#1|) |#1| (-695 |#1|)) 31)) (-3323 (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 23)) (** (((-695 |#1|) (-695 |#1|) (-777)) 46)))
-(((-696 |#1|) (-10 -7 (-15 -3323 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2427 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2455 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2455 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2189 ((-695 |#1|) (-695 |#1|) |#1| (-695 |#1|))) (-15 -3392 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -3683 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -4064 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-777))) (-15 ** ((-695 |#1|) (-695 |#1|) (-777)))) (-1058)) (T -696))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-696 *4)))) (-4064 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-696 *4)))) (-3683 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-3392 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-2189 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-2455 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-2455 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-2427 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-3323 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))))
-(-10 -7 (-15 -3323 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2427 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2455 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2455 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2189 ((-695 |#1|) (-695 |#1|) |#1| (-695 |#1|))) (-15 -3392 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -3683 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -4064 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-777))) (-15 ** ((-695 |#1|) (-695 |#1|) (-777))))
-((-2435 (((-3 |#1| "failed") $) 18)) (-4387 ((|#1| $) NIL)) (-2738 (($) 7 T CONST)) (-1779 (($ |#1|) 8)) (-2869 (($ |#1|) 16) (((-868) $) 23)) (-1970 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2738)) 11)) (-3120 ((|#1| $) 15)))
-(((-697 |#1|) (-13 (-1272) (-1047 |#1|) (-619 (-868)) (-10 -8 (-15 -1779 ($ |#1|)) (-15 -1970 ((-112) $ (|[\|\|]| |#1|))) (-15 -1970 ((-112) $ (|[\|\|]| -2738))) (-15 -3120 (|#1| $)) (-15 -2738 ($) -3722))) (-619 (-868))) (T -697))
-((-1779 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-619 (-868))) (-5 *2 (-112)) (-5 *1 (-697 *4)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2738)) (-5 *2 (-112)) (-5 *1 (-697 *4)) (-4 *4 (-619 (-868))))) (-3120 (*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))) (-2738 (*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))))
-(-13 (-1272) (-1047 |#1|) (-619 (-868)) (-10 -8 (-15 -1779 ($ |#1|)) (-15 -1970 ((-112) $ (|[\|\|]| |#1|))) (-15 -1970 ((-112) $ (|[\|\|]| -2738))) (-15 -3120 (|#1| $)) (-15 -2738 ($) -3722)))
-((-2991 ((|#2| |#2| |#4|) 29)) (-1385 (((-695 |#2|) |#3| |#4|) 35)) (-1877 (((-695 |#2|) |#2| |#4|) 34)) (-4159 (((-1277 |#2|) |#2| |#4|) 16)) (-1690 ((|#2| |#3| |#4|) 28)) (-2640 (((-695 |#2|) |#3| |#4| (-777) (-777)) 47)) (-4307 (((-695 |#2|) |#2| |#4| (-777)) 46)))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4159 ((-1277 |#2|) |#2| |#4|)) (-15 -1690 (|#2| |#3| |#4|)) (-15 -2991 (|#2| |#2| |#4|)) (-15 -1877 ((-695 |#2|) |#2| |#4|)) (-15 -4307 ((-695 |#2|) |#2| |#4| (-777))) (-15 -1385 ((-695 |#2|) |#3| |#4|)) (-15 -2640 ((-695 |#2|) |#3| |#4| (-777) (-777)))) (-1109) (-907 |#1|) (-378 |#2|) (-13 (-378 |#1|) (-10 -7 (-6 -4452)))) (T -698))
-((-2640 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *7 (-907 *6)) (-5 *2 (-695 *7)) (-5 *1 (-698 *6 *7 *3 *4)) (-4 *3 (-378 *7)) (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4452)))))) (-1385 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *6 (-907 *5)) (-5 *2 (-695 *6)) (-5 *1 (-698 *5 *6 *3 *4)) (-4 *3 (-378 *6)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))) (-4307 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *3 (-907 *6)) (-5 *2 (-695 *3)) (-5 *1 (-698 *6 *3 *7 *4)) (-4 *7 (-378 *3)) (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4452)))))) (-1877 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-695 *3)) (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))) (-2991 (*1 *2 *2 *3) (-12 (-4 *4 (-1109)) (-4 *2 (-907 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *5 (-378 *2)) (-4 *3 (-13 (-378 *4) (-10 -7 (-6 -4452)))))) (-1690 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *2 (-907 *5)) (-5 *1 (-698 *5 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))) (-4159 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-1277 *3)) (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))))
-(-10 -7 (-15 -4159 ((-1277 |#2|) |#2| |#4|)) (-15 -1690 (|#2| |#3| |#4|)) (-15 -2991 (|#2| |#2| |#4|)) (-15 -1877 ((-695 |#2|) |#2| |#4|)) (-15 -4307 ((-695 |#2|) |#2| |#4| (-777))) (-15 -1385 ((-695 |#2|) |#3| |#4|)) (-15 -2640 ((-695 |#2|) |#3| |#4| (-777) (-777))))
-((-3184 (((-2 (|:| |num| (-695 |#1|)) (|:| |den| |#1|)) (-695 |#2|)) 20)) (-2223 ((|#1| (-695 |#2|)) 9)) (-3462 (((-695 |#1|) (-695 |#2|)) 18)))
-(((-699 |#1| |#2|) (-10 -7 (-15 -2223 (|#1| (-695 |#2|))) (-15 -3462 ((-695 |#1|) (-695 |#2|))) (-15 -3184 ((-2 (|:| |num| (-695 |#1|)) (|:| |den| |#1|)) (-695 |#2|)))) (-562) (-1001 |#1|)) (T -699))
-((-3184 (*1 *2 *3) (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |num| (-695 *4)) (|:| |den| *4))) (-5 *1 (-699 *4 *5)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562)) (-5 *2 (-695 *4)) (-5 *1 (-699 *4 *5)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-695 *4)) (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-699 *2 *4)))))
-(-10 -7 (-15 -2223 (|#1| (-695 |#2|))) (-15 -3462 ((-695 |#1|) (-695 |#2|))) (-15 -3184 ((-2 (|:| |num| (-695 |#1|)) (|:| |den| |#1|)) (-695 |#2|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3524 (((-695 (-705))) NIL) (((-695 (-705)) (-1277 $)) NIL)) (-1439 (((-705) $) NIL)) (-3900 (($ $) NIL (|has| (-705) (-1212)))) (-3770 (($ $) NIL (|has| (-705) (-1212)))) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-705) (-354)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-3312 (($ $) NIL (-3749 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-2929 (((-424 $) $) NIL (-3749 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-2459 (($ $) NIL (-12 (|has| (-705) (-1011)) (|has| (-705) (-1212))))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-1799 (((-112) $ $) NIL (|has| (-705) (-311)))) (-2401 (((-777)) NIL (|has| (-705) (-373)))) (-3876 (($ $) NIL (|has| (-705) (-1212)))) (-3745 (($ $) NIL (|has| (-705) (-1212)))) (-1513 (($ $) NIL (|has| (-705) (-1212)))) (-3791 (($ $) NIL (|has| (-705) (-1212)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-705) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-705) (-1047 (-413 (-570)))))) (-4387 (((-570) $) NIL) (((-705) $) NIL) (((-413 (-570)) $) NIL (|has| (-705) (-1047 (-413 (-570)))))) (-2615 (($ (-1277 (-705))) NIL) (($ (-1277 (-705)) (-1277 $)) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-705) (-354)))) (-2788 (($ $ $) NIL (|has| (-705) (-311)))) (-4385 (((-695 (-705)) $) NIL) (((-695 (-705)) $ (-1277 $)) NIL)) (-3054 (((-695 (-705)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-705))) (|:| |vec| (-1277 (-705)))) (-695 $) (-1277 $)) NIL) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-705) (-645 (-570)))) (((-695 (-570)) (-695 $)) NIL (|has| (-705) (-645 (-570))))) (-2295 (((-3 $ "failed") (-413 (-1182 (-705)))) NIL (|has| (-705) (-368))) (($ (-1182 (-705))) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2473 (((-705) $) 29)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL (|has| (-705) (-551)))) (-3994 (((-112) $) NIL (|has| (-705) (-551)))) (-1577 (((-413 (-570)) $) NIL (|has| (-705) (-551)))) (-4412 (((-928)) NIL)) (-2066 (($) NIL (|has| (-705) (-373)))) (-2799 (($ $ $) NIL (|has| (-705) (-311)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| (-705) (-311)))) (-2310 (($) NIL (|has| (-705) (-354)))) (-4240 (((-112) $) NIL (|has| (-705) (-354)))) (-2118 (($ $) NIL (|has| (-705) (-354))) (($ $ (-777)) NIL (|has| (-705) (-354)))) (-2145 (((-112) $) NIL (-3749 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-3234 (((-2 (|:| |r| (-705)) (|:| |phi| (-705))) $) NIL (-12 (|has| (-705) (-1069)) (|has| (-705) (-1212))))) (-1625 (($) NIL (|has| (-705) (-1212)))) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-705) (-893 (-384)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-705) (-893 (-570))))) (-3995 (((-839 (-928)) $) NIL (|has| (-705) (-354))) (((-928) $) NIL (|has| (-705) (-354)))) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (-12 (|has| (-705) (-1011)) (|has| (-705) (-1212))))) (-3046 (((-705) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| (-705) (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-705) (-311)))) (-3658 (((-1182 (-705)) $) NIL (|has| (-705) (-368)))) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2536 (($ (-1 (-705) (-705)) $) NIL)) (-1997 (((-928) $) NIL (|has| (-705) (-373)))) (-3447 (($ $) NIL (|has| (-705) (-1212)))) (-2283 (((-1182 (-705)) $) NIL)) (-3867 (($ (-650 $)) NIL (|has| (-705) (-311))) (($ $ $) NIL (|has| (-705) (-311)))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| (-705) (-368)))) (-3458 (($) NIL (|has| (-705) (-354)) CONST)) (-4298 (($ (-928)) NIL (|has| (-705) (-373)))) (-3122 (($) NIL)) (-1959 (((-705) $) 31)) (-3891 (((-1129) $) NIL)) (-3643 (($) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| (-705) (-311)))) (-3903 (($ (-650 $)) NIL (|has| (-705) (-311))) (($ $ $) NIL (|has| (-705) (-311)))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| (-705) (-354)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-2340 (((-424 $) $) NIL (-3749 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-705) (-311))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| (-705) (-311)))) (-2837 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-705)) NIL (|has| (-705) (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-705) (-311)))) (-2651 (($ $) NIL (|has| (-705) (-1212)))) (-3034 (($ $ (-1186) (-705)) NIL (|has| (-705) (-520 (-1186) (-705)))) (($ $ (-650 (-1186)) (-650 (-705))) NIL (|has| (-705) (-520 (-1186) (-705)))) (($ $ (-650 (-298 (-705)))) NIL (|has| (-705) (-313 (-705)))) (($ $ (-298 (-705))) NIL (|has| (-705) (-313 (-705)))) (($ $ (-705) (-705)) NIL (|has| (-705) (-313 (-705)))) (($ $ (-650 (-705)) (-650 (-705))) NIL (|has| (-705) (-313 (-705))))) (-2002 (((-777) $) NIL (|has| (-705) (-311)))) (-2057 (($ $ (-705)) NIL (|has| (-705) (-290 (-705) (-705))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| (-705) (-311)))) (-2896 (((-705)) NIL) (((-705) (-1277 $)) NIL)) (-4058 (((-3 (-777) "failed") $ $) NIL (|has| (-705) (-354))) (((-777) $) NIL (|has| (-705) (-354)))) (-2375 (($ $ (-1 (-705) (-705))) NIL) (($ $ (-1 (-705) (-705)) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-777)) NIL (|has| (-705) (-235))) (($ $) NIL (|has| (-705) (-235)))) (-2318 (((-695 (-705)) (-1277 $) (-1 (-705) (-705))) NIL (|has| (-705) (-368)))) (-3144 (((-1182 (-705))) NIL)) (-1523 (($ $) NIL (|has| (-705) (-1212)))) (-3801 (($ $) NIL (|has| (-705) (-1212)))) (-1900 (($) NIL (|has| (-705) (-354)))) (-3913 (($ $) NIL (|has| (-705) (-1212)))) (-3781 (($ $) NIL (|has| (-705) (-1212)))) (-3887 (($ $) NIL (|has| (-705) (-1212)))) (-3758 (($ $) NIL (|has| (-705) (-1212)))) (-2987 (((-695 (-705)) (-1277 $)) NIL) (((-1277 (-705)) $) NIL) (((-695 (-705)) (-1277 $) (-1277 $)) NIL) (((-1277 (-705)) $ (-1277 $)) NIL)) (-2601 (((-542) $) NIL (|has| (-705) (-620 (-542)))) (((-171 (-227)) $) NIL (|has| (-705) (-1031))) (((-171 (-384)) $) NIL (|has| (-705) (-1031))) (((-899 (-384)) $) NIL (|has| (-705) (-620 (-899 (-384))))) (((-899 (-570)) $) NIL (|has| (-705) (-620 (-899 (-570))))) (($ (-1182 (-705))) NIL) (((-1182 (-705)) $) NIL) (($ (-1277 (-705))) NIL) (((-1277 (-705)) $) NIL)) (-2733 (($ $) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-3749 (-12 (|has| (-705) (-311)) (|has| $ (-146)) (|has| (-705) (-916))) (|has| (-705) (-354))))) (-3486 (($ (-705) (-705)) 12)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-570)) NIL) (($ (-705)) NIL) (($ (-171 (-384))) 13) (($ (-171 (-570))) 19) (($ (-171 (-705))) 28) (($ (-171 (-707))) 25) (((-171 (-384)) $) 33) (($ (-413 (-570))) NIL (-3749 (|has| (-705) (-1047 (-413 (-570)))) (|has| (-705) (-368))))) (-1660 (($ $) NIL (|has| (-705) (-354))) (((-3 $ "failed") $) NIL (-3749 (-12 (|has| (-705) (-311)) (|has| $ (-146)) (|has| (-705) (-916))) (|has| (-705) (-146))))) (-1816 (((-1182 (-705)) $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL)) (-1561 (($ $) NIL (|has| (-705) (-1212)))) (-3833 (($ $) NIL (|has| (-705) (-1212)))) (-2939 (((-112) $ $) NIL)) (-1536 (($ $) NIL (|has| (-705) (-1212)))) (-3811 (($ $) NIL (|has| (-705) (-1212)))) (-1585 (($ $) NIL (|has| (-705) (-1212)))) (-3853 (($ $) NIL (|has| (-705) (-1212)))) (-2105 (((-705) $) NIL (|has| (-705) (-1212)))) (-2900 (($ $) NIL (|has| (-705) (-1212)))) (-3864 (($ $) NIL (|has| (-705) (-1212)))) (-1575 (($ $) NIL (|has| (-705) (-1212)))) (-3844 (($ $) NIL (|has| (-705) (-1212)))) (-1546 (($ $) NIL (|has| (-705) (-1212)))) (-3821 (($ $) NIL (|has| (-705) (-1212)))) (-2521 (($ $) NIL (|has| (-705) (-1069)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-1 (-705) (-705))) NIL) (($ $ (-1 (-705) (-705)) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-777)) NIL (|has| (-705) (-235))) (($ $) NIL (|has| (-705) (-235)))) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| (-705) (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ $) NIL (|has| (-705) (-1212))) (($ $ (-413 (-570))) NIL (-12 (|has| (-705) (-1011)) (|has| (-705) (-1212)))) (($ $ (-570)) NIL (|has| (-705) (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ (-705) $) NIL) (($ $ (-705)) NIL) (($ (-413 (-570)) $) NIL (|has| (-705) (-368))) (($ $ (-413 (-570))) NIL (|has| (-705) (-368)))))
-(((-700) (-13 (-393) (-167 (-705)) (-10 -8 (-15 -2869 ($ (-171 (-384)))) (-15 -2869 ($ (-171 (-570)))) (-15 -2869 ($ (-171 (-705)))) (-15 -2869 ($ (-171 (-707)))) (-15 -2869 ((-171 (-384)) $))))) (T -700))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-171 (-570))) (-5 *1 (-700)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-171 (-705))) (-5 *1 (-700)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-700)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700)))))
-(-13 (-393) (-167 (-705)) (-10 -8 (-15 -2869 ($ (-171 (-384)))) (-15 -2869 ($ (-171 (-570)))) (-15 -2869 ($ (-171 (-705)))) (-15 -2869 ($ (-171 (-707)))) (-15 -2869 ((-171 (-384)) $))))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-3350 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-1381 (($ $) 63)) (-3153 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ |#1| $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41) (($ |#1| $ (-777)) 64)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-1553 (((-650 (-2 (|:| -3165 |#1|) (|:| -3901 (-777)))) $) 62)) (-2910 (($) 50) (($ (-650 |#1|)) 49)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 51)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-701 |#1|) (-141) (-1109)) (T -701))
-((-2801 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-701 *2)) (-4 *2 (-1109)))) (-1381 (*1 *1 *1) (-12 (-4 *1 (-701 *2)) (-4 *2 (-1109)))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-701 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-2 (|:| -3165 *3) (|:| -3901 (-777))))))))
-(-13 (-237 |t#1|) (-10 -8 (-15 -2801 ($ |t#1| $ (-777))) (-15 -1381 ($ $)) (-15 -1553 ((-650 (-2 (|:| -3165 |t#1|) (|:| -3901 (-777)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-1896 (((-650 |#1|) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))) (-570)) 65)) (-2834 ((|#1| |#1| (-570)) 62)) (-3903 ((|#1| |#1| |#1| (-570)) 46)) (-2340 (((-650 |#1|) |#1| (-570)) 49)) (-2078 ((|#1| |#1| (-570) |#1| (-570)) 40)) (-1321 (((-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))) |#1| (-570)) 61)))
-(((-702 |#1|) (-10 -7 (-15 -3903 (|#1| |#1| |#1| (-570))) (-15 -2834 (|#1| |#1| (-570))) (-15 -2340 ((-650 |#1|) |#1| (-570))) (-15 -1321 ((-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))) |#1| (-570))) (-15 -1896 ((-650 |#1|) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))) (-570))) (-15 -2078 (|#1| |#1| (-570) |#1| (-570)))) (-1253 (-570))) (T -702))
-((-2078 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1253 *3)))) (-1896 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| -2340 *5) (|:| -2650 (-570))))) (-5 *4 (-570)) (-4 *5 (-1253 *4)) (-5 *2 (-650 *5)) (-5 *1 (-702 *5)))) (-1321 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-5 *2 (-650 (-2 (|:| -2340 *3) (|:| -2650 *4)))) (-5 *1 (-702 *3)) (-4 *3 (-1253 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-5 *2 (-650 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1253 *4)))) (-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1253 *3)))) (-3903 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1253 *3)))))
-(-10 -7 (-15 -3903 (|#1| |#1| |#1| (-570))) (-15 -2834 (|#1| |#1| (-570))) (-15 -2340 ((-650 |#1|) |#1| (-570))) (-15 -1321 ((-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))) |#1| (-570))) (-15 -1896 ((-650 |#1|) (-650 (-2 (|:| -2340 |#1|) (|:| -2650 (-570)))) (-570))) (-15 -2078 (|#1| |#1| (-570) |#1| (-570))))
-((-1542 (((-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-3354 (((-1142 (-227)) (-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 53) (((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 55) (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 57)) (-1798 (((-1142 (-227)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-650 (-266))) NIL)) (-2267 (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 58)))
-(((-703) (-10 -7 (-15 -3354 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -3354 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -3354 ((-1142 (-227)) (-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2267 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -1798 ((-1142 (-227)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -1542 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -703))
-((-1542 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-950 (-227)) (-227) (-227))) (-5 *1 (-703)))) (-1798 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))) (-2267 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))) (-3354 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-227))) (-5 *5 (-650 (-266))) (-5 *1 (-703)))) (-3354 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-227))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))) (-3354 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))))
-(-10 -7 (-15 -3354 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -3354 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -3354 ((-1142 (-227)) (-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2267 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -1798 ((-1142 (-227)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -1542 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-2340 (((-424 (-1182 |#4|)) (-1182 |#4|)) 86) (((-424 |#4|) |#4|) 266)))
-(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-424 |#4|) |#4|)) (-15 -2340 ((-424 (-1182 |#4|)) (-1182 |#4|)))) (-856) (-799) (-354) (-956 |#3| |#2| |#1|)) (T -704))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354)) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-704 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(-10 -7 (-15 -2340 ((-424 |#4|) |#4|)) (-15 -2340 ((-424 (-1182 |#4|)) (-1182 |#4|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 97)) (-3150 (((-570) $) 34)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3025 (($ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-2459 (($ $) NIL)) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL)) (-2333 (($) NIL T CONST)) (-3325 (($ $) NIL)) (-2435 (((-3 (-570) "failed") $) 85) (((-3 (-413 (-570)) "failed") $) 28) (((-3 (-384) "failed") $) 82)) (-4387 (((-570) $) 87) (((-413 (-570)) $) 79) (((-384) $) 80)) (-2788 (($ $ $) 109)) (-3957 (((-3 $ "failed") $) 100)) (-2799 (($ $ $) 108)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-1492 (((-928)) 89) (((-928) (-928)) 88)) (-2811 (((-112) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL)) (-3995 (((-570) $) NIL)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL)) (-3046 (($ $) NIL)) (-2746 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2342 (((-570) (-570)) 94) (((-570)) 95)) (-1908 (($ $ $) NIL) (($) NIL (-12 (-3201 (|has| $ (-6 -4435))) (-3201 (|has| $ (-6 -4443)))))) (-2301 (((-570) (-570)) 92) (((-570)) 93)) (-1764 (($ $ $) NIL) (($) NIL (-12 (-3201 (|has| $ (-6 -4435))) (-3201 (|has| $ (-6 -4443)))))) (-3646 (((-570) $) 17)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 104)) (-2083 (((-928) (-570)) NIL (|has| $ (-6 -4443)))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL)) (-2037 (($ $) NIL)) (-1531 (($ (-570) (-570)) NIL) (($ (-570) (-570) (-928)) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 105)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2940 (((-570) $) 24)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 107)) (-3961 (((-928)) NIL) (((-928) (-928)) NIL (|has| $ (-6 -4443)))) (-4060 (((-928) (-570)) NIL (|has| $ (-6 -4443)))) (-2601 (((-384) $) NIL) (((-227) $) NIL) (((-899 (-384)) $) NIL)) (-2869 (((-868) $) 63) (($ (-570)) 75) (($ $) NIL) (($ (-413 (-570))) 78) (($ (-570)) 75) (($ (-413 (-570))) 78) (($ (-384)) 72) (((-384) $) 61) (($ (-707)) 66)) (-2294 (((-777)) 119 T CONST)) (-2275 (($ (-570) (-570) (-928)) 54)) (-3850 (($ $) NIL)) (-3529 (((-928)) NIL) (((-928) (-928)) NIL (|has| $ (-6 -4443)))) (-1344 (((-112) $ $) NIL)) (-1540 (((-928)) 91) (((-928) (-928)) 90)) (-2939 (((-112) $ $) NIL)) (-2521 (($ $) NIL)) (-1981 (($) 37 T CONST)) (-1998 (($) 18 T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 96)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 118)) (-4013 (($ $ $) 77)) (-4003 (($ $) 115) (($ $ $) 116)) (-3992 (($ $ $) 114)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ $ (-413 (-570))) 103)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 110) (($ $ $) 101) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-705) (-13 (-410) (-393) (-368) (-1047 (-384)) (-1047 (-413 (-570))) (-148) (-10 -8 (-15 -1492 ((-928) (-928))) (-15 -1492 ((-928))) (-15 -1540 ((-928) (-928))) (-15 -2301 ((-570) (-570))) (-15 -2301 ((-570))) (-15 -2342 ((-570) (-570))) (-15 -2342 ((-570))) (-15 -2869 ((-384) $)) (-15 -2869 ($ (-707))) (-15 -3646 ((-570) $)) (-15 -2940 ((-570) $)) (-15 -2275 ($ (-570) (-570) (-928)))))) (T -705))
-((-2940 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-1492 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-2301 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-2342 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-384)) (-5 *1 (-705)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-705)))) (-2275 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-5 *1 (-705)))))
-(-13 (-410) (-393) (-368) (-1047 (-384)) (-1047 (-413 (-570))) (-148) (-10 -8 (-15 -1492 ((-928) (-928))) (-15 -1492 ((-928))) (-15 -1540 ((-928) (-928))) (-15 -2301 ((-570) (-570))) (-15 -2301 ((-570))) (-15 -2342 ((-570) (-570))) (-15 -2342 ((-570))) (-15 -2869 ((-384) $)) (-15 -2869 ($ (-707))) (-15 -3646 ((-570) $)) (-15 -2940 ((-570) $)) (-15 -2275 ($ (-570) (-570) (-928)))))
-((-4287 (((-695 |#1|) (-695 |#1|) |#1| |#1|) 85)) (-4085 (((-695 |#1|) (-695 |#1|) |#1|) 66)) (-3824 (((-695 |#1|) (-695 |#1|) |#1|) 86)) (-3001 (((-695 |#1|) (-695 |#1|)) 67)) (-2968 (((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|) 84)))
-(((-706 |#1|) (-10 -7 (-15 -3001 ((-695 |#1|) (-695 |#1|))) (-15 -4085 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -3824 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -4287 ((-695 |#1|) (-695 |#1|) |#1| |#1|)) (-15 -2968 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|))) (-311)) (T -706))
-((-2968 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-706 *3)) (-4 *3 (-311)))) (-4287 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))) (-3824 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))) (-4085 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))))
-(-10 -7 (-15 -3001 ((-695 |#1|) (-695 |#1|))) (-15 -4085 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -3824 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -4287 ((-695 |#1|) (-695 |#1|) |#1| |#1|)) (-15 -2968 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-2198 (($ $ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-4396 (($ $ $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL)) (-3609 (($ $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) 31)) (-4387 (((-570) $) 29)) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-1577 (((-413 (-570)) $) NIL)) (-2066 (($ $) NIL) (($) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-3879 (($ $ $ $) NIL)) (-2711 (($ $ $) NIL)) (-2811 (((-112) $) NIL)) (-2614 (($ $ $) NIL)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-2005 (((-112) $) NIL)) (-1973 (((-112) $) NIL)) (-3525 (((-3 $ "failed") $) NIL)) (-2746 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-4258 (($ $ $ $) NIL)) (-1908 (($ $ $) NIL)) (-1796 (((-928) (-928)) 10) (((-928)) 9)) (-1764 (($ $ $) NIL)) (-3520 (($ $) NIL)) (-1831 (($ $) NIL)) (-3867 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-1659 (($ $ $) NIL)) (-3458 (($) NIL T CONST)) (-3032 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3459 (($ $) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2160 (((-112) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL) (($ $ (-777)) NIL)) (-3337 (($ $) NIL)) (-3064 (($ $) NIL)) (-2601 (((-227) $) NIL) (((-384) $) NIL) (((-899 (-570)) $) NIL) (((-542) $) NIL) (((-570) $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) 28) (($ $) NIL) (($ (-570)) 28) (((-320 $) (-320 (-570))) 18)) (-2294 (((-777)) NIL T CONST)) (-1790 (((-112) $ $) NIL)) (-1500 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-1540 (($) NIL)) (-2939 (((-112) $ $) NIL)) (-2677 (($ $ $ $) NIL)) (-2521 (($ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $) NIL) (($ $ (-777)) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL)))
-(((-707) (-13 (-393) (-551) (-10 -8 (-15 -1796 ((-928) (-928))) (-15 -1796 ((-928))) (-15 -2869 ((-320 $) (-320 (-570))))))) (T -707))
-((-1796 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707)))) (-1796 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-320 (-570))) (-5 *2 (-320 (-707))) (-5 *1 (-707)))))
-(-13 (-393) (-551) (-10 -8 (-15 -1796 ((-928) (-928))) (-15 -1796 ((-928))) (-15 -2869 ((-320 $) (-320 (-570))))))
-((-1647 (((-1 |#4| |#2| |#3|) |#1| (-1186) (-1186)) 19)) (-4146 (((-1 |#4| |#2| |#3|) (-1186)) 12)))
-(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4146 ((-1 |#4| |#2| |#3|) (-1186))) (-15 -1647 ((-1 |#4| |#2| |#3|) |#1| (-1186) (-1186)))) (-620 (-542)) (-1227) (-1227) (-1227)) (T -708))
-((-1647 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *3 *5 *6 *7)) (-4 *3 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227)) (-4 *7 (-1227)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *4 *5 *6 *7)) (-4 *4 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227)) (-4 *7 (-1227)))))
-(-10 -7 (-15 -4146 ((-1 |#4| |#2| |#3|) (-1186))) (-15 -1647 ((-1 |#4| |#2| |#3|) |#1| (-1186) (-1186))))
-((-3142 (((-1 (-227) (-227) (-227)) |#1| (-1186) (-1186)) 43) (((-1 (-227) (-227)) |#1| (-1186)) 48)))
-(((-709 |#1|) (-10 -7 (-15 -3142 ((-1 (-227) (-227)) |#1| (-1186))) (-15 -3142 ((-1 (-227) (-227) (-227)) |#1| (-1186) (-1186)))) (-620 (-542))) (T -709))
-((-3142 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-709 *3)) (-4 *3 (-620 (-542))))) (-3142 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-709 *3)) (-4 *3 (-620 (-542))))))
-(-10 -7 (-15 -3142 ((-1 (-227) (-227)) |#1| (-1186))) (-15 -3142 ((-1 (-227) (-227) (-227)) |#1| (-1186) (-1186))))
-((-3746 (((-1186) |#1| (-1186) (-650 (-1186))) 10) (((-1186) |#1| (-1186) (-1186) (-1186)) 13) (((-1186) |#1| (-1186) (-1186)) 12) (((-1186) |#1| (-1186)) 11)))
-(((-710 |#1|) (-10 -7 (-15 -3746 ((-1186) |#1| (-1186))) (-15 -3746 ((-1186) |#1| (-1186) (-1186))) (-15 -3746 ((-1186) |#1| (-1186) (-1186) (-1186))) (-15 -3746 ((-1186) |#1| (-1186) (-650 (-1186))))) (-620 (-542))) (T -710))
-((-3746 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) (-3746 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) (-3746 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) (-3746 (*1 *2 *3 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))))
-(-10 -7 (-15 -3746 ((-1186) |#1| (-1186))) (-15 -3746 ((-1186) |#1| (-1186) (-1186))) (-15 -3746 ((-1186) |#1| (-1186) (-1186) (-1186))) (-15 -3746 ((-1186) |#1| (-1186) (-650 (-1186)))))
-((-4023 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-711 |#1| |#2|) (-10 -7 (-15 -4023 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1227) (-1227)) (T -711))
-((-4023 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-711 *3 *4)) (-4 *3 (-1227)) (-4 *4 (-1227)))))
-(-10 -7 (-15 -4023 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2210 (((-1 |#3| |#2|) (-1186)) 11)) (-1647 (((-1 |#3| |#2|) |#1| (-1186)) 21)))
-(((-712 |#1| |#2| |#3|) (-10 -7 (-15 -2210 ((-1 |#3| |#2|) (-1186))) (-15 -1647 ((-1 |#3| |#2|) |#1| (-1186)))) (-620 (-542)) (-1227) (-1227)) (T -712))
-((-1647 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *3 *5 *6)) (-4 *3 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *4 *5 *6)) (-4 *4 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227)))))
-(-10 -7 (-15 -2210 ((-1 |#3| |#2|) (-1186))) (-15 -1647 ((-1 |#3| |#2|) |#1| (-1186))))
-((-1895 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#4|)) (-650 |#3|) (-650 |#4|) (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| |#4|)))) (-650 (-777)) (-1277 (-650 (-1182 |#3|))) |#3|) 92)) (-3456 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#3|)) (-650 |#3|) (-650 |#4|) (-650 (-777)) |#3|) 110)) (-3196 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 |#3|) (-650 (-777)) (-650 (-1182 |#4|)) (-1277 (-650 (-1182 |#3|))) |#3|) 47)))
-(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3196 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 |#3|) (-650 (-777)) (-650 (-1182 |#4|)) (-1277 (-650 (-1182 |#3|))) |#3|)) (-15 -3456 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#3|)) (-650 |#3|) (-650 |#4|) (-650 (-777)) |#3|)) (-15 -1895 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#4|)) (-650 |#3|) (-650 |#4|) (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| |#4|)))) (-650 (-777)) (-1277 (-650 (-1182 |#3|))) |#3|))) (-799) (-856) (-311) (-956 |#3| |#1| |#2|)) (T -713))
-((-1895 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-650 (-1182 *13))) (-5 *3 (-1182 *13)) (-5 *4 (-650 *12)) (-5 *5 (-650 *10)) (-5 *6 (-650 *13)) (-5 *7 (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| *13))))) (-5 *8 (-650 (-777))) (-5 *9 (-1277 (-650 (-1182 *10)))) (-4 *12 (-856)) (-4 *10 (-311)) (-4 *13 (-956 *10 *11 *12)) (-4 *11 (-799)) (-5 *1 (-713 *11 *12 *10 *13)))) (-3456 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-650 *11)) (-5 *5 (-650 (-1182 *9))) (-5 *6 (-650 *9)) (-5 *7 (-650 *12)) (-5 *8 (-650 (-777))) (-4 *11 (-856)) (-4 *9 (-311)) (-4 *12 (-956 *9 *10 *11)) (-4 *10 (-799)) (-5 *2 (-650 (-1182 *12))) (-5 *1 (-713 *10 *11 *9 *12)) (-5 *3 (-1182 *12)))) (-3196 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-650 (-1182 *11))) (-5 *3 (-1182 *11)) (-5 *4 (-650 *10)) (-5 *5 (-650 *8)) (-5 *6 (-650 (-777))) (-5 *7 (-1277 (-650 (-1182 *8)))) (-4 *10 (-856)) (-4 *8 (-311)) (-4 *11 (-956 *8 *9 *10)) (-4 *9 (-799)) (-5 *1 (-713 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3196 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 |#3|) (-650 (-777)) (-650 (-1182 |#4|)) (-1277 (-650 (-1182 |#3|))) |#3|)) (-15 -3456 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#3|)) (-650 |#3|) (-650 |#4|) (-650 (-777)) |#3|)) (-15 -1895 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#4|)) (-650 |#3|) (-650 |#4|) (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| |#4|)))) (-650 (-777)) (-1277 (-650 (-1182 |#3|))) |#3|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-4394 (($ $) 48)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-2402 (($ |#1| (-777)) 46)) (-2689 (((-777) $) 50)) (-4369 ((|#1| $) 49)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2650 (((-777) $) 51)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3481 ((|#1| $ (-777)) 47)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
-(((-714 |#1|) (-141) (-1058)) (T -714))
-((-2650 (*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058)))) (-4394 (*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058)))) (-3481 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058)))))
-(-13 (-1058) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2650 ((-777) $)) (-15 -2689 ((-777) $)) (-15 -4369 (|t#1| $)) (-15 -4394 ($ $)) (-15 -3481 (|t#1| $ (-777))) (-15 -2402 ($ |t#1| (-777)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2536 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-715 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2536 (|#6| (-1 |#4| |#1|) |#3|))) (-562) (-1253 |#1|) (-1253 (-413 |#2|)) (-562) (-1253 |#4|) (-1253 (-413 |#5|))) (T -715))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-562)) (-4 *7 (-562)) (-4 *6 (-1253 *5)) (-4 *2 (-1253 (-413 *8))) (-5 *1 (-715 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1253 (-413 *6))) (-4 *8 (-1253 *7)))))
-(-10 -7 (-15 -2536 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3593 (((-1168) (-868)) 38)) (-2467 (((-1282) (-1168)) 31)) (-2055 (((-1168) (-868)) 28)) (-3612 (((-1168) (-868)) 29)) (-2869 (((-868) $) NIL) (((-1168) (-868)) 27)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-716) (-13 (-1109) (-10 -7 (-15 -2869 ((-1168) (-868))) (-15 -2055 ((-1168) (-868))) (-15 -3612 ((-1168) (-868))) (-15 -3593 ((-1168) (-868))) (-15 -2467 ((-1282) (-1168)))))) (T -716))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-716)))))
-(-13 (-1109) (-10 -7 (-15 -2869 ((-1168) (-868))) (-15 -2055 ((-1168) (-868))) (-15 -3612 ((-1168) (-868))) (-15 -3593 ((-1168) (-868))) (-15 -2467 ((-1282) (-1168)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) NIL)) (-2295 (($ |#1| |#2|) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2291 ((|#2| $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2282 (((-3 $ "failed") $ $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) ((|#1| $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-717 |#1| |#2| |#3| |#4| |#5|) (-13 (-368) (-10 -8 (-15 -2291 (|#2| $)) (-15 -2869 (|#1| $)) (-15 -2295 ($ |#1| |#2|)) (-15 -2282 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -717))
-((-2291 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2295 (*1 *1 *2 *3) (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2282 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-368) (-10 -8 (-15 -2291 (|#2| $)) (-15 -2869 (|#1| $)) (-15 -2295 ($ |#1| |#2|)) (-15 -2282 ((-3 $ "failed") $ $))))
-((-2847 (((-112) $ $) 87)) (-2564 (((-112) $) 36)) (-2399 (((-1277 |#1|) $ (-777)) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-3860 (($ (-1182 |#1|)) NIL)) (-3449 (((-1182 $) $ (-1091)) NIL) (((-1182 |#1|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3862 (($ $ $) NIL (|has| |#1| (-562)))) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2401 (((-777)) 54 (|has| |#1| (-373)))) (-4133 (($ $ (-777)) NIL)) (-2180 (($ $ (-777)) NIL)) (-1341 ((|#2| |#2|) 50)) (-2169 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-458)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1091) $) NIL)) (-2067 (($ $ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) 40)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2295 (($ |#2|) 48)) (-3957 (((-3 $ "failed") $) 97)) (-2066 (($) 58 (|has| |#1| (-373)))) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-3671 (($ $ $) NIL)) (-1985 (($ $ $) NIL (|has| |#1| (-562)))) (-1504 (((-2 (|:| -1747 |#1|) (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-3634 (((-965 $)) 89)) (-2425 (($ $ |#1| (-777) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-3995 (((-777) $ $) NIL (|has| |#1| (-562)))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-2417 (($ (-1182 |#1|) (-1091)) NIL) (($ (-1182 $) (-1091)) NIL)) (-2529 (($ $ (-777)) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) 85) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-1091)) NIL) (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2291 ((|#2|) 51)) (-2689 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-3989 (($ (-1 (-777) (-777)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3968 (((-1182 |#1|) $) NIL)) (-3168 (((-3 (-1091) "failed") $) NIL)) (-1997 (((-928) $) NIL (|has| |#1| (-373)))) (-2283 ((|#2| $) 47)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) 34)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-2930 (((-2 (|:| -1437 $) (|:| -3357 $)) $ (-777)) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-1091)) (|:| -2940 (-777))) "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3458 (($) NIL (|has| |#1| (-1161)) CONST)) (-4298 (($ (-928)) NIL (|has| |#1| (-373)))) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4208 (($ $) 88 (|has| |#1| (-354)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#1|) NIL) (($ $ (-650 (-1091)) (-650 |#1|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) NIL (|has| |#1| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#1| (-562)))) (-2110 (((-3 $ "failed") $ (-777)) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 98 (|has| |#1| (-368)))) (-2896 (($ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2375 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2650 (((-777) $) 38) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2359 (((-965 $)) 42)) (-3363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#1| (-562)))) (-2869 (((-868) $) 68) (($ (-570)) NIL) (($ |#1|) 65) (($ (-1091)) NIL) (($ |#2|) 75) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) 70) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) 25 T CONST)) (-3263 (((-1277 |#1|) $) 83)) (-3723 (($ (-1277 |#1|)) 57)) (-1998 (($) 8 T CONST)) (-3414 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1705 (((-1277 |#1|) $) NIL)) (-3892 (((-112) $ $) 76)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) 79) (($ $ $) NIL)) (-3992 (($ $ $) 39)) (** (($ $ (-928)) NIL) (($ $ (-777)) 92)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 64) (($ $ $) 82) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
-(((-718 |#1| |#2|) (-13 (-1253 |#1|) (-622 |#2|) (-10 -8 (-15 -1341 (|#2| |#2|)) (-15 -2291 (|#2|)) (-15 -2295 ($ |#2|)) (-15 -2283 (|#2| $)) (-15 -3263 ((-1277 |#1|) $)) (-15 -3723 ($ (-1277 |#1|))) (-15 -1705 ((-1277 |#1|) $)) (-15 -3634 ((-965 $))) (-15 -2359 ((-965 $))) (IF (|has| |#1| (-354)) (-15 -4208 ($ $)) |%noBranch|) (IF (|has| |#1| (-373)) (-6 (-373)) |%noBranch|))) (-1058) (-1253 |#1|)) (T -718))
-((-1341 (*1 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1253 *3)))) (-2291 (*1 *2) (-12 (-4 *2 (-1253 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058)))) (-2295 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1253 *3)))) (-2283 (*1 *2 *1) (-12 (-4 *2 (-1253 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058)))) (-3263 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-1277 *3)) (-5 *1 (-718 *3 *4)) (-4 *4 (-1253 *3)))) (-3723 (*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1058)) (-5 *1 (-718 *3 *4)) (-4 *4 (-1253 *3)))) (-1705 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-1277 *3)) (-5 *1 (-718 *3 *4)) (-4 *4 (-1253 *3)))) (-3634 (*1 *2) (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *4 (-1253 *3)))) (-2359 (*1 *2) (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *4 (-1253 *3)))) (-4208 (*1 *1 *1) (-12 (-4 *2 (-354)) (-4 *2 (-1058)) (-5 *1 (-718 *2 *3)) (-4 *3 (-1253 *2)))))
-(-13 (-1253 |#1|) (-622 |#2|) (-10 -8 (-15 -1341 (|#2| |#2|)) (-15 -2291 (|#2|)) (-15 -2295 ($ |#2|)) (-15 -2283 (|#2| $)) (-15 -3263 ((-1277 |#1|) $)) (-15 -3723 ($ (-1277 |#1|))) (-15 -1705 ((-1277 |#1|) $)) (-15 -3634 ((-965 $))) (-15 -2359 ((-965 $))) (IF (|has| |#1| (-354)) (-15 -4208 ($ $)) |%noBranch|) (IF (|has| |#1| (-373)) (-6 (-373)) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 ((|#1| $) 13)) (-3891 (((-1129) $) NIL)) (-2940 ((|#2| $) 12)) (-2881 (($ |#1| |#2|) 16)) (-2869 (((-868) $) NIL) (($ (-2 (|:| -4298 |#1|) (|:| -2940 |#2|))) 15) (((-2 (|:| -4298 |#1|) (|:| -2940 |#2|)) $) 14)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 11)))
-(((-719 |#1| |#2| |#3|) (-13 (-856) (-496 (-2 (|:| -4298 |#1|) (|:| -2940 |#2|))) (-10 -8 (-15 -2940 (|#2| $)) (-15 -4298 (|#1| $)) (-15 -2881 ($ |#1| |#2|)))) (-856) (-1109) (-1 (-112) (-2 (|:| -4298 |#1|) (|:| -2940 |#2|)) (-2 (|:| -4298 |#1|) (|:| -2940 |#2|)))) (T -719))
-((-2940 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-719 *3 *2 *4)) (-4 *3 (-856)) (-14 *4 (-1 (-112) (-2 (|:| -4298 *3) (|:| -2940 *2)) (-2 (|:| -4298 *3) (|:| -2940 *2)))))) (-4298 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-719 *2 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *3)) (-2 (|:| -4298 *2) (|:| -2940 *3)))))) (-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-719 *2 *3 *4)) (-4 *2 (-856)) (-4 *3 (-1109)) (-14 *4 (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *3)) (-2 (|:| -4298 *2) (|:| -2940 *3)))))))
-(-13 (-856) (-496 (-2 (|:| -4298 |#1|) (|:| -2940 |#2|))) (-10 -8 (-15 -2940 (|#2| $)) (-15 -4298 (|#1| $)) (-15 -2881 ($ |#1| |#2|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 66)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-4387 ((|#1| $) NIL) (((-115) $) 39)) (-3957 (((-3 $ "failed") $) 103)) (-3283 ((|#2| (-115) |#2|) 93)) (-2005 (((-112) $) NIL)) (-2528 (($ |#1| (-366 (-115))) 14)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2238 (($ $ (-1 |#2| |#2|)) 65)) (-3375 (($ $ (-1 |#2| |#2|)) 44)) (-2057 ((|#2| $ |#2|) 33)) (-4425 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2869 (((-868) $) 73) (($ (-570)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) 37 T CONST)) (-1344 (((-112) $ $) NIL)) (-2096 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-1981 (($) 21 T CONST)) (-1998 (($) 9 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) 48) (($ $ $) NIL)) (-3992 (($ $ $) 83)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ (-115) (-570)) NIL) (($ $ (-570)) 64)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
-(((-720 |#1| |#2|) (-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2096 ($ $)) (-15 -2096 ($ $ $)) (-15 -4425 (|#1| |#1|))) |%noBranch|) (-15 -3375 ($ $ (-1 |#2| |#2|))) (-15 -2238 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -3283 (|#2| (-115) |#2|)) (-15 -2528 ($ |#1| (-366 (-115)))))) (-1058) (-654 |#1|)) (T -720))
-((-2096 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) (-4 *3 (-654 *2)))) (-2096 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) (-4 *3 (-654 *2)))) (-4425 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) (-4 *3 (-654 *2)))) (-3375 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-720 *4 *5)) (-4 *5 (-654 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4)) (-4 *4 (-654 *3)))) (-3283 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1058)) (-5 *1 (-720 *4 *2)) (-4 *2 (-654 *4)))) (-2528 (*1 *1 *2 *3) (-12 (-5 *3 (-366 (-115))) (-4 *2 (-1058)) (-5 *1 (-720 *2 *4)) (-4 *4 (-654 *2)))))
-(-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2096 ($ $)) (-15 -2096 ($ $ $)) (-15 -4425 (|#1| |#1|))) |%noBranch|) (-15 -3375 ($ $ (-1 |#2| |#2|))) (-15 -2238 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -3283 (|#2| (-115) |#2|)) (-15 -2528 ($ |#1| (-366 (-115))))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 33)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2295 (($ |#1| |#2|) 25)) (-3957 (((-3 $ "failed") $) 51)) (-2005 (((-112) $) 35)) (-2291 ((|#2| $) 12)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 52)) (-3891 (((-1129) $) NIL)) (-2282 (((-3 $ "failed") $ $) 50)) (-2869 (((-868) $) 24) (($ (-570)) 19) ((|#1| $) 13)) (-2294 (((-777)) 28 T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 16 T CONST)) (-1998 (($) 30 T CONST)) (-3892 (((-112) $ $) 41)) (-4003 (($ $) 46) (($ $ $) 40)) (-3992 (($ $ $) 43)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 21) (($ $ $) 20)))
-(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-1058) (-10 -8 (-15 -2291 (|#2| $)) (-15 -2869 (|#1| $)) (-15 -2295 ($ |#1| |#2|)) (-15 -2282 ((-3 $ "failed") $ $)) (-15 -3957 ((-3 $ "failed") $)) (-15 -4315 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721))
-((-3957 (*1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2291 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2869 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2295 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2282 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4315 (*1 *1 *1) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1058) (-10 -8 (-15 -2291 (|#2| $)) (-15 -2869 (|#1| $)) (-15 -2295 ($ |#1| |#2|)) (-15 -2282 ((-3 $ "failed") $ $)) (-15 -3957 ((-3 $ "failed") $)) (-15 -4315 ($ $))))
-((* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-722 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-723 |#2|) (-174)) (T -722))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-723 |#1|) (-141) (-174)) (T -723))
-NIL
-(-13 (-111 |t#1| |t#1|) (-646 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-3609 (($ |#1|) 17) (($ $ |#1|) 20)) (-2768 (($ |#1|) 18) (($ $ |#1|) 21)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2005 (((-112) $) NIL)) (-3808 (($ |#1| |#1| |#1| |#1|) 8)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 16)) (-3891 (((-1129) $) NIL)) (-3034 ((|#1| $ |#1|) 24) (((-839 |#1|) $ (-839 |#1|)) 32)) (-2733 (($ $ $) NIL)) (-2319 (($ $ $) NIL)) (-2869 (((-868) $) 39)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 9 T CONST)) (-3892 (((-112) $ $) 48)) (-4013 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ $ $) 14)))
-(((-724 |#1|) (-13 (-479) (-10 -8 (-15 -3808 ($ |#1| |#1| |#1| |#1|)) (-15 -3609 ($ |#1|)) (-15 -2768 ($ |#1|)) (-15 -3957 ($)) (-15 -3609 ($ $ |#1|)) (-15 -2768 ($ $ |#1|)) (-15 -3957 ($ $)) (-15 -3034 (|#1| $ |#1|)) (-15 -3034 ((-839 |#1|) $ (-839 |#1|))))) (-368)) (T -724))
-((-3808 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3609 (*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-2768 (*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3957 (*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-2768 (*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3957 (*1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3034 (*1 *2 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3034 (*1 *2 *1 *2) (-12 (-5 *2 (-839 *3)) (-4 *3 (-368)) (-5 *1 (-724 *3)))))
-(-13 (-479) (-10 -8 (-15 -3808 ($ |#1| |#1| |#1| |#1|)) (-15 -3609 ($ |#1|)) (-15 -2768 ($ |#1|)) (-15 -3957 ($)) (-15 -3609 ($ $ |#1|)) (-15 -2768 ($ $ |#1|)) (-15 -3957 ($ $)) (-15 -3034 (|#1| $ |#1|)) (-15 -3034 ((-839 |#1|) $ (-839 |#1|)))))
-((-1794 (($ $ (-928)) 19)) (-3454 (($ $ (-928)) 20)) (** (($ $ (-928)) 10)))
-(((-725 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-928))) (-15 -3454 (|#1| |#1| (-928))) (-15 -1794 (|#1| |#1| (-928)))) (-726)) (T -725))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-928))) (-15 -3454 (|#1| |#1| (-928))) (-15 -1794 (|#1| |#1| (-928))))
-((-2847 (((-112) $ $) 7)) (-1794 (($ $ (-928)) 16)) (-3454 (($ $ (-928)) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)) (** (($ $ (-928)) 14)) (* (($ $ $) 17)))
-(((-726) (-141)) (T -726))
-((* (*1 *1 *1 *1) (-4 *1 (-726))) (-1794 (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))) (-3454 (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))))
-(-13 (-1109) (-10 -8 (-15 * ($ $ $)) (-15 -1794 ($ $ (-928))) (-15 -3454 ($ $ (-928))) (-15 ** ($ $ (-928)))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-1794 (($ $ (-928)) NIL) (($ $ (-777)) 18)) (-2005 (((-112) $) 10)) (-3454 (($ $ (-928)) NIL) (($ $ (-777)) 19)) (** (($ $ (-928)) NIL) (($ $ (-777)) 16)))
-(((-727 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-777))) (-15 -3454 (|#1| |#1| (-777))) (-15 -1794 (|#1| |#1| (-777))) (-15 -2005 ((-112) |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -3454 (|#1| |#1| (-928))) (-15 -1794 (|#1| |#1| (-928)))) (-728)) (T -727))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-777))) (-15 -3454 (|#1| |#1| (-777))) (-15 -1794 (|#1| |#1| (-777))) (-15 -2005 ((-112) |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -3454 (|#1| |#1| (-928))) (-15 -1794 (|#1| |#1| (-928))))
-((-2847 (((-112) $ $) 7)) (-2075 (((-3 $ "failed") $) 18)) (-1794 (($ $ (-928)) 16) (($ $ (-777)) 23)) (-3957 (((-3 $ "failed") $) 20)) (-2005 (((-112) $) 24)) (-1760 (((-3 $ "failed") $) 19)) (-3454 (($ $ (-928)) 15) (($ $ (-777)) 22)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1998 (($) 25 T CONST)) (-3892 (((-112) $ $) 6)) (** (($ $ (-928)) 14) (($ $ (-777)) 21)) (* (($ $ $) 17)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 15)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2209 ((|#1| $) 23)) (-2536 (($ $ $) NIL (|has| |#1| (-799)))) (-3928 (($ $ $) NIL (|has| |#1| (-799)))) (-3618 (((-1170) $) 48)) (-2614 (((-1131) $) NIL)) (-2224 ((|#3| $) 24)) (-3491 (((-870) $) 43)) (-3424 (((-112) $ $) 22)) (-2602 (($) 10 T CONST)) (-3976 (((-112) $ $) NIL (|has| |#1| (-799)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-799)))) (-3921 (((-112) $ $) 20)) (-3965 (((-112) $ $) NIL (|has| |#1| (-799)))) (-3943 (((-112) $ $) 26 (|has| |#1| (-799)))) (-4029 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4018 (($ $) 17) (($ $ $) NIL)) (-4005 (($ $ $) 29)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-670 |#1| |#2| |#3|) (-13 (-725 |#2|) (-10 -8 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) (-15 -4029 ($ $ |#3|)) (-15 -4029 ($ |#1| |#3|)) (-15 -2209 (|#1| $)) (-15 -2224 (|#3| $)))) (-725 |#2|) (-174) (|SubsetCategory| (-734) |#2|)) (T -670))
+((-4029 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4)) (-4 *2 (|SubsetCategory| (-734) *4)))) (-4029 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-670 *2 *4 *3)) (-4 *2 (-725 *4)) (-4 *3 (|SubsetCategory| (-734) *4)))) (-2209 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-725 *3)) (-5 *1 (-670 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-734) *3)))) (-2224 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4)))))
+(-13 (-725 |#2|) (-10 -8 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) (-15 -4029 ($ $ |#3|)) (-15 -4029 ($ |#1| |#3|)) (-15 -2209 (|#1| $)) (-15 -2224 (|#3| $))))
+((-1511 (((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|)) 33)))
+(((-671 |#1|) (-10 -7 (-15 -1511 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|)))) (-918)) (T -671))
+((-1511 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *4))) (-5 *3 (-1184 *4)) (-4 *4 (-918)) (-5 *1 (-671 *4)))))
+(-10 -7 (-15 -1511 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-4084 (((-652 |#1|) $) 84)) (-3891 (($ $ (-779)) 94)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-4118 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 50)) (-3072 (((-3 (-680 |#1|) "failed") $) NIL)) (-1869 (((-680 |#1|) $) NIL)) (-1874 (($ $) 93)) (-2348 (((-779) $) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-4298 (($ (-680 |#1|) |#2|) 70)) (-3450 (($ $) 89)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-3593 (((-1303 |#1| |#2|) (-1303 |#1| |#2|) $) 49)) (-3176 (((-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1840 (((-680 |#1|) $) NIL)) (-1853 ((|#2| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3654 (($ $ |#1| $) 32) (($ $ (-652 |#1|) (-652 $)) 34)) (-1497 (((-779) $) 91)) (-3503 (($ $ $) 20) (($ (-680 |#1|) (-680 |#1|)) 79) (($ (-680 |#1|) $) 77) (($ $ (-680 |#1|)) 78)) (-3491 (((-870) $) NIL) (($ |#1|) 76) (((-1294 |#1| |#2|) $) 60) (((-1303 |#1| |#2|) $) 43) (($ (-680 |#1|)) 27)) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-680 |#1|)) NIL)) (-2379 ((|#2| (-1303 |#1| |#2|) $) 45)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 23 T CONST)) (-2028 (((-652 (-2 (|:| |k| (-680 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2880 (((-3 $ "failed") (-1294 |#1| |#2|)) 62)) (-2138 (($ (-680 |#1|)) 14)) (-3921 (((-112) $ $) 46)) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $) 68) (($ $ $) NIL)) (-4005 (($ $ $) 31)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-680 |#1|)) NIL)))
+(((-672 |#1| |#2|) (-13 (-381 |#1| |#2|) (-389 |#2| (-680 |#1|)) (-10 -8 (-15 -2880 ((-3 $ "failed") (-1294 |#1| |#2|))) (-15 -3503 ($ (-680 |#1|) (-680 |#1|))) (-15 -3503 ($ (-680 |#1|) $)) (-15 -3503 ($ $ (-680 |#1|))))) (-858) (-174)) (T -672))
+((-2880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *1 (-672 *3 *4)))) (-3503 (*1 *1 *2 *2) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4)) (-4 *4 (-174)))) (-3503 (*1 *1 *2 *1) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4)) (-4 *4 (-174)))) (-3503 (*1 *1 *1 *2) (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4)) (-4 *4 (-174)))))
+(-13 (-381 |#1| |#2|) (-389 |#2| (-680 |#1|)) (-10 -8 (-15 -2880 ((-3 $ "failed") (-1294 |#1| |#2|))) (-15 -3503 ($ (-680 |#1|) (-680 |#1|))) (-15 -3503 ($ (-680 |#1|) $)) (-15 -3503 ($ $ (-680 |#1|)))))
+((-3755 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3519 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2265 (($ (-1 (-112) |#2|) $) 29)) (-4095 (($ $) 65)) (-1727 (($ $) 74)) (-3033 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2925 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3239 (((-572) |#2| $ (-572)) 71) (((-572) |#2| $) NIL) (((-572) (-1 (-112) |#2|) $) 54)) (-2924 (($ (-779) |#2|) 63)) (-2363 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1377 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3161 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-2307 (($ |#2|) 15)) (-3704 (($ $ $ (-572)) 42) (($ |#2| $ (-572)) 40)) (-3124 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2049 (($ $ (-1246 (-572))) 51) (($ $ (-572)) 44)) (-2561 (($ $ $ (-572)) 70)) (-3679 (($ $) 68)) (-3943 (((-112) $ $) 76)))
+(((-673 |#1| |#2|) (-10 -8 (-15 -2307 (|#1| |#2|)) (-15 -2049 (|#1| |#1| (-572))) (-15 -2049 (|#1| |#1| (-1246 (-572)))) (-15 -3033 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3704 (|#1| |#2| |#1| (-572))) (-15 -3704 (|#1| |#1| |#1| (-572))) (-15 -2363 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2363 (|#1| |#1| |#1|)) (-15 -1377 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3755 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3239 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -3239 ((-572) |#2| |#1|)) (-15 -3239 ((-572) |#2| |#1| (-572))) (-15 -1377 (|#1| |#1| |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -2561 (|#1| |#1| |#1| (-572))) (-15 -4095 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3124 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2924 (|#1| (-779) |#2|)) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3679 (|#1| |#1|))) (-674 |#2|) (-1229)) (T -673))
+NIL
+(-10 -8 (-15 -2307 (|#1| |#2|)) (-15 -2049 (|#1| |#1| (-572))) (-15 -2049 (|#1| |#1| (-1246 (-572)))) (-15 -3033 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3704 (|#1| |#2| |#1| (-572))) (-15 -3704 (|#1| |#1| |#1| (-572))) (-15 -2363 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2363 (|#1| |#1| |#1|)) (-15 -1377 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3755 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3239 ((-572) (-1 (-112) |#2|) |#1|)) (-15 -3239 ((-572) |#2| |#1|)) (-15 -3239 ((-572) |#2| |#1| (-572))) (-15 -1377 (|#1| |#1| |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -2561 (|#1| |#1| |#1| (-572))) (-15 -4095 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3943 ((-112) |#1| |#1|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2925 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3124 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2924 (|#1| (-779) |#2|)) (-15 -3161 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3679 (|#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-3598 ((|#1| $) 66)) (-4058 (($ $) 68)) (-2812 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-3755 (((-112) $) 144 (|has| |#1| (-858))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3519 (($ $) 148 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4455)))) (-2641 (($ $) 143 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3835 (($ $ $) 57 (|has| $ (-6 -4455)))) (-1993 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 119 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 88 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-2265 (($ (-1 (-112) |#1|) $) 131)) (-1424 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4454)))) (-3587 ((|#1| $) 67)) (-1586 (($) 7 T CONST)) (-4095 (($ $) 146 (|has| $ (-6 -4455)))) (-1852 (($ $) 136)) (-2581 (($ $) 74) (($ $ (-779)) 72)) (-1727 (($ $) 133 (|has| |#1| (-1111)))) (-3955 (($ $) 101 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ |#1| $) 132 (|has| |#1| (-1111))) (($ (-1 (-112) |#1|) $) 127)) (-4243 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4454))) (($ |#1| $) 102 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3061 ((|#1| $ (-572) |#1|) 87 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 89)) (-2760 (((-112) $) 85)) (-3239 (((-572) |#1| $ (-572)) 141 (|has| |#1| (-1111))) (((-572) |#1| $) 140 (|has| |#1| (-1111))) (((-572) (-1 (-112) |#1|) $) 139)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-2924 (($ (-779) |#1|) 111)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 97 (|has| (-572) (-858)))) (-2536 (($ $ $) 149 (|has| |#1| (-858)))) (-2363 (($ $ $) 134 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-1377 (($ $ $) 142 (|has| |#1| (-858))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 96 (|has| (-572) (-858)))) (-3928 (($ $ $) 150 (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2307 (($ |#1|) 124)) (-3818 (((-112) $ (-779)) 10)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-4261 ((|#1| $) 71) (($ $ (-779)) 69)) (-3704 (($ $ $ (-572)) 129) (($ |#1| $ (-572)) 128)) (-2744 (($ $ $ (-572)) 118) (($ |#1| $ (-572)) 117)) (-1634 (((-652 (-572)) $) 94)) (-3132 (((-112) (-572) $) 93)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 77) (($ $ (-779)) 75)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3803 (($ $ |#1|) 98 (|has| $ (-6 -4455)))) (-1540 (((-112) $) 86)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 92)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1246 (-572))) 110) ((|#1| $ (-572)) 91) ((|#1| $ (-572) |#1|) 90)) (-1762 (((-572) $ $) 45)) (-2049 (($ $ (-1246 (-572))) 126) (($ $ (-572)) 125)) (-3817 (($ $ (-1246 (-572))) 116) (($ $ (-572)) 115)) (-3727 (((-112) $) 47)) (-2393 (($ $) 63)) (-2770 (($ $) 60 (|has| $ (-6 -4455)))) (-2847 (((-779) $) 64)) (-3376 (($ $) 65)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2561 (($ $ $ (-572)) 145 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 109)) (-2355 (($ $ $) 62) (($ $ |#1|) 61)) (-2121 (($ $ $) 79) (($ |#1| $) 78) (($ (-652 $)) 113) (($ $ |#1|) 112)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) 152 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 153 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3965 (((-112) $ $) 151 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 154 (|has| |#1| (-858)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-674 |#1|) (-141) (-1229)) (T -674))
+((-2307 (*1 *1 *2) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1229)))))
+(-13 (-1160 |t#1|) (-380 |t#1|) (-288 |t#1|) (-10 -8 (-15 -2307 ($ |t#1|))))
+(((-34) . T) ((-102) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-288 |#1|) . T) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1021 |#1|) . T) ((-1111) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1160 |#1|) . T) ((-1229) . T) ((-1267 |#1|) . T))
+((-1969 (((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|))))) (-652 (-652 |#1|)) (-652 (-1279 |#1|))) 22) (((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|))))) (-697 |#1|) (-652 (-1279 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-652 (-652 |#1|)) (-1279 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|)) 14)) (-1526 (((-779) (-697 |#1|) (-1279 |#1|)) 30)) (-1454 (((-3 (-1279 |#1|) "failed") (-697 |#1|) (-1279 |#1|)) 24)) (-3026 (((-112) (-697 |#1|) (-1279 |#1|)) 27)))
+(((-675 |#1|) (-10 -7 (-15 -1969 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|))) (-15 -1969 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-652 (-652 |#1|)) (-1279 |#1|))) (-15 -1969 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|))))) (-697 |#1|) (-652 (-1279 |#1|)))) (-15 -1969 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|))))) (-652 (-652 |#1|)) (-652 (-1279 |#1|)))) (-15 -1454 ((-3 (-1279 |#1|) "failed") (-697 |#1|) (-1279 |#1|))) (-15 -3026 ((-112) (-697 |#1|) (-1279 |#1|))) (-15 -1526 ((-779) (-697 |#1|) (-1279 |#1|)))) (-370)) (T -675))
+((-1526 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-5 *2 (-779)) (-5 *1 (-675 *5)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-5 *2 (-112)) (-5 *1 (-675 *5)))) (-1454 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1279 *4)) (-5 *3 (-697 *4)) (-4 *4 (-370)) (-5 *1 (-675 *4)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370)) (-5 *2 (-652 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -1769 (-652 (-1279 *5)))))) (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-4 *5 (-370)) (-5 *2 (-652 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -1769 (-652 (-1279 *5)))))) (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -1769 (-652 (-1279 *5))))) (-5 *1 (-675 *5)) (-5 *4 (-1279 *5)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 *5) "failed")) (|:| -1769 (-652 (-1279 *5))))) (-5 *1 (-675 *5)) (-5 *4 (-1279 *5)))))
+(-10 -7 (-15 -1969 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|))) (-15 -1969 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-652 (-652 |#1|)) (-1279 |#1|))) (-15 -1969 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|))))) (-697 |#1|) (-652 (-1279 |#1|)))) (-15 -1969 ((-652 (-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|))))) (-652 (-652 |#1|)) (-652 (-1279 |#1|)))) (-15 -1454 ((-3 (-1279 |#1|) "failed") (-697 |#1|) (-1279 |#1|))) (-15 -3026 ((-112) (-697 |#1|) (-1279 |#1|))) (-15 -1526 ((-779) (-697 |#1|) (-1279 |#1|))))
+((-1969 (((-652 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|)))) |#4| (-652 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|))) |#4| |#3|) 60)) (-1526 (((-779) |#4| |#3|) 18)) (-1454 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3026 (((-112) |#4| |#3|) 14)))
+(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1969 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|))) |#4| |#3|)) (-15 -1969 ((-652 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|)))) |#4| (-652 |#3|))) (-15 -1454 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3026 ((-112) |#4| |#3|)) (-15 -1526 ((-779) |#4| |#3|))) (-370) (-13 (-380 |#1|) (-10 -7 (-6 -4455))) (-13 (-380 |#1|) (-10 -7 (-6 -4455))) (-695 |#1| |#2| |#3|)) (T -676))
+((-1526 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-779)) (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))) (-3026 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-112)) (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))) (-1454 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-370)) (-4 *5 (-13 (-380 *4) (-10 -7 (-6 -4455)))) (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))) (-5 *1 (-676 *4 *5 *2 *3)) (-4 *3 (-695 *4 *5 *2)))) (-1969 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *7 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-652 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1769 (-652 *7))))) (-5 *1 (-676 *5 *6 *7 *3)) (-5 *4 (-652 *7)) (-4 *3 (-695 *5 *6 *7)))) (-1969 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))))
+(-10 -7 (-15 -1969 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|))) |#4| |#3|)) (-15 -1969 ((-652 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|)))) |#4| (-652 |#3|))) (-15 -1454 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3026 ((-112) |#4| |#3|)) (-15 -1526 ((-779) |#4| |#3|)))
+((-3567 (((-2 (|:| |particular| (-3 (-1279 (-415 |#4|)) "failed")) (|:| -1769 (-652 (-1279 (-415 |#4|))))) (-652 |#4|) (-652 |#3|)) 51)))
+(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3567 ((-2 (|:| |particular| (-3 (-1279 (-415 |#4|)) "failed")) (|:| -1769 (-652 (-1279 (-415 |#4|))))) (-652 |#4|) (-652 |#3|)))) (-564) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -677))
+((-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *7)) (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 (-415 *8)) "failed")) (|:| -1769 (-652 (-1279 (-415 *8)))))) (-5 *1 (-677 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3567 ((-2 (|:| |particular| (-3 (-1279 (-415 |#4|)) "failed")) (|:| -1769 (-652 (-1279 (-415 |#4|))))) (-652 |#4|) (-652 |#3|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3457 (((-3 $ "failed")) NIL (|has| |#2| (-564)))) (-2055 ((|#2| $) NIL)) (-2696 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3862 (((-1279 (-697 |#2|))) NIL) (((-1279 (-697 |#2|)) (-1279 $)) NIL)) (-3295 (((-112) $) NIL)) (-2646 (((-1279 $)) 42)) (-2938 (((-112) $ (-779)) NIL)) (-2420 (($ |#2|) NIL)) (-1586 (($) NIL T CONST)) (-1728 (($ $) NIL (|has| |#2| (-313)))) (-2863 (((-244 |#1| |#2|) $ (-572)) NIL)) (-2123 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (|has| |#2| (-564)))) (-2771 (((-3 $ "failed")) NIL (|has| |#2| (-564)))) (-3590 (((-697 |#2|)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-1597 ((|#2| $) NIL)) (-4043 (((-697 |#2|) $) NIL) (((-697 |#2|) $ (-1279 $)) NIL)) (-3899 (((-3 $ "failed") $) NIL (|has| |#2| (-564)))) (-2571 (((-1184 (-961 |#2|))) NIL (|has| |#2| (-370)))) (-4203 (($ $ (-930)) NIL)) (-4114 ((|#2| $) NIL)) (-3440 (((-1184 |#2|) $) NIL (|has| |#2| (-564)))) (-2650 ((|#2|) NIL) ((|#2| (-1279 $)) NIL)) (-2712 (((-1184 |#2|) $) NIL)) (-1515 (((-112)) NIL)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) NIL)) (-2372 (($ (-1279 |#2|)) NIL) (($ (-1279 |#2|) (-1279 $)) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1526 (((-779) $) NIL (|has| |#2| (-564))) (((-930)) 43)) (-2986 ((|#2| $ (-572) (-572)) NIL)) (-3538 (((-112)) NIL)) (-3100 (($ $ (-930)) NIL)) (-1442 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL)) (-1438 (((-779) $) NIL (|has| |#2| (-564)))) (-1924 (((-652 (-244 |#1| |#2|)) $) NIL (|has| |#2| (-564)))) (-2366 (((-779) $) NIL)) (-4325 (((-112)) NIL)) (-2378 (((-779) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-4202 ((|#2| $) NIL (|has| |#2| (-6 (-4456 "*"))))) (-3689 (((-572) $) NIL)) (-3086 (((-572) $) NIL)) (-2396 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3631 (((-572) $) NIL)) (-3652 (((-572) $) NIL)) (-1793 (($ (-652 (-652 |#2|))) NIL)) (-3049 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-652 (-652 |#2|)) $) NIL)) (-1936 (((-112)) NIL)) (-3246 (((-112)) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-1835 (((-3 (-2 (|:| |particular| $) (|:| -1769 (-652 $))) "failed")) NIL (|has| |#2| (-564)))) (-4277 (((-3 $ "failed")) NIL (|has| |#2| (-564)))) (-2808 (((-697 |#2|)) NIL) (((-697 |#2|) (-1279 $)) NIL)) (-3611 ((|#2| $) NIL)) (-2037 (((-697 |#2|) $) NIL) (((-697 |#2|) $ (-1279 $)) NIL)) (-3882 (((-3 $ "failed") $) NIL (|has| |#2| (-564)))) (-2312 (((-1184 (-961 |#2|))) NIL (|has| |#2| (-370)))) (-3962 (($ $ (-930)) NIL)) (-3686 ((|#2| $) NIL)) (-1342 (((-1184 |#2|) $) NIL (|has| |#2| (-564)))) (-2190 ((|#2|) NIL) ((|#2| (-1279 $)) NIL)) (-3177 (((-1184 |#2|) $) NIL)) (-3614 (((-112)) NIL)) (-3618 (((-1170) $) NIL)) (-4412 (((-112)) NIL)) (-3421 (((-112)) NIL)) (-4413 (((-112)) NIL)) (-1558 (((-3 $ "failed") $) NIL (|has| |#2| (-370)))) (-2614 (((-1131) $) NIL)) (-3749 (((-112)) NIL)) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564)))) (-3089 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ (-572) (-572) |#2|) NIL) ((|#2| $ (-572) (-572)) 28) ((|#2| $ (-572)) NIL)) (-3011 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-2623 ((|#2| $) NIL)) (-3502 (($ (-652 |#2|)) NIL)) (-3365 (((-112) $) NIL)) (-4335 (((-244 |#1| |#2|) $) NIL)) (-3312 ((|#2| $) NIL (|has| |#2| (-6 (-4456 "*"))))) (-1371 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3679 (($ $) NIL)) (-2862 (((-697 |#2|) (-1279 $)) NIL) (((-1279 |#2|) $) NIL) (((-697 |#2|) (-1279 $) (-1279 $)) NIL) (((-1279 |#2|) $ (-1279 $)) 31)) (-3222 (($ (-1279 |#2|)) NIL) (((-1279 |#2|) $) NIL)) (-2956 (((-652 (-961 |#2|))) NIL) (((-652 (-961 |#2|)) (-1279 $)) NIL)) (-1433 (($ $ $) NIL)) (-3846 (((-112)) NIL)) (-3845 (((-244 |#1| |#2|) $ (-572)) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) NIL) (((-697 |#2|) $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) 41)) (-1373 (((-652 (-1279 |#2|))) NIL (|has| |#2| (-564)))) (-1541 (($ $ $ $) NIL)) (-3229 (((-112)) NIL)) (-2558 (($ (-697 |#2|) $) NIL)) (-3776 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3889 (((-112) $) NIL)) (-1923 (($ $ $) NIL)) (-1873 (((-112)) NIL)) (-2702 (((-112)) NIL)) (-3565 (((-112)) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#2| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-244 |#1| |#2|) $ (-244 |#1| |#2|)) NIL) (((-244 |#1| |#2|) (-244 |#1| |#2|) $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-678 |#1| |#2|) (-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-425 |#2|)) (-930) (-174)) (T -678))
+NIL
+(-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-425 |#2|))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2699 (((-652 (-1146)) $) 10)) (-3491 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-679) (-13 (-1094) (-10 -8 (-15 -2699 ((-652 (-1146)) $))))) (T -679))
+((-2699 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-679)))))
+(-13 (-1094) (-10 -8 (-15 -2699 ((-652 (-1146)) $))))
+((-3464 (((-112) $ $) NIL)) (-4084 (((-652 |#1|) $) NIL)) (-3058 (($ $) 62)) (-1695 (((-112) $) NIL)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-4232 (((-3 $ "failed") (-827 |#1|)) 27)) (-3655 (((-112) (-827 |#1|)) 17)) (-2169 (($ (-827 |#1|)) 28)) (-4094 (((-112) $ $) 36)) (-2040 (((-930) $) 43)) (-3041 (($ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2972 (((-652 $) (-827 |#1|)) 19)) (-3491 (((-870) $) 51) (($ |#1|) 40) (((-827 |#1|) $) 47) (((-685 |#1|) $) 52)) (-3424 (((-112) $ $) NIL)) (-3002 (((-59 (-652 $)) (-652 |#1|) (-930)) 67)) (-2783 (((-652 $) (-652 |#1|) (-930)) 70)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 63)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 46)))
+(((-680 |#1|) (-13 (-858) (-1049 |#1|) (-10 -8 (-15 -1695 ((-112) $)) (-15 -3041 ($ $)) (-15 -3058 ($ $)) (-15 -2040 ((-930) $)) (-15 -4094 ((-112) $ $)) (-15 -3491 ((-827 |#1|) $)) (-15 -3491 ((-685 |#1|) $)) (-15 -2972 ((-652 $) (-827 |#1|))) (-15 -3655 ((-112) (-827 |#1|))) (-15 -2169 ($ (-827 |#1|))) (-15 -4232 ((-3 $ "failed") (-827 |#1|))) (-15 -4084 ((-652 |#1|) $)) (-15 -3002 ((-59 (-652 $)) (-652 |#1|) (-930))) (-15 -2783 ((-652 $) (-652 |#1|) (-930))))) (-858)) (T -680))
+((-1695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-3041 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858)))) (-3058 (*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-4094 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-680 *4))) (-5 *1 (-680 *4)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-112)) (-5 *1 (-680 *4)))) (-2169 (*1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))) (-4232 (*1 *1 *2) (|partial| -12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858)) (-5 *2 (-59 (-652 (-680 *5)))) (-5 *1 (-680 *5)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858)) (-5 *2 (-652 (-680 *5))) (-5 *1 (-680 *5)))))
+(-13 (-858) (-1049 |#1|) (-10 -8 (-15 -1695 ((-112) $)) (-15 -3041 ($ $)) (-15 -3058 ($ $)) (-15 -2040 ((-930) $)) (-15 -4094 ((-112) $ $)) (-15 -3491 ((-827 |#1|) $)) (-15 -3491 ((-685 |#1|) $)) (-15 -2972 ((-652 $) (-827 |#1|))) (-15 -3655 ((-112) (-827 |#1|))) (-15 -2169 ($ (-827 |#1|))) (-15 -4232 ((-3 $ "failed") (-827 |#1|))) (-15 -4084 ((-652 |#1|) $)) (-15 -3002 ((-59 (-652 $)) (-652 |#1|) (-930))) (-15 -2783 ((-652 $) (-652 |#1|) (-930)))))
+((-1653 ((|#2| $) 100)) (-4058 (($ $) 121)) (-2938 (((-112) $ (-779)) 35)) (-2581 (($ $) 109) (($ $ (-779)) 112)) (-2760 (((-112) $) 122)) (-2117 (((-652 $) $) 96)) (-1890 (((-112) $ $) 92)) (-2545 (((-112) $ (-779)) 33)) (-1531 (((-572) $) 66)) (-2751 (((-572) $) 65)) (-3818 (((-112) $ (-779)) 31)) (-3989 (((-112) $) 98)) (-4261 ((|#2| $) 113) (($ $ (-779)) 117)) (-2744 (($ $ $ (-572)) 83) (($ |#2| $ (-572)) 82)) (-1634 (((-652 (-572)) $) 64)) (-3132 (((-112) (-572) $) 59)) (-2570 ((|#2| $) NIL) (($ $ (-779)) 108)) (-3103 (($ $ (-572)) 125)) (-1540 (((-112) $) 124)) (-3089 (((-112) (-1 (-112) |#2|) $) 42)) (-2950 (((-652 |#2|) $) 46)) (-2679 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1246 (-572))) 79) ((|#2| $ (-572)) 57) ((|#2| $ (-572) |#2|) 58)) (-1762 (((-572) $ $) 91)) (-3817 (($ $ (-1246 (-572))) 78) (($ $ (-572)) 72)) (-3727 (((-112) $) 87)) (-2393 (($ $) 105)) (-2847 (((-779) $) 104)) (-3376 (($ $) 103)) (-3503 (($ (-652 |#2|)) 53)) (-3610 (($ $) 126)) (-1678 (((-652 $) $) 90)) (-1955 (((-112) $ $) 89)) (-3776 (((-112) (-1 (-112) |#2|) $) 41)) (-3921 (((-112) $ $) 20)) (-3475 (((-779) $) 39)))
+(((-681 |#1| |#2|) (-10 -8 (-15 -3610 (|#1| |#1|)) (-15 -3103 (|#1| |#1| (-572))) (-15 -2760 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -2679 (|#2| |#1| (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572))) (-15 -2950 ((-652 |#2|) |#1|)) (-15 -3132 ((-112) (-572) |#1|)) (-15 -1634 ((-652 (-572)) |#1|)) (-15 -2751 ((-572) |#1|)) (-15 -1531 ((-572) |#1|)) (-15 -3503 (|#1| (-652 |#2|))) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -3817 (|#1| |#1| (-572))) (-15 -3817 (|#1| |#1| (-1246 (-572)))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2393 (|#1| |#1|)) (-15 -2847 ((-779) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4261 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "last")) (-15 -4261 (|#2| |#1|)) (-15 -2581 (|#1| |#1| (-779))) (-15 -2679 (|#1| |#1| "rest")) (-15 -2581 (|#1| |#1|)) (-15 -2570 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "first")) (-15 -2570 (|#2| |#1|)) (-15 -1890 ((-112) |#1| |#1|)) (-15 -1955 ((-112) |#1| |#1|)) (-15 -1762 ((-572) |#1| |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -2679 (|#2| |#1| "value")) (-15 -1653 (|#2| |#1|)) (-15 -3989 ((-112) |#1|)) (-15 -2117 ((-652 |#1|) |#1|)) (-15 -1678 ((-652 |#1|) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779)))) (-682 |#2|) (-1229)) (T -681))
+NIL
+(-10 -8 (-15 -3610 (|#1| |#1|)) (-15 -3103 (|#1| |#1| (-572))) (-15 -2760 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -2679 (|#2| |#1| (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572))) (-15 -2950 ((-652 |#2|) |#1|)) (-15 -3132 ((-112) (-572) |#1|)) (-15 -1634 ((-652 (-572)) |#1|)) (-15 -2751 ((-572) |#1|)) (-15 -1531 ((-572) |#1|)) (-15 -3503 (|#1| (-652 |#2|))) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -3817 (|#1| |#1| (-572))) (-15 -3817 (|#1| |#1| (-1246 (-572)))) (-15 -2744 (|#1| |#2| |#1| (-572))) (-15 -2744 (|#1| |#1| |#1| (-572))) (-15 -2393 (|#1| |#1|)) (-15 -2847 ((-779) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4261 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "last")) (-15 -4261 (|#2| |#1|)) (-15 -2581 (|#1| |#1| (-779))) (-15 -2679 (|#1| |#1| "rest")) (-15 -2581 (|#1| |#1|)) (-15 -2570 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "first")) (-15 -2570 (|#2| |#1|)) (-15 -1890 ((-112) |#1| |#1|)) (-15 -1955 ((-112) |#1| |#1|)) (-15 -1762 ((-572) |#1| |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -2679 (|#2| |#1| "value")) (-15 -1653 (|#2| |#1|)) (-15 -3989 ((-112) |#1|)) (-15 -2117 ((-652 |#1|) |#1|)) (-15 -1678 ((-652 |#1|) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3089 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779))))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-3598 ((|#1| $) 66)) (-4058 (($ $) 68)) (-2812 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3835 (($ $ $) 57 (|has| $ (-6 -4455)))) (-1993 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 119 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 88 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 104)) (-3587 ((|#1| $) 67)) (-1586 (($) 7 T CONST)) (-3435 (($ $) 126)) (-2581 (($ $) 74) (($ $ (-779)) 72)) (-3955 (($ $) 101 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#1| $) 102 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 105)) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3061 ((|#1| $ (-572) |#1|) 87 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 89)) (-2760 (((-112) $) 85)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-3969 (((-779) $) 125)) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-2924 (($ (-779) |#1|) 111)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 97 (|has| (-572) (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 96 (|has| (-572) (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3818 (((-112) $ (-779)) 10)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3881 (($ $) 128)) (-1486 (((-112) $) 129)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-4261 ((|#1| $) 71) (($ $ (-779)) 69)) (-2744 (($ $ $ (-572)) 118) (($ |#1| $ (-572)) 117)) (-1634 (((-652 (-572)) $) 94)) (-3132 (((-112) (-572) $) 93)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-1960 ((|#1| $) 127)) (-2570 ((|#1| $) 77) (($ $ (-779)) 75)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3803 (($ $ |#1|) 98 (|has| $ (-6 -4455)))) (-3103 (($ $ (-572)) 124)) (-1540 (((-112) $) 86)) (-3813 (((-112) $) 130)) (-4014 (((-112) $) 131)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 92)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1246 (-572))) 110) ((|#1| $ (-572)) 91) ((|#1| $ (-572) |#1|) 90)) (-1762 (((-572) $ $) 45)) (-3817 (($ $ (-1246 (-572))) 116) (($ $ (-572)) 115)) (-3727 (((-112) $) 47)) (-2393 (($ $) 63)) (-2770 (($ $) 60 (|has| $ (-6 -4455)))) (-2847 (((-779) $) 64)) (-3376 (($ $) 65)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 109)) (-2355 (($ $ $) 62 (|has| $ (-6 -4455))) (($ $ |#1|) 61 (|has| $ (-6 -4455)))) (-2121 (($ $ $) 79) (($ |#1| $) 78) (($ (-652 $)) 113) (($ $ |#1|) 112)) (-3610 (($ $) 123)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-682 |#1|) (-141) (-1229)) (T -682))
+((-4243 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229)))) (-1424 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-3881 (*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))) (-3435 (*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-682 *3)) (-4 *3 (-1229)))) (-3610 (*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
+(-13 (-1160 |t#1|) (-10 -8 (-15 -4243 ($ (-1 (-112) |t#1|) $)) (-15 -1424 ($ (-1 (-112) |t#1|) $)) (-15 -4014 ((-112) $)) (-15 -3813 ((-112) $)) (-15 -1486 ((-112) $)) (-15 -3881 ($ $)) (-15 -1960 (|t#1| $)) (-15 -3435 ($ $)) (-15 -3969 ((-779) $)) (-15 -3103 ($ $ (-572))) (-15 -3610 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1160 |#1|) . T) ((-1229) . T) ((-1267 |#1|) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2069 (($ (-779) (-779) (-779)) 53 (|has| |#1| (-1060)))) (-2938 (((-112) $ (-779)) NIL)) (-2451 ((|#1| $ (-779) (-779) (-779) |#1|) 47)) (-1586 (($) NIL T CONST)) (-4217 (($ $ $) 57 (|has| |#1| (-1060)))) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4315 (((-1279 (-779)) $) 12)) (-1872 (($ (-1188) $ $) 34)) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-4028 (($ (-779)) 55 (|has| |#1| (-1060)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-779) (-779) (-779)) 44)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3503 (($ (-652 (-652 (-652 |#1|)))) 67)) (-3491 (($ (-967 (-967 (-967 |#1|)))) 23) (((-967 (-967 (-967 |#1|))) $) 19) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-683 |#1|) (-13 (-497 |#1|) (-10 -8 (IF (|has| |#1| (-1060)) (PROGN (-15 -2069 ($ (-779) (-779) (-779))) (-15 -4028 ($ (-779))) (-15 -4217 ($ $ $))) |%noBranch|) (-15 -3503 ($ (-652 (-652 (-652 |#1|))))) (-15 -2679 (|#1| $ (-779) (-779) (-779))) (-15 -2451 (|#1| $ (-779) (-779) (-779) |#1|)) (-15 -3491 ($ (-967 (-967 (-967 |#1|))))) (-15 -3491 ((-967 (-967 (-967 |#1|))) $)) (-15 -1872 ($ (-1188) $ $)) (-15 -4315 ((-1279 (-779)) $)))) (-1111)) (T -683))
+((-2069 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060)) (-4 *3 (-1111)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060)) (-4 *3 (-1111)))) (-4217 (*1 *1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1060)) (-4 *2 (-1111)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-652 *3)))) (-4 *3 (-1111)) (-5 *1 (-683 *3)))) (-2679 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111)))) (-2451 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-4 *3 (-1111)) (-5 *1 (-683 *3)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-5 *1 (-683 *3)) (-4 *3 (-1111)))) (-1872 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-683 *3)) (-4 *3 (-1111)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-1279 (-779))) (-5 *1 (-683 *3)) (-4 *3 (-1111)))))
+(-13 (-497 |#1|) (-10 -8 (IF (|has| |#1| (-1060)) (PROGN (-15 -2069 ($ (-779) (-779) (-779))) (-15 -4028 ($ (-779))) (-15 -4217 ($ $ $))) |%noBranch|) (-15 -3503 ($ (-652 (-652 (-652 |#1|))))) (-15 -2679 (|#1| $ (-779) (-779) (-779))) (-15 -2451 (|#1| $ (-779) (-779) (-779) |#1|)) (-15 -3491 ($ (-967 (-967 (-967 |#1|))))) (-15 -3491 ((-967 (-967 (-967 |#1|))) $)) (-15 -1872 ($ (-1188) $ $)) (-15 -4315 ((-1279 (-779)) $))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-1563 (((-491) $) 10)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 19) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-1146) $) 12)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-684) (-13 (-1094) (-10 -8 (-15 -1563 ((-491) $)) (-15 -2414 ((-1146) $))))) (T -684))
+((-1563 (*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-684)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-684)))))
+(-13 (-1094) (-10 -8 (-15 -1563 ((-491) $)) (-15 -2414 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-4084 (((-652 |#1|) $) 15)) (-3058 (($ $) 19)) (-1695 (((-112) $) 20)) (-3072 (((-3 |#1| "failed") $) 23)) (-1869 ((|#1| $) 21)) (-2581 (($ $) 37)) (-3450 (($ $) 25)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-4094 (((-112) $ $) 47)) (-2040 (((-930) $) 40)) (-3041 (($ $) 18)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 ((|#1| $) 36)) (-3491 (((-870) $) 32) (($ |#1|) 24) (((-827 |#1|) $) 28)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 13)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-685 |#1|) (-13 (-858) (-1049 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3491 ((-827 |#1|) $)) (-15 -2570 (|#1| $)) (-15 -3041 ($ $)) (-15 -2040 ((-930) $)) (-15 -4094 ((-112) $ $)) (-15 -3450 ($ $)) (-15 -2581 ($ $)) (-15 -1695 ((-112) $)) (-15 -3058 ($ $)) (-15 -4084 ((-652 |#1|) $)))) (-858)) (T -685))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-2570 (*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-3041 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-4094 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858)))) (-3058 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858)))))
+(-13 (-858) (-1049 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3491 ((-827 |#1|) $)) (-15 -2570 (|#1| $)) (-15 -3041 ($ $)) (-15 -2040 ((-930) $)) (-15 -4094 ((-112) $ $)) (-15 -3450 ($ $)) (-15 -2581 ($ $)) (-15 -1695 ((-112) $)) (-15 -3058 ($ $)) (-15 -4084 ((-652 |#1|) $))))
+((-3960 ((|#1| (-1 |#1| (-779) |#1|) (-779) |#1|) 11)) (-3196 ((|#1| (-1 |#1| |#1|) (-779) |#1|) 9)))
+(((-686 |#1|) (-10 -7 (-15 -3196 (|#1| (-1 |#1| |#1|) (-779) |#1|)) (-15 -3960 (|#1| (-1 |#1| (-779) |#1|) (-779) |#1|))) (-1111)) (T -686))
+((-3960 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-779) *2)) (-5 *4 (-779)) (-4 *2 (-1111)) (-5 *1 (-686 *2)))) (-3196 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-779)) (-4 *2 (-1111)) (-5 *1 (-686 *2)))))
+(-10 -7 (-15 -3196 (|#1| (-1 |#1| |#1|) (-779) |#1|)) (-15 -3960 (|#1| (-1 |#1| (-779) |#1|) (-779) |#1|)))
+((-2192 ((|#2| |#1| |#2|) 9)) (-2175 ((|#1| |#1| |#2|) 8)))
+(((-687 |#1| |#2|) (-10 -7 (-15 -2175 (|#1| |#1| |#2|)) (-15 -2192 (|#2| |#1| |#2|))) (-1111) (-1111)) (T -687))
+((-2192 (*1 *2 *3 *2) (-12 (-5 *1 (-687 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-2175 (*1 *2 *2 *3) (-12 (-5 *1 (-687 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
+(-10 -7 (-15 -2175 (|#1| |#1| |#2|)) (-15 -2192 (|#2| |#1| |#2|)))
+((-2604 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-688 |#1| |#2| |#3|) (-10 -7 (-15 -2604 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1111) (-1111) (-1111)) (T -688))
+((-2604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)) (-5 *1 (-688 *5 *6 *2)))))
+(-10 -7 (-15 -2604 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3550 (((-1228) $) 21)) (-3497 (((-652 (-1228)) $) 19)) (-2070 (($ (-652 (-1228)) (-1228)) 14)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 29) (($ (-1193)) NIL) (((-1193) $) NIL) (((-1228) $) 22) (($ (-1129)) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-689) (-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -3491 ($ (-1129))) (-15 -2070 ($ (-652 (-1228)) (-1228))) (-15 -3497 ((-652 (-1228)) $)) (-15 -3550 ((-1228) $))))) (T -689))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-689)))) (-2070 (*1 *1 *2 *3) (-12 (-5 *2 (-652 (-1228))) (-5 *3 (-1228)) (-5 *1 (-689)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-689)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-689)))))
+(-13 (-1094) (-621 (-1228)) (-10 -8 (-15 -3491 ($ (-1129))) (-15 -2070 ($ (-652 (-1228)) (-1228))) (-15 -3497 ((-652 (-1228)) $)) (-15 -3550 ((-1228) $))))
+((-3960 (((-1 |#1| (-779) |#1|) (-1 |#1| (-779) |#1|)) 26)) (-3998 (((-1 |#1|) |#1|) 8)) (-2667 ((|#1| |#1|) 19)) (-4074 (((-652 |#1|) (-1 (-652 |#1|) (-652 |#1|)) (-572)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3491 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-779)) 23)))
+(((-690 |#1|) (-10 -7 (-15 -3998 ((-1 |#1|) |#1|)) (-15 -3491 ((-1 |#1|) |#1|)) (-15 -4074 (|#1| (-1 |#1| |#1|))) (-15 -4074 ((-652 |#1|) (-1 (-652 |#1|) (-652 |#1|)) (-572))) (-15 -2667 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-779))) (-15 -3960 ((-1 |#1| (-779) |#1|) (-1 |#1| (-779) |#1|)))) (-1111)) (T -690))
+((-3960 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-779) *3)) (-4 *3 (-1111)) (-5 *1 (-690 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *4 (-1111)) (-5 *1 (-690 *4)))) (-2667 (*1 *2 *2) (-12 (-5 *1 (-690 *2)) (-4 *2 (-1111)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-652 *5) (-652 *5))) (-5 *4 (-572)) (-5 *2 (-652 *5)) (-5 *1 (-690 *5)) (-4 *5 (-1111)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-690 *2)) (-4 *2 (-1111)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111)))) (-3998 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111)))))
+(-10 -7 (-15 -3998 ((-1 |#1|) |#1|)) (-15 -3491 ((-1 |#1|) |#1|)) (-15 -4074 (|#1| (-1 |#1| |#1|))) (-15 -4074 ((-652 |#1|) (-1 (-652 |#1|) (-652 |#1|)) (-572))) (-15 -2667 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-779))) (-15 -3960 ((-1 |#1| (-779) |#1|) (-1 |#1| (-779) |#1|))))
+((-2532 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3035 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4338 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3620 (((-1 |#2| |#1|) |#2|) 11)))
+(((-691 |#1| |#2|) (-10 -7 (-15 -3620 ((-1 |#2| |#1|) |#2|)) (-15 -3035 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4338 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2532 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1111) (-1111)) (T -691))
+((-2532 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-5 *2 (-1 *5 *4)) (-5 *1 (-691 *4 *5)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1111)) (-5 *2 (-1 *5 *4)) (-5 *1 (-691 *4 *5)) (-4 *4 (-1111)))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-5 *2 (-1 *5)) (-5 *1 (-691 *4 *5)))) (-3620 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-691 *4 *3)) (-4 *4 (-1111)) (-4 *3 (-1111)))))
+(-10 -7 (-15 -3620 ((-1 |#2| |#1|) |#2|)) (-15 -3035 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4338 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2532 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3232 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2421 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3020 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3416 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2149 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -2421 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3020 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2149 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3232 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1111) (-1111) (-1111)) (T -692))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-1 *7 *5)) (-5 *1 (-692 *5 *6 *7)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-692 *4 *5 *6)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *4 (-1111)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *5 (-1111)))) (-3020 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *4 *5 *6)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1111)) (-4 *4 (-1111)) (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *5 *4 *6)))))
+(-10 -7 (-15 -2421 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3020 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2149 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3232 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2925 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3161 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-693 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3161 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3161 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2925 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1060) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|) (-1060) (-380 |#5|) (-380 |#5|) (-695 |#5| |#6| |#7|)) (T -693))
+((-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1060)) (-4 *2 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *8 (-380 *2)) (-4 *9 (-380 *2)) (-5 *1 (-693 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-695 *5 *6 *7)) (-4 *10 (-695 *2 *8 *9)))) (-3161 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1060)) (-4 *8 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *2 (-695 *8 *9 *10)) (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-695 *5 *6 *7)) (-4 *9 (-380 *8)) (-4 *10 (-380 *8)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1060)) (-4 *8 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *2 (-695 *8 *9 *10)) (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-695 *5 *6 *7)) (-4 *9 (-380 *8)) (-4 *10 (-380 *8)))))
+(-10 -7 (-15 -3161 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3161 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2925 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3488 (($ (-779) (-779)) 42)) (-3922 (($ $ $) 71)) (-1652 (($ |#3|) 66) (($ $) 67)) (-2696 (((-112) $) 36)) (-3869 (($ $ (-572) (-572)) 82)) (-3123 (($ $ (-572) (-572)) 83)) (-3493 (($ $ (-572) (-572) (-572) (-572)) 88)) (-3886 (($ $) 69)) (-3295 (((-112) $) 15)) (-2085 (($ $ (-572) (-572) $) 89)) (-3659 ((|#2| $ (-572) (-572) |#2|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) 87)) (-2420 (($ (-779) |#2|) 53)) (-1793 (($ (-652 (-652 |#2|))) 51)) (-1942 (((-652 (-652 |#2|)) $) 78)) (-3744 (($ $ $) 70)) (-3453 (((-3 $ "failed") $ |#2|) 120)) (-2679 ((|#2| $ (-572) (-572)) NIL) ((|#2| $ (-572) (-572) |#2|) NIL) (($ $ (-652 (-572)) (-652 (-572))) 86)) (-3502 (($ (-652 |#2|)) 54) (($ (-652 $)) 56)) (-3365 (((-112) $) 28)) (-3491 (($ |#4|) 61) (((-870) $) NIL)) (-3889 (((-112) $) 38)) (-4029 (($ $ |#2|) 122)) (-4018 (($ $ $) 93) (($ $) 96)) (-4005 (($ $ $) 91)) (** (($ $ (-779)) 109) (($ $ (-572)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-572) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
+(((-694 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3491 ((-870) |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -4029 (|#1| |#1| |#2|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| (-572) (-572) |#1|)) (-15 -3493 (|#1| |#1| (-572) (-572) (-572) (-572))) (-15 -3123 (|#1| |#1| (-572) (-572))) (-15 -3869 (|#1| |#1| (-572) (-572))) (-15 -3659 (|#1| |#1| (-652 (-572)) (-652 (-572)) |#1|)) (-15 -2679 (|#1| |#1| (-652 (-572)) (-652 (-572)))) (-15 -1942 ((-652 (-652 |#2|)) |#1|)) (-15 -3922 (|#1| |#1| |#1|)) (-15 -3744 (|#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1652 (|#1| |#3|)) (-15 -3491 (|#1| |#4|)) (-15 -3502 (|#1| (-652 |#1|))) (-15 -3502 (|#1| (-652 |#2|))) (-15 -2420 (|#1| (-779) |#2|)) (-15 -1793 (|#1| (-652 (-652 |#2|)))) (-15 -3488 (|#1| (-779) (-779))) (-15 -3889 ((-112) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -3365 ((-112) |#1|)) (-15 -3295 ((-112) |#1|)) (-15 -3659 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) (-572)))) (-695 |#2| |#3| |#4|) (-1060) (-380 |#2|) (-380 |#2|)) (T -694))
+NIL
+(-10 -8 (-15 -3491 ((-870) |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -4029 (|#1| |#1| |#2|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-779))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| (-572) (-572) |#1|)) (-15 -3493 (|#1| |#1| (-572) (-572) (-572) (-572))) (-15 -3123 (|#1| |#1| (-572) (-572))) (-15 -3869 (|#1| |#1| (-572) (-572))) (-15 -3659 (|#1| |#1| (-652 (-572)) (-652 (-572)) |#1|)) (-15 -2679 (|#1| |#1| (-652 (-572)) (-652 (-572)))) (-15 -1942 ((-652 (-652 |#2|)) |#1|)) (-15 -3922 (|#1| |#1| |#1|)) (-15 -3744 (|#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1652 (|#1| |#3|)) (-15 -3491 (|#1| |#4|)) (-15 -3502 (|#1| (-652 |#1|))) (-15 -3502 (|#1| (-652 |#2|))) (-15 -2420 (|#1| (-779) |#2|)) (-15 -1793 (|#1| (-652 (-652 |#2|)))) (-15 -3488 (|#1| (-779) (-779))) (-15 -3889 ((-112) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -3365 ((-112) |#1|)) (-15 -3295 ((-112) |#1|)) (-15 -3659 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) (-572))))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3488 (($ (-779) (-779)) 98)) (-3922 (($ $ $) 88)) (-1652 (($ |#2|) 92) (($ $) 91)) (-2696 (((-112) $) 100)) (-3869 (($ $ (-572) (-572)) 84)) (-3123 (($ $ (-572) (-572)) 83)) (-3493 (($ $ (-572) (-572) (-572) (-572)) 82)) (-3886 (($ $) 90)) (-3295 (((-112) $) 102)) (-2938 (((-112) $ (-779)) 8)) (-2085 (($ $ (-572) (-572) $) 81)) (-3659 ((|#1| $ (-572) (-572) |#1|) 45) (($ $ (-652 (-572)) (-652 (-572)) $) 85)) (-2491 (($ $ (-572) |#2|) 43)) (-2283 (($ $ (-572) |#3|) 42)) (-2420 (($ (-779) |#1|) 96)) (-1586 (($) 7 T CONST)) (-1728 (($ $) 68 (|has| |#1| (-313)))) (-2863 ((|#2| $ (-572)) 47)) (-1526 (((-779) $) 67 (|has| |#1| (-564)))) (-3061 ((|#1| $ (-572) (-572) |#1|) 44)) (-2986 ((|#1| $ (-572) (-572)) 49)) (-1442 (((-652 |#1|) $) 31)) (-1438 (((-779) $) 66 (|has| |#1| (-564)))) (-1924 (((-652 |#3|) $) 65 (|has| |#1| (-564)))) (-2366 (((-779) $) 52)) (-2924 (($ (-779) (-779) |#1|) 58)) (-2378 (((-779) $) 51)) (-2545 (((-112) $ (-779)) 9)) (-4202 ((|#1| $) 63 (|has| |#1| (-6 (-4456 "*"))))) (-3689 (((-572) $) 56)) (-3086 (((-572) $) 54)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3631 (((-572) $) 55)) (-3652 (((-572) $) 53)) (-1793 (($ (-652 (-652 |#1|))) 97)) (-3049 (($ (-1 |#1| |#1|) $) 35)) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1942 (((-652 (-652 |#1|)) $) 87)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1558 (((-3 $ "failed") $) 62 (|has| |#1| (-370)))) (-3744 (($ $ $) 89)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) 57)) (-3453 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-564)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) (-572)) 50) ((|#1| $ (-572) (-572) |#1|) 48) (($ $ (-652 (-572)) (-652 (-572))) 86)) (-3502 (($ (-652 |#1|)) 95) (($ (-652 $)) 94)) (-3365 (((-112) $) 101)) (-3312 ((|#1| $) 64 (|has| |#1| (-6 (-4456 "*"))))) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3845 ((|#3| $ (-572)) 46)) (-3491 (($ |#3|) 93) (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3889 (((-112) $) 99)) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-4029 (($ $ |#1|) 69 (|has| |#1| (-370)))) (-4018 (($ $ $) 79) (($ $) 78)) (-4005 (($ $ $) 80)) (** (($ $ (-779)) 71) (($ $ (-572)) 61 (|has| |#1| (-370)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-572) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-695 |#1| |#2| |#3|) (-141) (-1060) (-380 |t#1|) (-380 |t#1|)) (T -695))
+((-3295 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-112)))) (-3488 (*1 *1 *2 *2) (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2420 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3491 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *2)) (-4 *4 (-380 *3)) (-4 *2 (-380 *3)))) (-1652 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *2 *4)) (-4 *2 (-380 *3)) (-4 *4 (-380 *3)))) (-1652 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-3886 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-3744 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-3922 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-652 (-652 *3))))) (-2679 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3659 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3869 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3123 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3493 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-2085 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-4005 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (-4018 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-695 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *2 (-380 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-695 *3 *2 *4)) (-4 *3 (-1060)) (-4 *2 (-380 *3)) (-4 *4 (-380 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))) (-3453 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-564)))) (-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-370)))) (-1728 (*1 *1 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-313)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779)))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-652 *5)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-1558 (*1 *1 *1) (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-370)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-370)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4455) (-6 -4454) (-15 -3295 ((-112) $)) (-15 -3365 ((-112) $)) (-15 -2696 ((-112) $)) (-15 -3889 ((-112) $)) (-15 -3488 ($ (-779) (-779))) (-15 -1793 ($ (-652 (-652 |t#1|)))) (-15 -2420 ($ (-779) |t#1|)) (-15 -3502 ($ (-652 |t#1|))) (-15 -3502 ($ (-652 $))) (-15 -3491 ($ |t#3|)) (-15 -1652 ($ |t#2|)) (-15 -1652 ($ $)) (-15 -3886 ($ $)) (-15 -3744 ($ $ $)) (-15 -3922 ($ $ $)) (-15 -1942 ((-652 (-652 |t#1|)) $)) (-15 -2679 ($ $ (-652 (-572)) (-652 (-572)))) (-15 -3659 ($ $ (-652 (-572)) (-652 (-572)) $)) (-15 -3869 ($ $ (-572) (-572))) (-15 -3123 ($ $ (-572) (-572))) (-15 -3493 ($ $ (-572) (-572) (-572) (-572))) (-15 -2085 ($ $ (-572) (-572) $)) (-15 -4005 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-572) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-779))) (IF (|has| |t#1| (-564)) (-15 -3453 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -4029 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-313)) (-15 -1728 ($ $)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-15 -1526 ((-779) $)) (-15 -1438 ((-779) $)) (-15 -1924 ((-652 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4456 "*"))) (PROGN (-15 -3312 (|t#1| $)) (-15 -4202 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-15 -1558 ((-3 $ "failed") $)) (-15 ** ($ $ (-572)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-57 |#1| |#2| |#3|) . T) ((-1229) . T))
+((-1728 ((|#4| |#4|) 92 (|has| |#1| (-313)))) (-1526 (((-779) |#4|) 120 (|has| |#1| (-564)))) (-1438 (((-779) |#4|) 96 (|has| |#1| (-564)))) (-1924 (((-652 |#3|) |#4|) 103 (|has| |#1| (-564)))) (-2663 (((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|) 135 (|has| |#1| (-313)))) (-4202 ((|#1| |#4|) 52)) (-2785 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-564)))) (-1558 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-370)))) (-2605 ((|#4| |#4|) 88 (|has| |#1| (-564)))) (-3951 ((|#4| |#4| |#1| (-572) (-572)) 60)) (-4081 ((|#4| |#4| (-572) (-572)) 55)) (-2876 ((|#4| |#4| |#1| (-572) (-572)) 65)) (-3312 ((|#1| |#4|) 98)) (-4126 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-564)))))
+(((-696 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#1| |#4|)) (-15 -4202 (|#1| |#4|)) (-15 -4081 (|#4| |#4| (-572) (-572))) (-15 -3951 (|#4| |#4| |#1| (-572) (-572))) (-15 -2876 (|#4| |#4| |#1| (-572) (-572))) (IF (|has| |#1| (-564)) (PROGN (-15 -1526 ((-779) |#4|)) (-15 -1438 ((-779) |#4|)) (-15 -1924 ((-652 |#3|) |#4|)) (-15 -2605 (|#4| |#4|)) (-15 -2785 ((-3 |#4| "failed") |#4|)) (-15 -4126 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-313)) (PROGN (-15 -1728 (|#4| |#4|)) (-15 -2663 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1558 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -696))
+((-1558 (*1 *2 *2) (|partial| -12 (-4 *3 (-370)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-2663 (*1 *2 *3 *3) (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-696 *3 *4 *5 *6)) (-4 *6 (-695 *3 *4 *5)))) (-1728 (*1 *2 *2) (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-4126 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-2785 (*1 *2 *2) (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-1924 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-1438 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-1526 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-2876 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3)) (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2)) (-4 *2 (-695 *3 *5 *6)))) (-3951 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3)) (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2)) (-4 *2 (-695 *3 *5 *6)))) (-4081 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-572)) (-4 *4 (-174)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *1 (-696 *4 *5 *6 *2)) (-4 *2 (-695 *4 *5 *6)))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174)) (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174)) (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5)))))
+(-10 -7 (-15 -3312 (|#1| |#4|)) (-15 -4202 (|#1| |#4|)) (-15 -4081 (|#4| |#4| (-572) (-572))) (-15 -3951 (|#4| |#4| |#1| (-572) (-572))) (-15 -2876 (|#4| |#4| |#1| (-572) (-572))) (IF (|has| |#1| (-564)) (PROGN (-15 -1526 ((-779) |#4|)) (-15 -1438 ((-779) |#4|)) (-15 -1924 ((-652 |#3|) |#4|)) (-15 -2605 (|#4| |#4|)) (-15 -2785 ((-3 |#4| "failed") |#4|)) (-15 -4126 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-313)) (PROGN (-15 -1728 (|#4| |#4|)) (-15 -2663 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1558 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3488 (($ (-779) (-779)) 64)) (-3922 (($ $ $) NIL)) (-1652 (($ (-1279 |#1|)) NIL) (($ $) NIL)) (-2696 (((-112) $) NIL)) (-3869 (($ $ (-572) (-572)) 22)) (-3123 (($ $ (-572) (-572)) NIL)) (-3493 (($ $ (-572) (-572) (-572) (-572)) NIL)) (-3886 (($ $) NIL)) (-3295 (((-112) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2085 (($ $ (-572) (-572) $) NIL)) (-3659 ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572)) $) NIL)) (-2491 (($ $ (-572) (-1279 |#1|)) NIL)) (-2283 (($ $ (-572) (-1279 |#1|)) NIL)) (-2420 (($ (-779) |#1|) 37)) (-1586 (($) NIL T CONST)) (-1728 (($ $) 46 (|has| |#1| (-313)))) (-2863 (((-1279 |#1|) $ (-572)) NIL)) (-1526 (((-779) $) 48 (|has| |#1| (-564)))) (-3061 ((|#1| $ (-572) (-572) |#1|) 69)) (-2986 ((|#1| $ (-572) (-572)) NIL)) (-1442 (((-652 |#1|) $) NIL)) (-1438 (((-779) $) 50 (|has| |#1| (-564)))) (-1924 (((-652 (-1279 |#1|)) $) 53 (|has| |#1| (-564)))) (-2366 (((-779) $) 32)) (-2924 (($ (-779) (-779) |#1|) 28)) (-2378 (((-779) $) 33)) (-2545 (((-112) $ (-779)) NIL)) (-4202 ((|#1| $) 44 (|has| |#1| (-6 (-4456 "*"))))) (-3689 (((-572) $) 10)) (-3086 (((-572) $) 11)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3631 (((-572) $) 14)) (-3652 (((-572) $) 65)) (-1793 (($ (-652 (-652 |#1|))) NIL)) (-3049 (($ (-1 |#1| |#1|) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1942 (((-652 (-652 |#1|)) $) 76)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1558 (((-3 $ "failed") $) 60 (|has| |#1| (-370)))) (-3744 (($ $ $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3803 (($ $ |#1|) NIL)) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) (-572)) NIL) ((|#1| $ (-572) (-572) |#1|) NIL) (($ $ (-652 (-572)) (-652 (-572))) NIL)) (-3502 (($ (-652 |#1|)) NIL) (($ (-652 $)) NIL) (($ (-1279 |#1|)) 70)) (-3365 (((-112) $) NIL)) (-3312 ((|#1| $) 42 (|has| |#1| (-6 (-4456 "*"))))) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3222 (((-544) $) 80 (|has| |#1| (-622 (-544))))) (-3845 (((-1279 |#1|) $ (-572)) NIL)) (-3491 (($ (-1279 |#1|)) NIL) (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3889 (((-112) $) NIL)) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) 38) (($ $ (-572)) 62 (|has| |#1| (-370)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-572) $) NIL) (((-1279 |#1|) $ (-1279 |#1|)) NIL) (((-1279 |#1|) (-1279 |#1|) $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-697 |#1|) (-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 -3502 ($ (-1279 |#1|))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1558 ((-3 $ "failed") $)) |%noBranch|))) (-1060)) (T -697))
+((-1558 (*1 *1 *1) (|partial| -12 (-5 *1 (-697 *2)) (-4 *2 (-370)) (-4 *2 (-1060)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-697 *3)))))
+(-13 (-695 |#1| (-1279 |#1|) (-1279 |#1|)) (-10 -8 (-15 -3502 ($ (-1279 |#1|))) (IF (|has| |#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -1558 ((-3 $ "failed") $)) |%noBranch|)))
+((-2440 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|)) 37)) (-1467 (((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|) 32)) (-1535 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-779)) 43)) (-3192 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|)) 25)) (-3467 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|)) 29) (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 27)) (-2658 (((-697 |#1|) (-697 |#1|) |#1| (-697 |#1|)) 31)) (-1962 (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 23)) (** (((-697 |#1|) (-697 |#1|) (-779)) 46)))
+(((-698 |#1|) (-10 -7 (-15 -1962 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3192 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3467 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3467 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2658 ((-697 |#1|) (-697 |#1|) |#1| (-697 |#1|))) (-15 -1467 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -2440 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1535 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-779))) (-15 ** ((-697 |#1|) (-697 |#1|) (-779)))) (-1060)) (T -698))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-698 *4)))) (-1535 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-698 *4)))) (-2440 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-1467 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-2658 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-3467 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-3467 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-3192 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))) (-1962 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
+(-10 -7 (-15 -1962 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3192 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3467 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -3467 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2658 ((-697 |#1|) (-697 |#1|) |#1| (-697 |#1|))) (-15 -1467 ((-697 |#1|) (-697 |#1|) (-697 |#1|) |#1|)) (-15 -2440 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -1535 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-697 |#1|) (-779))) (-15 ** ((-697 |#1|) (-697 |#1|) (-779))))
+((-3072 (((-3 |#1| "failed") $) 18)) (-1869 ((|#1| $) NIL)) (-3360 (($) 7 T CONST)) (-4080 (($ |#1|) 8)) (-3491 (($ |#1|) 16) (((-870) $) 23)) (-2591 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3360)) 11)) (-3726 ((|#1| $) 15)))
+(((-699 |#1|) (-13 (-1274) (-1049 |#1|) (-621 (-870)) (-10 -8 (-15 -4080 ($ |#1|)) (-15 -2591 ((-112) $ (|[\|\|]| |#1|))) (-15 -2591 ((-112) $ (|[\|\|]| -3360))) (-15 -3726 (|#1| $)) (-15 -3360 ($) -4338))) (-621 (-870))) (T -699))
+((-4080 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-621 (-870))) (-5 *2 (-112)) (-5 *1 (-699 *4)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3360)) (-5 *2 (-112)) (-5 *1 (-699 *4)) (-4 *4 (-621 (-870))))) (-3726 (*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))) (-3360 (*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))))
+(-13 (-1274) (-1049 |#1|) (-621 (-870)) (-10 -8 (-15 -4080 ($ |#1|)) (-15 -2591 ((-112) $ (|[\|\|]| |#1|))) (-15 -2591 ((-112) $ (|[\|\|]| -3360))) (-15 -3726 (|#1| $)) (-15 -3360 ($) -4338)))
+((-2903 ((|#2| |#2| |#4|) 29)) (-4147 (((-697 |#2|) |#3| |#4|) 35)) (-2565 (((-697 |#2|) |#2| |#4|) 34)) (-4402 (((-1279 |#2|) |#2| |#4|) 16)) (-4382 ((|#2| |#3| |#4|) 28)) (-1390 (((-697 |#2|) |#3| |#4| (-779) (-779)) 47)) (-2143 (((-697 |#2|) |#2| |#4| (-779)) 46)))
+(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4402 ((-1279 |#2|) |#2| |#4|)) (-15 -4382 (|#2| |#3| |#4|)) (-15 -2903 (|#2| |#2| |#4|)) (-15 -2565 ((-697 |#2|) |#2| |#4|)) (-15 -2143 ((-697 |#2|) |#2| |#4| (-779))) (-15 -4147 ((-697 |#2|) |#3| |#4|)) (-15 -1390 ((-697 |#2|) |#3| |#4| (-779) (-779)))) (-1111) (-909 |#1|) (-380 |#2|) (-13 (-380 |#1|) (-10 -7 (-6 -4454)))) (T -700))
+((-1390 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *7 (-909 *6)) (-5 *2 (-697 *7)) (-5 *1 (-700 *6 *7 *3 *4)) (-4 *3 (-380 *7)) (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))) (-4147 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *6 (-909 *5)) (-5 *2 (-697 *6)) (-5 *1 (-700 *5 *6 *3 *4)) (-4 *3 (-380 *6)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))) (-2143 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *3 (-909 *6)) (-5 *2 (-697 *3)) (-5 *1 (-700 *6 *3 *7 *4)) (-4 *7 (-380 *3)) (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))) (-2565 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-697 *3)) (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))) (-2903 (*1 *2 *2 *3) (-12 (-4 *4 (-1111)) (-4 *2 (-909 *4)) (-5 *1 (-700 *4 *2 *5 *3)) (-4 *5 (-380 *2)) (-4 *3 (-13 (-380 *4) (-10 -7 (-6 -4454)))))) (-4382 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *2 (-909 *5)) (-5 *1 (-700 *5 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))) (-4402 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-1279 *3)) (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
+(-10 -7 (-15 -4402 ((-1279 |#2|) |#2| |#4|)) (-15 -4382 (|#2| |#3| |#4|)) (-15 -2903 (|#2| |#2| |#4|)) (-15 -2565 ((-697 |#2|) |#2| |#4|)) (-15 -2143 ((-697 |#2|) |#2| |#4| (-779))) (-15 -4147 ((-697 |#2|) |#3| |#4|)) (-15 -1390 ((-697 |#2|) |#3| |#4| (-779) (-779))))
+((-4270 (((-2 (|:| |num| (-697 |#1|)) (|:| |den| |#1|)) (-697 |#2|)) 20)) (-3015 ((|#1| (-697 |#2|)) 9)) (-4037 (((-697 |#1|) (-697 |#2|)) 18)))
+(((-701 |#1| |#2|) (-10 -7 (-15 -3015 (|#1| (-697 |#2|))) (-15 -4037 ((-697 |#1|) (-697 |#2|))) (-15 -4270 ((-2 (|:| |num| (-697 |#1|)) (|:| |den| |#1|)) (-697 |#2|)))) (-564) (-1003 |#1|)) (T -701))
+((-4270 (*1 *2 *3) (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |num| (-697 *4)) (|:| |den| *4))) (-5 *1 (-701 *4 *5)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564)) (-5 *2 (-697 *4)) (-5 *1 (-701 *4 *5)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-697 *4)) (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-701 *2 *4)))))
+(-10 -7 (-15 -3015 (|#1| (-697 |#2|))) (-15 -4037 ((-697 |#1|) (-697 |#2|))) (-15 -4270 ((-2 (|:| |num| (-697 |#1|)) (|:| |den| |#1|)) (-697 |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3385 (((-697 (-707))) NIL) (((-697 (-707)) (-1279 $)) NIL)) (-2055 (((-707) $) NIL)) (-3915 (($ $) NIL (|has| (-707) (-1214)))) (-3790 (($ $) NIL (|has| (-707) (-1214)))) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-707) (-356)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-1861 (($ $) NIL (-3783 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-2359 (((-426 $) $) NIL (-3783 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-3093 (($ $) NIL (-12 (|has| (-707) (-1013)) (|has| (-707) (-1214))))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-4252 (((-112) $ $) NIL (|has| (-707) (-313)))) (-3037 (((-779)) NIL (|has| (-707) (-375)))) (-3893 (($ $) NIL (|has| (-707) (-1214)))) (-3770 (($ $) NIL (|has| (-707) (-1214)))) (-3939 (($ $) NIL (|has| (-707) (-1214)))) (-3811 (($ $) NIL (|has| (-707) (-1214)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-707) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-707) (-1049 (-415 (-572)))))) (-1869 (((-572) $) NIL) (((-707) $) NIL) (((-415 (-572)) $) NIL (|has| (-707) (-1049 (-415 (-572)))))) (-2372 (($ (-1279 (-707))) NIL) (($ (-1279 (-707)) (-1279 $)) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-707) (-356)))) (-3407 (($ $ $) NIL (|has| (-707) (-313)))) (-1649 (((-697 (-707)) $) NIL) (((-697 (-707)) $ (-1279 $)) NIL)) (-2245 (((-697 (-707)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-707))) (|:| |vec| (-1279 (-707)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-707) (-647 (-572)))) (((-697 (-572)) (-697 $)) NIL (|has| (-707) (-647 (-572))))) (-2925 (((-3 $ "failed") (-415 (-1184 (-707)))) NIL (|has| (-707) (-370))) (($ (-1184 (-707))) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3106 (((-707) $) 29)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL (|has| (-707) (-553)))) (-2054 (((-112) $) NIL (|has| (-707) (-553)))) (-2745 (((-415 (-572)) $) NIL (|has| (-707) (-553)))) (-1526 (((-930)) NIL)) (-2688 (($) NIL (|has| (-707) (-375)))) (-3418 (($ $ $) NIL (|has| (-707) (-313)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| (-707) (-313)))) (-1345 (($) NIL (|has| (-707) (-356)))) (-2754 (((-112) $) NIL (|has| (-707) (-356)))) (-3156 (($ $) NIL (|has| (-707) (-356))) (($ $ (-779)) NIL (|has| (-707) (-356)))) (-3439 (((-112) $) NIL (-3783 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-3562 (((-2 (|:| |r| (-707)) (|:| |phi| (-707))) $) NIL (-12 (|has| (-707) (-1071)) (|has| (-707) (-1214))))) (-2250 (($) NIL (|has| (-707) (-1214)))) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-707) (-895 (-386)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-707) (-895 (-572))))) (-2068 (((-841 (-930)) $) NIL (|has| (-707) (-356))) (((-930) $) NIL (|has| (-707) (-356)))) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (-12 (|has| (-707) (-1013)) (|has| (-707) (-1214))))) (-2140 (((-707) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-707) (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-707) (-313)))) (-2179 (((-1184 (-707)) $) NIL (|has| (-707) (-370)))) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3161 (($ (-1 (-707) (-707)) $) NIL)) (-4370 (((-930) $) NIL (|has| (-707) (-375)))) (-4057 (($ $) NIL (|has| (-707) (-1214)))) (-2913 (((-1184 (-707)) $) NIL)) (-1335 (($ (-652 $)) NIL (|has| (-707) (-313))) (($ $ $) NIL (|has| (-707) (-313)))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| (-707) (-370)))) (-3477 (($) NIL (|has| (-707) (-356)) CONST)) (-1795 (($ (-930)) NIL (|has| (-707) (-375)))) (-1675 (($) NIL)) (-2592 (((-707) $) 31)) (-2614 (((-1131) $) NIL)) (-4267 (($) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| (-707) (-313)))) (-1370 (($ (-652 $)) NIL (|has| (-707) (-313))) (($ $ $) NIL (|has| (-707) (-313)))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| (-707) (-356)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-707) (-313)) (|has| (-707) (-918))))) (-2972 (((-426 $) $) NIL (-3783 (-12 (|has| (-707) (-313)) (|has| (-707) (-918))) (|has| (-707) (-370))))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-707) (-313))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| (-707) (-313)))) (-3453 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-707)) NIL (|has| (-707) (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-707) (-313)))) (-3272 (($ $) NIL (|has| (-707) (-1214)))) (-3654 (($ $ (-1188) (-707)) NIL (|has| (-707) (-522 (-1188) (-707)))) (($ $ (-652 (-1188)) (-652 (-707))) NIL (|has| (-707) (-522 (-1188) (-707)))) (($ $ (-652 (-300 (-707)))) NIL (|has| (-707) (-315 (-707)))) (($ $ (-300 (-707))) NIL (|has| (-707) (-315 (-707)))) (($ $ (-707) (-707)) NIL (|has| (-707) (-315 (-707)))) (($ $ (-652 (-707)) (-652 (-707))) NIL (|has| (-707) (-315 (-707))))) (-4395 (((-779) $) NIL (|has| (-707) (-313)))) (-2679 (($ $ (-707)) NIL (|has| (-707) (-292 (-707) (-707))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| (-707) (-313)))) (-2020 (((-707)) NIL) (((-707) (-1279 $)) NIL)) (-1468 (((-3 (-779) "failed") $ $) NIL (|has| (-707) (-356))) (((-779) $) NIL (|has| (-707) (-356)))) (-3011 (($ $ (-1 (-707) (-707))) NIL) (($ $ (-1 (-707) (-707)) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-779)) NIL (|has| (-707) (-237))) (($ $) NIL (|has| (-707) (-237)))) (-1421 (((-697 (-707)) (-1279 $) (-1 (-707) (-707))) NIL (|has| (-707) (-370)))) (-3858 (((-1184 (-707))) NIL)) (-2139 (($ $) NIL (|has| (-707) (-1214)))) (-3822 (($ $) NIL (|has| (-707) (-1214)))) (-2817 (($) NIL (|has| (-707) (-356)))) (-3927 (($ $) NIL (|has| (-707) (-1214)))) (-3800 (($ $) NIL (|has| (-707) (-1214)))) (-3905 (($ $) NIL (|has| (-707) (-1214)))) (-3780 (($ $) NIL (|has| (-707) (-1214)))) (-2862 (((-697 (-707)) (-1279 $)) NIL) (((-1279 (-707)) $) NIL) (((-697 (-707)) (-1279 $) (-1279 $)) NIL) (((-1279 (-707)) $ (-1279 $)) NIL)) (-3222 (((-544) $) NIL (|has| (-707) (-622 (-544)))) (((-171 (-227)) $) NIL (|has| (-707) (-1033))) (((-171 (-386)) $) NIL (|has| (-707) (-1033))) (((-901 (-386)) $) NIL (|has| (-707) (-622 (-901 (-386))))) (((-901 (-572)) $) NIL (|has| (-707) (-622 (-901 (-572))))) (($ (-1184 (-707))) NIL) (((-1184 (-707)) $) NIL) (($ (-1279 (-707))) NIL) (((-1279 (-707)) $) NIL)) (-4242 (($ $) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-3783 (-12 (|has| (-707) (-313)) (|has| $ (-146)) (|has| (-707) (-918))) (|has| (-707) (-356))))) (-4100 (($ (-707) (-707)) 12)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-572)) NIL) (($ (-707)) NIL) (($ (-171 (-386))) 13) (($ (-171 (-572))) 19) (($ (-171 (-707))) 28) (($ (-171 (-709))) 25) (((-171 (-386)) $) 33) (($ (-415 (-572))) NIL (-3783 (|has| (-707) (-1049 (-415 (-572)))) (|has| (-707) (-370))))) (-2210 (($ $) NIL (|has| (-707) (-356))) (((-3 $ "failed") $) NIL (-3783 (-12 (|has| (-707) (-313)) (|has| $ (-146)) (|has| (-707) (-918))) (|has| (-707) (-146))))) (-3245 (((-1184 (-707)) $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL)) (-2176 (($ $) NIL (|has| (-707) (-1214)))) (-3852 (($ $) NIL (|has| (-707) (-1214)))) (-2466 (((-112) $ $) NIL)) (-2152 (($ $) NIL (|has| (-707) (-1214)))) (-3833 (($ $) NIL (|has| (-707) (-1214)))) (-2204 (($ $) NIL (|has| (-707) (-1214)))) (-3871 (($ $) NIL (|has| (-707) (-1214)))) (-4219 (((-707) $) NIL (|has| (-707) (-1214)))) (-3120 (($ $) NIL (|has| (-707) (-1214)))) (-3883 (($ $) NIL (|has| (-707) (-1214)))) (-2193 (($ $) NIL (|has| (-707) (-1214)))) (-3861 (($ $) NIL (|has| (-707) (-1214)))) (-2162 (($ $) NIL (|has| (-707) (-1214)))) (-3842 (($ $) NIL (|has| (-707) (-1214)))) (-2775 (($ $) NIL (|has| (-707) (-1071)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-1 (-707) (-707))) NIL) (($ $ (-1 (-707) (-707)) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-1188)) NIL (|has| (-707) (-909 (-1188)))) (($ $ (-779)) NIL (|has| (-707) (-237))) (($ $) NIL (|has| (-707) (-237)))) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL (|has| (-707) (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ $) NIL (|has| (-707) (-1214))) (($ $ (-415 (-572))) NIL (-12 (|has| (-707) (-1013)) (|has| (-707) (-1214)))) (($ $ (-572)) NIL (|has| (-707) (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ (-707) $) NIL) (($ $ (-707)) NIL) (($ (-415 (-572)) $) NIL (|has| (-707) (-370))) (($ $ (-415 (-572))) NIL (|has| (-707) (-370)))))
+(((-702) (-13 (-395) (-167 (-707)) (-10 -8 (-15 -3491 ($ (-171 (-386)))) (-15 -3491 ($ (-171 (-572)))) (-15 -3491 ($ (-171 (-707)))) (-15 -3491 ($ (-171 (-709)))) (-15 -3491 ((-171 (-386)) $))))) (T -702))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-171 (-572))) (-5 *1 (-702)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-702)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-702)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702)))))
+(-13 (-395) (-167 (-707)) (-10 -8 (-15 -3491 ($ (-171 (-386)))) (-15 -3491 ($ (-171 (-572)))) (-15 -3491 ($ (-171 (-707)))) (-15 -3491 ($ (-171 (-709)))) (-15 -3491 ((-171 (-386)) $))))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-2265 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-1727 (($ $) 63)) (-3955 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41) (($ |#1| $ (-779)) 64)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2526 (((-652 (-2 (|:| -3762 |#1|) (|:| -1371 (-779)))) $) 62)) (-2145 (($) 50) (($ (-652 |#1|)) 49)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 51)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-703 |#1|) (-141) (-1111)) (T -703))
+((-3704 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-703 *2)) (-4 *2 (-1111)))) (-1727 (*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1111)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-703 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-2 (|:| -3762 *3) (|:| -1371 (-779))))))))
+(-13 (-239 |t#1|) (-10 -8 (-15 -3704 ($ |t#1| $ (-779))) (-15 -1727 ($ $)) (-15 -2526 ((-652 (-2 (|:| -3762 |t#1|) (|:| -1371 (-779)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-2773 (((-652 |#1|) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))) (-572)) 65)) (-2738 ((|#1| |#1| (-572)) 62)) (-1370 ((|#1| |#1| |#1| (-572)) 46)) (-2972 (((-652 |#1|) |#1| (-572)) 49)) (-3933 ((|#1| |#1| (-572) |#1| (-572)) 40)) (-1475 (((-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))) |#1| (-572)) 61)))
+(((-704 |#1|) (-10 -7 (-15 -1370 (|#1| |#1| |#1| (-572))) (-15 -2738 (|#1| |#1| (-572))) (-15 -2972 ((-652 |#1|) |#1| (-572))) (-15 -1475 ((-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))) |#1| (-572))) (-15 -2773 ((-652 |#1|) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))) (-572))) (-15 -3933 (|#1| |#1| (-572) |#1| (-572)))) (-1255 (-572))) (T -704))
+((-3933 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| -2972 *5) (|:| -1497 (-572))))) (-5 *4 (-572)) (-4 *5 (-1255 *4)) (-5 *2 (-652 *5)) (-5 *1 (-704 *5)))) (-1475 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-5 *2 (-652 (-2 (|:| -2972 *3) (|:| -1497 *4)))) (-5 *1 (-704 *3)) (-4 *3 (-1255 *4)))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-5 *2 (-652 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1255 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))) (-1370 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))))
+(-10 -7 (-15 -1370 (|#1| |#1| |#1| (-572))) (-15 -2738 (|#1| |#1| (-572))) (-15 -2972 ((-652 |#1|) |#1| (-572))) (-15 -1475 ((-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))) |#1| (-572))) (-15 -2773 ((-652 |#1|) (-652 (-2 (|:| -2972 |#1|) (|:| -1497 (-572)))) (-572))) (-15 -3933 (|#1| |#1| (-572) |#1| (-572))))
+((-2432 (((-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2311 (((-1144 (-227)) (-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 53) (((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 55) (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 57)) (-4244 (((-1144 (-227)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-652 (-268))) NIL)) (-2171 (((-1144 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268))) 58)))
+(((-705) (-10 -7 (-15 -2311 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2311 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2311 ((-1144 (-227)) (-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2171 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -4244 ((-1144 (-227)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2432 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -705))
+((-2432 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-952 (-227)) (-227) (-227))) (-5 *1 (-705)))) (-4244 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))) (-2171 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))) (-2311 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-227))) (-5 *5 (-652 (-268))) (-5 *1 (-705)))) (-2311 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-227))) (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))) (-2311 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705)))))
+(-10 -7 (-15 -2311 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2311 ((-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2311 ((-1144 (-227)) (-1144 (-227)) (-1 (-952 (-227)) (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2171 ((-1144 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1105 (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -4244 ((-1144 (-227)) (-322 (-572)) (-322 (-572)) (-322 (-572)) (-1 (-227) (-227)) (-1105 (-227)) (-652 (-268)))) (-15 -2432 ((-1 (-952 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-2972 (((-426 (-1184 |#4|)) (-1184 |#4|)) 86) (((-426 |#4|) |#4|) 266)))
+(((-706 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-426 |#4|) |#4|)) (-15 -2972 ((-426 (-1184 |#4|)) (-1184 |#4|)))) (-858) (-801) (-356) (-958 |#3| |#2| |#1|)) (T -706))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356)) (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-706 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
+(-10 -7 (-15 -2972 ((-426 |#4|) |#4|)) (-15 -2972 ((-426 (-1184 |#4|)) (-1184 |#4|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 97)) (-3923 (((-572) $) 34)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-1957 (($ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3093 (($ $) NIL)) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL)) (-1586 (($) NIL T CONST)) (-1984 (($ $) NIL)) (-3072 (((-3 (-572) "failed") $) 85) (((-3 (-415 (-572)) "failed") $) 28) (((-3 (-386) "failed") $) 82)) (-1869 (((-572) $) 87) (((-415 (-572)) $) 79) (((-386) $) 80)) (-3407 (($ $ $) 109)) (-2982 (((-3 $ "failed") $) 100)) (-3418 (($ $ $) 108)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-1722 (((-930)) 89) (((-930) (-930)) 88)) (-3778 (((-112) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL)) (-2068 (((-572) $) NIL)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL)) (-2140 (($ $) NIL)) (-4354 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1663 (((-572) (-572)) 94) (((-572)) 95)) (-2536 (($ $ $) NIL) (($) NIL (-12 (-3795 (|has| $ (-6 -4437))) (-3795 (|has| $ (-6 -4445)))))) (-4383 (((-572) (-572)) 92) (((-572)) 93)) (-3928 (($ $ $) NIL) (($) NIL (-12 (-3795 (|has| $ (-6 -4437))) (-3795 (|has| $ (-6 -4445)))))) (-4269 (((-572) $) 17)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 104)) (-3987 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL)) (-1609 (($ $) NIL)) (-2150 (($ (-572) (-572)) NIL) (($ (-572) (-572) (-930)) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) 105)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2477 (((-572) $) 24)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 107)) (-3005 (((-930)) NIL) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-1491 (((-930) (-572)) NIL (|has| $ (-6 -4445)))) (-3222 (((-386) $) NIL) (((-227) $) NIL) (((-901 (-386)) $) NIL)) (-3491 (((-870) $) 63) (($ (-572)) 75) (($ $) NIL) (($ (-415 (-572))) 78) (($ (-572)) 75) (($ (-415 (-572))) 78) (($ (-386)) 72) (((-386) $) 61) (($ (-709)) 66)) (-2455 (((-779)) 119 T CONST)) (-2277 (($ (-572) (-572) (-930)) 54)) (-3441 (($ $) NIL)) (-3444 (((-930)) NIL) (((-930) (-930)) NIL (|has| $ (-6 -4445)))) (-3424 (((-112) $ $) NIL)) (-1556 (((-930)) 91) (((-930) (-930)) 90)) (-2466 (((-112) $ $) NIL)) (-2775 (($ $) NIL)) (-2602 (($) 37 T CONST)) (-2619 (($) 18 T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 96)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 118)) (-4029 (($ $ $) 77)) (-4018 (($ $) 115) (($ $ $) 116)) (-4005 (($ $ $) 114)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ $ (-415 (-572))) 103)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 110) (($ $ $) 101) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-707) (-13 (-412) (-395) (-370) (-1049 (-386)) (-1049 (-415 (-572))) (-148) (-10 -8 (-15 -1722 ((-930) (-930))) (-15 -1722 ((-930))) (-15 -1556 ((-930) (-930))) (-15 -4383 ((-572) (-572))) (-15 -4383 ((-572))) (-15 -1663 ((-572) (-572))) (-15 -1663 ((-572))) (-15 -3491 ((-386) $)) (-15 -3491 ($ (-709))) (-15 -4269 ((-572) $)) (-15 -2477 ((-572) $)) (-15 -2277 ($ (-572) (-572) (-930)))))) (T -707))
+((-2477 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-1722 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))) (-1556 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))) (-4383 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-4383 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-1663 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-1663 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-386)) (-5 *1 (-707)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-709)) (-5 *1 (-707)))) (-2277 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-5 *1 (-707)))))
+(-13 (-412) (-395) (-370) (-1049 (-386)) (-1049 (-415 (-572))) (-148) (-10 -8 (-15 -1722 ((-930) (-930))) (-15 -1722 ((-930))) (-15 -1556 ((-930) (-930))) (-15 -4383 ((-572) (-572))) (-15 -4383 ((-572))) (-15 -1663 ((-572) (-572))) (-15 -1663 ((-572))) (-15 -3491 ((-386) $)) (-15 -3491 ($ (-709))) (-15 -4269 ((-572) $)) (-15 -2477 ((-572) $)) (-15 -2277 ($ (-572) (-572) (-930)))))
+((-1950 (((-697 |#1|) (-697 |#1|) |#1| |#1|) 85)) (-1728 (((-697 |#1|) (-697 |#1|) |#1|) 66)) (-4363 (((-697 |#1|) (-697 |#1|) |#1|) 86)) (-3021 (((-697 |#1|) (-697 |#1|)) 67)) (-2663 (((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|) 84)))
+(((-708 |#1|) (-10 -7 (-15 -3021 ((-697 |#1|) (-697 |#1|))) (-15 -1728 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -4363 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -1950 ((-697 |#1|) (-697 |#1|) |#1| |#1|)) (-15 -2663 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|))) (-313)) (T -708))
+((-2663 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-708 *3)) (-4 *3 (-313)))) (-1950 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))) (-4363 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))) (-1728 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
+(-10 -7 (-15 -3021 ((-697 |#1|) (-697 |#1|))) (-15 -1728 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -4363 ((-697 |#1|) (-697 |#1|) |#1|)) (-15 -1950 ((-697 |#1|) (-697 |#1|) |#1| |#1|)) (-15 -2663 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2746 (($ $ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1742 (($ $ $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL)) (-4235 (($ $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) 31)) (-1869 (((-572) $) 29)) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL)) (-2054 (((-112) $) NIL)) (-2745 (((-415 (-572)) $) NIL)) (-2688 (($ $) NIL) (($) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3677 (($ $ $ $) NIL)) (-4023 (($ $ $) NIL)) (-3778 (((-112) $) NIL)) (-2362 (($ $ $) NIL)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-4422 (((-112) $) NIL)) (-2270 (((-112) $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-4354 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2945 (($ $ $ $) NIL)) (-2536 (($ $ $) NIL)) (-4223 (((-930) (-930)) 10) (((-930)) 9)) (-3928 (($ $ $) NIL)) (-4135 (($ $) NIL)) (-2040 (($ $) NIL)) (-1335 (($ (-652 $)) NIL) (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2197 (($ $ $) NIL)) (-3477 (($) NIL T CONST)) (-3651 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ (-652 $)) NIL) (($ $ $) NIL)) (-4002 (($ $) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3601 (((-112) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL) (($ $ (-779)) NIL)) (-3935 (($ $) NIL)) (-3679 (($ $) NIL)) (-3222 (((-227) $) NIL) (((-386) $) NIL) (((-901 (-572)) $) NIL) (((-544) $) NIL) (((-572) $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) 28) (($ $) NIL) (($ (-572)) 28) (((-322 $) (-322 (-572))) 18)) (-2455 (((-779)) NIL T CONST)) (-4170 (((-112) $ $) NIL)) (-3337 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-1556 (($) NIL)) (-2466 (((-112) $ $) NIL)) (-1732 (($ $ $ $) NIL)) (-2775 (($ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $) NIL) (($ $ (-779)) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL)))
+(((-709) (-13 (-395) (-553) (-10 -8 (-15 -4223 ((-930) (-930))) (-15 -4223 ((-930))) (-15 -3491 ((-322 $) (-322 (-572))))))) (T -709))
+((-4223 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709)))) (-4223 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-322 (-572))) (-5 *2 (-322 (-709))) (-5 *1 (-709)))))
+(-13 (-395) (-553) (-10 -8 (-15 -4223 ((-930) (-930))) (-15 -4223 ((-930))) (-15 -3491 ((-322 $) (-322 (-572))))))
+((-2063 (((-1 |#4| |#2| |#3|) |#1| (-1188) (-1188)) 19)) (-4297 (((-1 |#4| |#2| |#3|) (-1188)) 12)))
+(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4297 ((-1 |#4| |#2| |#3|) (-1188))) (-15 -2063 ((-1 |#4| |#2| |#3|) |#1| (-1188) (-1188)))) (-622 (-544)) (-1229) (-1229) (-1229)) (T -710))
+((-2063 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *3 *5 *6 *7)) (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)) (-4 *7 (-1229)))) (-4297 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *4 *5 *6 *7)) (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)) (-4 *7 (-1229)))))
+(-10 -7 (-15 -4297 ((-1 |#4| |#2| |#3|) (-1188))) (-15 -2063 ((-1 |#4| |#2| |#3|) |#1| (-1188) (-1188))))
+((-3837 (((-1 (-227) (-227) (-227)) |#1| (-1188) (-1188)) 43) (((-1 (-227) (-227)) |#1| (-1188)) 48)))
+(((-711 |#1|) (-10 -7 (-15 -3837 ((-1 (-227) (-227)) |#1| (-1188))) (-15 -3837 ((-1 (-227) (-227) (-227)) |#1| (-1188) (-1188)))) (-622 (-544))) (T -711))
+((-3837 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-711 *3)) (-4 *3 (-622 (-544))))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-711 *3)) (-4 *3 (-622 (-544))))))
+(-10 -7 (-15 -3837 ((-1 (-227) (-227)) |#1| (-1188))) (-15 -3837 ((-1 (-227) (-227) (-227)) |#1| (-1188) (-1188))))
+((-4358 (((-1188) |#1| (-1188) (-652 (-1188))) 10) (((-1188) |#1| (-1188) (-1188) (-1188)) 13) (((-1188) |#1| (-1188) (-1188)) 12) (((-1188) |#1| (-1188)) 11)))
+(((-712 |#1|) (-10 -7 (-15 -4358 ((-1188) |#1| (-1188))) (-15 -4358 ((-1188) |#1| (-1188) (-1188))) (-15 -4358 ((-1188) |#1| (-1188) (-1188) (-1188))) (-15 -4358 ((-1188) |#1| (-1188) (-652 (-1188))))) (-622 (-544))) (T -712))
+((-4358 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))) (-4358 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))) (-4358 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))) (-4358 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544))))))
+(-10 -7 (-15 -4358 ((-1188) |#1| (-1188))) (-15 -4358 ((-1188) |#1| (-1188) (-1188))) (-15 -4358 ((-1188) |#1| (-1188) (-1188) (-1188))) (-15 -4358 ((-1188) |#1| (-1188) (-652 (-1188)))))
+((-1493 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-713 |#1| |#2|) (-10 -7 (-15 -1493 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1229) (-1229)) (T -713))
+((-1493 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-713 *3 *4)) (-4 *3 (-1229)) (-4 *4 (-1229)))))
+(-10 -7 (-15 -1493 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2879 (((-1 |#3| |#2|) (-1188)) 11)) (-2063 (((-1 |#3| |#2|) |#1| (-1188)) 21)))
+(((-714 |#1| |#2| |#3|) (-10 -7 (-15 -2879 ((-1 |#3| |#2|) (-1188))) (-15 -2063 ((-1 |#3| |#2|) |#1| (-1188)))) (-622 (-544)) (-1229) (-1229)) (T -714))
+((-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *3 *5 *6)) (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *4 *5 *6)) (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))))
+(-10 -7 (-15 -2879 ((-1 |#3| |#2|) (-1188))) (-15 -2063 ((-1 |#3| |#2|) |#1| (-1188))))
+((-2762 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#4|)) (-652 |#3|) (-652 |#4|) (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| |#4|)))) (-652 (-779)) (-1279 (-652 (-1184 |#3|))) |#3|) 92)) (-3985 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#3|)) (-652 |#3|) (-652 |#4|) (-652 (-779)) |#3|) 110)) (-3197 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 |#3|) (-652 (-779)) (-652 (-1184 |#4|)) (-1279 (-652 (-1184 |#3|))) |#3|) 47)))
+(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3197 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 |#3|) (-652 (-779)) (-652 (-1184 |#4|)) (-1279 (-652 (-1184 |#3|))) |#3|)) (-15 -3985 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#3|)) (-652 |#3|) (-652 |#4|) (-652 (-779)) |#3|)) (-15 -2762 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#4|)) (-652 |#3|) (-652 |#4|) (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| |#4|)))) (-652 (-779)) (-1279 (-652 (-1184 |#3|))) |#3|))) (-801) (-858) (-313) (-958 |#3| |#1| |#2|)) (T -715))
+((-2762 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-652 (-1184 *13))) (-5 *3 (-1184 *13)) (-5 *4 (-652 *12)) (-5 *5 (-652 *10)) (-5 *6 (-652 *13)) (-5 *7 (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| *13))))) (-5 *8 (-652 (-779))) (-5 *9 (-1279 (-652 (-1184 *10)))) (-4 *12 (-858)) (-4 *10 (-313)) (-4 *13 (-958 *10 *11 *12)) (-4 *11 (-801)) (-5 *1 (-715 *11 *12 *10 *13)))) (-3985 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-652 *11)) (-5 *5 (-652 (-1184 *9))) (-5 *6 (-652 *9)) (-5 *7 (-652 *12)) (-5 *8 (-652 (-779))) (-4 *11 (-858)) (-4 *9 (-313)) (-4 *12 (-958 *9 *10 *11)) (-4 *10 (-801)) (-5 *2 (-652 (-1184 *12))) (-5 *1 (-715 *10 *11 *9 *12)) (-5 *3 (-1184 *12)))) (-3197 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-652 (-1184 *11))) (-5 *3 (-1184 *11)) (-5 *4 (-652 *10)) (-5 *5 (-652 *8)) (-5 *6 (-652 (-779))) (-5 *7 (-1279 (-652 (-1184 *8)))) (-4 *10 (-858)) (-4 *8 (-313)) (-4 *11 (-958 *8 *9 *10)) (-4 *9 (-801)) (-5 *1 (-715 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3197 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 |#3|) (-652 (-779)) (-652 (-1184 |#4|)) (-1279 (-652 (-1184 |#3|))) |#3|)) (-15 -3985 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#3|)) (-652 |#3|) (-652 |#4|) (-652 (-779)) |#3|)) (-15 -2762 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-652 |#2|) (-652 (-1184 |#4|)) (-652 |#3|) (-652 |#4|) (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| |#4|)))) (-652 (-779)) (-1279 (-652 (-1184 |#3|))) |#3|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-1874 (($ $) 48)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3042 (($ |#1| (-779)) 46)) (-3808 (((-779) $) 50)) (-1853 ((|#1| $) 49)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1497 (((-779) $) 51)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-4206 ((|#1| $ (-779)) 47)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+(((-716 |#1|) (-141) (-1060)) (T -716))
+((-1497 (*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060)))) (-3042 (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060)))))
+(-13 (-1060) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1497 ((-779) $)) (-15 -3808 ((-779) $)) (-15 -1853 (|t#1| $)) (-15 -1874 ($ $)) (-15 -4206 (|t#1| $ (-779))) (-15 -3042 ($ |t#1| (-779)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3161 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-717 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3161 (|#6| (-1 |#4| |#1|) |#3|))) (-564) (-1255 |#1|) (-1255 (-415 |#2|)) (-564) (-1255 |#4|) (-1255 (-415 |#5|))) (T -717))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-564)) (-4 *7 (-564)) (-4 *6 (-1255 *5)) (-4 *2 (-1255 (-415 *8))) (-5 *1 (-717 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1255 (-415 *6))) (-4 *8 (-1255 *7)))))
+(-10 -7 (-15 -3161 (|#6| (-1 |#4| |#1|) |#3|)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2819 (((-1170) (-870)) 38)) (-3105 (((-1284) (-1170)) 31)) (-3739 (((-1170) (-870)) 28)) (-3008 (((-1170) (-870)) 29)) (-3491 (((-870) $) NIL) (((-1170) (-870)) 27)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-718) (-13 (-1111) (-10 -7 (-15 -3491 ((-1170) (-870))) (-15 -3739 ((-1170) (-870))) (-15 -3008 ((-1170) (-870))) (-15 -2819 ((-1170) (-870))) (-15 -3105 ((-1284) (-1170)))))) (T -718))
+((-3491 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-718)))))
+(-13 (-1111) (-10 -7 (-15 -3491 ((-1170) (-870))) (-15 -3739 ((-1170) (-870))) (-15 -3008 ((-1170) (-870))) (-15 -2819 ((-1170) (-870))) (-15 -3105 ((-1284) (-1170)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) NIL)) (-2925 (($ |#1| |#2|) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2425 ((|#2| $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2347 (((-3 $ "failed") $ $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) ((|#1| $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-719 |#1| |#2| |#3| |#4| |#5|) (-13 (-370) (-10 -8 (-15 -2425 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -2925 ($ |#1| |#2|)) (-15 -2347 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -719))
+((-2425 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-719 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3491 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2347 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-370) (-10 -8 (-15 -2425 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -2925 ($ |#1| |#2|)) (-15 -2347 ((-3 $ "failed") $ $))))
+((-3464 (((-112) $ $) 87)) (-3143 (((-112) $) 36)) (-4183 (((-1279 |#1|) $ (-779)) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-3524 (($ (-1184 |#1|)) NIL)) (-4063 (((-1184 $) $ (-1093)) NIL) (((-1184 |#1|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) NIL (|has| |#1| (-564)))) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3037 (((-779)) 54 (|has| |#1| (-375)))) (-4173 (($ $ (-779)) NIL)) (-2549 (($ $ (-779)) NIL)) (-3388 ((|#2| |#2|) 50)) (-3694 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-460)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1093) $) NIL)) (-3829 (($ $ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) 40)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2925 (($ |#2|) 48)) (-2982 (((-3 $ "failed") $) 97)) (-2688 (($) 58 (|has| |#1| (-375)))) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-2332 (($ $ $) NIL)) (-2397 (($ $ $) NIL (|has| |#1| (-564)))) (-3369 (((-2 (|:| -2379 |#1|) (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-1948 (((-967 $)) 89)) (-3163 (($ $ |#1| (-779) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2068 (((-779) $ $) NIL (|has| |#1| (-564)))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-3060 (($ (-1184 |#1|) (-1093)) NIL) (($ (-1184 $) (-1093)) NIL)) (-2865 (($ $ (-779)) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) 85) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-1093)) NIL) (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-2425 ((|#2|) 51)) (-3808 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2008 (($ (-1 (-779) (-779)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3092 (((-1184 |#1|) $) NIL)) (-4107 (((-3 (-1093) "failed") $) NIL)) (-4370 (((-930) $) NIL (|has| |#1| (-375)))) (-2913 ((|#2| $) 47)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) 34)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-2371 (((-2 (|:| -1882 $) (|:| -2336 $)) $ (-779)) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-1093)) (|:| -2477 (-779))) "failed") $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3477 (($) NIL (|has| |#1| (-1163)) CONST)) (-1795 (($ (-930)) NIL (|has| |#1| (-375)))) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3692 (($ $) 88 (|has| |#1| (-356)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#1|) NIL) (($ $ (-652 (-1093)) (-652 |#1|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) NIL (|has| |#1| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#1| (-564)))) (-4271 (((-3 $ "failed") $ (-779)) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 98 (|has| |#1| (-370)))) (-2020 (($ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3011 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1497 (((-779) $) 38) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3792 (((-967 $)) 42)) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#1| (-564)))) (-3491 (((-870) $) 68) (($ (-572)) NIL) (($ |#1|) 65) (($ (-1093)) NIL) (($ |#2|) 75) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) 70) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) 25 T CONST)) (-2606 (((-1279 |#1|) $) 83)) (-1592 (($ (-1279 |#1|)) 57)) (-2619 (($) 8 T CONST)) (-4019 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1406 (((-1279 |#1|) $) NIL)) (-3921 (((-112) $ $) 76)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) 79) (($ $ $) NIL)) (-4005 (($ $ $) 39)) (** (($ $ (-930)) NIL) (($ $ (-779)) 92)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 64) (($ $ $) 82) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
+(((-720 |#1| |#2|) (-13 (-1255 |#1|) (-624 |#2|) (-10 -8 (-15 -3388 (|#2| |#2|)) (-15 -2425 (|#2|)) (-15 -2925 ($ |#2|)) (-15 -2913 (|#2| $)) (-15 -2606 ((-1279 |#1|) $)) (-15 -1592 ($ (-1279 |#1|))) (-15 -1406 ((-1279 |#1|) $)) (-15 -1948 ((-967 $))) (-15 -3792 ((-967 $))) (IF (|has| |#1| (-356)) (-15 -3692 ($ $)) |%noBranch|) (IF (|has| |#1| (-375)) (-6 (-375)) |%noBranch|))) (-1060) (-1255 |#1|)) (T -720))
+((-3388 (*1 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3)))) (-2425 (*1 *2) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060)))) (-2925 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3)))) (-2913 (*1 *2 *1) (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060)))) (-2606 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-1406 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-1948 (*1 *2) (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-3792 (*1 *2) (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4)) (-4 *4 (-1255 *3)))) (-3692 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *2 (-1060)) (-5 *1 (-720 *2 *3)) (-4 *3 (-1255 *2)))))
+(-13 (-1255 |#1|) (-624 |#2|) (-10 -8 (-15 -3388 (|#2| |#2|)) (-15 -2425 (|#2|)) (-15 -2925 ($ |#2|)) (-15 -2913 (|#2| $)) (-15 -2606 ((-1279 |#1|) $)) (-15 -1592 ($ (-1279 |#1|))) (-15 -1406 ((-1279 |#1|) $)) (-15 -1948 ((-967 $))) (-15 -3792 ((-967 $))) (IF (|has| |#1| (-356)) (-15 -3692 ($ $)) |%noBranch|) (IF (|has| |#1| (-375)) (-6 (-375)) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 ((|#1| $) 13)) (-2614 (((-1131) $) NIL)) (-2477 ((|#2| $) 12)) (-3503 (($ |#1| |#2|) 16)) (-3491 (((-870) $) NIL) (($ (-2 (|:| -1795 |#1|) (|:| -2477 |#2|))) 15) (((-2 (|:| -1795 |#1|) (|:| -2477 |#2|)) $) 14)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 11)))
+(((-721 |#1| |#2| |#3|) (-13 (-858) (-498 (-2 (|:| -1795 |#1|) (|:| -2477 |#2|))) (-10 -8 (-15 -2477 (|#2| $)) (-15 -1795 (|#1| $)) (-15 -3503 ($ |#1| |#2|)))) (-858) (-1111) (-1 (-112) (-2 (|:| -1795 |#1|) (|:| -2477 |#2|)) (-2 (|:| -1795 |#1|) (|:| -2477 |#2|)))) (T -721))
+((-2477 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-721 *3 *2 *4)) (-4 *3 (-858)) (-14 *4 (-1 (-112) (-2 (|:| -1795 *3) (|:| -2477 *2)) (-2 (|:| -1795 *3) (|:| -2477 *2)))))) (-1795 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-721 *2 *3 *4)) (-4 *3 (-1111)) (-14 *4 (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *3)) (-2 (|:| -1795 *2) (|:| -2477 *3)))))) (-3503 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4)) (-4 *2 (-858)) (-4 *3 (-1111)) (-14 *4 (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *3)) (-2 (|:| -1795 *2) (|:| -2477 *3)))))))
+(-13 (-858) (-498 (-2 (|:| -1795 |#1|) (|:| -2477 |#2|))) (-10 -8 (-15 -2477 (|#2| $)) (-15 -1795 (|#1| $)) (-15 -3503 ($ |#1| |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 66)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-1869 ((|#1| $) NIL) (((-115) $) 39)) (-2982 (((-3 $ "failed") $) 103)) (-2823 ((|#2| (-115) |#2|) 93)) (-4422 (((-112) $) NIL)) (-2852 (($ |#1| (-368 (-115))) 14)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1860 (($ $ (-1 |#2| |#2|)) 65)) (-4399 (($ $ (-1 |#2| |#2|)) 44)) (-2679 ((|#2| $ |#2|) 33)) (-3991 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3491 (((-870) $) 73) (($ (-572)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) 37 T CONST)) (-3424 (((-112) $ $) NIL)) (-4126 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2602 (($) 21 T CONST)) (-2619 (($) 9 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) 48) (($ $ $) NIL)) (-4005 (($ $ $) 83)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ (-115) (-572)) NIL) (($ $ (-572)) 64)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
+(((-722 |#1| |#2|) (-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4126 ($ $)) (-15 -4126 ($ $ $)) (-15 -3991 (|#1| |#1|))) |%noBranch|) (-15 -4399 ($ $ (-1 |#2| |#2|))) (-15 -1860 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2823 (|#2| (-115) |#2|)) (-15 -2852 ($ |#1| (-368 (-115)))))) (-1060) (-656 |#1|)) (T -722))
+((-4126 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3)) (-4 *3 (-656 *2)))) (-4126 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3)) (-4 *3 (-656 *2)))) (-3991 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3)) (-4 *3 (-656 *2)))) (-4399 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4)))) (-1860 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-722 *4 *5)) (-4 *5 (-656 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4)) (-4 *4 (-656 *3)))) (-2823 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1060)) (-5 *1 (-722 *4 *2)) (-4 *2 (-656 *4)))) (-2852 (*1 *1 *2 *3) (-12 (-5 *3 (-368 (-115))) (-4 *2 (-1060)) (-5 *1 (-722 *2 *4)) (-4 *4 (-656 *2)))))
+(-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4126 ($ $)) (-15 -4126 ($ $ $)) (-15 -3991 (|#1| |#1|))) |%noBranch|) (-15 -4399 ($ $ (-1 |#2| |#2|))) (-15 -1860 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2823 (|#2| (-115) |#2|)) (-15 -2852 ($ |#1| (-368 (-115))))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 33)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2925 (($ |#1| |#2|) 25)) (-2982 (((-3 $ "failed") $) 51)) (-4422 (((-112) $) 35)) (-2425 ((|#2| $) 12)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 52)) (-2614 (((-1131) $) NIL)) (-2347 (((-3 $ "failed") $ $) 50)) (-3491 (((-870) $) 24) (($ (-572)) 19) ((|#1| $) 13)) (-2455 (((-779)) 28 T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 16 T CONST)) (-2619 (($) 30 T CONST)) (-3921 (((-112) $ $) 41)) (-4018 (($ $) 46) (($ $ $) 40)) (-4005 (($ $ $) 43)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 21) (($ $ $) 20)))
+(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-1060) (-10 -8 (-15 -2425 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -2925 ($ |#1| |#2|)) (-15 -2347 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -1809 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723))
+((-2982 (*1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2425 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3491 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2347 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1809 (*1 *1 *1) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1060) (-10 -8 (-15 -2425 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -2925 ($ |#1| |#2|)) (-15 -2347 ((-3 $ "failed") $ $)) (-15 -2982 ((-3 $ "failed") $)) (-15 -1809 ($ $))))
+((* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-724 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-725 |#2|) (-174)) (T -724))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-725 |#1|) (-141) (-174)) (T -725))
+NIL
+(-13 (-111 |t#1| |t#1|) (-648 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-4235 (($ |#1|) 17) (($ $ |#1|) 20)) (-3417 (($ |#1|) 18) (($ $ |#1|) 21)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4422 (((-112) $) NIL)) (-4250 (($ |#1| |#1| |#1| |#1|) 8)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 16)) (-2614 (((-1131) $) NIL)) (-3654 ((|#1| $ |#1|) 24) (((-841 |#1|) $ (-841 |#1|)) 32)) (-4242 (($ $ $) NIL)) (-1433 (($ $ $) NIL)) (-3491 (((-870) $) 39)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 9 T CONST)) (-3921 (((-112) $ $) 48)) (-4029 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ $ $) 14)))
+(((-726 |#1|) (-13 (-481) (-10 -8 (-15 -4250 ($ |#1| |#1| |#1| |#1|)) (-15 -4235 ($ |#1|)) (-15 -3417 ($ |#1|)) (-15 -2982 ($)) (-15 -4235 ($ $ |#1|)) (-15 -3417 ($ $ |#1|)) (-15 -2982 ($ $)) (-15 -3654 (|#1| $ |#1|)) (-15 -3654 ((-841 |#1|) $ (-841 |#1|))))) (-370)) (T -726))
+((-4250 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-4235 (*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3417 (*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-2982 (*1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-4235 (*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3417 (*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-2982 (*1 *1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3654 (*1 *2 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))) (-3654 (*1 *2 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-370)) (-5 *1 (-726 *3)))))
+(-13 (-481) (-10 -8 (-15 -4250 ($ |#1| |#1| |#1| |#1|)) (-15 -4235 ($ |#1|)) (-15 -3417 ($ |#1|)) (-15 -2982 ($)) (-15 -4235 ($ $ |#1|)) (-15 -3417 ($ $ |#1|)) (-15 -2982 ($ $)) (-15 -3654 (|#1| $ |#1|)) (-15 -3654 ((-841 |#1|) $ (-841 |#1|)))))
+((-4203 (($ $ (-930)) 19)) (-3962 (($ $ (-930)) 20)) (** (($ $ (-930)) 10)))
+(((-727 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-930))) (-15 -3962 (|#1| |#1| (-930))) (-15 -4203 (|#1| |#1| (-930)))) (-728)) (T -727))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-930))) (-15 -3962 (|#1| |#1| (-930))) (-15 -4203 (|#1| |#1| (-930))))
+((-3464 (((-112) $ $) 7)) (-4203 (($ $ (-930)) 16)) (-3962 (($ $ (-930)) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)) (** (($ $ (-930)) 14)) (* (($ $ $) 17)))
(((-728) (-141)) (T -728))
-((-1998 (*1 *1) (-4 *1 (-728))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112)))) (-1794 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))) (-3454 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))) (-3957 (*1 *1 *1) (|partial| -4 *1 (-728))) (-1760 (*1 *1 *1) (|partial| -4 *1 (-728))) (-2075 (*1 *1 *1) (|partial| -4 *1 (-728))))
-(-13 (-726) (-10 -8 (-15 (-1998) ($) -3722) (-15 -2005 ((-112) $)) (-15 -1794 ($ $ (-777))) (-15 -3454 ($ $ (-777))) (-15 ** ($ $ (-777))) (-15 -3957 ((-3 $ "failed") $)) (-15 -1760 ((-3 $ "failed") $)) (-15 -2075 ((-3 $ "failed") $))))
-(((-102) . T) ((-619 (-868)) . T) ((-726) . T) ((-1109) . T))
-((-2401 (((-777)) 39)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4387 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 23)) (-2295 (($ |#3|) NIL) (((-3 $ "failed") (-413 |#3|)) 49)) (-3957 (((-3 $ "failed") $) 69)) (-2066 (($) 43)) (-3046 ((|#2| $) 21)) (-3643 (($) 18)) (-2375 (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-2318 (((-695 |#2|) (-1277 $) (-1 |#2| |#2|)) 64)) (-2601 (((-1277 |#2|) $) NIL) (($ (-1277 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1816 ((|#3| $) 36)) (-2681 (((-1277 $)) 33)))
-(((-729 |#1| |#2| |#3|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2066 (|#1|)) (-15 -2401 ((-777))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2318 ((-695 |#2|) (-1277 |#1|) (-1 |#2| |#2|))) (-15 -2295 ((-3 |#1| "failed") (-413 |#3|))) (-15 -2601 (|#1| |#3|)) (-15 -2295 (|#1| |#3|)) (-15 -3643 (|#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2601 (|#3| |#1|)) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2681 ((-1277 |#1|))) (-15 -1816 (|#3| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|))) (-730 |#2| |#3|) (-174) (-1253 |#2|)) (T -729))
-((-2401 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-777)) (-5 *1 (-729 *3 *4 *5)) (-4 *3 (-730 *4 *5)))))
-(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2066 (|#1|)) (-15 -2401 ((-777))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2318 ((-695 |#2|) (-1277 |#1|) (-1 |#2| |#2|))) (-15 -2295 ((-3 |#1| "failed") (-413 |#3|))) (-15 -2601 (|#1| |#3|)) (-15 -2295 (|#1| |#3|)) (-15 -3643 (|#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2601 (|#3| |#1|)) (-15 -2601 (|#1| (-1277 |#2|))) (-15 -2601 ((-1277 |#2|) |#1|)) (-15 -2681 ((-1277 |#1|))) (-15 -1816 (|#3| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -3957 ((-3 |#1| "failed") |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 102 (|has| |#1| (-368)))) (-2046 (($ $) 103 (|has| |#1| (-368)))) (-3426 (((-112) $) 105 (|has| |#1| (-368)))) (-3524 (((-695 |#1|) (-1277 $)) 53) (((-695 |#1|)) 68)) (-1439 ((|#1| $) 59)) (-2000 (((-1199 (-928) (-777)) (-570)) 155 (|has| |#1| (-354)))) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 122 (|has| |#1| (-368)))) (-2929 (((-424 $) $) 123 (|has| |#1| (-368)))) (-1799 (((-112) $ $) 113 (|has| |#1| (-368)))) (-2401 (((-777)) 96 (|has| |#1| (-373)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 178 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 176 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 173)) (-4387 (((-570) $) 177 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 175 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 174)) (-2615 (($ (-1277 |#1|) (-1277 $)) 55) (($ (-1277 |#1|)) 71)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-354)))) (-2788 (($ $ $) 117 (|has| |#1| (-368)))) (-4385 (((-695 |#1|) $ (-1277 $)) 60) (((-695 |#1|) $) 66)) (-3054 (((-695 (-570)) (-695 $)) 172 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 171 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 170) (((-695 |#1|) (-695 $)) 169)) (-2295 (($ |#2|) 166) (((-3 $ "failed") (-413 |#2|)) 163 (|has| |#1| (-368)))) (-3957 (((-3 $ "failed") $) 37)) (-4412 (((-928)) 61)) (-2066 (($) 99 (|has| |#1| (-373)))) (-2799 (($ $ $) 116 (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 111 (|has| |#1| (-368)))) (-2310 (($) 157 (|has| |#1| (-354)))) (-4240 (((-112) $) 158 (|has| |#1| (-354)))) (-2118 (($ $ (-777)) 149 (|has| |#1| (-354))) (($ $) 148 (|has| |#1| (-354)))) (-2145 (((-112) $) 124 (|has| |#1| (-368)))) (-3995 (((-928) $) 160 (|has| |#1| (-354))) (((-839 (-928)) $) 146 (|has| |#1| (-354)))) (-2005 (((-112) $) 35)) (-3046 ((|#1| $) 58)) (-3525 (((-3 $ "failed") $) 150 (|has| |#1| (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 120 (|has| |#1| (-368)))) (-3658 ((|#2| $) 51 (|has| |#1| (-368)))) (-1997 (((-928) $) 98 (|has| |#1| (-373)))) (-2283 ((|#2| $) 164)) (-3867 (($ (-650 $)) 109 (|has| |#1| (-368))) (($ $ $) 108 (|has| |#1| (-368)))) (-3240 (((-1168) $) 10)) (-4315 (($ $) 125 (|has| |#1| (-368)))) (-3458 (($) 151 (|has| |#1| (-354)) CONST)) (-4298 (($ (-928)) 97 (|has| |#1| (-373)))) (-3891 (((-1129) $) 11)) (-3643 (($) 168)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 110 (|has| |#1| (-368)))) (-3903 (($ (-650 $)) 107 (|has| |#1| (-368))) (($ $ $) 106 (|has| |#1| (-368)))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) 154 (|has| |#1| (-354)))) (-2340 (((-424 $) $) 121 (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 118 (|has| |#1| (-368)))) (-2837 (((-3 $ "failed") $ $) 101 (|has| |#1| (-368)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 112 (|has| |#1| (-368)))) (-2002 (((-777) $) 114 (|has| |#1| (-368)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 115 (|has| |#1| (-368)))) (-2896 ((|#1| (-1277 $)) 54) ((|#1|) 67)) (-4058 (((-777) $) 159 (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) 147 (|has| |#1| (-354)))) (-2375 (($ $) 145 (-3749 (-3212 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) 143 (-3749 (-3212 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) 141 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186))) 140 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1186) (-777)) 139 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-777))) 138 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1 |#1| |#1|) (-777)) 131 (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-368)))) (-2318 (((-695 |#1|) (-1277 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-368)))) (-3144 ((|#2|) 167)) (-1900 (($) 156 (|has| |#1| (-354)))) (-2987 (((-1277 |#1|) $ (-1277 $)) 57) (((-695 |#1|) (-1277 $) (-1277 $)) 56) (((-1277 |#1|) $) 73) (((-695 |#1|) (-1277 $)) 72)) (-2601 (((-1277 |#1|) $) 70) (($ (-1277 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 153 (|has| |#1| (-354)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-368))) (($ (-413 (-570))) 95 (-3749 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-1660 (($ $) 152 (|has| |#1| (-354))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-1816 ((|#2| $) 52)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2681 (((-1277 $)) 74)) (-2939 (((-112) $ $) 104 (|has| |#1| (-368)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $) 144 (-3749 (-3212 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) 142 (-3749 (-3212 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) 137 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186))) 136 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1186) (-777)) 135 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-777))) 134 (-3212 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1 |#1| |#1|) (-777)) 133 (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-368)))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 129 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 126 (|has| |#1| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-413 (-570)) $) 128 (|has| |#1| (-368))) (($ $ (-413 (-570))) 127 (|has| |#1| (-368)))))
-(((-730 |#1| |#2|) (-141) (-174) (-1253 |t#1|)) (T -730))
-((-3643 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-730 *2 *3)) (-4 *3 (-1253 *2)))) (-3144 (*1 *2) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1253 *3)))) (-2295 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1253 *3)))) (-2601 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1253 *3)))) (-2283 (*1 *2 *1) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1253 *3)))) (-2295 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-368)) (-4 *3 (-174)) (-4 *1 (-730 *3 *4)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-1277 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) (-4 *1 (-730 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1253 *5)) (-5 *2 (-695 *5)))))
-(-13 (-415 |t#1| |t#2|) (-174) (-620 |t#2|) (-417 |t#1|) (-382 |t#1|) (-10 -8 (-15 -3643 ($)) (-15 -3144 (|t#2|)) (-15 -2295 ($ |t#2|)) (-15 -2601 ($ |t#2|)) (-15 -2283 (|t#2| $)) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-6 (-233 |t#1|)) (-15 -2295 ((-3 $ "failed") (-413 |t#2|))) (-15 -2318 ((-695 |t#1|) (-1277 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-38 |#1|) . T) ((-38 $) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-102) . T) ((-111 #0# #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3749 (|has| |#1| (-354)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-354)) (|has| |#1| (-368))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) . T) ((-620 |#2|) . T) ((-233 |#1|) |has| |#1| (-368)) ((-235) -3749 (|has| |#1| (-354)) (-12 (|has| |#1| (-235)) (|has| |#1| (-368)))) ((-245) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-294) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-311) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-368) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-408) |has| |#1| (-354)) ((-373) -3749 (|has| |#1| (-373)) (|has| |#1| (-354))) ((-354) |has| |#1| (-354)) ((-375 |#1| |#2|) . T) ((-415 |#1| |#2|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-562) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-652 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-646 |#1|) . T) ((-646 $) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-723 |#1|) . T) ((-723 $) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186)))) ((-927) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-354)) ((-1231) -3749 (|has| |#1| (-354)) (|has| |#1| (-368))))
-((-2333 (($) 11)) (-3957 (((-3 $ "failed") $) 14)) (-2005 (((-112) $) 10)) (** (($ $ (-928)) NIL) (($ $ (-777)) 20)))
-(((-731 |#1|) (-10 -8 (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 -2005 ((-112) |#1|)) (-15 -2333 (|#1|)) (-15 ** (|#1| |#1| (-928)))) (-732)) (T -731))
-NIL
-(-10 -8 (-15 -3957 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 -2005 ((-112) |#1|)) (-15 -2333 (|#1|)) (-15 ** (|#1| |#1| (-928))))
-((-2847 (((-112) $ $) 7)) (-2333 (($) 19 T CONST)) (-3957 (((-3 $ "failed") $) 16)) (-2005 (((-112) $) 18)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1998 (($) 20 T CONST)) (-3892 (((-112) $ $) 6)) (** (($ $ (-928)) 14) (($ $ (-777)) 17)) (* (($ $ $) 15)))
-(((-732) (-141)) (T -732))
-((-1998 (*1 *1) (-4 *1 (-732))) (-2333 (*1 *1) (-4 *1 (-732))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-777)))) (-3957 (*1 *1 *1) (|partial| -4 *1 (-732))))
-(-13 (-1121) (-10 -8 (-15 (-1998) ($) -3722) (-15 -2333 ($) -3722) (-15 -2005 ((-112) $)) (-15 ** ($ $ (-777))) (-15 -3957 ((-3 $ "failed") $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1121) . T) ((-1109) . T))
-((-1822 (((-2 (|:| -1493 (-424 |#2|)) (|:| |special| (-424 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3210 (((-2 (|:| -1493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4183 ((|#2| (-413 |#2|) (-1 |#2| |#2|)) 13)) (-2182 (((-2 (|:| |poly| |#2|) (|:| -1493 (-413 |#2|)) (|:| |special| (-413 |#2|))) (-413 |#2|) (-1 |#2| |#2|)) 48)))
-(((-733 |#1| |#2|) (-10 -7 (-15 -3210 ((-2 (|:| -1493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1822 ((-2 (|:| -1493 (-424 |#2|)) (|:| |special| (-424 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4183 (|#2| (-413 |#2|) (-1 |#2| |#2|))) (-15 -2182 ((-2 (|:| |poly| |#2|) (|:| -1493 (-413 |#2|)) (|:| |special| (-413 |#2|))) (-413 |#2|) (-1 |#2| |#2|)))) (-368) (-1253 |#1|)) (T -733))
-((-2182 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1493 (-413 *6)) (|:| |special| (-413 *6)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-413 *6)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1253 *5)) (-5 *1 (-733 *5 *2)) (-4 *5 (-368)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -1493 (-424 *3)) (|:| |special| (-424 *3)))) (-5 *1 (-733 *5 *3)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -1493 *3) (|:| |special| *3))) (-5 *1 (-733 *5 *3)))))
-(-10 -7 (-15 -3210 ((-2 (|:| -1493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1822 ((-2 (|:| -1493 (-424 |#2|)) (|:| |special| (-424 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4183 (|#2| (-413 |#2|) (-1 |#2| |#2|))) (-15 -2182 ((-2 (|:| |poly| |#2|) (|:| -1493 (-413 |#2|)) (|:| |special| (-413 |#2|))) (-413 |#2|) (-1 |#2| |#2|))))
-((-2492 ((|#7| (-650 |#5|) |#6|) NIL)) (-2536 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-734 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2536 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2492 (|#7| (-650 |#5|) |#6|))) (-856) (-799) (-799) (-1058) (-1058) (-956 |#4| |#2| |#1|) (-956 |#5| |#3| |#1|)) (T -734))
-((-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *9)) (-4 *9 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *8 (-1058)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799)) (-4 *4 (-956 *8 *6 *5)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1058)) (-4 *9 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799)) (-4 *4 (-956 *8 *6 *5)))))
-(-10 -7 (-15 -2536 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2492 (|#7| (-650 |#5|) |#6|)))
-((-2536 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-735 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2536 (|#7| (-1 |#2| |#1|) |#6|))) (-856) (-856) (-799) (-799) (-1058) (-956 |#5| |#3| |#1|) (-956 |#5| |#4| |#2|)) (T -735))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-856)) (-4 *6 (-856)) (-4 *7 (-799)) (-4 *9 (-1058)) (-4 *2 (-956 *9 *8 *6)) (-5 *1 (-735 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-799)) (-4 *4 (-956 *9 *7 *5)))))
-(-10 -7 (-15 -2536 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2340 (((-424 |#4|) |#4|) 42)))
-(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-424 |#4|) |#4|))) (-799) (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186))))) (-311) (-956 (-959 |#3|) |#1| |#2|)) (T -736))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186)))))) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-956 (-959 *6) *4 *5)))))
-(-10 -7 (-15 -2340 ((-424 |#4|) |#4|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-870 |#1|)) $) NIL)) (-3449 (((-1182 $) $ (-870 |#1|)) NIL) (((-1182 |#2|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2046 (($ $) NIL (|has| |#2| (-562)))) (-3426 (((-112) $) NIL (|has| |#2| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-870 |#1|))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3312 (($ $) NIL (|has| |#2| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#2| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-4387 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2067 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#2| (-916)))) (-2425 (($ $ |#2| (-537 (-870 |#1|)) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-2417 (($ (-1182 |#2|) (-870 |#1|)) NIL) (($ (-1182 $) (-870 |#1|)) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#2| (-537 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-870 |#1|)) NIL)) (-2689 (((-537 (-870 |#1|)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-3989 (($ (-1 (-537 (-870 |#1|)) (-537 (-870 |#1|))) $) NIL)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-3168 (((-3 (-870 |#1|) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#2| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3240 (((-1168) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -2940 (-777))) "failed") $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#2| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) NIL) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) NIL) (($ $ (-870 |#1|) $) NIL) (($ $ (-650 (-870 |#1|)) (-650 $)) NIL)) (-2896 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-2375 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2650 (((-537 (-870 |#1|)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-2128 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-870 |#1|)) NIL) (($ $) NIL (|has| |#2| (-562))) (($ (-413 (-570))) NIL (-3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))))) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-537 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-737 |#1| |#2|) (-956 |#2| (-537 (-870 |#1|)) (-870 |#1|)) (-650 (-1186)) (-1058)) (T -737))
-NIL
-(-956 |#2| (-537 (-870 |#1|)) (-870 |#1|))
-((-1930 (((-2 (|:| -1548 (-959 |#3|)) (|:| -2091 (-959 |#3|))) |#4|) 14)) (-2188 ((|#4| |#4| |#2|) 33)) (-1751 ((|#4| (-413 (-959 |#3|)) |#2|) 64)) (-4340 ((|#4| (-1182 (-959 |#3|)) |#2|) 77)) (-2549 ((|#4| (-1182 |#4|) |#2|) 51)) (-4294 ((|#4| |#4| |#2|) 54)) (-2340 (((-424 |#4|) |#4|) 40)))
-(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1930 ((-2 (|:| -1548 (-959 |#3|)) (|:| -2091 (-959 |#3|))) |#4|)) (-15 -4294 (|#4| |#4| |#2|)) (-15 -2549 (|#4| (-1182 |#4|) |#2|)) (-15 -2188 (|#4| |#4| |#2|)) (-15 -4340 (|#4| (-1182 (-959 |#3|)) |#2|)) (-15 -1751 (|#4| (-413 (-959 |#3|)) |#2|)) (-15 -2340 ((-424 |#4|) |#4|))) (-799) (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)))) (-562) (-956 (-413 (-959 |#3|)) |#1| |#2|)) (T -738))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *6 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-956 (-413 (-959 *6)) *4 *5)))) (-1751 (*1 *2 *3 *4) (-12 (-4 *6 (-562)) (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-738 *5 *4 *6 *2)) (-5 *3 (-413 (-959 *6))) (-4 *5 (-799)) (-4 *4 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))))) (-4340 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 (-959 *6))) (-4 *6 (-562)) (-4 *2 (-956 (-413 (-959 *6)) *5 *4)) (-5 *1 (-738 *5 *4 *6 *2)) (-4 *5 (-799)) (-4 *4 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))))) (-2188 (*1 *2 *2 *3) (-12 (-4 *4 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *5 (-562)) (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-956 (-413 (-959 *6)) *5 *4)) (-5 *1 (-738 *5 *4 *6 *2)) (-4 *5 (-799)) (-4 *4 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *6 (-562)))) (-4294 (*1 *2 *2 *3) (-12 (-4 *4 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *5 (-562)) (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *6 (-562)) (-5 *2 (-2 (|:| -1548 (-959 *6)) (|:| -2091 (-959 *6)))) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-956 (-413 (-959 *6)) *4 *5)))))
-(-10 -7 (-15 -1930 ((-2 (|:| -1548 (-959 |#3|)) (|:| -2091 (-959 |#3|))) |#4|)) (-15 -4294 (|#4| |#4| |#2|)) (-15 -2549 (|#4| (-1182 |#4|) |#2|)) (-15 -2188 (|#4| |#4| |#2|)) (-15 -4340 (|#4| (-1182 (-959 |#3|)) |#2|)) (-15 -1751 (|#4| (-413 (-959 |#3|)) |#2|)) (-15 -2340 ((-424 |#4|) |#4|)))
-((-2340 (((-424 |#4|) |#4|) 54)))
-(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-424 |#4|) |#4|))) (-799) (-856) (-13 (-311) (-148)) (-956 (-413 |#3|) |#1| |#2|)) (T -739))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-13 (-311) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-956 (-413 *6) *4 *5)))))
-(-10 -7 (-15 -2340 ((-424 |#4|) |#4|)))
-((-2536 (((-741 |#2| |#3|) (-1 |#2| |#1|) (-741 |#1| |#3|)) 18)))
-(((-740 |#1| |#2| |#3|) (-10 -7 (-15 -2536 ((-741 |#2| |#3|) (-1 |#2| |#1|) (-741 |#1| |#3|)))) (-1058) (-1058) (-732)) (T -740))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-741 *5 *7)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *7 (-732)) (-5 *2 (-741 *6 *7)) (-5 *1 (-740 *5 *6 *7)))))
-(-10 -7 (-15 -2536 ((-741 |#2| |#3|) (-1 |#2| |#1|) (-741 |#1| |#3|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 36)) (-2972 (((-650 (-2 (|:| -1747 |#1|) (|:| -3677 |#2|))) $) 37)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2401 (((-777)) 22 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-4387 ((|#2| $) NIL) ((|#1| $) NIL)) (-4394 (($ $) 102 (|has| |#2| (-856)))) (-3957 (((-3 $ "failed") $) 85)) (-2066 (($) 48 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) 70)) (-1739 (((-650 $) $) 52)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| |#2|) 17)) (-2536 (($ (-1 |#1| |#1|) $) 68)) (-1997 (((-928) $) 43 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-4355 ((|#2| $) 101 (|has| |#2| (-856)))) (-4369 ((|#1| $) 100 (|has| |#2| (-856)))) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) 35 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 99) (($ (-570)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-650 (-2 (|:| -1747 |#1|) (|:| -3677 |#2|)))) 11)) (-3125 (((-650 |#1|) $) 54)) (-3481 ((|#1| $ |#2|) 115)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 12 T CONST)) (-1998 (($) 44 T CONST)) (-3892 (((-112) $ $) 105)) (-4003 (($ $) 61) (($ $ $) NIL)) (-3992 (($ $ $) 33)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-741 |#1| |#2|) (-13 (-1058) (-1047 |#2|) (-1047 |#1|) (-10 -8 (-15 -2402 ($ |#1| |#2|)) (-15 -3481 (|#1| $ |#2|)) (-15 -2869 ($ (-650 (-2 (|:| -1747 |#1|) (|:| -3677 |#2|))))) (-15 -2972 ((-650 (-2 (|:| -1747 |#1|) (|:| -3677 |#2|))) $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (-15 -1338 ((-112) $)) (-15 -3125 ((-650 |#1|) $)) (-15 -1739 ((-650 $) $)) (-15 -2928 ((-777) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-856)) (PROGN (-15 -4355 (|#2| $)) (-15 -4369 (|#1| $)) (-15 -4394 ($ $))) |%noBranch|))) (-1058) (-732)) (T -741))
-((-2402 (*1 *1 *2 *3) (-12 (-5 *1 (-741 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-732)))) (-3481 (*1 *2 *1 *3) (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-732)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -1747 *3) (|:| -3677 *4)))) (-4 *3 (-1058)) (-4 *4 (-732)) (-5 *1 (-741 *3 *4)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -1747 *3) (|:| -3677 *4)))) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-741 *3 *4)) (-4 *4 (-732)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-650 (-741 *3 *4))) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-4355 (*1 *2 *1) (-12 (-4 *2 (-732)) (-4 *2 (-856)) (-5 *1 (-741 *3 *2)) (-4 *3 (-1058)))) (-4369 (*1 *2 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-856)) (-4 *3 (-732)))) (-4394 (*1 *1 *1) (-12 (-5 *1 (-741 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1058)) (-4 *3 (-732)))))
-(-13 (-1058) (-1047 |#2|) (-1047 |#1|) (-10 -8 (-15 -2402 ($ |#1| |#2|)) (-15 -3481 (|#1| $ |#2|)) (-15 -2869 ($ (-650 (-2 (|:| -1747 |#1|) (|:| -3677 |#2|))))) (-15 -2972 ((-650 (-2 (|:| -1747 |#1|) (|:| -3677 |#2|))) $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (-15 -1338 ((-112) $)) (-15 -3125 ((-650 |#1|) $)) (-15 -1739 ((-650 $) $)) (-15 -2928 ((-777) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-856)) (PROGN (-15 -4355 (|#2| $)) (-15 -4369 (|#1| $)) (-15 -4394 ($ $))) |%noBranch|)))
-((-2847 (((-112) $ $) 19)) (-1637 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1832 (($ $ $) 73)) (-3198 (((-112) $ $) 74)) (-2855 (((-112) $ (-777)) 8)) (-1322 (($ (-650 |#1|)) 69) (($) 68)) (-3350 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-1381 (($ $) 63)) (-3153 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ |#1| $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2994 (((-112) $ $) 65)) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22)) (-3502 (($ $ $) 70)) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41) (($ |#1| $ (-777)) 64)) (-3891 (((-1129) $) 21)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-1553 (((-650 (-2 (|:| -3165 |#1|) (|:| -3901 (-777)))) $) 62)) (-1565 (($ $ |#1|) 72) (($ $ $) 71)) (-2910 (($) 50) (($ (-650 |#1|)) 49)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 51)) (-2869 (((-868) $) 18)) (-2542 (($ (-650 |#1|)) 67) (($) 66)) (-1344 (((-112) $ $) 23)) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20)) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-742 |#1|) (-141) (-1109)) (T -742))
-NIL
-(-13 (-701 |t#1|) (-1107 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-701 |#1|) . T) ((-1107 |#1|) . T) ((-1109) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-1637 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-1832 (($ $ $) 96)) (-3198 (((-112) $ $) 104)) (-2855 (((-112) $ (-777)) NIL)) (-1322 (($ (-650 |#1|)) 26) (($) 17)) (-3350 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-1381 (($ $) 85)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) 70 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4452))) (($ |#1| $ (-570)) 75) (($ (-1 (-112) |#1|) $ (-570)) 78)) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (($ |#1| $ (-570)) 80) (($ (-1 (-112) |#1|) $ (-570)) 81)) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 32 (|has| $ (-6 -4452)))) (-2994 (((-112) $ $) 103)) (-3509 (($) 15) (($ |#1|) 28) (($ (-650 |#1|)) 23)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) 38)) (-1314 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 89)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3502 (($ $ $) 94)) (-3398 ((|#1| $) 62)) (-2801 (($ |#1| $) 63) (($ |#1| $ (-777)) 86)) (-3891 (((-1129) $) NIL)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4126 ((|#1| $) 61)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 56)) (-1698 (($) 14)) (-1553 (((-650 (-2 (|:| -3165 |#1|) (|:| -3901 (-777)))) $) 55)) (-1565 (($ $ |#1|) NIL) (($ $ $) 95)) (-2910 (($) 16) (($ (-650 |#1|)) 25)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) 68 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 79)) (-2601 (((-542) $) 36 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 22)) (-2869 (((-868) $) 49)) (-2542 (($ (-650 |#1|)) 27) (($) 18)) (-1344 (((-112) $ $) NIL)) (-4132 (($ (-650 |#1|)) 24)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 100)) (-2857 (((-777) $) 67 (|has| $ (-6 -4452)))))
-(((-743 |#1|) (-13 (-742 |#1|) (-10 -8 (-6 -4452) (-6 -4453) (-15 -3509 ($)) (-15 -3509 ($ |#1|)) (-15 -3509 ($ (-650 |#1|))) (-15 -3069 ((-650 |#1|) $)) (-15 -3617 ($ |#1| $ (-570))) (-15 -3617 ($ (-1 (-112) |#1|) $ (-570))) (-15 -3614 ($ |#1| $ (-570))) (-15 -3614 ($ (-1 (-112) |#1|) $ (-570))))) (-1109)) (T -743))
-((-3509 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-3509 (*1 *1 *2) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-743 *3)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-743 *3)) (-4 *3 (-1109)))) (-3617 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-3617 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109)) (-5 *1 (-743 *4)))) (-3614 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-3614 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109)) (-5 *1 (-743 *4)))))
-(-13 (-742 |#1|) (-10 -8 (-6 -4452) (-6 -4453) (-15 -3509 ($)) (-15 -3509 ($ |#1|)) (-15 -3509 ($ (-650 |#1|))) (-15 -3069 ((-650 |#1|) $)) (-15 -3617 ($ |#1| $ (-570))) (-15 -3617 ($ (-1 (-112) |#1|) $ (-570))) (-15 -3614 ($ |#1| $ (-570))) (-15 -3614 ($ (-1 (-112) |#1|) $ (-570)))))
-((-1458 (((-1282) (-1168)) 8)))
-(((-744) (-10 -7 (-15 -1458 ((-1282) (-1168))))) (T -744))
-((-1458 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-744)))))
-(-10 -7 (-15 -1458 ((-1282) (-1168))))
-((-2888 (((-650 |#1|) (-650 |#1|) (-650 |#1|)) 15)))
-(((-745 |#1|) (-10 -7 (-15 -2888 ((-650 |#1|) (-650 |#1|) (-650 |#1|)))) (-856)) (T -745))
-((-2888 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-745 *3)))))
-(-10 -7 (-15 -2888 ((-650 |#1|) (-650 |#1|) (-650 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 |#2|) $) 148)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 141 (|has| |#1| (-562)))) (-2046 (($ $) 140 (|has| |#1| (-562)))) (-3426 (((-112) $) 138 (|has| |#1| (-562)))) (-3900 (($ $) 97 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 80 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) 20)) (-2459 (($ $) 79 (|has| |#1| (-38 (-413 (-570)))))) (-3876 (($ $) 96 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 81 (|has| |#1| (-38 (-413 (-570)))))) (-1513 (($ $) 95 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 82 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) 18 T CONST)) (-4394 (($ $) 132)) (-3957 (((-3 $ "failed") $) 37)) (-2471 (((-959 |#1|) $ (-777)) 110) (((-959 |#1|) $ (-777) (-777)) 109)) (-3296 (((-112) $) 149)) (-1625 (($) 107 (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-777) $ |#2|) 112) (((-777) $ |#2| (-777)) 111)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 78 (|has| |#1| (-38 (-413 (-570)))))) (-1338 (((-112) $) 130)) (-2402 (($ $ (-650 |#2|) (-650 (-537 |#2|))) 147) (($ $ |#2| (-537 |#2|)) 146) (($ |#1| (-537 |#2|)) 131) (($ $ |#2| (-777)) 114) (($ $ (-650 |#2|) (-650 (-777))) 113)) (-2536 (($ (-1 |#1| |#1|) $) 129)) (-3447 (($ $) 104 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) 127)) (-4369 ((|#1| $) 126)) (-3240 (((-1168) $) 10)) (-1363 (($ $ |#2|) 108 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) 11)) (-3308 (($ $ (-777)) 115)) (-2837 (((-3 $ "failed") $ $) 142 (|has| |#1| (-562)))) (-2651 (($ $) 105 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (($ $ |#2| $) 123) (($ $ (-650 |#2|) (-650 $)) 122) (($ $ (-650 (-298 $))) 121) (($ $ (-298 $)) 120) (($ $ $ $) 119) (($ $ (-650 $) (-650 $)) 118)) (-2375 (($ $ |#2|) 46) (($ $ (-650 |#2|)) 45) (($ $ |#2| (-777)) 44) (($ $ (-650 |#2|) (-650 (-777))) 43)) (-2650 (((-537 |#2|) $) 128)) (-1523 (($ $) 94 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 83 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 93 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 84 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 92 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 85 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 150)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-562))) (($ (-413 (-570))) 135 (|has| |#1| (-38 (-413 (-570)))))) (-3481 ((|#1| $ (-537 |#2|)) 133) (($ $ |#2| (-777)) 117) (($ $ (-650 |#2|) (-650 (-777))) 116)) (-1660 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1561 (($ $) 103 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 91 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) 139 (|has| |#1| (-562)))) (-1536 (($ $) 102 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 90 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 101 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 89 (|has| |#1| (-38 (-413 (-570)))))) (-2900 (($ $) 100 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 88 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 99 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 87 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 98 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 86 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ |#2|) 42) (($ $ (-650 |#2|)) 41) (($ $ |#2| (-777)) 40) (($ $ (-650 |#2|) (-650 (-777))) 39)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 134 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ $) 106 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 77 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 137 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 136 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
-(((-746 |#1| |#2|) (-141) (-1058) (-856)) (T -746))
-((-3481 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058)) (-4 *2 (-856)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)))) (-3308 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-746 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-856)))) (-2402 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058)) (-4 *2 (-856)))) (-2402 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)))) (-3995 (*1 *2 *1 *3) (-12 (-4 *1 (-746 *4 *3)) (-4 *4 (-1058)) (-4 *3 (-856)) (-5 *2 (-777)))) (-3995 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-777)) (-4 *1 (-746 *4 *3)) (-4 *4 (-1058)) (-4 *3 (-856)))) (-2471 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)) (-5 *2 (-959 *4)))) (-2471 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)) (-5 *2 (-959 *4)))) (-1363 (*1 *1 *1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856)) (-4 *3 (-38 (-413 (-570)))))))
-(-13 (-907 |t#2|) (-982 |t#1| (-537 |t#2|) |t#2|) (-520 |t#2| $) (-313 $) (-10 -8 (-15 -3481 ($ $ |t#2| (-777))) (-15 -3481 ($ $ (-650 |t#2|) (-650 (-777)))) (-15 -3308 ($ $ (-777))) (-15 -2402 ($ $ |t#2| (-777))) (-15 -2402 ($ $ (-650 |t#2|) (-650 (-777)))) (-15 -3995 ((-777) $ |t#2|)) (-15 -3995 ((-777) $ |t#2| (-777))) (-15 -2471 ((-959 |t#1|) $ (-777))) (-15 -2471 ((-959 |t#1|) $ (-777) (-777))) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $ |t#2|)) (-6 (-1011)) (-6 (-1212))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-537 |#2|)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-294) |has| |#1| (-562)) ((-313 $) . T) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-520 |#2| $) . T) ((-520 $ $) . T) ((-562) |has| |#1| (-562)) ((-652 #1#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #1#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-907 |#2|) . T) ((-982 |#1| #0# |#2|) . T) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1212) |has| |#1| (-38 (-413 (-570)))) ((-1215) |has| |#1| (-38 (-413 (-570)))))
-((-2340 (((-424 (-1182 |#4|)) (-1182 |#4|)) 30) (((-424 |#4|) |#4|) 26)))
-(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-424 |#4|) |#4|)) (-15 -2340 ((-424 (-1182 |#4|)) (-1182 |#4|)))) (-856) (-799) (-13 (-311) (-148)) (-956 |#3| |#2| |#1|)) (T -747))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(-10 -7 (-15 -2340 ((-424 |#4|) |#4|)) (-15 -2340 ((-424 (-1182 |#4|)) (-1182 |#4|))))
-((-3697 (((-424 |#4|) |#4| |#2|) 140)) (-2253 (((-424 |#4|) |#4|) NIL)) (-2929 (((-424 (-1182 |#4|)) (-1182 |#4|)) 127) (((-424 |#4|) |#4|) 52)) (-4056 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-650 (-2 (|:| -2340 (-1182 |#4|)) (|:| -2940 (-570)))))) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|))) 81)) (-1805 (((-1182 |#3|) (-1182 |#3|) (-570)) 166)) (-3162 (((-650 (-777)) (-1182 |#4|) (-650 |#2|) (-777)) 75)) (-2283 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-1182 |#3|) (-1182 |#3|) |#4| (-650 |#2|) (-650 (-777)) (-650 |#3|)) 79)) (-1563 (((-2 (|:| |upol| (-1182 |#3|)) (|:| |Lval| (-650 |#3|)) (|:| |Lfact| (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570))))) (|:| |ctpol| |#3|)) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|))) 27)) (-1414 (((-2 (|:| -3147 (-1182 |#4|)) (|:| |polval| (-1182 |#3|))) (-1182 |#4|) (-1182 |#3|) (-570)) 72)) (-4215 (((-570) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570))))) 162)) (-2106 ((|#4| (-570) (-424 |#4|)) 73)) (-2875 (((-112) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570)))) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570))))) NIL)))
-(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2929 ((-424 |#4|) |#4|)) (-15 -2929 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -2253 ((-424 |#4|) |#4|)) (-15 -4215 ((-570) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570)))))) (-15 -3697 ((-424 |#4|) |#4| |#2|)) (-15 -1414 ((-2 (|:| -3147 (-1182 |#4|)) (|:| |polval| (-1182 |#3|))) (-1182 |#4|) (-1182 |#3|) (-570))) (-15 -4056 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-650 (-2 (|:| -2340 (-1182 |#4|)) (|:| -2940 (-570)))))) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -1563 ((-2 (|:| |upol| (-1182 |#3|)) (|:| |Lval| (-650 |#3|)) (|:| |Lfact| (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570))))) (|:| |ctpol| |#3|)) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -2106 (|#4| (-570) (-424 |#4|))) (-15 -2875 ((-112) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570)))) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570)))))) (-15 -2283 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-1182 |#3|) (-1182 |#3|) |#4| (-650 |#2|) (-650 (-777)) (-650 |#3|))) (-15 -3162 ((-650 (-777)) (-1182 |#4|) (-650 |#2|) (-777))) (-15 -1805 ((-1182 |#3|) (-1182 |#3|) (-570)))) (-799) (-856) (-311) (-956 |#3| |#1| |#2|)) (T -748))
-((-1805 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *6)) (-5 *3 (-570)) (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-4 *7 (-856)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-4 *8 (-311)) (-5 *2 (-650 (-777))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *5 (-777)))) (-2283 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1182 *11)) (-5 *6 (-650 *10)) (-5 *7 (-650 (-777))) (-5 *8 (-650 *11)) (-4 *10 (-856)) (-4 *11 (-311)) (-4 *9 (-799)) (-4 *5 (-956 *11 *9 *10)) (-5 *2 (-650 (-1182 *5))) (-5 *1 (-748 *9 *10 *11 *5)) (-5 *3 (-1182 *5)))) (-2875 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-2 (|:| -2340 (-1182 *6)) (|:| -2940 (-570))))) (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *3 (-570)) (-5 *4 (-424 *2)) (-4 *2 (-956 *7 *5 *6)) (-5 *1 (-748 *5 *6 *7 *2)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-311)))) (-1563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8))) (-4 *7 (-856)) (-4 *8 (-311)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-5 *2 (-2 (|:| |upol| (-1182 *8)) (|:| |Lval| (-650 *8)) (|:| |Lfact| (-650 (-2 (|:| -2340 (-1182 *8)) (|:| -2940 (-570))))) (|:| |ctpol| *8))) (-5 *1 (-748 *6 *7 *8 *9)))) (-4056 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8))) (-4 *7 (-856)) (-4 *8 (-311)) (-4 *6 (-799)) (-4 *9 (-956 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-650 (-2 (|:| -2340 (-1182 *9)) (|:| -2940 (-570))))))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9)))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-570)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-311)) (-4 *9 (-956 *8 *6 *7)) (-5 *2 (-2 (|:| -3147 (-1182 *9)) (|:| |polval| (-1182 *8)))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9)) (-5 *4 (-1182 *8)))) (-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-748 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -2340 (-1182 *6)) (|:| -2940 (-570))))) (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-2253 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-748 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))))
-(-10 -7 (-15 -2929 ((-424 |#4|) |#4|)) (-15 -2929 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -2253 ((-424 |#4|) |#4|)) (-15 -4215 ((-570) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570)))))) (-15 -3697 ((-424 |#4|) |#4| |#2|)) (-15 -1414 ((-2 (|:| -3147 (-1182 |#4|)) (|:| |polval| (-1182 |#3|))) (-1182 |#4|) (-1182 |#3|) (-570))) (-15 -4056 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-650 (-2 (|:| -2340 (-1182 |#4|)) (|:| -2940 (-570)))))) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -1563 ((-2 (|:| |upol| (-1182 |#3|)) (|:| |Lval| (-650 |#3|)) (|:| |Lfact| (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570))))) (|:| |ctpol| |#3|)) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -2106 (|#4| (-570) (-424 |#4|))) (-15 -2875 ((-112) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570)))) (-650 (-2 (|:| -2340 (-1182 |#3|)) (|:| -2940 (-570)))))) (-15 -2283 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-1182 |#3|) (-1182 |#3|) |#4| (-650 |#2|) (-650 (-777)) (-650 |#3|))) (-15 -3162 ((-650 (-777)) (-1182 |#4|) (-650 |#2|) (-777))) (-15 -1805 ((-1182 |#3|) (-1182 |#3|) (-570))))
-((-3969 (($ $ (-928)) 17)))
-(((-749 |#1| |#2|) (-10 -8 (-15 -3969 (|#1| |#1| (-928)))) (-750 |#2|) (-174)) (T -749))
-NIL
-(-10 -8 (-15 -3969 (|#1| |#1| (-928))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-1794 (($ $ (-928)) 31)) (-3969 (($ $ (-928)) 38)) (-3454 (($ $ (-928)) 32)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2319 (($ $ $) 28)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-4373 (($ $ $ $) 29)) (-2885 (($ $ $) 27)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-750 |#1|) (-141) (-174)) (T -750))
-((-3969 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-750 *3)) (-4 *3 (-174)))))
-(-13 (-767) (-723 |t#1|) (-10 -8 (-15 -3969 ($ $ (-928)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-726) . T) ((-767) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T))
-((-4377 (((-1044) (-695 (-227)) (-570) (-112) (-570)) 25)) (-3016 (((-1044) (-695 (-227)) (-570) (-112) (-570)) 24)))
-(((-751) (-10 -7 (-15 -3016 ((-1044) (-695 (-227)) (-570) (-112) (-570))) (-15 -4377 ((-1044) (-695 (-227)) (-570) (-112) (-570))))) (T -751))
-((-4377 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-751)))) (-3016 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-751)))))
-(-10 -7 (-15 -3016 ((-1044) (-695 (-227)) (-570) (-112) (-570))) (-15 -4377 ((-1044) (-695 (-227)) (-570) (-112) (-570))))
-((-4177 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN)))) 43)) (-2337 (((-1044) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN)))) 39)) (-1432 (((-1044) (-227) (-227) (-227) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) 32)))
-(((-752) (-10 -7 (-15 -1432 ((-1044) (-227) (-227) (-227) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -2337 ((-1044) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN))))) (-15 -4177 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN))))))) (T -752))
-((-4177 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1044)) (-5 *1 (-752)))) (-2337 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1044)) (-5 *1 (-752)))) (-1432 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) (-5 *2 (-1044)) (-5 *1 (-752)))))
-(-10 -7 (-15 -1432 ((-1044) (-227) (-227) (-227) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -2337 ((-1044) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN))))) (-15 -4177 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN))))))
-((-2052 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 34)) (-1425 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 33)) (-1415 (((-1044) (-570) (-695 (-227)) (-570)) 32)) (-2761 (((-1044) (-570) (-695 (-227)) (-570)) 31)) (-2779 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 30)) (-1622 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 29)) (-3691 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570)) 28)) (-1409 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570)) 27)) (-3012 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 24)) (-2616 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570)) 23)) (-4332 (((-1044) (-570) (-695 (-227)) (-570)) 22)) (-3381 (((-1044) (-570) (-695 (-227)) (-570)) 21)))
-(((-753) (-10 -7 (-15 -3381 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -4332 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -2616 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3012 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1409 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3691 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1622 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2779 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2761 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -1415 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -1425 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2052 ((-1044) (-570) (-570) (-695 (-227)) (-570))))) (T -753))
-((-2052 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-1425 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-1415 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-2761 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-2779 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-1622 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-3691 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-1409 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-3012 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-2616 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-4332 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-3381 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))))
-(-10 -7 (-15 -3381 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -4332 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -2616 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3012 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1409 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3691 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1622 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2779 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2761 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -1415 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -1425 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2052 ((-1044) (-570) (-570) (-695 (-227)) (-570))))
-((-2864 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3619 (((-1044) (-695 (-227)) (-695 (-227)) (-570) (-570)) 51)) (-4310 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2138 (((-1044) (-227) (-227) (-570) (-570) (-570) (-570)) 46)) (-3238 (((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 45)) (-3747 (((-1044) (-227) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 44)) (-2949 (((-1044) (-227) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 43)) (-4122 (((-1044) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 42)) (-2582 (((-1044) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) 38)) (-1535 (((-1044) (-227) (-227) (-570) (-695 (-227)) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) 37)) (-1365 (((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) 33)) (-3382 (((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) 32)))
-(((-754) (-10 -7 (-15 -3382 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -1365 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -1535 ((-1044) (-227) (-227) (-570) (-695 (-227)) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -2582 ((-1044) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -4122 ((-1044) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2949 ((-1044) (-227) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -3747 ((-1044) (-227) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -3238 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2138 ((-1044) (-227) (-227) (-570) (-570) (-570) (-570))) (-15 -4310 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))) (-15 -3619 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-570))) (-15 -2864 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))))) (T -754))
-((-2864 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-3619 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-754)))) (-4310 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2138 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-754)))) (-3238 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-3747 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2949 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-4122 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2582 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-1535 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-754)))) (-1365 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-3382 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) (-5 *2 (-1044)) (-5 *1 (-754)))))
-(-10 -7 (-15 -3382 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -1365 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -1535 ((-1044) (-227) (-227) (-570) (-695 (-227)) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -2582 ((-1044) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))) (-15 -4122 ((-1044) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2949 ((-1044) (-227) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -3747 ((-1044) (-227) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -3238 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2138 ((-1044) (-227) (-227) (-570) (-570) (-570) (-570))) (-15 -4310 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))) (-15 -3619 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-570))) (-15 -2864 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))))
-((-3396 (((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1462 (((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))) (-394) (-394)) 69) (((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3319 (((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG)))) 57)) (-2155 (((-1044) (-695 (-227)) (-695 (-227)) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) 50)) (-1846 (((-1044) (-227) (-570) (-570) (-1168) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3169 (((-1044) (-227) (-570) (-570) (-227) (-1168) (-227) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3182 (((-1044) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) 42)) (-2036 (((-1044) (-227) (-570) (-570) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-755) (-10 -7 (-15 -2036 ((-1044) (-227) (-570) (-570) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -3182 ((-1044) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -3169 ((-1044) (-227) (-570) (-570) (-227) (-1168) (-227) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -1846 ((-1044) (-227) (-570) (-570) (-1168) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -2155 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -3319 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG))))) (-15 -1462 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))))) (-15 -1462 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))) (-394) (-394))) (-15 -3396 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -755))
-((-3396 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1462 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-394)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1462 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1044)) (-5 *1 (-755)))) (-3319 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-2155 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1846 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-3169 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-3182 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-2036 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))))
-(-10 -7 (-15 -2036 ((-1044) (-227) (-570) (-570) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -3182 ((-1044) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -3169 ((-1044) (-227) (-570) (-570) (-227) (-1168) (-227) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -1846 ((-1044) (-227) (-570) (-570) (-1168) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -2155 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -3319 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG))))) (-15 -1462 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))))) (-15 -1462 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))) (-394) (-394))) (-15 -3396 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2069 (((-1044) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-681 (-227)) (-570)) 45)) (-1650 (((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-1168) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY)))) 41)) (-4419 (((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 23)))
-(((-756) (-10 -7 (-15 -4419 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1650 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-1168) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY))))) (-15 -2069 ((-1044) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-681 (-227)) (-570))))) (T -756))
-((-2069 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-681 (-227))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-756)))) (-1650 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1044)) (-5 *1 (-756)))) (-4419 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-756)))))
-(-10 -7 (-15 -4419 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1650 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-1168) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY))))) (-15 -2069 ((-1044) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-681 (-227)) (-570))))
-((-1807 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-695 (-227)) (-227) (-227) (-570)) 35)) (-1854 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-227) (-227) (-570)) 34)) (-1684 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-695 (-227)) (-227) (-227) (-570)) 33)) (-1351 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 29)) (-4360 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 28)) (-2757 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570)) 27)) (-2149 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570)) 24)) (-4039 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570)) 23)) (-2861 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570)) 22)) (-2285 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570)) 21)))
-(((-757) (-10 -7 (-15 -2285 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -2861 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4039 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -2149 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -2757 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570))) (-15 -4360 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1351 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1684 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-695 (-227)) (-227) (-227) (-570))) (-15 -1854 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-227) (-227) (-570))) (-15 -1807 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-695 (-227)) (-227) (-227) (-570))))) (T -757))
-((-1807 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-1854 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-1684 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227)) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-1351 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-4360 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2757 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2149 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-4039 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2861 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2285 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))))
-(-10 -7 (-15 -2285 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -2861 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4039 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -2149 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -2757 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570))) (-15 -4360 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1351 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1684 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-695 (-227)) (-227) (-227) (-570))) (-15 -1854 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-227) (-227) (-570))) (-15 -1807 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-695 (-227)) (-227) (-227) (-570))))
-((-1752 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570)) 45)) (-2974 (((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-570)) 44)) (-2429 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570)) 43)) (-1328 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 42)) (-4000 (((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570)) 41)) (-2921 (((-1044) (-1168) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570)) 40)) (-3099 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570) (-570) (-570) (-227) (-695 (-227)) (-570)) 39)) (-3422 (((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570))) 38)) (-3113 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570)) 35)) (-4415 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570)) 34)) (-4248 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570)) 33)) (-3512 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 32)) (-1564 (((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570)) 31)) (-2598 (((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-570)) 30)) (-1324 (((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-570) (-570) (-570)) 29)) (-2408 (((-1044) (-570) (-570) (-570) (-227) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-570)) (-570) (-570) (-570)) 28)) (-3986 (((-1044) (-570) (-695 (-227)) (-227) (-570)) 24)) (-1902 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 21)))
-(((-758) (-10 -7 (-15 -1902 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3986 ((-1044) (-570) (-695 (-227)) (-227) (-570))) (-15 -2408 ((-1044) (-570) (-570) (-570) (-227) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-570)) (-570) (-570) (-570))) (-15 -1324 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -2598 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-570))) (-15 -1564 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570))) (-15 -3512 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4248 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570))) (-15 -4415 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570))) (-15 -3113 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3422 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)))) (-15 -3099 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570) (-570) (-570) (-227) (-695 (-227)) (-570))) (-15 -2921 ((-1044) (-1168) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -4000 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1328 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2429 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -2974 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1752 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))))) (T -758))
-((-1752 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2974 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2429 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1328 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-4000 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2921 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3099 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227)) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3422 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3113 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-4415 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-4248 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3512 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1564 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2598 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1324 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2408 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3986 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1902 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))))
-(-10 -7 (-15 -1902 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3986 ((-1044) (-570) (-695 (-227)) (-227) (-570))) (-15 -2408 ((-1044) (-570) (-570) (-570) (-227) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-570)) (-570) (-570) (-570))) (-15 -1324 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -2598 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-570))) (-15 -1564 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570))) (-15 -3512 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4248 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570))) (-15 -4415 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570))) (-15 -3113 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3422 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)))) (-15 -3099 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570) (-570) (-570) (-227) (-695 (-227)) (-570))) (-15 -2921 ((-1044) (-1168) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -4000 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1328 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2429 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -2974 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1752 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))))
-((-1720 (((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-570) (-695 (-227)) (-570)) 63)) (-3335 (((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-112) (-227) (-570) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-570) (-570) (-570) (-570) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3767 (((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-112) (-112) (-570) (-570) (-695 (-227)) (-695 (-570)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS)))) 58)) (-1488 (((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-570) (-570) (-695 (-227)) (-570)) 51)) (-1669 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3373 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3582 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4428 (((-1044) (-570) (-227) (-227) (-570) (-227) (-112) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-759) (-10 -7 (-15 -4428 ((-1044) (-570) (-227) (-227) (-570) (-227) (-112) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -3582 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1))))) (-15 -3373 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2))))) (-15 -1669 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1))))) (-15 -1488 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-570) (-570) (-695 (-227)) (-570))) (-15 -3767 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-112) (-112) (-570) (-570) (-695 (-227)) (-695 (-570)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS))))) (-15 -3335 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-112) (-227) (-570) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-570) (-570) (-570) (-570) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -1720 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-570) (-695 (-227)) (-570))))) (T -759))
-((-1720 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-3335 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-695 (-570))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-3767 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-695 (-227))) (-5 *6 (-112)) (-5 *7 (-695 (-570))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-1488 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-1669 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1044)) (-5 *1 (-759)))) (-3373 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1044)) (-5 *1 (-759)))) (-3582 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1044)) (-5 *1 (-759)))) (-4428 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759)))))
-(-10 -7 (-15 -4428 ((-1044) (-570) (-227) (-227) (-570) (-227) (-112) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -3582 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1))))) (-15 -3373 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2))))) (-15 -1669 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1))))) (-15 -1488 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-570) (-570) (-695 (-227)) (-570))) (-15 -3767 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-112) (-112) (-570) (-570) (-695 (-227)) (-695 (-570)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS))))) (-15 -3335 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-112) (-227) (-570) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-570) (-570) (-570) (-570) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -1720 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-570) (-695 (-227)) (-570))))
-((-3311 (((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570)) 47)) (-3996 (((-1044) (-1168) (-1168) (-570) (-570) (-695 (-171 (-227))) (-570) (-695 (-171 (-227))) (-570) (-570) (-695 (-171 (-227))) (-570)) 46)) (-2602 (((-1044) (-570) (-570) (-570) (-695 (-171 (-227))) (-570)) 45)) (-2892 (((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 40)) (-1920 (((-1044) (-1168) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)) (-570)) 39)) (-1571 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-570)) 36)) (-2810 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570)) 35)) (-4339 (((-1044) (-570) (-570) (-570) (-570) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-227) (-227) (-570)) 34)) (-4361 (((-1044) (-570) (-570) (-570) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-112) (-227) (-112) (-695 (-570)) (-695 (-227)) (-570)) 33)) (-2152 (((-1044) (-570) (-570) (-570) (-570) (-227) (-112) (-112) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-570)) 32)))
-(((-760) (-10 -7 (-15 -2152 ((-1044) (-570) (-570) (-570) (-570) (-227) (-112) (-112) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-570))) (-15 -4361 ((-1044) (-570) (-570) (-570) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-112) (-227) (-112) (-695 (-570)) (-695 (-227)) (-570))) (-15 -4339 ((-1044) (-570) (-570) (-570) (-570) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-227) (-227) (-570))) (-15 -2810 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570))) (-15 -1571 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -1920 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)) (-570))) (-15 -2892 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2602 ((-1044) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -3996 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-171 (-227))) (-570) (-695 (-171 (-227))) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -3311 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570))))) (T -760))
-((-3311 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-3996 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2602 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2892 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-1920 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-1571 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2810 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-760)))) (-4339 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-650 (-112))) (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *7 (-227)) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-760)))) (-4361 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-695 (-570))) (-5 *5 (-112)) (-5 *7 (-695 (-227))) (-5 *3 (-570)) (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2152 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-650 (-112))) (-5 *7 (-695 (-227))) (-5 *8 (-695 (-570))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-760)))))
-(-10 -7 (-15 -2152 ((-1044) (-570) (-570) (-570) (-570) (-227) (-112) (-112) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-570))) (-15 -4361 ((-1044) (-570) (-570) (-570) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-112) (-227) (-112) (-695 (-570)) (-695 (-227)) (-570))) (-15 -4339 ((-1044) (-570) (-570) (-570) (-570) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-227) (-227) (-570))) (-15 -2810 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570))) (-15 -1571 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -1920 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)) (-570))) (-15 -2892 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2602 ((-1044) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -3996 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-171 (-227))) (-570) (-695 (-171 (-227))) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -3311 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570))))
-((-2670 (((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570)) 79)) (-3183 (((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570)) 68)) (-3700 (((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))) (-394)) 56) (((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) 55)) (-3648 (((-1044) (-570) (-570) (-570) (-227) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570)) 37)) (-3258 (((-1044) (-570) (-570) (-227) (-227) (-570) (-570) (-695 (-227)) (-570)) 33)) (-2031 (((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570) (-570)) 30)) (-4110 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 29)) (-2187 (((-1044) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 28)) (-4348 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 27)) (-2675 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570)) 26)) (-3883 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 25)) (-2796 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 24)) (-4284 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 23)) (-2894 (((-1044) (-695 (-227)) (-570) (-570) (-570) (-570)) 22)) (-4282 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 21)))
-(((-761) (-10 -7 (-15 -4282 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2894 ((-1044) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -4284 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2796 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3883 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2675 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -4348 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2187 ((-1044) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4110 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2031 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -3258 ((-1044) (-570) (-570) (-227) (-227) (-570) (-570) (-695 (-227)) (-570))) (-15 -3648 ((-1044) (-570) (-570) (-570) (-227) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3700 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))))) (-15 -3700 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))) (-394))) (-15 -3183 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2670 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570))))) (T -761))
-((-2670 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3183 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3700 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-394)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3700 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3648 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3258 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2031 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-4110 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2187 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-4348 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2675 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3883 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2796 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-4284 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2894 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-4282 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))))
-(-10 -7 (-15 -4282 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2894 ((-1044) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -4284 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2796 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3883 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2675 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -4348 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2187 ((-1044) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4110 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2031 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -3258 ((-1044) (-570) (-570) (-227) (-227) (-570) (-570) (-695 (-227)) (-570))) (-15 -3648 ((-1044) (-570) (-570) (-570) (-227) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3700 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))))) (-15 -3700 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))) (-394))) (-15 -3183 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2670 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570))))
-((-1914 (((-1044) (-570) (-570) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD)))) 64)) (-3571 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570)) 60)) (-3667 (((-1044) (-570) (-695 (-227)) (-112) (-227) (-570) (-570) (-570) (-570) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1878 (((-1044) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570)) 37)) (-2583 (((-1044) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-570)) 36)) (-3905 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 33)) (-3107 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227))) 32)) (-3352 (((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570)) 28)) (-3351 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570)) 27)) (-2272 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570)) 26)) (-1421 (((-1044) (-570) (-695 (-171 (-227))) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-570)) 22)))
-(((-762) (-10 -7 (-15 -1421 ((-1044) (-570) (-695 (-171 (-227))) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -2272 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -3351 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -3352 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570))) (-15 -3107 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)))) (-15 -3905 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2583 ((-1044) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1878 ((-1044) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -3667 ((-1044) (-570) (-695 (-227)) (-112) (-227) (-570) (-570) (-570) (-570) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE))))) (-15 -3571 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -1914 ((-1044) (-570) (-570) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD))))))) (T -762))
-((-1914 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-3571 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-3667 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-1878 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-2583 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-3905 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-3107 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-3352 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-3351 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-2272 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-1421 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-762)))))
-(-10 -7 (-15 -1421 ((-1044) (-570) (-695 (-171 (-227))) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -2272 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -3351 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -3352 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570))) (-15 -3107 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)))) (-15 -3905 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2583 ((-1044) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1878 ((-1044) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -3667 ((-1044) (-570) (-695 (-227)) (-112) (-227) (-570) (-570) (-570) (-570) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE))))) (-15 -3571 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -1914 ((-1044) (-570) (-570) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD))))))
-((-2235 (((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-570) (-695 (-227))) 29)) (-4389 (((-1044) (-1168) (-570) (-570) (-695 (-227))) 28)) (-3404 (((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-227))) 27)) (-2351 (((-1044) (-570) (-570) (-570) (-695 (-227))) 21)))
-(((-763) (-10 -7 (-15 -2351 ((-1044) (-570) (-570) (-570) (-695 (-227)))) (-15 -3404 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-227)))) (-15 -4389 ((-1044) (-1168) (-570) (-570) (-695 (-227)))) (-15 -2235 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)))))) (T -763))
-((-2235 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-763)))) (-4389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-763)))) (-3404 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-763)))) (-2351 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-763)))))
-(-10 -7 (-15 -2351 ((-1044) (-570) (-570) (-570) (-695 (-227)))) (-15 -3404 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-227)))) (-15 -4389 ((-1044) (-1168) (-570) (-570) (-695 (-227)))) (-15 -2235 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)))))
-((-3367 (((-1044) (-227) (-227) (-227) (-227) (-570)) 62)) (-2771 (((-1044) (-227) (-227) (-227) (-570)) 61)) (-4015 (((-1044) (-227) (-227) (-227) (-570)) 60)) (-1346 (((-1044) (-227) (-227) (-570)) 59)) (-2907 (((-1044) (-227) (-570)) 58)) (-1499 (((-1044) (-227) (-570)) 57)) (-1743 (((-1044) (-227) (-570)) 56)) (-3097 (((-1044) (-227) (-570)) 55)) (-2523 (((-1044) (-227) (-570)) 54)) (-2666 (((-1044) (-227) (-570)) 53)) (-2933 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 52)) (-2862 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 51)) (-3622 (((-1044) (-227) (-570)) 50)) (-3662 (((-1044) (-227) (-570)) 49)) (-3080 (((-1044) (-227) (-570)) 48)) (-1507 (((-1044) (-227) (-570)) 47)) (-3188 (((-1044) (-570) (-227) (-171 (-227)) (-570) (-1168) (-570)) 46)) (-3131 (((-1044) (-1168) (-171 (-227)) (-1168) (-570)) 45)) (-2176 (((-1044) (-1168) (-171 (-227)) (-1168) (-570)) 44)) (-2063 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 43)) (-3229 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 42)) (-3725 (((-1044) (-227) (-570)) 39)) (-2923 (((-1044) (-227) (-570)) 38)) (-2956 (((-1044) (-227) (-570)) 37)) (-2112 (((-1044) (-227) (-570)) 36)) (-2503 (((-1044) (-227) (-570)) 35)) (-2513 (((-1044) (-227) (-570)) 34)) (-3359 (((-1044) (-227) (-570)) 33)) (-2232 (((-1044) (-227) (-570)) 32)) (-1360 (((-1044) (-227) (-570)) 31)) (-1856 (((-1044) (-227) (-570)) 30)) (-2159 (((-1044) (-227) (-227) (-227) (-570)) 29)) (-4109 (((-1044) (-227) (-570)) 28)) (-3569 (((-1044) (-227) (-570)) 27)) (-1580 (((-1044) (-227) (-570)) 26)) (-4305 (((-1044) (-227) (-570)) 25)) (-2148 (((-1044) (-227) (-570)) 24)) (-2139 (((-1044) (-171 (-227)) (-570)) 21)))
-(((-764) (-10 -7 (-15 -2139 ((-1044) (-171 (-227)) (-570))) (-15 -2148 ((-1044) (-227) (-570))) (-15 -4305 ((-1044) (-227) (-570))) (-15 -1580 ((-1044) (-227) (-570))) (-15 -3569 ((-1044) (-227) (-570))) (-15 -4109 ((-1044) (-227) (-570))) (-15 -2159 ((-1044) (-227) (-227) (-227) (-570))) (-15 -1856 ((-1044) (-227) (-570))) (-15 -1360 ((-1044) (-227) (-570))) (-15 -2232 ((-1044) (-227) (-570))) (-15 -3359 ((-1044) (-227) (-570))) (-15 -2513 ((-1044) (-227) (-570))) (-15 -2503 ((-1044) (-227) (-570))) (-15 -2112 ((-1044) (-227) (-570))) (-15 -2956 ((-1044) (-227) (-570))) (-15 -2923 ((-1044) (-227) (-570))) (-15 -3725 ((-1044) (-227) (-570))) (-15 -3229 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2063 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2176 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -3131 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -3188 ((-1044) (-570) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -1507 ((-1044) (-227) (-570))) (-15 -3080 ((-1044) (-227) (-570))) (-15 -3662 ((-1044) (-227) (-570))) (-15 -3622 ((-1044) (-227) (-570))) (-15 -2862 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2933 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2666 ((-1044) (-227) (-570))) (-15 -2523 ((-1044) (-227) (-570))) (-15 -3097 ((-1044) (-227) (-570))) (-15 -1743 ((-1044) (-227) (-570))) (-15 -1499 ((-1044) (-227) (-570))) (-15 -2907 ((-1044) (-227) (-570))) (-15 -1346 ((-1044) (-227) (-227) (-570))) (-15 -4015 ((-1044) (-227) (-227) (-227) (-570))) (-15 -2771 ((-1044) (-227) (-227) (-227) (-570))) (-15 -3367 ((-1044) (-227) (-227) (-227) (-227) (-570))))) (T -764))
-((-3367 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2771 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-4015 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1346 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2933 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2862 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3622 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3662 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3188 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-570)) (-5 *5 (-171 (-227))) (-5 *6 (-1168)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3131 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2176 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2063 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3229 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2513 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2159 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1580 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-4305 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(-10 -7 (-15 -2139 ((-1044) (-171 (-227)) (-570))) (-15 -2148 ((-1044) (-227) (-570))) (-15 -4305 ((-1044) (-227) (-570))) (-15 -1580 ((-1044) (-227) (-570))) (-15 -3569 ((-1044) (-227) (-570))) (-15 -4109 ((-1044) (-227) (-570))) (-15 -2159 ((-1044) (-227) (-227) (-227) (-570))) (-15 -1856 ((-1044) (-227) (-570))) (-15 -1360 ((-1044) (-227) (-570))) (-15 -2232 ((-1044) (-227) (-570))) (-15 -3359 ((-1044) (-227) (-570))) (-15 -2513 ((-1044) (-227) (-570))) (-15 -2503 ((-1044) (-227) (-570))) (-15 -2112 ((-1044) (-227) (-570))) (-15 -2956 ((-1044) (-227) (-570))) (-15 -2923 ((-1044) (-227) (-570))) (-15 -3725 ((-1044) (-227) (-570))) (-15 -3229 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2063 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2176 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -3131 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -3188 ((-1044) (-570) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -1507 ((-1044) (-227) (-570))) (-15 -3080 ((-1044) (-227) (-570))) (-15 -3662 ((-1044) (-227) (-570))) (-15 -3622 ((-1044) (-227) (-570))) (-15 -2862 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2933 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2666 ((-1044) (-227) (-570))) (-15 -2523 ((-1044) (-227) (-570))) (-15 -3097 ((-1044) (-227) (-570))) (-15 -1743 ((-1044) (-227) (-570))) (-15 -1499 ((-1044) (-227) (-570))) (-15 -2907 ((-1044) (-227) (-570))) (-15 -1346 ((-1044) (-227) (-227) (-570))) (-15 -4015 ((-1044) (-227) (-227) (-227) (-570))) (-15 -2771 ((-1044) (-227) (-227) (-227) (-570))) (-15 -3367 ((-1044) (-227) (-227) (-227) (-227) (-570))))
-((-1879 (((-1282)) 20)) (-3535 (((-1168)) 31)) (-2493 (((-1168)) 30)) (-2021 (((-1113) (-1186) (-695 (-570))) 45) (((-1113) (-1186) (-695 (-227))) 41)) (-1466 (((-112)) 19)) (-2531 (((-1168) (-1168)) 34)))
-(((-765) (-10 -7 (-15 -2493 ((-1168))) (-15 -3535 ((-1168))) (-15 -2531 ((-1168) (-1168))) (-15 -2021 ((-1113) (-1186) (-695 (-227)))) (-15 -2021 ((-1113) (-1186) (-695 (-570)))) (-15 -1466 ((-112))) (-15 -1879 ((-1282))))) (T -765))
-((-1879 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-765)))) (-1466 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-765)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-570))) (-5 *2 (-1113)) (-5 *1 (-765)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-227))) (-5 *2 (-1113)) (-5 *1 (-765)))) (-2531 (*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))) (-3535 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))) (-2493 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))))
-(-10 -7 (-15 -2493 ((-1168))) (-15 -3535 ((-1168))) (-15 -2531 ((-1168) (-1168))) (-15 -2021 ((-1113) (-1186) (-695 (-227)))) (-15 -2021 ((-1113) (-1186) (-695 (-570)))) (-15 -1466 ((-112))) (-15 -1879 ((-1282))))
-((-2319 (($ $ $) 10)) (-4373 (($ $ $ $) 9)) (-2885 (($ $ $) 12)))
-(((-766 |#1|) (-10 -8 (-15 -2885 (|#1| |#1| |#1|)) (-15 -2319 (|#1| |#1| |#1|)) (-15 -4373 (|#1| |#1| |#1| |#1|))) (-767)) (T -766))
-NIL
-(-10 -8 (-15 -2885 (|#1| |#1| |#1|)) (-15 -2319 (|#1| |#1| |#1|)) (-15 -4373 (|#1| |#1| |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-1794 (($ $ (-928)) 31)) (-3454 (($ $ (-928)) 32)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2319 (($ $ $) 28)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-4373 (($ $ $ $) 29)) (-2885 (($ $ $) 27)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30)))
-(((-767) (-141)) (T -767))
-((-4373 (*1 *1 *1 *1 *1) (-4 *1 (-767))) (-2319 (*1 *1 *1 *1) (-4 *1 (-767))) (-2885 (*1 *1 *1 *1) (-4 *1 (-767))))
-(-13 (-21) (-726) (-10 -8 (-15 -4373 ($ $ $ $)) (-15 -2319 ($ $ $)) (-15 -2885 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-726) . T) ((-1109) . T))
-((-2869 (((-868) $) NIL) (($ (-570)) 10)))
-(((-768 |#1|) (-10 -8 (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-769)) (T -768))
-NIL
-(-10 -8 (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2075 (((-3 $ "failed") $) 43)) (-1794 (($ $ (-928)) 31) (($ $ (-777)) 38)) (-3957 (((-3 $ "failed") $) 41)) (-2005 (((-112) $) 37)) (-1760 (((-3 $ "failed") $) 42)) (-3454 (($ $ (-928)) 32) (($ $ (-777)) 39)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2319 (($ $ $) 28)) (-2869 (((-868) $) 12) (($ (-570)) 34)) (-2294 (((-777)) 35 T CONST)) (-1344 (((-112) $ $) 9)) (-4373 (($ $ $ $) 29)) (-2885 (($ $ $) 27)) (-1981 (($) 19 T CONST)) (-1998 (($) 36 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 33) (($ $ (-777)) 40)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30)))
+((* (*1 *1 *1 *1) (-4 *1 (-728))) (-4203 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930)))))
+(-13 (-1111) (-10 -8 (-15 * ($ $ $)) (-15 -4203 ($ $ (-930))) (-15 -3962 ($ $ (-930))) (-15 ** ($ $ (-930)))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-4203 (($ $ (-930)) NIL) (($ $ (-779)) 18)) (-4422 (((-112) $) 10)) (-3962 (($ $ (-930)) NIL) (($ $ (-779)) 19)) (** (($ $ (-930)) NIL) (($ $ (-779)) 16)))
+(((-729 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-779))) (-15 -3962 (|#1| |#1| (-779))) (-15 -4203 (|#1| |#1| (-779))) (-15 -4422 ((-112) |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -3962 (|#1| |#1| (-930))) (-15 -4203 (|#1| |#1| (-930)))) (-730)) (T -729))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-779))) (-15 -3962 (|#1| |#1| (-779))) (-15 -4203 (|#1| |#1| (-779))) (-15 -4422 ((-112) |#1|)) (-15 ** (|#1| |#1| (-930))) (-15 -3962 (|#1| |#1| (-930))) (-15 -4203 (|#1| |#1| (-930))))
+((-3464 (((-112) $ $) 7)) (-3899 (((-3 $ "failed") $) 18)) (-4203 (($ $ (-930)) 16) (($ $ (-779)) 23)) (-2982 (((-3 $ "failed") $) 20)) (-4422 (((-112) $) 24)) (-3882 (((-3 $ "failed") $) 19)) (-3962 (($ $ (-930)) 15) (($ $ (-779)) 22)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2619 (($) 25 T CONST)) (-3921 (((-112) $ $) 6)) (** (($ $ (-930)) 14) (($ $ (-779)) 21)) (* (($ $ $) 17)))
+(((-730) (-141)) (T -730))
+((-2619 (*1 *1) (-4 *1 (-730))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-730)) (-5 *2 (-112)))) (-4203 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))) (-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))) (-2982 (*1 *1 *1) (|partial| -4 *1 (-730))) (-3882 (*1 *1 *1) (|partial| -4 *1 (-730))) (-3899 (*1 *1 *1) (|partial| -4 *1 (-730))))
+(-13 (-728) (-10 -8 (-15 (-2619) ($) -4338) (-15 -4422 ((-112) $)) (-15 -4203 ($ $ (-779))) (-15 -3962 ($ $ (-779))) (-15 ** ($ $ (-779))) (-15 -2982 ((-3 $ "failed") $)) (-15 -3882 ((-3 $ "failed") $)) (-15 -3899 ((-3 $ "failed") $))))
+(((-102) . T) ((-621 (-870)) . T) ((-728) . T) ((-1111) . T))
+((-3037 (((-779)) 39)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-1869 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 23)) (-2925 (($ |#3|) NIL) (((-3 $ "failed") (-415 |#3|)) 49)) (-2982 (((-3 $ "failed") $) 69)) (-2688 (($) 43)) (-2140 ((|#2| $) 21)) (-4267 (($) 18)) (-3011 (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 57) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-1421 (((-697 |#2|) (-1279 $) (-1 |#2| |#2|)) 64)) (-3222 (((-1279 |#2|) $) NIL) (($ (-1279 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3245 ((|#3| $) 36)) (-1769 (((-1279 $)) 33)))
+(((-731 |#1| |#2| |#3|) (-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2688 (|#1|)) (-15 -3037 ((-779))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -1421 ((-697 |#2|) (-1279 |#1|) (-1 |#2| |#2|))) (-15 -2925 ((-3 |#1| "failed") (-415 |#3|))) (-15 -3222 (|#1| |#3|)) (-15 -2925 (|#1| |#3|)) (-15 -4267 (|#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3222 (|#3| |#1|)) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -1769 ((-1279 |#1|))) (-15 -3245 (|#3| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|))) (-732 |#2| |#3|) (-174) (-1255 |#2|)) (T -731))
+((-3037 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-779)) (-5 *1 (-731 *3 *4 *5)) (-4 *3 (-732 *4 *5)))))
+(-10 -8 (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -2688 (|#1|)) (-15 -3037 ((-779))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -1421 ((-697 |#2|) (-1279 |#1|) (-1 |#2| |#2|))) (-15 -2925 ((-3 |#1| "failed") (-415 |#3|))) (-15 -3222 (|#1| |#3|)) (-15 -2925 (|#1| |#3|)) (-15 -4267 (|#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3222 (|#3| |#1|)) (-15 -3222 (|#1| (-1279 |#2|))) (-15 -3222 ((-1279 |#2|) |#1|)) (-15 -1769 ((-1279 |#1|))) (-15 -3245 (|#3| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -2982 ((-3 |#1| "failed") |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 102 (|has| |#1| (-370)))) (-1697 (($ $) 103 (|has| |#1| (-370)))) (-1774 (((-112) $) 105 (|has| |#1| (-370)))) (-3385 (((-697 |#1|) (-1279 $)) 53) (((-697 |#1|)) 68)) (-2055 ((|#1| $) 59)) (-4380 (((-1201 (-930) (-779)) (-572)) 155 (|has| |#1| (-356)))) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 122 (|has| |#1| (-370)))) (-2359 (((-426 $) $) 123 (|has| |#1| (-370)))) (-4252 (((-112) $ $) 113 (|has| |#1| (-370)))) (-3037 (((-779)) 96 (|has| |#1| (-375)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 178 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 176 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 173)) (-1869 (((-572) $) 177 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 175 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 174)) (-2372 (($ (-1279 |#1|) (-1279 $)) 55) (($ (-1279 |#1|)) 71)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-356)))) (-3407 (($ $ $) 117 (|has| |#1| (-370)))) (-1649 (((-697 |#1|) $ (-1279 $)) 60) (((-697 |#1|) $) 66)) (-2245 (((-697 (-572)) (-697 $)) 172 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 171 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 170) (((-697 |#1|) (-697 $)) 169)) (-2925 (($ |#2|) 166) (((-3 $ "failed") (-415 |#2|)) 163 (|has| |#1| (-370)))) (-2982 (((-3 $ "failed") $) 37)) (-1526 (((-930)) 61)) (-2688 (($) 99 (|has| |#1| (-375)))) (-3418 (($ $ $) 116 (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 111 (|has| |#1| (-370)))) (-1345 (($) 157 (|has| |#1| (-356)))) (-2754 (((-112) $) 158 (|has| |#1| (-356)))) (-3156 (($ $ (-779)) 149 (|has| |#1| (-356))) (($ $) 148 (|has| |#1| (-356)))) (-3439 (((-112) $) 124 (|has| |#1| (-370)))) (-2068 (((-930) $) 160 (|has| |#1| (-356))) (((-841 (-930)) $) 146 (|has| |#1| (-356)))) (-4422 (((-112) $) 35)) (-2140 ((|#1| $) 58)) (-3396 (((-3 $ "failed") $) 150 (|has| |#1| (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 120 (|has| |#1| (-370)))) (-2179 ((|#2| $) 51 (|has| |#1| (-370)))) (-4370 (((-930) $) 98 (|has| |#1| (-375)))) (-2913 ((|#2| $) 164)) (-1335 (($ (-652 $)) 109 (|has| |#1| (-370))) (($ $ $) 108 (|has| |#1| (-370)))) (-3618 (((-1170) $) 10)) (-1809 (($ $) 125 (|has| |#1| (-370)))) (-3477 (($) 151 (|has| |#1| (-356)) CONST)) (-1795 (($ (-930)) 97 (|has| |#1| (-375)))) (-2614 (((-1131) $) 11)) (-4267 (($) 168)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 110 (|has| |#1| (-370)))) (-1370 (($ (-652 $)) 107 (|has| |#1| (-370))) (($ $ $) 106 (|has| |#1| (-370)))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) 154 (|has| |#1| (-356)))) (-2972 (((-426 $) $) 121 (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 118 (|has| |#1| (-370)))) (-3453 (((-3 $ "failed") $ $) 101 (|has| |#1| (-370)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 112 (|has| |#1| (-370)))) (-4395 (((-779) $) 114 (|has| |#1| (-370)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 115 (|has| |#1| (-370)))) (-2020 ((|#1| (-1279 $)) 54) ((|#1|) 67)) (-1468 (((-779) $) 159 (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) 147 (|has| |#1| (-356)))) (-3011 (($ $) 145 (-3783 (-3804 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) 143 (-3783 (-3804 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) 141 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188))) 140 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1188) (-779)) 139 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-779))) 138 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1 |#1| |#1|) (-779)) 131 (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-370)))) (-1421 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-370)))) (-3858 ((|#2|) 167)) (-2817 (($) 156 (|has| |#1| (-356)))) (-2862 (((-1279 |#1|) $ (-1279 $)) 57) (((-697 |#1|) (-1279 $) (-1279 $)) 56) (((-1279 |#1|) $) 73) (((-697 |#1|) (-1279 $)) 72)) (-3222 (((-1279 |#1|) $) 70) (($ (-1279 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 153 (|has| |#1| (-356)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-370))) (($ (-415 (-572))) 95 (-3783 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-2210 (($ $) 152 (|has| |#1| (-356))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3245 ((|#2| $) 52)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-1769 (((-1279 $)) 74)) (-2466 (((-112) $ $) 104 (|has| |#1| (-370)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $) 144 (-3783 (-3804 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) 142 (-3783 (-3804 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) 137 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188))) 136 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1188) (-779)) 135 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-779))) 134 (-3804 (|has| |#1| (-909 (-1188))) (|has| |#1| (-370)))) (($ $ (-1 |#1| |#1|) (-779)) 133 (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-370)))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 129 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 126 (|has| |#1| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-415 (-572)) $) 128 (|has| |#1| (-370))) (($ $ (-415 (-572))) 127 (|has| |#1| (-370)))))
+(((-732 |#1| |#2|) (-141) (-174) (-1255 |t#1|)) (T -732))
+((-4267 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-732 *2 *3)) (-4 *3 (-1255 *2)))) (-3858 (*1 *2) (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3)))) (-2925 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3)))) (-3222 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3)))) (-2925 (*1 *1 *2) (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-370)) (-4 *3 (-174)) (-4 *1 (-732 *3 *4)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-1279 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370)) (-4 *1 (-732 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1255 *5)) (-5 *2 (-697 *5)))))
+(-13 (-417 |t#1| |t#2|) (-174) (-622 |t#2|) (-419 |t#1|) (-384 |t#1|) (-10 -8 (-15 -4267 ($)) (-15 -3858 (|t#2|)) (-15 -2925 ($ |t#2|)) (-15 -3222 ($ |t#2|)) (-15 -2913 (|t#2| $)) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-6 (-233 |t#1|)) (-15 -2925 ((-3 $ "failed") (-415 |t#2|))) (-15 -1421 ((-697 |t#1|) (-1279 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-38 |#1|) . T) ((-38 $) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-102) . T) ((-111 #0# #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3783 (|has| |#1| (-356)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-356)) (|has| |#1| (-370))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) . T) ((-622 |#2|) . T) ((-233 |#1|) |has| |#1| (-370)) ((-237) -3783 (|has| |#1| (-356)) (-12 (|has| |#1| (-237)) (|has| |#1| (-370)))) ((-247) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-296) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-313) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-370) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-410) |has| |#1| (-356)) ((-375) -3783 (|has| |#1| (-375)) (|has| |#1| (-356))) ((-356) |has| |#1| (-356)) ((-377 |#1| |#2|) . T) ((-417 |#1| |#2|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-564) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-654 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-648 |#1|) . T) ((-648 $) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-725 |#1|) . T) ((-725 $) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188)))) ((-929) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-356)) ((-1233) -3783 (|has| |#1| (-356)) (|has| |#1| (-370))))
+((-1586 (($) 11)) (-2982 (((-3 $ "failed") $) 14)) (-4422 (((-112) $) 10)) (** (($ $ (-930)) NIL) (($ $ (-779)) 20)))
+(((-733 |#1|) (-10 -8 (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 -4422 ((-112) |#1|)) (-15 -1586 (|#1|)) (-15 ** (|#1| |#1| (-930)))) (-734)) (T -733))
+NIL
+(-10 -8 (-15 -2982 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-779))) (-15 -4422 ((-112) |#1|)) (-15 -1586 (|#1|)) (-15 ** (|#1| |#1| (-930))))
+((-3464 (((-112) $ $) 7)) (-1586 (($) 19 T CONST)) (-2982 (((-3 $ "failed") $) 16)) (-4422 (((-112) $) 18)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2619 (($) 20 T CONST)) (-3921 (((-112) $ $) 6)) (** (($ $ (-930)) 14) (($ $ (-779)) 17)) (* (($ $ $) 15)))
+(((-734) (-141)) (T -734))
+((-2619 (*1 *1) (-4 *1 (-734))) (-1586 (*1 *1) (-4 *1 (-734))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-779)))) (-2982 (*1 *1 *1) (|partial| -4 *1 (-734))))
+(-13 (-1123) (-10 -8 (-15 (-2619) ($) -4338) (-15 -1586 ($) -4338) (-15 -4422 ((-112) $)) (-15 ** ($ $ (-779))) (-15 -2982 ((-3 $ "failed") $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1123) . T) ((-1111) . T))
+((-3310 (((-2 (|:| -2107 (-426 |#2|)) (|:| |special| (-426 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3339 (((-2 (|:| -2107 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3458 ((|#2| (-415 |#2|) (-1 |#2| |#2|)) 13)) (-2572 (((-2 (|:| |poly| |#2|) (|:| -2107 (-415 |#2|)) (|:| |special| (-415 |#2|))) (-415 |#2|) (-1 |#2| |#2|)) 48)))
+(((-735 |#1| |#2|) (-10 -7 (-15 -3339 ((-2 (|:| -2107 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3310 ((-2 (|:| -2107 (-426 |#2|)) (|:| |special| (-426 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3458 (|#2| (-415 |#2|) (-1 |#2| |#2|))) (-15 -2572 ((-2 (|:| |poly| |#2|) (|:| -2107 (-415 |#2|)) (|:| |special| (-415 |#2|))) (-415 |#2|) (-1 |#2| |#2|)))) (-370) (-1255 |#1|)) (T -735))
+((-2572 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2107 (-415 *6)) (|:| |special| (-415 *6)))) (-5 *1 (-735 *5 *6)) (-5 *3 (-415 *6)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-415 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1255 *5)) (-5 *1 (-735 *5 *2)) (-4 *5 (-370)))) (-3310 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -2107 (-426 *3)) (|:| |special| (-426 *3)))) (-5 *1 (-735 *5 *3)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -2107 *3) (|:| |special| *3))) (-5 *1 (-735 *5 *3)))))
+(-10 -7 (-15 -3339 ((-2 (|:| -2107 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3310 ((-2 (|:| -2107 (-426 |#2|)) (|:| |special| (-426 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3458 (|#2| (-415 |#2|) (-1 |#2| |#2|))) (-15 -2572 ((-2 (|:| |poly| |#2|) (|:| -2107 (-415 |#2|)) (|:| |special| (-415 |#2|))) (-415 |#2|) (-1 |#2| |#2|))))
+((-3122 ((|#7| (-652 |#5|) |#6|) NIL)) (-3161 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-736 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3161 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3122 (|#7| (-652 |#5|) |#6|))) (-858) (-801) (-801) (-1060) (-1060) (-958 |#4| |#2| |#1|) (-958 |#5| |#3| |#1|)) (T -736))
+((-3122 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *9)) (-4 *9 (-1060)) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *8 (-1060)) (-4 *2 (-958 *9 *7 *5)) (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801)) (-4 *4 (-958 *8 *6 *5)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1060)) (-4 *9 (-1060)) (-4 *5 (-858)) (-4 *6 (-801)) (-4 *2 (-958 *9 *7 *5)) (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801)) (-4 *4 (-958 *8 *6 *5)))))
+(-10 -7 (-15 -3161 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3122 (|#7| (-652 |#5|) |#6|)))
+((-3161 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-737 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3161 (|#7| (-1 |#2| |#1|) |#6|))) (-858) (-858) (-801) (-801) (-1060) (-958 |#5| |#3| |#1|) (-958 |#5| |#4| |#2|)) (T -737))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-858)) (-4 *6 (-858)) (-4 *7 (-801)) (-4 *9 (-1060)) (-4 *2 (-958 *9 *8 *6)) (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-801)) (-4 *4 (-958 *9 *7 *5)))))
+(-10 -7 (-15 -3161 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2972 (((-426 |#4|) |#4|) 42)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-426 |#4|) |#4|))) (-801) (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188))))) (-313) (-958 (-961 |#3|) |#1| |#2|)) (T -738))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188)))))) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-958 (-961 *6) *4 *5)))))
+(-10 -7 (-15 -2972 ((-426 |#4|) |#4|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-872 |#1|)) $) NIL)) (-4063 (((-1184 $) $ (-872 |#1|)) NIL) (((-1184 |#2|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-1697 (($ $) NIL (|has| |#2| (-564)))) (-1774 (((-112) $) NIL (|has| |#2| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-872 |#1|))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1861 (($ $) NIL (|has| |#2| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-872 |#1|) "failed") $) NIL)) (-1869 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-872 |#1|) $) NIL)) (-3829 (($ $ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#2| (-918)))) (-3163 (($ $ |#2| (-539 (-872 |#1|)) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-872 |#1|) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3060 (($ (-1184 |#2|) (-872 |#1|)) NIL) (($ (-1184 $) (-872 |#1|)) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#2| (-539 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-872 |#1|)) NIL)) (-3808 (((-539 (-872 |#1|)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-2008 (($ (-1 (-539 (-872 |#1|)) (-539 (-872 |#1|))) $) NIL)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-4107 (((-3 (-872 |#1|) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#2| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3618 (((-1170) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-872 |#1|)) (|:| -2477 (-779))) "failed") $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#2| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#2| (-918)))) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-872 |#1|) |#2|) NIL) (($ $ (-652 (-872 |#1|)) (-652 |#2|)) NIL) (($ $ (-872 |#1|) $) NIL) (($ $ (-652 (-872 |#1|)) (-652 $)) NIL)) (-2020 (($ $ (-872 |#1|)) NIL (|has| |#2| (-174)))) (-3011 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-1497 (((-539 (-872 |#1|)) $) NIL) (((-779) $ (-872 |#1|)) NIL) (((-652 (-779)) $ (-652 (-872 |#1|))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-872 |#1|) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-872 |#1|) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-3262 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-872 |#1|)) NIL (|has| |#2| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-872 |#1|)) NIL) (($ $) NIL (|has| |#2| (-564))) (($ (-415 (-572))) NIL (-3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572))))))) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-539 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-872 |#1|)) NIL) (($ $ (-652 (-872 |#1|))) NIL) (($ $ (-872 |#1|) (-779)) NIL) (($ $ (-652 (-872 |#1|)) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-739 |#1| |#2|) (-958 |#2| (-539 (-872 |#1|)) (-872 |#1|)) (-652 (-1188)) (-1060)) (T -739))
+NIL
+(-958 |#2| (-539 (-872 |#1|)) (-872 |#1|))
+((-1864 (((-2 (|:| -2486 (-961 |#3|)) (|:| -4075 (-961 |#3|))) |#4|) 14)) (-2647 ((|#4| |#4| |#2|) 33)) (-3810 ((|#4| (-415 (-961 |#3|)) |#2|) 64)) (-2473 ((|#4| (-1184 (-961 |#3|)) |#2|) 77)) (-3022 ((|#4| (-1184 |#4|) |#2|) 51)) (-2014 ((|#4| |#4| |#2|) 54)) (-2972 (((-426 |#4|) |#4|) 40)))
+(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 ((-2 (|:| -2486 (-961 |#3|)) (|:| -4075 (-961 |#3|))) |#4|)) (-15 -2014 (|#4| |#4| |#2|)) (-15 -3022 (|#4| (-1184 |#4|) |#2|)) (-15 -2647 (|#4| |#4| |#2|)) (-15 -2473 (|#4| (-1184 (-961 |#3|)) |#2|)) (-15 -3810 (|#4| (-415 (-961 |#3|)) |#2|)) (-15 -2972 ((-426 |#4|) |#4|))) (-801) (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)))) (-564) (-958 (-415 (-961 |#3|)) |#1| |#2|)) (T -740))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *6 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-958 (-415 (-961 *6)) *4 *5)))) (-3810 (*1 *2 *3 *4) (-12 (-4 *6 (-564)) (-4 *2 (-958 *3 *5 *4)) (-5 *1 (-740 *5 *4 *6 *2)) (-5 *3 (-415 (-961 *6))) (-4 *5 (-801)) (-4 *4 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 (-961 *6))) (-4 *6 (-564)) (-4 *2 (-958 (-415 (-961 *6)) *5 *4)) (-5 *1 (-740 *5 *4 *6 *2)) (-4 *5 (-801)) (-4 *4 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))))) (-2647 (*1 *2 *2 *3) (-12 (-4 *4 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *5 (-564)) (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3)))) (-3022 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *2)) (-4 *2 (-958 (-415 (-961 *6)) *5 *4)) (-5 *1 (-740 *5 *4 *6 *2)) (-4 *5 (-801)) (-4 *4 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *6 (-564)))) (-2014 (*1 *2 *2 *3) (-12 (-4 *4 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *5 (-564)) (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3)))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *6 (-564)) (-5 *2 (-2 (|:| -2486 (-961 *6)) (|:| -4075 (-961 *6)))) (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-958 (-415 (-961 *6)) *4 *5)))))
+(-10 -7 (-15 -1864 ((-2 (|:| -2486 (-961 |#3|)) (|:| -4075 (-961 |#3|))) |#4|)) (-15 -2014 (|#4| |#4| |#2|)) (-15 -3022 (|#4| (-1184 |#4|) |#2|)) (-15 -2647 (|#4| |#4| |#2|)) (-15 -2473 (|#4| (-1184 (-961 |#3|)) |#2|)) (-15 -3810 (|#4| (-415 (-961 |#3|)) |#2|)) (-15 -2972 ((-426 |#4|) |#4|)))
+((-2972 (((-426 |#4|) |#4|) 54)))
+(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-426 |#4|) |#4|))) (-801) (-858) (-13 (-313) (-148)) (-958 (-415 |#3|) |#1| |#2|)) (T -741))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-13 (-313) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-958 (-415 *6) *4 *5)))))
+(-10 -7 (-15 -2972 ((-426 |#4|) |#4|)))
+((-3161 (((-743 |#2| |#3|) (-1 |#2| |#1|) (-743 |#1| |#3|)) 18)))
+(((-742 |#1| |#2| |#3|) (-10 -7 (-15 -3161 ((-743 |#2| |#3|) (-1 |#2| |#1|) (-743 |#1| |#3|)))) (-1060) (-1060) (-734)) (T -742))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5 *7)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *7 (-734)) (-5 *2 (-743 *6 *7)) (-5 *1 (-742 *5 *6 *7)))))
+(-10 -7 (-15 -3161 ((-743 |#2| |#3|) (-1 |#2| |#1|) (-743 |#1| |#3|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 36)) (-2709 (((-652 (-2 (|:| -2379 |#1|) (|:| -4298 |#2|))) $) 37)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3037 (((-779)) 22 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-1869 ((|#2| $) NIL) ((|#1| $) NIL)) (-1874 (($ $) 102 (|has| |#2| (-858)))) (-2982 (((-3 $ "failed") $) 85)) (-2688 (($) 48 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) 70)) (-3715 (((-652 $) $) 52)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| |#2|) 17)) (-3161 (($ (-1 |#1| |#1|) $) 68)) (-4370 (((-930) $) 43 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-1840 ((|#2| $) 101 (|has| |#2| (-858)))) (-1853 ((|#1| $) 100 (|has| |#2| (-858)))) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) 35 (-12 (|has| |#2| (-375)) (|has| |#1| (-375))))) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 99) (($ (-572)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-652 (-2 (|:| -2379 |#1|) (|:| -4298 |#2|)))) 11)) (-1708 (((-652 |#1|) $) 54)) (-4206 ((|#1| $ |#2|) 115)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 12 T CONST)) (-2619 (($) 44 T CONST)) (-3921 (((-112) $ $) 105)) (-4018 (($ $) 61) (($ $ $) NIL)) (-4005 (($ $ $) 33)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-743 |#1| |#2|) (-13 (-1060) (-1049 |#2|) (-1049 |#1|) (-10 -8 (-15 -3042 ($ |#1| |#2|)) (-15 -4206 (|#1| $ |#2|)) (-15 -3491 ($ (-652 (-2 (|:| -2379 |#1|) (|:| -4298 |#2|))))) (-15 -2709 ((-652 (-2 (|:| -2379 |#1|) (|:| -4298 |#2|))) $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (-15 -3357 ((-112) $)) (-15 -1708 ((-652 |#1|) $)) (-15 -3715 ((-652 $) $)) (-15 -2348 ((-779) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-858)) (PROGN (-15 -1840 (|#2| $)) (-15 -1853 (|#1| $)) (-15 -1874 ($ $))) |%noBranch|))) (-1060) (-734)) (T -743))
+((-3042 (*1 *1 *2 *3) (-12 (-5 *1 (-743 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-734)))) (-4206 (*1 *2 *1 *3) (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-734)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -2379 *3) (|:| -4298 *4)))) (-4 *3 (-1060)) (-4 *4 (-734)) (-5 *1 (-743 *3 *4)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -2379 *3) (|:| -4298 *4)))) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-743 *3 *4)) (-4 *4 (-734)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-652 (-743 *3 *4))) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734)))) (-1840 (*1 *2 *1) (-12 (-4 *2 (-734)) (-4 *2 (-858)) (-5 *1 (-743 *3 *2)) (-4 *3 (-1060)))) (-1853 (*1 *2 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-858)) (-4 *3 (-734)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-743 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1060)) (-4 *3 (-734)))))
+(-13 (-1060) (-1049 |#2|) (-1049 |#1|) (-10 -8 (-15 -3042 ($ |#1| |#2|)) (-15 -4206 (|#1| $ |#2|)) (-15 -3491 ($ (-652 (-2 (|:| -2379 |#1|) (|:| -4298 |#2|))))) (-15 -2709 ((-652 (-2 (|:| -2379 |#1|) (|:| -4298 |#2|))) $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (-15 -3357 ((-112) $)) (-15 -1708 ((-652 |#1|) $)) (-15 -3715 ((-652 $) $)) (-15 -2348 ((-779) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-858)) (PROGN (-15 -1840 (|#2| $)) (-15 -1853 (|#1| $)) (-15 -1874 ($ $))) |%noBranch|)))
+((-3464 (((-112) $ $) 19)) (-2266 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3395 (($ $ $) 73)) (-3219 (((-112) $ $) 74)) (-2938 (((-112) $ (-779)) 8)) (-1926 (($ (-652 |#1|)) 69) (($) 68)) (-2265 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-1727 (($ $) 63)) (-3955 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2942 (((-112) $ $) 65)) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22)) (-3225 (($ $ $) 70)) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41) (($ |#1| $ (-779)) 64)) (-2614 (((-1131) $) 21)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2526 (((-652 (-2 (|:| -3762 |#1|) (|:| -1371 (-779)))) $) 62)) (-2645 (($ $ |#1|) 72) (($ $ $) 71)) (-2145 (($) 50) (($ (-652 |#1|)) 49)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 51)) (-3491 (((-870) $) 18)) (-3826 (($ (-652 |#1|)) 67) (($) 66)) (-3424 (((-112) $ $) 23)) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20)) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-744 |#1|) (-141) (-1111)) (T -744))
+NIL
+(-13 (-703 |t#1|) (-1109 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-703 |#1|) . T) ((-1109 |#1|) . T) ((-1111) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-2266 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3395 (($ $ $) 96)) (-3219 (((-112) $ $) 104)) (-2938 (((-112) $ (-779)) NIL)) (-1926 (($ (-652 |#1|)) 26) (($) 17)) (-2265 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-1727 (($ $) 85)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) 70 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454))) (($ |#1| $ (-572)) 75) (($ (-1 (-112) |#1|) $ (-572)) 78)) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (($ |#1| $ (-572)) 80) (($ (-1 (-112) |#1|) $ (-572)) 81)) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 32 (|has| $ (-6 -4454)))) (-2942 (((-112) $ $) 103)) (-3279 (($) 15) (($ |#1|) 28) (($ (-652 |#1|)) 23)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) 38)) (-4211 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 89)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-3225 (($ $ $) 94)) (-1533 ((|#1| $) 62)) (-3704 (($ |#1| $) 63) (($ |#1| $ (-779)) 86)) (-2614 (((-1131) $) NIL)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4105 ((|#1| $) 61)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 56)) (-1321 (($) 14)) (-2526 (((-652 (-2 (|:| -3762 |#1|) (|:| -1371 (-779)))) $) 55)) (-2645 (($ $ |#1|) NIL) (($ $ $) 95)) (-2145 (($) 16) (($ (-652 |#1|)) 25)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) 68 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 79)) (-3222 (((-544) $) 36 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 22)) (-3491 (((-870) $) 49)) (-3826 (($ (-652 |#1|)) 27) (($) 18)) (-3424 (((-112) $ $) NIL)) (-4163 (($ (-652 |#1|)) 24)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 100)) (-3475 (((-779) $) 67 (|has| $ (-6 -4454)))))
+(((-745 |#1|) (-13 (-744 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -3279 ($)) (-15 -3279 ($ |#1|)) (-15 -3279 ($ (-652 |#1|))) (-15 -2396 ((-652 |#1|) $)) (-15 -4243 ($ |#1| $ (-572))) (-15 -4243 ($ (-1 (-112) |#1|) $ (-572))) (-15 -3033 ($ |#1| $ (-572))) (-15 -3033 ($ (-1 (-112) |#1|) $ (-572))))) (-1111)) (T -745))
+((-3279 (*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-3279 (*1 *1 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-3279 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-745 *3)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-745 *3)) (-4 *3 (-1111)))) (-4243 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-4243 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111)) (-5 *1 (-745 *4)))) (-3033 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111)))) (-3033 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111)) (-5 *1 (-745 *4)))))
+(-13 (-744 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -3279 ($)) (-15 -3279 ($ |#1|)) (-15 -3279 ($ (-652 |#1|))) (-15 -2396 ((-652 |#1|) $)) (-15 -4243 ($ |#1| $ (-572))) (-15 -4243 ($ (-1 (-112) |#1|) $ (-572))) (-15 -3033 ($ |#1| $ (-572))) (-15 -3033 ($ (-1 (-112) |#1|) $ (-572)))))
+((-2073 (((-1284) (-1170)) 8)))
+(((-746) (-10 -7 (-15 -2073 ((-1284) (-1170))))) (T -746))
+((-2073 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-746)))))
+(-10 -7 (-15 -2073 ((-1284) (-1170))))
+((-1945 (((-652 |#1|) (-652 |#1|) (-652 |#1|)) 15)))
+(((-747 |#1|) (-10 -7 (-15 -1945 ((-652 |#1|) (-652 |#1|) (-652 |#1|)))) (-858)) (T -747))
+((-1945 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-747 *3)))))
+(-10 -7 (-15 -1945 ((-652 |#1|) (-652 |#1|) (-652 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 |#2|) $) 148)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 141 (|has| |#1| (-564)))) (-1697 (($ $) 140 (|has| |#1| (-564)))) (-1774 (((-112) $) 138 (|has| |#1| (-564)))) (-3915 (($ $) 97 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 80 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) 20)) (-3093 (($ $) 79 (|has| |#1| (-38 (-415 (-572)))))) (-3893 (($ $) 96 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 81 (|has| |#1| (-38 (-415 (-572)))))) (-3939 (($ $) 95 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 82 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) 18 T CONST)) (-1874 (($ $) 132)) (-2982 (((-3 $ "failed") $) 37)) (-3102 (((-961 |#1|) $ (-779)) 110) (((-961 |#1|) $ (-779) (-779)) 109)) (-2969 (((-112) $) 149)) (-2250 (($) 107 (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-779) $ |#2|) 112) (((-779) $ |#2| (-779)) 111)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 78 (|has| |#1| (-38 (-415 (-572)))))) (-3357 (((-112) $) 130)) (-3042 (($ $ (-652 |#2|) (-652 (-539 |#2|))) 147) (($ $ |#2| (-539 |#2|)) 146) (($ |#1| (-539 |#2|)) 131) (($ $ |#2| (-779)) 114) (($ $ (-652 |#2|) (-652 (-779))) 113)) (-3161 (($ (-1 |#1| |#1|) $) 129)) (-4057 (($ $) 104 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) 127)) (-1853 ((|#1| $) 126)) (-3618 (((-1170) $) 10)) (-4161 (($ $ |#2|) 108 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) 11)) (-3103 (($ $ (-779)) 115)) (-3453 (((-3 $ "failed") $ $) 142 (|has| |#1| (-564)))) (-3272 (($ $) 105 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (($ $ |#2| $) 123) (($ $ (-652 |#2|) (-652 $)) 122) (($ $ (-652 (-300 $))) 121) (($ $ (-300 $)) 120) (($ $ $ $) 119) (($ $ (-652 $) (-652 $)) 118)) (-3011 (($ $ |#2|) 46) (($ $ (-652 |#2|)) 45) (($ $ |#2| (-779)) 44) (($ $ (-652 |#2|) (-652 (-779))) 43)) (-1497 (((-539 |#2|) $) 128)) (-2139 (($ $) 94 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 83 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 93 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 84 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 92 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 85 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 150)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-564))) (($ (-415 (-572))) 135 (|has| |#1| (-38 (-415 (-572)))))) (-4206 ((|#1| $ (-539 |#2|)) 133) (($ $ |#2| (-779)) 117) (($ $ (-652 |#2|) (-652 (-779))) 116)) (-2210 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2176 (($ $) 103 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 91 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) 139 (|has| |#1| (-564)))) (-2152 (($ $) 102 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 90 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 101 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 89 (|has| |#1| (-38 (-415 (-572)))))) (-3120 (($ $) 100 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 88 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 99 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 87 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 98 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 86 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ |#2|) 42) (($ $ (-652 |#2|)) 41) (($ $ |#2| (-779)) 40) (($ $ (-652 |#2|) (-652 (-779))) 39)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 134 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ $) 106 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 77 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 137 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 136 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
+(((-748 |#1| |#2|) (-141) (-1060) (-858)) (T -748))
+((-4206 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060)) (-4 *2 (-858)))) (-4206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-748 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-858)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060)) (-4 *2 (-858)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)))) (-2068 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *4 *3)) (-4 *4 (-1060)) (-4 *3 (-858)) (-5 *2 (-779)))) (-2068 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-779)) (-4 *1 (-748 *4 *3)) (-4 *4 (-1060)) (-4 *3 (-858)))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)) (-5 *2 (-961 *4)))) (-3102 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060)) (-4 *5 (-858)) (-5 *2 (-961 *4)))) (-4161 (*1 *1 *1 *2) (-12 (-4 *1 (-748 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858)) (-4 *3 (-38 (-415 (-572)))))))
+(-13 (-909 |t#2|) (-984 |t#1| (-539 |t#2|) |t#2|) (-522 |t#2| $) (-315 $) (-10 -8 (-15 -4206 ($ $ |t#2| (-779))) (-15 -4206 ($ $ (-652 |t#2|) (-652 (-779)))) (-15 -3103 ($ $ (-779))) (-15 -3042 ($ $ |t#2| (-779))) (-15 -3042 ($ $ (-652 |t#2|) (-652 (-779)))) (-15 -2068 ((-779) $ |t#2|)) (-15 -2068 ((-779) $ |t#2| (-779))) (-15 -3102 ((-961 |t#1|) $ (-779))) (-15 -3102 ((-961 |t#1|) $ (-779) (-779))) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $ |t#2|)) (-6 (-1013)) (-6 (-1214))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-539 |#2|)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-296) |has| |#1| (-564)) ((-315 $) . T) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-522 |#2| $) . T) ((-522 $ $) . T) ((-564) |has| |#1| (-564)) ((-654 #1#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #1#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-909 |#2|) . T) ((-984 |#1| #0# |#2|) . T) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))))
+((-2972 (((-426 (-1184 |#4|)) (-1184 |#4|)) 30) (((-426 |#4|) |#4|) 26)))
+(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-426 |#4|) |#4|)) (-15 -2972 ((-426 (-1184 |#4|)) (-1184 |#4|)))) (-858) (-801) (-13 (-313) (-148)) (-958 |#3| |#2| |#1|)) (T -749))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-749 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148))) (-5 *2 (-426 *3)) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
+(-10 -7 (-15 -2972 ((-426 |#4|) |#4|)) (-15 -2972 ((-426 (-1184 |#4|)) (-1184 |#4|))))
+((-1339 (((-426 |#4|) |#4| |#2|) 140)) (-2007 (((-426 |#4|) |#4|) NIL)) (-2359 (((-426 (-1184 |#4|)) (-1184 |#4|)) 127) (((-426 |#4|) |#4|) 52)) (-1447 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-652 (-2 (|:| -2972 (-1184 |#4|)) (|:| -2477 (-572)))))) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|))) 81)) (-3117 (((-1184 |#3|) (-1184 |#3|) (-572)) 166)) (-4050 (((-652 (-779)) (-1184 |#4|) (-652 |#2|) (-779)) 75)) (-2913 (((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-1184 |#3|) (-1184 |#3|) |#4| (-652 |#2|) (-652 (-779)) (-652 |#3|)) 79)) (-2621 (((-2 (|:| |upol| (-1184 |#3|)) (|:| |Lval| (-652 |#3|)) (|:| |Lfact| (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572))))) (|:| |ctpol| |#3|)) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|))) 27)) (-2763 (((-2 (|:| -3888 (-1184 |#4|)) (|:| |polval| (-1184 |#3|))) (-1184 |#4|) (-1184 |#3|) (-572)) 72)) (-3754 (((-572) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572))))) 162)) (-4229 ((|#4| (-572) (-426 |#4|)) 73)) (-3127 (((-112) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572)))) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572))))) NIL)))
+(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2359 ((-426 |#4|) |#4|)) (-15 -2359 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -2007 ((-426 |#4|) |#4|)) (-15 -3754 ((-572) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572)))))) (-15 -1339 ((-426 |#4|) |#4| |#2|)) (-15 -2763 ((-2 (|:| -3888 (-1184 |#4|)) (|:| |polval| (-1184 |#3|))) (-1184 |#4|) (-1184 |#3|) (-572))) (-15 -1447 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-652 (-2 (|:| -2972 (-1184 |#4|)) (|:| -2477 (-572)))))) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -2621 ((-2 (|:| |upol| (-1184 |#3|)) (|:| |Lval| (-652 |#3|)) (|:| |Lfact| (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572))))) (|:| |ctpol| |#3|)) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -4229 (|#4| (-572) (-426 |#4|))) (-15 -3127 ((-112) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572)))) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572)))))) (-15 -2913 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-1184 |#3|) (-1184 |#3|) |#4| (-652 |#2|) (-652 (-779)) (-652 |#3|))) (-15 -4050 ((-652 (-779)) (-1184 |#4|) (-652 |#2|) (-779))) (-15 -3117 ((-1184 |#3|) (-1184 |#3|) (-572)))) (-801) (-858) (-313) (-958 |#3| |#1| |#2|)) (T -750))
+((-3117 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *6)) (-5 *3 (-572)) (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-4050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-4 *7 (-858)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-4 *8 (-313)) (-5 *2 (-652 (-779))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *5 (-779)))) (-2913 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1184 *11)) (-5 *6 (-652 *10)) (-5 *7 (-652 (-779))) (-5 *8 (-652 *11)) (-4 *10 (-858)) (-4 *11 (-313)) (-4 *9 (-801)) (-4 *5 (-958 *11 *9 *10)) (-5 *2 (-652 (-1184 *5))) (-5 *1 (-750 *9 *10 *11 *5)) (-5 *3 (-1184 *5)))) (-3127 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-2 (|:| -2972 (-1184 *6)) (|:| -2477 (-572))))) (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *3 (-572)) (-5 *4 (-426 *2)) (-4 *2 (-958 *7 *5 *6)) (-5 *1 (-750 *5 *6 *7 *2)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-313)))) (-2621 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8))) (-4 *7 (-858)) (-4 *8 (-313)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-5 *2 (-2 (|:| |upol| (-1184 *8)) (|:| |Lval| (-652 *8)) (|:| |Lfact| (-652 (-2 (|:| -2972 (-1184 *8)) (|:| -2477 (-572))))) (|:| |ctpol| *8))) (-5 *1 (-750 *6 *7 *8 *9)))) (-1447 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8))) (-4 *7 (-858)) (-4 *8 (-313)) (-4 *6 (-801)) (-4 *9 (-958 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-652 (-2 (|:| -2972 (-1184 *9)) (|:| -2477 (-572))))))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)))) (-2763 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-572)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-313)) (-4 *9 (-958 *8 *6 *7)) (-5 *2 (-2 (|:| -3888 (-1184 *9)) (|:| |polval| (-1184 *8)))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)) (-5 *4 (-1184 *8)))) (-1339 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-750 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -2972 (-1184 *6)) (|:| -2477 (-572))))) (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-2007 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5)))))
+(-10 -7 (-15 -2359 ((-426 |#4|) |#4|)) (-15 -2359 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -2007 ((-426 |#4|) |#4|)) (-15 -3754 ((-572) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572)))))) (-15 -1339 ((-426 |#4|) |#4| |#2|)) (-15 -2763 ((-2 (|:| -3888 (-1184 |#4|)) (|:| |polval| (-1184 |#3|))) (-1184 |#4|) (-1184 |#3|) (-572))) (-15 -1447 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-652 (-2 (|:| -2972 (-1184 |#4|)) (|:| -2477 (-572)))))) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -2621 ((-2 (|:| |upol| (-1184 |#3|)) (|:| |Lval| (-652 |#3|)) (|:| |Lfact| (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572))))) (|:| |ctpol| |#3|)) (-1184 |#4|) (-652 |#2|) (-652 (-652 |#3|)))) (-15 -4229 (|#4| (-572) (-426 |#4|))) (-15 -3127 ((-112) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572)))) (-652 (-2 (|:| -2972 (-1184 |#3|)) (|:| -2477 (-572)))))) (-15 -2913 ((-3 (-652 (-1184 |#4|)) "failed") (-1184 |#4|) (-1184 |#3|) (-1184 |#3|) |#4| (-652 |#2|) (-652 (-779)) (-652 |#3|))) (-15 -4050 ((-652 (-779)) (-1184 |#4|) (-652 |#2|) (-779))) (-15 -3117 ((-1184 |#3|) (-1184 |#3|) (-572))))
+((-3100 (($ $ (-930)) 17)))
+(((-751 |#1| |#2|) (-10 -8 (-15 -3100 (|#1| |#1| (-930)))) (-752 |#2|) (-174)) (T -751))
+NIL
+(-10 -8 (-15 -3100 (|#1| |#1| (-930))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-4203 (($ $ (-930)) 31)) (-3100 (($ $ (-930)) 38)) (-3962 (($ $ (-930)) 32)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1433 (($ $ $) 28)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-1541 (($ $ $ $) 29)) (-1923 (($ $ $) 27)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-752 |#1|) (-141) (-174)) (T -752))
+((-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-752 *3)) (-4 *3 (-174)))))
+(-13 (-769) (-725 |t#1|) (-10 -8 (-15 -3100 ($ $ (-930)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-728) . T) ((-769) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
+((-1583 (((-1046) (-697 (-227)) (-572) (-112) (-572)) 25)) (-1865 (((-1046) (-697 (-227)) (-572) (-112) (-572)) 24)))
+(((-753) (-10 -7 (-15 -1865 ((-1046) (-697 (-227)) (-572) (-112) (-572))) (-15 -1583 ((-1046) (-697 (-227)) (-572) (-112) (-572))))) (T -753))
+((-1583 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-753)))) (-1865 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-753)))))
+(-10 -7 (-15 -1865 ((-1046) (-697 (-227)) (-572) (-112) (-572))) (-15 -1583 ((-1046) (-697 (-227)) (-572) (-112) (-572))))
+((-3411 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN)))) 43)) (-1624 (((-1046) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN)))) 39)) (-1818 (((-1046) (-227) (-227) (-227) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) 32)))
+(((-754) (-10 -7 (-15 -1818 ((-1046) (-227) (-227) (-227) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -1624 ((-1046) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN))))) (-15 -3411 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN))))))) (T -754))
+((-3411 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1046)) (-5 *1 (-754)))) (-1624 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1046)) (-5 *1 (-754)))) (-1818 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) (-5 *2 (-1046)) (-5 *1 (-754)))))
+(-10 -7 (-15 -1818 ((-1046) (-227) (-227) (-227) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -1624 ((-1046) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN))))) (-15 -3411 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN))))))
+((-1748 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 34)) (-4101 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 33)) (-3841 (((-1046) (-572) (-697 (-227)) (-572)) 32)) (-3341 (((-1046) (-572) (-697 (-227)) (-572)) 31)) (-3530 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 30)) (-1859 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 29)) (-4406 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572)) 28)) (-2071 (((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572)) 27)) (-1832 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 24)) (-2388 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572)) 23)) (-2411 (((-1046) (-572) (-697 (-227)) (-572)) 22)) (-1333 (((-1046) (-572) (-697 (-227)) (-572)) 21)))
+(((-755) (-10 -7 (-15 -1333 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -2411 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -2388 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1832 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2071 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4406 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1859 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3530 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3341 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3841 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -4101 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -1748 ((-1046) (-572) (-572) (-697 (-227)) (-572))))) (T -755))
+((-1748 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-4101 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3841 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3341 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-3530 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-1859 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-4406 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-2071 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-1832 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-2388 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-2411 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))) (-1333 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-755)))))
+(-10 -7 (-15 -1333 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -2411 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -2388 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1832 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2071 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4406 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1859 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3530 ((-1046) (-572) (-572) (-1170) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3341 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -3841 ((-1046) (-572) (-697 (-227)) (-572))) (-15 -4101 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -1748 ((-1046) (-572) (-572) (-697 (-227)) (-572))))
+((-3027 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3085 (((-1046) (-697 (-227)) (-697 (-227)) (-572) (-572)) 51)) (-2181 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3361 (((-1046) (-227) (-227) (-572) (-572) (-572) (-572)) 46)) (-3600 (((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 45)) (-1770 (((-1046) (-227) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 44)) (-2468 (((-1046) (-227) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 43)) (-4062 (((-1046) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) 42)) (-2024 (((-1046) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) 38)) (-3641 (((-1046) (-227) (-227) (-572) (-697 (-227)) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) 37)) (-2216 (((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) 33)) (-1343 (((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) 32)))
+(((-756) (-10 -7 (-15 -1343 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -2216 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -3641 ((-1046) (-227) (-227) (-572) (-697 (-227)) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -2024 ((-1046) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -4062 ((-1046) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -2468 ((-1046) (-227) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -1770 ((-1046) (-227) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -3600 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -3361 ((-1046) (-227) (-227) (-572) (-572) (-572) (-572))) (-15 -2181 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))) (-15 -3085 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-572))) (-15 -3027 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))))) (T -756))
+((-3027 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-3085 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-756)))) (-2181 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-3361 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-756)))) (-3600 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-1770 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-2468 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-4062 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-2024 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-3641 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-756)))) (-2216 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) (-5 *2 (-1046)) (-5 *1 (-756)))) (-1343 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) (-5 *2 (-1046)) (-5 *1 (-756)))))
+(-10 -7 (-15 -1343 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -2216 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -3641 ((-1046) (-227) (-227) (-572) (-697 (-227)) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -2024 ((-1046) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))) (-15 -4062 ((-1046) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -2468 ((-1046) (-227) (-227) (-227) (-227) (-572) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -1770 ((-1046) (-227) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -3600 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G))))) (-15 -3361 ((-1046) (-227) (-227) (-572) (-572) (-572) (-572))) (-15 -2181 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))) (-15 -3085 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-572))) (-15 -3027 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-227) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))))
+((-1512 (((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1503 (((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))) (-396) (-396)) 69) (((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1922 (((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG)))) 57)) (-3552 (((-1046) (-697 (-227)) (-697 (-227)) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) 50)) (-3537 (((-1046) (-227) (-572) (-572) (-1170) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) 49)) (-4115 (((-1046) (-227) (-572) (-572) (-227) (-1170) (-227) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) 45)) (-4249 (((-1046) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) 42)) (-1600 (((-1046) (-227) (-572) (-572) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-757) (-10 -7 (-15 -1600 ((-1046) (-227) (-572) (-572) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -4249 ((-1046) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -4115 ((-1046) (-227) (-572) (-572) (-227) (-1170) (-227) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -3537 ((-1046) (-227) (-572) (-572) (-1170) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -3552 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -1922 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG))))) (-15 -1503 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))) (-15 -1503 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))) (-396) (-396))) (-15 -1512 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -757))
+((-1512 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-1503 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-396)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-1503 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1046)) (-5 *1 (-757)))) (-1922 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-3552 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1046)) (-5 *1 (-757)))) (-3537 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-4115 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-4249 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))) (-1600 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
+(-10 -7 (-15 -1600 ((-1046) (-227) (-572) (-572) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -4249 ((-1046) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -4115 ((-1046) (-227) (-572) (-572) (-227) (-1170) (-227) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -3537 ((-1046) (-227) (-572) (-572) (-1170) (-572) (-227) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))) (-15 -3552 ((-1046) (-697 (-227)) (-697 (-227)) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))) (-15 -1922 ((-1046) (-227) (-227) (-572) (-227) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG))))) (-15 -1503 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))) (-15 -1503 ((-1046) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))) (-396) (-396))) (-15 -1512 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-3847 (((-1046) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-683 (-227)) (-572)) 45)) (-2099 (((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-1170) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY)))) 41)) (-3926 (((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 23)))
+(((-758) (-10 -7 (-15 -3926 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2099 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-1170) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY))))) (-15 -3847 ((-1046) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-683 (-227)) (-572))))) (T -758))
+((-3847 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-683 (-227))) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-758)))) (-2099 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1046)) (-5 *1 (-758)))) (-3926 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-758)))))
+(-10 -7 (-15 -3926 ((-1046) (-572) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2099 ((-1046) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-1170) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY))))) (-15 -3847 ((-1046) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-683 (-227)) (-572))))
+((-3141 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-697 (-227)) (-227) (-227) (-572)) 35)) (-3604 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-227) (-227) (-572)) 34)) (-4339 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-697 (-227)) (-227) (-227) (-572)) 33)) (-3507 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 29)) (-1429 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 28)) (-3297 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572)) 27)) (-3485 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572)) 24)) (-2509 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572)) 23)) (-2993 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572)) 22)) (-2356 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572)) 21)))
+(((-759) (-10 -7 (-15 -2356 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -2993 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2509 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3485 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3297 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572))) (-15 -1429 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3507 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4339 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-697 (-227)) (-227) (-227) (-572))) (-15 -3604 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-227) (-227) (-572))) (-15 -3141 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-697 (-227)) (-227) (-227) (-572))))) (T -759))
+((-3141 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-3604 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-4339 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227)) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-3507 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-1429 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-3297 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-759)))) (-3485 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-2509 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-2993 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))) (-2356 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-759)))))
+(-10 -7 (-15 -2356 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -2993 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2509 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3485 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -3297 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-227) (-572))) (-15 -1429 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3507 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -4339 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-697 (-227)) (-227) (-227) (-572))) (-15 -3604 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-227) (-227) (-572))) (-15 -3141 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-697 (-227)) (-227) (-227) (-572))))
+((-3821 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572)) 45)) (-2729 (((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-572)) 44)) (-3213 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572)) 43)) (-3248 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 42)) (-2113 (((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572)) 41)) (-2278 (((-1046) (-1170) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572)) 40)) (-1459 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572) (-572) (-572) (-227) (-697 (-227)) (-572)) 39)) (-1735 (((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572))) 38)) (-1608 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572)) 35)) (-3880 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572)) 34)) (-2831 (((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572)) 33)) (-3311 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 32)) (-2633 (((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572)) 31)) (-2205 (((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-572)) 30)) (-3204 (((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-572) (-572) (-572)) 29)) (-4233 (((-1046) (-572) (-572) (-572) (-227) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-572)) (-572) (-572) (-572)) 28)) (-1975 (((-1046) (-572) (-697 (-227)) (-227) (-572)) 24)) (-2838 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 21)))
+(((-760) (-10 -7 (-15 -2838 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1975 ((-1046) (-572) (-697 (-227)) (-227) (-572))) (-15 -4233 ((-1046) (-572) (-572) (-572) (-227) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-572)) (-572) (-572) (-572))) (-15 -3204 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -2205 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-572))) (-15 -2633 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572))) (-15 -3311 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2831 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572))) (-15 -3880 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572))) (-15 -1608 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1735 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)))) (-15 -1459 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572) (-572) (-572) (-227) (-697 (-227)) (-572))) (-15 -2278 ((-1046) (-1170) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -2113 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3248 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3213 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -2729 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3821 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))))) (T -760))
+((-3821 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2729 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3213 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3248 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2113 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2278 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227)) (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1459 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227)) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1735 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227)) (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1608 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3880 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2831 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3311 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2633 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2205 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-3204 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-4233 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-1975 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))) (-2838 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-760)))))
+(-10 -7 (-15 -2838 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1975 ((-1046) (-572) (-697 (-227)) (-227) (-572))) (-15 -4233 ((-1046) (-572) (-572) (-572) (-227) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-572)) (-572) (-572) (-572))) (-15 -3204 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -2205 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572) (-572) (-572))) (-15 -2633 ((-1046) (-572) (-227) (-227) (-697 (-227)) (-572) (-572) (-227) (-572))) (-15 -3311 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2831 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572))) (-15 -3880 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572))) (-15 -1608 ((-1046) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1735 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)))) (-15 -1459 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572) (-572) (-572) (-227) (-697 (-227)) (-572))) (-15 -2278 ((-1046) (-1170) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -2113 ((-1046) (-1170) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3248 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3213 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))) (-15 -2729 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3821 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572) (-697 (-227)) (-697 (-227)) (-572) (-572) (-572))))
+((-1575 (((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-572) (-697 (-227)) (-572)) 63)) (-2091 (((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-112) (-227) (-572) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-572) (-572) (-572) (-572) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3878 (((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-112) (-112) (-572) (-572) (-697 (-227)) (-697 (-572)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS)))) 58)) (-3228 (((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-572) (-572) (-697 (-227)) (-572)) 51)) (-2297 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1)))) 50)) (-4384 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2710 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4024 (((-1046) (-572) (-227) (-227) (-572) (-227) (-112) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-761) (-10 -7 (-15 -4024 ((-1046) (-572) (-227) (-227) (-572) (-227) (-112) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -2710 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1))))) (-15 -4384 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2))))) (-15 -2297 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1))))) (-15 -3228 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-572) (-572) (-697 (-227)) (-572))) (-15 -3878 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-112) (-112) (-572) (-572) (-697 (-227)) (-697 (-572)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS))))) (-15 -2091 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-112) (-227) (-572) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-572) (-572) (-572) (-572) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -1575 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-572) (-697 (-227)) (-572))))) (T -761))
+((-1575 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-2091 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-697 (-572))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-3878 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-697 (-227))) (-5 *6 (-112)) (-5 *7 (-697 (-572))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-3228 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-761)))) (-2297 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1046)) (-5 *1 (-761)))) (-4384 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1046)) (-5 *1 (-761)))) (-2710 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1046)) (-5 *1 (-761)))) (-4024 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))))
+(-10 -7 (-15 -4024 ((-1046) (-572) (-227) (-227) (-572) (-227) (-112) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -2710 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1))))) (-15 -4384 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2))))) (-15 -2297 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1))))) (-15 -3228 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-572) (-572) (-697 (-227)) (-572))) (-15 -3878 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-227) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-112) (-112) (-112) (-572) (-572) (-697 (-227)) (-697 (-572)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS))))) (-15 -2091 ((-1046) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-572) (-112) (-227) (-572) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-572) (-572) (-572) (-572) (-572) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-572) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))) (-15 -1575 ((-1046) (-572) (-572) (-572) (-227) (-697 (-227)) (-572) (-697 (-227)) (-572))))
+((-1846 (((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572)) 47)) (-2082 (((-1046) (-1170) (-1170) (-572) (-572) (-697 (-171 (-227))) (-572) (-697 (-171 (-227))) (-572) (-572) (-697 (-171 (-227))) (-572)) 46)) (-2247 (((-1046) (-572) (-572) (-572) (-697 (-171 (-227))) (-572)) 45)) (-1986 (((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 40)) (-3029 (((-1046) (-1170) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)) (-572)) 39)) (-2693 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-572)) 36)) (-3768 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572)) 35)) (-2463 (((-1046) (-572) (-572) (-572) (-572) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-227) (-227) (-572)) 34)) (-1441 (((-1046) (-572) (-572) (-572) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-112) (-227) (-112) (-697 (-572)) (-697 (-227)) (-572)) 33)) (-3521 (((-1046) (-572) (-572) (-572) (-572) (-227) (-112) (-112) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-572)) 32)))
+(((-762) (-10 -7 (-15 -3521 ((-1046) (-572) (-572) (-572) (-572) (-227) (-112) (-112) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-572))) (-15 -1441 ((-1046) (-572) (-572) (-572) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-112) (-227) (-112) (-697 (-572)) (-697 (-227)) (-572))) (-15 -2463 ((-1046) (-572) (-572) (-572) (-572) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-227) (-227) (-572))) (-15 -3768 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572))) (-15 -2693 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -3029 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)) (-572))) (-15 -1986 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2247 ((-1046) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2082 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-171 (-227))) (-572) (-697 (-171 (-227))) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -1846 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))) (T -762))
+((-1846 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-2082 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-2247 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-1986 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-3029 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-2693 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-762)))) (-3768 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-762)))) (-2463 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-652 (-112))) (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *7 (-227)) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-762)))) (-1441 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-697 (-572))) (-5 *5 (-112)) (-5 *7 (-697 (-227))) (-5 *3 (-572)) (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-762)))) (-3521 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-652 (-112))) (-5 *7 (-697 (-227))) (-5 *8 (-697 (-572))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1046)) (-5 *1 (-762)))))
+(-10 -7 (-15 -3521 ((-1046) (-572) (-572) (-572) (-572) (-227) (-112) (-112) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-572))) (-15 -1441 ((-1046) (-572) (-572) (-572) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-697 (-572)) (-112) (-227) (-112) (-697 (-572)) (-697 (-227)) (-572))) (-15 -2463 ((-1046) (-572) (-572) (-572) (-572) (-652 (-112)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-227) (-227) (-572))) (-15 -3768 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572))) (-15 -2693 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -3029 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)) (-572))) (-15 -1986 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2247 ((-1046) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2082 ((-1046) (-1170) (-1170) (-572) (-572) (-697 (-171 (-227))) (-572) (-697 (-171 (-227))) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -1846 ((-1046) (-1170) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))
+((-1668 (((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572)) 79)) (-4258 (((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572)) 68)) (-1375 (((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))) (-396)) 56) (((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) 55)) (-2074 (((-1046) (-572) (-572) (-572) (-227) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572)) 37)) (-2548 (((-1046) (-572) (-572) (-227) (-227) (-572) (-572) (-697 (-227)) (-572)) 33)) (-1549 (((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572) (-572)) 30)) (-3931 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 29)) (-2634 (((-1046) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 28)) (-2557 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 27)) (-1709 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572)) 26)) (-3703 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 25)) (-3678 (((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 24)) (-3216 (((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572)) 23)) (-2009 (((-1046) (-697 (-227)) (-572) (-572) (-572) (-572)) 22)) (-3194 (((-1046) (-572) (-572) (-697 (-227)) (-572)) 21)))
+(((-763) (-10 -7 (-15 -3194 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -2009 ((-1046) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -3216 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3678 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3703 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -1709 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -2557 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2634 ((-1046) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3931 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1549 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -2548 ((-1046) (-572) (-572) (-227) (-227) (-572) (-572) (-697 (-227)) (-572))) (-15 -2074 ((-1046) (-572) (-572) (-572) (-227) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1375 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))))) (-15 -1375 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))) (-396))) (-15 -4258 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1668 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))) (T -763))
+((-1668 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-4258 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-1375 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-396)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-1375 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-2074 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-2548 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-1549 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3931 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-2634 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-2557 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-1709 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3703 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3678 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3216 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))) (-2009 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-763)))) (-3194 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-763)))))
+(-10 -7 (-15 -3194 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -2009 ((-1046) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -3216 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3678 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3703 ((-1046) (-572) (-572) (-697 (-227)) (-572))) (-15 -1709 ((-1046) (-572) (-572) (-572) (-572) (-697 (-227)) (-572))) (-15 -2557 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2634 ((-1046) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -3931 ((-1046) (-572) (-572) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1549 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572) (-572))) (-15 -2548 ((-1046) (-572) (-572) (-227) (-227) (-572) (-572) (-697 (-227)) (-572))) (-15 -2074 ((-1046) (-572) (-572) (-572) (-227) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1375 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))))) (-15 -1375 ((-1046) (-572) (-572) (-227) (-572) (-572) (-572) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE))) (-396))) (-15 -4258 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -1668 ((-1046) (-572) (-572) (-572) (-572) (-572) (-112) (-572) (-112) (-572) (-697 (-171 (-227))) (-697 (-171 (-227))) (-572))))
+((-2962 (((-1046) (-572) (-572) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD)))) 64)) (-2612 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572)) 60)) (-2294 (((-1046) (-572) (-697 (-227)) (-112) (-227) (-572) (-572) (-572) (-572) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2577 (((-1046) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572)) 37)) (-2034 (((-1046) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-572)) 36)) (-2585 (((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572)) 33)) (-1550 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227))) 32)) (-2287 (((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572)) 28)) (-2276 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572)) 27)) (-2241 (((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572)) 26)) (-2078 (((-1046) (-572) (-697 (-171 (-227))) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-572)) 22)))
+(((-764) (-10 -7 (-15 -2078 ((-1046) (-572) (-697 (-171 (-227))) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2241 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2276 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2287 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572))) (-15 -1550 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)))) (-15 -2585 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2034 ((-1046) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2577 ((-1046) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -2294 ((-1046) (-572) (-697 (-227)) (-112) (-227) (-572) (-572) (-572) (-572) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE))))) (-15 -2612 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -2962 ((-1046) (-572) (-572) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD))))))) (T -764))
+((-2962 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2612 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2294 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2577 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2034 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2585 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-1550 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2287 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2276 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2241 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-764)))) (-2078 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046)) (-5 *1 (-764)))))
+(-10 -7 (-15 -2078 ((-1046) (-572) (-697 (-171 (-227))) (-572) (-572) (-572) (-572) (-697 (-171 (-227))) (-572))) (-15 -2241 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2276 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-572))) (-15 -2287 ((-1046) (-697 (-227)) (-572) (-697 (-227)) (-572) (-572) (-572))) (-15 -1550 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-572)) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)))) (-15 -2585 ((-1046) (-572) (-572) (-697 (-227)) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2034 ((-1046) (-572) (-572) (-572) (-227) (-572) (-697 (-227)) (-697 (-227)) (-572))) (-15 -2577 ((-1046) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-572)) (-697 (-227)) (-697 (-572)) (-697 (-572)) (-697 (-227)) (-697 (-227)) (-697 (-572)) (-572))) (-15 -2294 ((-1046) (-572) (-697 (-227)) (-112) (-227) (-572) (-572) (-572) (-572) (-227) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE))))) (-15 -2612 ((-1046) (-572) (-697 (-227)) (-572) (-697 (-227)) (-697 (-572)) (-572) (-697 (-227)) (-572) (-572) (-572) (-572))) (-15 -2962 ((-1046) (-572) (-572) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-697 (-227)) (-572) (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD))))))
+((-1837 (((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-572) (-697 (-227))) 29)) (-1679 (((-1046) (-1170) (-572) (-572) (-697 (-227))) 28)) (-1585 (((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-227))) 27)) (-1753 (((-1046) (-572) (-572) (-572) (-697 (-227))) 21)))
+(((-765) (-10 -7 (-15 -1753 ((-1046) (-572) (-572) (-572) (-697 (-227)))) (-15 -1585 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-227)))) (-15 -1679 ((-1046) (-1170) (-572) (-572) (-697 (-227)))) (-15 -1837 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)))))) (T -765))
+((-1837 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-765)))) (-1679 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-765)))) (-1585 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-765)))) (-1753 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046)) (-5 *1 (-765)))))
+(-10 -7 (-15 -1753 ((-1046) (-572) (-572) (-572) (-697 (-227)))) (-15 -1585 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-697 (-572)) (-572) (-697 (-227)))) (-15 -1679 ((-1046) (-1170) (-572) (-572) (-697 (-227)))) (-15 -1837 ((-1046) (-1170) (-572) (-572) (-697 (-227)) (-572) (-572) (-697 (-227)))))
+((-2433 (((-1046) (-227) (-227) (-227) (-227) (-572)) 62)) (-3451 (((-1046) (-227) (-227) (-227) (-572)) 61)) (-2279 (((-1046) (-227) (-227) (-227) (-572)) 60)) (-3446 (((-1046) (-227) (-227) (-572)) 59)) (-2125 (((-1046) (-227) (-572)) 58)) (-3327 (((-1046) (-227) (-572)) 57)) (-3751 (((-1046) (-227) (-572)) 56)) (-1436 (((-1046) (-227) (-572)) 55)) (-2798 (((-1046) (-227) (-572)) 54)) (-1637 (((-1046) (-227) (-572)) 53)) (-2406 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 52)) (-3004 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 51)) (-3119 (((-1046) (-227) (-572)) 50)) (-2236 (((-1046) (-227) (-572)) 49)) (-4381 (((-1046) (-227) (-572)) 48)) (-3390 (((-1046) (-227) (-572)) 47)) (-4307 (((-1046) (-572) (-227) (-171 (-227)) (-572) (-1170) (-572)) 46)) (-1768 (((-1046) (-1170) (-171 (-227)) (-1170) (-572)) 45)) (-2506 (((-1046) (-1170) (-171 (-227)) (-1170) (-572)) 44)) (-3798 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 43)) (-3511 (((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572)) 42)) (-1611 (((-1046) (-227) (-572)) 39)) (-2300 (((-1046) (-227) (-572)) 38)) (-2543 (((-1046) (-227) (-572)) 37)) (-4289 (((-1046) (-227) (-572)) 36)) (-2600 (((-1046) (-227) (-572)) 35)) (-2700 (((-1046) (-227) (-572)) 34)) (-2357 (((-1046) (-227) (-572)) 33)) (-3101 (((-1046) (-227) (-572)) 32)) (-3199 (((-1046) (-227) (-572)) 31)) (-3623 (((-1046) (-227) (-572)) 30)) (-3591 (((-1046) (-227) (-227) (-227) (-572)) 29)) (-3919 (((-1046) (-227) (-572)) 28)) (-2589 (((-1046) (-227) (-572)) 27)) (-2778 (((-1046) (-227) (-572)) 26)) (-2120 (((-1046) (-227) (-572)) 25)) (-3471 (((-1046) (-227) (-572)) 24)) (-3371 (((-1046) (-171 (-227)) (-572)) 21)))
+(((-766) (-10 -7 (-15 -3371 ((-1046) (-171 (-227)) (-572))) (-15 -3471 ((-1046) (-227) (-572))) (-15 -2120 ((-1046) (-227) (-572))) (-15 -2778 ((-1046) (-227) (-572))) (-15 -2589 ((-1046) (-227) (-572))) (-15 -3919 ((-1046) (-227) (-572))) (-15 -3591 ((-1046) (-227) (-227) (-227) (-572))) (-15 -3623 ((-1046) (-227) (-572))) (-15 -3199 ((-1046) (-227) (-572))) (-15 -3101 ((-1046) (-227) (-572))) (-15 -2357 ((-1046) (-227) (-572))) (-15 -2700 ((-1046) (-227) (-572))) (-15 -2600 ((-1046) (-227) (-572))) (-15 -4289 ((-1046) (-227) (-572))) (-15 -2543 ((-1046) (-227) (-572))) (-15 -2300 ((-1046) (-227) (-572))) (-15 -1611 ((-1046) (-227) (-572))) (-15 -3511 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3798 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -2506 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -1768 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -4307 ((-1046) (-572) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3390 ((-1046) (-227) (-572))) (-15 -4381 ((-1046) (-227) (-572))) (-15 -2236 ((-1046) (-227) (-572))) (-15 -3119 ((-1046) (-227) (-572))) (-15 -3004 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -2406 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -1637 ((-1046) (-227) (-572))) (-15 -2798 ((-1046) (-227) (-572))) (-15 -1436 ((-1046) (-227) (-572))) (-15 -3751 ((-1046) (-227) (-572))) (-15 -3327 ((-1046) (-227) (-572))) (-15 -2125 ((-1046) (-227) (-572))) (-15 -3446 ((-1046) (-227) (-227) (-572))) (-15 -2279 ((-1046) (-227) (-227) (-227) (-572))) (-15 -3451 ((-1046) (-227) (-227) (-227) (-572))) (-15 -2433 ((-1046) (-227) (-227) (-227) (-227) (-572))))) (T -766))
+((-2433 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3451 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2279 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3446 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3751 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1436 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2406 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3004 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2236 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-4381 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-4307 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-572)) (-5 *5 (-171 (-227))) (-5 *6 (-1170)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1768 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2506 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3798 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3511 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170)) (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2300 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-4289 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3591 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(-10 -7 (-15 -3371 ((-1046) (-171 (-227)) (-572))) (-15 -3471 ((-1046) (-227) (-572))) (-15 -2120 ((-1046) (-227) (-572))) (-15 -2778 ((-1046) (-227) (-572))) (-15 -2589 ((-1046) (-227) (-572))) (-15 -3919 ((-1046) (-227) (-572))) (-15 -3591 ((-1046) (-227) (-227) (-227) (-572))) (-15 -3623 ((-1046) (-227) (-572))) (-15 -3199 ((-1046) (-227) (-572))) (-15 -3101 ((-1046) (-227) (-572))) (-15 -2357 ((-1046) (-227) (-572))) (-15 -2700 ((-1046) (-227) (-572))) (-15 -2600 ((-1046) (-227) (-572))) (-15 -4289 ((-1046) (-227) (-572))) (-15 -2543 ((-1046) (-227) (-572))) (-15 -2300 ((-1046) (-227) (-572))) (-15 -1611 ((-1046) (-227) (-572))) (-15 -3511 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3798 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -2506 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -1768 ((-1046) (-1170) (-171 (-227)) (-1170) (-572))) (-15 -4307 ((-1046) (-572) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -3390 ((-1046) (-227) (-572))) (-15 -4381 ((-1046) (-227) (-572))) (-15 -2236 ((-1046) (-227) (-572))) (-15 -3119 ((-1046) (-227) (-572))) (-15 -3004 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -2406 ((-1046) (-227) (-171 (-227)) (-572) (-1170) (-572))) (-15 -1637 ((-1046) (-227) (-572))) (-15 -2798 ((-1046) (-227) (-572))) (-15 -1436 ((-1046) (-227) (-572))) (-15 -3751 ((-1046) (-227) (-572))) (-15 -3327 ((-1046) (-227) (-572))) (-15 -2125 ((-1046) (-227) (-572))) (-15 -3446 ((-1046) (-227) (-227) (-572))) (-15 -2279 ((-1046) (-227) (-227) (-227) (-572))) (-15 -3451 ((-1046) (-227) (-227) (-227) (-572))) (-15 -2433 ((-1046) (-227) (-227) (-227) (-227) (-572))))
+((-2587 (((-1284)) 20)) (-3517 (((-1170)) 31)) (-3752 (((-1170)) 30)) (-1449 (((-1115) (-1188) (-697 (-572))) 45) (((-1115) (-1188) (-697 (-227))) 41)) (-2080 (((-112)) 19)) (-2886 (((-1170) (-1170)) 34)))
+(((-767) (-10 -7 (-15 -3752 ((-1170))) (-15 -3517 ((-1170))) (-15 -2886 ((-1170) (-1170))) (-15 -1449 ((-1115) (-1188) (-697 (-227)))) (-15 -1449 ((-1115) (-1188) (-697 (-572)))) (-15 -2080 ((-112))) (-15 -2587 ((-1284))))) (T -767))
+((-2587 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-767)))) (-2080 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-767)))) (-1449 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-572))) (-5 *2 (-1115)) (-5 *1 (-767)))) (-1449 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-227))) (-5 *2 (-1115)) (-5 *1 (-767)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))) (-3517 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))) (-3752 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
+(-10 -7 (-15 -3752 ((-1170))) (-15 -3517 ((-1170))) (-15 -2886 ((-1170) (-1170))) (-15 -1449 ((-1115) (-1188) (-697 (-227)))) (-15 -1449 ((-1115) (-1188) (-697 (-572)))) (-15 -2080 ((-112))) (-15 -2587 ((-1284))))
+((-1433 (($ $ $) 10)) (-1541 (($ $ $ $) 9)) (-1923 (($ $ $) 12)))
+(((-768 |#1|) (-10 -8 (-15 -1923 (|#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 -1541 (|#1| |#1| |#1| |#1|))) (-769)) (T -768))
+NIL
+(-10 -8 (-15 -1923 (|#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 -1541 (|#1| |#1| |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-4203 (($ $ (-930)) 31)) (-3962 (($ $ (-930)) 32)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1433 (($ $ $) 28)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-1541 (($ $ $ $) 29)) (-1923 (($ $ $) 27)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 33)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30)))
(((-769) (-141)) (T -769))
-((-2294 (*1 *2) (-12 (-4 *1 (-769)) (-5 *2 (-777)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-769)))))
-(-13 (-767) (-728) (-10 -8 (-15 -2294 ((-777)) -3722) (-15 -2869 ($ (-570)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-726) . T) ((-728) . T) ((-767) . T) ((-1109) . T))
-((-3239 (((-650 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 |#1|)))))) (-695 (-171 (-413 (-570)))) |#1|) 33)) (-3507 (((-650 (-171 |#1|)) (-695 (-171 (-413 (-570)))) |#1|) 23)) (-1816 (((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))) (-1186)) 20) (((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570))))) 19)))
-(((-770 |#1|) (-10 -7 (-15 -1816 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))))) (-15 -1816 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))) (-1186))) (-15 -3507 ((-650 (-171 |#1|)) (-695 (-171 (-413 (-570)))) |#1|)) (-15 -3239 ((-650 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 |#1|)))))) (-695 (-171 (-413 (-570)))) |#1|))) (-13 (-368) (-854))) (T -770))
-((-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-650 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 *4))))))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854))))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854))))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *4 (-1186)) (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *5)) (-4 *5 (-13 (-368) (-854))))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854))))))
-(-10 -7 (-15 -1816 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))))) (-15 -1816 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))) (-1186))) (-15 -3507 ((-650 (-171 |#1|)) (-695 (-171 (-413 (-570)))) |#1|)) (-15 -3239 ((-650 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 |#1|)))))) (-695 (-171 (-413 (-570)))) |#1|)))
-((-1392 (((-176 (-570)) |#1|) 27)))
-(((-771 |#1|) (-10 -7 (-15 -1392 ((-176 (-570)) |#1|))) (-410)) (T -771))
-((-1392 (*1 *2 *3) (-12 (-5 *2 (-176 (-570))) (-5 *1 (-771 *3)) (-4 *3 (-410)))))
-(-10 -7 (-15 -1392 ((-176 (-570)) |#1|)))
-((-1862 ((|#1| |#1| |#1|) 28)) (-2635 ((|#1| |#1| |#1|) 27)) (-1730 ((|#1| |#1| |#1|) 38)) (-1512 ((|#1| |#1| |#1|) 34)) (-2890 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2510 (((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|) 26)))
-(((-772 |#1| |#2|) (-10 -7 (-15 -2510 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -1862 (|#1| |#1| |#1|)) (-15 -2890 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|)) (-15 -1730 (|#1| |#1| |#1|))) (-714 |#2|) (-368)) (T -772))
-((-1730 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-1512 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-2890 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-1862 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-2635 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-2510 (*1 *2 *3 *3) (-12 (-4 *4 (-368)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-772 *3 *4)) (-4 *3 (-714 *4)))))
-(-10 -7 (-15 -2510 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -1862 (|#1| |#1| |#1|)) (-15 -2890 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|)) (-15 -1730 (|#1| |#1| |#1|)))
-((-2540 (((-697 (-1235)) $ (-1235)) 26)) (-3155 (((-697 (-555)) $ (-555)) 25)) (-3166 (((-777) $ (-129)) 27)) (-2085 (((-697 (-130)) $ (-130)) 24)) (-4327 (((-697 (-1235)) $) 12)) (-3253 (((-697 (-1233)) $) 8)) (-2986 (((-697 (-1232)) $) 10)) (-2062 (((-697 (-555)) $) 13)) (-4331 (((-697 (-553)) $) 9)) (-1839 (((-697 (-552)) $) 11)) (-1441 (((-777) $ (-129)) 7)) (-1326 (((-697 (-130)) $) 14)) (-3370 (((-112) $) 31)) (-2820 (((-697 $) |#1| (-961)) 32)) (-1740 (($ $) 6)))
-(((-773 |#1|) (-141) (-1109)) (T -773))
-((-2820 (*1 *2 *3 *4) (-12 (-5 *4 (-961)) (-4 *3 (-1109)) (-5 *2 (-697 *1)) (-4 *1 (-773 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(-13 (-582) (-10 -8 (-15 -2820 ((-697 $) |t#1| (-961))) (-15 -3370 ((-112) $))))
-(((-175) . T) ((-533) . T) ((-582) . T) ((-866) . T))
-((-4053 (((-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))) (-570)) 71)) (-1868 (((-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570))))) 69)) (-2896 (((-570)) 85)))
-(((-774 |#1| |#2|) (-10 -7 (-15 -2896 ((-570))) (-15 -1868 ((-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))))) (-15 -4053 ((-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))) (-570)))) (-1253 (-570)) (-415 (-570) |#1|)) (T -774))
-((-4053 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-1253 *3)) (-5 *2 (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-774 *4 *5)) (-4 *5 (-415 *3 *4)))) (-1868 (*1 *2) (-12 (-4 *3 (-1253 (-570))) (-5 *2 (-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570))))) (-5 *1 (-774 *3 *4)) (-4 *4 (-415 (-570) *3)))) (-2896 (*1 *2) (-12 (-4 *3 (-1253 *2)) (-5 *2 (-570)) (-5 *1 (-774 *3 *4)) (-4 *4 (-415 *2 *3)))))
-(-10 -7 (-15 -2896 ((-570))) (-15 -1868 ((-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))))) (-15 -4053 ((-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))) (-570))))
-((-2847 (((-112) $ $) NIL)) (-4387 (((-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 20) (($ (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-775) (-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2869 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2869 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4387 ((-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -775))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-775)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-775)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-775)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-775)))))
-(-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2869 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2869 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4387 ((-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
-((-3042 (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|))) 18) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186))) 17)) (-2577 (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|))) 20) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186))) 19)))
-(((-776 |#1|) (-10 -7 (-15 -3042 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3042 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|))))) (-562)) (T -776))
-((-2577 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5)))))
-(-10 -7 (-15 -3042 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3042 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1548 (($ $ $) 10)) (-3997 (((-3 $ "failed") $ $) 15)) (-3609 (($ $ (-570)) 11)) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($ $) NIL)) (-2799 (($ $ $) NIL)) (-2005 (((-112) $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3903 (($ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 6 T CONST)) (-1998 (($) NIL T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ $ $) NIL)))
-(((-777) (-13 (-799) (-732) (-10 -8 (-15 -2799 ($ $ $)) (-15 -2788 ($ $ $)) (-15 -3903 ($ $ $)) (-15 -4038 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -2837 ((-3 $ "failed") $ $)) (-15 -3609 ($ $ (-570))) (-15 -2066 ($ $)) (-6 (-4454 "*"))))) (T -777))
-((-2799 (*1 *1 *1 *1) (-5 *1 (-777))) (-2788 (*1 *1 *1 *1) (-5 *1 (-777))) (-3903 (*1 *1 *1 *1) (-5 *1 (-777))) (-4038 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1437 (-777)) (|:| -3357 (-777)))) (-5 *1 (-777)))) (-2837 (*1 *1 *1 *1) (|partial| -5 *1 (-777))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-777)))) (-2066 (*1 *1 *1) (-5 *1 (-777))))
-(-13 (-799) (-732) (-10 -8 (-15 -2799 ($ $ $)) (-15 -2788 ($ $ $)) (-15 -3903 ($ $ $)) (-15 -4038 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -2837 ((-3 $ "failed") $ $)) (-15 -3609 ($ $ (-570))) (-15 -2066 ($ $)) (-6 (-4454 "*"))))
+((-1541 (*1 *1 *1 *1 *1) (-4 *1 (-769))) (-1433 (*1 *1 *1 *1) (-4 *1 (-769))) (-1923 (*1 *1 *1 *1) (-4 *1 (-769))))
+(-13 (-21) (-728) (-10 -8 (-15 -1541 ($ $ $ $)) (-15 -1433 ($ $ $)) (-15 -1923 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-728) . T) ((-1111) . T))
+((-3491 (((-870) $) NIL) (($ (-572)) 10)))
+(((-770 |#1|) (-10 -8 (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-771)) (T -770))
+NIL
+(-10 -8 (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3899 (((-3 $ "failed") $) 43)) (-4203 (($ $ (-930)) 31) (($ $ (-779)) 38)) (-2982 (((-3 $ "failed") $) 41)) (-4422 (((-112) $) 37)) (-3882 (((-3 $ "failed") $) 42)) (-3962 (($ $ (-930)) 32) (($ $ (-779)) 39)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1433 (($ $ $) 28)) (-3491 (((-870) $) 12) (($ (-572)) 34)) (-2455 (((-779)) 35 T CONST)) (-3424 (((-112) $ $) 9)) (-1541 (($ $ $ $) 29)) (-1923 (($ $ $) 27)) (-2602 (($) 19 T CONST)) (-2619 (($) 36 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 33) (($ $ (-779)) 40)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 30)))
+(((-771) (-141)) (T -771))
+((-2455 (*1 *2) (-12 (-4 *1 (-771)) (-5 *2 (-779)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-771)))))
+(-13 (-769) (-730) (-10 -8 (-15 -2455 ((-779)) -4338) (-15 -3491 ($ (-572)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-728) . T) ((-730) . T) ((-769) . T) ((-1111) . T))
+((-3609 (((-652 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 |#1|)))))) (-697 (-171 (-415 (-572)))) |#1|) 33)) (-3267 (((-652 (-171 |#1|)) (-697 (-171 (-415 (-572)))) |#1|) 23)) (-3245 (((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))) (-1188)) 20) (((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572))))) 19)))
+(((-772 |#1|) (-10 -7 (-15 -3245 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))))) (-15 -3245 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))) (-1188))) (-15 -3267 ((-652 (-171 |#1|)) (-697 (-171 (-415 (-572)))) |#1|)) (-15 -3609 ((-652 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 |#1|)))))) (-697 (-171 (-415 (-572)))) |#1|))) (-13 (-370) (-856))) (T -772))
+((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-652 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 *4))))))) (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))) (-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-652 (-171 *4))) (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *4 (-1188)) (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *5)) (-4 *5 (-13 (-370) (-856))))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))))
+(-10 -7 (-15 -3245 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))))) (-15 -3245 ((-961 (-171 (-415 (-572)))) (-697 (-171 (-415 (-572)))) (-1188))) (-15 -3267 ((-652 (-171 |#1|)) (-697 (-171 (-415 (-572)))) |#1|)) (-15 -3609 ((-652 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 (-171 |#1|)))))) (-697 (-171 (-415 (-572)))) |#1|)))
+((-2660 (((-176 (-572)) |#1|) 27)))
+(((-773 |#1|) (-10 -7 (-15 -2660 ((-176 (-572)) |#1|))) (-412)) (T -773))
+((-2660 (*1 *2 *3) (-12 (-5 *2 (-176 (-572))) (-5 *1 (-773 *3)) (-4 *3 (-412)))))
+(-10 -7 (-15 -2660 ((-176 (-572)) |#1|)))
+((-3680 ((|#1| |#1| |#1|) 28)) (-1329 ((|#1| |#1| |#1|) 27)) (-1671 ((|#1| |#1| |#1|) 38)) (-3448 ((|#1| |#1| |#1|) 34)) (-1964 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2676 (((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|) 26)))
+(((-774 |#1| |#2|) (-10 -7 (-15 -2676 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -1329 (|#1| |#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3448 (|#1| |#1| |#1|)) (-15 -1671 (|#1| |#1| |#1|))) (-716 |#2|) (-370)) (T -774))
+((-1671 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-3448 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-1964 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-3680 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-1329 (*1 *2 *2 *2) (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3)))) (-2676 (*1 *2 *3 *3) (-12 (-4 *4 (-370)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-774 *3 *4)) (-4 *3 (-716 *4)))))
+(-10 -7 (-15 -2676 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -1329 (|#1| |#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3448 (|#1| |#1| |#1|)) (-15 -1671 (|#1| |#1| |#1|)))
+((-2965 (((-699 (-1237)) $ (-1237)) 26)) (-3979 (((-699 (-557)) $ (-557)) 25)) (-4087 (((-779) $ (-129)) 27)) (-4007 (((-699 (-130)) $ (-130)) 24)) (-2354 (((-699 (-1237)) $) 12)) (-2499 (((-699 (-1235)) $) 8)) (-2849 (((-699 (-1234)) $) 10)) (-3787 (((-699 (-557)) $) 13)) (-2400 (((-699 (-555)) $) 9)) (-3478 (((-699 (-554)) $) 11)) (-2575 (((-779) $ (-129)) 7)) (-3226 (((-699 (-130)) $) 14)) (-4357 (((-112) $) 31)) (-2607 (((-699 $) |#1| (-963)) 32)) (-3725 (($ $) 6)))
+(((-775 |#1|) (-141) (-1111)) (T -775))
+((-2607 (*1 *2 *3 *4) (-12 (-5 *4 (-963)) (-4 *3 (-1111)) (-5 *2 (-699 *1)) (-4 *1 (-775 *3)))) (-4357 (*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
+(-13 (-584) (-10 -8 (-15 -2607 ((-699 $) |t#1| (-963))) (-15 -4357 ((-112) $))))
+(((-175) . T) ((-535) . T) ((-584) . T) ((-868) . T))
+((-1409 (((-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))) (-572)) 71)) (-2469 (((-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572))))) 69)) (-2020 (((-572)) 85)))
+(((-776 |#1| |#2|) (-10 -7 (-15 -2020 ((-572))) (-15 -2469 ((-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))))) (-15 -1409 ((-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))) (-572)))) (-1255 (-572)) (-417 (-572) |#1|)) (T -776))
+((-1409 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-1255 *3)) (-5 *2 (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-776 *4 *5)) (-4 *5 (-417 *3 *4)))) (-2469 (*1 *2) (-12 (-4 *3 (-1255 (-572))) (-5 *2 (-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572))))) (-5 *1 (-776 *3 *4)) (-4 *4 (-417 (-572) *3)))) (-2020 (*1 *2) (-12 (-4 *3 (-1255 *2)) (-5 *2 (-572)) (-5 *1 (-776 *3 *4)) (-4 *4 (-417 *2 *3)))))
+(-10 -7 (-15 -2020 ((-572))) (-15 -2469 ((-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))))) (-15 -1409 ((-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572)) (|:| |basisInv| (-697 (-572)))) (-572))))
+((-3464 (((-112) $ $) NIL)) (-1869 (((-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 20) (($ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-777) (-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3491 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3491 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -1869 ((-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -777))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-777)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-777)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-777)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-777)))))
+(-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3491 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3491 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -1869 ((-3 (|:| |nia| (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
+((-2095 (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|))) 18) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188))) 17)) (-1969 (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|))) 20) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188))) 19)))
+(((-778 |#1|) (-10 -7 (-15 -2095 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -2095 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|))))) (-564)) (T -778))
+((-1969 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4)))) (-2095 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5)))))
+(-10 -7 (-15 -2095 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -2095 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-961 |#1|)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2486 (($ $ $) 10)) (-2092 (((-3 $ "failed") $ $) 15)) (-4235 (($ $ (-572)) 11)) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($ $) NIL)) (-3418 (($ $ $) NIL)) (-4422 (((-112) $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1370 (($ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 6 T CONST)) (-2619 (($) NIL T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ $ $) NIL)))
+(((-779) (-13 (-801) (-734) (-10 -8 (-15 -3418 ($ $ $)) (-15 -3407 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -2501 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -3453 ((-3 $ "failed") $ $)) (-15 -4235 ($ $ (-572))) (-15 -2688 ($ $)) (-6 (-4456 "*"))))) (T -779))
+((-3418 (*1 *1 *1 *1) (-5 *1 (-779))) (-3407 (*1 *1 *1 *1) (-5 *1 (-779))) (-1370 (*1 *1 *1 *1) (-5 *1 (-779))) (-2501 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1882 (-779)) (|:| -2336 (-779)))) (-5 *1 (-779)))) (-3453 (*1 *1 *1 *1) (|partial| -5 *1 (-779))) (-4235 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-779)))) (-2688 (*1 *1 *1) (-5 *1 (-779))))
+(-13 (-801) (-734) (-10 -8 (-15 -3418 ($ $ $)) (-15 -3407 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -2501 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -3453 ((-3 $ "failed") $ $)) (-15 -4235 ($ $ (-572))) (-15 -2688 ($ $)) (-6 (-4456 "*"))))
((|Integer|) (|%ige| |#1| 0))
-((-2577 (((-3 |#2| "failed") |#2| |#2| (-115) (-1186)) 37)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -2577 ((-3 |#2| "failed") |#2| |#2| (-115) (-1186)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1212) (-966))) (T -778))
-((-2577 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-778 *5 *2)) (-4 *2 (-13 (-29 *5) (-1212) (-966))))))
-(-10 -7 (-15 -2577 ((-3 |#2| "failed") |#2| |#2| (-115) (-1186))))
-((-2869 (((-780) |#1|) 8)))
-(((-779 |#1|) (-10 -7 (-15 -2869 ((-780) |#1|))) (-1227)) (T -779))
-((-2869 (*1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-779 *3)) (-4 *3 (-1227)))))
-(-10 -7 (-15 -2869 ((-780) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 7)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 9)))
-(((-780) (-1109)) (T -780))
-NIL
-(-1109)
-((-3046 ((|#2| |#4|) 35)))
-(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3046 (|#2| |#4|))) (-458) (-1253 |#1|) (-730 |#1| |#2|) (-1253 |#3|)) (T -781))
-((-3046 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-730 *4 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-781 *4 *2 *5 *3)) (-4 *3 (-1253 *5)))))
-(-10 -7 (-15 -3046 (|#2| |#4|)))
-((-3957 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2868 (((-1282) (-1168) (-1168) |#4| |#5|) 33)) (-2848 ((|#4| |#4| |#5|) 74)) (-2236 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|) 79)) (-4108 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|) 16)))
-(((-782 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3957 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2848 (|#4| |#4| |#5|)) (-15 -2236 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2868 ((-1282) (-1168) (-1168) |#4| |#5|)) (-15 -4108 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -782))
-((-4108 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4)))) (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2868 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1168)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *4 (-1074 *6 *7 *8)) (-5 *2 (-1282)) (-5 *1 (-782 *6 *7 *8 *4 *5)) (-4 *5 (-1080 *6 *7 *8 *4)))) (-2236 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2848 (*1 *2 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *2 (-1074 *4 *5 *6)) (-5 *1 (-782 *4 *5 *6 *2 *3)) (-4 *3 (-1080 *4 *5 *6 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(-10 -7 (-15 -3957 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2848 (|#4| |#4| |#5|)) (-15 -2236 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2868 ((-1282) (-1168) (-1168) |#4| |#5|)) (-15 -4108 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)))
-((-2435 (((-3 (-1182 (-1182 |#1|)) "failed") |#4|) 51)) (-2901 (((-650 |#4|) |#4|) 22)) (-4257 ((|#4| |#4|) 17)))
-(((-783 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2901 ((-650 |#4|) |#4|)) (-15 -2435 ((-3 (-1182 (-1182 |#1|)) "failed") |#4|)) (-15 -4257 (|#4| |#4|))) (-354) (-333 |#1|) (-1253 |#2|) (-1253 |#3|) (-928)) (T -783))
-((-4257 (*1 *2 *2) (-12 (-4 *3 (-354)) (-4 *4 (-333 *3)) (-4 *5 (-1253 *4)) (-5 *1 (-783 *3 *4 *5 *2 *6)) (-4 *2 (-1253 *5)) (-14 *6 (-928)))) (-2435 (*1 *2 *3) (|partial| -12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1253 *5)) (-5 *2 (-1182 (-1182 *4))) (-5 *1 (-783 *4 *5 *6 *3 *7)) (-4 *3 (-1253 *6)) (-14 *7 (-928)))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1253 *5)) (-5 *2 (-650 *3)) (-5 *1 (-783 *4 *5 *6 *3 *7)) (-4 *3 (-1253 *6)) (-14 *7 (-928)))))
-(-10 -7 (-15 -2901 ((-650 |#4|) |#4|)) (-15 -2435 ((-3 (-1182 (-1182 |#1|)) "failed") |#4|)) (-15 -4257 (|#4| |#4|)))
-((-4152 (((-2 (|:| |deter| (-650 (-1182 |#5|))) (|:| |dterm| (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-650 |#1|)) (|:| |nlead| (-650 |#5|))) (-1182 |#5|) (-650 |#1|) (-650 |#5|)) 72)) (-3696 (((-650 (-777)) |#1|) 20)))
-(((-784 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4152 ((-2 (|:| |deter| (-650 (-1182 |#5|))) (|:| |dterm| (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-650 |#1|)) (|:| |nlead| (-650 |#5|))) (-1182 |#5|) (-650 |#1|) (-650 |#5|))) (-15 -3696 ((-650 (-777)) |#1|))) (-1253 |#4|) (-799) (-856) (-311) (-956 |#4| |#2| |#3|)) (T -784))
-((-3696 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-650 (-777))) (-5 *1 (-784 *3 *4 *5 *6 *7)) (-4 *3 (-1253 *6)) (-4 *7 (-956 *6 *4 *5)))) (-4152 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1253 *9)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-311)) (-4 *10 (-956 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-650 (-1182 *10))) (|:| |dterm| (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| *10))))) (|:| |nfacts| (-650 *6)) (|:| |nlead| (-650 *10)))) (-5 *1 (-784 *6 *7 *8 *9 *10)) (-5 *3 (-1182 *10)) (-5 *4 (-650 *6)) (-5 *5 (-650 *10)))))
-(-10 -7 (-15 -4152 ((-2 (|:| |deter| (-650 (-1182 |#5|))) (|:| |dterm| (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-650 |#1|)) (|:| |nlead| (-650 |#5|))) (-1182 |#5|) (-650 |#1|) (-650 |#5|))) (-15 -3696 ((-650 (-777)) |#1|)))
-((-4227 (((-650 (-2 (|:| |outval| |#1|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#1|))))) (-695 (-413 (-570))) |#1|) 31)) (-3251 (((-650 |#1|) (-695 (-413 (-570))) |#1|) 21)) (-1816 (((-959 (-413 (-570))) (-695 (-413 (-570))) (-1186)) 18) (((-959 (-413 (-570))) (-695 (-413 (-570)))) 17)))
-(((-785 |#1|) (-10 -7 (-15 -1816 ((-959 (-413 (-570))) (-695 (-413 (-570))))) (-15 -1816 ((-959 (-413 (-570))) (-695 (-413 (-570))) (-1186))) (-15 -3251 ((-650 |#1|) (-695 (-413 (-570))) |#1|)) (-15 -4227 ((-650 (-2 (|:| |outval| |#1|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#1|))))) (-695 (-413 (-570))) |#1|))) (-13 (-368) (-854))) (T -785))
-((-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-650 (-2 (|:| |outval| *4) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 *4)))))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854))))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854))))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *4 (-1186)) (-5 *2 (-959 (-413 (-570)))) (-5 *1 (-785 *5)) (-4 *5 (-13 (-368) (-854))))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-959 (-413 (-570)))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854))))))
-(-10 -7 (-15 -1816 ((-959 (-413 (-570))) (-695 (-413 (-570))))) (-15 -1816 ((-959 (-413 (-570))) (-695 (-413 (-570))) (-1186))) (-15 -3251 ((-650 |#1|) (-695 (-413 (-570))) |#1|)) (-15 -4227 ((-650 (-2 (|:| |outval| |#1|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#1|))))) (-695 (-413 (-570))) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 36)) (-1598 (((-650 |#2|) $) NIL)) (-3449 (((-1182 $) $ |#2|) NIL) (((-1182 |#1|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 |#2|)) NIL)) (-3446 (($ $) 30)) (-2123 (((-112) $ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3862 (($ $ $) 110 (|has| |#1| (-562)))) (-3577 (((-650 $) $ $) 123 (|has| |#1| (-562)))) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-959 (-413 (-570)))) NIL (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))))) (((-3 $ "failed") (-959 (-570))) NIL (-3749 (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-38 (-413 (-570)))))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186)))))) (((-3 $ "failed") (-959 |#1|)) NIL (-3749 (-12 (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-38 (-413 (-570))))) (-3201 (|has| |#1| (-38 (-570))))) (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-38 (-413 (-570))))) (-3201 (|has| |#1| (-551)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-1001 (-570))))))) (((-3 (-1134 |#1| |#2|) "failed") $) 21)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) ((|#2| $) NIL) (($ (-959 (-413 (-570)))) NIL (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))))) (($ (-959 (-570))) NIL (-3749 (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-38 (-413 (-570)))))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186)))))) (($ (-959 |#1|)) NIL (-3749 (-12 (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-38 (-413 (-570))))) (-3201 (|has| |#1| (-38 (-570))))) (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-38 (-413 (-570))))) (-3201 (|has| |#1| (-551)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-1001 (-570))))))) (((-1134 |#1| |#2|) $) NIL)) (-2067 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-562)))) (-4394 (($ $) NIL) (($ $ |#2|) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-1429 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3158 (((-112) $) NIL)) (-1504 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 81)) (-2423 (($ $) 136 (|has| |#1| (-458)))) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ |#2|) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-3587 (($ $) NIL (|has| |#1| (-562)))) (-4302 (($ $) NIL (|has| |#1| (-562)))) (-4220 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3663 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2425 (($ $ |#1| (-537 |#2|) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2005 (((-112) $) 57)) (-2928 (((-777) $) NIL)) (-1623 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-1389 (($ $ $ $ $) 107 (|has| |#1| (-562)))) (-2486 ((|#2| $) 22)) (-2417 (($ (-1182 |#1|) |#2|) NIL) (($ (-1182 $) |#2|) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-537 |#2|)) NIL) (($ $ |#2| (-777)) 38) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3904 (($ $ $) 63)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |#2|) NIL)) (-1858 (((-112) $) NIL)) (-2689 (((-537 |#2|) $) NIL) (((-777) $ |#2|) NIL) (((-650 (-777)) $ (-650 |#2|)) NIL)) (-3832 (((-777) $) 23)) (-3989 (($ (-1 (-537 |#2|) (-537 |#2|)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3168 (((-3 |#2| "failed") $) NIL)) (-1487 (($ $) NIL (|has| |#1| (-458)))) (-3561 (($ $) NIL (|has| |#1| (-458)))) (-2197 (((-650 $) $) NIL)) (-4228 (($ $) 39)) (-4160 (($ $) NIL (|has| |#1| (-458)))) (-1687 (((-650 $) $) 43)) (-2718 (($ $) 41)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3101 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4131 (-777))) $ $) 96)) (-3676 (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $) 78) (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $ |#2|) NIL)) (-2516 (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $) NIL) (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $ |#2|) NIL)) (-4252 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3596 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3240 (((-1168) $) NIL)) (-3834 (($ $ $) 125 (|has| |#1| (-562)))) (-3451 (((-650 $) $) 32)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| |#2|) (|:| -2940 (-777))) "failed") $) NIL)) (-2010 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-1478 (($ $ $) NIL)) (-3458 (($ $) 24)) (-1693 (((-112) $ $) NIL)) (-1772 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-2899 (($ $ $) NIL)) (-2657 (($ $) 26)) (-3891 (((-1129) $) NIL)) (-3402 (((-2 (|:| -3903 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-562)))) (-3795 (((-2 (|:| -3903 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-562)))) (-4326 (((-112) $) 56)) (-4337 ((|#1| $) 58)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 ((|#1| |#1| $) 133 (|has| |#1| (-458))) (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-4139 (((-2 (|:| -3903 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-562)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-562)))) (-3092 (($ $ |#1|) 129 (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-2634 (($ $ |#1|) 128 (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-650 |#2|) (-650 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-650 |#2|) (-650 $)) NIL)) (-2896 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2375 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2650 (((-537 |#2|) $) NIL) (((-777) $ |#2|) 45) (((-650 (-777)) $ (-650 |#2|)) NIL)) (-2541 (($ $) NIL)) (-2639 (($ $) 35)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542))))) (($ (-959 (-413 (-570)))) NIL (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))))) (($ (-959 (-570))) NIL (-3749 (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-3201 (|has| |#1| (-38 (-413 (-570)))))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186)))))) (($ (-959 |#1|)) NIL (|has| |#2| (-620 (-1186)))) (((-1168) $) NIL (-12 (|has| |#1| (-1047 (-570))) (|has| |#2| (-620 (-1186))))) (((-959 |#1|) $) NIL (|has| |#2| (-620 (-1186))))) (-2128 ((|#1| $) 132 (|has| |#1| (-458))) (($ $ |#2|) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-959 |#1|) $) NIL (|has| |#2| (-620 (-1186)))) (((-1134 |#1| |#2|) $) 18) (($ (-1134 |#1| |#2|)) 19) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-537 |#2|)) NIL) (($ $ |#2| (-777)) 47) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) 13 T CONST)) (-4409 (((-3 (-112) "failed") $ $) NIL)) (-1998 (($) 37 T CONST)) (-1714 (($ $ $ $ (-777)) 105 (|has| |#1| (-562)))) (-4300 (($ $ $ (-777)) 104 (|has| |#1| (-562)))) (-3414 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) 75)) (-3992 (($ $ $) 85)) (** (($ $ (-928)) NIL) (($ $ (-777)) 70)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 62) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
-(((-786 |#1| |#2|) (-13 (-1074 |#1| (-537 |#2|) |#2|) (-619 (-1134 |#1| |#2|)) (-1047 (-1134 |#1| |#2|))) (-1058) (-856)) (T -786))
-NIL
-(-13 (-1074 |#1| (-537 |#2|) |#2|) (-619 (-1134 |#1| |#2|)) (-1047 (-1134 |#1| |#2|)))
-((-2536 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 13)))
-(((-787 |#1| |#2|) (-10 -7 (-15 -2536 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1058) (-1058)) (T -787))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
-(-10 -7 (-15 -2536 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 12)) (-2399 (((-1277 |#1|) $ (-777)) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-3860 (($ (-1182 |#1|)) NIL)) (-3449 (((-1182 $) $ (-1091)) NIL) (((-1182 |#1|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2642 (((-650 $) $ $) 54 (|has| |#1| (-562)))) (-3862 (($ $ $) 50 (|has| |#1| (-562)))) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-4133 (($ $ (-777)) NIL)) (-2180 (($ $ (-777)) NIL)) (-2169 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-458)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL) (((-3 (-1182 |#1|) "failed") $) 10)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1091) $) NIL) (((-1182 |#1|) $) NIL)) (-2067 (($ $ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-3671 (($ $ $) NIL)) (-1985 (($ $ $) 87 (|has| |#1| (-562)))) (-1504 (((-2 (|:| -1747 |#1|) (|:| -1437 $) (|:| -3357 $)) $ $) 86 (|has| |#1| (-562)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-777) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-3995 (((-777) $ $) NIL (|has| |#1| (-562)))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-2417 (($ (-1182 |#1|) (-1091)) NIL) (($ (-1182 $) (-1091)) NIL)) (-2529 (($ $ (-777)) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-3904 (($ $ $) 27)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-1091)) NIL) (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2689 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-3989 (($ (-1 (-777) (-777)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3968 (((-1182 |#1|) $) NIL)) (-3168 (((-3 (-1091) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3101 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4131 (-777))) $ $) 37)) (-3712 (($ $ $) 41)) (-1808 (($ $ $) 47)) (-3676 (((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $) 46)) (-3240 (((-1168) $) NIL)) (-3834 (($ $ $) 56 (|has| |#1| (-562)))) (-2930 (((-2 (|:| -1437 $) (|:| -3357 $)) $ (-777)) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-1091)) (|:| -2940 (-777))) "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3458 (($) NIL (|has| |#1| (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-3402 (((-2 (|:| -3903 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-562)))) (-3795 (((-2 (|:| -3903 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-562)))) (-4330 (((-2 (|:| -2067 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-562)))) (-2625 (((-2 (|:| -2067 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-562)))) (-4326 (((-112) $) 13)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-2829 (($ $ (-777) |#1| $) 26)) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-4139 (((-2 (|:| -3903 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-562)))) (-1594 (((-2 (|:| -2067 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-562)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#1|) NIL) (($ $ (-650 (-1091)) (-650 |#1|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) NIL (|has| |#1| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#1| (-562)))) (-2110 (((-3 $ "failed") $ (-777)) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2896 (($ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2375 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2650 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#1| (-562)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1091)) NIL) (((-1182 |#1|) $) 7) (($ (-1182 |#1|)) 8) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) 28 T CONST)) (-1998 (($) 32 T CONST)) (-3414 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) 40) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-788 |#1|) (-13 (-1253 |#1|) (-619 (-1182 |#1|)) (-1047 (-1182 |#1|)) (-10 -8 (-15 -2829 ($ $ (-777) |#1| $)) (-15 -3904 ($ $ $)) (-15 -3101 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4131 (-777))) $ $)) (-15 -3712 ($ $ $)) (-15 -3676 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -1808 ($ $ $)) (IF (|has| |#1| (-562)) (PROGN (-15 -2642 ((-650 $) $ $)) (-15 -3834 ($ $ $)) (-15 -4139 ((-2 (|:| -3903 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3795 ((-2 (|:| -3903 $) (|:| |coef1| $)) $ $)) (-15 -3402 ((-2 (|:| -3903 $) (|:| |coef2| $)) $ $)) (-15 -1594 ((-2 (|:| -2067 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2625 ((-2 (|:| -2067 |#1|) (|:| |coef1| $)) $ $)) (-15 -4330 ((-2 (|:| -2067 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1058)) (T -788))
-((-2829 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-777)) (-5 *1 (-788 *3)) (-4 *3 (-1058)))) (-3904 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))) (-3101 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-788 *3)) (|:| |polden| *3) (|:| -4131 (-777)))) (-5 *1 (-788 *3)) (-4 *3 (-1058)))) (-3712 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))) (-3676 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1747 *3) (|:| |gap| (-777)) (|:| -1437 (-788 *3)) (|:| -3357 (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-1058)))) (-1808 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))) (-2642 (*1 *2 *1 *1) (-12 (-5 *2 (-650 (-788 *3))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-3834 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-562)) (-4 *2 (-1058)))) (-4139 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3903 (-788 *3)) (|:| |coef1| (-788 *3)) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-3795 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3903 (-788 *3)) (|:| |coef1| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-3402 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3903 (-788 *3)) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-1594 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2067 *3) (|:| |coef1| (-788 *3)) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-2625 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2067 *3) (|:| |coef1| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-4330 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2067 *3) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))))
-(-13 (-1253 |#1|) (-619 (-1182 |#1|)) (-1047 (-1182 |#1|)) (-10 -8 (-15 -2829 ($ $ (-777) |#1| $)) (-15 -3904 ($ $ $)) (-15 -3101 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4131 (-777))) $ $)) (-15 -3712 ($ $ $)) (-15 -3676 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -1808 ($ $ $)) (IF (|has| |#1| (-562)) (PROGN (-15 -2642 ((-650 $) $ $)) (-15 -3834 ($ $ $)) (-15 -4139 ((-2 (|:| -3903 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3795 ((-2 (|:| -3903 $) (|:| |coef1| $)) $ $)) (-15 -3402 ((-2 (|:| -3903 $) (|:| |coef2| $)) $ $)) (-15 -1594 ((-2 (|:| -2067 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2625 ((-2 (|:| -2067 |#1|) (|:| |coef1| $)) $ $)) (-15 -4330 ((-2 (|:| -2067 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1537 ((|#1| (-777) |#1|) 33 (|has| |#1| (-38 (-413 (-570)))))) (-1457 ((|#1| (-777) |#1|) 23)) (-3468 ((|#1| (-777) |#1|) 35 (|has| |#1| (-38 (-413 (-570)))))))
-(((-789 |#1|) (-10 -7 (-15 -1457 (|#1| (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -3468 (|#1| (-777) |#1|)) (-15 -1537 (|#1| (-777) |#1|))) |%noBranch|)) (-174)) (T -789))
-((-1537 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-174)))) (-3468 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-174)))) (-1457 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -1457 (|#1| (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -3468 (|#1| (-777) |#1|)) (-15 -1537 (|#1| (-777) |#1|))) |%noBranch|))
-((-2847 (((-112) $ $) 7)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) 86)) (-1510 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1598 (((-650 |#3|) $) 34)) (-3330 (((-112) $) 27)) (-2114 (((-112) $) 18 (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) 102) (((-112) $) 98)) (-3067 ((|#4| |#4| $) 93)) (-3312 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| $) 127)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) 28)) (-2855 (((-112) $ (-777)) 45)) (-3960 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) 80)) (-2333 (($) 46 T CONST)) (-2157 (((-112) $) 23 (|has| |#1| (-562)))) (-3303 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3105 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3580 (((-112) $) 26 (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2303 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) 37)) (-4387 (($ (-650 |#4|)) 36)) (-1962 (((-3 $ "failed") $) 83)) (-2360 ((|#4| |#4| $) 90)) (-3153 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4079 ((|#4| |#4| $) 88)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) 106)) (-1496 (((-112) |#4| $) 137)) (-1825 (((-112) |#4| $) 134)) (-1446 (((-112) |#4| $) 138) (((-112) $) 135)) (-3976 (((-650 |#4|) $) 53 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) 105) (((-112) $) 104)) (-2486 ((|#3| $) 35)) (-2497 (((-112) $ (-777)) 44)) (-3069 (((-650 |#4|) $) 54 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 48)) (-3734 (((-650 |#3|) $) 33)) (-3640 (((-112) |#3| $) 32)) (-2065 (((-112) $ (-777)) 43)) (-3240 (((-1168) $) 10)) (-3115 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3834 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| |#4| $) 128)) (-3637 (((-3 |#4| "failed") $) 84)) (-3778 (((-650 $) |#4| $) 130)) (-2740 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4057 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3502 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-4399 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-4083 (((-650 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-1478 ((|#4| |#4| $) 91)) (-1693 (((-112) $ $) 111)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) 101) (((-112) $) 97)) (-2899 ((|#4| |#4| $) 92)) (-3891 (((-1129) $) 11)) (-1948 (((-3 |#4| "failed") $) 85)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3484 (((-3 $ "failed") $ |#4|) 79)) (-3308 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-2231 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) 39)) (-2171 (((-112) $) 42)) (-1698 (($) 41)) (-2650 (((-777) $) 107)) (-3901 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4452)))) (-3064 (($ $) 40)) (-2601 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 61)) (-1342 (($ $ |#3|) 29)) (-2691 (($ $ |#3|) 31)) (-2990 (($ $) 89)) (-3130 (($ $ |#3|) 30)) (-2869 (((-868) $) 12) (((-650 |#4|) $) 38)) (-3982 (((-777) $) 77 (|has| |#3| (-373)))) (-1344 (((-112) $ $) 9)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-2922 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-2061 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) 82)) (-4242 (((-112) |#4| $) 136)) (-1600 (((-112) |#3| $) 81)) (-3892 (((-112) $ $) 6)) (-2857 (((-777) $) 47 (|has| $ (-6 -4452)))))
-(((-790 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -790))
-NIL
-(-13 (-1080 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1220 |#1| |#2| |#3| |#4|) . T) ((-1227) . T))
-((-1578 (((-3 (-384) "failed") (-320 |#1|) (-928)) 62 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-384) "failed") (-320 |#1|)) 54 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-384) "failed") (-413 (-959 |#1|)) (-928)) 41 (|has| |#1| (-562))) (((-3 (-384) "failed") (-413 (-959 |#1|))) 40 (|has| |#1| (-562))) (((-3 (-384) "failed") (-959 |#1|) (-928)) 31 (|has| |#1| (-1058))) (((-3 (-384) "failed") (-959 |#1|)) 30 (|has| |#1| (-1058)))) (-2667 (((-384) (-320 |#1|) (-928)) 99 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-384) (-320 |#1|)) 94 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-384) (-413 (-959 |#1|)) (-928)) 91 (|has| |#1| (-562))) (((-384) (-413 (-959 |#1|))) 90 (|has| |#1| (-562))) (((-384) (-959 |#1|) (-928)) 86 (|has| |#1| (-1058))) (((-384) (-959 |#1|)) 85 (|has| |#1| (-1058))) (((-384) |#1| (-928)) 76) (((-384) |#1|) 22)) (-2596 (((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)) (-928)) 71 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-320 (-171 |#1|))) 70 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-320 |#1|) (-928)) 63 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-320 |#1|)) 61 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))) (-928)) 46 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|)))) 45 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)) (-928)) 39 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-413 (-959 |#1|))) 38 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-959 |#1|) (-928)) 28 (|has| |#1| (-1058))) (((-3 (-171 (-384)) "failed") (-959 |#1|)) 26 (|has| |#1| (-1058))) (((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)) (-928)) 18 (|has| |#1| (-174))) (((-3 (-171 (-384)) "failed") (-959 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-1678 (((-171 (-384)) (-320 (-171 |#1|)) (-928)) 102 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-320 (-171 |#1|))) 101 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-320 |#1|) (-928)) 100 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-320 |#1|)) 98 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-413 (-959 (-171 |#1|))) (-928)) 93 (|has| |#1| (-562))) (((-171 (-384)) (-413 (-959 (-171 |#1|)))) 92 (|has| |#1| (-562))) (((-171 (-384)) (-413 (-959 |#1|)) (-928)) 89 (|has| |#1| (-562))) (((-171 (-384)) (-413 (-959 |#1|))) 88 (|has| |#1| (-562))) (((-171 (-384)) (-959 |#1|) (-928)) 84 (|has| |#1| (-1058))) (((-171 (-384)) (-959 |#1|)) 83 (|has| |#1| (-1058))) (((-171 (-384)) (-959 (-171 |#1|)) (-928)) 78 (|has| |#1| (-174))) (((-171 (-384)) (-959 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-384)) (-171 |#1|) (-928)) 80 (|has| |#1| (-174))) (((-171 (-384)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-384)) |#1| (-928)) 27) (((-171 (-384)) |#1|) 25)))
-(((-791 |#1|) (-10 -7 (-15 -2667 ((-384) |#1|)) (-15 -2667 ((-384) |#1| (-928))) (-15 -1678 ((-171 (-384)) |#1|)) (-15 -1678 ((-171 (-384)) |#1| (-928))) (IF (|has| |#1| (-174)) (PROGN (-15 -1678 ((-171 (-384)) (-171 |#1|))) (-15 -1678 ((-171 (-384)) (-171 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-959 (-171 |#1|)))) (-15 -1678 ((-171 (-384)) (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -2667 ((-384) (-959 |#1|))) (-15 -2667 ((-384) (-959 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-959 |#1|))) (-15 -1678 ((-171 (-384)) (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -2667 ((-384) (-413 (-959 |#1|)))) (-15 -2667 ((-384) (-413 (-959 |#1|)) (-928))) (-15 -1678 ((-171 (-384)) (-413 (-959 |#1|)))) (-15 -1678 ((-171 (-384)) (-413 (-959 |#1|)) (-928))) (-15 -1678 ((-171 (-384)) (-413 (-959 (-171 |#1|))))) (-15 -1678 ((-171 (-384)) (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -2667 ((-384) (-320 |#1|))) (-15 -2667 ((-384) (-320 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-320 |#1|))) (-15 -1678 ((-171 (-384)) (-320 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-320 (-171 |#1|)))) (-15 -1678 ((-171 (-384)) (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -1578 ((-3 (-384) "failed") (-959 |#1|))) (-15 -1578 ((-3 (-384) "failed") (-959 |#1|) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 |#1|))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -1578 ((-3 (-384) "failed") (-413 (-959 |#1|)))) (-15 -1578 ((-3 (-384) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -1578 ((-3 (-384) "failed") (-320 |#1|))) (-15 -1578 ((-3 (-384) "failed") (-320 |#1|) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 |#1|))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 |#1|) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|)) (-620 (-384))) (T -791))
-((-2596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2596 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-2596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2596 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-1578 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-2596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2596 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-2596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2596 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-1578 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-2596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2596 (*1 *2 *3) (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-1578 (*1 *2 *3) (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-2596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2596 (*1 *2 *3) (|partial| -12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-928)) (-4 *5 (-174)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-171 (-384))) (-5 *1 (-791 *3)) (-4 *3 (-620 (-384))))) (-1678 (*1 *2 *3) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-791 *3)) (-4 *3 (-620 (-384))))) (-2667 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-384)) (-5 *1 (-791 *3)) (-4 *3 (-620 *2)))) (-2667 (*1 *2 *3) (-12 (-5 *2 (-384)) (-5 *1 (-791 *3)) (-4 *3 (-620 *2)))))
-(-10 -7 (-15 -2667 ((-384) |#1|)) (-15 -2667 ((-384) |#1| (-928))) (-15 -1678 ((-171 (-384)) |#1|)) (-15 -1678 ((-171 (-384)) |#1| (-928))) (IF (|has| |#1| (-174)) (PROGN (-15 -1678 ((-171 (-384)) (-171 |#1|))) (-15 -1678 ((-171 (-384)) (-171 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-959 (-171 |#1|)))) (-15 -1678 ((-171 (-384)) (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -2667 ((-384) (-959 |#1|))) (-15 -2667 ((-384) (-959 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-959 |#1|))) (-15 -1678 ((-171 (-384)) (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -2667 ((-384) (-413 (-959 |#1|)))) (-15 -2667 ((-384) (-413 (-959 |#1|)) (-928))) (-15 -1678 ((-171 (-384)) (-413 (-959 |#1|)))) (-15 -1678 ((-171 (-384)) (-413 (-959 |#1|)) (-928))) (-15 -1678 ((-171 (-384)) (-413 (-959 (-171 |#1|))))) (-15 -1678 ((-171 (-384)) (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -2667 ((-384) (-320 |#1|))) (-15 -2667 ((-384) (-320 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-320 |#1|))) (-15 -1678 ((-171 (-384)) (-320 |#1|) (-928))) (-15 -1678 ((-171 (-384)) (-320 (-171 |#1|)))) (-15 -1678 ((-171 (-384)) (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -1578 ((-3 (-384) "failed") (-959 |#1|))) (-15 -1578 ((-3 (-384) "failed") (-959 |#1|) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 |#1|))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -1578 ((-3 (-384) "failed") (-413 (-959 |#1|)))) (-15 -1578 ((-3 (-384) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -1578 ((-3 (-384) "failed") (-320 |#1|))) (-15 -1578 ((-3 (-384) "failed") (-320 |#1|) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 |#1|))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 |#1|) (-928))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)))) (-15 -2596 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|))
-((-4397 (((-928) (-1168)) 89)) (-3558 (((-3 (-384) "failed") (-1168)) 36)) (-2853 (((-384) (-1168)) 34)) (-2641 (((-928) (-1168)) 63)) (-2573 (((-1168) (-928)) 73)) (-3164 (((-1168) (-928)) 62)))
-(((-792) (-10 -7 (-15 -3164 ((-1168) (-928))) (-15 -2641 ((-928) (-1168))) (-15 -2573 ((-1168) (-928))) (-15 -4397 ((-928) (-1168))) (-15 -2853 ((-384) (-1168))) (-15 -3558 ((-3 (-384) "failed") (-1168))))) (T -792))
-((-3558 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792)))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792)))))
-(-10 -7 (-15 -3164 ((-1168) (-928))) (-15 -2641 ((-928) (-1168))) (-15 -2573 ((-1168) (-928))) (-15 -4397 ((-928) (-1168))) (-15 -2853 ((-384) (-1168))) (-15 -3558 ((-3 (-384) "failed") (-1168))))
-((-2847 (((-112) $ $) 7)) (-3030 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 16) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 14)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-793) (-141)) (T -793))
-((-1319 (*1 *2 *3 *4) (-12 (-4 *1 (-793)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044)))))) (-3030 (*1 *2 *3 *2) (-12 (-4 *1 (-793)) (-5 *2 (-1044)) (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-1319 (*1 *2 *3 *4) (-12 (-4 *1 (-793)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044)))))) (-3030 (*1 *2 *3 *2) (-12 (-4 *1 (-793)) (-5 *2 (-1044)) (-5 *3 (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(-13 (-1109) (-10 -7 (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3030 ((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3030 ((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-3176 (((-1282) (-1277 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))) (-384) (-1277 (-384)) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384))) 55) (((-1282) (-1277 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))) (-384) (-1277 (-384)) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384))) 52)) (-4130 (((-1282) (-1277 (-384)) (-570) (-384) (-384) (-570) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384))) 61)) (-3826 (((-1282) (-1277 (-384)) (-570) (-384) (-384) (-384) (-384) (-570) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384))) 50)) (-4341 (((-1282) (-1277 (-384)) (-570) (-384) (-384) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384))) 63) (((-1282) (-1277 (-384)) (-570) (-384) (-384) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384))) 62)))
-(((-794) (-10 -7 (-15 -4341 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))) (-15 -4341 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)))) (-15 -3826 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-384) (-384) (-570) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))) (-15 -3176 ((-1282) (-1277 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))) (-384) (-1277 (-384)) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))) (-15 -3176 ((-1282) (-1277 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))) (-384) (-1277 (-384)) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)))) (-15 -4130 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-570) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))))) (T -794))
-((-4130 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384))) (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282)) (-5 *1 (-794)))) (-3176 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-570)) (-5 *6 (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384)))) (-5 *7 (-1 (-1282) (-1277 *5) (-1277 *5) (-384))) (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282)) (-5 *1 (-794)))) (-3176 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-570)) (-5 *6 (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384)))) (-5 *7 (-1 (-1282) (-1277 *5) (-1277 *5) (-384))) (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282)) (-5 *1 (-794)))) (-3826 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384))) (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282)) (-5 *1 (-794)))) (-4341 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384))) (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282)) (-5 *1 (-794)))) (-4341 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384))) (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282)) (-5 *1 (-794)))))
-(-10 -7 (-15 -4341 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))) (-15 -4341 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)))) (-15 -3826 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-384) (-384) (-570) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))) (-15 -3176 ((-1282) (-1277 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))) (-384) (-1277 (-384)) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))) (-15 -3176 ((-1282) (-1277 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))) (-384) (-1277 (-384)) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)) (-1277 (-384)))) (-15 -4130 ((-1282) (-1277 (-384)) (-570) (-384) (-384) (-570) (-1 (-1282) (-1277 (-384)) (-1277 (-384)) (-384)))))
-((-2140 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 64)) (-1656 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 40)) (-2766 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 63)) (-1901 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 38)) (-2335 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 62)) (-2432 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 24)) (-1679 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570)) 41)) (-2734 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570)) 39)) (-2712 (((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570)) 37)))
-(((-795) (-10 -7 (-15 -2712 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2734 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -1679 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2432 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -1901 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -1656 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -2335 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -2766 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -2140 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))))) (T -795))
-((-2140 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-2766 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-2335 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-1656 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-1901 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-2432 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-1679 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-2734 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-2712 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))))
-(-10 -7 (-15 -2712 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2734 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -1679 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2432 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -1901 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -1656 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -2335 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -2766 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -2140 ((-2 (|:| -4156 (-384)) (|:| -3070 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))))
-((-2919 (((-1222 |#1|) |#1| (-227) (-570)) 69)))
-(((-796 |#1|) (-10 -7 (-15 -2919 ((-1222 |#1|) |#1| (-227) (-570)))) (-983)) (T -796))
-((-2919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-570)) (-5 *2 (-1222 *3)) (-5 *1 (-796 *3)) (-4 *3 (-983)))))
-(-10 -7 (-15 -2919 ((-1222 |#1|) |#1| (-227) (-570))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 25)) (-3997 (((-3 $ "failed") $ $) 27)) (-2333 (($) 24 T CONST)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 23 T CONST)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (-4003 (($ $ $) 31) (($ $) 30)) (-3992 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26) (($ (-570) $) 29)))
-(((-797) (-141)) (T -797))
-NIL
-(-13 (-801) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-856) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 25)) (-2333 (($) 24 T CONST)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 23 T CONST)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (-3992 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26)))
-(((-798) (-141)) (T -798))
-NIL
-(-13 (-800) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-800) . T) ((-856) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 25)) (-1548 (($ $ $) 28)) (-3997 (((-3 $ "failed") $ $) 27)) (-2333 (($) 24 T CONST)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 23 T CONST)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (-3992 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26)))
+((-1969 (((-3 |#2| "failed") |#2| |#2| (-115) (-1188)) 37)))
+(((-780 |#1| |#2|) (-10 -7 (-15 -1969 ((-3 |#2| "failed") |#2| |#2| (-115) (-1188)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968))) (T -780))
+((-1969 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-780 *5 *2)) (-4 *2 (-13 (-29 *5) (-1214) (-968))))))
+(-10 -7 (-15 -1969 ((-3 |#2| "failed") |#2| |#2| (-115) (-1188))))
+((-3491 (((-782) |#1|) 8)))
+(((-781 |#1|) (-10 -7 (-15 -3491 ((-782) |#1|))) (-1229)) (T -781))
+((-3491 (*1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-781 *3)) (-4 *3 (-1229)))))
+(-10 -7 (-15 -3491 ((-782) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 7)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 9)))
+(((-782) (-1111)) (T -782))
+NIL
+(-1111)
+((-2140 ((|#2| |#4|) 35)))
+(((-783 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2140 (|#2| |#4|))) (-460) (-1255 |#1|) (-732 |#1| |#2|) (-1255 |#3|)) (T -783))
+((-2140 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-732 *4 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-783 *4 *2 *5 *3)) (-4 *3 (-1255 *5)))))
+(-10 -7 (-15 -2140 (|#2| |#4|)))
+((-2982 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3056 (((-1284) (-1170) (-1170) |#4| |#5|) 33)) (-2859 ((|#4| |#4| |#5|) 74)) (-1849 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|) 79)) (-3908 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|) 16)))
+(((-784 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2982 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2859 (|#4| |#4| |#5|)) (-15 -1849 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -3056 ((-1284) (-1170) (-1170) |#4| |#5|)) (-15 -3908 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -784))
+((-3908 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4)))) (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3056 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1170)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *4 (-1076 *6 *7 *8)) (-5 *2 (-1284)) (-5 *1 (-784 *6 *7 *8 *4 *5)) (-4 *5 (-1082 *6 *7 *8 *4)))) (-1849 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2859 (*1 *2 *2 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *2 (-1076 *4 *5 *6)) (-5 *1 (-784 *4 *5 *6 *2 *3)) (-4 *3 (-1082 *4 *5 *6 *2)))) (-2982 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(-10 -7 (-15 -2982 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2859 (|#4| |#4| |#5|)) (-15 -1849 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -3056 ((-1284) (-1170) (-1170) |#4| |#5|)) (-15 -3908 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)))
+((-3072 (((-3 (-1184 (-1184 |#1|)) "failed") |#4|) 51)) (-2052 (((-652 |#4|) |#4|) 22)) (-2933 ((|#4| |#4|) 17)))
+(((-785 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2052 ((-652 |#4|) |#4|)) (-15 -3072 ((-3 (-1184 (-1184 |#1|)) "failed") |#4|)) (-15 -2933 (|#4| |#4|))) (-356) (-335 |#1|) (-1255 |#2|) (-1255 |#3|) (-930)) (T -785))
+((-2933 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-335 *3)) (-4 *5 (-1255 *4)) (-5 *1 (-785 *3 *4 *5 *2 *6)) (-4 *2 (-1255 *5)) (-14 *6 (-930)))) (-3072 (*1 *2 *3) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5)) (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-785 *4 *5 *6 *3 *7)) (-4 *3 (-1255 *6)) (-14 *7 (-930)))) (-2052 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5)) (-5 *2 (-652 *3)) (-5 *1 (-785 *4 *5 *6 *3 *7)) (-4 *3 (-1255 *6)) (-14 *7 (-930)))))
+(-10 -7 (-15 -2052 ((-652 |#4|) |#4|)) (-15 -3072 ((-3 (-1184 (-1184 |#1|)) "failed") |#4|)) (-15 -2933 (|#4| |#4|)))
+((-4349 (((-2 (|:| |deter| (-652 (-1184 |#5|))) (|:| |dterm| (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-652 |#1|)) (|:| |nlead| (-652 |#5|))) (-1184 |#5|) (-652 |#1|) (-652 |#5|)) 72)) (-1328 (((-652 (-779)) |#1|) 20)))
+(((-786 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4349 ((-2 (|:| |deter| (-652 (-1184 |#5|))) (|:| |dterm| (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-652 |#1|)) (|:| |nlead| (-652 |#5|))) (-1184 |#5|) (-652 |#1|) (-652 |#5|))) (-15 -1328 ((-652 (-779)) |#1|))) (-1255 |#4|) (-801) (-858) (-313) (-958 |#4| |#2| |#3|)) (T -786))
+((-1328 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-652 (-779))) (-5 *1 (-786 *3 *4 *5 *6 *7)) (-4 *3 (-1255 *6)) (-4 *7 (-958 *6 *4 *5)))) (-4349 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1255 *9)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-313)) (-4 *10 (-958 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-652 (-1184 *10))) (|:| |dterm| (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| *10))))) (|:| |nfacts| (-652 *6)) (|:| |nlead| (-652 *10)))) (-5 *1 (-786 *6 *7 *8 *9 *10)) (-5 *3 (-1184 *10)) (-5 *4 (-652 *6)) (-5 *5 (-652 *10)))))
+(-10 -7 (-15 -4349 ((-2 (|:| |deter| (-652 (-1184 |#5|))) (|:| |dterm| (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-652 |#1|)) (|:| |nlead| (-652 |#5|))) (-1184 |#5|) (-652 |#1|) (-652 |#5|))) (-15 -1328 ((-652 (-779)) |#1|)))
+((-2617 (((-652 (-2 (|:| |outval| |#1|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#1|))))) (-697 (-415 (-572))) |#1|) 31)) (-2476 (((-652 |#1|) (-697 (-415 (-572))) |#1|) 21)) (-3245 (((-961 (-415 (-572))) (-697 (-415 (-572))) (-1188)) 18) (((-961 (-415 (-572))) (-697 (-415 (-572)))) 17)))
+(((-787 |#1|) (-10 -7 (-15 -3245 ((-961 (-415 (-572))) (-697 (-415 (-572))))) (-15 -3245 ((-961 (-415 (-572))) (-697 (-415 (-572))) (-1188))) (-15 -2476 ((-652 |#1|) (-697 (-415 (-572))) |#1|)) (-15 -2617 ((-652 (-2 (|:| |outval| |#1|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#1|))))) (-697 (-415 (-572))) |#1|))) (-13 (-370) (-856))) (T -787))
+((-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-652 (-2 (|:| |outval| *4) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 *4)))))) (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *4 (-1188)) (-5 *2 (-961 (-415 (-572)))) (-5 *1 (-787 *5)) (-4 *5 (-13 (-370) (-856))))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-961 (-415 (-572)))) (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))))
+(-10 -7 (-15 -3245 ((-961 (-415 (-572))) (-697 (-415 (-572))))) (-15 -3245 ((-961 (-415 (-572))) (-697 (-415 (-572))) (-1188))) (-15 -2476 ((-652 |#1|) (-697 (-415 (-572))) |#1|)) (-15 -2617 ((-652 (-2 (|:| |outval| |#1|) (|:| |outmult| (-572)) (|:| |outvect| (-652 (-697 |#1|))))) (-697 (-415 (-572))) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 36)) (-2220 (((-652 |#2|) $) NIL)) (-4063 (((-1184 $) $ |#2|) NIL) (((-1184 |#1|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 |#2|)) NIL)) (-4058 (($ $) 30)) (-3207 (((-112) $ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) 110 (|has| |#1| (-564)))) (-2664 (((-652 $) $ $) 123 (|has| |#1| (-564)))) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-961 (-415 (-572)))) NIL (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))))) (((-3 $ "failed") (-961 (-572))) NIL (-3783 (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-38 (-415 (-572)))))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188)))))) (((-3 $ "failed") (-961 |#1|)) NIL (-3783 (-12 (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-38 (-415 (-572))))) (-3795 (|has| |#1| (-38 (-572))))) (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-38 (-415 (-572))))) (-3795 (|has| |#1| (-553)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-1003 (-572))))))) (((-3 (-1136 |#1| |#2|) "failed") $) 21)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) ((|#2| $) NIL) (($ (-961 (-415 (-572)))) NIL (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))))) (($ (-961 (-572))) NIL (-3783 (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-38 (-415 (-572)))))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188)))))) (($ (-961 |#1|)) NIL (-3783 (-12 (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-38 (-415 (-572))))) (-3795 (|has| |#1| (-38 (-572))))) (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-38 (-415 (-572))))) (-3795 (|has| |#1| (-553)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-1003 (-572))))))) (((-1136 |#1| |#2|) $) NIL)) (-3829 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-564)))) (-1874 (($ $) NIL) (($ $ |#2|) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2182 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-4009 (((-112) $) NIL)) (-3369 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 81)) (-4332 (($ $) 136 (|has| |#1| (-460)))) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ |#2|) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-2753 (($ $) NIL (|has| |#1| (-564)))) (-2088 (($ $) NIL (|has| |#1| (-564)))) (-3785 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2248 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3163 (($ $ |#1| (-539 |#2|) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-4422 (((-112) $) 57)) (-2348 (((-779) $) NIL)) (-1870 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-3189 (($ $ $ $ $) 107 (|has| |#1| (-564)))) (-3698 ((|#2| $) 22)) (-3060 (($ (-1184 |#1|) |#2|) NIL) (($ (-1184 $) |#2|) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-539 |#2|)) NIL) (($ $ |#2| (-779)) 38) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-2574 (($ $ $) 63)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |#2|) NIL)) (-3647 (((-112) $) NIL)) (-3808 (((-539 |#2|) $) NIL) (((-779) $ |#2|) NIL) (((-652 (-779)) $ (-652 |#2|)) NIL)) (-3263 (((-779) $) 23)) (-2008 (($ (-1 (-539 |#2|) (-539 |#2|)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4107 (((-3 |#2| "failed") $) NIL)) (-3217 (($ $) NIL (|has| |#1| (-460)))) (-2514 (($ $) NIL (|has| |#1| (-460)))) (-2736 (((-652 $) $) NIL)) (-2632 (($ $) 39)) (-3249 (($ $) NIL (|has| |#1| (-460)))) (-4355 (((-652 $) $) 43)) (-4099 (($ $) 41)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-1483 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4154 (-779))) $ $) 96)) (-2375 (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $) 78) (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $ |#2|) NIL)) (-2731 (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $) NIL) (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $ |#2|) NIL)) (-2877 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2840 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3618 (((-1170) $) NIL)) (-3276 (($ $ $) 125 (|has| |#1| (-564)))) (-3930 (((-652 $) $) 32)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| |#2|) (|:| -2477 (-779))) "failed") $) NIL)) (-1338 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-3113 (($ $ $) NIL)) (-3477 (($ $) 24)) (-4398 (((-112) $ $) NIL)) (-4001 (((-112) $ $) NIL) (((-112) $ (-652 $)) NIL)) (-2041 (($ $ $) NIL)) (-1563 (($ $) 26)) (-2614 (((-1131) $) NIL)) (-1577 (((-2 (|:| -1370 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-564)))) (-4140 (((-2 (|:| -1370 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-564)))) (-1817 (((-112) $) 56)) (-1829 ((|#1| $) 58)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 ((|#1| |#1| $) 133 (|has| |#1| (-460))) (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-4237 (((-2 (|:| -1370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-564)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-564)))) (-1374 (($ $ |#1|) 129 (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-1320 (($ $ |#1|) 128 (|has| |#1| (-564))) (($ $ $) NIL (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-652 |#2|) (-652 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-652 |#2|) (-652 $)) NIL)) (-2020 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3011 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-1497 (((-539 |#2|) $) NIL) (((-779) $ |#2|) 45) (((-652 (-779)) $ (-652 |#2|)) NIL)) (-2976 (($ $) NIL)) (-1376 (($ $) 35)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544))))) (($ (-961 (-415 (-572)))) NIL (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188))))) (($ (-961 (-572))) NIL (-3783 (-12 (|has| |#1| (-38 (-572))) (|has| |#2| (-622 (-1188))) (-3795 (|has| |#1| (-38 (-415 (-572)))))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#2| (-622 (-1188)))))) (($ (-961 |#1|)) NIL (|has| |#2| (-622 (-1188)))) (((-1170) $) NIL (-12 (|has| |#1| (-1049 (-572))) (|has| |#2| (-622 (-1188))))) (((-961 |#1|) $) NIL (|has| |#2| (-622 (-1188))))) (-3262 ((|#1| $) 132 (|has| |#1| (-460))) (($ $ |#2|) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-961 |#1|) $) NIL (|has| |#2| (-622 (-1188)))) (((-1136 |#1| |#2|) $) 18) (($ (-1136 |#1| |#2|)) 19) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-539 |#2|)) NIL) (($ $ |#2| (-779)) 47) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) 13 T CONST)) (-1880 (((-3 (-112) "failed") $ $) NIL)) (-2619 (($) 37 T CONST)) (-1510 (($ $ $ $ (-779)) 105 (|has| |#1| (-564)))) (-2062 (($ $ $ (-779)) 104 (|has| |#1| (-564)))) (-4019 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) 75)) (-4005 (($ $ $) 85)) (** (($ $ (-930)) NIL) (($ $ (-779)) 70)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 62) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+(((-788 |#1| |#2|) (-13 (-1076 |#1| (-539 |#2|) |#2|) (-621 (-1136 |#1| |#2|)) (-1049 (-1136 |#1| |#2|))) (-1060) (-858)) (T -788))
+NIL
+(-13 (-1076 |#1| (-539 |#2|) |#2|) (-621 (-1136 |#1| |#2|)) (-1049 (-1136 |#1| |#2|)))
+((-3161 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 13)))
+(((-789 |#1| |#2|) (-10 -7 (-15 -3161 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1060) (-1060)) (T -789))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))))
+(-10 -7 (-15 -3161 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 12)) (-4183 (((-1279 |#1|) $ (-779)) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-3524 (($ (-1184 |#1|)) NIL)) (-4063 (((-1184 $) $ (-1093)) NIL) (((-1184 |#1|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1416 (((-652 $) $ $) 54 (|has| |#1| (-564)))) (-3545 (($ $ $) 50 (|has| |#1| (-564)))) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-4173 (($ $ (-779)) NIL)) (-2549 (($ $ (-779)) NIL)) (-3694 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-460)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL) (((-3 (-1184 |#1|) "failed") $) 10)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1093) $) NIL) (((-1184 |#1|) $) NIL)) (-3829 (($ $ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-2332 (($ $ $) NIL)) (-2397 (($ $ $) 87 (|has| |#1| (-564)))) (-3369 (((-2 (|:| -2379 |#1|) (|:| -1882 $) (|:| -2336 $)) $ $) 86 (|has| |#1| (-564)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-779) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2068 (((-779) $ $) NIL (|has| |#1| (-564)))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-3060 (($ (-1184 |#1|) (-1093)) NIL) (($ (-1184 $) (-1093)) NIL)) (-2865 (($ $ (-779)) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2574 (($ $ $) 27)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-1093)) NIL) (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3808 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2008 (($ (-1 (-779) (-779)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3092 (((-1184 |#1|) $) NIL)) (-4107 (((-3 (-1093) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-1483 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4154 (-779))) $ $) 37)) (-1485 (($ $ $) 41)) (-3152 (($ $ $) 47)) (-2375 (((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $) 46)) (-3618 (((-1170) $) NIL)) (-3276 (($ $ $) 56 (|has| |#1| (-564)))) (-2371 (((-2 (|:| -1882 $) (|:| -2336 $)) $ (-779)) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-1093)) (|:| -2477 (-779))) "failed") $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3477 (($) NIL (|has| |#1| (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-1577 (((-2 (|:| -1370 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-564)))) (-4140 (((-2 (|:| -1370 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-564)))) (-2390 (((-2 (|:| -3829 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-564)))) (-2471 (((-2 (|:| -3829 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-564)))) (-1817 (((-112) $) 13)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-2697 (($ $ (-779) |#1| $) 26)) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-4237 (((-2 (|:| -1370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-564)))) (-2909 (((-2 (|:| -3829 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-564)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#1|) NIL) (($ $ (-652 (-1093)) (-652 |#1|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) NIL (|has| |#1| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#1| (-564)))) (-4271 (((-3 $ "failed") $ (-779)) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-2020 (($ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3011 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1497 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#1| (-564)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1093)) NIL) (((-1184 |#1|) $) 7) (($ (-1184 |#1|)) 8) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) 28 T CONST)) (-2619 (($) 32 T CONST)) (-4019 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) 40) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-790 |#1|) (-13 (-1255 |#1|) (-621 (-1184 |#1|)) (-1049 (-1184 |#1|)) (-10 -8 (-15 -2697 ($ $ (-779) |#1| $)) (-15 -2574 ($ $ $)) (-15 -1483 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4154 (-779))) $ $)) (-15 -1485 ($ $ $)) (-15 -2375 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -3152 ($ $ $)) (IF (|has| |#1| (-564)) (PROGN (-15 -1416 ((-652 $) $ $)) (-15 -3276 ($ $ $)) (-15 -4237 ((-2 (|:| -1370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4140 ((-2 (|:| -1370 $) (|:| |coef1| $)) $ $)) (-15 -1577 ((-2 (|:| -1370 $) (|:| |coef2| $)) $ $)) (-15 -2909 ((-2 (|:| -3829 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2471 ((-2 (|:| -3829 |#1|) (|:| |coef1| $)) $ $)) (-15 -2390 ((-2 (|:| -3829 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1060)) (T -790))
+((-2697 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-779)) (-5 *1 (-790 *3)) (-4 *3 (-1060)))) (-2574 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))) (-1483 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-790 *3)) (|:| |polden| *3) (|:| -4154 (-779)))) (-5 *1 (-790 *3)) (-4 *3 (-1060)))) (-1485 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))) (-2375 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2379 *3) (|:| |gap| (-779)) (|:| -1882 (-790 *3)) (|:| -2336 (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-1060)))) (-3152 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))) (-1416 (*1 *2 *1 *1) (-12 (-5 *2 (-652 (-790 *3))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-3276 (*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-564)) (-4 *2 (-1060)))) (-4237 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1370 (-790 *3)) (|:| |coef1| (-790 *3)) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-4140 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1370 (-790 *3)) (|:| |coef1| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-1577 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1370 (-790 *3)) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-2909 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3829 *3) (|:| |coef1| (-790 *3)) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-2471 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3829 *3) (|:| |coef1| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))) (-2390 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3829 *3) (|:| |coef2| (-790 *3)))) (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
+(-13 (-1255 |#1|) (-621 (-1184 |#1|)) (-1049 (-1184 |#1|)) (-10 -8 (-15 -2697 ($ $ (-779) |#1| $)) (-15 -2574 ($ $ $)) (-15 -1483 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4154 (-779))) $ $)) (-15 -1485 ($ $ $)) (-15 -2375 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -3152 ($ $ $)) (IF (|has| |#1| (-564)) (PROGN (-15 -1416 ((-652 $) $ $)) (-15 -3276 ($ $ $)) (-15 -4237 ((-2 (|:| -1370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4140 ((-2 (|:| -1370 $) (|:| |coef1| $)) $ $)) (-15 -1577 ((-2 (|:| -1370 $) (|:| |coef2| $)) $ $)) (-15 -2909 ((-2 (|:| -3829 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2471 ((-2 (|:| -3829 |#1|) (|:| |coef1| $)) $ $)) (-15 -2390 ((-2 (|:| -3829 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-3653 ((|#1| (-779) |#1|) 33 (|has| |#1| (-38 (-415 (-572)))))) (-1458 ((|#1| (-779) |#1|) 23)) (-4093 ((|#1| (-779) |#1|) 35 (|has| |#1| (-38 (-415 (-572)))))))
+(((-791 |#1|) (-10 -7 (-15 -1458 (|#1| (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4093 (|#1| (-779) |#1|)) (-15 -3653 (|#1| (-779) |#1|))) |%noBranch|)) (-174)) (T -791))
+((-3653 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-174)))) (-4093 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-174)))) (-1458 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -1458 (|#1| (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4093 (|#1| (-779) |#1|)) (-15 -3653 (|#1| (-779) |#1|))) |%noBranch|))
+((-3464 (((-112) $ $) 7)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) 86)) (-3426 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-2220 (((-652 |#3|) $) 34)) (-2029 (((-112) $) 27)) (-4308 (((-112) $) 18 (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) 102) (((-112) $) 98)) (-2373 ((|#4| |#4| $) 93)) (-1861 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| $) 127)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) 28)) (-2938 (((-112) $ (-779)) 45)) (-1424 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-1586 (($) 46 T CONST)) (-3571 (((-112) $) 23 (|has| |#1| (-564)))) (-3057 (((-112) $ $) 25 (|has| |#1| (-564)))) (-1528 (((-112) $ $) 24 (|has| |#1| (-564)))) (-2690 (((-112) $) 26 (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4400 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) 37)) (-1869 (($ (-652 |#4|)) 36)) (-2581 (((-3 $ "failed") $) 83)) (-3802 ((|#4| |#4| $) 90)) (-3955 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1674 ((|#4| |#4| $) 88)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) 106)) (-3294 (((-112) |#4| $) 137)) (-3342 (((-112) |#4| $) 134)) (-3628 (((-112) |#4| $) 138) (((-112) $) 135)) (-1442 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) 105) (((-112) $) 104)) (-3698 ((|#3| $) 35)) (-2545 (((-112) $ (-779)) 44)) (-2396 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 48)) (-1677 (((-652 |#3|) $) 33)) (-2002 (((-112) |#3| $) 32)) (-3818 (((-112) $ (-779)) 43)) (-3618 (((-1170) $) 10)) (-1618 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3276 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| |#4| $) 128)) (-4261 (((-3 |#4| "failed") $) 84)) (-3981 (((-652 $) |#4| $) 130)) (-4302 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1457 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3225 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-1772 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-1706 (((-652 |#4|) $) 108)) (-1338 (((-112) |#4| $) 100) (((-112) $) 96)) (-3113 ((|#4| |#4| $) 91)) (-4398 (((-112) $ $) 111)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) 101) (((-112) $) 97)) (-2041 ((|#4| |#4| $) 92)) (-2614 (((-1131) $) 11)) (-2570 (((-3 |#4| "failed") $) 85)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4236 (((-3 $ "failed") $ |#4|) 79)) (-3103 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-3089 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) 39)) (-3712 (((-112) $) 42)) (-1321 (($) 41)) (-1497 (((-779) $) 107)) (-1371 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3679 (($ $) 40)) (-3222 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 61)) (-3399 (($ $ |#3|) 29)) (-3831 (($ $ |#3|) 31)) (-2894 (($ $) 89)) (-1757 (($ $ |#3|) 30)) (-3491 (((-870) $) 12) (((-652 |#4|) $) 38)) (-1935 (((-779) $) 77 (|has| |#3| (-375)))) (-3424 (((-112) $ $) 9)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-2290 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-3776 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) 82)) (-2777 (((-112) |#4| $) 136)) (-2947 (((-112) |#3| $) 81)) (-3921 (((-112) $ $) 6)) (-3475 (((-779) $) 47 (|has| $ (-6 -4454)))))
+(((-792 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -792))
+NIL
+(-13 (-1082 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
+((-2756 (((-3 (-386) "failed") (-322 |#1|) (-930)) 62 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-386) "failed") (-322 |#1|)) 54 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-386) "failed") (-415 (-961 |#1|)) (-930)) 41 (|has| |#1| (-564))) (((-3 (-386) "failed") (-415 (-961 |#1|))) 40 (|has| |#1| (-564))) (((-3 (-386) "failed") (-961 |#1|) (-930)) 31 (|has| |#1| (-1060))) (((-3 (-386) "failed") (-961 |#1|)) 30 (|has| |#1| (-1060)))) (-3288 (((-386) (-322 |#1|) (-930)) 99 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-386) (-322 |#1|)) 94 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-386) (-415 (-961 |#1|)) (-930)) 91 (|has| |#1| (-564))) (((-386) (-415 (-961 |#1|))) 90 (|has| |#1| (-564))) (((-386) (-961 |#1|) (-930)) 86 (|has| |#1| (-1060))) (((-386) (-961 |#1|)) 85 (|has| |#1| (-1060))) (((-386) |#1| (-930)) 76) (((-386) |#1|) 22)) (-2180 (((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)) (-930)) 71 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-322 (-171 |#1|))) 70 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-322 |#1|) (-930)) 63 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-322 |#1|)) 61 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))) (-930)) 46 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|)))) 45 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)) (-930)) 39 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-415 (-961 |#1|))) 38 (|has| |#1| (-564))) (((-3 (-171 (-386)) "failed") (-961 |#1|) (-930)) 28 (|has| |#1| (-1060))) (((-3 (-171 (-386)) "failed") (-961 |#1|)) 26 (|has| |#1| (-1060))) (((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)) (-930)) 18 (|has| |#1| (-174))) (((-3 (-171 (-386)) "failed") (-961 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-2308 (((-171 (-386)) (-322 (-171 |#1|)) (-930)) 102 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-322 (-171 |#1|))) 101 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-322 |#1|) (-930)) 100 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-322 |#1|)) 98 (-12 (|has| |#1| (-564)) (|has| |#1| (-858)))) (((-171 (-386)) (-415 (-961 (-171 |#1|))) (-930)) 93 (|has| |#1| (-564))) (((-171 (-386)) (-415 (-961 (-171 |#1|)))) 92 (|has| |#1| (-564))) (((-171 (-386)) (-415 (-961 |#1|)) (-930)) 89 (|has| |#1| (-564))) (((-171 (-386)) (-415 (-961 |#1|))) 88 (|has| |#1| (-564))) (((-171 (-386)) (-961 |#1|) (-930)) 84 (|has| |#1| (-1060))) (((-171 (-386)) (-961 |#1|)) 83 (|has| |#1| (-1060))) (((-171 (-386)) (-961 (-171 |#1|)) (-930)) 78 (|has| |#1| (-174))) (((-171 (-386)) (-961 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-386)) (-171 |#1|) (-930)) 80 (|has| |#1| (-174))) (((-171 (-386)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-386)) |#1| (-930)) 27) (((-171 (-386)) |#1|) 25)))
+(((-793 |#1|) (-10 -7 (-15 -3288 ((-386) |#1|)) (-15 -3288 ((-386) |#1| (-930))) (-15 -2308 ((-171 (-386)) |#1|)) (-15 -2308 ((-171 (-386)) |#1| (-930))) (IF (|has| |#1| (-174)) (PROGN (-15 -2308 ((-171 (-386)) (-171 |#1|))) (-15 -2308 ((-171 (-386)) (-171 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-961 (-171 |#1|)))) (-15 -2308 ((-171 (-386)) (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -3288 ((-386) (-961 |#1|))) (-15 -3288 ((-386) (-961 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-961 |#1|))) (-15 -2308 ((-171 (-386)) (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -3288 ((-386) (-415 (-961 |#1|)))) (-15 -3288 ((-386) (-415 (-961 |#1|)) (-930))) (-15 -2308 ((-171 (-386)) (-415 (-961 |#1|)))) (-15 -2308 ((-171 (-386)) (-415 (-961 |#1|)) (-930))) (-15 -2308 ((-171 (-386)) (-415 (-961 (-171 |#1|))))) (-15 -2308 ((-171 (-386)) (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -3288 ((-386) (-322 |#1|))) (-15 -3288 ((-386) (-322 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-322 |#1|))) (-15 -2308 ((-171 (-386)) (-322 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-322 (-171 |#1|)))) (-15 -2308 ((-171 (-386)) (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -2756 ((-3 (-386) "failed") (-961 |#1|))) (-15 -2756 ((-3 (-386) "failed") (-961 |#1|) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 |#1|))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -2756 ((-3 (-386) "failed") (-415 (-961 |#1|)))) (-15 -2756 ((-3 (-386) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -2756 ((-3 (-386) "failed") (-322 |#1|))) (-15 -2756 ((-3 (-386) "failed") (-322 |#1|) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 |#1|))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 |#1|) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|)) (-622 (-386))) (T -793))
+((-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2756 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2180 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3288 (*1 *2 *3 *4) (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3288 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-3288 (*1 *2 *3 *4) (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060)) (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-930)) (-4 *5 (-174)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-171 (-386))) (-5 *1 (-793 *3)) (-4 *3 (-622 (-386))))) (-2308 (*1 *2 *3) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-793 *3)) (-4 *3 (-622 (-386))))) (-3288 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-386)) (-5 *1 (-793 *3)) (-4 *3 (-622 *2)))) (-3288 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-793 *3)) (-4 *3 (-622 *2)))))
+(-10 -7 (-15 -3288 ((-386) |#1|)) (-15 -3288 ((-386) |#1| (-930))) (-15 -2308 ((-171 (-386)) |#1|)) (-15 -2308 ((-171 (-386)) |#1| (-930))) (IF (|has| |#1| (-174)) (PROGN (-15 -2308 ((-171 (-386)) (-171 |#1|))) (-15 -2308 ((-171 (-386)) (-171 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-961 (-171 |#1|)))) (-15 -2308 ((-171 (-386)) (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -3288 ((-386) (-961 |#1|))) (-15 -3288 ((-386) (-961 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-961 |#1|))) (-15 -2308 ((-171 (-386)) (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -3288 ((-386) (-415 (-961 |#1|)))) (-15 -3288 ((-386) (-415 (-961 |#1|)) (-930))) (-15 -2308 ((-171 (-386)) (-415 (-961 |#1|)))) (-15 -2308 ((-171 (-386)) (-415 (-961 |#1|)) (-930))) (-15 -2308 ((-171 (-386)) (-415 (-961 (-171 |#1|))))) (-15 -2308 ((-171 (-386)) (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -3288 ((-386) (-322 |#1|))) (-15 -3288 ((-386) (-322 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-322 |#1|))) (-15 -2308 ((-171 (-386)) (-322 |#1|) (-930))) (-15 -2308 ((-171 (-386)) (-322 (-171 |#1|)))) (-15 -2308 ((-171 (-386)) (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 (-171 |#1|)) (-930)))) |%noBranch|) (IF (|has| |#1| (-1060)) (PROGN (-15 -2756 ((-3 (-386) "failed") (-961 |#1|))) (-15 -2756 ((-3 (-386) "failed") (-961 |#1|) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 |#1|))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-961 |#1|) (-930)))) |%noBranch|) (IF (|has| |#1| (-564)) (PROGN (-15 -2756 ((-3 (-386) "failed") (-415 (-961 |#1|)))) (-15 -2756 ((-3 (-386) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 |#1|)) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-415 (-961 (-171 |#1|))) (-930))) (IF (|has| |#1| (-858)) (PROGN (-15 -2756 ((-3 (-386) "failed") (-322 |#1|))) (-15 -2756 ((-3 (-386) "failed") (-322 |#1|) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 |#1|))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 |#1|) (-930))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)))) (-15 -2180 ((-3 (-171 (-386)) "failed") (-322 (-171 |#1|)) (-930)))) |%noBranch|)) |%noBranch|))
+((-1751 (((-930) (-1170)) 89)) (-3736 (((-3 (-386) "failed") (-1170)) 36)) (-2915 (((-386) (-1170)) 34)) (-1404 (((-930) (-1170)) 63)) (-1938 (((-1170) (-930)) 73)) (-4076 (((-1170) (-930)) 62)))
+(((-794) (-10 -7 (-15 -4076 ((-1170) (-930))) (-15 -1404 ((-930) (-1170))) (-15 -1938 ((-1170) (-930))) (-15 -1751 ((-930) (-1170))) (-15 -2915 ((-386) (-1170))) (-15 -3736 ((-3 (-386) "failed") (-1170))))) (T -794))
+((-3736 (*1 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))))
+(-10 -7 (-15 -4076 ((-1170) (-930))) (-15 -1404 ((-930) (-1170))) (-15 -1938 ((-1170) (-930))) (-15 -1751 ((-930) (-1170))) (-15 -2915 ((-386) (-1170))) (-15 -3736 ((-3 (-386) "failed") (-1170))))
+((-3464 (((-112) $ $) 7)) (-2000 (((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 16) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)) 14)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-795) (-141)) (T -795))
+((-4329 (*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046)))))) (-2000 (*1 *2 *3 *2) (-12 (-4 *1 (-795)) (-5 *2 (-1046)) (-5 *3 (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-4329 (*1 *2 *3 *4) (-12 (-4 *1 (-795)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046)))))) (-2000 (*1 *2 *3 *2) (-12 (-4 *1 (-795)) (-5 *2 (-1046)) (-5 *3 (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(-13 (-1111) (-10 -7 (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2000 ((-1046) (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227))) (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)) (|:| |extra| (-1046))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2000 ((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1046)))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-4187 (((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386))) 55) (((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 52)) (-4145 (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 61)) (-4372 (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 50)) (-2484 (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386))) 63) (((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386))) 62)))
+(((-796) (-10 -7 (-15 -2484 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -2484 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -4372 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -4187 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -4187 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -4145 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))))) (T -796))
+((-4145 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-4187 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-572)) (-5 *6 (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386)))) (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-4187 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-572)) (-5 *6 (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386)))) (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-4372 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-2484 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))) (-2484 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386))) (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284)) (-5 *1 (-796)))))
+(-10 -7 (-15 -2484 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -2484 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -4372 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -4187 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))) (-15 -4187 ((-1284) (-1279 (-386)) (-572) (-386) (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))) (-386) (-1279 (-386)) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)) (-1279 (-386)))) (-15 -4145 ((-1284) (-1279 (-386)) (-572) (-386) (-386) (-572) (-1 (-1284) (-1279 (-386)) (-1279 (-386)) (-386)))))
+((-3380 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 64)) (-2157 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 40)) (-3392 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 63)) (-2827 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 38)) (-1605 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 62)) (-3247 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572)) 24)) (-4292 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572)) 41)) (-4251 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572)) 39)) (-4032 (((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572)) 37)))
+(((-797) (-10 -7 (-15 -4032 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4251 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4292 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -3247 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -2827 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -2157 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -1605 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3392 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3380 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))))) (T -797))
+((-3380 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-3392 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-1605 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-2157 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-2827 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-3247 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-4292 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-4251 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))) (-4032 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386)) (-5 *2 (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572)) (|:| |success| (-112)))) (-5 *1 (-797)) (-5 *5 (-572)))))
+(-10 -7 (-15 -4032 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4251 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -4292 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572) (-572))) (-15 -3247 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -2827 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -2157 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -1605 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3392 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))) (-15 -3380 ((-2 (|:| -1653 (-386)) (|:| -3684 (-386)) (|:| |totalpts| (-572)) (|:| |success| (-112))) (-1 (-386) (-386)) (-386) (-386) (-386) (-386) (-572) (-572))))
+((-2256 (((-1224 |#1|) |#1| (-227) (-572)) 69)))
+(((-798 |#1|) (-10 -7 (-15 -2256 ((-1224 |#1|) |#1| (-227) (-572)))) (-985)) (T -798))
+((-2256 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-572)) (-5 *2 (-1224 *3)) (-5 *1 (-798 *3)) (-4 *3 (-985)))))
+(-10 -7 (-15 -2256 ((-1224 |#1|) |#1| (-227) (-572))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 25)) (-2092 (((-3 $ "failed") $ $) 27)) (-1586 (($) 24 T CONST)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 23 T CONST)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4018 (($ $ $) 31) (($ $) 30)) (-4005 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26) (($ (-572) $) 29)))
(((-799) (-141)) (T -799))
-((-1548 (*1 *1 *1 *1) (-4 *1 (-799))))
-(-13 (-801) (-10 -8 (-15 -1548 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-856) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (-3992 (($ $ $) 21)) (* (($ (-928) $) 22)))
+NIL
+(-13 (-803) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-858) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 25)) (-1586 (($) 24 T CONST)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 23 T CONST)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4005 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26)))
(((-800) (-141)) (T -800))
NIL
-(-13 (-856) (-25))
-(((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-856) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 25)) (-3997 (((-3 $ "failed") $ $) 27)) (-2333 (($) 24 T CONST)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 23 T CONST)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (-3992 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26)))
+(-13 (-802) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-802) . T) ((-858) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 25)) (-2486 (($ $ $) 28)) (-2092 (((-3 $ "failed") $ $) 27)) (-1586 (($) 24 T CONST)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 23 T CONST)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4005 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26)))
(((-801) (-141)) (T -801))
-NIL
-(-13 (-798) (-132))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-798) . T) ((-800) . T) ((-856) . T) ((-1109) . T))
-((-2564 (((-112) $) 42)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4387 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 43)) (-2477 (((-3 (-413 (-570)) "failed") $) 78)) (-3994 (((-112) $) 72)) (-1577 (((-413 (-570)) $) 76)) (-3046 ((|#2| $) 26)) (-2536 (($ (-1 |#2| |#2|) $) 23)) (-4315 (($ $) 58)) (-2601 (((-542) $) 67)) (-2733 (($ $) 21)) (-2869 (((-868) $) 53) (($ (-570)) 40) (($ |#2|) 38) (($ (-413 (-570))) NIL)) (-2294 (((-777)) 10)) (-2521 ((|#2| $) 71)) (-3892 (((-112) $ $) 30)) (-3918 (((-112) $ $) 69)) (-4003 (($ $) 32) (($ $ $) NIL)) (-3992 (($ $ $) 31)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-802 |#1| |#2|) (-10 -8 (-15 -3918 ((-112) |#1| |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -4315 (|#1| |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2521 (|#2| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -2733 (|#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -2564 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|))) (-803 |#2|) (-174)) (T -802))
-((-2294 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-802 *3 *4)) (-4 *3 (-803 *4)))))
-(-10 -8 (-15 -3918 ((-112) |#1| |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -4315 (|#1| |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2521 (|#2| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -2733 (|#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -2564 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2401 (((-777)) 58 (|has| |#1| (-373)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 100 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 97 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 94)) (-4387 (((-570) $) 99 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 96 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 95)) (-3957 (((-3 $ "failed") $) 37)) (-2473 ((|#1| $) 84)) (-2477 (((-3 (-413 (-570)) "failed") $) 71 (|has| |#1| (-551)))) (-3994 (((-112) $) 73 (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) 72 (|has| |#1| (-551)))) (-2066 (($) 61 (|has| |#1| (-373)))) (-2005 (((-112) $) 35)) (-2405 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3046 ((|#1| $) 76)) (-1908 (($ $ $) 67 (|has| |#1| (-856)))) (-1764 (($ $ $) 66 (|has| |#1| (-856)))) (-2536 (($ (-1 |#1| |#1|) $) 86)) (-1997 (((-928) $) 60 (|has| |#1| (-373)))) (-3240 (((-1168) $) 10)) (-4315 (($ $) 70 (|has| |#1| (-368)))) (-4298 (($ (-928)) 59 (|has| |#1| (-373)))) (-4195 ((|#1| $) 81)) (-3902 ((|#1| $) 82)) (-1692 ((|#1| $) 83)) (-1489 ((|#1| $) 77)) (-1782 ((|#1| $) 78)) (-3231 ((|#1| $) 79)) (-3045 ((|#1| $) 80)) (-3891 (((-1129) $) 11)) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) 92 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 90 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 89 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 88 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 87 (|has| |#1| (-520 (-1186) |#1|)))) (-2057 (($ $ |#1|) 93 (|has| |#1| (-290 |#1| |#1|)))) (-2601 (((-542) $) 68 (|has| |#1| (-620 (-542))))) (-2733 (($ $) 85)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ (-413 (-570))) 98 (|has| |#1| (-1047 (-413 (-570)))))) (-1660 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2521 ((|#1| $) 74 (|has| |#1| (-1069)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3959 (((-112) $ $) 64 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 63 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 65 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 62 (|has| |#1| (-856)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-803 |#1|) (-141) (-174)) (T -803))
-((-2733 (*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-3902 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-2405 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-4315 (*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-368)))))
-(-13 (-38 |t#1|) (-417 |t#1|) (-343 |t#1|) (-10 -8 (-15 -2733 ($ $)) (-15 -2473 (|t#1| $)) (-15 -1692 (|t#1| $)) (-15 -3902 (|t#1| $)) (-15 -4195 (|t#1| $)) (-15 -3045 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -1782 (|t#1| $)) (-15 -1489 (|t#1| $)) (-15 -3046 (|t#1| $)) (-15 -2405 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -2521 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -4315 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-373) |has| |#1| (-373)) ((-343 |#1|) . T) ((-417 |#1|) . T) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-856) |has| |#1| (-856)) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1227) |has| |#1| (-290 |#1| |#1|)))
-((-2536 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#3| (-1 |#4| |#2|) |#1|))) (-803 |#2|) (-174) (-803 |#4|) (-174)) (T -804))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-803 *6)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *4 (-803 *5)))))
-(-10 -7 (-15 -2536 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2401 (((-777)) NIL (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-1008 |#1|) "failed") $) 35) (((-3 (-570) "failed") $) NIL (-3749 (|has| (-1008 |#1|) (-1047 (-570))) (|has| |#1| (-1047 (-570))))) (((-3 (-413 (-570)) "failed") $) NIL (-3749 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-4387 ((|#1| $) NIL) (((-1008 |#1|) $) 33) (((-570) $) NIL (-3749 (|has| (-1008 |#1|) (-1047 (-570))) (|has| |#1| (-1047 (-570))))) (((-413 (-570)) $) NIL (-3749 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-3957 (((-3 $ "failed") $) NIL)) (-2473 ((|#1| $) 16)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-551)))) (-3994 (((-112) $) NIL (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) NIL (|has| |#1| (-551)))) (-2066 (($) NIL (|has| |#1| (-373)))) (-2005 (((-112) $) NIL)) (-2405 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1008 |#1|) (-1008 |#1|)) 29)) (-3046 ((|#1| $) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#1| (-373)))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-4298 (($ (-928)) NIL (|has| |#1| (-373)))) (-4195 ((|#1| $) 22)) (-3902 ((|#1| $) 20)) (-1692 ((|#1| $) 18)) (-1489 ((|#1| $) 26)) (-1782 ((|#1| $) 25)) (-3231 ((|#1| $) 24)) (-3045 ((|#1| $) 23)) (-3891 (((-1129) $) NIL)) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-2057 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2733 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1008 |#1|)) 30) (($ (-413 (-570))) NIL (-3749 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2521 ((|#1| $) NIL (|has| |#1| (-1069)))) (-1981 (($) 8 T CONST)) (-1998 (($) 12 T CONST)) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-805 |#1|) (-13 (-803 |#1|) (-417 (-1008 |#1|)) (-10 -8 (-15 -2405 ($ (-1008 |#1|) (-1008 |#1|))))) (-174)) (T -805))
-((-2405 (*1 *1 *2 *2) (-12 (-5 *2 (-1008 *3)) (-4 *3 (-174)) (-5 *1 (-805 *3)))))
-(-13 (-803 |#1|) (-417 (-1008 |#1|)) (-10 -8 (-15 -2405 ($ (-1008 |#1|) (-1008 |#1|)))))
-((-2847 (((-112) $ $) 7)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3679 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3892 (((-112) $ $) 6)))
-(((-806) (-141)) (T -806))
-((-1319 (*1 *2 *3 *4) (-12 (-4 *1 (-806)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)))))) (-3679 (*1 *2 *3) (-12 (-4 *1 (-806)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1044)))))
-(-13 (-1109) (-10 -7 (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3679 ((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2992 (((-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#3| |#2| (-1186)) 19)))
-(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -2992 ((-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#3| |#2| (-1186)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1212) (-966)) (-662 |#2|)) (T -807))
-((-2992 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1186)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-4 *4 (-13 (-29 *6) (-1212) (-966))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2681 (-650 *4)))) (-5 *1 (-807 *6 *4 *3)) (-4 *3 (-662 *4)))))
-(-10 -7 (-15 -2992 ((-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#3| |#2| (-1186))))
-((-2577 (((-3 |#2| "failed") |#2| (-115) (-298 |#2|) (-650 |#2|)) 28) (((-3 |#2| "failed") (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#2| "failed") |#2| (-115) (-1186)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#2| "failed") (-298 |#2|) (-115) (-1186)) 18) (((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-650 |#2|) (-650 (-115)) (-1186)) 24) (((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-650 (-298 |#2|)) (-650 (-115)) (-1186)) 26) (((-3 (-650 (-1277 |#2|)) "failed") (-695 |#2|) (-1186)) 37) (((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-695 |#2|) (-1277 |#2|) (-1186)) 35)))
-(((-808 |#1| |#2|) (-10 -7 (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-695 |#2|) (-1277 |#2|) (-1186))) (-15 -2577 ((-3 (-650 (-1277 |#2|)) "failed") (-695 |#2|) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-650 (-298 |#2|)) (-650 (-115)) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-650 |#2|) (-650 (-115)) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#2| "failed") (-298 |#2|) (-115) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#2| "failed") |#2| (-115) (-1186))) (-15 -2577 ((-3 |#2| "failed") (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -2577 ((-3 |#2| "failed") |#2| (-115) (-298 |#2|) (-650 |#2|)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1212) (-966))) (T -808))
-((-2577 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-298 *2)) (-5 *5 (-650 *2)) (-4 *2 (-13 (-29 *6) (-1212) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-808 *6 *2)))) (-2577 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-298 *2)) (-5 *4 (-115)) (-5 *5 (-650 *2)) (-4 *2 (-13 (-29 *6) (-1212) (-966))) (-5 *1 (-808 *6 *2)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))))) (-2577 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1186)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2681 (-650 *3))) *3 "failed")) (-5 *1 (-808 *6 *3)) (-4 *3 (-13 (-29 *6) (-1212) (-966))))) (-2577 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1212) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2681 (-650 *7))) *7 "failed")) (-5 *1 (-808 *6 *7)))) (-2577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115))) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1212) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-2 (|:| |particular| (-1277 *7)) (|:| -2681 (-650 (-1277 *7))))) (-5 *1 (-808 *6 *7)))) (-2577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115))) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1212) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-2 (|:| |particular| (-1277 *7)) (|:| -2681 (-650 (-1277 *7))))) (-5 *1 (-808 *6 *7)))) (-2577 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-695 *6)) (-5 *4 (-1186)) (-4 *6 (-13 (-29 *5) (-1212) (-966))) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-1277 *6))) (-5 *1 (-808 *5 *6)))) (-2577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695 *7)) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1212) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-2 (|:| |particular| (-1277 *7)) (|:| -2681 (-650 (-1277 *7))))) (-5 *1 (-808 *6 *7)) (-5 *4 (-1277 *7)))))
-(-10 -7 (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-695 |#2|) (-1277 |#2|) (-1186))) (-15 -2577 ((-3 (-650 (-1277 |#2|)) "failed") (-695 |#2|) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-650 (-298 |#2|)) (-650 (-115)) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#2|)) (|:| -2681 (-650 (-1277 |#2|)))) "failed") (-650 |#2|) (-650 (-115)) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#2| "failed") (-298 |#2|) (-115) (-1186))) (-15 -2577 ((-3 (-2 (|:| |particular| |#2|) (|:| -2681 (-650 |#2|))) |#2| "failed") |#2| (-115) (-1186))) (-15 -2577 ((-3 |#2| "failed") (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -2577 ((-3 |#2| "failed") |#2| (-115) (-298 |#2|) (-650 |#2|))))
-((-2591 (($) 9)) (-4303 (((-3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1988 (((-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2801 (($ (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))) 24)) (-3015 (($ (-650 (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) 22)) (-2747 (((-1282)) 11)))
-(((-809) (-10 -8 (-15 -2591 ($)) (-15 -2747 ((-1282))) (-15 -1988 ((-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3015 ($ (-650 (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))))) (-15 -2801 ($ (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) (-15 -4303 ((-3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -809))
-((-4303 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))) (-5 *1 (-809)))) (-2801 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))) (-5 *1 (-809)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) (-5 *1 (-809)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-809)))) (-2747 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-809)))) (-2591 (*1 *1) (-5 *1 (-809))))
-(-10 -8 (-15 -2591 ($)) (-15 -2747 ((-1282))) (-15 -1988 ((-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3015 ($ (-650 (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))))) (-15 -2801 ($ (-2 (|:| -4144 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3165 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) (-15 -4303 ((-3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2508 ((|#2| |#2| (-1186)) 17)) (-1471 ((|#2| |#2| (-1186)) 56)) (-4005 (((-1 |#2| |#2|) (-1186)) 11)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -2508 (|#2| |#2| (-1186))) (-15 -1471 (|#2| |#2| (-1186))) (-15 -4005 ((-1 |#2| |#2|) (-1186)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1212) (-966))) (T -810))
-((-4005 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-810 *4 *5)) (-4 *5 (-13 (-29 *4) (-1212) (-966))))) (-1471 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1212) (-966))))) (-2508 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1212) (-966))))))
-(-10 -7 (-15 -2508 (|#2| |#2| (-1186))) (-15 -1471 (|#2| |#2| (-1186))) (-15 -4005 ((-1 |#2| |#2|) (-1186))))
-((-2577 (((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384) (-384)) 128) (((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384)) 129) (((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-650 (-384)) (-384)) 131) (((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-384)) 133) (((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-384)) 134) (((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384))) 136) (((-1044) (-814) (-1072)) 120) (((-1044) (-814)) 121)) (-1319 (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814) (-1072)) 80) (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814)) 82)))
-(((-811) (-10 -7 (-15 -2577 ((-1044) (-814))) (-15 -2577 ((-1044) (-814) (-1072))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-650 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384) (-384))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814) (-1072))))) (T -811))
-((-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-811)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-811)))) (-2577 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1277 (-320 *4))) (-5 *5 (-650 (-384))) (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-2577 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1277 (-320 *4))) (-5 *5 (-650 (-384))) (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-2577 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1277 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-2577 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1277 (-320 *4))) (-5 *5 (-650 (-384))) (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-2577 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1277 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-2577 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1277 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1044)) (-5 *1 (-811)))))
-(-10 -7 (-15 -2577 ((-1044) (-814))) (-15 -2577 ((-1044) (-814) (-1072))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-650 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384))) (-15 -2577 ((-1044) (-1277 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384) (-384))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814) (-1072))))
-((-3674 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2681 (-650 |#4|))) (-659 |#4|) |#4|) 33)))
-(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3674 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2681 (-650 |#4|))) (-659 |#4|) |#4|))) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -812))
-((-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *4)) (-4 *4 (-347 *5 *6 *7)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-812 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3674 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2681 (-650 |#4|))) (-659 |#4|) |#4|)))
-((-3184 (((-2 (|:| -2557 |#3|) (|:| |rh| (-650 (-413 |#2|)))) |#4| (-650 (-413 |#2|))) 53)) (-1474 (((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#4| |#2|) 62) (((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#4|) 61) (((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#3| |#2|) 20) (((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#3|) 21)) (-3444 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3813 ((|#2| |#3| (-650 (-413 |#2|))) 109) (((-3 |#2| "failed") |#3| (-413 |#2|)) 105)))
-(((-813 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3813 ((-3 |#2| "failed") |#3| (-413 |#2|))) (-15 -3813 (|#2| |#3| (-650 (-413 |#2|)))) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#3|)) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#3| |#2|)) (-15 -3444 (|#2| |#3| |#1|)) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#4|)) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#4| |#2|)) (-15 -3444 (|#2| |#4| |#1|)) (-15 -3184 ((-2 (|:| -2557 |#3|) (|:| |rh| (-650 (-413 |#2|)))) |#4| (-650 (-413 |#2|))))) (-13 (-368) (-148) (-1047 (-413 (-570)))) (-1253 |#1|) (-662 |#2|) (-662 (-413 |#2|))) (T -813))
-((-3184 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-5 *2 (-2 (|:| -2557 *7) (|:| |rh| (-650 (-413 *6))))) (-5 *1 (-813 *5 *6 *7 *3)) (-5 *4 (-650 (-413 *6))) (-4 *7 (-662 *6)) (-4 *3 (-662 (-413 *6))))) (-3444 (*1 *2 *3 *4) (-12 (-4 *2 (-1253 *4)) (-5 *1 (-813 *4 *2 *5 *3)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-662 *2)) (-4 *3 (-662 (-413 *2))))) (-1474 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *4 (-1253 *5)) (-5 *2 (-650 (-2 (|:| -1744 *4) (|:| -2662 *4)))) (-5 *1 (-813 *5 *4 *6 *3)) (-4 *6 (-662 *4)) (-4 *3 (-662 (-413 *4))))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4)) (-5 *2 (-650 (-2 (|:| -1744 *5) (|:| -2662 *5)))) (-5 *1 (-813 *4 *5 *6 *3)) (-4 *6 (-662 *5)) (-4 *3 (-662 (-413 *5))))) (-3444 (*1 *2 *3 *4) (-12 (-4 *2 (-1253 *4)) (-5 *1 (-813 *4 *2 *3 *5)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *5 (-662 (-413 *2))))) (-1474 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *4 (-1253 *5)) (-5 *2 (-650 (-2 (|:| -1744 *4) (|:| -2662 *4)))) (-5 *1 (-813 *5 *4 *3 *6)) (-4 *3 (-662 *4)) (-4 *6 (-662 (-413 *4))))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4)) (-5 *2 (-650 (-2 (|:| -1744 *5) (|:| -2662 *5)))) (-5 *1 (-813 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-662 (-413 *5))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-413 *2))) (-4 *2 (-1253 *5)) (-5 *1 (-813 *5 *2 *3 *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *6 (-662 (-413 *2))))) (-3813 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-413 *2)) (-4 *2 (-1253 *5)) (-5 *1 (-813 *5 *2 *3 *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *6 (-662 *4)))))
-(-10 -7 (-15 -3813 ((-3 |#2| "failed") |#3| (-413 |#2|))) (-15 -3813 (|#2| |#3| (-650 (-413 |#2|)))) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#3|)) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#3| |#2|)) (-15 -3444 (|#2| |#3| |#1|)) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#4|)) (-15 -1474 ((-650 (-2 (|:| -1744 |#2|) (|:| -2662 |#2|))) |#4| |#2|)) (-15 -3444 (|#2| |#4| |#1|)) (-15 -3184 ((-2 (|:| -2557 |#3|) (|:| |rh| (-650 (-413 |#2|)))) |#4| (-650 (-413 |#2|)))))
-((-2847 (((-112) $ $) NIL)) (-4387 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-814) (-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4387 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -814))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-814)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-814)))))
-(-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4387 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
-((-1971 (((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -2557 |#3|))) |#3| (-1 (-650 |#2|) |#2| (-1182 |#2|)) (-1 (-424 |#2|) |#2|)) 154)) (-2996 (((-650 (-2 (|:| |poly| |#2|) (|:| -2557 |#3|))) |#3| (-1 (-650 |#1|) |#2|)) 52)) (-1864 (((-650 (-2 (|:| |deg| (-777)) (|:| -2557 |#2|))) |#3|) 122)) (-3167 ((|#2| |#3|) 42)) (-2438 (((-650 (-2 (|:| -3722 |#1|) (|:| -2557 |#3|))) |#3| (-1 (-650 |#1|) |#2|)) 99)) (-3653 ((|#3| |#3| (-413 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
-(((-815 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3167 (|#2| |#3|)) (-15 -1864 ((-650 (-2 (|:| |deg| (-777)) (|:| -2557 |#2|))) |#3|)) (-15 -2438 ((-650 (-2 (|:| -3722 |#1|) (|:| -2557 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -2996 ((-650 (-2 (|:| |poly| |#2|) (|:| -2557 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -1971 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -2557 |#3|))) |#3| (-1 (-650 |#2|) |#2| (-1182 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -3653 (|#3| |#3| |#2|)) (-15 -3653 (|#3| |#3| (-413 |#2|)))) (-13 (-368) (-148) (-1047 (-413 (-570)))) (-1253 |#1|) (-662 |#2|) (-662 (-413 |#2|))) (T -815))
-((-3653 (*1 *2 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4)) (-5 *1 (-815 *4 *5 *2 *6)) (-4 *2 (-662 *5)) (-4 *6 (-662 *3)))) (-3653 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-1253 *4)) (-5 *1 (-815 *4 *3 *2 *5)) (-4 *2 (-662 *3)) (-4 *5 (-662 (-413 *3))))) (-1971 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-650 *7) *7 (-1182 *7))) (-5 *5 (-1 (-424 *7) *7)) (-4 *7 (-1253 *6)) (-4 *6 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-5 *2 (-650 (-2 (|:| |frac| (-413 *7)) (|:| -2557 *3)))) (-5 *1 (-815 *6 *7 *3 *8)) (-4 *3 (-662 *7)) (-4 *8 (-662 (-413 *7))))) (-2996 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -2557 *3)))) (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6)) (-4 *7 (-662 (-413 *6))))) (-2438 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-5 *2 (-650 (-2 (|:| -3722 *5) (|:| -2557 *3)))) (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6)) (-4 *7 (-662 (-413 *6))))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4)) (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -2557 *5)))) (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-662 (-413 *5))))) (-3167 (*1 *2 *3) (-12 (-4 *2 (-1253 *4)) (-5 *1 (-815 *4 *2 *3 *5)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *5 (-662 (-413 *2))))))
-(-10 -7 (-15 -3167 (|#2| |#3|)) (-15 -1864 ((-650 (-2 (|:| |deg| (-777)) (|:| -2557 |#2|))) |#3|)) (-15 -2438 ((-650 (-2 (|:| -3722 |#1|) (|:| -2557 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -2996 ((-650 (-2 (|:| |poly| |#2|) (|:| -2557 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -1971 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -2557 |#3|))) |#3| (-1 (-650 |#2|) |#2| (-1182 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -3653 (|#3| |#3| |#2|)) (-15 -3653 (|#3| |#3| (-413 |#2|))))
-((-3324 (((-2 (|:| -2681 (-650 (-413 |#2|))) (|:| -2565 (-695 |#1|))) (-660 |#2| (-413 |#2|)) (-650 (-413 |#2|))) 146) (((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2681 (-650 (-413 |#2|)))) (-660 |#2| (-413 |#2|)) (-413 |#2|)) 145) (((-2 (|:| -2681 (-650 (-413 |#2|))) (|:| -2565 (-695 |#1|))) (-659 (-413 |#2|)) (-650 (-413 |#2|))) 140) (((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2681 (-650 (-413 |#2|)))) (-659 (-413 |#2|)) (-413 |#2|)) 138)) (-4032 ((|#2| (-660 |#2| (-413 |#2|))) 87) ((|#2| (-659 (-413 |#2|))) 90)))
-(((-816 |#1| |#2|) (-10 -7 (-15 -3324 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2681 (-650 (-413 |#2|)))) (-659 (-413 |#2|)) (-413 |#2|))) (-15 -3324 ((-2 (|:| -2681 (-650 (-413 |#2|))) (|:| -2565 (-695 |#1|))) (-659 (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -3324 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2681 (-650 (-413 |#2|)))) (-660 |#2| (-413 |#2|)) (-413 |#2|))) (-15 -3324 ((-2 (|:| -2681 (-650 (-413 |#2|))) (|:| -2565 (-695 |#1|))) (-660 |#2| (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -4032 (|#2| (-659 (-413 |#2|)))) (-15 -4032 (|#2| (-660 |#2| (-413 |#2|))))) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1253 |#1|)) (T -816))
-((-4032 (*1 *2 *3) (-12 (-5 *3 (-660 *2 (-413 *2))) (-4 *2 (-1253 *4)) (-5 *1 (-816 *4 *2)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-659 (-413 *2))) (-4 *2 (-1253 *4)) (-5 *1 (-816 *4 *2)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| -2681 (-650 (-413 *6))) (|:| -2565 (-695 *5)))) (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6))))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-816 *5 *6)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| -2681 (-650 (-413 *6))) (|:| -2565 (-695 *5)))) (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6))))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-816 *5 *6)))))
-(-10 -7 (-15 -3324 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2681 (-650 (-413 |#2|)))) (-659 (-413 |#2|)) (-413 |#2|))) (-15 -3324 ((-2 (|:| -2681 (-650 (-413 |#2|))) (|:| -2565 (-695 |#1|))) (-659 (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -3324 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2681 (-650 (-413 |#2|)))) (-660 |#2| (-413 |#2|)) (-413 |#2|))) (-15 -3324 ((-2 (|:| -2681 (-650 (-413 |#2|))) (|:| -2565 (-695 |#1|))) (-660 |#2| (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -4032 (|#2| (-659 (-413 |#2|)))) (-15 -4032 (|#2| (-660 |#2| (-413 |#2|)))))
-((-3390 (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#1|))) |#5| |#4|) 49)))
-(((-817 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3390 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#1|))) |#5| |#4|))) (-368) (-662 |#1|) (-1253 |#1|) (-730 |#1| |#3|) (-662 |#4|)) (T -817))
-((-3390 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *7 (-1253 *5)) (-4 *4 (-730 *5 *7)) (-5 *2 (-2 (|:| -2565 (-695 *6)) (|:| |vec| (-1277 *5)))) (-5 *1 (-817 *5 *6 *7 *4 *3)) (-4 *6 (-662 *5)) (-4 *3 (-662 *4)))))
-(-10 -7 (-15 -3390 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#1|))) |#5| |#4|)))
-((-1971 (((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -2557 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)) 47)) (-2737 (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|))) 164 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-424 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-659 (-413 |#2|))) 166 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|)) 38) (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 39) (((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|)) 36) (((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 37)) (-2996 (((-650 (-2 (|:| |poly| |#2|) (|:| -2557 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 96)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -1971 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -2557 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -2996 ((-650 (-2 (|:| |poly| |#2|) (|:| -2557 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)))) (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)))) |%noBranch|)) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1253 |#1|)) (T -818))
-((-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-660 *5 (-413 *5))) (-4 *5 (-1253 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-659 (-413 *5))) (-4 *5 (-1253 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -2557 (-660 *6 (-413 *6)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6))))) (-1971 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-2 (|:| |frac| (-413 *6)) (|:| -2557 (-660 *6 (-413 *6)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6))))) (-2737 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *7 (-413 *7))) (-5 *4 (-1 (-650 *6) *7)) (-5 *5 (-1 (-424 *7) *7)) (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *7 (-1253 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) (-2737 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-413 *7))) (-5 *4 (-1 (-650 *6) *7)) (-5 *5 (-1 (-424 *7) *7)) (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *7 (-1253 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7)))) (-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))))
-(-10 -7 (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -1971 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -2557 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -2996 ((-650 (-2 (|:| |poly| |#2|) (|:| -2557 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)))) (-15 -2737 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)))) (-15 -2737 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)))) |%noBranch|))
-((-2213 (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#1|))) (-695 |#2|) (-1277 |#1|)) 110) (((-2 (|:| A (-695 |#1|)) (|:| |eqs| (-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1277 |#1|)) (|:| -2557 |#2|) (|:| |rh| |#1|))))) (-695 |#1|) (-1277 |#1|)) 15)) (-3042 (((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-695 |#2|) (-1277 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2681 (-650 |#1|))) |#2| |#1|)) 116)) (-2577 (((-3 (-2 (|:| |particular| (-1277 |#1|)) (|:| -2681 (-695 |#1|))) "failed") (-695 |#1|) (-1277 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2681 (-650 |#1|))) "failed") |#2| |#1|)) 54)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -2213 ((-2 (|:| A (-695 |#1|)) (|:| |eqs| (-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1277 |#1|)) (|:| -2557 |#2|) (|:| |rh| |#1|))))) (-695 |#1|) (-1277 |#1|))) (-15 -2213 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#1|))) (-695 |#2|) (-1277 |#1|))) (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#1|)) (|:| -2681 (-695 |#1|))) "failed") (-695 |#1|) (-1277 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2681 (-650 |#1|))) "failed") |#2| |#1|))) (-15 -3042 ((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-695 |#2|) (-1277 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2681 (-650 |#1|))) |#2| |#1|)))) (-368) (-662 |#1|)) (T -819))
-((-3042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2681 (-650 *6))) *7 *6)) (-4 *6 (-368)) (-4 *7 (-662 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1277 *6) "failed")) (|:| -2681 (-650 (-1277 *6))))) (-5 *1 (-819 *6 *7)) (-5 *4 (-1277 *6)))) (-2577 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2681 (-650 *6))) "failed") *7 *6)) (-4 *6 (-368)) (-4 *7 (-662 *6)) (-5 *2 (-2 (|:| |particular| (-1277 *6)) (|:| -2681 (-695 *6)))) (-5 *1 (-819 *6 *7)) (-5 *3 (-695 *6)) (-5 *4 (-1277 *6)))) (-2213 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-662 *5)) (-5 *2 (-2 (|:| -2565 (-695 *6)) (|:| |vec| (-1277 *5)))) (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *6)) (-5 *4 (-1277 *5)))) (-2213 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-5 *2 (-2 (|:| A (-695 *5)) (|:| |eqs| (-650 (-2 (|:| C (-695 *5)) (|:| |g| (-1277 *5)) (|:| -2557 *6) (|:| |rh| *5)))))) (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *5)) (-5 *4 (-1277 *5)) (-4 *6 (-662 *5)))))
-(-10 -7 (-15 -2213 ((-2 (|:| A (-695 |#1|)) (|:| |eqs| (-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1277 |#1|)) (|:| -2557 |#2|) (|:| |rh| |#1|))))) (-695 |#1|) (-1277 |#1|))) (-15 -2213 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#1|))) (-695 |#2|) (-1277 |#1|))) (-15 -2577 ((-3 (-2 (|:| |particular| (-1277 |#1|)) (|:| -2681 (-695 |#1|))) "failed") (-695 |#1|) (-1277 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2681 (-650 |#1|))) "failed") |#2| |#1|))) (-15 -3042 ((-2 (|:| |particular| (-3 (-1277 |#1|) "failed")) (|:| -2681 (-650 (-1277 |#1|)))) (-695 |#2|) (-1277 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2681 (-650 |#1|))) |#2| |#1|))))
-((-3870 (((-695 |#1|) (-650 |#1|) (-777)) 14) (((-695 |#1|) (-650 |#1|)) 15)) (-1619 (((-3 (-1277 |#1|) "failed") |#2| |#1| (-650 |#1|)) 39)) (-1709 (((-3 |#1| "failed") |#2| |#1| (-650 |#1|) (-1 |#1| |#1|)) 46)))
-(((-820 |#1| |#2|) (-10 -7 (-15 -3870 ((-695 |#1|) (-650 |#1|))) (-15 -3870 ((-695 |#1|) (-650 |#1|) (-777))) (-15 -1619 ((-3 (-1277 |#1|) "failed") |#2| |#1| (-650 |#1|))) (-15 -1709 ((-3 |#1| "failed") |#2| |#1| (-650 |#1|) (-1 |#1| |#1|)))) (-368) (-662 |#1|)) (T -820))
-((-1709 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-650 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-368)) (-5 *1 (-820 *2 *3)) (-4 *3 (-662 *2)))) (-1619 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-1277 *4)) (-5 *1 (-820 *4 *3)) (-4 *3 (-662 *4)))) (-3870 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-368)) (-5 *2 (-695 *5)) (-5 *1 (-820 *5 *6)) (-4 *6 (-662 *5)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-695 *4)) (-5 *1 (-820 *4 *5)) (-4 *5 (-662 *4)))))
-(-10 -7 (-15 -3870 ((-695 |#1|) (-650 |#1|))) (-15 -3870 ((-695 |#1|) (-650 |#1|) (-777))) (-15 -1619 ((-3 (-1277 |#1|) "failed") |#2| |#1| (-650 |#1|))) (-15 -1709 ((-3 |#1| "failed") |#2| |#1| (-650 |#1|) (-1 |#1| |#1|))))
-((-2847 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2564 (((-112) $) NIL (|has| |#2| (-132)))) (-3720 (($ (-928)) NIL (|has| |#2| (-1058)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-1548 (($ $ $) NIL (|has| |#2| (-799)))) (-3997 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| |#2| (-373)))) (-2419 (((-570) $) NIL (|has| |#2| (-854)))) (-3040 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1109)))) (-4387 (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) NIL (|has| |#2| (-1109)))) (-3054 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) NIL (|has| |#2| (-1058)))) (-3957 (((-3 $ "failed") $) NIL (|has| |#2| (-732)))) (-2066 (($) NIL (|has| |#2| (-373)))) (-2845 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ (-570)) NIL)) (-2811 (((-112) $) NIL (|has| |#2| (-854)))) (-3976 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL (|has| |#2| (-732)))) (-2746 (((-112) $) NIL (|has| |#2| (-854)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3069 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#2| (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#2| (-1109)))) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-4298 (($ (-928)) NIL (|has| |#2| (-373)))) (-3891 (((-1129) $) NIL (|has| |#2| (-1109)))) (-1948 ((|#2| $) NIL (|has| (-570) (-856)))) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) NIL)) (-3407 ((|#2| $ $) NIL (|has| |#2| (-1058)))) (-1968 (($ (-1277 |#2|)) NIL)) (-4388 (((-135)) NIL (|has| |#2| (-368)))) (-2375 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3901 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-1277 |#2|) $) NIL) (($ (-570)) NIL (-3749 (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) NIL (|has| |#2| (-1109))) (((-868) $) NIL (|has| |#2| (-619 (-868))))) (-2294 (((-777)) NIL (|has| |#2| (-1058)) CONST)) (-1344 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2061 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-2521 (($ $) NIL (|has| |#2| (-854)))) (-1981 (($) NIL (|has| |#2| (-132)) CONST)) (-1998 (($) NIL (|has| |#2| (-732)) CONST)) (-3414 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3959 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3933 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3892 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-3945 (((-112) $ $) NIL (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3918 (((-112) $ $) 11 (-3749 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $ $) NIL (|has| |#2| (-1058))) (($ $) NIL (|has| |#2| (-1058)))) (-3992 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-777)) NIL (|has| |#2| (-732))) (($ $ (-928)) NIL (|has| |#2| (-732)))) (* (($ (-570) $) NIL (|has| |#2| (-1058))) (($ $ $) NIL (|has| |#2| (-732))) (($ $ |#2|) NIL (|has| |#2| (-732))) (($ |#2| $) NIL (|has| |#2| (-732))) (($ (-777) $) NIL (|has| |#2| (-132))) (($ (-928) $) NIL (|has| |#2| (-25)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-821 |#1| |#2| |#3|) (-240 |#1| |#2|) (-777) (-799) (-1 (-112) (-1277 |#2|) (-1277 |#2|))) (T -821))
-NIL
-(-240 |#1| |#2|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2603 (((-650 (-777)) $) NIL) (((-650 (-777)) $ (-1186)) NIL)) (-2023 (((-777) $) NIL) (((-777) $ (-1186)) NIL)) (-1598 (((-650 (-824 (-1186))) $) NIL)) (-3449 (((-1182 $) $ (-824 (-1186))) NIL) (((-1182 |#1|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-824 (-1186)))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3285 (($ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-824 (-1186)) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL) (((-3 (-1134 |#1| (-1186)) "failed") $) NIL)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-824 (-1186)) $) NIL) (((-1186) $) NIL) (((-1134 |#1| (-1186)) $) NIL)) (-2067 (($ $ $ (-824 (-1186))) NIL (|has| |#1| (-174)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ (-824 (-1186))) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-537 (-824 (-1186))) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-824 (-1186)) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-824 (-1186)) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-3995 (((-777) $ (-1186)) NIL) (((-777) $) NIL)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-2417 (($ (-1182 |#1|) (-824 (-1186))) NIL) (($ (-1182 $) (-824 (-1186))) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-537 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-824 (-1186))) NIL)) (-2689 (((-537 (-824 (-1186))) $) NIL) (((-777) $ (-824 (-1186))) NIL) (((-650 (-777)) $ (-650 (-824 (-1186)))) NIL)) (-3989 (($ (-1 (-537 (-824 (-1186))) (-537 (-824 (-1186)))) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2299 (((-1 $ (-777)) (-1186)) NIL) (((-1 $ (-777)) $) NIL (|has| |#1| (-235)))) (-3168 (((-3 (-824 (-1186)) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-2134 (((-824 (-1186)) $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-1386 (((-112) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-824 (-1186))) (|:| -2940 (-777))) "failed") $) NIL)) (-2803 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-824 (-1186)) |#1|) NIL) (($ $ (-650 (-824 (-1186))) (-650 |#1|)) NIL) (($ $ (-824 (-1186)) $) NIL) (($ $ (-650 (-824 (-1186))) (-650 $)) NIL) (($ $ (-1186) $) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 $)) NIL (|has| |#1| (-235))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-235)))) (-2896 (($ $ (-824 (-1186))) NIL (|has| |#1| (-174)))) (-2375 (($ $ (-824 (-1186))) NIL) (($ $ (-650 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2753 (((-650 (-1186)) $) NIL)) (-2650 (((-537 (-824 (-1186))) $) NIL) (((-777) $ (-824 (-1186))) NIL) (((-650 (-777)) $ (-650 (-824 (-1186)))) NIL) (((-777) $ (-1186)) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-824 (-1186)) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-824 (-1186)) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-824 (-1186)) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-824 (-1186))) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-824 (-1186))) NIL) (($ (-1186)) NIL) (($ (-1134 |#1| (-1186))) NIL) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-537 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-824 (-1186))) NIL) (($ $ (-650 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-822 |#1|) (-13 (-256 |#1| (-1186) (-824 (-1186)) (-537 (-824 (-1186)))) (-1047 (-1134 |#1| (-1186)))) (-1058)) (T -822))
-NIL
-(-13 (-256 |#1| (-1186) (-824 (-1186)) (-537 (-824 (-1186)))) (-1047 (-1134 |#1| (-1186))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#2| (-368)))) (-2046 (($ $) NIL (|has| |#2| (-368)))) (-3426 (((-112) $) NIL (|has| |#2| (-368)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#2| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#2| (-368)))) (-1799 (((-112) $ $) NIL (|has| |#2| (-368)))) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) NIL (|has| |#2| (-368)))) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL (|has| |#2| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#2| (-368)))) (-2145 (((-112) $) NIL (|has| |#2| (-368)))) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-3867 (($ (-650 $)) NIL (|has| |#2| (-368))) (($ $ $) NIL (|has| |#2| (-368)))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 20 (|has| |#2| (-368)))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#2| (-368))) (($ $ $) NIL (|has| |#2| (-368)))) (-2340 (((-424 $) $) NIL (|has| |#2| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#2| (-368)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#2| (-368)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-2002 (((-777) $) NIL (|has| |#2| (-368)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#2| (-368)))) (-2375 (($ $ (-777)) NIL) (($ $) 13)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-413 (-570))) NIL (|has| |#2| (-368))) (($ $) NIL (|has| |#2| (-368)))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#2| (-368)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) 15 (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL) (($ $ (-570)) 18 (|has| |#2| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-413 (-570)) $) NIL (|has| |#2| (-368))) (($ $ (-413 (-570))) NIL (|has| |#2| (-368)))))
-(((-823 |#1| |#2| |#3|) (-13 (-111 $ $) (-235) (-496 |#2|) (-10 -7 (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|))) (-1109) (-907 |#1|) |#1|) (T -823))
-NIL
-(-13 (-111 $ $) (-235) (-496 |#2|) (-10 -7 (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-2023 (((-777) $) NIL)) (-1433 ((|#1| $) 10)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-3995 (((-777) $) 11)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2299 (($ |#1| (-777)) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2375 (($ $) NIL) (($ $ (-777)) NIL)) (-2869 (((-868) $) NIL) (($ |#1|) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-824 |#1|) (-269 |#1|) (-856)) (T -824))
-NIL
-(-269 |#1|)
-((-2847 (((-112) $ $) NIL)) (-3473 (((-650 |#1|) $) 38)) (-2401 (((-777) $) NIL)) (-2333 (($) NIL T CONST)) (-2720 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-1962 (($ $) 42)) (-3957 (((-3 $ "failed") $) NIL)) (-3056 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2005 (((-112) $) NIL)) (-2245 ((|#1| $ (-570)) NIL)) (-1762 (((-777) $ (-570)) NIL)) (-3222 (($ $) 54)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-4249 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-777) (-777)) $) NIL)) (-2787 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2390 (((-112) $ $) 51)) (-1831 (((-777) $) 34)) (-3240 (((-1168) $) NIL)) (-1995 (($ $ $) NIL)) (-3788 (($ $ $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 ((|#1| $) 41)) (-2660 (((-650 (-2 (|:| |gen| |#1|) (|:| -2651 (-777)))) $) NIL)) (-4038 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2824 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2869 (((-868) $) NIL) (($ |#1|) NIL)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 20 T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 53)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ |#1| (-777)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-825 |#1|) (-13 (-391 |#1|) (-852) (-10 -8 (-15 -1948 (|#1| $)) (-15 -1962 ($ $)) (-15 -3222 ($ $)) (-15 -2390 ((-112) $ $)) (-15 -2787 ((-3 $ "failed") $ |#1|)) (-15 -2720 ((-3 $ "failed") $ |#1|)) (-15 -2824 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1831 ((-777) $)) (-15 -3473 ((-650 |#1|) $)))) (-856)) (T -825))
-((-1948 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-1962 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-3222 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-2390 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825 *3)) (-4 *3 (-856)))) (-2787 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-2720 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-2824 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-825 *3)) (|:| |rm| (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-856)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-825 *3)) (-4 *3 (-856)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-825 *3)) (-4 *3 (-856)))))
-(-13 (-391 |#1|) (-852) (-10 -8 (-15 -1948 (|#1| $)) (-15 -1962 ($ $)) (-15 -3222 ($ $)) (-15 -2390 ((-112) $ $)) (-15 -2787 ((-3 $ "failed") $ |#1|)) (-15 -2720 ((-3 $ "failed") $ |#1|)) (-15 -2824 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1831 ((-777) $)) (-15 -3473 ((-650 |#1|) $))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-2419 (((-570) $) 59)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2811 (((-112) $) 57)) (-2005 (((-112) $) 35)) (-2746 (((-112) $) 58)) (-1908 (($ $ $) 56)) (-1764 (($ $ $) 55)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ $) 48)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-2521 (($ $) 60)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3959 (((-112) $ $) 53)) (-3933 (((-112) $ $) 52)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 54)) (-3918 (((-112) $ $) 51)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-826) (-141)) (T -826))
-NIL
-(-13 (-562) (-854))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-1710 (($ (-1129)) 7)) (-3835 (((-112) $ (-1168) (-1129)) 15)) (-2948 (((-828) $) 12)) (-4016 (((-828) $) 11)) (-1606 (((-1282) $) 9)) (-3009 (((-112) $ (-1129)) 16)))
-(((-827) (-10 -8 (-15 -1710 ($ (-1129))) (-15 -1606 ((-1282) $)) (-15 -4016 ((-828) $)) (-15 -2948 ((-828) $)) (-15 -3835 ((-112) $ (-1168) (-1129))) (-15 -3009 ((-112) $ (-1129))))) (T -827))
-((-3009 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-827)))) (-3835 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1129)) (-5 *2 (-112)) (-5 *1 (-827)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-827)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-827)))))
-(-10 -8 (-15 -1710 ($ (-1129))) (-15 -1606 ((-1282) $)) (-15 -4016 ((-828) $)) (-15 -2948 ((-828) $)) (-15 -3835 ((-112) $ (-1168) (-1129))) (-15 -3009 ((-112) $ (-1129))))
-((-2627 (((-1282) $ (-829)) 12)) (-4043 (((-1282) $ (-1186)) 32)) (-2794 (((-1282) $ (-1168) (-1168)) 34)) (-2064 (((-1282) $ (-1168)) 33)) (-2203 (((-1282) $) 19)) (-1761 (((-1282) $ (-570)) 28)) (-2324 (((-1282) $ (-227)) 30)) (-2623 (((-1282) $) 18)) (-2897 (((-1282) $) 26)) (-3814 (((-1282) $) 25)) (-1311 (((-1282) $) 23)) (-3766 (((-1282) $) 24)) (-4244 (((-1282) $) 22)) (-3331 (((-1282) $) 21)) (-1400 (((-1282) $) 20)) (-3192 (((-1282) $) 16)) (-3399 (((-1282) $) 17)) (-1685 (((-1282) $) 15)) (-1383 (((-1282) $) 14)) (-1652 (((-1282) $) 13)) (-2150 (($ (-1168) (-829)) 9)) (-1588 (($ (-1168) (-1168) (-829)) 8)) (-2969 (((-1186) $) 51)) (-2341 (((-1186) $) 55)) (-2758 (((-2 (|:| |cd| (-1168)) (|:| -1770 (-1168))) $) 54)) (-3320 (((-1168) $) 52)) (-2008 (((-1282) $) 41)) (-3419 (((-570) $) 49)) (-3360 (((-227) $) 50)) (-1758 (((-1282) $) 40)) (-4044 (((-1282) $) 48)) (-4398 (((-1282) $) 47)) (-4052 (((-1282) $) 45)) (-2177 (((-1282) $) 46)) (-1707 (((-1282) $) 44)) (-1917 (((-1282) $) 43)) (-2877 (((-1282) $) 42)) (-3344 (((-1282) $) 38)) (-1982 (((-1282) $) 39)) (-3742 (((-1282) $) 37)) (-3493 (((-1282) $) 36)) (-3437 (((-1282) $) 35)) (-2016 (((-1282) $) 11)))
-(((-828) (-10 -8 (-15 -1588 ($ (-1168) (-1168) (-829))) (-15 -2150 ($ (-1168) (-829))) (-15 -2016 ((-1282) $)) (-15 -2627 ((-1282) $ (-829))) (-15 -1652 ((-1282) $)) (-15 -1383 ((-1282) $)) (-15 -1685 ((-1282) $)) (-15 -3192 ((-1282) $)) (-15 -3399 ((-1282) $)) (-15 -2623 ((-1282) $)) (-15 -2203 ((-1282) $)) (-15 -1400 ((-1282) $)) (-15 -3331 ((-1282) $)) (-15 -4244 ((-1282) $)) (-15 -1311 ((-1282) $)) (-15 -3766 ((-1282) $)) (-15 -3814 ((-1282) $)) (-15 -2897 ((-1282) $)) (-15 -1761 ((-1282) $ (-570))) (-15 -2324 ((-1282) $ (-227))) (-15 -4043 ((-1282) $ (-1186))) (-15 -2064 ((-1282) $ (-1168))) (-15 -2794 ((-1282) $ (-1168) (-1168))) (-15 -3437 ((-1282) $)) (-15 -3493 ((-1282) $)) (-15 -3742 ((-1282) $)) (-15 -3344 ((-1282) $)) (-15 -1982 ((-1282) $)) (-15 -1758 ((-1282) $)) (-15 -2008 ((-1282) $)) (-15 -2877 ((-1282) $)) (-15 -1917 ((-1282) $)) (-15 -1707 ((-1282) $)) (-15 -4052 ((-1282) $)) (-15 -2177 ((-1282) $)) (-15 -4398 ((-1282) $)) (-15 -4044 ((-1282) $)) (-15 -3419 ((-570) $)) (-15 -3360 ((-227) $)) (-15 -2969 ((-1186) $)) (-15 -3320 ((-1168) $)) (-15 -2758 ((-2 (|:| |cd| (-1168)) (|:| -1770 (-1168))) $)) (-15 -2341 ((-1186) $)))) (T -828))
-((-2341 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1168)) (|:| -1770 (-1168)))) (-5 *1 (-828)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-828)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-828)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-828)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2008 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-828)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-828)))) (-4043 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-828)))) (-2324 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1282)) (-5 *1 (-828)))) (-1761 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-828)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1282)) (-5 *1 (-828)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))) (-2150 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828)))) (-1588 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828)))))
-(-10 -8 (-15 -1588 ($ (-1168) (-1168) (-829))) (-15 -2150 ($ (-1168) (-829))) (-15 -2016 ((-1282) $)) (-15 -2627 ((-1282) $ (-829))) (-15 -1652 ((-1282) $)) (-15 -1383 ((-1282) $)) (-15 -1685 ((-1282) $)) (-15 -3192 ((-1282) $)) (-15 -3399 ((-1282) $)) (-15 -2623 ((-1282) $)) (-15 -2203 ((-1282) $)) (-15 -1400 ((-1282) $)) (-15 -3331 ((-1282) $)) (-15 -4244 ((-1282) $)) (-15 -1311 ((-1282) $)) (-15 -3766 ((-1282) $)) (-15 -3814 ((-1282) $)) (-15 -2897 ((-1282) $)) (-15 -1761 ((-1282) $ (-570))) (-15 -2324 ((-1282) $ (-227))) (-15 -4043 ((-1282) $ (-1186))) (-15 -2064 ((-1282) $ (-1168))) (-15 -2794 ((-1282) $ (-1168) (-1168))) (-15 -3437 ((-1282) $)) (-15 -3493 ((-1282) $)) (-15 -3742 ((-1282) $)) (-15 -3344 ((-1282) $)) (-15 -1982 ((-1282) $)) (-15 -1758 ((-1282) $)) (-15 -2008 ((-1282) $)) (-15 -2877 ((-1282) $)) (-15 -1917 ((-1282) $)) (-15 -1707 ((-1282) $)) (-15 -4052 ((-1282) $)) (-15 -2177 ((-1282) $)) (-15 -4398 ((-1282) $)) (-15 -4044 ((-1282) $)) (-15 -3419 ((-570) $)) (-15 -3360 ((-227) $)) (-15 -2969 ((-1186) $)) (-15 -3320 ((-1168) $)) (-15 -2758 ((-2 (|:| |cd| (-1168)) (|:| -1770 (-1168))) $)) (-15 -2341 ((-1186) $)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 13)) (-1344 (((-112) $ $) NIL)) (-3017 (($) 16)) (-2849 (($) 14)) (-4359 (($) 17)) (-4089 (($) 15)) (-3892 (((-112) $ $) 9)))
-(((-829) (-13 (-1109) (-10 -8 (-15 -2849 ($)) (-15 -3017 ($)) (-15 -4359 ($)) (-15 -4089 ($))))) (T -829))
-((-2849 (*1 *1) (-5 *1 (-829))) (-3017 (*1 *1) (-5 *1 (-829))) (-4359 (*1 *1) (-5 *1 (-829))) (-4089 (*1 *1) (-5 *1 (-829))))
-(-13 (-1109) (-10 -8 (-15 -2849 ($)) (-15 -3017 ($)) (-15 -4359 ($)) (-15 -4089 ($))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 23) (($ (-1186)) 19)) (-1344 (((-112) $ $) NIL)) (-2828 (((-112) $) 10)) (-2913 (((-112) $) 9)) (-3027 (((-112) $) 11)) (-2290 (((-112) $) 8)) (-3892 (((-112) $ $) 21)))
-(((-830) (-13 (-1109) (-10 -8 (-15 -2869 ($ (-1186))) (-15 -2290 ((-112) $)) (-15 -2913 ((-112) $)) (-15 -2828 ((-112) $)) (-15 -3027 ((-112) $))))) (T -830))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-830)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))))
-(-13 (-1109) (-10 -8 (-15 -2869 ($ (-1186))) (-15 -2290 ((-112) $)) (-15 -2913 ((-112) $)) (-15 -2828 ((-112) $)) (-15 -3027 ((-112) $))))
-((-2847 (((-112) $ $) NIL)) (-1646 (($ (-830) (-650 (-1186))) 32)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2391 (((-830) $) 33)) (-1943 (((-650 (-1186)) $) 34)) (-2869 (((-868) $) 31)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-831) (-13 (-1109) (-10 -8 (-15 -2391 ((-830) $)) (-15 -1943 ((-650 (-1186)) $)) (-15 -1646 ($ (-830) (-650 (-1186))))))) (T -831))
-((-2391 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-831)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-831)))) (-1646 (*1 *1 *2 *3) (-12 (-5 *2 (-830)) (-5 *3 (-650 (-1186))) (-5 *1 (-831)))))
-(-13 (-1109) (-10 -8 (-15 -2391 ((-830) $)) (-15 -1943 ((-650 (-1186)) $)) (-15 -1646 ($ (-830) (-650 (-1186))))))
-((-4245 (((-1282) (-828) (-320 |#1|) (-112)) 23) (((-1282) (-828) (-320 |#1|)) 89) (((-1168) (-320 |#1|) (-112)) 88) (((-1168) (-320 |#1|)) 87)))
-(((-832 |#1|) (-10 -7 (-15 -4245 ((-1168) (-320 |#1|))) (-15 -4245 ((-1168) (-320 |#1|) (-112))) (-15 -4245 ((-1282) (-828) (-320 |#1|))) (-15 -4245 ((-1282) (-828) (-320 |#1|) (-112)))) (-13 (-834) (-1058))) (T -832))
-((-4245 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-828)) (-5 *4 (-320 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-834) (-1058))) (-5 *2 (-1282)) (-5 *1 (-832 *6)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *3 (-828)) (-5 *4 (-320 *5)) (-4 *5 (-13 (-834) (-1058))) (-5 *2 (-1282)) (-5 *1 (-832 *5)))) (-4245 (*1 *2 *3 *4) (-12 (-5 *3 (-320 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-1058))) (-5 *2 (-1168)) (-5 *1 (-832 *5)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-320 *4)) (-4 *4 (-13 (-834) (-1058))) (-5 *2 (-1168)) (-5 *1 (-832 *4)))))
-(-10 -7 (-15 -4245 ((-1168) (-320 |#1|))) (-15 -4245 ((-1168) (-320 |#1|) (-112))) (-15 -4245 ((-1282) (-828) (-320 |#1|))) (-15 -4245 ((-1282) (-828) (-320 |#1|) (-112))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2514 ((|#1| $) 10)) (-1567 (($ |#1|) 9)) (-2005 (((-112) $) NIL)) (-2402 (($ |#2| (-777)) NIL)) (-2689 (((-777) $) NIL)) (-4369 ((|#2| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2375 (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-2650 (((-777) $) NIL)) (-2869 (((-868) $) 17) (($ (-570)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3481 ((|#2| $ (-777)) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-833 |#1| |#2|) (-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-235)) (-6 (-235)) |%noBranch|) (-15 -1567 ($ |#1|)) (-15 -2514 (|#1| $)))) (-714 |#2|) (-1058)) (T -833))
-((-1567 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-833 *2 *3)) (-4 *2 (-714 *3)))) (-2514 (*1 *2 *1) (-12 (-4 *2 (-714 *3)) (-5 *1 (-833 *2 *3)) (-4 *3 (-1058)))))
-(-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-235)) (-6 (-235)) |%noBranch|) (-15 -1567 ($ |#1|)) (-15 -2514 (|#1| $))))
-((-4245 (((-1282) (-828) $ (-112)) 9) (((-1282) (-828) $) 8) (((-1168) $ (-112)) 7) (((-1168) $) 6)))
-(((-834) (-141)) (T -834))
-((-4245 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *4 (-112)) (-5 *2 (-1282)))) (-4245 (*1 *2 *3 *1) (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *2 (-1282)))) (-4245 (*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-112)) (-5 *2 (-1168)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-1168)))))
-(-13 (-10 -8 (-15 -4245 ((-1168) $)) (-15 -4245 ((-1168) $ (-112))) (-15 -4245 ((-1282) (-828) $)) (-15 -4245 ((-1282) (-828) $ (-112)))))
-((-1526 (((-316) (-1168) (-1168)) 12)) (-2863 (((-112) (-1168) (-1168)) 34)) (-2489 (((-112) (-1168)) 33)) (-3400 (((-52) (-1168)) 25)) (-1969 (((-52) (-1168)) 23)) (-1401 (((-52) (-828)) 17)) (-2141 (((-650 (-1168)) (-1168)) 28)) (-3145 (((-650 (-1168))) 27)))
-(((-835) (-10 -7 (-15 -1401 ((-52) (-828))) (-15 -1969 ((-52) (-1168))) (-15 -3400 ((-52) (-1168))) (-15 -3145 ((-650 (-1168)))) (-15 -2141 ((-650 (-1168)) (-1168))) (-15 -2489 ((-112) (-1168))) (-15 -2863 ((-112) (-1168) (-1168))) (-15 -1526 ((-316) (-1168) (-1168))))) (T -835))
-((-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-835)))) (-2863 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835)))) (-2141 (*1 *2 *3) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835)) (-5 *3 (-1168)))) (-3145 (*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-52)) (-5 *1 (-835)))))
-(-10 -7 (-15 -1401 ((-52) (-828))) (-15 -1969 ((-52) (-1168))) (-15 -3400 ((-52) (-1168))) (-15 -3145 ((-650 (-1168)))) (-15 -2141 ((-650 (-1168)) (-1168))) (-15 -2489 ((-112) (-1168))) (-15 -2863 ((-112) (-1168) (-1168))) (-15 -1526 ((-316) (-1168) (-1168))))
-((-2847 (((-112) $ $) 19)) (-1637 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1832 (($ $ $) 73)) (-3198 (((-112) $ $) 74)) (-2855 (((-112) $ (-777)) 8)) (-1322 (($ (-650 |#1|)) 69) (($) 68)) (-3350 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-1381 (($ $) 63)) (-3153 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ |#1| $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2994 (((-112) $ $) 65)) (-2497 (((-112) $ (-777)) 9)) (-1908 ((|#1| $) 79)) (-3675 (($ $ $) 82)) (-4356 (($ $ $) 81)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1764 ((|#1| $) 80)) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22)) (-3502 (($ $ $) 70)) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41) (($ |#1| $ (-777)) 64)) (-3891 (((-1129) $) 21)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-1553 (((-650 (-2 (|:| -3165 |#1|) (|:| -3901 (-777)))) $) 62)) (-1565 (($ $ |#1|) 72) (($ $ $) 71)) (-2910 (($) 50) (($ (-650 |#1|)) 49)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 51)) (-2869 (((-868) $) 18)) (-2542 (($ (-650 |#1|)) 67) (($) 66)) (-1344 (((-112) $ $) 23)) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20)) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-836 |#1|) (-141) (-856)) (T -836))
-((-1908 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-856)))))
-(-13 (-742 |t#1|) (-977 |t#1|) (-10 -8 (-15 -1908 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-701 |#1|) . T) ((-742 |#1|) . T) ((-977 |#1|) . T) ((-1107 |#1|) . T) ((-1109) . T) ((-1227) . T))
-((-4104 (((-1282) (-1129) (-1129)) 48)) (-1428 (((-1282) (-827) (-52)) 45)) (-3117 (((-52) (-827)) 16)))
-(((-837) (-10 -7 (-15 -3117 ((-52) (-827))) (-15 -1428 ((-1282) (-827) (-52))) (-15 -4104 ((-1282) (-1129) (-1129))))) (T -837))
-((-4104 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1282)) (-5 *1 (-837)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-52)) (-5 *2 (-1282)) (-5 *1 (-837)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-837)))))
-(-10 -7 (-15 -3117 ((-52) (-827))) (-15 -1428 ((-1282) (-827) (-52))) (-15 -4104 ((-1282) (-1129) (-1129))))
-((-2536 (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|)) 12) (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|)) 13)))
-(((-838 |#1| |#2|) (-10 -7 (-15 -2536 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2536 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|)))) (-1109) (-1109)) (T -838))
-((-2536 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-838 *5 *6)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6)))))
-(-10 -7 (-15 -2536 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2536 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL (|has| |#1| (-21)))) (-3997 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2419 (((-570) $) NIL (|has| |#1| (-854)))) (-2333 (($) NIL (|has| |#1| (-21)) CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 15)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 9)) (-3957 (((-3 $ "failed") $) 42 (|has| |#1| (-854)))) (-2477 (((-3 (-413 (-570)) "failed") $) 52 (|has| |#1| (-551)))) (-3994 (((-112) $) 46 (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) 49 (|has| |#1| (-551)))) (-2811 (((-112) $) NIL (|has| |#1| (-854)))) (-2005 (((-112) $) NIL (|has| |#1| (-854)))) (-2746 (((-112) $) NIL (|has| |#1| (-854)))) (-1908 (($ $ $) NIL (|has| |#1| (-854)))) (-1764 (($ $ $) NIL (|has| |#1| (-854)))) (-3240 (((-1168) $) NIL)) (-1634 (($) 13)) (-2934 (((-112) $) 12)) (-3891 (((-1129) $) NIL)) (-1362 (((-112) $) 11)) (-2869 (((-868) $) 18) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 8) (($ (-570)) NIL (-3749 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))))) (-2294 (((-777)) 36 (|has| |#1| (-854)) CONST)) (-1344 (((-112) $ $) 54)) (-2521 (($ $) NIL (|has| |#1| (-854)))) (-1981 (($) 23 (|has| |#1| (-21)) CONST)) (-1998 (($) 33 (|has| |#1| (-854)) CONST)) (-3959 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3892 (((-112) $ $) 21)) (-3945 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3918 (((-112) $ $) 45 (|has| |#1| (-854)))) (-4003 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3992 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-928)) NIL (|has| |#1| (-854))) (($ $ (-777)) NIL (|has| |#1| (-854)))) (* (($ $ $) 39 (|has| |#1| (-854))) (($ (-570) $) 27 (|has| |#1| (-21))) (($ (-777) $) NIL (|has| |#1| (-21))) (($ (-928) $) NIL (|has| |#1| (-21)))))
-(((-839 |#1|) (-13 (-1109) (-417 |#1|) (-10 -8 (-15 -1634 ($)) (-15 -1362 ((-112) $)) (-15 -2934 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|))) (-1109)) (T -839))
-((-1634 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1109)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-2477 (*1 *2 *1) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))))
-(-13 (-1109) (-417 |#1|) (-10 -8 (-15 -1634 ($)) (-15 -1362 ((-112) $)) (-15 -2934 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|)))
-((-3917 (((-112) $ |#2|) 14)) (-2869 (((-868) $) 11)))
-(((-840 |#1| |#2|) (-10 -8 (-15 -3917 ((-112) |#1| |#2|)) (-15 -2869 ((-868) |#1|))) (-841 |#2|) (-1109)) (T -840))
-NIL
-(-10 -8 (-15 -3917 ((-112) |#1| |#2|)) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-1770 ((|#1| $) 16)) (-3240 (((-1168) $) 10)) (-3917 (((-112) $ |#1|) 14)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-4196 (((-55) $) 15)) (-3892 (((-112) $ $) 6)))
-(((-841 |#1|) (-141) (-1109)) (T -841))
-((-1770 (*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1109)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-55)))) (-3917 (*1 *2 *1 *3) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(-13 (-1109) (-10 -8 (-15 -1770 (|t#1| $)) (-15 -4196 ((-55) $)) (-15 -3917 ((-112) $ |t#1|))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-4387 ((|#1| $) NIL) (((-115) $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3283 ((|#1| (-115) |#1|) NIL)) (-2005 (((-112) $) NIL)) (-2528 (($ |#1| (-366 (-115))) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2238 (($ $ (-1 |#1| |#1|)) NIL)) (-3375 (($ $ (-1 |#1| |#1|)) NIL)) (-2057 ((|#1| $ |#1|) NIL)) (-4425 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2096 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ (-115) (-570)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-842 |#1|) (-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2096 ($ $)) (-15 -2096 ($ $ $)) (-15 -4425 (|#1| |#1|))) |%noBranch|) (-15 -3375 ($ $ (-1 |#1| |#1|))) (-15 -2238 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -3283 (|#1| (-115) |#1|)) (-15 -2528 ($ |#1| (-366 (-115)))))) (-1058)) (T -842))
-((-2096 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))) (-2096 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))) (-4425 (*1 *2 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))) (-3375 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-5 *1 (-842 *4)) (-4 *4 (-1058)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-842 *3)) (-4 *3 (-1058)))) (-3283 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-842 *2)) (-4 *2 (-1058)))) (-2528 (*1 *1 *2 *3) (-12 (-5 *3 (-366 (-115))) (-5 *1 (-842 *2)) (-4 *2 (-1058)))))
-(-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2096 ($ $)) (-15 -2096 ($ $ $)) (-15 -4425 (|#1| |#1|))) |%noBranch|) (-15 -3375 ($ $ (-1 |#1| |#1|))) (-15 -2238 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -3283 (|#1| (-115) |#1|)) (-15 -2528 ($ |#1| (-366 (-115))))))
-((-1654 (((-216 (-508)) (-1168)) 9)))
-(((-843) (-10 -7 (-15 -1654 ((-216 (-508)) (-1168))))) (T -843))
-((-1654 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-216 (-508))) (-5 *1 (-843)))))
-(-10 -7 (-15 -1654 ((-216 (-508)) (-1168))))
-((-2847 (((-112) $ $) NIL)) (-1372 (((-1127) $) 10)) (-1770 (((-512) $) 9)) (-3240 (((-1168) $) NIL)) (-3917 (((-112) $ (-512)) NIL)) (-3891 (((-1129) $) NIL)) (-2881 (($ (-512) (-1127)) 8)) (-2869 (((-868) $) 25)) (-1344 (((-112) $ $) NIL)) (-4196 (((-55) $) 20)) (-3892 (((-112) $ $) 12)))
-(((-844) (-13 (-841 (-512)) (-10 -8 (-15 -1372 ((-1127) $)) (-15 -2881 ($ (-512) (-1127)))))) (T -844))
-((-1372 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-844)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-844)))))
-(-13 (-841 (-512)) (-10 -8 (-15 -1372 ((-1127) $)) (-15 -2881 ($ (-512) (-1127)))))
-((-2847 (((-112) $ $) 7)) (-1616 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 15) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 14)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 17) (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 16)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-845) (-141)) (T -845))
-((-1319 (*1 *2 *3 *4) (-12 (-4 *1 (-845)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)))))) (-1319 (*1 *2 *3 *4) (-12 (-4 *1 (-845)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)))))) (-1616 (*1 *2 *3) (-12 (-4 *1 (-845)) (-5 *3 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) (-5 *2 (-1044)))) (-1616 (*1 *2 *3) (-12 (-4 *1 (-845)) (-5 *3 (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *2 (-1044)))))
-(-13 (-1109) (-10 -7 (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -1616 ((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -1616 ((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2574 (((-1044) (-650 (-320 (-384))) (-650 (-384))) 166) (((-1044) (-320 (-384)) (-650 (-384))) 164) (((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-849 (-384)))) 162) (((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-320 (-384))) (-650 (-849 (-384)))) 160) (((-1044) (-847)) 125) (((-1044) (-847) (-1072)) 124)) (-1319 (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847) (-1072)) 85) (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847)) 87)) (-3551 (((-1044) (-650 (-320 (-384))) (-650 (-384))) 167) (((-1044) (-847)) 150)))
-(((-846) (-10 -7 (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847) (-1072))) (-15 -2574 ((-1044) (-847) (-1072))) (-15 -2574 ((-1044) (-847))) (-15 -3551 ((-1044) (-847))) (-15 -2574 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-320 (-384))) (-650 (-849 (-384))))) (-15 -2574 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-849 (-384))))) (-15 -2574 ((-1044) (-320 (-384)) (-650 (-384)))) (-15 -2574 ((-1044) (-650 (-320 (-384))) (-650 (-384)))) (-15 -3551 ((-1044) (-650 (-320 (-384))) (-650 (-384)))))) (T -846))
-((-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2574 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384))) (-5 *5 (-650 (-849 (-384)))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2574 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-650 (-384))) (-5 *5 (-650 (-849 (-384)))) (-5 *6 (-650 (-320 (-384)))) (-5 *3 (-320 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-847)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-846)))) (-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-847)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-846)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-846)))))
-(-10 -7 (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847) (-1072))) (-15 -2574 ((-1044) (-847) (-1072))) (-15 -2574 ((-1044) (-847))) (-15 -3551 ((-1044) (-847))) (-15 -2574 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-320 (-384))) (-650 (-849 (-384))))) (-15 -2574 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-849 (-384))))) (-15 -2574 ((-1044) (-320 (-384)) (-650 (-384)))) (-15 -2574 ((-1044) (-650 (-320 (-384))) (-650 (-384)))) (-15 -3551 ((-1044) (-650 (-320 (-384))) (-650 (-384)))))
-((-2847 (((-112) $ $) NIL)) (-4387 (((-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) $) 21)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 20) (($ (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 14) (($ (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))))) 18)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-847) (-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -2869 ($ (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -2869 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))))) (-15 -4387 ((-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) $))))) (T -847))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *1 (-847)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))) (-5 *1 (-847)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))))) (-5 *1 (-847)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227))))))) (-5 *1 (-847)))))
-(-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -2869 ($ (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) (-15 -2869 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))))) (-15 -4387 ((-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))) $))))
-((-2536 (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|) (-849 |#2|)) 13) (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)) 14)))
-(((-848 |#1| |#2|) (-10 -7 (-15 -2536 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -2536 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|) (-849 |#2|)))) (-1109) (-1109)) (T -848))
-((-2536 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-848 *5 *6)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6)))))
-(-10 -7 (-15 -2536 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -2536 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|) (-849 |#2|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL (|has| |#1| (-21)))) (-3108 (((-1129) $) 31)) (-3997 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2419 (((-570) $) NIL (|has| |#1| (-854)))) (-2333 (($) NIL (|has| |#1| (-21)) CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 18)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 9)) (-3957 (((-3 $ "failed") $) 58 (|has| |#1| (-854)))) (-2477 (((-3 (-413 (-570)) "failed") $) 65 (|has| |#1| (-551)))) (-3994 (((-112) $) 60 (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) 63 (|has| |#1| (-551)))) (-2811 (((-112) $) NIL (|has| |#1| (-854)))) (-2019 (($) 14)) (-2005 (((-112) $) NIL (|has| |#1| (-854)))) (-2746 (((-112) $) NIL (|has| |#1| (-854)))) (-2030 (($) 16)) (-1908 (($ $ $) NIL (|has| |#1| (-854)))) (-1764 (($ $ $) NIL (|has| |#1| (-854)))) (-3240 (((-1168) $) NIL)) (-2934 (((-112) $) 12)) (-3891 (((-1129) $) NIL)) (-1362 (((-112) $) 11)) (-2869 (((-868) $) 24) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 8) (($ (-570)) NIL (-3749 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))))) (-2294 (((-777)) 51 (|has| |#1| (-854)) CONST)) (-1344 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| |#1| (-854)))) (-1981 (($) 37 (|has| |#1| (-21)) CONST)) (-1998 (($) 48 (|has| |#1| (-854)) CONST)) (-3959 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3892 (((-112) $ $) 35)) (-3945 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3918 (((-112) $ $) 59 (|has| |#1| (-854)))) (-4003 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3992 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-928)) NIL (|has| |#1| (-854))) (($ $ (-777)) NIL (|has| |#1| (-854)))) (* (($ $ $) 55 (|has| |#1| (-854))) (($ (-570) $) 42 (|has| |#1| (-21))) (($ (-777) $) NIL (|has| |#1| (-21))) (($ (-928) $) NIL (|has| |#1| (-21)))))
-(((-849 |#1|) (-13 (-1109) (-417 |#1|) (-10 -8 (-15 -2019 ($)) (-15 -2030 ($)) (-15 -1362 ((-112) $)) (-15 -2934 ((-112) $)) (-15 -3108 ((-1129) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|))) (-1109)) (T -849))
-((-2019 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109)))) (-2030 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-2477 (*1 *2 *1) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))))
-(-13 (-1109) (-417 |#1|) (-10 -8 (-15 -2019 ($)) (-15 -2030 ($)) (-15 -1362 ((-112) $)) (-15 -2934 ((-112) $)) (-15 -3108 ((-1129) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|)))
-((-2847 (((-112) $ $) 7)) (-2401 (((-777)) 23)) (-2066 (($) 26)) (-1908 (($ $ $) 14) (($) 22 T CONST)) (-1764 (($ $ $) 15) (($) 21 T CONST)) (-1997 (((-928) $) 25)) (-3240 (((-1168) $) 10)) (-4298 (($ (-928)) 24)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)))
-(((-850) (-141)) (T -850))
-((-1908 (*1 *1) (-4 *1 (-850))) (-1764 (*1 *1) (-4 *1 (-850))))
-(-13 (-856) (-373) (-10 -8 (-15 -1908 ($) -3722) (-15 -1764 ($) -3722)))
-(((-102) . T) ((-619 (-868)) . T) ((-373) . T) ((-856) . T) ((-1109) . T))
-((-3914 (((-112) (-1277 |#2|) (-1277 |#2|)) 19)) (-3690 (((-112) (-1277 |#2|) (-1277 |#2|)) 20)) (-1628 (((-112) (-1277 |#2|) (-1277 |#2|)) 16)))
-(((-851 |#1| |#2|) (-10 -7 (-15 -1628 ((-112) (-1277 |#2|) (-1277 |#2|))) (-15 -3914 ((-112) (-1277 |#2|) (-1277 |#2|))) (-15 -3690 ((-112) (-1277 |#2|) (-1277 |#2|)))) (-777) (-798)) (T -851))
-((-3690 (*1 *2 *3 *3) (-12 (-5 *3 (-1277 *5)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))) (-3914 (*1 *2 *3 *3) (-12 (-5 *3 (-1277 *5)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))) (-1628 (*1 *2 *3 *3) (-12 (-5 *3 (-1277 *5)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))))
-(-10 -7 (-15 -1628 ((-112) (-1277 |#2|) (-1277 |#2|))) (-15 -3914 ((-112) (-1277 |#2|) (-1277 |#2|))) (-15 -3690 ((-112) (-1277 |#2|) (-1277 |#2|))))
-((-2847 (((-112) $ $) 7)) (-2333 (($) 24 T CONST)) (-3957 (((-3 $ "failed") $) 27)) (-2005 (((-112) $) 25)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1998 (($) 23 T CONST)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (** (($ $ (-928)) 22) (($ $ (-777)) 26)) (* (($ $ $) 21)))
+((-2486 (*1 *1 *1 *1) (-4 *1 (-801))))
+(-13 (-803) (-10 -8 (-15 -2486 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-858) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4005 (($ $ $) 21)) (* (($ (-930) $) 22)))
+(((-802) (-141)) (T -802))
+NIL
+(-13 (-858) (-25))
+(((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-858) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 25)) (-2092 (((-3 $ "failed") $ $) 27)) (-1586 (($) 24 T CONST)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 23 T CONST)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4005 (($ $ $) 21)) (* (($ (-930) $) 22) (($ (-779) $) 26)))
+(((-803) (-141)) (T -803))
+NIL
+(-13 (-800) (-132))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-800) . T) ((-802) . T) ((-858) . T) ((-1111) . T))
+((-3143 (((-112) $) 42)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1869 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 43)) (-3624 (((-3 (-415 (-572)) "failed") $) 78)) (-2054 (((-112) $) 72)) (-2745 (((-415 (-572)) $) 76)) (-2140 ((|#2| $) 26)) (-3161 (($ (-1 |#2| |#2|) $) 23)) (-1809 (($ $) 58)) (-3222 (((-544) $) 67)) (-4242 (($ $) 21)) (-3491 (((-870) $) 53) (($ (-572)) 40) (($ |#2|) 38) (($ (-415 (-572))) NIL)) (-2455 (((-779)) 10)) (-2775 ((|#2| $) 71)) (-3921 (((-112) $ $) 30)) (-3943 (((-112) $ $) 69)) (-4018 (($ $) 32) (($ $ $) NIL)) (-4005 (($ $ $) 31)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-804 |#1| |#2|) (-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -2775 (|#2| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -3143 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|))) (-805 |#2|) (-174)) (T -804))
+((-2455 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-804 *3 *4)) (-4 *3 (-805 *4)))))
+(-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -1809 (|#1| |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -2775 (|#2| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -3143 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-3037 (((-779)) 58 (|has| |#1| (-375)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 100 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 97 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 94)) (-1869 (((-572) $) 99 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 96 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 95)) (-2982 (((-3 $ "failed") $) 37)) (-3106 ((|#1| $) 84)) (-3624 (((-3 (-415 (-572)) "failed") $) 71 (|has| |#1| (-553)))) (-2054 (((-112) $) 73 (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) 72 (|has| |#1| (-553)))) (-2688 (($) 61 (|has| |#1| (-375)))) (-4422 (((-112) $) 35)) (-4205 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2140 ((|#1| $) 76)) (-2536 (($ $ $) 67 (|has| |#1| (-858)))) (-3928 (($ $ $) 66 (|has| |#1| (-858)))) (-3161 (($ (-1 |#1| |#1|) $) 86)) (-4370 (((-930) $) 60 (|has| |#1| (-375)))) (-3618 (((-1170) $) 10)) (-1809 (($ $) 70 (|has| |#1| (-370)))) (-1795 (($ (-930)) 59 (|has| |#1| (-375)))) (-3577 ((|#1| $) 81)) (-2563 ((|#1| $) 82)) (-4390 ((|#1| $) 83)) (-3240 ((|#1| $) 77)) (-4102 ((|#1| $) 78)) (-3532 ((|#1| $) 79)) (-2128 ((|#1| $) 80)) (-2614 (((-1131) $) 11)) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) 92 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 90 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 89 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 88 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 87 (|has| |#1| (-522 (-1188) |#1|)))) (-2679 (($ $ |#1|) 93 (|has| |#1| (-292 |#1| |#1|)))) (-3222 (((-544) $) 68 (|has| |#1| (-622 (-544))))) (-4242 (($ $) 85)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ (-415 (-572))) 98 (|has| |#1| (-1049 (-415 (-572)))))) (-2210 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2775 ((|#1| $) 74 (|has| |#1| (-1071)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3976 (((-112) $ $) 64 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 63 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 65 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 62 (|has| |#1| (-858)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-805 |#1|) (-141) (-174)) (T -805))
+((-4242 (*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-4205 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-3624 (*1 *2 *1) (|partial| -12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-1809 (*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-370)))))
+(-13 (-38 |t#1|) (-419 |t#1|) (-345 |t#1|) (-10 -8 (-15 -4242 ($ $)) (-15 -3106 (|t#1| $)) (-15 -4390 (|t#1| $)) (-15 -2563 (|t#1| $)) (-15 -3577 (|t#1| $)) (-15 -2128 (|t#1| $)) (-15 -3532 (|t#1| $)) (-15 -4102 (|t#1| $)) (-15 -3240 (|t#1| $)) (-15 -2140 (|t#1| $)) (-15 -4205 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -2775 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1809 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-375) |has| |#1| (-375)) ((-345 |#1|) . T) ((-419 |#1|) . T) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-734) . T) ((-858) |has| |#1| (-858)) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) |has| |#1| (-292 |#1| |#1|)))
+((-3161 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#3| (-1 |#4| |#2|) |#1|))) (-805 |#2|) (-174) (-805 |#4|) (-174)) (T -806))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-805 *6)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *4 (-805 *5)))))
+(-10 -7 (-15 -3161 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3037 (((-779)) NIL (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-1010 |#1|) "failed") $) 35) (((-3 (-572) "failed") $) NIL (-3783 (|has| (-1010 |#1|) (-1049 (-572))) (|has| |#1| (-1049 (-572))))) (((-3 (-415 (-572)) "failed") $) NIL (-3783 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-1869 ((|#1| $) NIL) (((-1010 |#1|) $) 33) (((-572) $) NIL (-3783 (|has| (-1010 |#1|) (-1049 (-572))) (|has| |#1| (-1049 (-572))))) (((-415 (-572)) $) NIL (-3783 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-2982 (((-3 $ "failed") $) NIL)) (-3106 ((|#1| $) 16)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-553)))) (-2054 (((-112) $) NIL (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) NIL (|has| |#1| (-553)))) (-2688 (($) NIL (|has| |#1| (-375)))) (-4422 (((-112) $) NIL)) (-4205 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1010 |#1|) (-1010 |#1|)) 29)) (-2140 ((|#1| $) NIL)) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#1| (-375)))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-1795 (($ (-930)) NIL (|has| |#1| (-375)))) (-3577 ((|#1| $) 22)) (-2563 ((|#1| $) 20)) (-4390 ((|#1| $) 18)) (-3240 ((|#1| $) 26)) (-4102 ((|#1| $) 25)) (-3532 ((|#1| $) 24)) (-2128 ((|#1| $) 23)) (-2614 (((-1131) $) NIL)) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-2679 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-4242 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1010 |#1|)) 30) (($ (-415 (-572))) NIL (-3783 (|has| (-1010 |#1|) (-1049 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2775 ((|#1| $) NIL (|has| |#1| (-1071)))) (-2602 (($) 8 T CONST)) (-2619 (($) 12 T CONST)) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-807 |#1|) (-13 (-805 |#1|) (-419 (-1010 |#1|)) (-10 -8 (-15 -4205 ($ (-1010 |#1|) (-1010 |#1|))))) (-174)) (T -807))
+((-4205 (*1 *1 *2 *2) (-12 (-5 *2 (-1010 *3)) (-4 *3 (-174)) (-5 *1 (-807 *3)))))
+(-13 (-805 |#1|) (-419 (-1010 |#1|)) (-10 -8 (-15 -4205 ($ (-1010 |#1|) (-1010 |#1|)))))
+((-3464 (((-112) $ $) 7)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2398 (((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3921 (((-112) $ $) 6)))
+(((-808) (-141)) (T -808))
+((-4329 (*1 *2 *3 *4) (-12 (-4 *1 (-808)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)))))) (-2398 (*1 *2 *3) (-12 (-4 *1 (-808)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1046)))))
+(-13 (-1111) (-10 -7 (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2398 ((-1046) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-2916 (((-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#3| |#2| (-1188)) 19)))
+(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -2916 ((-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#3| |#2| (-1188)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968)) (-664 |#2|)) (T -809))
+((-2916 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1188)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-4 *4 (-13 (-29 *6) (-1214) (-968))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1769 (-652 *4)))) (-5 *1 (-809 *6 *4 *3)) (-4 *3 (-664 *4)))))
+(-10 -7 (-15 -2916 ((-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#3| |#2| (-1188))))
+((-1969 (((-3 |#2| "failed") |#2| (-115) (-300 |#2|) (-652 |#2|)) 28) (((-3 |#2| "failed") (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#2| "failed") |#2| (-115) (-1188)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#2| "failed") (-300 |#2|) (-115) (-1188)) 18) (((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-652 |#2|) (-652 (-115)) (-1188)) 24) (((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-652 (-300 |#2|)) (-652 (-115)) (-1188)) 26) (((-3 (-652 (-1279 |#2|)) "failed") (-697 |#2|) (-1188)) 37) (((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-697 |#2|) (-1279 |#2|) (-1188)) 35)))
+(((-810 |#1| |#2|) (-10 -7 (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-697 |#2|) (-1279 |#2|) (-1188))) (-15 -1969 ((-3 (-652 (-1279 |#2|)) "failed") (-697 |#2|) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-652 (-300 |#2|)) (-652 (-115)) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-652 |#2|) (-652 (-115)) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#2| "failed") (-300 |#2|) (-115) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#2| "failed") |#2| (-115) (-1188))) (-15 -1969 ((-3 |#2| "failed") (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -1969 ((-3 |#2| "failed") |#2| (-115) (-300 |#2|) (-652 |#2|)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968))) (T -810))
+((-1969 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-300 *2)) (-5 *5 (-652 *2)) (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-810 *6 *2)))) (-1969 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-300 *2)) (-5 *4 (-115)) (-5 *5 (-652 *2)) (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-5 *1 (-810 *6 *2)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))))) (-1969 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1188)) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1769 (-652 *3))) *3 "failed")) (-5 *1 (-810 *6 *3)) (-4 *3 (-13 (-29 *6) (-1214) (-968))))) (-1969 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1769 (-652 *7))) *7 "failed")) (-5 *1 (-810 *6 *7)))) (-1969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115))) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-2 (|:| |particular| (-1279 *7)) (|:| -1769 (-652 (-1279 *7))))) (-5 *1 (-810 *6 *7)))) (-1969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115))) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-2 (|:| |particular| (-1279 *7)) (|:| -1769 (-652 (-1279 *7))))) (-5 *1 (-810 *6 *7)))) (-1969 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-697 *6)) (-5 *4 (-1188)) (-4 *6 (-13 (-29 *5) (-1214) (-968))) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-1279 *6))) (-5 *1 (-810 *5 *6)))) (-1969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-697 *7)) (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968))) (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-2 (|:| |particular| (-1279 *7)) (|:| -1769 (-652 (-1279 *7))))) (-5 *1 (-810 *6 *7)) (-5 *4 (-1279 *7)))))
+(-10 -7 (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-697 |#2|) (-1279 |#2|) (-1188))) (-15 -1969 ((-3 (-652 (-1279 |#2|)) "failed") (-697 |#2|) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-652 (-300 |#2|)) (-652 (-115)) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#2|)) (|:| -1769 (-652 (-1279 |#2|)))) "failed") (-652 |#2|) (-652 (-115)) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#2| "failed") (-300 |#2|) (-115) (-1188))) (-15 -1969 ((-3 (-2 (|:| |particular| |#2|) (|:| -1769 (-652 |#2|))) |#2| "failed") |#2| (-115) (-1188))) (-15 -1969 ((-3 |#2| "failed") (-300 |#2|) (-115) (-300 |#2|) (-652 |#2|))) (-15 -1969 ((-3 |#2| "failed") |#2| (-115) (-300 |#2|) (-652 |#2|))))
+((-2130 (($) 9)) (-2098 (((-3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2608 (((-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-3704 (($ (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))) 24)) (-1855 (($ (-652 (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) 22)) (-4364 (((-1284)) 11)))
+(((-811) (-10 -8 (-15 -2130 ($)) (-15 -4364 ((-1284))) (-15 -2608 ((-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1855 ($ (-652 (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))))) (-15 -3704 ($ (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) (-15 -2098 ((-3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -811))
+((-2098 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))) (-5 *1 (-811)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))) (-5 *1 (-811)))) (-1855 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) (-5 *1 (-811)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-811)))) (-4364 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-811)))) (-2130 (*1 *1) (-5 *1 (-811))))
+(-10 -8 (-15 -2130 ($)) (-15 -4364 ((-1284))) (-15 -2608 ((-652 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1855 ($ (-652 (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386)))))))) (-15 -3704 ($ (-2 (|:| -1640 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3762 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))))))) (-15 -2098 ((-3 (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386)) (|:| |expense| (-386)) (|:| |accuracy| (-386)) (|:| |intermediateResults| (-386))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-3137 ((|#2| |#2| (-1188)) 17)) (-3036 ((|#2| |#2| (-1188)) 56)) (-2160 (((-1 |#2| |#2|) (-1188)) 11)))
+(((-812 |#1| |#2|) (-10 -7 (-15 -3137 (|#2| |#2| (-1188))) (-15 -3036 (|#2| |#2| (-1188))) (-15 -2160 ((-1 |#2| |#2|) (-1188)))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)) (-13 (-29 |#1|) (-1214) (-968))) (T -812))
+((-2160 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-13 (-29 *4) (-1214) (-968))))) (-3036 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968))))) (-3137 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968))))))
+(-10 -7 (-15 -3137 (|#2| |#2| (-1188))) (-15 -3036 (|#2| |#2| (-1188))) (-15 -2160 ((-1 |#2| |#2|) (-1188))))
+((-1969 (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386) (-386)) 128) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386)) 129) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-652 (-386)) (-386)) 131) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-386)) 133) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-386)) 134) (((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386))) 136) (((-1046) (-816) (-1074)) 120) (((-1046) (-816)) 121)) (-4329 (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816) (-1074)) 80) (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816)) 82)))
+(((-813) (-10 -7 (-15 -1969 ((-1046) (-816))) (-15 -1969 ((-1046) (-816) (-1074))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-652 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386) (-386))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816) (-1074))))) (T -813))
+((-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-813)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-813)))) (-1969 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386))) (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1969 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386))) (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1969 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1969 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386))) (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1969 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1969 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-813)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1046)) (-5 *1 (-813)))))
+(-10 -7 (-15 -1969 ((-1046) (-816))) (-15 -1969 ((-1046) (-816) (-1074))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-652 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386))) (-15 -1969 ((-1046) (-1279 (-322 (-386))) (-386) (-386) (-652 (-386)) (-322 (-386)) (-652 (-386)) (-386) (-386))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-816) (-1074))))
+((-2352 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1769 (-652 |#4|))) (-661 |#4|) |#4|) 33)))
+(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2352 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1769 (-652 |#4|))) (-661 |#4|) |#4|))) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|)) (T -814))
+((-2352 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *4)) (-4 *4 (-349 *5 *6 *7)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-814 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2352 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1769 (-652 |#4|))) (-661 |#4|) |#4|)))
+((-4270 (((-2 (|:| -3179 |#3|) (|:| |rh| (-652 (-415 |#2|)))) |#4| (-652 (-415 |#2|))) 53)) (-3077 (((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#4| |#2|) 62) (((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#4|) 61) (((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#3| |#2|) 20) (((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#3|) 21)) (-3895 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4282 ((|#2| |#3| (-652 (-415 |#2|))) 109) (((-3 |#2| "failed") |#3| (-415 |#2|)) 105)))
+(((-815 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4282 ((-3 |#2| "failed") |#3| (-415 |#2|))) (-15 -4282 (|#2| |#3| (-652 (-415 |#2|)))) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#3|)) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#3| |#2|)) (-15 -3895 (|#2| |#3| |#1|)) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#4|)) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#4| |#2|)) (-15 -3895 (|#2| |#4| |#1|)) (-15 -4270 ((-2 (|:| -3179 |#3|) (|:| |rh| (-652 (-415 |#2|)))) |#4| (-652 (-415 |#2|))))) (-13 (-370) (-148) (-1049 (-415 (-572)))) (-1255 |#1|) (-664 |#2|) (-664 (-415 |#2|))) (T -815))
+((-4270 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-2 (|:| -3179 *7) (|:| |rh| (-652 (-415 *6))))) (-5 *1 (-815 *5 *6 *7 *3)) (-5 *4 (-652 (-415 *6))) (-4 *7 (-664 *6)) (-4 *3 (-664 (-415 *6))))) (-3895 (*1 *2 *3 *4) (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *5 *3)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-664 *2)) (-4 *3 (-664 (-415 *2))))) (-3077 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -2376 *4) (|:| -3283 *4)))) (-5 *1 (-815 *5 *4 *6 *3)) (-4 *6 (-664 *4)) (-4 *3 (-664 (-415 *4))))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -2376 *5) (|:| -3283 *5)))) (-5 *1 (-815 *4 *5 *6 *3)) (-4 *6 (-664 *5)) (-4 *3 (-664 (-415 *5))))) (-3895 (*1 *2 *3 *4) (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *3 *5)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *5 (-664 (-415 *2))))) (-3077 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -2376 *4) (|:| -3283 *4)))) (-5 *1 (-815 *5 *4 *3 *6)) (-4 *3 (-664 *4)) (-4 *6 (-664 (-415 *4))))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -2376 *5) (|:| -3283 *5)))) (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-664 (-415 *5))))) (-4282 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-415 *2))) (-4 *2 (-1255 *5)) (-5 *1 (-815 *5 *2 *3 *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *6 (-664 (-415 *2))))) (-4282 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-415 *2)) (-4 *2 (-1255 *5)) (-5 *1 (-815 *5 *2 *3 *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *6 (-664 *4)))))
+(-10 -7 (-15 -4282 ((-3 |#2| "failed") |#3| (-415 |#2|))) (-15 -4282 (|#2| |#3| (-652 (-415 |#2|)))) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#3|)) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#3| |#2|)) (-15 -3895 (|#2| |#3| |#1|)) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#4|)) (-15 -3077 ((-652 (-2 (|:| -2376 |#2|) (|:| -3283 |#2|))) |#4| |#2|)) (-15 -3895 (|#2| |#4| |#1|)) (-15 -4270 ((-2 (|:| -3179 |#3|) (|:| |rh| (-652 (-415 |#2|)))) |#4| (-652 (-415 |#2|)))))
+((-3464 (((-112) $ $) NIL)) (-1869 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-816) (-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1869 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -816))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-816)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-816)))))
+(-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1869 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
+((-2246 (((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -3179 |#3|))) |#3| (-1 (-652 |#2|) |#2| (-1184 |#2|)) (-1 (-426 |#2|) |#2|)) 154)) (-2963 (((-652 (-2 (|:| |poly| |#2|) (|:| -3179 |#3|))) |#3| (-1 (-652 |#1|) |#2|)) 52)) (-2437 (((-652 (-2 (|:| |deg| (-779)) (|:| -3179 |#2|))) |#3|) 122)) (-4097 ((|#2| |#3|) 42)) (-3302 (((-652 (-2 (|:| -4338 |#1|) (|:| -3179 |#3|))) |#3| (-1 (-652 |#1|) |#2|)) 99)) (-2119 ((|#3| |#3| (-415 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
+(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4097 (|#2| |#3|)) (-15 -2437 ((-652 (-2 (|:| |deg| (-779)) (|:| -3179 |#2|))) |#3|)) (-15 -3302 ((-652 (-2 (|:| -4338 |#1|) (|:| -3179 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -2963 ((-652 (-2 (|:| |poly| |#2|) (|:| -3179 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -2246 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -3179 |#3|))) |#3| (-1 (-652 |#2|) |#2| (-1184 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2119 (|#3| |#3| |#2|)) (-15 -2119 (|#3| |#3| (-415 |#2|)))) (-13 (-370) (-148) (-1049 (-415 (-572)))) (-1255 |#1|) (-664 |#2|) (-664 (-415 |#2|))) (T -817))
+((-2119 (*1 *2 *2 *3) (-12 (-5 *3 (-415 *5)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *1 (-817 *4 *5 *2 *6)) (-4 *2 (-664 *5)) (-4 *6 (-664 *3)))) (-2119 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-1255 *4)) (-5 *1 (-817 *4 *3 *2 *5)) (-4 *2 (-664 *3)) (-4 *5 (-664 (-415 *3))))) (-2246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-652 *7) *7 (-1184 *7))) (-5 *5 (-1 (-426 *7) *7)) (-4 *7 (-1255 *6)) (-4 *6 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-5 *2 (-652 (-2 (|:| |frac| (-415 *7)) (|:| -3179 *3)))) (-5 *1 (-817 *6 *7 *3 *8)) (-4 *3 (-664 *7)) (-4 *8 (-664 (-415 *7))))) (-2963 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -3179 *3)))) (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6)) (-4 *7 (-664 (-415 *6))))) (-3302 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -4338 *5) (|:| -3179 *3)))) (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6)) (-4 *7 (-664 (-415 *6))))) (-2437 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -3179 *5)))) (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-664 (-415 *5))))) (-4097 (*1 *2 *3) (-12 (-4 *2 (-1255 *4)) (-5 *1 (-817 *4 *2 *3 *5)) (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2)) (-4 *5 (-664 (-415 *2))))))
+(-10 -7 (-15 -4097 (|#2| |#3|)) (-15 -2437 ((-652 (-2 (|:| |deg| (-779)) (|:| -3179 |#2|))) |#3|)) (-15 -3302 ((-652 (-2 (|:| -4338 |#1|) (|:| -3179 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -2963 ((-652 (-2 (|:| |poly| |#2|) (|:| -3179 |#3|))) |#3| (-1 (-652 |#1|) |#2|))) (-15 -2246 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -3179 |#3|))) |#3| (-1 (-652 |#2|) |#2| (-1184 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2119 (|#3| |#3| |#2|)) (-15 -2119 (|#3| |#3| (-415 |#2|))))
+((-1973 (((-2 (|:| -1769 (-652 (-415 |#2|))) (|:| -1866 (-697 |#1|))) (-662 |#2| (-415 |#2|)) (-652 (-415 |#2|))) 146) (((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -1769 (-652 (-415 |#2|)))) (-662 |#2| (-415 |#2|)) (-415 |#2|)) 145) (((-2 (|:| -1769 (-652 (-415 |#2|))) (|:| -1866 (-697 |#1|))) (-661 (-415 |#2|)) (-652 (-415 |#2|))) 140) (((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -1769 (-652 (-415 |#2|)))) (-661 (-415 |#2|)) (-415 |#2|)) 138)) (-2435 ((|#2| (-662 |#2| (-415 |#2|))) 87) ((|#2| (-661 (-415 |#2|))) 90)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -1973 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -1769 (-652 (-415 |#2|)))) (-661 (-415 |#2|)) (-415 |#2|))) (-15 -1973 ((-2 (|:| -1769 (-652 (-415 |#2|))) (|:| -1866 (-697 |#1|))) (-661 (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -1973 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -1769 (-652 (-415 |#2|)))) (-662 |#2| (-415 |#2|)) (-415 |#2|))) (-15 -1973 ((-2 (|:| -1769 (-652 (-415 |#2|))) (|:| -1866 (-697 |#1|))) (-662 |#2| (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -2435 (|#2| (-661 (-415 |#2|)))) (-15 -2435 (|#2| (-662 |#2| (-415 |#2|))))) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -818))
+((-2435 (*1 *2 *3) (-12 (-5 *3 (-662 *2 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-818 *4 *2)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-661 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-818 *4 *2)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| -1769 (-652 (-415 *6))) (|:| -1866 (-697 *5)))) (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6))))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-818 *5 *6)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| -1769 (-652 (-415 *6))) (|:| -1866 (-697 *5)))) (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6))))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-818 *5 *6)))))
+(-10 -7 (-15 -1973 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -1769 (-652 (-415 |#2|)))) (-661 (-415 |#2|)) (-415 |#2|))) (-15 -1973 ((-2 (|:| -1769 (-652 (-415 |#2|))) (|:| -1866 (-697 |#1|))) (-661 (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -1973 ((-2 (|:| |particular| (-3 (-415 |#2|) "failed")) (|:| -1769 (-652 (-415 |#2|)))) (-662 |#2| (-415 |#2|)) (-415 |#2|))) (-15 -1973 ((-2 (|:| -1769 (-652 (-415 |#2|))) (|:| -1866 (-697 |#1|))) (-662 |#2| (-415 |#2|)) (-652 (-415 |#2|)))) (-15 -2435 (|#2| (-661 (-415 |#2|)))) (-15 -2435 (|#2| (-662 |#2| (-415 |#2|)))))
+((-1446 (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) |#5| |#4|) 49)))
+(((-819 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1446 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) |#5| |#4|))) (-370) (-664 |#1|) (-1255 |#1|) (-732 |#1| |#3|) (-664 |#4|)) (T -819))
+((-1446 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *7 (-1255 *5)) (-4 *4 (-732 *5 *7)) (-5 *2 (-2 (|:| -1866 (-697 *6)) (|:| |vec| (-1279 *5)))) (-5 *1 (-819 *5 *6 *7 *4 *3)) (-4 *6 (-664 *5)) (-4 *3 (-664 *4)))))
+(-10 -7 (-15 -1446 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) |#5| |#4|)))
+((-2246 (((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -3179 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)) 47)) (-4283 (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|))) 164 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-426 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-661 (-415 |#2|))) 166 (|has| |#1| (-27))) (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|)) 38) (((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 39) (((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|)) 36) (((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 37)) (-2963 (((-652 (-2 (|:| |poly| |#2|) (|:| -3179 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|)) 96)))
+(((-820 |#1| |#2|) (-10 -7 (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -2246 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -3179 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2963 ((-652 (-2 (|:| |poly| |#2|) (|:| -3179 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)))) (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)))) |%noBranch|)) (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))) (-1255 |#1|)) (T -820))
+((-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-662 *5 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5)))) (-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-661 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5)))) (-2963 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -3179 (-662 *6 (-415 *6)))))) (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))) (-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-5 *2 (-652 (-2 (|:| |frac| (-415 *6)) (|:| -3179 (-662 *6 (-415 *6)))))) (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))) (-4283 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-662 *7 (-415 *7))) (-5 *4 (-1 (-652 *6) *7)) (-5 *5 (-1 (-426 *7) *7)) (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7)))) (-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))) (-4283 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-415 *7))) (-5 *4 (-1 (-652 *6) *7)) (-5 *5 (-1 (-426 *7) *7)) (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7)))) (-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-652 *5) *6)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))))
+(-10 -7 (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|) (-1 (-426 |#2|) |#2|))) (-15 -2246 ((-652 (-2 (|:| |frac| (-415 |#2|)) (|:| -3179 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -2963 ((-652 (-2 (|:| |poly| |#2|) (|:| -3179 (-662 |#2| (-415 |#2|))))) (-662 |#2| (-415 |#2|)) (-1 (-652 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)))) (-15 -4283 ((-652 (-415 |#2|)) (-661 (-415 |#2|)) (-1 (-426 |#2|) |#2|))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)))) (-15 -4283 ((-652 (-415 |#2|)) (-662 |#2| (-415 |#2|)) (-1 (-426 |#2|) |#2|)))) |%noBranch|))
+((-2910 (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) (-697 |#2|) (-1279 |#1|)) 110) (((-2 (|:| A (-697 |#1|)) (|:| |eqs| (-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)) (|:| -3179 |#2|) (|:| |rh| |#1|))))) (-697 |#1|) (-1279 |#1|)) 15)) (-2095 (((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-697 |#2|) (-1279 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1769 (-652 |#1|))) |#2| |#1|)) 116)) (-1969 (((-3 (-2 (|:| |particular| (-1279 |#1|)) (|:| -1769 (-697 |#1|))) "failed") (-697 |#1|) (-1279 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1769 (-652 |#1|))) "failed") |#2| |#1|)) 54)))
+(((-821 |#1| |#2|) (-10 -7 (-15 -2910 ((-2 (|:| A (-697 |#1|)) (|:| |eqs| (-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)) (|:| -3179 |#2|) (|:| |rh| |#1|))))) (-697 |#1|) (-1279 |#1|))) (-15 -2910 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) (-697 |#2|) (-1279 |#1|))) (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#1|)) (|:| -1769 (-697 |#1|))) "failed") (-697 |#1|) (-1279 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1769 (-652 |#1|))) "failed") |#2| |#1|))) (-15 -2095 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-697 |#2|) (-1279 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1769 (-652 |#1|))) |#2| |#1|)))) (-370) (-664 |#1|)) (T -821))
+((-2095 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1769 (-652 *6))) *7 *6)) (-4 *6 (-370)) (-4 *7 (-664 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1279 *6) "failed")) (|:| -1769 (-652 (-1279 *6))))) (-5 *1 (-821 *6 *7)) (-5 *4 (-1279 *6)))) (-1969 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1769 (-652 *6))) "failed") *7 *6)) (-4 *6 (-370)) (-4 *7 (-664 *6)) (-5 *2 (-2 (|:| |particular| (-1279 *6)) (|:| -1769 (-697 *6)))) (-5 *1 (-821 *6 *7)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *6)))) (-2910 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-4 *6 (-664 *5)) (-5 *2 (-2 (|:| -1866 (-697 *6)) (|:| |vec| (-1279 *5)))) (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *5)))) (-2910 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-5 *2 (-2 (|:| A (-697 *5)) (|:| |eqs| (-652 (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5)) (|:| -3179 *6) (|:| |rh| *5)))))) (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *6 (-664 *5)))))
+(-10 -7 (-15 -2910 ((-2 (|:| A (-697 |#1|)) (|:| |eqs| (-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)) (|:| -3179 |#2|) (|:| |rh| |#1|))))) (-697 |#1|) (-1279 |#1|))) (-15 -2910 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#1|))) (-697 |#2|) (-1279 |#1|))) (-15 -1969 ((-3 (-2 (|:| |particular| (-1279 |#1|)) (|:| -1769 (-697 |#1|))) "failed") (-697 |#1|) (-1279 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1769 (-652 |#1|))) "failed") |#2| |#1|))) (-15 -2095 ((-2 (|:| |particular| (-3 (-1279 |#1|) "failed")) (|:| -1769 (-652 (-1279 |#1|)))) (-697 |#2|) (-1279 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1769 (-652 |#1|))) |#2| |#1|))))
+((-3603 (((-697 |#1|) (-652 |#1|) (-779)) 14) (((-697 |#1|) (-652 |#1|)) 15)) (-1836 (((-3 (-1279 |#1|) "failed") |#2| |#1| (-652 |#1|)) 39)) (-1454 (((-3 |#1| "failed") |#2| |#1| (-652 |#1|) (-1 |#1| |#1|)) 46)))
+(((-822 |#1| |#2|) (-10 -7 (-15 -3603 ((-697 |#1|) (-652 |#1|))) (-15 -3603 ((-697 |#1|) (-652 |#1|) (-779))) (-15 -1836 ((-3 (-1279 |#1|) "failed") |#2| |#1| (-652 |#1|))) (-15 -1454 ((-3 |#1| "failed") |#2| |#1| (-652 |#1|) (-1 |#1| |#1|)))) (-370) (-664 |#1|)) (T -822))
+((-1454 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-652 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-370)) (-5 *1 (-822 *2 *3)) (-4 *3 (-664 *2)))) (-1836 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-1279 *4)) (-5 *1 (-822 *4 *3)) (-4 *3 (-664 *4)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-370)) (-5 *2 (-697 *5)) (-5 *1 (-822 *5 *6)) (-4 *6 (-664 *5)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-697 *4)) (-5 *1 (-822 *4 *5)) (-4 *5 (-664 *4)))))
+(-10 -7 (-15 -3603 ((-697 |#1|) (-652 |#1|))) (-15 -3603 ((-697 |#1|) (-652 |#1|) (-779))) (-15 -1836 ((-3 (-1279 |#1|) "failed") |#2| |#1| (-652 |#1|))) (-15 -1454 ((-3 |#1| "failed") |#2| |#1| (-652 |#1|) (-1 |#1| |#1|))))
+((-3464 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3143 (((-112) $) NIL (|has| |#2| (-132)))) (-1572 (($ (-930)) NIL (|has| |#2| (-1060)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2486 (($ $ $) NIL (|has| |#2| (-801)))) (-2092 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| |#2| (-375)))) (-4304 (((-572) $) NIL (|has| |#2| (-856)))) (-3659 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1111)))) (-1869 (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) ((|#2| $) NIL (|has| |#2| (-1111)))) (-2245 (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#2| (-1060)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#2| (-1060))) (((-697 |#2|) (-697 $)) NIL (|has| |#2| (-1060)))) (-2982 (((-3 $ "failed") $) NIL (|has| |#2| (-734)))) (-2688 (($) NIL (|has| |#2| (-375)))) (-3061 ((|#2| $ (-572) |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ (-572)) NIL)) (-3778 (((-112) $) NIL (|has| |#2| (-856)))) (-1442 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL (|has| |#2| (-734)))) (-4354 (((-112) $) NIL (|has| |#2| (-856)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-2396 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3049 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#2| (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#2| (-1111)))) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-1795 (($ (-930)) NIL (|has| |#2| (-375)))) (-2614 (((-1131) $) NIL (|has| |#2| (-1111)))) (-2570 ((|#2| $) NIL (|has| (-572) (-858)))) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ (-572) |#2|) NIL) ((|#2| $ (-572)) NIL)) (-1606 ((|#2| $ $) NIL (|has| |#2| (-1060)))) (-3153 (($ (-1279 |#2|)) NIL)) (-1670 (((-135)) NIL (|has| |#2| (-370)))) (-3011 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-1371 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-1279 |#2|) $) NIL) (($ (-572)) NIL (-3783 (-12 (|has| |#2| (-1049 (-572))) (|has| |#2| (-1111))) (|has| |#2| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#2| (-1049 (-415 (-572)))) (|has| |#2| (-1111)))) (($ |#2|) NIL (|has| |#2| (-1111))) (((-870) $) NIL (|has| |#2| (-621 (-870))))) (-2455 (((-779)) NIL (|has| |#2| (-1060)) CONST)) (-3424 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3776 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-2775 (($ $) NIL (|has| |#2| (-856)))) (-2602 (($) NIL (|has| |#2| (-132)) CONST)) (-2619 (($) NIL (|has| |#2| (-734)) CONST)) (-4019 (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#2| (-909 (-1188))) (|has| |#2| (-1060)))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#2| (-1060))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1060)))) (-3976 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3954 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3921 (((-112) $ $) NIL (|has| |#2| (-1111)))) (-3965 (((-112) $ $) NIL (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-3943 (((-112) $ $) 11 (-3783 (|has| |#2| (-801)) (|has| |#2| (-856))))) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $ $) NIL (|has| |#2| (-1060))) (($ $) NIL (|has| |#2| (-1060)))) (-4005 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-779)) NIL (|has| |#2| (-734))) (($ $ (-930)) NIL (|has| |#2| (-734)))) (* (($ (-572) $) NIL (|has| |#2| (-1060))) (($ $ $) NIL (|has| |#2| (-734))) (($ $ |#2|) NIL (|has| |#2| (-734))) (($ |#2| $) NIL (|has| |#2| (-734))) (($ (-779) $) NIL (|has| |#2| (-132))) (($ (-930) $) NIL (|has| |#2| (-25)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-823 |#1| |#2| |#3|) (-242 |#1| |#2|) (-779) (-801) (-1 (-112) (-1279 |#2|) (-1279 |#2|))) (T -823))
+NIL
+(-242 |#1| |#2|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2259 (((-652 (-779)) $) NIL) (((-652 (-779)) $ (-1188)) NIL)) (-1470 (((-779) $) NIL) (((-779) $ (-1188)) NIL)) (-2220 (((-652 (-826 (-1188))) $) NIL)) (-4063 (((-1184 $) $ (-826 (-1188))) NIL) (((-1184 |#1|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-826 (-1188)))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2844 (($ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-826 (-1188)) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL) (((-3 (-1136 |#1| (-1188)) "failed") $) NIL)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-826 (-1188)) $) NIL) (((-1188) $) NIL) (((-1136 |#1| (-1188)) $) NIL)) (-3829 (($ $ $ (-826 (-1188))) NIL (|has| |#1| (-174)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ (-826 (-1188))) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-539 (-826 (-1188))) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-826 (-1188)) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-826 (-1188)) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2068 (((-779) $ (-1188)) NIL) (((-779) $) NIL)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3060 (($ (-1184 |#1|) (-826 (-1188))) NIL) (($ (-1184 $) (-826 (-1188))) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-539 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-826 (-1188))) NIL)) (-3808 (((-539 (-826 (-1188))) $) NIL) (((-779) $ (-826 (-1188))) NIL) (((-652 (-779)) $ (-652 (-826 (-1188)))) NIL)) (-2008 (($ (-1 (-539 (-826 (-1188))) (-539 (-826 (-1188)))) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (((-1 $ (-779)) (-1188)) NIL) (((-1 $ (-779)) $) NIL (|has| |#1| (-237)))) (-4107 (((-3 (-826 (-1188)) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-2755 (((-826 (-1188)) $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-3740 (((-112) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-826 (-1188))) (|:| -2477 (-779))) "failed") $) NIL)) (-3419 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-826 (-1188)) |#1|) NIL) (($ $ (-652 (-826 (-1188))) (-652 |#1|)) NIL) (($ $ (-826 (-1188)) $) NIL) (($ $ (-652 (-826 (-1188))) (-652 $)) NIL) (($ $ (-1188) $) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 $)) NIL (|has| |#1| (-237))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-237)))) (-2020 (($ $ (-826 (-1188))) NIL (|has| |#1| (-174)))) (-3011 (($ $ (-826 (-1188))) NIL) (($ $ (-652 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3253 (((-652 (-1188)) $) NIL)) (-1497 (((-539 (-826 (-1188))) $) NIL) (((-779) $ (-826 (-1188))) NIL) (((-652 (-779)) $ (-652 (-826 (-1188)))) NIL) (((-779) $ (-1188)) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-826 (-1188)) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-826 (-1188)) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-826 (-1188)) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-826 (-1188))) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-826 (-1188))) NIL) (($ (-1188)) NIL) (($ (-1136 |#1| (-1188))) NIL) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-539 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-826 (-1188))) NIL) (($ $ (-652 (-826 (-1188)))) NIL) (($ $ (-826 (-1188)) (-779)) NIL) (($ $ (-652 (-826 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-824 |#1|) (-13 (-258 |#1| (-1188) (-826 (-1188)) (-539 (-826 (-1188)))) (-1049 (-1136 |#1| (-1188)))) (-1060)) (T -824))
+NIL
+(-13 (-258 |#1| (-1188) (-826 (-1188)) (-539 (-826 (-1188)))) (-1049 (-1136 |#1| (-1188))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-370)))) (-1697 (($ $) NIL (|has| |#2| (-370)))) (-1774 (((-112) $) NIL (|has| |#2| (-370)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#2| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#2| (-370)))) (-4252 (((-112) $ $) NIL (|has| |#2| (-370)))) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) NIL (|has| |#2| (-370)))) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL (|has| |#2| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#2| (-370)))) (-3439 (((-112) $) NIL (|has| |#2| (-370)))) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-1335 (($ (-652 $)) NIL (|has| |#2| (-370))) (($ $ $) NIL (|has| |#2| (-370)))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 20 (|has| |#2| (-370)))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#2| (-370))) (($ $ $) NIL (|has| |#2| (-370)))) (-2972 (((-426 $) $) NIL (|has| |#2| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#2| (-370)))) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#2| (-370)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-4395 (((-779) $) NIL (|has| |#2| (-370)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#2| (-370)))) (-3011 (($ $ (-779)) NIL) (($ $) 13)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-415 (-572))) NIL (|has| |#2| (-370))) (($ $) NIL (|has| |#2| (-370)))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#2| (-370)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) 15 (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL) (($ $ (-572)) 18 (|has| |#2| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-415 (-572)) $) NIL (|has| |#2| (-370))) (($ $ (-415 (-572))) NIL (|has| |#2| (-370)))))
+(((-825 |#1| |#2| |#3|) (-13 (-111 $ $) (-237) (-498 |#2|) (-10 -7 (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|))) (-1111) (-909 |#1|) |#1|) (T -825))
+NIL
+(-13 (-111 $ $) (-237) (-498 |#2|) (-10 -7 (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-1470 (((-779) $) NIL)) (-2043 ((|#1| $) 10)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2068 (((-779) $) 11)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-4376 (($ |#1| (-779)) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3011 (($ $) NIL) (($ $ (-779)) NIL)) (-3491 (((-870) $) NIL) (($ |#1|) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-826 |#1|) (-271 |#1|) (-858)) (T -826))
+NIL
+(-271 |#1|)
+((-3464 (((-112) $ $) NIL)) (-4084 (((-652 |#1|) $) 38)) (-3037 (((-779) $) NIL)) (-1586 (($) NIL T CONST)) (-4118 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2581 (($ $) 42)) (-2982 (((-3 $ "failed") $) NIL)) (-2269 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4422 (((-112) $) NIL)) (-1932 ((|#1| $ (-572)) NIL)) (-3904 (((-779) $ (-572)) NIL)) (-3450 (($ $) 54)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-2842 (($ (-1 |#1| |#1|) $) NIL)) (-1499 (($ (-1 (-779) (-779)) $) NIL)) (-3593 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4094 (((-112) $ $) 51)) (-2040 (((-779) $) 34)) (-3618 (((-1170) $) NIL)) (-4352 (($ $ $) NIL)) (-4077 (($ $ $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 ((|#1| $) 41)) (-1591 (((-652 (-2 (|:| |gen| |#1|) (|:| -3272 (-779)))) $) NIL)) (-2501 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3442 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3491 (((-870) $) NIL) (($ |#1|) NIL)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 20 T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 53)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ |#1| (-779)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-827 |#1|) (-13 (-393 |#1|) (-854) (-10 -8 (-15 -2570 (|#1| $)) (-15 -2581 ($ $)) (-15 -3450 ($ $)) (-15 -4094 ((-112) $ $)) (-15 -3593 ((-3 $ "failed") $ |#1|)) (-15 -4118 ((-3 $ "failed") $ |#1|)) (-15 -3442 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2040 ((-779) $)) (-15 -4084 ((-652 |#1|) $)))) (-858)) (T -827))
+((-2570 (*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-4094 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-858)))) (-3593 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-4118 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858)))) (-3442 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-827 *3)) (|:| |rm| (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-858)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-827 *3)) (-4 *3 (-858)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-827 *3)) (-4 *3 (-858)))))
+(-13 (-393 |#1|) (-854) (-10 -8 (-15 -2570 (|#1| $)) (-15 -2581 ($ $)) (-15 -3450 ($ $)) (-15 -4094 ((-112) $ $)) (-15 -3593 ((-3 $ "failed") $ |#1|)) (-15 -4118 ((-3 $ "failed") $ |#1|)) (-15 -3442 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2040 ((-779) $)) (-15 -4084 ((-652 |#1|) $))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-4304 (((-572) $) 59)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-3778 (((-112) $) 57)) (-4422 (((-112) $) 35)) (-4354 (((-112) $) 58)) (-2536 (($ $ $) 56)) (-3928 (($ $ $) 55)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ $) 48)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2775 (($ $) 60)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3976 (((-112) $ $) 53)) (-3954 (((-112) $ $) 52)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 54)) (-3943 (((-112) $ $) 51)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-828) (-141)) (T -828))
+NIL
+(-13 (-564) (-856))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-1465 (($ (-1131)) 7)) (-3287 (((-112) $ (-1170) (-1131)) 15)) (-2458 (((-830) $) 12)) (-2289 (((-830) $) 11)) (-3013 (((-1284) $) 9)) (-1800 (((-112) $ (-1131)) 16)))
+(((-829) (-10 -8 (-15 -1465 ($ (-1131))) (-15 -3013 ((-1284) $)) (-15 -2289 ((-830) $)) (-15 -2458 ((-830) $)) (-15 -3287 ((-112) $ (-1170) (-1131))) (-15 -1800 ((-112) $ (-1131))))) (T -829))
+((-1800 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))) (-3287 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-829)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-829)))))
+(-10 -8 (-15 -1465 ($ (-1131))) (-15 -3013 ((-1284) $)) (-15 -2289 ((-830) $)) (-15 -2458 ((-830) $)) (-15 -3287 ((-112) $ (-1170) (-1131))) (-15 -1800 ((-112) $ (-1131))))
+((-2494 (((-1284) $ (-831)) 12)) (-4419 (((-1284) $ (-1188)) 32)) (-3658 (((-1284) $ (-1170) (-1170)) 34)) (-3806 (((-1284) $ (-1170)) 33)) (-2802 (((-1284) $) 19)) (-3894 (((-1284) $ (-572)) 28)) (-1490 (((-1284) $ (-227)) 30)) (-2449 (((-1284) $) 18)) (-2030 (((-1284) $) 26)) (-4290 (((-1284) $) 25)) (-4176 (((-1284) $) 23)) (-3870 (((-1284) $) 24)) (-2799 (((-1284) $) 22)) (-2039 (((-1284) $) 21)) (-4189 (((-1284) $) 20)) (-3148 (((-1284) $) 16)) (-1544 (((-1284) $) 17)) (-4348 (((-1284) $) 15)) (-4051 (((-1284) $) 14)) (-2122 (((-1284) $) 13)) (-3499 (($ (-1170) (-831)) 9)) (-2843 (($ (-1170) (-1170) (-831)) 8)) (-2674 (((-1188) $) 51)) (-1651 (((-1188) $) 55)) (-3309 (((-2 (|:| |cd| (-1170)) (|:| -2402 (-1170))) $) 54)) (-1933 (((-1170) $) 52)) (-1318 (((-1284) $) 41)) (-1704 (((-572) $) 49)) (-2368 (((-227) $) 50)) (-3872 (((-1284) $) 40)) (-4429 (((-1284) $) 48)) (-1760 (((-1284) $) 47)) (-1396 (((-1284) $) 45)) (-2517 (((-1284) $) 46)) (-1431 (((-1284) $) 44)) (-2997 (((-1284) $) 43)) (-3138 (((-1284) $) 42)) (-2186 (((-1284) $) 38)) (-2360 (((-1284) $) 39)) (-1740 (((-1284) $) 37)) (-4313 (((-1284) $) 36)) (-3834 (((-1284) $) 35)) (-1414 (((-1284) $) 11)))
+(((-830) (-10 -8 (-15 -2843 ($ (-1170) (-1170) (-831))) (-15 -3499 ($ (-1170) (-831))) (-15 -1414 ((-1284) $)) (-15 -2494 ((-1284) $ (-831))) (-15 -2122 ((-1284) $)) (-15 -4051 ((-1284) $)) (-15 -4348 ((-1284) $)) (-15 -3148 ((-1284) $)) (-15 -1544 ((-1284) $)) (-15 -2449 ((-1284) $)) (-15 -2802 ((-1284) $)) (-15 -4189 ((-1284) $)) (-15 -2039 ((-1284) $)) (-15 -2799 ((-1284) $)) (-15 -4176 ((-1284) $)) (-15 -3870 ((-1284) $)) (-15 -4290 ((-1284) $)) (-15 -2030 ((-1284) $)) (-15 -3894 ((-1284) $ (-572))) (-15 -1490 ((-1284) $ (-227))) (-15 -4419 ((-1284) $ (-1188))) (-15 -3806 ((-1284) $ (-1170))) (-15 -3658 ((-1284) $ (-1170) (-1170))) (-15 -3834 ((-1284) $)) (-15 -4313 ((-1284) $)) (-15 -1740 ((-1284) $)) (-15 -2186 ((-1284) $)) (-15 -2360 ((-1284) $)) (-15 -3872 ((-1284) $)) (-15 -1318 ((-1284) $)) (-15 -3138 ((-1284) $)) (-15 -2997 ((-1284) $)) (-15 -1431 ((-1284) $)) (-15 -1396 ((-1284) $)) (-15 -2517 ((-1284) $)) (-15 -1760 ((-1284) $)) (-15 -4429 ((-1284) $)) (-15 -1704 ((-572) $)) (-15 -2368 ((-227) $)) (-15 -2674 ((-1188) $)) (-15 -1933 ((-1170) $)) (-15 -3309 ((-2 (|:| |cd| (-1170)) (|:| -2402 (-1170))) $)) (-15 -1651 ((-1188) $)))) (T -830))
+((-1651 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1170)) (|:| -2402 (-1170)))) (-5 *1 (-830)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-830)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-830)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-830)))) (-4429 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1396 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3658 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-3806 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-4419 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4348 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-2494 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1284)) (-5 *1 (-830)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))) (-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))) (-2843 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))))
+(-10 -8 (-15 -2843 ($ (-1170) (-1170) (-831))) (-15 -3499 ($ (-1170) (-831))) (-15 -1414 ((-1284) $)) (-15 -2494 ((-1284) $ (-831))) (-15 -2122 ((-1284) $)) (-15 -4051 ((-1284) $)) (-15 -4348 ((-1284) $)) (-15 -3148 ((-1284) $)) (-15 -1544 ((-1284) $)) (-15 -2449 ((-1284) $)) (-15 -2802 ((-1284) $)) (-15 -4189 ((-1284) $)) (-15 -2039 ((-1284) $)) (-15 -2799 ((-1284) $)) (-15 -4176 ((-1284) $)) (-15 -3870 ((-1284) $)) (-15 -4290 ((-1284) $)) (-15 -2030 ((-1284) $)) (-15 -3894 ((-1284) $ (-572))) (-15 -1490 ((-1284) $ (-227))) (-15 -4419 ((-1284) $ (-1188))) (-15 -3806 ((-1284) $ (-1170))) (-15 -3658 ((-1284) $ (-1170) (-1170))) (-15 -3834 ((-1284) $)) (-15 -4313 ((-1284) $)) (-15 -1740 ((-1284) $)) (-15 -2186 ((-1284) $)) (-15 -2360 ((-1284) $)) (-15 -3872 ((-1284) $)) (-15 -1318 ((-1284) $)) (-15 -3138 ((-1284) $)) (-15 -2997 ((-1284) $)) (-15 -1431 ((-1284) $)) (-15 -1396 ((-1284) $)) (-15 -2517 ((-1284) $)) (-15 -1760 ((-1284) $)) (-15 -4429 ((-1284) $)) (-15 -1704 ((-572) $)) (-15 -2368 ((-227) $)) (-15 -2674 ((-1188) $)) (-15 -1933 ((-1170) $)) (-15 -3309 ((-2 (|:| |cd| (-1170)) (|:| -2402 (-1170))) $)) (-15 -1651 ((-1188) $)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 13)) (-3424 (((-112) $ $) NIL)) (-1876 (($) 16)) (-2870 (($) 14)) (-1417 (($) 17)) (-1764 (($) 15)) (-3921 (((-112) $ $) 9)))
+(((-831) (-13 (-1111) (-10 -8 (-15 -2870 ($)) (-15 -1876 ($)) (-15 -1417 ($)) (-15 -1764 ($))))) (T -831))
+((-2870 (*1 *1) (-5 *1 (-831))) (-1876 (*1 *1) (-5 *1 (-831))) (-1417 (*1 *1) (-5 *1 (-831))) (-1764 (*1 *1) (-5 *1 (-831))))
+(-13 (-1111) (-10 -8 (-15 -2870 ($)) (-15 -1876 ($)) (-15 -1417 ($)) (-15 -1764 ($))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 23) (($ (-1188)) 19)) (-3424 (((-112) $ $) NIL)) (-2684 (((-112) $) 10)) (-2172 (((-112) $) 9)) (-1977 (((-112) $) 11)) (-2415 (((-112) $) 8)) (-3921 (((-112) $ $) 21)))
+(((-832) (-13 (-1111) (-10 -8 (-15 -3491 ($ (-1188))) (-15 -2415 ((-112) $)) (-15 -2172 ((-112) $)) (-15 -2684 ((-112) $)) (-15 -1977 ((-112) $))))) (T -832))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-832)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
+(-13 (-1111) (-10 -8 (-15 -3491 ($ (-1188))) (-15 -2415 ((-112) $)) (-15 -2172 ((-112) $)) (-15 -2684 ((-112) $)) (-15 -1977 ((-112) $))))
+((-3464 (((-112) $ $) NIL)) (-2051 (($ (-832) (-652 (-1188))) 32)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4104 (((-832) $) 33)) (-1978 (((-652 (-1188)) $) 34)) (-3491 (((-870) $) 31)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-833) (-13 (-1111) (-10 -8 (-15 -4104 ((-832) $)) (-15 -1978 ((-652 (-1188)) $)) (-15 -2051 ($ (-832) (-652 (-1188))))))) (T -833))
+((-4104 (*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-833)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-833)))) (-2051 (*1 *1 *2 *3) (-12 (-5 *2 (-832)) (-5 *3 (-652 (-1188))) (-5 *1 (-833)))))
+(-13 (-1111) (-10 -8 (-15 -4104 ((-832) $)) (-15 -1978 ((-652 (-1188)) $)) (-15 -2051 ($ (-832) (-652 (-1188))))))
+((-2810 (((-1284) (-830) (-322 |#1|) (-112)) 23) (((-1284) (-830) (-322 |#1|)) 89) (((-1170) (-322 |#1|) (-112)) 88) (((-1170) (-322 |#1|)) 87)))
+(((-834 |#1|) (-10 -7 (-15 -2810 ((-1170) (-322 |#1|))) (-15 -2810 ((-1170) (-322 |#1|) (-112))) (-15 -2810 ((-1284) (-830) (-322 |#1|))) (-15 -2810 ((-1284) (-830) (-322 |#1|) (-112)))) (-13 (-836) (-1060))) (T -834))
+((-2810 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-830)) (-5 *4 (-322 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-836) (-1060))) (-5 *2 (-1284)) (-5 *1 (-834 *6)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-322 *5)) (-4 *5 (-13 (-836) (-1060))) (-5 *2 (-1284)) (-5 *1 (-834 *5)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-322 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-836) (-1060))) (-5 *2 (-1170)) (-5 *1 (-834 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-322 *4)) (-4 *4 (-13 (-836) (-1060))) (-5 *2 (-1170)) (-5 *1 (-834 *4)))))
+(-10 -7 (-15 -2810 ((-1170) (-322 |#1|))) (-15 -2810 ((-1170) (-322 |#1|) (-112))) (-15 -2810 ((-1284) (-830) (-322 |#1|))) (-15 -2810 ((-1284) (-830) (-322 |#1|) (-112))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2711 ((|#1| $) 10)) (-2185 (($ |#1|) 9)) (-4422 (((-112) $) NIL)) (-3042 (($ |#2| (-779)) NIL)) (-3808 (((-779) $) NIL)) (-1853 ((|#2| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3011 (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-1497 (((-779) $) NIL)) (-3491 (((-870) $) 17) (($ (-572)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-4206 ((|#2| $ (-779)) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $) NIL (|has| |#1| (-237)))) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-835 |#1| |#2|) (-13 (-716 |#2|) (-10 -8 (IF (|has| |#1| (-237)) (-6 (-237)) |%noBranch|) (-15 -2185 ($ |#1|)) (-15 -2711 (|#1| $)))) (-716 |#2|) (-1060)) (T -835))
+((-2185 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-835 *2 *3)) (-4 *2 (-716 *3)))) (-2711 (*1 *2 *1) (-12 (-4 *2 (-716 *3)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1060)))))
+(-13 (-716 |#2|) (-10 -8 (IF (|has| |#1| (-237)) (-6 (-237)) |%noBranch|) (-15 -2185 ($ |#1|)) (-15 -2711 (|#1| $))))
+((-2810 (((-1284) (-830) $ (-112)) 9) (((-1284) (-830) $) 8) (((-1170) $ (-112)) 7) (((-1170) $) 6)))
+(((-836) (-141)) (T -836))
+((-2810 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *4 (-112)) (-5 *2 (-1284)))) (-2810 (*1 *2 *3 *1) (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *2 (-1284)))) (-2810 (*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-112)) (-5 *2 (-1170)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-836)) (-5 *2 (-1170)))))
+(-13 (-10 -8 (-15 -2810 ((-1170) $)) (-15 -2810 ((-1170) $ (-112))) (-15 -2810 ((-1284) (-830) $)) (-15 -2810 ((-1284) (-830) $ (-112)))))
+((-3569 (((-318) (-1170) (-1170)) 12)) (-3017 (((-112) (-1170) (-1170)) 34)) (-3729 (((-112) (-1170)) 33)) (-1557 (((-52) (-1170)) 25)) (-2232 (((-52) (-1170)) 23)) (-4272 (((-52) (-830)) 17)) (-3391 (((-652 (-1170)) (-1170)) 28)) (-3867 (((-652 (-1170))) 27)))
+(((-837) (-10 -7 (-15 -4272 ((-52) (-830))) (-15 -2232 ((-52) (-1170))) (-15 -1557 ((-52) (-1170))) (-15 -3867 ((-652 (-1170)))) (-15 -3391 ((-652 (-1170)) (-1170))) (-15 -3729 ((-112) (-1170))) (-15 -3017 ((-112) (-1170) (-1170))) (-15 -3569 ((-318) (-1170) (-1170))))) (T -837))
+((-3569 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-837)))) (-3017 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))) (-3391 (*1 *2 *3) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)) (-5 *3 (-1170)))) (-3867 (*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-837)))))
+(-10 -7 (-15 -4272 ((-52) (-830))) (-15 -2232 ((-52) (-1170))) (-15 -1557 ((-52) (-1170))) (-15 -3867 ((-652 (-1170)))) (-15 -3391 ((-652 (-1170)) (-1170))) (-15 -3729 ((-112) (-1170))) (-15 -3017 ((-112) (-1170) (-1170))) (-15 -3569 ((-318) (-1170) (-1170))))
+((-3464 (((-112) $ $) 19)) (-2266 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3395 (($ $ $) 73)) (-3219 (((-112) $ $) 74)) (-2938 (((-112) $ (-779)) 8)) (-1926 (($ (-652 |#1|)) 69) (($) 68)) (-2265 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-1727 (($ $) 63)) (-3955 (($ $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ |#1| $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2942 (((-112) $ $) 65)) (-2545 (((-112) $ (-779)) 9)) (-2536 ((|#1| $) 79)) (-2363 (($ $ $) 82)) (-1377 (($ $ $) 81)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3928 ((|#1| $) 80)) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22)) (-3225 (($ $ $) 70)) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41) (($ |#1| $ (-779)) 64)) (-2614 (((-1131) $) 21)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2526 (((-652 (-2 (|:| -3762 |#1|) (|:| -1371 (-779)))) $) 62)) (-2645 (($ $ |#1|) 72) (($ $ $) 71)) (-2145 (($) 50) (($ (-652 |#1|)) 49)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 51)) (-3491 (((-870) $) 18)) (-3826 (($ (-652 |#1|)) 67) (($) 66)) (-3424 (((-112) $ $) 23)) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20)) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-838 |#1|) (-141) (-858)) (T -838))
+((-2536 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-858)))))
+(-13 (-744 |t#1|) (-979 |t#1|) (-10 -8 (-15 -2536 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-239 |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-703 |#1|) . T) ((-744 |#1|) . T) ((-979 |#1|) . T) ((-1109 |#1|) . T) ((-1111) . T) ((-1229) . T))
+((-3865 (((-1284) (-1131) (-1131)) 48)) (-2168 (((-1284) (-829) (-52)) 45)) (-1635 (((-52) (-829)) 16)))
+(((-839) (-10 -7 (-15 -1635 ((-52) (-829))) (-15 -2168 ((-1284) (-829) (-52))) (-15 -3865 ((-1284) (-1131) (-1131))))) (T -839))
+((-3865 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1284)) (-5 *1 (-839)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-52)) (-5 *2 (-1284)) (-5 *1 (-839)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-52)) (-5 *1 (-839)))))
+(-10 -7 (-15 -1635 ((-52) (-829))) (-15 -2168 ((-1284) (-829) (-52))) (-15 -3865 ((-1284) (-1131) (-1131))))
+((-3161 (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|)) 12) (((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|)) 13)))
+(((-840 |#1| |#2|) (-10 -7 (-15 -3161 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -3161 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|)))) (-1111) (-1111)) (T -840))
+((-3161 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-840 *5 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6)))))
+(-10 -7 (-15 -3161 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|))) (-15 -3161 ((-841 |#2|) (-1 |#2| |#1|) (-841 |#1|) (-841 |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL (|has| |#1| (-21)))) (-2092 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4304 (((-572) $) NIL (|has| |#1| (-856)))) (-1586 (($) NIL (|has| |#1| (-21)) CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 15)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 9)) (-2982 (((-3 $ "failed") $) 42 (|has| |#1| (-856)))) (-3624 (((-3 (-415 (-572)) "failed") $) 52 (|has| |#1| (-553)))) (-2054 (((-112) $) 46 (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) 49 (|has| |#1| (-553)))) (-3778 (((-112) $) NIL (|has| |#1| (-856)))) (-4422 (((-112) $) NIL (|has| |#1| (-856)))) (-4354 (((-112) $) NIL (|has| |#1| (-856)))) (-2536 (($ $ $) NIL (|has| |#1| (-856)))) (-3928 (($ $ $) NIL (|has| |#1| (-856)))) (-3618 (((-1170) $) NIL)) (-2262 (($) 13)) (-2418 (((-112) $) 12)) (-2614 (((-1131) $) NIL)) (-3490 (((-112) $) 11)) (-3491 (((-870) $) 18) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 8) (($ (-572)) NIL (-3783 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))))) (-2455 (((-779)) 36 (|has| |#1| (-856)) CONST)) (-3424 (((-112) $ $) 54)) (-2775 (($ $) NIL (|has| |#1| (-856)))) (-2602 (($) 23 (|has| |#1| (-21)) CONST)) (-2619 (($) 33 (|has| |#1| (-856)) CONST)) (-3976 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3921 (((-112) $ $) 21)) (-3965 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3943 (((-112) $ $) 45 (|has| |#1| (-856)))) (-4018 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4005 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-930)) NIL (|has| |#1| (-856))) (($ $ (-779)) NIL (|has| |#1| (-856)))) (* (($ $ $) 39 (|has| |#1| (-856))) (($ (-572) $) 27 (|has| |#1| (-21))) (($ (-779) $) NIL (|has| |#1| (-21))) (($ (-930) $) NIL (|has| |#1| (-21)))))
+(((-841 |#1|) (-13 (-1111) (-419 |#1|) (-10 -8 (-15 -2262 ($)) (-15 -3490 ((-112) $)) (-15 -2418 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|))) (-1111)) (T -841))
+((-2262 (*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1111)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-3624 (*1 *2 *1) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))))
+(-13 (-1111) (-419 |#1|) (-10 -8 (-15 -2262 ($)) (-15 -3490 ((-112) $)) (-15 -2418 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|)))
+((-2685 (((-112) $ |#2|) 14)) (-3491 (((-870) $) 11)))
+(((-842 |#1| |#2|) (-10 -8 (-15 -2685 ((-112) |#1| |#2|)) (-15 -3491 ((-870) |#1|))) (-843 |#2|) (-1111)) (T -842))
+NIL
+(-10 -8 (-15 -2685 ((-112) |#1| |#2|)) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-2402 ((|#1| $) 16)) (-3618 (((-1170) $) 10)) (-2685 (((-112) $ |#1|) 14)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3586 (((-55) $) 15)) (-3921 (((-112) $ $) 6)))
+(((-843 |#1|) (-141) (-1111)) (T -843))
+((-2402 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1111)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-55)))) (-2685 (*1 *2 *1 *3) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
+(-13 (-1111) (-10 -8 (-15 -2402 (|t#1| $)) (-15 -3586 ((-55) $)) (-15 -2685 ((-112) $ |t#1|))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-1869 ((|#1| $) NIL) (((-115) $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2823 ((|#1| (-115) |#1|) NIL)) (-4422 (((-112) $) NIL)) (-2852 (($ |#1| (-368 (-115))) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1860 (($ $ (-1 |#1| |#1|)) NIL)) (-4399 (($ $ (-1 |#1| |#1|)) NIL)) (-2679 ((|#1| $ |#1|) NIL)) (-3991 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-4126 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ (-115) (-572)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-844 |#1|) (-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4126 ($ $)) (-15 -4126 ($ $ $)) (-15 -3991 (|#1| |#1|))) |%noBranch|) (-15 -4399 ($ $ (-1 |#1| |#1|))) (-15 -1860 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2823 (|#1| (-115) |#1|)) (-15 -2852 ($ |#1| (-368 (-115)))))) (-1060)) (T -844))
+((-4126 (*1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))) (-4126 (*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))) (-3991 (*1 *2 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))) (-4399 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))) (-1860 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-5 *1 (-844 *4)) (-4 *4 (-1060)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-844 *3)) (-4 *3 (-1060)))) (-2823 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-844 *2)) (-4 *2 (-1060)))) (-2852 (*1 *1 *2 *3) (-12 (-5 *3 (-368 (-115))) (-5 *1 (-844 *2)) (-4 *2 (-1060)))))
+(-13 (-1060) (-1049 |#1|) (-1049 (-115)) (-292 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4126 ($ $)) (-15 -4126 ($ $ $)) (-15 -3991 (|#1| |#1|))) |%noBranch|) (-15 -4399 ($ $ (-1 |#1| |#1|))) (-15 -1860 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-572))) (-15 ** ($ $ (-572))) (-15 -2823 (|#1| (-115) |#1|)) (-15 -2852 ($ |#1| (-368 (-115))))))
+((-2133 (((-216 (-510)) (-1170)) 9)))
+(((-845) (-10 -7 (-15 -2133 ((-216 (-510)) (-1170))))) (T -845))
+((-2133 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-216 (-510))) (-5 *1 (-845)))))
+(-10 -7 (-15 -2133 ((-216 (-510)) (-1170))))
+((-3464 (((-112) $ $) NIL)) (-1980 (((-1129) $) 10)) (-2402 (((-514) $) 9)) (-3618 (((-1170) $) NIL)) (-2685 (((-112) $ (-514)) NIL)) (-2614 (((-1131) $) NIL)) (-3503 (($ (-514) (-1129)) 8)) (-3491 (((-870) $) 25)) (-3424 (((-112) $ $) NIL)) (-3586 (((-55) $) 20)) (-3921 (((-112) $ $) 12)))
+(((-846) (-13 (-843 (-514)) (-10 -8 (-15 -1980 ((-1129) $)) (-15 -3503 ($ (-514) (-1129)))))) (T -846))
+((-1980 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-846)))) (-3503 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-846)))))
+(-13 (-843 (-514)) (-10 -8 (-15 -1980 ((-1129) $)) (-15 -3503 ($ (-514) (-1129)))))
+((-3464 (((-112) $ $) 7)) (-1804 (((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 15) (((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 14)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 17) (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 16)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-847) (-141)) (T -847))
+((-4329 (*1 *2 *3 *4) (-12 (-4 *1 (-847)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)))))) (-4329 (*1 *2 *3 *4) (-12 (-4 *1 (-847)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)))))) (-1804 (*1 *2 *3) (-12 (-4 *1 (-847)) (-5 *3 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) (-5 *2 (-1046)))) (-1804 (*1 *2 *3) (-12 (-4 *1 (-847)) (-5 *3 (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *2 (-1046)))))
+(-13 (-1111) (-10 -7 (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -1804 ((-1046) (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -1804 ((-1046) (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-4373 (((-1046) (-652 (-322 (-386))) (-652 (-386))) 166) (((-1046) (-322 (-386)) (-652 (-386))) 164) (((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-851 (-386)))) 162) (((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-322 (-386))) (-652 (-851 (-386)))) 160) (((-1046) (-849)) 125) (((-1046) (-849) (-1074)) 124)) (-4329 (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849) (-1074)) 85) (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849)) 87)) (-3682 (((-1046) (-652 (-322 (-386))) (-652 (-386))) 167) (((-1046) (-849)) 150)))
+(((-848) (-10 -7 (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849) (-1074))) (-15 -4373 ((-1046) (-849) (-1074))) (-15 -4373 ((-1046) (-849))) (-15 -3682 ((-1046) (-849))) (-15 -4373 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-322 (-386))) (-652 (-851 (-386))))) (-15 -4373 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-851 (-386))))) (-15 -4373 ((-1046) (-322 (-386)) (-652 (-386)))) (-15 -4373 ((-1046) (-652 (-322 (-386))) (-652 (-386)))) (-15 -3682 ((-1046) (-652 (-322 (-386))) (-652 (-386)))))) (T -848))
+((-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-4373 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386))) (-5 *5 (-652 (-851 (-386)))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-4373 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-652 (-386))) (-5 *5 (-652 (-851 (-386)))) (-5 *6 (-652 (-322 (-386)))) (-5 *3 (-322 (-386))) (-5 *2 (-1046)) (-5 *1 (-848)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848)))) (-4373 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-848)))) (-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-848)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-848)))))
+(-10 -7 (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-849) (-1074))) (-15 -4373 ((-1046) (-849) (-1074))) (-15 -4373 ((-1046) (-849))) (-15 -3682 ((-1046) (-849))) (-15 -4373 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-322 (-386))) (-652 (-851 (-386))))) (-15 -4373 ((-1046) (-322 (-386)) (-652 (-386)) (-652 (-851 (-386))) (-652 (-851 (-386))))) (-15 -4373 ((-1046) (-322 (-386)) (-652 (-386)))) (-15 -4373 ((-1046) (-652 (-322 (-386))) (-652 (-386)))) (-15 -3682 ((-1046) (-652 (-322 (-386))) (-652 (-386)))))
+((-3464 (((-112) $ $) NIL)) (-1869 (((-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) $) 21)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 20) (($ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) 14) (($ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))))) 18)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-849) (-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -3491 ($ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -3491 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))))) (-15 -1869 ((-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) $))))) (T -849))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (-5 *1 (-849)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))) (-5 *1 (-849)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))))) (-5 *1 (-849)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227))))))) (-5 *1 (-849)))))
+(-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227))))))) (-15 -3491 ($ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) (-15 -3491 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))))) (-15 -1869 ((-3 (|:| |noa| (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227))) (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227)))) (|:| |ub| (-652 (-851 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))) $))))
+((-3161 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|) (-851 |#2|) (-851 |#2|)) 13) (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14)))
+(((-850 |#1| |#2|) (-10 -7 (-15 -3161 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|))) (-15 -3161 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|) (-851 |#2|) (-851 |#2|)))) (-1111) (-1111)) (T -850))
+((-3161 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-851 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-850 *5 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6)))))
+(-10 -7 (-15 -3161 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|))) (-15 -3161 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|) (-851 |#2|) (-851 |#2|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL (|has| |#1| (-21)))) (-1561 (((-1131) $) 31)) (-2092 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4304 (((-572) $) NIL (|has| |#1| (-856)))) (-1586 (($) NIL (|has| |#1| (-21)) CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 18)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 9)) (-2982 (((-3 $ "failed") $) 58 (|has| |#1| (-856)))) (-3624 (((-3 (-415 (-572)) "failed") $) 65 (|has| |#1| (-553)))) (-2054 (((-112) $) 60 (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) 63 (|has| |#1| (-553)))) (-3778 (((-112) $) NIL (|has| |#1| (-856)))) (-2640 (($) 14)) (-4422 (((-112) $) NIL (|has| |#1| (-856)))) (-4354 (((-112) $) NIL (|has| |#1| (-856)))) (-2651 (($) 16)) (-2536 (($ $ $) NIL (|has| |#1| (-856)))) (-3928 (($ $ $) NIL (|has| |#1| (-856)))) (-3618 (((-1170) $) NIL)) (-2418 (((-112) $) 12)) (-2614 (((-1131) $) NIL)) (-3490 (((-112) $) 11)) (-3491 (((-870) $) 24) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 8) (($ (-572)) NIL (-3783 (|has| |#1| (-856)) (|has| |#1| (-1049 (-572)))))) (-2455 (((-779)) 51 (|has| |#1| (-856)) CONST)) (-3424 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| |#1| (-856)))) (-2602 (($) 37 (|has| |#1| (-21)) CONST)) (-2619 (($) 48 (|has| |#1| (-856)) CONST)) (-3976 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3921 (((-112) $ $) 35)) (-3965 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3943 (((-112) $ $) 59 (|has| |#1| (-856)))) (-4018 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4005 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-930)) NIL (|has| |#1| (-856))) (($ $ (-779)) NIL (|has| |#1| (-856)))) (* (($ $ $) 55 (|has| |#1| (-856))) (($ (-572) $) 42 (|has| |#1| (-21))) (($ (-779) $) NIL (|has| |#1| (-21))) (($ (-930) $) NIL (|has| |#1| (-21)))))
+(((-851 |#1|) (-13 (-1111) (-419 |#1|) (-10 -8 (-15 -2640 ($)) (-15 -2651 ($)) (-15 -3490 ((-112) $)) (-15 -2418 ((-112) $)) (-15 -1561 ((-1131) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|))) (-1111)) (T -851))
+((-2640 (*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))) (-2651 (*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))) (-3624 (*1 *2 *1) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111)))))
+(-13 (-1111) (-419 |#1|) (-10 -8 (-15 -2640 ($)) (-15 -2651 ($)) (-15 -3490 ((-112) $)) (-15 -2418 ((-112) $)) (-15 -1561 ((-1131) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|)))
+((-3464 (((-112) $ $) 7)) (-3037 (((-779)) 23)) (-2688 (($) 26)) (-2536 (($ $ $) 14) (($) 22 T CONST)) (-3928 (($ $ $) 15) (($) 21 T CONST)) (-4370 (((-930) $) 25)) (-3618 (((-1170) $) 10)) (-1795 (($ (-930)) 24)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)))
(((-852) (-141)) (T -852))
+((-2536 (*1 *1) (-4 *1 (-852))) (-3928 (*1 *1) (-4 *1 (-852))))
+(-13 (-858) (-375) (-10 -8 (-15 -2536 ($) -4338) (-15 -3928 ($) -4338)))
+(((-102) . T) ((-621 (-870)) . T) ((-375) . T) ((-858) . T) ((-1111) . T))
+((-2673 (((-112) (-1279 |#2|) (-1279 |#2|)) 19)) (-4397 (((-112) (-1279 |#2|) (-1279 |#2|)) 20)) (-1901 (((-112) (-1279 |#2|) (-1279 |#2|)) 16)))
+(((-853 |#1| |#2|) (-10 -7 (-15 -1901 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -2673 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -4397 ((-112) (-1279 |#2|) (-1279 |#2|)))) (-779) (-800)) (T -853))
+((-4397 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112)) (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))) (-2673 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112)) (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))) (-1901 (*1 *2 *3 *3) (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112)) (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
+(-10 -7 (-15 -1901 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -2673 ((-112) (-1279 |#2|) (-1279 |#2|))) (-15 -4397 ((-112) (-1279 |#2|) (-1279 |#2|))))
+((-3464 (((-112) $ $) 7)) (-1586 (($) 24 T CONST)) (-2982 (((-3 $ "failed") $) 27)) (-4422 (((-112) $) 25)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2619 (($) 23 T CONST)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (** (($ $ (-930)) 22) (($ $ (-779)) 26)) (* (($ $ $) 21)))
+(((-854) (-141)) (T -854))
NIL
-(-13 (-863) (-732))
-(((-102) . T) ((-619 (-868)) . T) ((-732) . T) ((-863) . T) ((-856) . T) ((-1121) . T) ((-1109) . T))
-((-2419 (((-570) $) 21)) (-2811 (((-112) $) 10)) (-2746 (((-112) $) 12)) (-2521 (($ $) 23)))
-(((-853 |#1|) (-10 -8 (-15 -2521 (|#1| |#1|)) (-15 -2419 ((-570) |#1|)) (-15 -2746 ((-112) |#1|)) (-15 -2811 ((-112) |#1|))) (-854)) (T -853))
+(-13 (-865) (-734))
+(((-102) . T) ((-621 (-870)) . T) ((-734) . T) ((-865) . T) ((-858) . T) ((-1123) . T) ((-1111) . T))
+((-4304 (((-572) $) 21)) (-3778 (((-112) $) 10)) (-4354 (((-112) $) 12)) (-2775 (($ $) 23)))
+(((-855 |#1|) (-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -4304 ((-572) |#1|)) (-15 -4354 ((-112) |#1|)) (-15 -3778 ((-112) |#1|))) (-856)) (T -855))
NIL
-(-10 -8 (-15 -2521 (|#1| |#1|)) (-15 -2419 ((-570) |#1|)) (-15 -2746 ((-112) |#1|)) (-15 -2811 ((-112) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 25)) (-3997 (((-3 $ "failed") $ $) 27)) (-2419 (((-570) $) 37)) (-2333 (($) 24 T CONST)) (-3957 (((-3 $ "failed") $) 42)) (-2811 (((-112) $) 39)) (-2005 (((-112) $) 44)) (-2746 (((-112) $) 38)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 46)) (-2294 (((-777)) 47 T CONST)) (-1344 (((-112) $ $) 9)) (-2521 (($ $) 36)) (-1981 (($) 23 T CONST)) (-1998 (($) 45 T CONST)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (-4003 (($ $ $) 31) (($ $) 30)) (-3992 (($ $ $) 21)) (** (($ $ (-777)) 43) (($ $ (-928)) 40)) (* (($ (-928) $) 22) (($ (-777) $) 26) (($ (-570) $) 29) (($ $ $) 41)))
-(((-854) (-141)) (T -854))
-((-2811 (*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-570)))) (-2521 (*1 *1 *1) (-4 *1 (-854))))
-(-13 (-797) (-1058) (-732) (-10 -8 (-15 -2811 ((-112) $)) (-15 -2746 ((-112) $)) (-15 -2419 ((-570) $)) (-15 -2521 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-856) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-1908 (($ $ $) 12)) (-1764 (($ $ $) 11)) (-1344 (((-112) $ $) 9)) (-3959 (((-112) $ $) 15)) (-3933 (((-112) $ $) 13)) (-3945 (((-112) $ $) 16)))
-(((-855 |#1|) (-10 -8 (-15 -1908 (|#1| |#1| |#1|)) (-15 -1764 (|#1| |#1| |#1|)) (-15 -3945 ((-112) |#1| |#1|)) (-15 -3959 ((-112) |#1| |#1|)) (-15 -3933 ((-112) |#1| |#1|)) (-15 -1344 ((-112) |#1| |#1|))) (-856)) (T -855))
-NIL
-(-10 -8 (-15 -1908 (|#1| |#1| |#1|)) (-15 -1764 (|#1| |#1| |#1|)) (-15 -3945 ((-112) |#1| |#1|)) (-15 -3959 ((-112) |#1| |#1|)) (-15 -3933 ((-112) |#1| |#1|)) (-15 -1344 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)))
+(-10 -8 (-15 -2775 (|#1| |#1|)) (-15 -4304 ((-572) |#1|)) (-15 -4354 ((-112) |#1|)) (-15 -3778 ((-112) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 25)) (-2092 (((-3 $ "failed") $ $) 27)) (-4304 (((-572) $) 37)) (-1586 (($) 24 T CONST)) (-2982 (((-3 $ "failed") $) 42)) (-3778 (((-112) $) 39)) (-4422 (((-112) $) 44)) (-4354 (((-112) $) 38)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 46)) (-2455 (((-779)) 47 T CONST)) (-3424 (((-112) $ $) 9)) (-2775 (($ $) 36)) (-2602 (($) 23 T CONST)) (-2619 (($) 45 T CONST)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (-4018 (($ $ $) 31) (($ $) 30)) (-4005 (($ $ $) 21)) (** (($ $ (-779)) 43) (($ $ (-930)) 40)) (* (($ (-930) $) 22) (($ (-779) $) 26) (($ (-572) $) 29) (($ $ $) 41)))
(((-856) (-141)) (T -856))
-((-3918 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-3933 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-3959 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-3945 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-1764 (*1 *1 *1 *1) (-4 *1 (-856))) (-1908 (*1 *1 *1 *1) (-4 *1 (-856))))
-(-13 (-1109) (-10 -8 (-15 -3918 ((-112) $ $)) (-15 -3933 ((-112) $ $)) (-15 -3959 ((-112) $ $)) (-15 -3945 ((-112) $ $)) (-15 -1764 ($ $ $)) (-15 -1908 ($ $ $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2960 (($ $ $) 49)) (-2587 (($ $ $) 48)) (-2264 (($ $ $) 46)) (-3620 (($ $ $) 55)) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 50)) (-2760 (((-3 $ "failed") $ $) 53)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2211 (($ $) 39)) (-1862 (($ $ $) 43)) (-2635 (($ $ $) 42)) (-1730 (($ $ $) 51)) (-1512 (($ $ $) 57)) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 45)) (-2890 (((-3 $ "failed") $ $) 52)) (-2837 (((-3 $ "failed") $ |#2|) 32)) (-2128 ((|#2| $) 36)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ |#2|) 13)) (-3125 (((-650 |#2|) $) 21)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-857 |#1| |#2|) (-10 -8 (-15 -1730 (|#1| |#1| |#1|)) (-15 -1451 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3643 |#1|)) |#1| |#1|)) (-15 -3620 (|#1| |#1| |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2264 (|#1| |#1| |#1|)) (-15 -2710 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3643 |#1|)) |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|)) (-15 -2890 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1862 (|#1| |#1| |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3125 ((-650 |#2|) |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -2869 ((-868) |#1|))) (-858 |#2|) (-1058)) (T -857))
-NIL
-(-10 -8 (-15 -1730 (|#1| |#1| |#1|)) (-15 -1451 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3643 |#1|)) |#1| |#1|)) (-15 -3620 (|#1| |#1| |#1|)) (-15 -2760 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2960 (|#1| |#1| |#1|)) (-15 -2587 (|#1| |#1| |#1|)) (-15 -2264 (|#1| |#1| |#1|)) (-15 -2710 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3643 |#1|)) |#1| |#1|)) (-15 -1512 (|#1| |#1| |#1|)) (-15 -2890 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1862 (|#1| |#1| |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2837 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3125 ((-650 |#2|) |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2960 (($ $ $) 50 (|has| |#1| (-368)))) (-2587 (($ $ $) 51 (|has| |#1| (-368)))) (-2264 (($ $ $) 53 (|has| |#1| (-368)))) (-3620 (($ $ $) 48 (|has| |#1| (-368)))) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 47 (|has| |#1| (-368)))) (-2760 (((-3 $ "failed") $ $) 49 (|has| |#1| (-368)))) (-2698 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 52 (|has| |#1| (-368)))) (-2435 (((-3 (-570) "failed") $) 80 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 77 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 74)) (-4387 (((-570) $) 79 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 76 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 75)) (-4394 (($ $) 69)) (-3957 (((-3 $ "failed") $) 37)) (-2211 (($ $) 60 (|has| |#1| (-458)))) (-2005 (((-112) $) 35)) (-2402 (($ |#1| (-777)) 67)) (-3980 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 62 (|has| |#1| (-562)))) (-1880 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63 (|has| |#1| (-562)))) (-2689 (((-777) $) 71)) (-1862 (($ $ $) 57 (|has| |#1| (-368)))) (-2635 (($ $ $) 58 (|has| |#1| (-368)))) (-1730 (($ $ $) 46 (|has| |#1| (-368)))) (-1512 (($ $ $) 55 (|has| |#1| (-368)))) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 54 (|has| |#1| (-368)))) (-2890 (((-3 $ "failed") $ $) 56 (|has| |#1| (-368)))) (-2510 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 59 (|has| |#1| (-368)))) (-4369 ((|#1| $) 70)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-562)))) (-2650 (((-777) $) 72)) (-2128 ((|#1| $) 61 (|has| |#1| (-458)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 78 (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 73)) (-3125 (((-650 |#1|) $) 66)) (-3481 ((|#1| $ (-777)) 68)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1936 ((|#1| $ |#1| |#1|) 65)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-858 |#1|) (-141) (-1058)) (T -858))
-((-2650 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-4394 (*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-3481 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-650 *3)))) (-1936 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-1880 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3)))) (-3980 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3)))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458)))) (-2211 (*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458)))) (-2510 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3)))) (-2635 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1862 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2890 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1512 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2710 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3643 *1))) (-4 *1 (-858 *3)))) (-2264 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2698 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3)))) (-2587 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2960 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2760 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-3620 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1451 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3643 *1))) (-4 *1 (-858 *3)))) (-1730 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(-13 (-1058) (-111 |t#1| |t#1|) (-417 |t#1|) (-10 -8 (-15 -2650 ((-777) $)) (-15 -2689 ((-777) $)) (-15 -4369 (|t#1| $)) (-15 -4394 ($ $)) (-15 -3481 (|t#1| $ (-777))) (-15 -2402 ($ |t#1| (-777))) (-15 -3125 ((-650 |t#1|) $)) (-15 -1936 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -2837 ((-3 $ "failed") $ |t#1|)) (-15 -1880 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -3980 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-15 -2128 (|t#1| $)) (-15 -2211 ($ $))) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-15 -2510 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -2635 ($ $ $)) (-15 -1862 ($ $ $)) (-15 -2890 ((-3 $ "failed") $ $)) (-15 -1512 ($ $ $)) (-15 -2710 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $)) (-15 -2264 ($ $ $)) (-15 -2698 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -2587 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -2760 ((-3 $ "failed") $ $)) (-15 -3620 ($ $ $)) (-15 -1451 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $)) (-15 -1730 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-417 |#1|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-3632 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2698 (((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-368)))) (-3980 (((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-562)))) (-1880 (((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-562)))) (-2510 (((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-368)))) (-1936 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
-(((-859 |#1| |#2|) (-10 -7 (-15 -3632 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1936 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-562)) (PROGN (-15 -1880 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3980 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -2510 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2698 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1058) (-858 |#1|)) (T -859))
-((-2698 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-2510 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-3980 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-1880 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-1936 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1058)) (-5 *1 (-859 *2 *3)) (-4 *3 (-858 *2)))) (-3632 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1058)) (-5 *1 (-859 *5 *2)) (-4 *2 (-858 *5)))))
-(-10 -7 (-15 -3632 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1936 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-562)) (PROGN (-15 -1880 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3980 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -2510 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2698 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2960 (($ $ $) NIL (|has| |#1| (-368)))) (-2587 (($ $ $) NIL (|has| |#1| (-368)))) (-2264 (($ $ $) NIL (|has| |#1| (-368)))) (-3620 (($ $ $) NIL (|has| |#1| (-368)))) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2698 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 34 (|has| |#1| (-368)))) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458)))) (-4012 (((-868) $ (-868)) NIL)) (-2005 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) NIL)) (-3980 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 30 (|has| |#1| (-562)))) (-1880 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 28 (|has| |#1| (-562)))) (-2689 (((-777) $) NIL)) (-1862 (($ $ $) NIL (|has| |#1| (-368)))) (-2635 (($ $ $) NIL (|has| |#1| (-368)))) (-1730 (($ $ $) NIL (|has| |#1| (-368)))) (-1512 (($ $ $) NIL (|has| |#1| (-368)))) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2890 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-2510 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 32 (|has| |#1| (-368)))) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2650 (((-777) $) NIL)) (-2128 ((|#1| $) NIL (|has| |#1| (-458)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1936 ((|#1| $ |#1| |#1|) 15)) (-1981 (($) NIL T CONST)) (-1998 (($) 23 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) 19) (($ $ (-777)) 24)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-860 |#1| |#2| |#3|) (-13 (-858 |#1|) (-10 -8 (-15 -4012 ((-868) $ (-868))))) (-1058) (-99 |#1|) (-1 |#1| |#1|)) (T -860))
-((-4012 (*1 *2 *1 *2) (-12 (-5 *2 (-868)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-858 |#1|) (-10 -8 (-15 -4012 ((-868) $ (-868)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2960 (($ $ $) NIL (|has| |#2| (-368)))) (-2587 (($ $ $) NIL (|has| |#2| (-368)))) (-2264 (($ $ $) NIL (|has| |#2| (-368)))) (-3620 (($ $ $) NIL (|has| |#2| (-368)))) (-1451 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#2| (-368)))) (-2760 (((-3 $ "failed") $ $) NIL (|has| |#2| (-368)))) (-2698 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#2| (-368)))) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) NIL)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#2| (-458)))) (-2005 (((-112) $) NIL)) (-2402 (($ |#2| (-777)) 17)) (-3980 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#2| (-562)))) (-1880 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#2| (-562)))) (-2689 (((-777) $) NIL)) (-1862 (($ $ $) NIL (|has| |#2| (-368)))) (-2635 (($ $ $) NIL (|has| |#2| (-368)))) (-1730 (($ $ $) NIL (|has| |#2| (-368)))) (-1512 (($ $ $) NIL (|has| |#2| (-368)))) (-2710 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#2| (-368)))) (-2890 (((-3 $ "failed") $ $) NIL (|has| |#2| (-368)))) (-2510 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#2| (-368)))) (-4369 ((|#2| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-2650 (((-777) $) NIL)) (-2128 ((|#2| $) NIL (|has| |#2| (-458)))) (-2869 (((-868) $) 24) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) NIL) (($ (-1273 |#1|)) 19)) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-777)) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1936 ((|#2| $ |#2| |#2|) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) 13 T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-861 |#1| |#2| |#3| |#4|) (-13 (-858 |#2|) (-622 (-1273 |#1|))) (-1186) (-1058) (-99 |#2|) (-1 |#2| |#2|)) (T -861))
-NIL
-(-13 (-858 |#2|) (-622 (-1273 |#1|)))
-((-2122 ((|#1| (-777) |#1|) 45 (|has| |#1| (-38 (-413 (-570)))))) (-2962 ((|#1| (-777) (-777) |#1|) 36) ((|#1| (-777) |#1|) 24)) (-3203 ((|#1| (-777) |#1|) 40)) (-3279 ((|#1| (-777) |#1|) 38)) (-4200 ((|#1| (-777) |#1|) 37)))
-(((-862 |#1|) (-10 -7 (-15 -4200 (|#1| (-777) |#1|)) (-15 -3279 (|#1| (-777) |#1|)) (-15 -3203 (|#1| (-777) |#1|)) (-15 -2962 (|#1| (-777) |#1|)) (-15 -2962 (|#1| (-777) (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -2122 (|#1| (-777) |#1|)) |%noBranch|)) (-174)) (T -862))
-((-2122 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-174)))) (-2962 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-2962 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-3203 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-3279 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -4200 (|#1| (-777) |#1|)) (-15 -3279 (|#1| (-777) |#1|)) (-15 -3203 (|#1| (-777) |#1|)) (-15 -2962 (|#1| (-777) |#1|)) (-15 -2962 (|#1| (-777) (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -2122 (|#1| (-777) |#1|)) |%noBranch|))
-((-2847 (((-112) $ $) 7)) (-1908 (($ $ $) 14)) (-1764 (($ $ $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3959 (((-112) $ $) 17)) (-3933 (((-112) $ $) 18)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 16)) (-3918 (((-112) $ $) 19)) (** (($ $ (-928)) 22)) (* (($ $ $) 21)))
-(((-863) (-141)) (T -863))
-NIL
-(-13 (-856) (-1121))
-(((-102) . T) ((-619 (-868)) . T) ((-856) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-4156 (((-570) $) 14)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 20) (($ (-570)) 13)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 9)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 11)))
-(((-864) (-13 (-856) (-10 -8 (-15 -2869 ($ (-570))) (-15 -4156 ((-570) $))))) (T -864))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-864)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-864)))))
-(-13 (-856) (-10 -8 (-15 -2869 ($ (-570))) (-15 -4156 ((-570) $))))
-((-2540 (((-697 (-1235)) $ (-1235)) 15)) (-3155 (((-697 (-555)) $ (-555)) 12)) (-3166 (((-777) $ (-129)) 30)))
-(((-865 |#1|) (-10 -8 (-15 -3166 ((-777) |#1| (-129))) (-15 -2540 ((-697 (-1235)) |#1| (-1235))) (-15 -3155 ((-697 (-555)) |#1| (-555)))) (-866)) (T -865))
-NIL
-(-10 -8 (-15 -3166 ((-777) |#1| (-129))) (-15 -2540 ((-697 (-1235)) |#1| (-1235))) (-15 -3155 ((-697 (-555)) |#1| (-555))))
-((-2540 (((-697 (-1235)) $ (-1235)) 8)) (-3155 (((-697 (-555)) $ (-555)) 9)) (-3166 (((-777) $ (-129)) 7)) (-2085 (((-697 (-130)) $ (-130)) 10)) (-1740 (($ $) 6)))
-(((-866) (-141)) (T -866))
-((-2085 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-697 (-130))) (-5 *3 (-130)))) (-3155 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-697 (-555))) (-5 *3 (-555)))) (-2540 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-697 (-1235))) (-5 *3 (-1235)))) (-3166 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *3 (-129)) (-5 *2 (-777)))))
-(-13 (-175) (-10 -8 (-15 -2085 ((-697 (-130)) $ (-130))) (-15 -3155 ((-697 (-555)) $ (-555))) (-15 -2540 ((-697 (-1235)) $ (-1235))) (-15 -3166 ((-777) $ (-129)))))
+((-3778 (*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-572)))) (-2775 (*1 *1 *1) (-4 *1 (-856))))
+(-13 (-799) (-1060) (-734) (-10 -8 (-15 -3778 ((-112) $)) (-15 -4354 ((-112) $)) (-15 -4304 ((-572) $)) (-15 -2775 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-858) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-2536 (($ $ $) 12)) (-3928 (($ $ $) 11)) (-3424 (((-112) $ $) 9)) (-3976 (((-112) $ $) 15)) (-3954 (((-112) $ $) 13)) (-3965 (((-112) $ $) 16)))
+(((-857 |#1|) (-10 -8 (-15 -2536 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -3965 ((-112) |#1| |#1|)) (-15 -3976 ((-112) |#1| |#1|)) (-15 -3954 ((-112) |#1| |#1|)) (-15 -3424 ((-112) |#1| |#1|))) (-858)) (T -857))
+NIL
+(-10 -8 (-15 -2536 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -3965 ((-112) |#1| |#1|)) (-15 -3976 ((-112) |#1| |#1|)) (-15 -3954 ((-112) |#1| |#1|)) (-15 -3424 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)))
+(((-858) (-141)) (T -858))
+((-3943 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3954 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3976 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3965 (*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112)))) (-3928 (*1 *1 *1 *1) (-4 *1 (-858))) (-2536 (*1 *1 *1 *1) (-4 *1 (-858))))
+(-13 (-1111) (-10 -8 (-15 -3943 ((-112) $ $)) (-15 -3954 ((-112) $ $)) (-15 -3976 ((-112) $ $)) (-15 -3965 ((-112) $ $)) (-15 -3928 ($ $ $)) (-15 -2536 ($ $ $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-2588 (($ $ $) 49)) (-2086 (($ $ $) 48)) (-2134 (($ $ $) 46)) (-3095 (($ $ $) 55)) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 50)) (-3329 (((-3 $ "failed") $ $) 53)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2889 (($ $) 39)) (-3680 (($ $ $) 43)) (-1329 (($ $ $) 42)) (-1671 (($ $ $) 51)) (-3448 (($ $ $) 57)) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 45)) (-1964 (((-3 $ "failed") $ $) 52)) (-3453 (((-3 $ "failed") $ |#2|) 32)) (-3262 ((|#2| $) 36)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ |#2|) 13)) (-1708 (((-652 |#2|) $) 21)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-859 |#1| |#2|) (-10 -8 (-15 -1671 (|#1| |#1| |#1|)) (-15 -1397 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4267 |#1|)) |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3329 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2588 (|#1| |#1| |#1|)) (-15 -2086 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1| |#1|)) (-15 -4010 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4267 |#1|)) |#1| |#1|)) (-15 -3448 (|#1| |#1| |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -1329 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1708 ((-652 |#2|) |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3491 ((-870) |#1|))) (-860 |#2|) (-1060)) (T -859))
+NIL
+(-10 -8 (-15 -1671 (|#1| |#1| |#1|)) (-15 -1397 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4267 |#1|)) |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3329 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2588 (|#1| |#1| |#1|)) (-15 -2086 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1| |#1|)) (-15 -4010 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4267 |#1|)) |#1| |#1|)) (-15 -3448 (|#1| |#1| |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -1329 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -3453 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1708 ((-652 |#2|) |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2588 (($ $ $) 50 (|has| |#1| (-370)))) (-2086 (($ $ $) 51 (|has| |#1| (-370)))) (-2134 (($ $ $) 53 (|has| |#1| (-370)))) (-3095 (($ $ $) 48 (|has| |#1| (-370)))) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 47 (|has| |#1| (-370)))) (-3329 (((-3 $ "failed") $ $) 49 (|has| |#1| (-370)))) (-3890 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 52 (|has| |#1| (-370)))) (-3072 (((-3 (-572) "failed") $) 80 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 77 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 74)) (-1869 (((-572) $) 79 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 76 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 75)) (-1874 (($ $) 69)) (-2982 (((-3 $ "failed") $) 37)) (-2889 (($ $) 60 (|has| |#1| (-460)))) (-4422 (((-112) $) 35)) (-3042 (($ |#1| (-779)) 67)) (-1914 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 62 (|has| |#1| (-564)))) (-2598 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63 (|has| |#1| (-564)))) (-3808 (((-779) $) 71)) (-3680 (($ $ $) 57 (|has| |#1| (-370)))) (-1329 (($ $ $) 58 (|has| |#1| (-370)))) (-1671 (($ $ $) 46 (|has| |#1| (-370)))) (-3448 (($ $ $) 55 (|has| |#1| (-370)))) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 54 (|has| |#1| (-370)))) (-1964 (((-3 $ "failed") $ $) 56 (|has| |#1| (-370)))) (-2676 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 59 (|has| |#1| (-370)))) (-1853 ((|#1| $) 70)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-564)))) (-1497 (((-779) $) 72)) (-3262 ((|#1| $) 61 (|has| |#1| (-460)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 78 (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) 73)) (-1708 (((-652 |#1|) $) 66)) (-4206 ((|#1| $ (-779)) 68)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2558 ((|#1| $ |#1| |#1|) 65)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-860 |#1|) (-141) (-1060)) (T -860))
+((-1497 (*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-3042 (*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-652 *3)))) (-2558 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)))) (-3453 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-2598 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3)))) (-1914 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460)))) (-2676 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3)))) (-1329 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3680 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-1964 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3448 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-4010 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4267 *1))) (-4 *1 (-860 *3)))) (-2134 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3890 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3)))) (-2086 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-2588 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3329 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-3095 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-1397 (*1 *2 *1 *1) (-12 (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4267 *1))) (-4 *1 (-860 *3)))) (-1671 (*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(-13 (-1060) (-111 |t#1| |t#1|) (-419 |t#1|) (-10 -8 (-15 -1497 ((-779) $)) (-15 -3808 ((-779) $)) (-15 -1853 (|t#1| $)) (-15 -1874 ($ $)) (-15 -4206 (|t#1| $ (-779))) (-15 -3042 ($ |t#1| (-779))) (-15 -1708 ((-652 |t#1|) $)) (-15 -2558 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-15 -3453 ((-3 $ "failed") $ |t#1|)) (-15 -2598 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -1914 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-15 -3262 (|t#1| $)) (-15 -2889 ($ $))) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-15 -2676 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -1329 ($ $ $)) (-15 -3680 ($ $ $)) (-15 -1964 ((-3 $ "failed") $ $)) (-15 -3448 ($ $ $)) (-15 -4010 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $)) (-15 -2134 ($ $ $)) (-15 -3890 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -2086 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -3329 ((-3 $ "failed") $ $)) (-15 -3095 ($ $ $)) (-15 -1397 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $)) (-15 -1671 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 #0=(-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-419 |#1|) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1049 #0#) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-4256 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3890 (((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-370)))) (-1914 (((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-564)))) (-2598 (((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-564)))) (-2676 (((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-370)))) (-2558 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
+(((-861 |#1| |#2|) (-10 -7 (-15 -4256 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2558 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-564)) (PROGN (-15 -2598 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1914 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -2676 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3890 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1060) (-860 |#1|)) (T -861))
+((-3890 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-2676 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-1914 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-2598 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3)) (-4 *3 (-860 *5)))) (-2558 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1060)) (-5 *1 (-861 *2 *3)) (-4 *3 (-860 *2)))) (-4256 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1060)) (-5 *1 (-861 *5 *2)) (-4 *2 (-860 *5)))))
+(-10 -7 (-15 -4256 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2558 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-564)) (PROGN (-15 -2598 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1914 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -2676 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3890 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2588 (($ $ $) NIL (|has| |#1| (-370)))) (-2086 (($ $ $) NIL (|has| |#1| (-370)))) (-2134 (($ $ $) NIL (|has| |#1| (-370)))) (-3095 (($ $ $) NIL (|has| |#1| (-370)))) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3329 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-3890 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 34 (|has| |#1| (-370)))) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460)))) (-2255 (((-870) $ (-870)) NIL)) (-4422 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) NIL)) (-1914 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 30 (|has| |#1| (-564)))) (-2598 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 28 (|has| |#1| (-564)))) (-3808 (((-779) $) NIL)) (-3680 (($ $ $) NIL (|has| |#1| (-370)))) (-1329 (($ $ $) NIL (|has| |#1| (-370)))) (-1671 (($ $ $) NIL (|has| |#1| (-370)))) (-3448 (($ $ $) NIL (|has| |#1| (-370)))) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-1964 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-2676 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 32 (|has| |#1| (-370)))) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-1497 (((-779) $) NIL)) (-3262 ((|#1| $) NIL (|has| |#1| (-460)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-1049 (-415 (-572))))) (($ |#1|) NIL)) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2558 ((|#1| $ |#1| |#1|) 15)) (-2602 (($) NIL T CONST)) (-2619 (($) 23 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) 19) (($ $ (-779)) 24)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-862 |#1| |#2| |#3|) (-13 (-860 |#1|) (-10 -8 (-15 -2255 ((-870) $ (-870))))) (-1060) (-99 |#1|) (-1 |#1| |#1|)) (T -862))
+((-2255 (*1 *2 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-862 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-860 |#1|) (-10 -8 (-15 -2255 ((-870) $ (-870)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2588 (($ $ $) NIL (|has| |#2| (-370)))) (-2086 (($ $ $) NIL (|has| |#2| (-370)))) (-2134 (($ $ $) NIL (|has| |#2| (-370)))) (-3095 (($ $ $) NIL (|has| |#2| (-370)))) (-1397 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#2| (-370)))) (-3329 (((-3 $ "failed") $ $) NIL (|has| |#2| (-370)))) (-3890 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#2| (-370)))) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) NIL)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#2| (-460)))) (-4422 (((-112) $) NIL)) (-3042 (($ |#2| (-779)) 17)) (-1914 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#2| (-564)))) (-2598 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#2| (-564)))) (-3808 (((-779) $) NIL)) (-3680 (($ $ $) NIL (|has| |#2| (-370)))) (-1329 (($ $ $) NIL (|has| |#2| (-370)))) (-1671 (($ $ $) NIL (|has| |#2| (-370)))) (-3448 (($ $ $) NIL (|has| |#2| (-370)))) (-4010 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#2| (-370)))) (-1964 (((-3 $ "failed") $ $) NIL (|has| |#2| (-370)))) (-2676 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#2| (-370)))) (-1853 ((|#2| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564)))) (-1497 (((-779) $) NIL)) (-3262 ((|#2| $) NIL (|has| |#2| (-460)))) (-3491 (((-870) $) 24) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) NIL) (($ (-1275 |#1|)) 19)) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-779)) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2558 ((|#2| $ |#2| |#2|) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) 13 T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-863 |#1| |#2| |#3| |#4|) (-13 (-860 |#2|) (-624 (-1275 |#1|))) (-1188) (-1060) (-99 |#2|) (-1 |#2| |#2|)) (T -863))
+NIL
+(-13 (-860 |#2|) (-624 (-1275 |#1|)))
+((-3198 ((|#1| (-779) |#1|) 45 (|has| |#1| (-38 (-415 (-572)))))) (-2615 ((|#1| (-779) (-779) |#1|) 36) ((|#1| (-779) |#1|) 24)) (-3261 ((|#1| (-779) |#1|) 40)) (-2779 ((|#1| (-779) |#1|) 38)) (-3607 ((|#1| (-779) |#1|) 37)))
+(((-864 |#1|) (-10 -7 (-15 -3607 (|#1| (-779) |#1|)) (-15 -2779 (|#1| (-779) |#1|)) (-15 -3261 (|#1| (-779) |#1|)) (-15 -2615 (|#1| (-779) |#1|)) (-15 -2615 (|#1| (-779) (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3198 (|#1| (-779) |#1|)) |%noBranch|)) (-174)) (T -864))
+((-3198 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-174)))) (-2615 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-2615 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-3261 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-2779 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))) (-3607 (*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -3607 (|#1| (-779) |#1|)) (-15 -2779 (|#1| (-779) |#1|)) (-15 -3261 (|#1| (-779) |#1|)) (-15 -2615 (|#1| (-779) |#1|)) (-15 -2615 (|#1| (-779) (-779) |#1|)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -3198 (|#1| (-779) |#1|)) |%noBranch|))
+((-3464 (((-112) $ $) 7)) (-2536 (($ $ $) 14)) (-3928 (($ $ $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3976 (((-112) $ $) 17)) (-3954 (((-112) $ $) 18)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 16)) (-3943 (((-112) $ $) 19)) (** (($ $ (-930)) 22)) (* (($ $ $) 21)))
+(((-865) (-141)) (T -865))
+NIL
+(-13 (-858) (-1123))
+(((-102) . T) ((-621 (-870)) . T) ((-858) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-1653 (((-572) $) 14)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 20) (($ (-572)) 13)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 9)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 11)))
+(((-866) (-13 (-858) (-10 -8 (-15 -3491 ($ (-572))) (-15 -1653 ((-572) $))))) (T -866))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-866)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-866)))))
+(-13 (-858) (-10 -8 (-15 -3491 ($ (-572))) (-15 -1653 ((-572) $))))
+((-2965 (((-699 (-1237)) $ (-1237)) 15)) (-3979 (((-699 (-557)) $ (-557)) 12)) (-4087 (((-779) $ (-129)) 30)))
+(((-867 |#1|) (-10 -8 (-15 -4087 ((-779) |#1| (-129))) (-15 -2965 ((-699 (-1237)) |#1| (-1237))) (-15 -3979 ((-699 (-557)) |#1| (-557)))) (-868)) (T -867))
+NIL
+(-10 -8 (-15 -4087 ((-779) |#1| (-129))) (-15 -2965 ((-699 (-1237)) |#1| (-1237))) (-15 -3979 ((-699 (-557)) |#1| (-557))))
+((-2965 (((-699 (-1237)) $ (-1237)) 8)) (-3979 (((-699 (-557)) $ (-557)) 9)) (-4087 (((-779) $ (-129)) 7)) (-4007 (((-699 (-130)) $ (-130)) 10)) (-3725 (($ $) 6)))
+(((-868) (-141)) (T -868))
+((-4007 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *2 (-699 (-130))) (-5 *3 (-130)))) (-3979 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *2 (-699 (-557))) (-5 *3 (-557)))) (-2965 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *2 (-699 (-1237))) (-5 *3 (-1237)))) (-4087 (*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *3 (-129)) (-5 *2 (-779)))))
+(-13 (-175) (-10 -8 (-15 -4007 ((-699 (-130)) $ (-130))) (-15 -3979 ((-699 (-557)) $ (-557))) (-15 -2965 ((-699 (-1237)) $ (-1237))) (-15 -4087 ((-779) $ (-129)))))
(((-175) . T))
-((-2540 (((-697 (-1235)) $ (-1235)) NIL)) (-3155 (((-697 (-555)) $ (-555)) NIL)) (-3166 (((-777) $ (-129)) NIL)) (-2085 (((-697 (-130)) $ (-130)) 22)) (-1727 (($ (-394)) 12) (($ (-1168)) 14)) (-1519 (((-112) $) 19)) (-2869 (((-868) $) 26)) (-1740 (($ $) 23)))
-(((-867) (-13 (-866) (-619 (-868)) (-10 -8 (-15 -1727 ($ (-394))) (-15 -1727 ($ (-1168))) (-15 -1519 ((-112) $))))) (T -867))
-((-1727 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-867)))) (-1727 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-867)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))))
-(-13 (-866) (-619 (-868)) (-10 -8 (-15 -1727 ($ (-394))) (-15 -1727 ($ (-1168))) (-15 -1519 ((-112) $))))
-((-2847 (((-112) $ $) NIL) (($ $ $) 85)) (-1618 (($ $ $) 125)) (-2228 (((-570) $) 31) (((-570)) 36)) (-4190 (($ (-570)) 53)) (-3464 (($ $ $) 54) (($ (-650 $)) 84)) (-2926 (($ $ (-650 $)) 82)) (-3228 (((-570) $) 34)) (-2233 (($ $ $) 73)) (-4362 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3111 (((-570) $) 33)) (-3077 (($ $ $) 72)) (-1643 (($ $) 114)) (-2995 (($ $ $) 129)) (-3924 (($ (-650 $)) 61)) (-1844 (($ $ (-650 $)) 79)) (-2724 (($ (-570) (-570)) 55)) (-1695 (($ $) 126) (($ $ $) 127)) (-2420 (($ $ (-570)) 43) (($ $) 46)) (-2788 (($ $ $) 97)) (-1508 (($ $ $) 132)) (-3843 (($ $) 115)) (-2799 (($ $ $) 98)) (-2532 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3504 (((-1282) $) 10)) (-1869 (($ $) 118) (($ $ (-777)) 122)) (-3784 (($ $ $) 75)) (-3684 (($ $ $) 74)) (-2485 (($ $ (-650 $)) 110)) (-3215 (($ $ $) 113)) (-2739 (($ (-650 $)) 59)) (-3244 (($ $) 70) (($ (-650 $)) 71)) (-4203 (($ $ $) 123)) (-2443 (($ $) 116)) (-3639 (($ $ $) 128)) (-4012 (($ (-570)) 21) (($ (-1186)) 23) (($ (-1168)) 30) (($ (-227)) 25)) (-3224 (($ $ $) 101)) (-3201 (($ $) 102)) (-4410 (((-1282) (-1168)) 15)) (-3952 (($ (-1168)) 14)) (-4297 (($ (-650 (-650 $))) 58)) (-2403 (($ $ (-570)) 42) (($ $) 45)) (-3240 (((-1168) $) NIL)) (-1759 (($ $ $) 131)) (-2508 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3513 (((-112) $) 108)) (-3028 (($ $ (-650 $)) 111) (($ $ $ $) 112)) (-2494 (($ (-570)) 39)) (-3326 (((-570) $) 32) (((-570)) 35)) (-1469 (($ $ $) 40) (($ (-650 $)) 83)) (-3891 (((-1129) $) NIL)) (-2837 (($ $ $) 99)) (-1698 (($) 13)) (-2057 (($ $ (-650 $)) 109)) (-4035 (((-1168) (-1168)) 8)) (-3407 (($ $) 117) (($ $ (-777)) 121)) (-2824 (($ $ $) 96)) (-2375 (($ $ (-777)) 139)) (-3638 (($ (-650 $)) 60)) (-2869 (((-868) $) 19)) (-1744 (($ $ (-570)) 41) (($ $) 44)) (-3576 (($ $) 68) (($ (-650 $)) 69)) (-2542 (($ $) 66) (($ (-650 $)) 67)) (-1613 (($ $) 124)) (-2612 (($ (-650 $)) 65)) (-1500 (($ $ $) 105)) (-1344 (((-112) $ $) NIL)) (-2414 (($ $ $) 130)) (-3212 (($ $ $) 100)) (-1852 (($ $ $) 103) (($ $) 104)) (-3959 (($ $ $) 89)) (-3933 (($ $ $) 87)) (-3892 (((-112) $ $) 16) (($ $ $) 17)) (-3945 (($ $ $) 88)) (-3918 (($ $ $) 86)) (-4013 (($ $ $) 94)) (-4003 (($ $ $) 91) (($ $) 92)) (-3992 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-868) (-13 (-1109) (-10 -8 (-15 -3504 ((-1282) $)) (-15 -3952 ($ (-1168))) (-15 -4410 ((-1282) (-1168))) (-15 -4012 ($ (-570))) (-15 -4012 ($ (-1186))) (-15 -4012 ($ (-1168))) (-15 -4012 ($ (-227))) (-15 -1698 ($)) (-15 -4035 ((-1168) (-1168))) (-15 -2228 ((-570) $)) (-15 -3326 ((-570) $)) (-15 -2228 ((-570))) (-15 -3326 ((-570))) (-15 -3111 ((-570) $)) (-15 -3228 ((-570) $)) (-15 -2494 ($ (-570))) (-15 -4190 ($ (-570))) (-15 -2724 ($ (-570) (-570))) (-15 -2403 ($ $ (-570))) (-15 -2420 ($ $ (-570))) (-15 -1744 ($ $ (-570))) (-15 -2403 ($ $)) (-15 -2420 ($ $)) (-15 -1744 ($ $)) (-15 -1469 ($ $ $)) (-15 -3464 ($ $ $)) (-15 -1469 ($ (-650 $))) (-15 -3464 ($ (-650 $))) (-15 -2485 ($ $ (-650 $))) (-15 -3028 ($ $ (-650 $))) (-15 -3028 ($ $ $ $)) (-15 -3215 ($ $ $)) (-15 -3513 ((-112) $)) (-15 -2057 ($ $ (-650 $))) (-15 -1643 ($ $)) (-15 -1759 ($ $ $)) (-15 -1613 ($ $)) (-15 -4297 ($ (-650 (-650 $)))) (-15 -1618 ($ $ $)) (-15 -1695 ($ $)) (-15 -1695 ($ $ $)) (-15 -3639 ($ $ $)) (-15 -2995 ($ $ $)) (-15 -2414 ($ $ $)) (-15 -1508 ($ $ $)) (-15 -2375 ($ $ (-777))) (-15 -1500 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -2233 ($ $ $)) (-15 -3684 ($ $ $)) (-15 -3784 ($ $ $)) (-15 -1844 ($ $ (-650 $))) (-15 -2926 ($ $ (-650 $))) (-15 -3843 ($ $)) (-15 -3407 ($ $)) (-15 -3407 ($ $ (-777))) (-15 -1869 ($ $)) (-15 -1869 ($ $ (-777))) (-15 -2443 ($ $)) (-15 -4203 ($ $ $)) (-15 -4362 ($ $)) (-15 -4362 ($ $ $)) (-15 -4362 ($ $ $ $)) (-15 -2532 ($ $)) (-15 -2532 ($ $ $)) (-15 -2532 ($ $ $ $)) (-15 -2508 ($ $)) (-15 -2508 ($ $ $)) (-15 -2508 ($ $ $ $)) (-15 -2542 ($ $)) (-15 -2542 ($ (-650 $))) (-15 -3576 ($ $)) (-15 -3576 ($ (-650 $))) (-15 -3244 ($ $)) (-15 -3244 ($ (-650 $))) (-15 -2739 ($ (-650 $))) (-15 -3638 ($ (-650 $))) (-15 -3924 ($ (-650 $))) (-15 -2612 ($ (-650 $))) (-15 -3892 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -3918 ($ $ $)) (-15 -3933 ($ $ $)) (-15 -3945 ($ $ $)) (-15 -3959 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -4003 ($ $ $)) (-15 -4003 ($ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ $)) (-15 -2824 ($ $ $)) (-15 -2788 ($ $ $)) (-15 -2799 ($ $ $)) (-15 -2837 ($ $ $)) (-15 -3212 ($ $ $)) (-15 -3224 ($ $ $)) (-15 -3201 ($ $)) (-15 -1852 ($ $ $)) (-15 -1852 ($ $))))) (T -868))
-((-3504 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-868)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))) (-4410 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-868)))) (-4012 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-4012 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-868)))) (-4012 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))) (-4012 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-868)))) (-1698 (*1 *1) (-5 *1 (-868))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-2228 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-3326 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-2724 (*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-2403 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-2420 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-2403 (*1 *1 *1) (-5 *1 (-868))) (-2420 (*1 *1 *1) (-5 *1 (-868))) (-1744 (*1 *1 *1) (-5 *1 (-868))) (-1469 (*1 *1 *1 *1) (-5 *1 (-868))) (-3464 (*1 *1 *1 *1) (-5 *1 (-868))) (-1469 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-2485 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3028 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-3215 (*1 *1 *1 *1) (-5 *1 (-868))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-1643 (*1 *1 *1) (-5 *1 (-868))) (-1759 (*1 *1 *1 *1) (-5 *1 (-868))) (-1613 (*1 *1 *1) (-5 *1 (-868))) (-4297 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-868)))) (-1618 (*1 *1 *1 *1) (-5 *1 (-868))) (-1695 (*1 *1 *1) (-5 *1 (-868))) (-1695 (*1 *1 *1 *1) (-5 *1 (-868))) (-3639 (*1 *1 *1 *1) (-5 *1 (-868))) (-2995 (*1 *1 *1 *1) (-5 *1 (-868))) (-2414 (*1 *1 *1 *1) (-5 *1 (-868))) (-1508 (*1 *1 *1 *1) (-5 *1 (-868))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) (-1500 (*1 *1 *1 *1) (-5 *1 (-868))) (-3077 (*1 *1 *1 *1) (-5 *1 (-868))) (-2233 (*1 *1 *1 *1) (-5 *1 (-868))) (-3684 (*1 *1 *1 *1) (-5 *1 (-868))) (-3784 (*1 *1 *1 *1) (-5 *1 (-868))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-2926 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3843 (*1 *1 *1) (-5 *1 (-868))) (-3407 (*1 *1 *1) (-5 *1 (-868))) (-3407 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) (-1869 (*1 *1 *1) (-5 *1 (-868))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) (-2443 (*1 *1 *1) (-5 *1 (-868))) (-4203 (*1 *1 *1 *1) (-5 *1 (-868))) (-4362 (*1 *1 *1) (-5 *1 (-868))) (-4362 (*1 *1 *1 *1) (-5 *1 (-868))) (-4362 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-2532 (*1 *1 *1) (-5 *1 (-868))) (-2532 (*1 *1 *1 *1) (-5 *1 (-868))) (-2532 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-2508 (*1 *1 *1) (-5 *1 (-868))) (-2508 (*1 *1 *1 *1) (-5 *1 (-868))) (-2508 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-2542 (*1 *1 *1) (-5 *1 (-868))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3576 (*1 *1 *1) (-5 *1 (-868))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3244 (*1 *1 *1) (-5 *1 (-868))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-2739 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3638 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3892 (*1 *1 *1 *1) (-5 *1 (-868))) (-2847 (*1 *1 *1 *1) (-5 *1 (-868))) (-3918 (*1 *1 *1 *1) (-5 *1 (-868))) (-3933 (*1 *1 *1 *1) (-5 *1 (-868))) (-3945 (*1 *1 *1 *1) (-5 *1 (-868))) (-3959 (*1 *1 *1 *1) (-5 *1 (-868))) (-3992 (*1 *1 *1 *1) (-5 *1 (-868))) (-4003 (*1 *1 *1 *1) (-5 *1 (-868))) (-4003 (*1 *1 *1) (-5 *1 (-868))) (* (*1 *1 *1 *1) (-5 *1 (-868))) (-4013 (*1 *1 *1 *1) (-5 *1 (-868))) (** (*1 *1 *1 *1) (-5 *1 (-868))) (-2824 (*1 *1 *1 *1) (-5 *1 (-868))) (-2788 (*1 *1 *1 *1) (-5 *1 (-868))) (-2799 (*1 *1 *1 *1) (-5 *1 (-868))) (-2837 (*1 *1 *1 *1) (-5 *1 (-868))) (-3212 (*1 *1 *1 *1) (-5 *1 (-868))) (-3224 (*1 *1 *1 *1) (-5 *1 (-868))) (-3201 (*1 *1 *1) (-5 *1 (-868))) (-1852 (*1 *1 *1 *1) (-5 *1 (-868))) (-1852 (*1 *1 *1) (-5 *1 (-868))))
-(-13 (-1109) (-10 -8 (-15 -3504 ((-1282) $)) (-15 -3952 ($ (-1168))) (-15 -4410 ((-1282) (-1168))) (-15 -4012 ($ (-570))) (-15 -4012 ($ (-1186))) (-15 -4012 ($ (-1168))) (-15 -4012 ($ (-227))) (-15 -1698 ($)) (-15 -4035 ((-1168) (-1168))) (-15 -2228 ((-570) $)) (-15 -3326 ((-570) $)) (-15 -2228 ((-570))) (-15 -3326 ((-570))) (-15 -3111 ((-570) $)) (-15 -3228 ((-570) $)) (-15 -2494 ($ (-570))) (-15 -4190 ($ (-570))) (-15 -2724 ($ (-570) (-570))) (-15 -2403 ($ $ (-570))) (-15 -2420 ($ $ (-570))) (-15 -1744 ($ $ (-570))) (-15 -2403 ($ $)) (-15 -2420 ($ $)) (-15 -1744 ($ $)) (-15 -1469 ($ $ $)) (-15 -3464 ($ $ $)) (-15 -1469 ($ (-650 $))) (-15 -3464 ($ (-650 $))) (-15 -2485 ($ $ (-650 $))) (-15 -3028 ($ $ (-650 $))) (-15 -3028 ($ $ $ $)) (-15 -3215 ($ $ $)) (-15 -3513 ((-112) $)) (-15 -2057 ($ $ (-650 $))) (-15 -1643 ($ $)) (-15 -1759 ($ $ $)) (-15 -1613 ($ $)) (-15 -4297 ($ (-650 (-650 $)))) (-15 -1618 ($ $ $)) (-15 -1695 ($ $)) (-15 -1695 ($ $ $)) (-15 -3639 ($ $ $)) (-15 -2995 ($ $ $)) (-15 -2414 ($ $ $)) (-15 -1508 ($ $ $)) (-15 -2375 ($ $ (-777))) (-15 -1500 ($ $ $)) (-15 -3077 ($ $ $)) (-15 -2233 ($ $ $)) (-15 -3684 ($ $ $)) (-15 -3784 ($ $ $)) (-15 -1844 ($ $ (-650 $))) (-15 -2926 ($ $ (-650 $))) (-15 -3843 ($ $)) (-15 -3407 ($ $)) (-15 -3407 ($ $ (-777))) (-15 -1869 ($ $)) (-15 -1869 ($ $ (-777))) (-15 -2443 ($ $)) (-15 -4203 ($ $ $)) (-15 -4362 ($ $)) (-15 -4362 ($ $ $)) (-15 -4362 ($ $ $ $)) (-15 -2532 ($ $)) (-15 -2532 ($ $ $)) (-15 -2532 ($ $ $ $)) (-15 -2508 ($ $)) (-15 -2508 ($ $ $)) (-15 -2508 ($ $ $ $)) (-15 -2542 ($ $)) (-15 -2542 ($ (-650 $))) (-15 -3576 ($ $)) (-15 -3576 ($ (-650 $))) (-15 -3244 ($ $)) (-15 -3244 ($ (-650 $))) (-15 -2739 ($ (-650 $))) (-15 -3638 ($ (-650 $))) (-15 -3924 ($ (-650 $))) (-15 -2612 ($ (-650 $))) (-15 -3892 ($ $ $)) (-15 -2847 ($ $ $)) (-15 -3918 ($ $ $)) (-15 -3933 ($ $ $)) (-15 -3945 ($ $ $)) (-15 -3959 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -4003 ($ $ $)) (-15 -4003 ($ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ $)) (-15 -2824 ($ $ $)) (-15 -2788 ($ $ $)) (-15 -2799 ($ $ $)) (-15 -2837 ($ $ $)) (-15 -3212 ($ $ $)) (-15 -3224 ($ $ $)) (-15 -3201 ($ $)) (-15 -1852 ($ $ $)) (-15 -1852 ($ $))))
-((-1408 (((-1282) (-650 (-52))) 23)) (-3706 (((-1282) (-1168) (-868)) 13) (((-1282) (-868)) 8) (((-1282) (-1168)) 10)))
-(((-869) (-10 -7 (-15 -3706 ((-1282) (-1168))) (-15 -3706 ((-1282) (-868))) (-15 -3706 ((-1282) (-1168) (-868))) (-15 -1408 ((-1282) (-650 (-52)))))) (T -869))
-((-1408 (*1 *2 *3) (-12 (-5 *3 (-650 (-52))) (-5 *2 (-1282)) (-5 *1 (-869)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1282)) (-5 *1 (-869)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-869)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-869)))))
-(-10 -7 (-15 -3706 ((-1282) (-1168))) (-15 -3706 ((-1282) (-868))) (-15 -3706 ((-1282) (-1168) (-868))) (-15 -1408 ((-1282) (-650 (-52)))))
-((-2847 (((-112) $ $) NIL)) (-1433 (((-3 $ "failed") (-1186)) 36)) (-2401 (((-777)) 32)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) 29)) (-3240 (((-1168) $) 43)) (-4298 (($ (-928)) 28)) (-3891 (((-1129) $) NIL)) (-2601 (((-1186) $) 13) (((-542) $) 19) (((-899 (-384)) $) 26) (((-899 (-570)) $) 22)) (-2869 (((-868) $) 16)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 40)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 38)))
-(((-870 |#1|) (-13 (-850) (-620 (-1186)) (-620 (-542)) (-620 (-899 (-384))) (-620 (-899 (-570))) (-10 -8 (-15 -1433 ((-3 $ "failed") (-1186))))) (-650 (-1186))) (T -870))
-((-1433 (*1 *1 *2) (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-870 *3)) (-14 *3 (-650 *2)))))
-(-13 (-850) (-620 (-1186)) (-620 (-542)) (-620 (-899 (-384))) (-620 (-899 (-570))) (-10 -8 (-15 -1433 ((-3 $ "failed") (-1186)))))
-((-2847 (((-112) $ $) NIL)) (-1770 (((-512) $) 9)) (-3069 (((-650 (-445)) $) 13)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 21)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 16)))
-(((-871) (-13 (-1109) (-10 -8 (-15 -1770 ((-512) $)) (-15 -3069 ((-650 (-445)) $))))) (T -871))
-((-1770 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-871)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-650 (-445))) (-5 *1 (-871)))))
-(-13 (-1109) (-10 -8 (-15 -1770 ((-512) $)) (-15 -3069 ((-650 (-445)) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-959 |#1|)) NIL) (((-959 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-2294 (((-777)) NIL T CONST)) (-1658 (((-1282) (-777)) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4013 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-872 |#1| |#2| |#3| |#4|) (-13 (-1058) (-496 (-959 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1658 ((-1282) (-777))))) (-1058) (-650 (-1186)) (-650 (-777)) (-777)) (T -872))
-((-4013 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-872 *2 *3 *4 *5)) (-4 *2 (-368)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-777))) (-14 *5 (-777)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-872 *4 *5 *6 *7)) (-4 *4 (-1058)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 *3)) (-14 *7 *3))))
-(-13 (-1058) (-496 (-959 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1658 ((-1282) (-777)))))
-((-1675 (((-3 (-176 |#3|) "failed") (-777) (-777) |#2| |#2|) 38)) (-1349 (((-3 (-413 |#3|) "failed") (-777) (-777) |#2| |#2|) 29)))
-(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -1349 ((-3 (-413 |#3|) "failed") (-777) (-777) |#2| |#2|)) (-15 -1675 ((-3 (-176 |#3|) "failed") (-777) (-777) |#2| |#2|))) (-368) (-1268 |#1|) (-1253 |#1|)) (T -873))
-((-1675 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-176 *6)) (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1268 *5)) (-4 *6 (-1253 *5)))) (-1349 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-413 *6)) (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1268 *5)) (-4 *6 (-1253 *5)))))
-(-10 -7 (-15 -1349 ((-3 (-413 |#3|) "failed") (-777) (-777) |#2| |#2|)) (-15 -1675 ((-3 (-176 |#3|) "failed") (-777) (-777) |#2| |#2|)))
-((-1349 (((-3 (-413 (-1250 |#2| |#1|)) "failed") (-777) (-777) (-1269 |#1| |#2| |#3|)) 30) (((-3 (-413 (-1250 |#2| |#1|)) "failed") (-777) (-777) (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|)) 28)))
-(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -1349 ((-3 (-413 (-1250 |#2| |#1|)) "failed") (-777) (-777) (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|))) (-15 -1349 ((-3 (-413 (-1250 |#2| |#1|)) "failed") (-777) (-777) (-1269 |#1| |#2| |#3|)))) (-368) (-1186) |#1|) (T -874))
-((-1349 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1269 *5 *6 *7)) (-4 *5 (-368)) (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1250 *6 *5))) (-5 *1 (-874 *5 *6 *7)))) (-1349 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1269 *5 *6 *7)) (-4 *5 (-368)) (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1250 *6 *5))) (-5 *1 (-874 *5 *6 *7)))))
-(-10 -7 (-15 -1349 ((-3 (-413 (-1250 |#2| |#1|)) "failed") (-777) (-777) (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|))) (-15 -1349 ((-3 (-413 (-1250 |#2| |#1|)) "failed") (-777) (-777) (-1269 |#1| |#2| |#3|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-2459 (($ $ (-570)) 68)) (-1799 (((-112) $ $) 65)) (-2333 (($) 18 T CONST)) (-1695 (($ (-1182 (-570)) (-570)) 67)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-3738 (($ $) 70)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-3995 (((-777) $) 75)) (-2005 (((-112) $) 35)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-2291 (((-570)) 72)) (-3975 (((-570) $) 71)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3308 (($ $ (-570)) 74)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-3961 (((-1166 (-570)) $) 76)) (-2161 (($ $) 73)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-3478 (((-570) $ (-570)) 69)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-875 |#1|) (-141) (-570)) (T -875))
-((-3961 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-1166 (-570))))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-777)))) (-3308 (*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-2161 (*1 *1 *1) (-4 *1 (-875 *2))) (-2291 (*1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-3738 (*1 *1 *1) (-4 *1 (-875 *2))) (-3478 (*1 *2 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-2459 (*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-1695 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *3 (-570)) (-4 *1 (-875 *4)))))
-(-13 (-311) (-148) (-10 -8 (-15 -3961 ((-1166 (-570)) $)) (-15 -3995 ((-777) $)) (-15 -3308 ($ $ (-570))) (-15 -2161 ($ $)) (-15 -2291 ((-570))) (-15 -3975 ((-570) $)) (-15 -3738 ($ $)) (-15 -3478 ((-570) $ (-570))) (-15 -2459 ($ $ (-570))) (-15 -1695 ($ (-1182 (-570)) (-570)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-311) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $ (-570)) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-1695 (($ (-1182 (-570)) (-570)) NIL)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3738 (($ $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-3995 (((-777) $) NIL)) (-2005 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2291 (((-570)) NIL)) (-3975 (((-570) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3308 (($ $ (-570)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3961 (((-1166 (-570)) $) NIL)) (-2161 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-3478 (((-570) $ (-570)) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL)))
-(((-876 |#1|) (-875 |#1|) (-570)) (T -876))
-NIL
-(-875 |#1|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 (((-876 |#1|) $) NIL (|has| (-876 |#1|) (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| (-876 |#1|) (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-876 |#1|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-876 |#1|) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-876 |#1|) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-876 |#1|) (-1047 (-570))))) (-4387 (((-876 |#1|) $) NIL) (((-1186) $) NIL (|has| (-876 |#1|) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-876 |#1|) (-1047 (-570)))) (((-570) $) NIL (|has| (-876 |#1|) (-1047 (-570))))) (-1557 (($ $) NIL) (($ (-570) $) NIL)) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-876 |#1|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-876 |#1|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-876 |#1|))) (|:| |vec| (-1277 (-876 |#1|)))) (-695 $) (-1277 $)) NIL) (((-695 (-876 |#1|)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-876 |#1|) (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| (-876 |#1|) (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-876 |#1|) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-876 |#1|) (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 (((-876 |#1|) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| (-876 |#1|) (-1161)))) (-2746 (((-112) $) NIL (|has| (-876 |#1|) (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| (-876 |#1|) (-856)))) (-1764 (($ $ $) NIL (|has| (-876 |#1|) (-856)))) (-2536 (($ (-1 (-876 |#1|) (-876 |#1|)) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-876 |#1|) (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| (-876 |#1|) (-311)))) (-2037 (((-876 |#1|) $) NIL (|has| (-876 |#1|) (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 (-876 |#1|)) (-650 (-876 |#1|))) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-876 |#1|) (-876 |#1|)) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-298 (-876 |#1|))) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-650 (-298 (-876 |#1|)))) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-650 (-1186)) (-650 (-876 |#1|))) NIL (|has| (-876 |#1|) (-520 (-1186) (-876 |#1|)))) (($ $ (-1186) (-876 |#1|)) NIL (|has| (-876 |#1|) (-520 (-1186) (-876 |#1|))))) (-2002 (((-777) $) NIL)) (-2057 (($ $ (-876 |#1|)) NIL (|has| (-876 |#1|) (-290 (-876 |#1|) (-876 |#1|))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| (-876 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-876 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1 (-876 |#1|) (-876 |#1|)) (-777)) NIL) (($ $ (-1 (-876 |#1|) (-876 |#1|))) NIL)) (-4424 (($ $) NIL)) (-1599 (((-876 |#1|) $) NIL)) (-2601 (((-899 (-570)) $) NIL (|has| (-876 |#1|) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-876 |#1|) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-876 |#1|) (-620 (-542)))) (((-384) $) NIL (|has| (-876 |#1|) (-1031))) (((-227) $) NIL (|has| (-876 |#1|) (-1031)))) (-1392 (((-176 (-413 (-570))) $) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-876 |#1|) (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-876 |#1|)) NIL) (($ (-1186)) NIL (|has| (-876 |#1|) (-1047 (-1186))))) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-876 |#1|) (-916))) (|has| (-876 |#1|) (-146))))) (-2294 (((-777)) NIL T CONST)) (-3850 (((-876 |#1|) $) NIL (|has| (-876 |#1|) (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-3478 (((-413 (-570)) $ (-570)) NIL)) (-2521 (($ $) NIL (|has| (-876 |#1|) (-826)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $) NIL (|has| (-876 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-876 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1 (-876 |#1|) (-876 |#1|)) (-777)) NIL) (($ $ (-1 (-876 |#1|) (-876 |#1|))) NIL)) (-3959 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-4013 (($ $ $) NIL) (($ (-876 |#1|) (-876 |#1|)) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-876 |#1|) $) NIL) (($ $ (-876 |#1|)) NIL)))
-(((-877 |#1|) (-13 (-1001 (-876 |#1|)) (-10 -8 (-15 -3478 ((-413 (-570)) $ (-570))) (-15 -1392 ((-176 (-413 (-570))) $)) (-15 -1557 ($ $)) (-15 -1557 ($ (-570) $)))) (-570)) (T -877))
-((-3478 (*1 *2 *1 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-877 *4)) (-14 *4 *3) (-5 *3 (-570)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-877 *3)) (-14 *3 (-570)))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-14 *2 (-570)))) (-1557 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-877 *3)) (-14 *3 *2))))
-(-13 (-1001 (-876 |#1|)) (-10 -8 (-15 -3478 ((-413 (-570)) $ (-570))) (-15 -1392 ((-176 (-413 (-570))) $)) (-15 -1557 ($ $)) (-15 -1557 ($ (-570) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 ((|#2| $) NIL (|has| |#2| (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| |#2| (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| |#2| (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570))))) (-4387 ((|#2| $) NIL) (((-1186) $) NIL (|has| |#2| (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-570)))) (((-570) $) NIL (|has| |#2| (-1047 (-570))))) (-1557 (($ $) 35) (($ (-570) $) 38)) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) 64)) (-2066 (($) NIL (|has| |#2| (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) NIL (|has| |#2| (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| |#2| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| |#2| (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 ((|#2| $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| |#2| (-1161)))) (-2746 (((-112) $) NIL (|has| |#2| (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| |#2| (-856)))) (-1764 (($ $ $) NIL (|has| |#2| (-856)))) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 60)) (-3458 (($) NIL (|has| |#2| (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| |#2| (-311)))) (-2037 ((|#2| $) NIL (|has| |#2| (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 |#2|) (-650 |#2|)) NIL (|has| |#2| (-313 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-313 |#2|))) (($ $ (-298 |#2|)) NIL (|has| |#2| (-313 |#2|))) (($ $ (-650 (-298 |#2|))) NIL (|has| |#2| (-313 |#2|))) (($ $ (-650 (-1186)) (-650 |#2|)) NIL (|has| |#2| (-520 (-1186) |#2|))) (($ $ (-1186) |#2|) NIL (|has| |#2| (-520 (-1186) |#2|)))) (-2002 (((-777) $) NIL)) (-2057 (($ $ |#2|) NIL (|has| |#2| (-290 |#2| |#2|)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) NIL (|has| |#2| (-235))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4424 (($ $) NIL)) (-1599 ((|#2| $) NIL)) (-2601 (((-899 (-570)) $) NIL (|has| |#2| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#2| (-620 (-899 (-384))))) (((-542) $) NIL (|has| |#2| (-620 (-542)))) (((-384) $) NIL (|has| |#2| (-1031))) (((-227) $) NIL (|has| |#2| (-1031)))) (-1392 (((-176 (-413 (-570))) $) 78)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-2869 (((-868) $) 106) (($ (-570)) 20) (($ $) NIL) (($ (-413 (-570))) 25) (($ |#2|) 19) (($ (-1186)) NIL (|has| |#2| (-1047 (-1186))))) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2294 (((-777)) NIL T CONST)) (-3850 ((|#2| $) NIL (|has| |#2| (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-3478 (((-413 (-570)) $ (-570)) 71)) (-2521 (($ $) NIL (|has| |#2| (-826)))) (-1981 (($) 15 T CONST)) (-1998 (($) 17 T CONST)) (-3414 (($ $) NIL (|has| |#2| (-235))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3959 (((-112) $ $) NIL (|has| |#2| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#2| (-856)))) (-3892 (((-112) $ $) 46)) (-3945 (((-112) $ $) NIL (|has| |#2| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#2| (-856)))) (-4013 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4003 (($ $) 50) (($ $ $) 52)) (-3992 (($ $ $) 48)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 61)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 53) (($ $ $) 55) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-878 |#1| |#2|) (-13 (-1001 |#2|) (-10 -8 (-15 -3478 ((-413 (-570)) $ (-570))) (-15 -1392 ((-176 (-413 (-570))) $)) (-15 -1557 ($ $)) (-15 -1557 ($ (-570) $)))) (-570) (-875 |#1|)) (T -878))
-((-3478 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-413 (-570))) (-5 *1 (-878 *4 *5)) (-5 *3 (-570)) (-4 *5 (-875 *4)))) (-1392 (*1 *2 *1) (-12 (-14 *3 (-570)) (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-878 *3 *4)) (-4 *4 (-875 *3)))) (-1557 (*1 *1 *1) (-12 (-14 *2 (-570)) (-5 *1 (-878 *2 *3)) (-4 *3 (-875 *2)))) (-1557 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-14 *3 *2) (-5 *1 (-878 *3 *4)) (-4 *4 (-875 *3)))))
-(-13 (-1001 |#2|) (-10 -8 (-15 -3478 ((-413 (-570)) $ (-570))) (-15 -1392 ((-176 (-413 (-570))) $)) (-15 -1557 ($ $)) (-15 -1557 ($ (-570) $))))
-((-2847 (((-112) $ $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-2963 ((|#2| $) 12)) (-4335 (($ |#1| |#2|) 9)) (-3240 (((-1168) $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-3891 (((-1129) $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#1| $) 11)) (-2881 (($ |#1| |#2|) 10)) (-2869 (((-868) $) 18 (-3749 (-12 (|has| |#1| (-619 (-868))) (|has| |#2| (-619 (-868)))) (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109)))))) (-1344 (((-112) $ $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-3892 (((-112) $ $) 23 (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))))
-(((-879 |#1| |#2|) (-13 (-1227) (-10 -8 (IF (|has| |#1| (-619 (-868))) (IF (|has| |#2| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1109)) (IF (|has| |#2| (-1109)) (-6 (-1109)) |%noBranch|) |%noBranch|) (-15 -4335 ($ |#1| |#2|)) (-15 -2881 ($ |#1| |#2|)) (-15 -1948 (|#1| $)) (-15 -2963 (|#2| $)))) (-1227) (-1227)) (T -879))
-((-4335 (*1 *1 *2 *3) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1227)) (-4 *3 (-1227)))) (-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1227)) (-4 *3 (-1227)))) (-1948 (*1 *2 *1) (-12 (-4 *2 (-1227)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1227)))) (-2963 (*1 *2 *1) (-12 (-4 *2 (-1227)) (-5 *1 (-879 *3 *2)) (-4 *3 (-1227)))))
-(-13 (-1227) (-10 -8 (IF (|has| |#1| (-619 (-868))) (IF (|has| |#2| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1109)) (IF (|has| |#2| (-1109)) (-6 (-1109)) |%noBranch|) |%noBranch|) (-15 -4335 ($ |#1| |#2|)) (-15 -2881 ($ |#1| |#2|)) (-15 -1948 (|#1| $)) (-15 -2963 (|#2| $))))
-((-2847 (((-112) $ $) NIL)) (-3133 (((-570) $) 16)) (-3800 (($ (-158)) 13)) (-3104 (($ (-158)) 14)) (-3240 (((-1168) $) NIL)) (-3978 (((-158) $) 15)) (-3891 (((-1129) $) NIL)) (-2819 (($ (-158)) 11)) (-3002 (($ (-158)) 10)) (-2869 (((-868) $) 24) (($ (-158)) 17)) (-3007 (($ (-158)) 12)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-880) (-13 (-1109) (-10 -8 (-15 -3002 ($ (-158))) (-15 -2819 ($ (-158))) (-15 -3007 ($ (-158))) (-15 -3800 ($ (-158))) (-15 -3104 ($ (-158))) (-15 -3978 ((-158) $)) (-15 -3133 ((-570) $)) (-15 -2869 ($ (-158)))))) (T -880))
-((-3002 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-3007 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-880)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))))
-(-13 (-1109) (-10 -8 (-15 -3002 ($ (-158))) (-15 -2819 ($ (-158))) (-15 -3007 ($ (-158))) (-15 -3800 ($ (-158))) (-15 -3104 ($ (-158))) (-15 -3978 ((-158) $)) (-15 -3133 ((-570) $)) (-15 -2869 ($ (-158)))))
-((-2869 (((-320 (-570)) (-413 (-959 (-48)))) 23) (((-320 (-570)) (-959 (-48))) 18)))
-(((-881) (-10 -7 (-15 -2869 ((-320 (-570)) (-959 (-48)))) (-15 -2869 ((-320 (-570)) (-413 (-959 (-48))))))) (T -881))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 (-48)))) (-5 *2 (-320 (-570))) (-5 *1 (-881)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-959 (-48))) (-5 *2 (-320 (-570))) (-5 *1 (-881)))))
-(-10 -7 (-15 -2869 ((-320 (-570)) (-959 (-48)))) (-15 -2869 ((-320 (-570)) (-413 (-959 (-48))))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 18) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1970 (((-112) $ (|[\|\|]| (-512))) 9) (((-112) $ (|[\|\|]| (-1168))) 13)) (-1344 (((-112) $ $) NIL)) (-3120 (((-512) $) 10) (((-1168) $) 14)) (-3892 (((-112) $ $) 15)))
-(((-882) (-13 (-1092) (-1272) (-10 -8 (-15 -1970 ((-112) $ (|[\|\|]| (-512)))) (-15 -3120 ((-512) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3120 ((-1168) $))))) (T -882))
-((-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-882)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-882)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-882)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-882)))))
-(-13 (-1092) (-1272) (-10 -8 (-15 -1970 ((-112) $ (|[\|\|]| (-512)))) (-15 -3120 ((-512) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3120 ((-1168) $))))
-((-2536 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 15)))
-(((-883 |#1| |#2|) (-10 -7 (-15 -2536 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-1227) (-1227)) (T -883))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))))
-(-10 -7 (-15 -2536 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|))))
-((-3174 (($ |#1| |#1|) 8)) (-4142 ((|#1| $ (-777)) 15)))
-(((-884 |#1|) (-10 -8 (-15 -3174 ($ |#1| |#1|)) (-15 -4142 (|#1| $ (-777)))) (-1227)) (T -884))
-((-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-884 *2)) (-4 *2 (-1227)))) (-3174 (*1 *1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1227)))))
-(-10 -8 (-15 -3174 ($ |#1| |#1|)) (-15 -4142 (|#1| $ (-777))))
-((-2536 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 15)))
-(((-885 |#1| |#2|) (-10 -7 (-15 -2536 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1227) (-1227)) (T -885))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))))
-(-10 -7 (-15 -2536 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
-((-3174 (($ |#1| |#1| |#1|) 8)) (-4142 ((|#1| $ (-777)) 15)))
-(((-886 |#1|) (-10 -8 (-15 -3174 ($ |#1| |#1| |#1|)) (-15 -4142 (|#1| $ (-777)))) (-1227)) (T -886))
-((-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-886 *2)) (-4 *2 (-1227)))) (-3174 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1227)))))
-(-10 -8 (-15 -3174 ($ |#1| |#1| |#1|)) (-15 -4142 (|#1| $ (-777))))
-((-2262 (((-650 (-1191)) (-1168)) 9)))
-(((-887) (-10 -7 (-15 -2262 ((-650 (-1191)) (-1168))))) (T -887))
-((-2262 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-887)))))
-(-10 -7 (-15 -2262 ((-650 (-1191)) (-1168))))
-((-2536 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 15)))
-(((-888 |#1| |#2|) (-10 -7 (-15 -2536 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1227) (-1227)) (T -888))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))))
-(-10 -7 (-15 -2536 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|))))
-((-3217 (($ |#1| |#1| |#1|) 8)) (-4142 ((|#1| $ (-777)) 15)))
-(((-889 |#1|) (-10 -8 (-15 -3217 ($ |#1| |#1| |#1|)) (-15 -4142 (|#1| $ (-777)))) (-1227)) (T -889))
-((-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-889 *2)) (-4 *2 (-1227)))) (-3217 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1227)))))
-(-10 -8 (-15 -3217 ($ |#1| |#1| |#1|)) (-15 -4142 (|#1| $ (-777))))
-((-2185 (((-1166 (-650 (-570))) (-650 (-570)) (-1166 (-650 (-570)))) 41)) (-1809 (((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570))) 31)) (-3568 (((-1166 (-650 (-570))) (-650 (-570))) 53) (((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570))) 50)) (-2165 (((-1166 (-650 (-570))) (-570)) 55)) (-2624 (((-1166 (-650 (-928))) (-1166 (-650 (-928)))) 22)) (-2733 (((-650 (-928)) (-650 (-928))) 18)))
-(((-890) (-10 -7 (-15 -2733 ((-650 (-928)) (-650 (-928)))) (-15 -2624 ((-1166 (-650 (-928))) (-1166 (-650 (-928))))) (-15 -1809 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -2185 ((-1166 (-650 (-570))) (-650 (-570)) (-1166 (-650 (-570))))) (-15 -3568 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -3568 ((-1166 (-650 (-570))) (-650 (-570)))) (-15 -2165 ((-1166 (-650 (-570))) (-570))))) (T -890))
-((-2165 (*1 *2 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570)))) (-3568 (*1 *2 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-650 (-570))))) (-3568 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-650 (-570))))) (-2185 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *3 (-650 (-570))) (-5 *1 (-890)))) (-1809 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-650 (-570))))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1166 (-650 (-928)))) (-5 *1 (-890)))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-890)))))
-(-10 -7 (-15 -2733 ((-650 (-928)) (-650 (-928)))) (-15 -2624 ((-1166 (-650 (-928))) (-1166 (-650 (-928))))) (-15 -1809 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -2185 ((-1166 (-650 (-570))) (-650 (-570)) (-1166 (-650 (-570))))) (-15 -3568 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -3568 ((-1166 (-650 (-570))) (-650 (-570)))) (-15 -2165 ((-1166 (-650 (-570))) (-570))))
-((-2601 (((-899 (-384)) $) 9 (|has| |#1| (-620 (-899 (-384))))) (((-899 (-570)) $) 8 (|has| |#1| (-620 (-899 (-570)))))))
-(((-891 |#1|) (-141) (-1227)) (T -891))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-620 (-899 (-570)))) (-6 (-620 (-899 (-570)))) |%noBranch|) (IF (|has| |t#1| (-620 (-899 (-384)))) (-6 (-620 (-899 (-384)))) |%noBranch|)))
-(((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))))
-((-2847 (((-112) $ $) NIL)) (-2296 (($) 14)) (-1835 (($ (-896 |#1| |#2|) (-896 |#1| |#3|)) 28)) (-1357 (((-896 |#1| |#3|) $) 16)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3430 (((-112) $) 22)) (-3405 (($) 19)) (-2869 (((-868) $) 31)) (-1344 (((-112) $ $) NIL)) (-1724 (((-896 |#1| |#2|) $) 15)) (-3892 (((-112) $ $) 26)))
-(((-892 |#1| |#2| |#3|) (-13 (-1109) (-10 -8 (-15 -3430 ((-112) $)) (-15 -3405 ($)) (-15 -2296 ($)) (-15 -1835 ($ (-896 |#1| |#2|) (-896 |#1| |#3|))) (-15 -1724 ((-896 |#1| |#2|) $)) (-15 -1357 ((-896 |#1| |#3|) $)))) (-1109) (-1109) (-672 |#2|)) (T -892))
-((-3430 (*1 *2 *1) (-12 (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-892 *3 *4 *5)) (-4 *3 (-1109)) (-4 *5 (-672 *4)))) (-3405 (*1 *1) (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109)) (-4 *4 (-672 *3)))) (-2296 (*1 *1) (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109)) (-4 *4 (-672 *3)))) (-1835 (*1 *1 *2 *3) (-12 (-5 *2 (-896 *4 *5)) (-5 *3 (-896 *4 *6)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-672 *5)) (-5 *1 (-892 *4 *5 *6)))) (-1724 (*1 *2 *1) (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *4)) (-5 *1 (-892 *3 *4 *5)) (-4 *3 (-1109)) (-4 *5 (-672 *4)))) (-1357 (*1 *2 *1) (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *5)) (-5 *1 (-892 *3 *4 *5)) (-4 *3 (-1109)) (-4 *5 (-672 *4)))))
-(-13 (-1109) (-10 -8 (-15 -3430 ((-112) $)) (-15 -3405 ($)) (-15 -2296 ($)) (-15 -1835 ($ (-896 |#1| |#2|) (-896 |#1| |#3|))) (-15 -1724 ((-896 |#1| |#2|) $)) (-15 -1357 ((-896 |#1| |#3|) $))))
-((-2847 (((-112) $ $) 7)) (-4429 (((-896 |#1| $) $ (-899 |#1|) (-896 |#1| $)) 14)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-893 |#1|) (-141) (-1109)) (T -893))
-((-4429 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-896 *4 *1)) (-5 *3 (-899 *4)) (-4 *1 (-893 *4)) (-4 *4 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -4429 ((-896 |t#1| $) $ (-899 |t#1|) (-896 |t#1| $)))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-3917 (((-112) (-650 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3362 (((-896 |#1| |#2|) |#2| |#3|) 45 (-12 (-3201 (|has| |#2| (-1047 (-1186)))) (-3201 (|has| |#2| (-1058))))) (((-650 (-298 (-959 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1058)) (-3201 (|has| |#2| (-1047 (-1186)))))) (((-650 (-298 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1047 (-1186)))) (((-892 |#1| |#2| (-650 |#2|)) (-650 |#2|) |#3|) 21)))
-(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -3917 ((-112) |#2| |#3|)) (-15 -3917 ((-112) (-650 |#2|) |#3|)) (-15 -3362 ((-892 |#1| |#2| (-650 |#2|)) (-650 |#2|) |#3|)) (IF (|has| |#2| (-1047 (-1186))) (-15 -3362 ((-650 (-298 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1058)) (-15 -3362 ((-650 (-298 (-959 |#2|))) |#2| |#3|)) (-15 -3362 ((-896 |#1| |#2|) |#2| |#3|))))) (-1109) (-893 |#1|) (-620 (-899 |#1|))) (T -894))
-((-3362 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-896 *5 *3)) (-5 *1 (-894 *5 *3 *4)) (-3201 (-4 *3 (-1047 (-1186)))) (-3201 (-4 *3 (-1058))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) (-3362 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 (-959 *3)))) (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-1058)) (-3201 (-4 *3 (-1047 (-1186)))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) (-3362 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 *3))) (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-1047 (-1186))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) (-3362 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *6 (-893 *5)) (-5 *2 (-892 *5 *6 (-650 *6))) (-5 *1 (-894 *5 *6 *4)) (-5 *3 (-650 *6)) (-4 *4 (-620 (-899 *5))))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-4 *6 (-893 *5)) (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-894 *5 *6 *4)) (-4 *4 (-620 (-899 *5))))) (-3917 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))))
-(-10 -7 (-15 -3917 ((-112) |#2| |#3|)) (-15 -3917 ((-112) (-650 |#2|) |#3|)) (-15 -3362 ((-892 |#1| |#2| (-650 |#2|)) (-650 |#2|) |#3|)) (IF (|has| |#2| (-1047 (-1186))) (-15 -3362 ((-650 (-298 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1058)) (-15 -3362 ((-650 (-298 (-959 |#2|))) |#2| |#3|)) (-15 -3362 ((-896 |#1| |#2|) |#2| |#3|)))))
-((-2536 (((-896 |#1| |#3|) (-1 |#3| |#2|) (-896 |#1| |#2|)) 22)))
-(((-895 |#1| |#2| |#3|) (-10 -7 (-15 -2536 ((-896 |#1| |#3|) (-1 |#3| |#2|) (-896 |#1| |#2|)))) (-1109) (-1109) (-1109)) (T -895))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-896 *5 *6)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-896 *5 *7)) (-5 *1 (-895 *5 *6 *7)))))
-(-10 -7 (-15 -2536 ((-896 |#1| |#3|) (-1 |#3| |#2|) (-896 |#1| |#2|))))
-((-2847 (((-112) $ $) NIL)) (-1637 (($ $ $) 40)) (-4182 (((-3 (-112) "failed") $ (-899 |#1|)) 37)) (-2296 (($) 12)) (-3240 (((-1168) $) NIL)) (-3346 (($ (-899 |#1|) |#2| $) 20)) (-3891 (((-1129) $) NIL)) (-2254 (((-3 |#2| "failed") (-899 |#1|) $) 51)) (-3430 (((-112) $) 15)) (-3405 (($) 13)) (-3825 (((-650 (-2 (|:| -4144 (-1186)) (|:| -3165 |#2|))) $) 25)) (-2881 (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 |#2|)))) 23)) (-2869 (((-868) $) 45)) (-1344 (((-112) $ $) NIL)) (-3271 (($ (-899 |#1|) |#2| $ |#2|) 49)) (-1440 (($ (-899 |#1|) |#2| $) 48)) (-3892 (((-112) $ $) 42)))
-(((-896 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -3430 ((-112) $)) (-15 -3405 ($)) (-15 -2296 ($)) (-15 -1637 ($ $ $)) (-15 -2254 ((-3 |#2| "failed") (-899 |#1|) $)) (-15 -1440 ($ (-899 |#1|) |#2| $)) (-15 -3346 ($ (-899 |#1|) |#2| $)) (-15 -3271 ($ (-899 |#1|) |#2| $ |#2|)) (-15 -3825 ((-650 (-2 (|:| -4144 (-1186)) (|:| -3165 |#2|))) $)) (-15 -2881 ($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 |#2|))))) (-15 -4182 ((-3 (-112) "failed") $ (-899 |#1|))))) (-1109) (-1109)) (T -896))
-((-3430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-3405 (*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-2296 (*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-1637 (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-2254 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-4 *2 (-1109)) (-5 *1 (-896 *4 *2)))) (-1440 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1109)))) (-3346 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1109)))) (-3271 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1109)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 *4)))) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 *4)))) (-4 *4 (-1109)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)))) (-4182 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -3430 ((-112) $)) (-15 -3405 ($)) (-15 -2296 ($)) (-15 -1637 ($ $ $)) (-15 -2254 ((-3 |#2| "failed") (-899 |#1|) $)) (-15 -1440 ($ (-899 |#1|) |#2| $)) (-15 -3346 ($ (-899 |#1|) |#2| $)) (-15 -3271 ($ (-899 |#1|) |#2| $ |#2|)) (-15 -3825 ((-650 (-2 (|:| -4144 (-1186)) (|:| -3165 |#2|))) $)) (-15 -2881 ($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 |#2|))))) (-15 -4182 ((-3 (-112) "failed") $ (-899 |#1|)))))
-((-1686 (((-899 |#1|) (-899 |#1|) (-650 (-1186)) (-1 (-112) (-650 |#2|))) 32) (((-899 |#1|) (-899 |#1|) (-650 (-1 (-112) |#2|))) 46) (((-899 |#1|) (-899 |#1|) (-1 (-112) |#2|)) 35)) (-4182 (((-112) (-650 |#2|) (-899 |#1|)) 42) (((-112) |#2| (-899 |#1|)) 36)) (-2383 (((-1 (-112) |#2|) (-899 |#1|)) 16)) (-3406 (((-650 |#2|) (-899 |#1|)) 24)) (-4040 (((-899 |#1|) (-899 |#1|) |#2|) 20)))
-(((-897 |#1| |#2|) (-10 -7 (-15 -1686 ((-899 |#1|) (-899 |#1|) (-1 (-112) |#2|))) (-15 -1686 ((-899 |#1|) (-899 |#1|) (-650 (-1 (-112) |#2|)))) (-15 -1686 ((-899 |#1|) (-899 |#1|) (-650 (-1186)) (-1 (-112) (-650 |#2|)))) (-15 -2383 ((-1 (-112) |#2|) (-899 |#1|))) (-15 -4182 ((-112) |#2| (-899 |#1|))) (-15 -4182 ((-112) (-650 |#2|) (-899 |#1|))) (-15 -4040 ((-899 |#1|) (-899 |#1|) |#2|)) (-15 -3406 ((-650 |#2|) (-899 |#1|)))) (-1109) (-1227)) (T -897))
-((-3406 (*1 *2 *3) (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-650 *5)) (-5 *1 (-897 *4 *5)) (-4 *5 (-1227)))) (-4040 (*1 *2 *2 *3) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-897 *4 *3)) (-4 *3 (-1227)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-1227)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3)) (-4 *3 (-1227)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-897 *4 *5)) (-4 *5 (-1227)))) (-1686 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-899 *5)) (-5 *3 (-650 (-1186))) (-5 *4 (-1 (-112) (-650 *6))) (-4 *5 (-1109)) (-4 *6 (-1227)) (-5 *1 (-897 *5 *6)))) (-1686 (*1 *2 *2 *3) (-12 (-5 *2 (-899 *4)) (-5 *3 (-650 (-1 (-112) *5))) (-4 *4 (-1109)) (-4 *5 (-1227)) (-5 *1 (-897 *4 *5)))) (-1686 (*1 *2 *2 *3) (-12 (-5 *2 (-899 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1109)) (-4 *5 (-1227)) (-5 *1 (-897 *4 *5)))))
-(-10 -7 (-15 -1686 ((-899 |#1|) (-899 |#1|) (-1 (-112) |#2|))) (-15 -1686 ((-899 |#1|) (-899 |#1|) (-650 (-1 (-112) |#2|)))) (-15 -1686 ((-899 |#1|) (-899 |#1|) (-650 (-1186)) (-1 (-112) (-650 |#2|)))) (-15 -2383 ((-1 (-112) |#2|) (-899 |#1|))) (-15 -4182 ((-112) |#2| (-899 |#1|))) (-15 -4182 ((-112) (-650 |#2|) (-899 |#1|))) (-15 -4040 ((-899 |#1|) (-899 |#1|) |#2|)) (-15 -3406 ((-650 |#2|) (-899 |#1|))))
-((-2536 (((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)) 19)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -2536 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)))) (-1109) (-1109)) (T -898))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6)))))
-(-10 -7 (-15 -2536 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|))))
-((-2847 (((-112) $ $) NIL)) (-4374 (($ $ (-650 (-52))) 74)) (-1598 (((-650 $) $) 139)) (-4368 (((-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52))) $) 30)) (-3149 (((-112) $) 35)) (-2243 (($ $ (-650 (-1186)) (-52)) 31)) (-2024 (($ $ (-650 (-52))) 73)) (-2435 (((-3 |#1| "failed") $) 71) (((-3 (-1186) "failed") $) 164)) (-4387 ((|#1| $) 68) (((-1186) $) NIL)) (-1870 (($ $) 126)) (-2191 (((-112) $) 55)) (-3660 (((-650 (-52)) $) 50)) (-3579 (($ (-1186) (-112) (-112) (-112)) 75)) (-2218 (((-3 (-650 $) "failed") (-650 $)) 82)) (-4392 (((-112) $) 58)) (-3275 (((-112) $) 57)) (-3240 (((-1168) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) 41)) (-3278 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4095 (((-3 (-2 (|:| |val| $) (|:| -2940 $)) "failed") $) 97)) (-3055 (((-3 (-650 $) "failed") $) 40)) (-3179 (((-3 (-650 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1567 (-115)) (|:| |arg| (-650 $))) "failed") $) 107)) (-3248 (((-3 (-650 $) "failed") $) 42)) (-3353 (((-3 (-2 (|:| |val| $) (|:| -2940 (-777))) "failed") $) 45)) (-3872 (((-112) $) 34)) (-3891 (((-1129) $) NIL)) (-2818 (((-112) $) 28)) (-1470 (((-112) $) 52)) (-2071 (((-650 (-52)) $) 130)) (-4051 (((-112) $) 56)) (-2057 (($ (-115) (-650 $)) 104)) (-3307 (((-777) $) 33)) (-3064 (($ $) 72)) (-2601 (($ (-650 $)) 69)) (-3839 (((-112) $) 32)) (-2869 (((-868) $) 63) (($ |#1|) 23) (($ (-1186)) 76)) (-1344 (((-112) $ $) NIL)) (-4040 (($ $ (-52)) 129)) (-1981 (($) 103 T CONST)) (-1998 (($) 83 T CONST)) (-3892 (((-112) $ $) 93)) (-4013 (($ $ $) 117)) (-3992 (($ $ $) 121)) (** (($ $ (-777)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-899 |#1|) (-13 (-1109) (-1047 |#1|) (-1047 (-1186)) (-10 -8 (-15 0 ($) -3722) (-15 1 ($) -3722) (-15 -3055 ((-3 (-650 $) "failed") $)) (-15 -3235 ((-3 (-650 $) "failed") $)) (-15 -3179 ((-3 (-650 $) "failed") $ (-115))) (-15 -3179 ((-3 (-2 (|:| -1567 (-115)) (|:| |arg| (-650 $))) "failed") $)) (-15 -3353 ((-3 (-2 (|:| |val| $) (|:| -2940 (-777))) "failed") $)) (-15 -3278 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3248 ((-3 (-650 $) "failed") $)) (-15 -4095 ((-3 (-2 (|:| |val| $) (|:| -2940 $)) "failed") $)) (-15 -2057 ($ (-115) (-650 $))) (-15 -3992 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ $)) (-15 -4013 ($ $ $)) (-15 -3307 ((-777) $)) (-15 -2601 ($ (-650 $))) (-15 -3064 ($ $)) (-15 -3872 ((-112) $)) (-15 -2191 ((-112) $)) (-15 -3149 ((-112) $)) (-15 -3839 ((-112) $)) (-15 -4051 ((-112) $)) (-15 -3275 ((-112) $)) (-15 -4392 ((-112) $)) (-15 -1470 ((-112) $)) (-15 -3660 ((-650 (-52)) $)) (-15 -2024 ($ $ (-650 (-52)))) (-15 -4374 ($ $ (-650 (-52)))) (-15 -3579 ($ (-1186) (-112) (-112) (-112))) (-15 -2243 ($ $ (-650 (-1186)) (-52))) (-15 -4368 ((-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52))) $)) (-15 -2818 ((-112) $)) (-15 -1870 ($ $)) (-15 -4040 ($ $ (-52))) (-15 -2071 ((-650 (-52)) $)) (-15 -1598 ((-650 $) $)) (-15 -2218 ((-3 (-650 $) "failed") (-650 $))))) (-1109)) (T -899))
-((-1981 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-1998 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-3055 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3235 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3179 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-899 *4))) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-3179 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1567 (-115)) (|:| |arg| (-650 (-899 *3))))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3353 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -2940 (-777)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3278 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-899 *3)) (|:| |den| (-899 *3)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3248 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4095 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -2940 (-899 *3)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2057 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 (-899 *4))) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-3992 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-4013 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3064 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2024 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4374 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3579 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-112)) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-2243 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-52)) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-4040 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2218 (*1 *2 *2) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(-13 (-1109) (-1047 |#1|) (-1047 (-1186)) (-10 -8 (-15 (-1981) ($) -3722) (-15 (-1998) ($) -3722) (-15 -3055 ((-3 (-650 $) "failed") $)) (-15 -3235 ((-3 (-650 $) "failed") $)) (-15 -3179 ((-3 (-650 $) "failed") $ (-115))) (-15 -3179 ((-3 (-2 (|:| -1567 (-115)) (|:| |arg| (-650 $))) "failed") $)) (-15 -3353 ((-3 (-2 (|:| |val| $) (|:| -2940 (-777))) "failed") $)) (-15 -3278 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3248 ((-3 (-650 $) "failed") $)) (-15 -4095 ((-3 (-2 (|:| |val| $) (|:| -2940 $)) "failed") $)) (-15 -2057 ($ (-115) (-650 $))) (-15 -3992 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ $)) (-15 -4013 ($ $ $)) (-15 -3307 ((-777) $)) (-15 -2601 ($ (-650 $))) (-15 -3064 ($ $)) (-15 -3872 ((-112) $)) (-15 -2191 ((-112) $)) (-15 -3149 ((-112) $)) (-15 -3839 ((-112) $)) (-15 -4051 ((-112) $)) (-15 -3275 ((-112) $)) (-15 -4392 ((-112) $)) (-15 -1470 ((-112) $)) (-15 -3660 ((-650 (-52)) $)) (-15 -2024 ($ $ (-650 (-52)))) (-15 -4374 ($ $ (-650 (-52)))) (-15 -3579 ($ (-1186) (-112) (-112) (-112))) (-15 -2243 ($ $ (-650 (-1186)) (-52))) (-15 -4368 ((-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52))) $)) (-15 -2818 ((-112) $)) (-15 -1870 ($ $)) (-15 -4040 ($ $ (-52))) (-15 -2071 ((-650 (-52)) $)) (-15 -1598 ((-650 $) $)) (-15 -2218 ((-3 (-650 $) "failed") (-650 $)))))
-((-2847 (((-112) $ $) NIL)) (-3473 (((-650 |#1|) $) 19)) (-4082 (((-112) $) 49)) (-2435 (((-3 (-678 |#1|) "failed") $) 56)) (-4387 (((-678 |#1|) $) 54)) (-1962 (($ $) 23)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-1831 (((-777) $) 61)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-678 |#1|) $) 21)) (-2869 (((-868) $) 47) (($ (-678 |#1|)) 26) (((-825 |#1|) $) 36) (($ |#1|) 25)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 9 T CONST)) (-2255 (((-650 (-678 |#1|)) $) 28)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 12)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 67)))
-(((-900 |#1|) (-13 (-856) (-1047 (-678 |#1|)) (-10 -8 (-15 1 ($) -3722) (-15 -2869 ((-825 |#1|) $)) (-15 -2869 ($ |#1|)) (-15 -1948 ((-678 |#1|) $)) (-15 -1831 ((-777) $)) (-15 -2255 ((-650 (-678 |#1|)) $)) (-15 -1962 ($ $)) (-15 -4082 ((-112) $)) (-15 -3473 ((-650 |#1|) $)))) (-856)) (T -900))
-((-1998 (*1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-2869 (*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-650 (-678 *3))) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-1962 (*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))))
-(-13 (-856) (-1047 (-678 |#1|)) (-10 -8 (-15 (-1998) ($) -3722) (-15 -2869 ((-825 |#1|) $)) (-15 -2869 ($ |#1|)) (-15 -1948 ((-678 |#1|) $)) (-15 -1831 ((-777) $)) (-15 -2255 ((-650 (-678 |#1|)) $)) (-15 -1962 ($ $)) (-15 -4082 ((-112) $)) (-15 -3473 ((-650 |#1|) $))))
-((-3538 ((|#1| |#1| |#1|) 19)))
-(((-901 |#1| |#2|) (-10 -7 (-15 -3538 (|#1| |#1| |#1|))) (-1253 |#2|) (-1058)) (T -901))
-((-3538 (*1 *2 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-901 *2 *3)) (-4 *2 (-1253 *3)))))
-(-10 -7 (-15 -3538 (|#1| |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-1319 (((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-2971 (((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 14)) (-3892 (((-112) $ $) 6)))
-(((-902) (-141)) (T -902))
-((-1319 (*1 *2 *3 *4) (-12 (-4 *1 (-902)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168)))))) (-2971 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *3 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *2 (-1044)))))
-(-13 (-1109) (-10 -7 (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))) (-15 -2971 ((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-1574 ((|#1| |#1| (-777)) 27)) (-4214 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2182 (((-3 (-2 (|:| -2403 |#1|) (|:| -2420 |#1|)) "failed") |#1| (-777) (-777)) 30) (((-650 |#1|) |#1|) 38)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -2182 ((-650 |#1|) |#1|)) (-15 -2182 ((-3 (-2 (|:| -2403 |#1|) (|:| -2420 |#1|)) "failed") |#1| (-777) (-777))) (-15 -4214 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1574 (|#1| |#1| (-777)))) (-1253 |#2|) (-368)) (T -903))
-((-1574 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-5 *1 (-903 *2 *4)) (-4 *2 (-1253 *4)))) (-4214 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-368)) (-5 *1 (-903 *2 *3)) (-4 *2 (-1253 *3)))) (-2182 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-777)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -2403 *3) (|:| -2420 *3))) (-5 *1 (-903 *3 *5)) (-4 *3 (-1253 *5)))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -2182 ((-650 |#1|) |#1|)) (-15 -2182 ((-3 (-2 (|:| -2403 |#1|) (|:| -2420 |#1|)) "failed") |#1| (-777) (-777))) (-15 -4214 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1574 (|#1| |#1| (-777))))
-((-2577 (((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168)) 104) (((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168) (-227)) 100) (((-1044) (-905) (-1072)) 92) (((-1044) (-905)) 93)) (-1319 (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905) (-1072)) 62) (((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905)) 64)))
-(((-904) (-10 -7 (-15 -2577 ((-1044) (-905))) (-15 -2577 ((-1044) (-905) (-1072))) (-15 -2577 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168) (-227))) (-15 -2577 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905) (-1072))))) (T -904))
-((-1319 (*1 *2 *3 *4) (-12 (-5 *3 (-905)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-904)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-905)) (-5 *2 (-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-904)))) (-2577 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168)) (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384)) (-5 *2 (-1044)) (-5 *1 (-904)))) (-2577 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168)) (-5 *8 (-227)) (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384)) (-5 *2 (-1044)) (-5 *1 (-904)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-905)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-904)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-905)) (-5 *2 (-1044)) (-5 *1 (-904)))))
-(-10 -7 (-15 -2577 ((-1044) (-905))) (-15 -2577 ((-1044) (-905) (-1072))) (-15 -2577 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168) (-227))) (-15 -2577 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905))) (-15 -1319 ((-2 (|:| -1319 (-384)) (|:| -1770 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905) (-1072))))
-((-2847 (((-112) $ $) NIL)) (-4387 (((-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))) $) 19)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 21) (($ (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 18)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-905) (-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))) (-15 -4387 ((-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))) $))))) (T -905))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *1 (-905)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *1 (-905)))))
-(-13 (-1109) (-10 -8 (-15 -2869 ($ (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))) (-15 -4387 ((-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))) $))))
-((-2375 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) 10) (($ $ |#2| (-777)) 12) (($ $ (-650 |#2|) (-650 (-777))) 15)) (-3414 (($ $ |#2|) 16) (($ $ (-650 |#2|)) 18) (($ $ |#2| (-777)) 19) (($ $ (-650 |#2|) (-650 (-777))) 21)))
-(((-906 |#1| |#2|) (-10 -8 (-15 -3414 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -3414 (|#1| |#1| |#2| (-777))) (-15 -3414 (|#1| |#1| (-650 |#2|))) (-15 -3414 (|#1| |#1| |#2|)) (-15 -2375 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -2375 (|#1| |#1| |#2| (-777))) (-15 -2375 (|#1| |#1| (-650 |#2|))) (-15 -2375 (|#1| |#1| |#2|))) (-907 |#2|) (-1109)) (T -906))
-NIL
-(-10 -8 (-15 -3414 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -3414 (|#1| |#1| |#2| (-777))) (-15 -3414 (|#1| |#1| (-650 |#2|))) (-15 -3414 (|#1| |#1| |#2|)) (-15 -2375 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -2375 (|#1| |#1| |#2| (-777))) (-15 -2375 (|#1| |#1| (-650 |#2|))) (-15 -2375 (|#1| |#1| |#2|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2375 (($ $ |#1|) 46) (($ $ (-650 |#1|)) 45) (($ $ |#1| (-777)) 44) (($ $ (-650 |#1|) (-650 (-777))) 43)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ |#1|) 42) (($ $ (-650 |#1|)) 41) (($ $ |#1| (-777)) 40) (($ $ (-650 |#1|) (-650 (-777))) 39)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-907 |#1|) (-141) (-1109)) (T -907))
-((-2375 (*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109)))) (-2375 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-2375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4)) (-4 *4 (-1109)))) (-3414 (*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-3414 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109)))) (-3414 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-3414 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4)) (-4 *4 (-1109)))))
-(-13 (-1058) (-10 -8 (-15 -2375 ($ $ |t#1|)) (-15 -2375 ($ $ (-650 |t#1|))) (-15 -2375 ($ $ |t#1| (-777))) (-15 -2375 ($ $ (-650 |t#1|) (-650 (-777)))) (-15 -3414 ($ $ |t#1|)) (-15 -3414 ($ $ (-650 |t#1|))) (-15 -3414 ($ $ |t#1| (-777))) (-15 -3414 ($ $ (-650 |t#1|) (-650 (-777))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) 26)) (-2855 (((-112) $ (-777)) NIL)) (-2854 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-2632 (($ $ $) NIL (|has| $ (-6 -4453)))) (-2644 (($ $ $) NIL (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) (($ $ "left" $) NIL (|has| $ (-6 -4453))) (($ $ "right" $) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2420 (($ $) 25)) (-3925 (($ |#1|) 12) (($ $ $) 17)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-2403 (($ $) 23)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) 20)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2352 (((-570) $ $) NIL)) (-1355 (((-112) $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-1213 |#1|) $) 9) (((-868) $) 29 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 21 (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-908 |#1|) (-13 (-120 |#1|) (-619 (-1213 |#1|)) (-10 -8 (-15 -3925 ($ |#1|)) (-15 -3925 ($ $ $)))) (-1109)) (T -908))
-((-3925 (*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109)))) (-3925 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109)))))
-(-13 (-120 |#1|) (-619 (-1213 |#1|)) (-10 -8 (-15 -3925 ($ |#1|)) (-15 -3925 ($ $ $))))
-((-4407 ((|#2| (-1151 |#1| |#2|)) 48)))
-(((-909 |#1| |#2|) (-10 -7 (-15 -4407 (|#2| (-1151 |#1| |#2|)))) (-928) (-13 (-1058) (-10 -7 (-6 (-4454 "*"))))) (T -909))
-((-4407 (*1 *2 *3) (-12 (-5 *3 (-1151 *4 *2)) (-14 *4 (-928)) (-4 *2 (-13 (-1058) (-10 -7 (-6 (-4454 "*"))))) (-5 *1 (-909 *4 *2)))))
-(-10 -7 (-15 -4407 (|#2| (-1151 |#1| |#2|))))
-((-2847 (((-112) $ $) 7)) (-3230 (((-1111 |#1|) $) 35)) (-2333 (($) 19 T CONST)) (-3957 (((-3 $ "failed") $) 16)) (-3355 (((-1111 |#1|) $ |#1|) 34)) (-2005 (((-112) $) 18)) (-1908 (($ $ $) 32 (-3749 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-1764 (($ $ $) 31 (-3749 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-3240 (((-1168) $) 10)) (-4315 (($ $) 25)) (-3891 (((-1129) $) 11)) (-2057 ((|#1| $ |#1|) 38)) (-2120 (($ (-650 (-650 |#1|))) 36)) (-4074 (($ (-650 |#1|)) 37)) (-2733 (($ $ $) 22)) (-2319 (($ $ $) 21)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1998 (($) 20 T CONST)) (-3959 (((-112) $ $) 29 (-3749 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-3933 (((-112) $ $) 28 (-3749 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 30 (-3749 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-3918 (((-112) $ $) 33)) (-4013 (($ $ $) 24)) (** (($ $ (-928)) 14) (($ $ (-777)) 17) (($ $ (-570)) 23)) (* (($ $ $) 15)))
-(((-910 |#1|) (-141) (-1109)) (T -910))
-((-4074 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-910 *3)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-4 *1 (-910 *3)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-1111 *3)))) (-3355 (*1 *2 *1 *3) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-1111 *3)))) (-3918 (*1 *2 *1 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(-13 (-479) (-290 |t#1| |t#1|) (-10 -8 (-15 -4074 ($ (-650 |t#1|))) (-15 -2120 ($ (-650 (-650 |t#1|)))) (-15 -3230 ((-1111 |t#1|) $)) (-15 -3355 ((-1111 |t#1|) $ |t#1|)) (-15 -3918 ((-112) $ $)) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-856)) |%noBranch|)))
-(((-102) . T) ((-619 (-868)) . T) ((-290 |#1| |#1|) . T) ((-479) . T) ((-732) . T) ((-856) -3749 (|has| |#1| (-856)) (|has| |#1| (-373))) ((-1121) . T) ((-1109) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-3878 (((-650 (-650 (-777))) $) 160)) (-3071 (((-650 (-777)) (-912 |#1|) $) 188)) (-4207 (((-650 (-777)) (-912 |#1|) $) 189)) (-3230 (((-1111 |#1|) $) 152)) (-4420 (((-650 (-912 |#1|)) $) 149)) (-2066 (((-912 |#1|) $ (-570)) 154) (((-912 |#1|) $) 155)) (-1480 (($ (-650 (-912 |#1|))) 162)) (-3995 (((-777) $) 156)) (-4289 (((-1111 (-1111 |#1|)) $) 186)) (-3355 (((-1111 |#1|) $ |#1|) 177) (((-1111 (-1111 |#1|)) $ (-1111 |#1|)) 197) (((-1111 (-650 |#1|)) $ (-650 |#1|)) 200)) (-1314 (((-112) (-912 |#1|) $) 137)) (-3240 (((-1168) $) NIL)) (-2212 (((-1282) $) 142) (((-1282) $ (-570) (-570)) 201)) (-3891 (((-1129) $) NIL)) (-3146 (((-650 (-912 |#1|)) $) 143)) (-2057 (((-912 |#1|) $ (-777)) 150)) (-2650 (((-777) $) 157)) (-2869 (((-868) $) 174) (((-650 (-912 |#1|)) $) 28) (($ (-650 (-912 |#1|))) 161)) (-1344 (((-112) $ $) NIL)) (-1540 (((-650 |#1|) $) 159)) (-3892 (((-112) $ $) 194)) (-3945 (((-112) $ $) 192)) (-3918 (((-112) $ $) 191)))
-(((-911 |#1|) (-13 (-1109) (-10 -8 (-15 -2869 ((-650 (-912 |#1|)) $)) (-15 -3146 ((-650 (-912 |#1|)) $)) (-15 -2057 ((-912 |#1|) $ (-777))) (-15 -2066 ((-912 |#1|) $ (-570))) (-15 -2066 ((-912 |#1|) $)) (-15 -3995 ((-777) $)) (-15 -2650 ((-777) $)) (-15 -1540 ((-650 |#1|) $)) (-15 -4420 ((-650 (-912 |#1|)) $)) (-15 -3878 ((-650 (-650 (-777))) $)) (-15 -2869 ($ (-650 (-912 |#1|)))) (-15 -1480 ($ (-650 (-912 |#1|)))) (-15 -3355 ((-1111 |#1|) $ |#1|)) (-15 -4289 ((-1111 (-1111 |#1|)) $)) (-15 -3355 ((-1111 (-1111 |#1|)) $ (-1111 |#1|))) (-15 -3355 ((-1111 (-650 |#1|)) $ (-650 |#1|))) (-15 -1314 ((-112) (-912 |#1|) $)) (-15 -3071 ((-650 (-777)) (-912 |#1|) $)) (-15 -4207 ((-650 (-777)) (-912 |#1|) $)) (-15 -3230 ((-1111 |#1|) $)) (-15 -3918 ((-112) $ $)) (-15 -3945 ((-112) $ $)) (-15 -2212 ((-1282) $)) (-15 -2212 ((-1282) $ (-570) (-570))))) (-1109)) (T -911))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1109)))) (-2066 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1109)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-912 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-777)))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3)))) (-3355 (*1 *2 *1 *3) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-1111 (-1111 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3355 (*1 *2 *1 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-911 *4)) (-5 *3 (-1111 *4)))) (-3355 (*1 *2 *1 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-650 *4))) (-5 *1 (-911 *4)) (-5 *3 (-650 *4)))) (-1314 (*1 *2 *3 *1) (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-911 *4)))) (-3071 (*1 *2 *3 *1) (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777))) (-5 *1 (-911 *4)))) (-4207 (*1 *2 *3 *1) (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777))) (-5 *1 (-911 *4)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3918 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3945 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2212 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-911 *4)) (-4 *4 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -2869 ((-650 (-912 |#1|)) $)) (-15 -3146 ((-650 (-912 |#1|)) $)) (-15 -2057 ((-912 |#1|) $ (-777))) (-15 -2066 ((-912 |#1|) $ (-570))) (-15 -2066 ((-912 |#1|) $)) (-15 -3995 ((-777) $)) (-15 -2650 ((-777) $)) (-15 -1540 ((-650 |#1|) $)) (-15 -4420 ((-650 (-912 |#1|)) $)) (-15 -3878 ((-650 (-650 (-777))) $)) (-15 -2869 ($ (-650 (-912 |#1|)))) (-15 -1480 ($ (-650 (-912 |#1|)))) (-15 -3355 ((-1111 |#1|) $ |#1|)) (-15 -4289 ((-1111 (-1111 |#1|)) $)) (-15 -3355 ((-1111 (-1111 |#1|)) $ (-1111 |#1|))) (-15 -3355 ((-1111 (-650 |#1|)) $ (-650 |#1|))) (-15 -1314 ((-112) (-912 |#1|) $)) (-15 -3071 ((-650 (-777)) (-912 |#1|) $)) (-15 -4207 ((-650 (-777)) (-912 |#1|) $)) (-15 -3230 ((-1111 |#1|) $)) (-15 -3918 ((-112) $ $)) (-15 -3945 ((-112) $ $)) (-15 -2212 ((-1282) $)) (-15 -2212 ((-1282) $ (-570) (-570)))))
-((-2847 (((-112) $ $) NIL)) (-3230 (((-1111 |#1|) $) 60)) (-2018 (((-650 $) (-650 $)) 103)) (-2419 (((-570) $) 83)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-3995 (((-777) $) 80)) (-3355 (((-1111 |#1|) $ |#1|) 70)) (-2005 (((-112) $) NIL)) (-1973 (((-112) $) 88)) (-2924 (((-777) $) 84)) (-1908 (($ $ $) NIL (-3749 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-1764 (($ $ $) NIL (-3749 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-2507 (((-2 (|:| |preimage| (-650 |#1|)) (|:| |image| (-650 |#1|))) $) 55)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 130)) (-3891 (((-1129) $) NIL)) (-3537 (((-1111 |#1|) $) 136 (|has| |#1| (-373)))) (-2160 (((-112) $) 81)) (-2057 ((|#1| $ |#1|) 68)) (-2650 (((-777) $) 62)) (-2120 (($ (-650 (-650 |#1|))) 118)) (-3340 (((-980) $) 74)) (-4074 (($ (-650 |#1|)) 32)) (-2733 (($ $ $) NIL)) (-2319 (($ $ $) NIL)) (-2944 (($ (-650 (-650 |#1|))) 57)) (-3621 (($ (-650 (-650 |#1|))) 123)) (-3170 (($ (-650 |#1|)) 132)) (-2869 (((-868) $) 117) (($ (-650 (-650 |#1|))) 91) (($ (-650 |#1|)) 92)) (-1344 (((-112) $ $) NIL)) (-1998 (($) 24 T CONST)) (-3959 (((-112) $ $) NIL (-3749 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-3933 (((-112) $ $) NIL (-3749 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-3892 (((-112) $ $) 66)) (-3945 (((-112) $ $) NIL (-3749 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-3918 (((-112) $ $) 90)) (-4013 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ $ $) 33)))
-(((-912 |#1|) (-13 (-910 |#1|) (-10 -8 (-15 -2507 ((-2 (|:| |preimage| (-650 |#1|)) (|:| |image| (-650 |#1|))) $)) (-15 -2944 ($ (-650 (-650 |#1|)))) (-15 -2869 ($ (-650 (-650 |#1|)))) (-15 -2869 ($ (-650 |#1|))) (-15 -3621 ($ (-650 (-650 |#1|)))) (-15 -2650 ((-777) $)) (-15 -3340 ((-980) $)) (-15 -3995 ((-777) $)) (-15 -2924 ((-777) $)) (-15 -2419 ((-570) $)) (-15 -2160 ((-112) $)) (-15 -1973 ((-112) $)) (-15 -2018 ((-650 $) (-650 $))) (IF (|has| |#1| (-373)) (-15 -3537 ((-1111 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-551)) (-15 -3170 ($ (-650 |#1|))) (IF (|has| |#1| (-373)) (-15 -3170 ($ (-650 |#1|))) |%noBranch|)))) (-1109)) (T -912))
-((-2507 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-650 *3)) (|:| |image| (-650 *3)))) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2944 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-980)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-912 *3)) (-4 *3 (-373)) (-4 *3 (-1109)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3)))))
-(-13 (-910 |#1|) (-10 -8 (-15 -2507 ((-2 (|:| |preimage| (-650 |#1|)) (|:| |image| (-650 |#1|))) $)) (-15 -2944 ($ (-650 (-650 |#1|)))) (-15 -2869 ($ (-650 (-650 |#1|)))) (-15 -2869 ($ (-650 |#1|))) (-15 -3621 ($ (-650 (-650 |#1|)))) (-15 -2650 ((-777) $)) (-15 -3340 ((-980) $)) (-15 -3995 ((-777) $)) (-15 -2924 ((-777) $)) (-15 -2419 ((-570) $)) (-15 -2160 ((-112) $)) (-15 -1973 ((-112) $)) (-15 -2018 ((-650 $) (-650 $))) (IF (|has| |#1| (-373)) (-15 -3537 ((-1111 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-551)) (-15 -3170 ($ (-650 |#1|))) (IF (|has| |#1| (-373)) (-15 -3170 ($ (-650 |#1|))) |%noBranch|))))
-((-3548 (((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|)) 160)) (-1582 ((|#1|) 97)) (-1396 (((-424 (-1182 |#4|)) (-1182 |#4|)) 169)) (-3384 (((-424 (-1182 |#4|)) (-650 |#3|) (-1182 |#4|)) 84)) (-4426 (((-424 (-1182 |#4|)) (-1182 |#4|)) 179)) (-4118 (((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|) |#3|) 113)))
-(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3548 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|))) (-15 -4426 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -1396 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -1582 (|#1|)) (-15 -4118 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|) |#3|)) (-15 -3384 ((-424 (-1182 |#4|)) (-650 |#3|) (-1182 |#4|)))) (-916) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -913))
-((-3384 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *7)) (-4 *7 (-856)) (-4 *5 (-916)) (-4 *6 (-799)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-424 (-1182 *8))) (-5 *1 (-913 *5 *6 *7 *8)) (-5 *4 (-1182 *8)))) (-4118 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7)) (-4 *7 (-956 *5 *6 *4)) (-4 *5 (-916)) (-4 *6 (-799)) (-4 *4 (-856)) (-5 *1 (-913 *5 *6 *4 *7)))) (-1582 (*1 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-1396 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-4426 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-3548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-913 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3548 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|))) (-15 -4426 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -1396 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -1582 (|#1|)) (-15 -4118 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|) |#3|)) (-15 -3384 ((-424 (-1182 |#4|)) (-650 |#3|) (-1182 |#4|))))
-((-3548 (((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|)) 39)) (-1582 ((|#1|) 72)) (-1396 (((-424 (-1182 |#2|)) (-1182 |#2|)) 121)) (-3384 (((-424 (-1182 |#2|)) (-1182 |#2|)) 105)) (-4426 (((-424 (-1182 |#2|)) (-1182 |#2|)) 132)))
-(((-914 |#1| |#2|) (-10 -7 (-15 -3548 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|))) (-15 -4426 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -1396 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -1582 (|#1|)) (-15 -3384 ((-424 (-1182 |#2|)) (-1182 |#2|)))) (-916) (-1253 |#1|)) (T -914))
-((-3384 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1253 *4)) (-5 *2 (-424 (-1182 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))) (-1582 (*1 *2) (-12 (-4 *2 (-916)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1253 *2)))) (-1396 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1253 *4)) (-5 *2 (-424 (-1182 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))) (-4426 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1253 *4)) (-5 *2 (-424 (-1182 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))) (-3548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-916)) (-5 *1 (-914 *4 *5)))))
-(-10 -7 (-15 -3548 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|))) (-15 -4426 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -1396 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -1582 (|#1|)) (-15 -3384 ((-424 (-1182 |#2|)) (-1182 |#2|))))
-((-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 42)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 18)) (-1660 (((-3 $ "failed") $) 36)))
-(((-915 |#1|) (-10 -8 (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)))) (-916)) (T -915))
-NIL
-(-10 -8 (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-3585 (((-424 (-1182 $)) (-1182 $)) 66)) (-3312 (($ $) 57)) (-2929 (((-424 $) $) 58)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 63)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2145 (((-112) $) 59)) (-2005 (((-112) $) 35)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-4187 (((-424 (-1182 $)) (-1182 $)) 64)) (-2874 (((-424 (-1182 $)) (-1182 $)) 65)) (-2340 (((-424 $) $) 56)) (-2837 (((-3 $ "failed") $ $) 48)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 62 (|has| $ (-146)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-1660 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-916) (-141)) (T -916))
-((-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-916)))) (-3585 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))) (-2874 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))) (-4187 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))) (-3208 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *1))) (-5 *3 (-1182 *1)) (-4 *1 (-916)))) (-2561 (*1 *2 *3) (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-146)) (-4 *1 (-916)) (-5 *2 (-1277 *1)))) (-1660 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-916)))))
-(-13 (-1231) (-10 -8 (-15 -3585 ((-424 (-1182 $)) (-1182 $))) (-15 -2874 ((-424 (-1182 $)) (-1182 $))) (-15 -4187 ((-424 (-1182 $)) (-1182 $))) (-15 -2942 ((-1182 $) (-1182 $) (-1182 $))) (-15 -3208 ((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $))) (IF (|has| $ (-146)) (PROGN (-15 -2561 ((-3 (-1277 $) "failed") (-695 $))) (-15 -1660 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-1516 (((-112) $) NIL)) (-1521 (((-777)) NIL)) (-1439 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-2000 (((-1199 (-928) (-777)) (-570)) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 $ "failed") $) NIL)) (-4387 (($ $) NIL)) (-2615 (($ (-1277 $)) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2310 (($) NIL)) (-4240 (((-112) $) NIL)) (-2118 (($ $) NIL) (($ $ (-777)) NIL)) (-2145 (((-112) $) NIL)) (-3995 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-2005 (((-112) $) NIL)) (-3284 (($) NIL (|has| $ (-373)))) (-3531 (((-112) $) NIL (|has| $ (-373)))) (-3046 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-3525 (((-3 $ "failed") $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3658 (((-1182 $) $ (-928)) NIL (|has| $ (-373))) (((-1182 $) $) NIL)) (-1997 (((-928) $) NIL)) (-1716 (((-1182 $) $) NIL (|has| $ (-373)))) (-3051 (((-3 (-1182 $) "failed") $ $) NIL (|has| $ (-373))) (((-1182 $) $) NIL (|has| $ (-373)))) (-4333 (($ $ (-1182 $)) NIL (|has| $ (-373)))) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL T CONST)) (-4298 (($ (-928)) NIL)) (-3031 (((-112) $) NIL)) (-3891 (((-1129) $) NIL)) (-3643 (($) NIL (|has| $ (-373)))) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL)) (-2340 (((-424 $) $) NIL)) (-3172 (((-928)) NIL) (((-839 (-928))) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-4058 (((-3 (-777) "failed") $ $) NIL) (((-777) $) NIL)) (-4388 (((-135)) NIL)) (-2375 (($ $ (-777)) NIL) (($ $) NIL)) (-2650 (((-928) $) NIL) (((-839 (-928)) $) NIL)) (-3144 (((-1182 $)) NIL)) (-1900 (($) NIL)) (-2229 (($) NIL (|has| $ (-373)))) (-2987 (((-695 $) (-1277 $)) NIL) (((-1277 $) $) NIL)) (-2601 (((-570) $) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL)) (-1660 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $) (-928)) NIL) (((-1277 $)) NIL)) (-2939 (((-112) $ $) NIL)) (-1600 (((-112) $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-4257 (($ $ (-777)) NIL (|has| $ (-373))) (($ $) NIL (|has| $ (-373)))) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-917 |#1|) (-13 (-354) (-333 $) (-620 (-570))) (-928)) (T -917))
-NIL
-(-13 (-354) (-333 $) (-620 (-570)))
-((-3476 (((-3 (-2 (|:| -3995 (-777)) (|:| -3746 |#5|)) "failed") (-341 |#2| |#3| |#4| |#5|)) 77)) (-1731 (((-112) (-341 |#2| |#3| |#4| |#5|)) 17)) (-3995 (((-3 (-777) "failed") (-341 |#2| |#3| |#4| |#5|)) 15)))
-(((-918 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3995 ((-3 (-777) "failed") (-341 |#2| |#3| |#4| |#5|))) (-15 -1731 ((-112) (-341 |#2| |#3| |#4| |#5|))) (-15 -3476 ((-3 (-2 (|:| -3995 (-777)) (|:| -3746 |#5|)) "failed") (-341 |#2| |#3| |#4| |#5|)))) (-13 (-562) (-1047 (-570))) (-436 |#1|) (-1253 |#2|) (-1253 (-413 |#3|)) (-347 |#2| |#3| |#4|)) (T -918))
-((-3476 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-2 (|:| -3995 (-777)) (|:| -3746 *8))) (-5 *1 (-918 *4 *5 *6 *7 *8)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112)) (-5 *1 (-918 *4 *5 *6 *7 *8)))) (-3995 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-777)) (-5 *1 (-918 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3995 ((-3 (-777) "failed") (-341 |#2| |#3| |#4| |#5|))) (-15 -1731 ((-112) (-341 |#2| |#3| |#4| |#5|))) (-15 -3476 ((-3 (-2 (|:| -3995 (-777)) (|:| -3746 |#5|)) "failed") (-341 |#2| |#3| |#4| |#5|))))
-((-3476 (((-3 (-2 (|:| -3995 (-777)) (|:| -3746 |#3|)) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|)) 64)) (-1731 (((-112) (-341 (-413 (-570)) |#1| |#2| |#3|)) 16)) (-3995 (((-3 (-777) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|)) 14)))
-(((-919 |#1| |#2| |#3|) (-10 -7 (-15 -3995 ((-3 (-777) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -1731 ((-112) (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -3476 ((-3 (-2 (|:| -3995 (-777)) (|:| -3746 |#3|)) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|)))) (-1253 (-413 (-570))) (-1253 (-413 |#1|)) (-347 (-413 (-570)) |#1| |#2|)) (T -919))
-((-3476 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) (-4 *4 (-1253 (-413 (-570)))) (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-2 (|:| -3995 (-777)) (|:| -3746 *6))) (-5 *1 (-919 *4 *5 *6)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) (-4 *4 (-1253 (-413 (-570)))) (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6)))) (-3995 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) (-4 *4 (-1253 (-413 (-570)))) (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-777)) (-5 *1 (-919 *4 *5 *6)))))
-(-10 -7 (-15 -3995 ((-3 (-777) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -1731 ((-112) (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -3476 ((-3 (-2 (|:| -3995 (-777)) (|:| -3746 |#3|)) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|))))
-((-1906 ((|#2| |#2|) 26)) (-4001 (((-570) (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))))) 15)) (-3780 (((-928) (-570)) 38)) (-3013 (((-570) |#2|) 45)) (-1359 (((-570) |#2|) 21) (((-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))) |#1|) 20)))
-(((-920 |#1| |#2|) (-10 -7 (-15 -3780 ((-928) (-570))) (-15 -1359 ((-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))) |#1|)) (-15 -1359 ((-570) |#2|)) (-15 -4001 ((-570) (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))))) (-15 -3013 ((-570) |#2|)) (-15 -1906 (|#2| |#2|))) (-1253 (-413 (-570))) (-1253 (-413 |#1|))) (T -920))
-((-1906 (*1 *2 *2) (-12 (-4 *3 (-1253 (-413 (-570)))) (-5 *1 (-920 *3 *2)) (-4 *2 (-1253 (-413 *3))))) (-3013 (*1 *2 *3) (-12 (-4 *4 (-1253 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3)) (-4 *3 (-1253 (-413 *4))))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))))) (-4 *4 (-1253 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *5)) (-4 *5 (-1253 (-413 *4))))) (-1359 (*1 *2 *3) (-12 (-4 *4 (-1253 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3)) (-4 *3 (-1253 (-413 *4))))) (-1359 (*1 *2 *3) (-12 (-4 *3 (-1253 (-413 (-570)))) (-5 *2 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))) (-5 *1 (-920 *3 *4)) (-4 *4 (-1253 (-413 *3))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-1253 (-413 *3))) (-5 *2 (-928)) (-5 *1 (-920 *4 *5)) (-4 *5 (-1253 (-413 *4))))))
-(-10 -7 (-15 -3780 ((-928) (-570))) (-15 -1359 ((-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))) |#1|)) (-15 -1359 ((-570) |#2|)) (-15 -4001 ((-570) (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))))) (-15 -3013 ((-570) |#2|)) (-15 -1906 (|#2| |#2|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 ((|#1| $) 100)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-2788 (($ $ $) NIL)) (-3957 (((-3 $ "failed") $) 94)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-4002 (($ |#1| (-424 |#1|)) 92)) (-2748 (((-1182 |#1|) |#1| |#1|) 53)) (-4120 (($ $) 61)) (-2005 (((-112) $) NIL)) (-4239 (((-570) $) 97)) (-4277 (($ $ (-570)) 99)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2084 ((|#1| $) 96)) (-4169 (((-424 |#1|) $) 95)) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) 93)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-3732 (($ $) 50)) (-2869 (((-868) $) 124) (($ (-570)) 73) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 41) (((-413 |#1|) $) 78) (($ (-413 (-424 |#1|))) 86)) (-2294 (((-777)) 71 T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) 26 T CONST)) (-1998 (($) 15 T CONST)) (-3892 (((-112) $ $) 87)) (-4013 (($ $ $) NIL)) (-4003 (($ $) 108) (($ $ $) NIL)) (-3992 (($ $ $) 49)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 110) (($ $ $) 48) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-921 |#1|) (-13 (-368) (-38 |#1|) (-10 -8 (-15 -2869 ((-413 |#1|) $)) (-15 -2869 ($ (-413 (-424 |#1|)))) (-15 -3732 ($ $)) (-15 -4169 ((-424 |#1|) $)) (-15 -2084 (|#1| $)) (-15 -4277 ($ $ (-570))) (-15 -4239 ((-570) $)) (-15 -2748 ((-1182 |#1|) |#1| |#1|)) (-15 -4120 ($ $)) (-15 -4002 ($ |#1| (-424 |#1|))) (-15 -3150 (|#1| $)))) (-311)) (T -921))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-413 (-424 *3))) (-4 *3 (-311)) (-5 *1 (-921 *3)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-424 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-2084 (*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-2748 (*1 *2 *3 *3) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-4120 (*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))) (-4002 (*1 *1 *2 *3) (-12 (-5 *3 (-424 *2)) (-4 *2 (-311)) (-5 *1 (-921 *2)))) (-3150 (*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))))
-(-13 (-368) (-38 |#1|) (-10 -8 (-15 -2869 ((-413 |#1|) $)) (-15 -2869 ($ (-413 (-424 |#1|)))) (-15 -3732 ($ $)) (-15 -4169 ((-424 |#1|) $)) (-15 -2084 (|#1| $)) (-15 -4277 ($ $ (-570))) (-15 -4239 ((-570) $)) (-15 -2748 ((-1182 |#1|) |#1| |#1|)) (-15 -4120 ($ $)) (-15 -4002 ($ |#1| (-424 |#1|))) (-15 -3150 (|#1| $))))
-((-4002 (((-52) (-959 |#1|) (-424 (-959 |#1|)) (-1186)) 17) (((-52) (-413 (-959 |#1|)) (-1186)) 18)))
-(((-922 |#1|) (-10 -7 (-15 -4002 ((-52) (-413 (-959 |#1|)) (-1186))) (-15 -4002 ((-52) (-959 |#1|) (-424 (-959 |#1|)) (-1186)))) (-13 (-311) (-148))) (T -922))
-((-4002 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-424 (-959 *6))) (-5 *5 (-1186)) (-5 *3 (-959 *6)) (-4 *6 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *6)))) (-4002 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *5)))))
-(-10 -7 (-15 -4002 ((-52) (-413 (-959 |#1|)) (-1186))) (-15 -4002 ((-52) (-959 |#1|) (-424 (-959 |#1|)) (-1186))))
-((-2355 ((|#4| (-650 |#4|)) 147) (((-1182 |#4|) (-1182 |#4|) (-1182 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3903 (((-1182 |#4|) (-650 (-1182 |#4|))) 140) (((-1182 |#4|) (-1182 |#4|) (-1182 |#4|)) 61) ((|#4| (-650 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
-(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3903 (|#4| |#4| |#4|)) (-15 -3903 (|#4| (-650 |#4|))) (-15 -3903 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -3903 ((-1182 |#4|) (-650 (-1182 |#4|)))) (-15 -2355 (|#4| |#4| |#4|)) (-15 -2355 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -2355 (|#4| (-650 |#4|)))) (-799) (-856) (-311) (-956 |#3| |#1| |#2|)) (T -923))
-((-2355 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)))) (-2355 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6)))) (-2355 (*1 *2 *2 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-650 (-1182 *7))) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-1182 *7)) (-5 *1 (-923 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-3903 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)))) (-3903 (*1 *2 *2 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4)))))
-(-10 -7 (-15 -3903 (|#4| |#4| |#4|)) (-15 -3903 (|#4| (-650 |#4|))) (-15 -3903 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -3903 ((-1182 |#4|) (-650 (-1182 |#4|)))) (-15 -2355 (|#4| |#4| |#4|)) (-15 -2355 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -2355 (|#4| (-650 |#4|))))
-((-1353 (((-911 (-570)) (-980)) 38) (((-911 (-570)) (-650 (-570))) 34)) (-3719 (((-911 (-570)) (-650 (-570))) 67) (((-911 (-570)) (-928)) 68)) (-3990 (((-911 (-570))) 39)) (-2941 (((-911 (-570))) 53) (((-911 (-570)) (-650 (-570))) 52)) (-4400 (((-911 (-570))) 51) (((-911 (-570)) (-650 (-570))) 50)) (-3479 (((-911 (-570))) 49) (((-911 (-570)) (-650 (-570))) 48)) (-3480 (((-911 (-570))) 47) (((-911 (-570)) (-650 (-570))) 46)) (-2588 (((-911 (-570))) 45) (((-911 (-570)) (-650 (-570))) 44)) (-1952 (((-911 (-570))) 55) (((-911 (-570)) (-650 (-570))) 54)) (-1402 (((-911 (-570)) (-650 (-570))) 72) (((-911 (-570)) (-928)) 74)) (-2553 (((-911 (-570)) (-650 (-570))) 69) (((-911 (-570)) (-928)) 70)) (-1703 (((-911 (-570)) (-650 (-570))) 65) (((-911 (-570)) (-928)) 66)) (-2608 (((-911 (-570)) (-650 (-928))) 57)))
-(((-924) (-10 -7 (-15 -3719 ((-911 (-570)) (-928))) (-15 -3719 ((-911 (-570)) (-650 (-570)))) (-15 -1703 ((-911 (-570)) (-928))) (-15 -1703 ((-911 (-570)) (-650 (-570)))) (-15 -2608 ((-911 (-570)) (-650 (-928)))) (-15 -2553 ((-911 (-570)) (-928))) (-15 -2553 ((-911 (-570)) (-650 (-570)))) (-15 -1402 ((-911 (-570)) (-928))) (-15 -1402 ((-911 (-570)) (-650 (-570)))) (-15 -2588 ((-911 (-570)) (-650 (-570)))) (-15 -2588 ((-911 (-570)))) (-15 -3480 ((-911 (-570)) (-650 (-570)))) (-15 -3480 ((-911 (-570)))) (-15 -3479 ((-911 (-570)) (-650 (-570)))) (-15 -3479 ((-911 (-570)))) (-15 -4400 ((-911 (-570)) (-650 (-570)))) (-15 -4400 ((-911 (-570)))) (-15 -2941 ((-911 (-570)) (-650 (-570)))) (-15 -2941 ((-911 (-570)))) (-15 -1952 ((-911 (-570)) (-650 (-570)))) (-15 -1952 ((-911 (-570)))) (-15 -3990 ((-911 (-570)))) (-15 -1353 ((-911 (-570)) (-650 (-570)))) (-15 -1353 ((-911 (-570)) (-980))))) (T -924))
-((-1353 (*1 *2 *3) (-12 (-5 *3 (-980)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3990 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1952 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2941 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-4400 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3479 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3480 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2588 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(-10 -7 (-15 -3719 ((-911 (-570)) (-928))) (-15 -3719 ((-911 (-570)) (-650 (-570)))) (-15 -1703 ((-911 (-570)) (-928))) (-15 -1703 ((-911 (-570)) (-650 (-570)))) (-15 -2608 ((-911 (-570)) (-650 (-928)))) (-15 -2553 ((-911 (-570)) (-928))) (-15 -2553 ((-911 (-570)) (-650 (-570)))) (-15 -1402 ((-911 (-570)) (-928))) (-15 -1402 ((-911 (-570)) (-650 (-570)))) (-15 -2588 ((-911 (-570)) (-650 (-570)))) (-15 -2588 ((-911 (-570)))) (-15 -3480 ((-911 (-570)) (-650 (-570)))) (-15 -3480 ((-911 (-570)))) (-15 -3479 ((-911 (-570)) (-650 (-570)))) (-15 -3479 ((-911 (-570)))) (-15 -4400 ((-911 (-570)) (-650 (-570)))) (-15 -4400 ((-911 (-570)))) (-15 -2941 ((-911 (-570)) (-650 (-570)))) (-15 -2941 ((-911 (-570)))) (-15 -1952 ((-911 (-570)) (-650 (-570)))) (-15 -1952 ((-911 (-570)))) (-15 -3990 ((-911 (-570)))) (-15 -1353 ((-911 (-570)) (-650 (-570)))) (-15 -1353 ((-911 (-570)) (-980))))
-((-1607 (((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186))) 14)) (-1840 (((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186))) 13)))
-(((-925 |#1|) (-10 -7 (-15 -1840 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -1607 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186))))) (-458)) (T -925))
-((-1607 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458)) (-5 *1 (-925 *4)))) (-1840 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458)) (-5 *1 (-925 *4)))))
-(-10 -7 (-15 -1840 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -1607 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)))))
-((-2869 (((-320 |#1|) (-483)) 16)))
-(((-926 |#1|) (-10 -7 (-15 -2869 ((-320 |#1|) (-483)))) (-562)) (T -926))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-320 *4)) (-5 *1 (-926 *4)) (-4 *4 (-562)))))
-(-10 -7 (-15 -2869 ((-320 |#1|) (-483))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2005 (((-112) $) 35)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-927) (-141)) (T -927))
-((-2762 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-2 (|:| -1747 (-650 *1)) (|:| -3643 *1))) (-5 *3 (-650 *1)))) (-4128 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-927)))))
-(-13 (-458) (-10 -8 (-15 -2762 ((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $))) (-15 -4128 ((-3 (-650 $) "failed") (-650 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3903 (($ $ $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-1998 (($) NIL T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ $ $) NIL)))
-(((-928) (-13 (-800) (-732) (-10 -8 (-15 -3903 ($ $ $)) (-6 (-4454 "*"))))) (T -928))
-((-3903 (*1 *1 *1 *1) (-5 *1 (-928))))
-(-13 (-800) (-732) (-10 -8 (-15 -3903 ($ $ $)) (-6 (-4454 "*"))))
+((-2965 (((-699 (-1237)) $ (-1237)) NIL)) (-3979 (((-699 (-557)) $ (-557)) NIL)) (-4087 (((-779) $ (-129)) NIL)) (-4007 (((-699 (-130)) $ (-130)) 22)) (-1641 (($ (-396)) 12) (($ (-1170)) 14)) (-3520 (((-112) $) 19)) (-3491 (((-870) $) 26)) (-3725 (($ $) 23)))
+(((-869) (-13 (-868) (-621 (-870)) (-10 -8 (-15 -1641 ($ (-396))) (-15 -1641 ($ (-1170))) (-15 -3520 ((-112) $))))) (T -869))
+((-1641 (*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-869)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-869)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869)))))
+(-13 (-868) (-621 (-870)) (-10 -8 (-15 -1641 ($ (-396))) (-15 -1641 ($ (-1170))) (-15 -3520 ((-112) $))))
+((-3464 (((-112) $ $) NIL) (($ $ $) 85)) (-1825 (($ $ $) 125)) (-2854 (((-572) $) 31) (((-572)) 36)) (-3529 (($ (-572)) 53)) (-4061 (($ $ $) 54) (($ (-652 $)) 84)) (-2326 (($ $ (-652 $)) 82)) (-3500 (((-572) $) 34)) (-2860 (($ $ $) 73)) (-1847 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1588 (((-572) $) 33)) (-4362 (($ $ $) 72)) (-2271 (($ $) 114)) (-2952 (($ $ $) 129)) (-2727 (($ (-652 $)) 61)) (-2053 (($ $ (-652 $)) 79)) (-4157 (($ (-572) (-572)) 55)) (-4416 (($ $) 126) (($ $ $) 127)) (-3058 (($ $ (-572)) 43) (($ $) 46)) (-3407 (($ $ $) 97)) (-3402 (($ $ $) 132)) (-3373 (($ $) 115)) (-3418 (($ $ $) 98)) (-2896 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-4116 (((-1284) $) 10)) (-2480 (($ $) 118) (($ $ (-779)) 122)) (-4033 (($ $ $) 75)) (-2450 (($ $ $) 74)) (-3114 (($ $ (-652 $)) 110)) (-3381 (($ $ $) 113)) (-4291 (($ (-652 $)) 59)) (-3666 (($ $) 70) (($ (-652 $)) 71)) (-3639 (($ $ $) 123)) (-3344 (($ $) 116)) (-1990 (($ $ $) 128)) (-2255 (($ (-572)) 21) (($ (-1188)) 23) (($ (-1170)) 30) (($ (-227)) 25)) (-3814 (($ $ $) 101)) (-3795 (($ $) 102)) (-1891 (((-1284) (-1170)) 15)) (-1418 (($ (-1170)) 14)) (-1793 (($ (-652 (-652 $))) 58)) (-3041 (($ $ (-572)) 42) (($ $) 45)) (-3618 (((-1170) $) NIL)) (-2391 (($ $ $) 131)) (-3137 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-4124 (((-112) $) 108)) (-1988 (($ $ (-652 $)) 111) (($ $ $ $) 112)) (-2513 (($ (-572)) 39)) (-3920 (((-572) $) 32) (((-572)) 35)) (-1547 (($ $ $) 40) (($ (-652 $)) 83)) (-2614 (((-1131) $) NIL)) (-3453 (($ $ $) 99)) (-1321 (($) 13)) (-2679 (($ $ (-652 $)) 109)) (-2467 (((-1170) (-1170)) 8)) (-1606 (($ $) 117) (($ $ (-779)) 121)) (-3442 (($ $ $) 96)) (-3011 (($ $ (-779)) 139)) (-1979 (($ (-652 $)) 60)) (-3491 (((-870) $) 19)) (-2376 (($ $ (-572)) 41) (($ $) 44)) (-2653 (($ $) 68) (($ (-652 $)) 69)) (-3826 (($ $) 66) (($ (-652 $)) 67)) (-1850 (($ $) 124)) (-2353 (($ (-652 $)) 65)) (-3337 (($ $ $) 105)) (-3424 (((-112) $ $) NIL)) (-4278 (($ $ $) 130)) (-3804 (($ $ $) 100)) (-2479 (($ $ $) 103) (($ $) 104)) (-3976 (($ $ $) 89)) (-3954 (($ $ $) 87)) (-3921 (((-112) $ $) 16) (($ $ $) 17)) (-3965 (($ $ $) 88)) (-3943 (($ $ $) 86)) (-4029 (($ $ $) 94)) (-4018 (($ $ $) 91) (($ $) 92)) (-4005 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-870) (-13 (-1111) (-10 -8 (-15 -4116 ((-1284) $)) (-15 -1418 ($ (-1170))) (-15 -1891 ((-1284) (-1170))) (-15 -2255 ($ (-572))) (-15 -2255 ($ (-1188))) (-15 -2255 ($ (-1170))) (-15 -2255 ($ (-227))) (-15 -1321 ($)) (-15 -2467 ((-1170) (-1170))) (-15 -2854 ((-572) $)) (-15 -3920 ((-572) $)) (-15 -2854 ((-572))) (-15 -3920 ((-572))) (-15 -1588 ((-572) $)) (-15 -3500 ((-572) $)) (-15 -2513 ($ (-572))) (-15 -3529 ($ (-572))) (-15 -4157 ($ (-572) (-572))) (-15 -3041 ($ $ (-572))) (-15 -3058 ($ $ (-572))) (-15 -2376 ($ $ (-572))) (-15 -3041 ($ $)) (-15 -3058 ($ $)) (-15 -2376 ($ $)) (-15 -1547 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -1547 ($ (-652 $))) (-15 -4061 ($ (-652 $))) (-15 -3114 ($ $ (-652 $))) (-15 -1988 ($ $ (-652 $))) (-15 -1988 ($ $ $ $)) (-15 -3381 ($ $ $)) (-15 -4124 ((-112) $)) (-15 -2679 ($ $ (-652 $))) (-15 -2271 ($ $)) (-15 -2391 ($ $ $)) (-15 -1850 ($ $)) (-15 -1793 ($ (-652 (-652 $)))) (-15 -1825 ($ $ $)) (-15 -4416 ($ $)) (-15 -4416 ($ $ $)) (-15 -1990 ($ $ $)) (-15 -2952 ($ $ $)) (-15 -4278 ($ $ $)) (-15 -3402 ($ $ $)) (-15 -3011 ($ $ (-779))) (-15 -3337 ($ $ $)) (-15 -4362 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -2450 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -2053 ($ $ (-652 $))) (-15 -2326 ($ $ (-652 $))) (-15 -3373 ($ $)) (-15 -1606 ($ $)) (-15 -1606 ($ $ (-779))) (-15 -2480 ($ $)) (-15 -2480 ($ $ (-779))) (-15 -3344 ($ $)) (-15 -3639 ($ $ $)) (-15 -1847 ($ $)) (-15 -1847 ($ $ $)) (-15 -1847 ($ $ $ $)) (-15 -2896 ($ $)) (-15 -2896 ($ $ $)) (-15 -2896 ($ $ $ $)) (-15 -3137 ($ $)) (-15 -3137 ($ $ $)) (-15 -3137 ($ $ $ $)) (-15 -3826 ($ $)) (-15 -3826 ($ (-652 $))) (-15 -2653 ($ $)) (-15 -2653 ($ (-652 $))) (-15 -3666 ($ $)) (-15 -3666 ($ (-652 $))) (-15 -4291 ($ (-652 $))) (-15 -1979 ($ (-652 $))) (-15 -2727 ($ (-652 $))) (-15 -2353 ($ (-652 $))) (-15 -3921 ($ $ $)) (-15 -3464 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3954 ($ $ $)) (-15 -3965 ($ $ $)) (-15 -3976 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ $)) (-15 * ($ $ $)) (-15 -4029 ($ $ $)) (-15 ** ($ $ $)) (-15 -3442 ($ $ $)) (-15 -3407 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -3453 ($ $ $)) (-15 -3804 ($ $ $)) (-15 -3814 ($ $ $)) (-15 -3795 ($ $)) (-15 -2479 ($ $ $)) (-15 -2479 ($ $))))) (T -870))
+((-4116 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-870)))) (-1418 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-870)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-870)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-870)))) (-1321 (*1 *1) (-5 *1 (-870))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-2854 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3920 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-2513 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-4157 (*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3041 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3058 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))) (-3041 (*1 *1 *1) (-5 *1 (-870))) (-3058 (*1 *1 *1) (-5 *1 (-870))) (-2376 (*1 *1 *1) (-5 *1 (-870))) (-1547 (*1 *1 *1 *1) (-5 *1 (-870))) (-4061 (*1 *1 *1 *1) (-5 *1 (-870))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-4061 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3114 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-1988 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-3381 (*1 *1 *1 *1) (-5 *1 (-870))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-2271 (*1 *1 *1) (-5 *1 (-870))) (-2391 (*1 *1 *1 *1) (-5 *1 (-870))) (-1850 (*1 *1 *1) (-5 *1 (-870))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-870)))) (-1825 (*1 *1 *1 *1) (-5 *1 (-870))) (-4416 (*1 *1 *1) (-5 *1 (-870))) (-4416 (*1 *1 *1 *1) (-5 *1 (-870))) (-1990 (*1 *1 *1 *1) (-5 *1 (-870))) (-2952 (*1 *1 *1 *1) (-5 *1 (-870))) (-4278 (*1 *1 *1 *1) (-5 *1 (-870))) (-3402 (*1 *1 *1 *1) (-5 *1 (-870))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870)))) (-3337 (*1 *1 *1 *1) (-5 *1 (-870))) (-4362 (*1 *1 *1 *1) (-5 *1 (-870))) (-2860 (*1 *1 *1 *1) (-5 *1 (-870))) (-2450 (*1 *1 *1 *1) (-5 *1 (-870))) (-4033 (*1 *1 *1 *1) (-5 *1 (-870))) (-2053 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-2326 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3373 (*1 *1 *1) (-5 *1 (-870))) (-1606 (*1 *1 *1) (-5 *1 (-870))) (-1606 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870)))) (-2480 (*1 *1 *1) (-5 *1 (-870))) (-2480 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870)))) (-3344 (*1 *1 *1) (-5 *1 (-870))) (-3639 (*1 *1 *1 *1) (-5 *1 (-870))) (-1847 (*1 *1 *1) (-5 *1 (-870))) (-1847 (*1 *1 *1 *1) (-5 *1 (-870))) (-1847 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-2896 (*1 *1 *1) (-5 *1 (-870))) (-2896 (*1 *1 *1 *1) (-5 *1 (-870))) (-2896 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-3137 (*1 *1 *1) (-5 *1 (-870))) (-3137 (*1 *1 *1 *1) (-5 *1 (-870))) (-3137 (*1 *1 *1 *1 *1) (-5 *1 (-870))) (-3826 (*1 *1 *1) (-5 *1 (-870))) (-3826 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-2653 (*1 *1 *1) (-5 *1 (-870))) (-2653 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3666 (*1 *1 *1) (-5 *1 (-870))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-1979 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-2353 (*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))) (-3921 (*1 *1 *1 *1) (-5 *1 (-870))) (-3464 (*1 *1 *1 *1) (-5 *1 (-870))) (-3943 (*1 *1 *1 *1) (-5 *1 (-870))) (-3954 (*1 *1 *1 *1) (-5 *1 (-870))) (-3965 (*1 *1 *1 *1) (-5 *1 (-870))) (-3976 (*1 *1 *1 *1) (-5 *1 (-870))) (-4005 (*1 *1 *1 *1) (-5 *1 (-870))) (-4018 (*1 *1 *1 *1) (-5 *1 (-870))) (-4018 (*1 *1 *1) (-5 *1 (-870))) (* (*1 *1 *1 *1) (-5 *1 (-870))) (-4029 (*1 *1 *1 *1) (-5 *1 (-870))) (** (*1 *1 *1 *1) (-5 *1 (-870))) (-3442 (*1 *1 *1 *1) (-5 *1 (-870))) (-3407 (*1 *1 *1 *1) (-5 *1 (-870))) (-3418 (*1 *1 *1 *1) (-5 *1 (-870))) (-3453 (*1 *1 *1 *1) (-5 *1 (-870))) (-3804 (*1 *1 *1 *1) (-5 *1 (-870))) (-3814 (*1 *1 *1 *1) (-5 *1 (-870))) (-3795 (*1 *1 *1) (-5 *1 (-870))) (-2479 (*1 *1 *1 *1) (-5 *1 (-870))) (-2479 (*1 *1 *1) (-5 *1 (-870))))
+(-13 (-1111) (-10 -8 (-15 -4116 ((-1284) $)) (-15 -1418 ($ (-1170))) (-15 -1891 ((-1284) (-1170))) (-15 -2255 ($ (-572))) (-15 -2255 ($ (-1188))) (-15 -2255 ($ (-1170))) (-15 -2255 ($ (-227))) (-15 -1321 ($)) (-15 -2467 ((-1170) (-1170))) (-15 -2854 ((-572) $)) (-15 -3920 ((-572) $)) (-15 -2854 ((-572))) (-15 -3920 ((-572))) (-15 -1588 ((-572) $)) (-15 -3500 ((-572) $)) (-15 -2513 ($ (-572))) (-15 -3529 ($ (-572))) (-15 -4157 ($ (-572) (-572))) (-15 -3041 ($ $ (-572))) (-15 -3058 ($ $ (-572))) (-15 -2376 ($ $ (-572))) (-15 -3041 ($ $)) (-15 -3058 ($ $)) (-15 -2376 ($ $)) (-15 -1547 ($ $ $)) (-15 -4061 ($ $ $)) (-15 -1547 ($ (-652 $))) (-15 -4061 ($ (-652 $))) (-15 -3114 ($ $ (-652 $))) (-15 -1988 ($ $ (-652 $))) (-15 -1988 ($ $ $ $)) (-15 -3381 ($ $ $)) (-15 -4124 ((-112) $)) (-15 -2679 ($ $ (-652 $))) (-15 -2271 ($ $)) (-15 -2391 ($ $ $)) (-15 -1850 ($ $)) (-15 -1793 ($ (-652 (-652 $)))) (-15 -1825 ($ $ $)) (-15 -4416 ($ $)) (-15 -4416 ($ $ $)) (-15 -1990 ($ $ $)) (-15 -2952 ($ $ $)) (-15 -4278 ($ $ $)) (-15 -3402 ($ $ $)) (-15 -3011 ($ $ (-779))) (-15 -3337 ($ $ $)) (-15 -4362 ($ $ $)) (-15 -2860 ($ $ $)) (-15 -2450 ($ $ $)) (-15 -4033 ($ $ $)) (-15 -2053 ($ $ (-652 $))) (-15 -2326 ($ $ (-652 $))) (-15 -3373 ($ $)) (-15 -1606 ($ $)) (-15 -1606 ($ $ (-779))) (-15 -2480 ($ $)) (-15 -2480 ($ $ (-779))) (-15 -3344 ($ $)) (-15 -3639 ($ $ $)) (-15 -1847 ($ $)) (-15 -1847 ($ $ $)) (-15 -1847 ($ $ $ $)) (-15 -2896 ($ $)) (-15 -2896 ($ $ $)) (-15 -2896 ($ $ $ $)) (-15 -3137 ($ $)) (-15 -3137 ($ $ $)) (-15 -3137 ($ $ $ $)) (-15 -3826 ($ $)) (-15 -3826 ($ (-652 $))) (-15 -2653 ($ $)) (-15 -2653 ($ (-652 $))) (-15 -3666 ($ $)) (-15 -3666 ($ (-652 $))) (-15 -4291 ($ (-652 $))) (-15 -1979 ($ (-652 $))) (-15 -2727 ($ (-652 $))) (-15 -2353 ($ (-652 $))) (-15 -3921 ($ $ $)) (-15 -3464 ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3954 ($ $ $)) (-15 -3965 ($ $ $)) (-15 -3976 ($ $ $)) (-15 -4005 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ $)) (-15 * ($ $ $)) (-15 -4029 ($ $ $)) (-15 ** ($ $ $)) (-15 -3442 ($ $ $)) (-15 -3407 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -3453 ($ $ $)) (-15 -3804 ($ $ $)) (-15 -3814 ($ $ $)) (-15 -3795 ($ $)) (-15 -2479 ($ $ $)) (-15 -2479 ($ $))))
+((-2018 (((-1284) (-652 (-52))) 23)) (-4323 (((-1284) (-1170) (-870)) 13) (((-1284) (-870)) 8) (((-1284) (-1170)) 10)))
+(((-871) (-10 -7 (-15 -4323 ((-1284) (-1170))) (-15 -4323 ((-1284) (-870))) (-15 -4323 ((-1284) (-1170) (-870))) (-15 -2018 ((-1284) (-652 (-52)))))) (T -871))
+((-2018 (*1 *2 *3) (-12 (-5 *3 (-652 (-52))) (-5 *2 (-1284)) (-5 *1 (-871)))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-871)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-871)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-871)))))
+(-10 -7 (-15 -4323 ((-1284) (-1170))) (-15 -4323 ((-1284) (-870))) (-15 -4323 ((-1284) (-1170) (-870))) (-15 -2018 ((-1284) (-652 (-52)))))
+((-3464 (((-112) $ $) NIL)) (-2043 (((-3 $ "failed") (-1188)) 36)) (-3037 (((-779)) 32)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) 29)) (-3618 (((-1170) $) 43)) (-1795 (($ (-930)) 28)) (-2614 (((-1131) $) NIL)) (-3222 (((-1188) $) 13) (((-544) $) 19) (((-901 (-386)) $) 26) (((-901 (-572)) $) 22)) (-3491 (((-870) $) 16)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 40)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 38)))
+(((-872 |#1|) (-13 (-852) (-622 (-1188)) (-622 (-544)) (-622 (-901 (-386))) (-622 (-901 (-572))) (-10 -8 (-15 -2043 ((-3 $ "failed") (-1188))))) (-652 (-1188))) (T -872))
+((-2043 (*1 *1 *2) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-872 *3)) (-14 *3 (-652 *2)))))
+(-13 (-852) (-622 (-1188)) (-622 (-544)) (-622 (-901 (-386))) (-622 (-901 (-572))) (-10 -8 (-15 -2043 ((-3 $ "failed") (-1188)))))
+((-3464 (((-112) $ $) NIL)) (-2402 (((-514) $) 9)) (-2396 (((-652 (-447)) $) 13)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 21)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 16)))
+(((-873) (-13 (-1111) (-10 -8 (-15 -2402 ((-514) $)) (-15 -2396 ((-652 (-447)) $))))) (T -873))
+((-2402 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-873)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-652 (-447))) (-5 *1 (-873)))))
+(-13 (-1111) (-10 -8 (-15 -2402 ((-514) $)) (-15 -2396 ((-652 (-447)) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-961 |#1|)) NIL) (((-961 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-2455 (((-779)) NIL T CONST)) (-2184 (((-1284) (-779)) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4029 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-874 |#1| |#2| |#3| |#4|) (-13 (-1060) (-498 (-961 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -4029 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2184 ((-1284) (-779))))) (-1060) (-652 (-1188)) (-652 (-779)) (-779)) (T -874))
+((-4029 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-874 *2 *3 *4 *5)) (-4 *2 (-370)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-779))) (-14 *5 (-779)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-874 *4 *5 *6 *7)) (-4 *4 (-1060)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 *3)) (-14 *7 *3))))
+(-13 (-1060) (-498 (-961 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -4029 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2184 ((-1284) (-779)))))
+((-2367 (((-3 (-176 |#3|) "failed") (-779) (-779) |#2| |#2|) 38)) (-3482 (((-3 (-415 |#3|) "failed") (-779) (-779) |#2| |#2|) 29)))
+(((-875 |#1| |#2| |#3|) (-10 -7 (-15 -3482 ((-3 (-415 |#3|) "failed") (-779) (-779) |#2| |#2|)) (-15 -2367 ((-3 (-176 |#3|) "failed") (-779) (-779) |#2| |#2|))) (-370) (-1270 |#1|) (-1255 |#1|)) (T -875))
+((-2367 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-176 *6)) (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5)))) (-3482 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-415 *6)) (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5)))))
+(-10 -7 (-15 -3482 ((-3 (-415 |#3|) "failed") (-779) (-779) |#2| |#2|)) (-15 -2367 ((-3 (-176 |#3|) "failed") (-779) (-779) |#2| |#2|)))
+((-3482 (((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|)) 30) (((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) 28)))
+(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -3482 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (-15 -3482 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|)))) (-370) (-1188) |#1|) (T -876))
+((-3482 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370)) (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5))) (-5 *1 (-876 *5 *6 *7)))) (-3482 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370)) (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5))) (-5 *1 (-876 *5 *6 *7)))))
+(-10 -7 (-15 -3482 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (-15 -3482 ((-3 (-415 (-1252 |#2| |#1|)) "failed") (-779) (-779) (-1271 |#1| |#2| |#3|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-3093 (($ $ (-572)) 68)) (-4252 (((-112) $ $) 65)) (-1586 (($) 18 T CONST)) (-4416 (($ (-1184 (-572)) (-572)) 67)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-1710 (($ $) 70)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-2068 (((-779) $) 75)) (-4422 (((-112) $) 35)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2425 (((-572)) 72)) (-3160 (((-572) $) 71)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3103 (($ $ (-572)) 74)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-3005 (((-1168 (-572)) $) 76)) (-3610 (($ $) 73)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-4090 (((-572) $ (-572)) 69)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-877 |#1|) (-141) (-572)) (T -877))
+((-3005 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-1168 (-572))))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-779)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-3610 (*1 *1 *1) (-4 *1 (-877 *2))) (-2425 (*1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-1710 (*1 *1 *1) (-4 *1 (-877 *2))) (-4090 (*1 *2 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-3093 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))) (-4416 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *3 (-572)) (-4 *1 (-877 *4)))))
+(-13 (-313) (-148) (-10 -8 (-15 -3005 ((-1168 (-572)) $)) (-15 -2068 ((-779) $)) (-15 -3103 ($ $ (-572))) (-15 -3610 ($ $)) (-15 -2425 ((-572))) (-15 -3160 ((-572) $)) (-15 -1710 ($ $)) (-15 -4090 ((-572) $ (-572))) (-15 -3093 ($ $ (-572))) (-15 -4416 ($ (-1184 (-572)) (-572)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-313) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $ (-572)) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-4416 (($ (-1184 (-572)) (-572)) NIL)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1710 (($ $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-2068 (((-779) $) NIL)) (-4422 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2425 (((-572)) NIL)) (-3160 (((-572) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3103 (($ $ (-572)) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3005 (((-1168 (-572)) $) NIL)) (-3610 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-4090 (((-572) $ (-572)) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL)))
+(((-878 |#1|) (-877 |#1|) (-572)) (T -878))
+NIL
+(-877 |#1|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 (((-878 |#1|) $) NIL (|has| (-878 |#1|) (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| (-878 |#1|) (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-878 |#1|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| (-878 |#1|) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-878 |#1|) (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| (-878 |#1|) (-1049 (-572))))) (-1869 (((-878 |#1|) $) NIL) (((-1188) $) NIL (|has| (-878 |#1|) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-878 |#1|) (-1049 (-572)))) (((-572) $) NIL (|has| (-878 |#1|) (-1049 (-572))))) (-2569 (($ $) NIL) (($ (-572) $) NIL)) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-878 |#1|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-878 |#1|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-878 |#1|))) (|:| |vec| (-1279 (-878 |#1|)))) (-697 $) (-1279 $)) NIL) (((-697 (-878 |#1|)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-878 |#1|) (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| (-878 |#1|) (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-878 |#1|) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-878 |#1|) (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 (((-878 |#1|) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| (-878 |#1|) (-1163)))) (-4354 (((-112) $) NIL (|has| (-878 |#1|) (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| (-878 |#1|) (-858)))) (-3928 (($ $ $) NIL (|has| (-878 |#1|) (-858)))) (-3161 (($ (-1 (-878 |#1|) (-878 |#1|)) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-878 |#1|) (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| (-878 |#1|) (-313)))) (-1609 (((-878 |#1|) $) NIL (|has| (-878 |#1|) (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-878 |#1|) (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 (-878 |#1|)) (-652 (-878 |#1|))) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-878 |#1|) (-878 |#1|)) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-300 (-878 |#1|))) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-652 (-300 (-878 |#1|)))) NIL (|has| (-878 |#1|) (-315 (-878 |#1|)))) (($ $ (-652 (-1188)) (-652 (-878 |#1|))) NIL (|has| (-878 |#1|) (-522 (-1188) (-878 |#1|)))) (($ $ (-1188) (-878 |#1|)) NIL (|has| (-878 |#1|) (-522 (-1188) (-878 |#1|))))) (-4395 (((-779) $) NIL)) (-2679 (($ $ (-878 |#1|)) NIL (|has| (-878 |#1|) (-292 (-878 |#1|) (-878 |#1|))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| (-878 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-878 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1 (-878 |#1|) (-878 |#1|)) (-779)) NIL) (($ $ (-1 (-878 |#1|) (-878 |#1|))) NIL)) (-3982 (($ $) NIL)) (-2224 (((-878 |#1|) $) NIL)) (-3222 (((-901 (-572)) $) NIL (|has| (-878 |#1|) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-878 |#1|) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-878 |#1|) (-622 (-544)))) (((-386) $) NIL (|has| (-878 |#1|) (-1033))) (((-227) $) NIL (|has| (-878 |#1|) (-1033)))) (-2660 (((-176 (-415 (-572))) $) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-878 |#1|) (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL) (($ (-878 |#1|)) NIL) (($ (-1188)) NIL (|has| (-878 |#1|) (-1049 (-1188))))) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-878 |#1|) (-918))) (|has| (-878 |#1|) (-146))))) (-2455 (((-779)) NIL T CONST)) (-3441 (((-878 |#1|) $) NIL (|has| (-878 |#1|) (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-4090 (((-415 (-572)) $ (-572)) NIL)) (-2775 (($ $) NIL (|has| (-878 |#1|) (-828)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $) NIL (|has| (-878 |#1|) (-237))) (($ $ (-779)) NIL (|has| (-878 |#1|) (-237))) (($ $ (-1188)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-878 |#1|) (-909 (-1188)))) (($ $ (-1 (-878 |#1|) (-878 |#1|)) (-779)) NIL) (($ $ (-1 (-878 |#1|) (-878 |#1|))) NIL)) (-3976 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-878 |#1|) (-858)))) (-4029 (($ $ $) NIL) (($ (-878 |#1|) (-878 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-878 |#1|) $) NIL) (($ $ (-878 |#1|)) NIL)))
+(((-879 |#1|) (-13 (-1003 (-878 |#1|)) (-10 -8 (-15 -4090 ((-415 (-572)) $ (-572))) (-15 -2660 ((-176 (-415 (-572))) $)) (-15 -2569 ($ $)) (-15 -2569 ($ (-572) $)))) (-572)) (T -879))
+((-4090 (*1 *2 *1 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-879 *4)) (-14 *4 *3) (-5 *3 (-572)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-879 *3)) (-14 *3 (-572)))) (-2569 (*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-14 *2 (-572)))) (-2569 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-879 *3)) (-14 *3 *2))))
+(-13 (-1003 (-878 |#1|)) (-10 -8 (-15 -4090 ((-415 (-572)) $ (-572))) (-15 -2660 ((-176 (-415 (-572))) $)) (-15 -2569 ($ $)) (-15 -2569 ($ (-572) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 ((|#2| $) NIL (|has| |#2| (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| |#2| (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (|has| |#2| (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572))))) (-1869 ((|#2| $) NIL) (((-1188) $) NIL (|has| |#2| (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-572)))) (((-572) $) NIL (|has| |#2| (-1049 (-572))))) (-2569 (($ $) 35) (($ (-572) $) 38)) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) 64)) (-2688 (($) NIL (|has| |#2| (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) NIL (|has| |#2| (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| |#2| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| |#2| (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 ((|#2| $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#2| (-1163)))) (-4354 (((-112) $) NIL (|has| |#2| (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| |#2| (-858)))) (-3928 (($ $ $) NIL (|has| |#2| (-858)))) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 60)) (-3477 (($) NIL (|has| |#2| (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| |#2| (-313)))) (-1609 ((|#2| $) NIL (|has| |#2| (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 |#2|) (-652 |#2|)) NIL (|has| |#2| (-315 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-315 |#2|))) (($ $ (-300 |#2|)) NIL (|has| |#2| (-315 |#2|))) (($ $ (-652 (-300 |#2|))) NIL (|has| |#2| (-315 |#2|))) (($ $ (-652 (-1188)) (-652 |#2|)) NIL (|has| |#2| (-522 (-1188) |#2|))) (($ $ (-1188) |#2|) NIL (|has| |#2| (-522 (-1188) |#2|)))) (-4395 (((-779) $) NIL)) (-2679 (($ $ |#2|) NIL (|has| |#2| (-292 |#2| |#2|)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) NIL (|has| |#2| (-237))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3982 (($ $) NIL)) (-2224 ((|#2| $) NIL)) (-3222 (((-901 (-572)) $) NIL (|has| |#2| (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| |#2| (-622 (-901 (-386))))) (((-544) $) NIL (|has| |#2| (-622 (-544)))) (((-386) $) NIL (|has| |#2| (-1033))) (((-227) $) NIL (|has| |#2| (-1033)))) (-2660 (((-176 (-415 (-572))) $) 78)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-3491 (((-870) $) 106) (($ (-572)) 20) (($ $) NIL) (($ (-415 (-572))) 25) (($ |#2|) 19) (($ (-1188)) NIL (|has| |#2| (-1049 (-1188))))) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-2455 (((-779)) NIL T CONST)) (-3441 ((|#2| $) NIL (|has| |#2| (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-4090 (((-415 (-572)) $ (-572)) 71)) (-2775 (($ $) NIL (|has| |#2| (-828)))) (-2602 (($) 15 T CONST)) (-2619 (($) 17 T CONST)) (-4019 (($ $) NIL (|has| |#2| (-237))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3976 (((-112) $ $) NIL (|has| |#2| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#2| (-858)))) (-3921 (((-112) $ $) 46)) (-3965 (((-112) $ $) NIL (|has| |#2| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#2| (-858)))) (-4029 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4018 (($ $) 50) (($ $ $) 52)) (-4005 (($ $ $) 48)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) 61)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 53) (($ $ $) 55) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-880 |#1| |#2|) (-13 (-1003 |#2|) (-10 -8 (-15 -4090 ((-415 (-572)) $ (-572))) (-15 -2660 ((-176 (-415 (-572))) $)) (-15 -2569 ($ $)) (-15 -2569 ($ (-572) $)))) (-572) (-877 |#1|)) (T -880))
+((-4090 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-415 (-572))) (-5 *1 (-880 *4 *5)) (-5 *3 (-572)) (-4 *5 (-877 *4)))) (-2660 (*1 *2 *1) (-12 (-14 *3 (-572)) (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-880 *3 *4)) (-4 *4 (-877 *3)))) (-2569 (*1 *1 *1) (-12 (-14 *2 (-572)) (-5 *1 (-880 *2 *3)) (-4 *3 (-877 *2)))) (-2569 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-14 *3 *2) (-5 *1 (-880 *3 *4)) (-4 *4 (-877 *3)))))
+(-13 (-1003 |#2|) (-10 -8 (-15 -4090 ((-415 (-572)) $ (-572))) (-15 -2660 ((-176 (-415 (-572))) $)) (-15 -2569 ($ $)) (-15 -2569 ($ (-572) $))))
+((-3464 (((-112) $ $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-3587 ((|#2| $) 12)) (-1824 (($ |#1| |#2|) 9)) (-3618 (((-1170) $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-2614 (((-1131) $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#1| $) 11)) (-3503 (($ |#1| |#2|) 10)) (-3491 (((-870) $) 18 (-3783 (-12 (|has| |#1| (-621 (-870))) (|has| |#2| (-621 (-870)))) (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111)))))) (-3424 (((-112) $ $) NIL (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))) (-3921 (((-112) $ $) 23 (-12 (|has| |#1| (-1111)) (|has| |#2| (-1111))))))
+(((-881 |#1| |#2|) (-13 (-1229) (-10 -8 (IF (|has| |#1| (-621 (-870))) (IF (|has| |#2| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1111)) (IF (|has| |#2| (-1111)) (-6 (-1111)) |%noBranch|) |%noBranch|) (-15 -1824 ($ |#1| |#2|)) (-15 -3503 ($ |#1| |#2|)) (-15 -2570 (|#1| $)) (-15 -3587 (|#2| $)))) (-1229) (-1229)) (T -881))
+((-1824 (*1 *1 *2 *3) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229)))) (-3503 (*1 *1 *2 *3) (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229)))) (-2570 (*1 *2 *1) (-12 (-4 *2 (-1229)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1229)))) (-3587 (*1 *2 *1) (-12 (-4 *2 (-1229)) (-5 *1 (-881 *3 *2)) (-4 *3 (-1229)))))
+(-13 (-1229) (-10 -8 (IF (|has| |#1| (-621 (-870))) (IF (|has| |#2| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1111)) (IF (|has| |#2| (-1111)) (-6 (-1111)) |%noBranch|) |%noBranch|) (-15 -1824 ($ |#1| |#2|)) (-15 -3503 ($ |#1| |#2|)) (-15 -2570 (|#1| $)) (-15 -3587 (|#2| $))))
+((-3464 (((-112) $ $) NIL)) (-3747 (((-572) $) 16)) (-4190 (($ (-158)) 13)) (-1516 (($ (-158)) 14)) (-3618 (((-1170) $) NIL)) (-3186 (((-158) $) 15)) (-2614 (((-1131) $) NIL)) (-3436 (($ (-158)) 11)) (-3030 (($ (-158)) 10)) (-3491 (((-870) $) 24) (($ (-158)) 17)) (-3629 (($ (-158)) 12)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-882) (-13 (-1111) (-10 -8 (-15 -3030 ($ (-158))) (-15 -3436 ($ (-158))) (-15 -3629 ($ (-158))) (-15 -4190 ($ (-158))) (-15 -1516 ($ (-158))) (-15 -3186 ((-158) $)) (-15 -3747 ((-572) $)) (-15 -3491 ($ (-158)))))) (T -882))
+((-3030 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-3629 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-882)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-882)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
+(-13 (-1111) (-10 -8 (-15 -3030 ($ (-158))) (-15 -3436 ($ (-158))) (-15 -3629 ($ (-158))) (-15 -4190 ($ (-158))) (-15 -1516 ($ (-158))) (-15 -3186 ((-158) $)) (-15 -3747 ((-572) $)) (-15 -3491 ($ (-158)))))
+((-3491 (((-322 (-572)) (-415 (-961 (-48)))) 23) (((-322 (-572)) (-961 (-48))) 18)))
+(((-883) (-10 -7 (-15 -3491 ((-322 (-572)) (-961 (-48)))) (-15 -3491 ((-322 (-572)) (-415 (-961 (-48))))))) (T -883))
+((-3491 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 (-48)))) (-5 *2 (-322 (-572))) (-5 *1 (-883)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-961 (-48))) (-5 *2 (-322 (-572))) (-5 *1 (-883)))))
+(-10 -7 (-15 -3491 ((-322 (-572)) (-961 (-48)))) (-15 -3491 ((-322 (-572)) (-415 (-961 (-48))))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 18) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2591 (((-112) $ (|[\|\|]| (-514))) 9) (((-112) $ (|[\|\|]| (-1170))) 13)) (-3424 (((-112) $ $) NIL)) (-3726 (((-514) $) 10) (((-1170) $) 14)) (-3921 (((-112) $ $) 15)))
+(((-884) (-13 (-1094) (-1274) (-10 -8 (-15 -2591 ((-112) $ (|[\|\|]| (-514)))) (-15 -3726 ((-514) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1170)))) (-15 -3726 ((-1170) $))))) (T -884))
+((-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-884)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-884)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-884)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-884)))))
+(-13 (-1094) (-1274) (-10 -8 (-15 -2591 ((-112) $ (|[\|\|]| (-514)))) (-15 -3726 ((-514) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1170)))) (-15 -3726 ((-1170) $))))
+((-3161 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 15)))
+(((-885 |#1| |#2|) (-10 -7 (-15 -3161 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1229) (-1229)) (T -885))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))))
+(-10 -7 (-15 -3161 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
+((-4164 (($ |#1| |#1|) 8)) (-4266 ((|#1| $ (-779)) 15)))
+(((-886 |#1|) (-10 -8 (-15 -4164 ($ |#1| |#1|)) (-15 -4266 (|#1| $ (-779)))) (-1229)) (T -886))
+((-4266 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-886 *2)) (-4 *2 (-1229)))) (-4164 (*1 *1 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1229)))))
+(-10 -8 (-15 -4164 ($ |#1| |#1|)) (-15 -4266 (|#1| $ (-779))))
+((-3161 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -3161 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1229) (-1229)) (T -887))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))))
+(-10 -7 (-15 -3161 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|))))
+((-4164 (($ |#1| |#1| |#1|) 8)) (-4266 ((|#1| $ (-779)) 15)))
+(((-888 |#1|) (-10 -8 (-15 -4164 ($ |#1| |#1| |#1|)) (-15 -4266 (|#1| $ (-779)))) (-1229)) (T -888))
+((-4266 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-888 *2)) (-4 *2 (-1229)))) (-4164 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1229)))))
+(-10 -8 (-15 -4164 ($ |#1| |#1| |#1|)) (-15 -4266 (|#1| $ (-779))))
+((-2112 (((-652 (-1193)) (-1170)) 9)))
+(((-889) (-10 -7 (-15 -2112 ((-652 (-1193)) (-1170))))) (T -889))
+((-2112 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-889)))))
+(-10 -7 (-15 -2112 ((-652 (-1193)) (-1170))))
+((-3161 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 15)))
+(((-890 |#1| |#2|) (-10 -7 (-15 -3161 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1229) (-1229)) (T -890))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))))
+(-10 -7 (-15 -3161 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|))))
+((-3404 (($ |#1| |#1| |#1|) 8)) (-4266 ((|#1| $ (-779)) 15)))
+(((-891 |#1|) (-10 -8 (-15 -3404 ($ |#1| |#1| |#1|)) (-15 -4266 (|#1| $ (-779)))) (-1229)) (T -891))
+((-4266 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-891 *2)) (-4 *2 (-1229)))) (-3404 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1229)))))
+(-10 -8 (-15 -3404 ($ |#1| |#1| |#1|)) (-15 -4266 (|#1| $ (-779))))
+((-2609 (((-1168 (-652 (-572))) (-652 (-572)) (-1168 (-652 (-572)))) 41)) (-3162 (((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572))) 31)) (-2578 (((-1168 (-652 (-572))) (-652 (-572))) 53) (((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572))) 50)) (-3656 (((-1168 (-652 (-572))) (-572)) 55)) (-2462 (((-1168 (-652 (-930))) (-1168 (-652 (-930)))) 22)) (-4242 (((-652 (-930)) (-652 (-930))) 18)))
+(((-892) (-10 -7 (-15 -4242 ((-652 (-930)) (-652 (-930)))) (-15 -2462 ((-1168 (-652 (-930))) (-1168 (-652 (-930))))) (-15 -3162 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -2609 ((-1168 (-652 (-572))) (-652 (-572)) (-1168 (-652 (-572))))) (-15 -2578 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -2578 ((-1168 (-652 (-572))) (-652 (-572)))) (-15 -3656 ((-1168 (-652 (-572))) (-572))))) (T -892))
+((-3656 (*1 *2 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-572)))) (-2578 (*1 *2 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-652 (-572))))) (-2578 (*1 *2 *3 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-652 (-572))))) (-2609 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *3 (-652 (-572))) (-5 *1 (-892)))) (-3162 (*1 *2 *3 *3) (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-652 (-572))))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-1168 (-652 (-930)))) (-5 *1 (-892)))) (-4242 (*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-892)))))
+(-10 -7 (-15 -4242 ((-652 (-930)) (-652 (-930)))) (-15 -2462 ((-1168 (-652 (-930))) (-1168 (-652 (-930))))) (-15 -3162 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -2609 ((-1168 (-652 (-572))) (-652 (-572)) (-1168 (-652 (-572))))) (-15 -2578 ((-1168 (-652 (-572))) (-652 (-572)) (-652 (-572)))) (-15 -2578 ((-1168 (-652 (-572))) (-652 (-572)))) (-15 -3656 ((-1168 (-652 (-572))) (-572))))
+((-3222 (((-901 (-386)) $) 9 (|has| |#1| (-622 (-901 (-386))))) (((-901 (-572)) $) 8 (|has| |#1| (-622 (-901 (-572)))))))
+(((-893 |#1|) (-141) (-1229)) (T -893))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-622 (-901 (-572)))) (-6 (-622 (-901 (-572)))) |%noBranch|) (IF (|has| |t#1| (-622 (-901 (-386)))) (-6 (-622 (-901 (-386)))) |%noBranch|)))
+(((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))))
+((-3464 (((-112) $ $) NIL)) (-2924 (($) 14)) (-3431 (($ (-898 |#1| |#2|) (-898 |#1| |#3|)) 28)) (-1598 (((-898 |#1| |#3|) $) 16)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3772 (((-112) $) 22)) (-4011 (($) 19)) (-3491 (((-870) $) 31)) (-3424 (((-112) $ $) NIL)) (-1613 (((-898 |#1| |#2|) $) 15)) (-3921 (((-112) $ $) 26)))
+(((-894 |#1| |#2| |#3|) (-13 (-1111) (-10 -8 (-15 -3772 ((-112) $)) (-15 -4011 ($)) (-15 -2924 ($)) (-15 -3431 ($ (-898 |#1| |#2|) (-898 |#1| |#3|))) (-15 -1613 ((-898 |#1| |#2|) $)) (-15 -1598 ((-898 |#1| |#3|) $)))) (-1111) (-1111) (-674 |#2|)) (T -894))
+((-3772 (*1 *2 *1) (-12 (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-894 *3 *4 *5)) (-4 *3 (-1111)) (-4 *5 (-674 *4)))) (-4011 (*1 *1) (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111)) (-4 *4 (-674 *3)))) (-2924 (*1 *1) (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111)) (-4 *4 (-674 *3)))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-898 *4 *5)) (-5 *3 (-898 *4 *6)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-674 *5)) (-5 *1 (-894 *4 *5 *6)))) (-1613 (*1 *2 *1) (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *4)) (-5 *1 (-894 *3 *4 *5)) (-4 *3 (-1111)) (-4 *5 (-674 *4)))) (-1598 (*1 *2 *1) (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *5)) (-5 *1 (-894 *3 *4 *5)) (-4 *3 (-1111)) (-4 *5 (-674 *4)))))
+(-13 (-1111) (-10 -8 (-15 -3772 ((-112) $)) (-15 -4011 ($)) (-15 -2924 ($)) (-15 -3431 ($ (-898 |#1| |#2|) (-898 |#1| |#3|))) (-15 -1613 ((-898 |#1| |#2|) $)) (-15 -1598 ((-898 |#1| |#3|) $))))
+((-3464 (((-112) $ $) 7)) (-4034 (((-898 |#1| $) $ (-901 |#1|) (-898 |#1| $)) 14)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-895 |#1|) (-141) (-1111)) (T -895))
+((-4034 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-898 *4 *1)) (-5 *3 (-901 *4)) (-4 *1 (-895 *4)) (-4 *4 (-1111)))))
+(-13 (-1111) (-10 -8 (-15 -4034 ((-898 |t#1| $) $ (-901 |t#1|) (-898 |t#1| $)))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-2685 (((-112) (-652 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2392 (((-898 |#1| |#2|) |#2| |#3|) 45 (-12 (-3795 (|has| |#2| (-1049 (-1188)))) (-3795 (|has| |#2| (-1060))))) (((-652 (-300 (-961 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1060)) (-3795 (|has| |#2| (-1049 (-1188)))))) (((-652 (-300 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1049 (-1188)))) (((-894 |#1| |#2| (-652 |#2|)) (-652 |#2|) |#3|) 21)))
+(((-896 |#1| |#2| |#3|) (-10 -7 (-15 -2685 ((-112) |#2| |#3|)) (-15 -2685 ((-112) (-652 |#2|) |#3|)) (-15 -2392 ((-894 |#1| |#2| (-652 |#2|)) (-652 |#2|) |#3|)) (IF (|has| |#2| (-1049 (-1188))) (-15 -2392 ((-652 (-300 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1060)) (-15 -2392 ((-652 (-300 (-961 |#2|))) |#2| |#3|)) (-15 -2392 ((-898 |#1| |#2|) |#2| |#3|))))) (-1111) (-895 |#1|) (-622 (-901 |#1|))) (T -896))
+((-2392 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-898 *5 *3)) (-5 *1 (-896 *5 *3 *4)) (-3795 (-4 *3 (-1049 (-1188)))) (-3795 (-4 *3 (-1060))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))) (-2392 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 (-961 *3)))) (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-1060)) (-3795 (-4 *3 (-1049 (-1188)))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))) (-2392 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 *3))) (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-1049 (-1188))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))) (-2392 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-4 *6 (-895 *5)) (-5 *2 (-894 *5 *6 (-652 *6))) (-5 *1 (-896 *5 *6 *4)) (-5 *3 (-652 *6)) (-4 *4 (-622 (-901 *5))))) (-2685 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-4 *6 (-895 *5)) (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6 *4)) (-4 *4 (-622 (-901 *5))))) (-2685 (*1 *2 *3 *4) (-12 (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))))
+(-10 -7 (-15 -2685 ((-112) |#2| |#3|)) (-15 -2685 ((-112) (-652 |#2|) |#3|)) (-15 -2392 ((-894 |#1| |#2| (-652 |#2|)) (-652 |#2|) |#3|)) (IF (|has| |#2| (-1049 (-1188))) (-15 -2392 ((-652 (-300 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1060)) (-15 -2392 ((-652 (-300 (-961 |#2|))) |#2| |#3|)) (-15 -2392 ((-898 |#1| |#2|) |#2| |#3|)))))
+((-3161 (((-898 |#1| |#3|) (-1 |#3| |#2|) (-898 |#1| |#2|)) 22)))
+(((-897 |#1| |#2| |#3|) (-10 -7 (-15 -3161 ((-898 |#1| |#3|) (-1 |#3| |#2|) (-898 |#1| |#2|)))) (-1111) (-1111) (-1111)) (T -897))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-898 *5 *6)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-898 *5 *7)) (-5 *1 (-897 *5 *6 *7)))))
+(-10 -7 (-15 -3161 ((-898 |#1| |#3|) (-1 |#3| |#2|) (-898 |#1| |#2|))))
+((-3464 (((-112) $ $) NIL)) (-2266 (($ $ $) 40)) (-3447 (((-3 (-112) "failed") $ (-901 |#1|)) 37)) (-2924 (($) 12)) (-3618 (((-1170) $) NIL)) (-2212 (($ (-901 |#1|) |#2| $) 20)) (-2614 (((-1131) $) NIL)) (-2017 (((-3 |#2| "failed") (-901 |#1|) $) 51)) (-3772 (((-112) $) 15)) (-4011 (($) 13)) (-4420 (((-652 (-2 (|:| -1640 (-1188)) (|:| -3762 |#2|))) $) 25)) (-3503 (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 |#2|)))) 23)) (-3491 (((-870) $) 45)) (-3424 (((-112) $ $) NIL)) (-2705 (($ (-901 |#1|) |#2| $ |#2|) 49)) (-2344 (($ (-901 |#1|) |#2| $) 48)) (-3921 (((-112) $ $) 42)))
+(((-898 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -3772 ((-112) $)) (-15 -4011 ($)) (-15 -2924 ($)) (-15 -2266 ($ $ $)) (-15 -2017 ((-3 |#2| "failed") (-901 |#1|) $)) (-15 -2344 ($ (-901 |#1|) |#2| $)) (-15 -2212 ($ (-901 |#1|) |#2| $)) (-15 -2705 ($ (-901 |#1|) |#2| $ |#2|)) (-15 -4420 ((-652 (-2 (|:| -1640 (-1188)) (|:| -3762 |#2|))) $)) (-15 -3503 ($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 |#2|))))) (-15 -3447 ((-3 (-112) "failed") $ (-901 |#1|))))) (-1111) (-1111)) (T -898))
+((-3772 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-4011 (*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2924 (*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2266 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2017 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-4 *2 (-1111)) (-5 *1 (-898 *4 *2)))) (-2344 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1111)))) (-2212 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1111)))) (-2705 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3)) (-4 *3 (-1111)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 *4)))) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 *4)))) (-4 *4 (-1111)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)))) (-3447 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5)) (-4 *5 (-1111)))))
+(-13 (-1111) (-10 -8 (-15 -3772 ((-112) $)) (-15 -4011 ($)) (-15 -2924 ($)) (-15 -2266 ($ $ $)) (-15 -2017 ((-3 |#2| "failed") (-901 |#1|) $)) (-15 -2344 ($ (-901 |#1|) |#2| $)) (-15 -2212 ($ (-901 |#1|) |#2| $)) (-15 -2705 ($ (-901 |#1|) |#2| $ |#2|)) (-15 -4420 ((-652 (-2 (|:| -1640 (-1188)) (|:| -3762 |#2|))) $)) (-15 -3503 ($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 |#2|))))) (-15 -3447 ((-3 (-112) "failed") $ (-901 |#1|)))))
+((-2315 (((-901 |#1|) (-901 |#1|) (-652 (-1188)) (-1 (-112) (-652 |#2|))) 32) (((-901 |#1|) (-901 |#1|) (-652 (-1 (-112) |#2|))) 46) (((-901 |#1|) (-901 |#1|) (-1 (-112) |#2|)) 35)) (-3447 (((-112) (-652 |#2|) (-901 |#1|)) 42) (((-112) |#2| (-901 |#1|)) 36)) (-3018 (((-1 (-112) |#2|) (-901 |#1|)) 16)) (-1596 (((-652 |#2|) (-901 |#1|)) 24)) (-2519 (((-901 |#1|) (-901 |#1|) |#2|) 20)))
+(((-899 |#1| |#2|) (-10 -7 (-15 -2315 ((-901 |#1|) (-901 |#1|) (-1 (-112) |#2|))) (-15 -2315 ((-901 |#1|) (-901 |#1|) (-652 (-1 (-112) |#2|)))) (-15 -2315 ((-901 |#1|) (-901 |#1|) (-652 (-1188)) (-1 (-112) (-652 |#2|)))) (-15 -3018 ((-1 (-112) |#2|) (-901 |#1|))) (-15 -3447 ((-112) |#2| (-901 |#1|))) (-15 -3447 ((-112) (-652 |#2|) (-901 |#1|))) (-15 -2519 ((-901 |#1|) (-901 |#1|) |#2|)) (-15 -1596 ((-652 |#2|) (-901 |#1|)))) (-1111) (-1229)) (T -899))
+((-1596 (*1 *2 *3) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-652 *5)) (-5 *1 (-899 *4 *5)) (-4 *5 (-1229)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-899 *4 *3)) (-4 *3 (-1229)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *2 (-112)) (-5 *1 (-899 *5 *6)))) (-3447 (*1 *2 *3 *4) (-12 (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-899 *5 *3)) (-4 *3 (-1229)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-899 *4 *5)) (-4 *5 (-1229)))) (-2315 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-901 *5)) (-5 *3 (-652 (-1188))) (-5 *4 (-1 (-112) (-652 *6))) (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *1 (-899 *5 *6)))) (-2315 (*1 *2 *2 *3) (-12 (-5 *2 (-901 *4)) (-5 *3 (-652 (-1 (-112) *5))) (-4 *4 (-1111)) (-4 *5 (-1229)) (-5 *1 (-899 *4 *5)))) (-2315 (*1 *2 *2 *3) (-12 (-5 *2 (-901 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1111)) (-4 *5 (-1229)) (-5 *1 (-899 *4 *5)))))
+(-10 -7 (-15 -2315 ((-901 |#1|) (-901 |#1|) (-1 (-112) |#2|))) (-15 -2315 ((-901 |#1|) (-901 |#1|) (-652 (-1 (-112) |#2|)))) (-15 -2315 ((-901 |#1|) (-901 |#1|) (-652 (-1188)) (-1 (-112) (-652 |#2|)))) (-15 -3018 ((-1 (-112) |#2|) (-901 |#1|))) (-15 -3447 ((-112) |#2| (-901 |#1|))) (-15 -3447 ((-112) (-652 |#2|) (-901 |#1|))) (-15 -2519 ((-901 |#1|) (-901 |#1|) |#2|)) (-15 -1596 ((-652 |#2|) (-901 |#1|))))
+((-3161 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 19)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -3161 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1111) (-1111)) (T -900))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))))
+(-10 -7 (-15 -3161 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|))))
+((-3464 (((-112) $ $) NIL)) (-1553 (($ $ (-652 (-52))) 74)) (-2220 (((-652 $) $) 139)) (-1498 (((-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))) $) 30)) (-3911 (((-112) $) 35)) (-1913 (($ $ (-652 (-1188)) (-52)) 31)) (-1482 (($ $ (-652 (-52))) 73)) (-3072 (((-3 |#1| "failed") $) 71) (((-3 (-1188) "failed") $) 164)) (-1869 ((|#1| $) 68) (((-1188) $) NIL)) (-2492 (($ $) 126)) (-2682 (((-112) $) 55)) (-2206 (((-652 (-52)) $) 50)) (-2677 (($ (-1188) (-112) (-112) (-112)) 75)) (-2959 (((-3 (-652 $) "failed") (-652 $)) 82)) (-1711 (((-112) $) 58)) (-2747 (((-112) $) 57)) (-3618 (((-1170) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) 41)) (-3866 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1828 (((-3 (-2 (|:| |val| $) (|:| -2477 $)) "failed") $) 97)) (-2257 (((-3 (-652 $) "failed") $) 40)) (-4220 (((-3 (-652 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -2185 (-115)) (|:| |arg| (-652 $))) "failed") $) 107)) (-3702 (((-3 (-652 $) "failed") $) 42)) (-2298 (((-3 (-2 (|:| |val| $) (|:| -2477 (-779))) "failed") $) 45)) (-3612 (((-112) $) 34)) (-2614 (((-1131) $) NIL)) (-2596 (((-112) $) 28)) (-1559 (((-112) $) 52)) (-3868 (((-652 (-52)) $) 130)) (-1382 (((-112) $) 56)) (-2679 (($ (-115) (-652 $)) 104)) (-3900 (((-779) $) 33)) (-3679 (($ $) 72)) (-3222 (($ (-652 $)) 69)) (-3331 (((-112) $) 32)) (-3491 (((-870) $) 63) (($ |#1|) 23) (($ (-1188)) 76)) (-3424 (((-112) $ $) NIL)) (-2519 (($ $ (-52)) 129)) (-2602 (($) 103 T CONST)) (-2619 (($) 83 T CONST)) (-3921 (((-112) $ $) 93)) (-4029 (($ $ $) 117)) (-4005 (($ $ $) 121)) (** (($ $ (-779)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-901 |#1|) (-13 (-1111) (-1049 |#1|) (-1049 (-1188)) (-10 -8 (-15 0 ($) -4338) (-15 1 ($) -4338) (-15 -2257 ((-3 (-652 $) "failed") $)) (-15 -3570 ((-3 (-652 $) "failed") $)) (-15 -4220 ((-3 (-652 $) "failed") $ (-115))) (-15 -4220 ((-3 (-2 (|:| -2185 (-115)) (|:| |arg| (-652 $))) "failed") $)) (-15 -2298 ((-3 (-2 (|:| |val| $) (|:| -2477 (-779))) "failed") $)) (-15 -3866 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3702 ((-3 (-652 $) "failed") $)) (-15 -1828 ((-3 (-2 (|:| |val| $) (|:| -2477 $)) "failed") $)) (-15 -2679 ($ (-115) (-652 $))) (-15 -4005 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ $)) (-15 -4029 ($ $ $)) (-15 -3900 ((-779) $)) (-15 -3222 ($ (-652 $))) (-15 -3679 ($ $)) (-15 -3612 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -3331 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -2747 ((-112) $)) (-15 -1711 ((-112) $)) (-15 -1559 ((-112) $)) (-15 -2206 ((-652 (-52)) $)) (-15 -1482 ($ $ (-652 (-52)))) (-15 -1553 ($ $ (-652 (-52)))) (-15 -2677 ($ (-1188) (-112) (-112) (-112))) (-15 -1913 ($ $ (-652 (-1188)) (-52))) (-15 -1498 ((-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))) $)) (-15 -2596 ((-112) $)) (-15 -2492 ($ $)) (-15 -2519 ($ $ (-52))) (-15 -3868 ((-652 (-52)) $)) (-15 -2220 ((-652 $) $)) (-15 -2959 ((-3 (-652 $) "failed") (-652 $))))) (-1111)) (T -901))
+((-2602 (*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-2619 (*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-2257 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3570 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-4220 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-901 *4))) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-4220 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2185 (-115)) (|:| |arg| (-652 (-901 *3))))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2298 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -2477 (-779)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3866 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-901 *3)) (|:| |den| (-901 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3702 (*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1828 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -2477 (-901 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2679 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 (-901 *4))) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-4005 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-4029 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3679 (*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1482 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2677 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-112)) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-1913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-52)) (-5 *1 (-901 *4)) (-4 *4 (-1111)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52)))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2492 (*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2220 (*1 *2 *1) (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))) (-2959 (*1 *2 *2) (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(-13 (-1111) (-1049 |#1|) (-1049 (-1188)) (-10 -8 (-15 (-2602) ($) -4338) (-15 (-2619) ($) -4338) (-15 -2257 ((-3 (-652 $) "failed") $)) (-15 -3570 ((-3 (-652 $) "failed") $)) (-15 -4220 ((-3 (-652 $) "failed") $ (-115))) (-15 -4220 ((-3 (-2 (|:| -2185 (-115)) (|:| |arg| (-652 $))) "failed") $)) (-15 -2298 ((-3 (-2 (|:| |val| $) (|:| -2477 (-779))) "failed") $)) (-15 -3866 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3702 ((-3 (-652 $) "failed") $)) (-15 -1828 ((-3 (-2 (|:| |val| $) (|:| -2477 $)) "failed") $)) (-15 -2679 ($ (-115) (-652 $))) (-15 -4005 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779))) (-15 ** ($ $ $)) (-15 -4029 ($ $ $)) (-15 -3900 ((-779) $)) (-15 -3222 ($ (-652 $))) (-15 -3679 ($ $)) (-15 -3612 ((-112) $)) (-15 -2682 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -3331 ((-112) $)) (-15 -1382 ((-112) $)) (-15 -2747 ((-112) $)) (-15 -1711 ((-112) $)) (-15 -1559 ((-112) $)) (-15 -2206 ((-652 (-52)) $)) (-15 -1482 ($ $ (-652 (-52)))) (-15 -1553 ($ $ (-652 (-52)))) (-15 -2677 ($ (-1188) (-112) (-112) (-112))) (-15 -1913 ($ $ (-652 (-1188)) (-52))) (-15 -1498 ((-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))) $)) (-15 -2596 ((-112) $)) (-15 -2492 ($ $)) (-15 -2519 ($ $ (-52))) (-15 -3868 ((-652 (-52)) $)) (-15 -2220 ((-652 $) $)) (-15 -2959 ((-3 (-652 $) "failed") (-652 $)))))
+((-3464 (((-112) $ $) NIL)) (-4084 (((-652 |#1|) $) 19)) (-1695 (((-112) $) 49)) (-3072 (((-3 (-680 |#1|) "failed") $) 56)) (-1869 (((-680 |#1|) $) 54)) (-2581 (($ $) 23)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-2040 (((-779) $) 61)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-680 |#1|) $) 21)) (-3491 (((-870) $) 47) (($ (-680 |#1|)) 26) (((-827 |#1|) $) 36) (($ |#1|) 25)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 9 T CONST)) (-2028 (((-652 (-680 |#1|)) $) 28)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 12)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 67)))
+(((-902 |#1|) (-13 (-858) (-1049 (-680 |#1|)) (-10 -8 (-15 1 ($) -4338) (-15 -3491 ((-827 |#1|) $)) (-15 -3491 ($ |#1|)) (-15 -2570 ((-680 |#1|) $)) (-15 -2040 ((-779) $)) (-15 -2028 ((-652 (-680 |#1|)) $)) (-15 -2581 ($ $)) (-15 -1695 ((-112) $)) (-15 -4084 ((-652 |#1|) $)))) (-858)) (T -902))
+((-2619 (*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-3491 (*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-680 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-652 (-680 *3))) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-858)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858)))))
+(-13 (-858) (-1049 (-680 |#1|)) (-10 -8 (-15 (-2619) ($) -4338) (-15 -3491 ((-827 |#1|) $)) (-15 -3491 ($ |#1|)) (-15 -2570 ((-680 |#1|) $)) (-15 -2040 ((-779) $)) (-15 -2028 ((-652 (-680 |#1|)) $)) (-15 -2581 ($ $)) (-15 -1695 ((-112) $)) (-15 -4084 ((-652 |#1|) $))))
+((-3548 ((|#1| |#1| |#1|) 19)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -3548 (|#1| |#1| |#1|))) (-1255 |#2|) (-1060)) (T -903))
+((-3548 (*1 *2 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-903 *2 *3)) (-4 *2 (-1255 *3)))))
+(-10 -7 (-15 -3548 (|#1| |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-4329 (((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2698 (((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 14)) (-3921 (((-112) $ $) 6)))
+(((-904) (-141)) (T -904))
+((-4329 (*1 *2 *3 *4) (-12 (-4 *1 (-904)) (-5 *3 (-1074)) (-5 *4 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170)))))) (-2698 (*1 *2 *3) (-12 (-4 *1 (-904)) (-5 *3 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *2 (-1046)))))
+(-13 (-1111) (-10 -7 (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))) (-1074) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))) (-15 -2698 ((-1046) (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-2723 ((|#1| |#1| (-779)) 27)) (-3746 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2572 (((-3 (-2 (|:| -3041 |#1|) (|:| -3058 |#1|)) "failed") |#1| (-779) (-779)) 30) (((-652 |#1|) |#1|) 38)))
+(((-905 |#1| |#2|) (-10 -7 (-15 -2572 ((-652 |#1|) |#1|)) (-15 -2572 ((-3 (-2 (|:| -3041 |#1|) (|:| -3058 |#1|)) "failed") |#1| (-779) (-779))) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2723 (|#1| |#1| (-779)))) (-1255 |#2|) (-370)) (T -905))
+((-2723 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-5 *1 (-905 *2 *4)) (-4 *2 (-1255 *4)))) (-3746 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-370)) (-5 *1 (-905 *2 *3)) (-4 *2 (-1255 *3)))) (-2572 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-779)) (-4 *5 (-370)) (-5 *2 (-2 (|:| -3041 *3) (|:| -3058 *3))) (-5 *1 (-905 *3 *5)) (-4 *3 (-1255 *5)))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -2572 ((-652 |#1|) |#1|)) (-15 -2572 ((-3 (-2 (|:| -3041 |#1|) (|:| -3058 |#1|)) "failed") |#1| (-779) (-779))) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2723 (|#1| |#1| (-779))))
+((-1969 (((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170)) 104) (((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170) (-227)) 100) (((-1046) (-907) (-1074)) 92) (((-1046) (-907)) 93)) (-4329 (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907) (-1074)) 62) (((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907)) 64)))
+(((-906) (-10 -7 (-15 -1969 ((-1046) (-907))) (-15 -1969 ((-1046) (-907) (-1074))) (-15 -1969 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170) (-227))) (-15 -1969 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907) (-1074))))) (T -906))
+((-4329 (*1 *2 *3 *4) (-12 (-5 *3 (-907)) (-5 *4 (-1074)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-906)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-907)) (-5 *2 (-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170))))) (-5 *1 (-906)))) (-1969 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170)) (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386)) (-5 *2 (-1046)) (-5 *1 (-906)))) (-1969 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170)) (-5 *8 (-227)) (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386)) (-5 *2 (-1046)) (-5 *1 (-906)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-907)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-906)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-907)) (-5 *2 (-1046)) (-5 *1 (-906)))))
+(-10 -7 (-15 -1969 ((-1046) (-907))) (-15 -1969 ((-1046) (-907) (-1074))) (-15 -1969 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170) (-227))) (-15 -1969 ((-1046) (-386) (-386) (-386) (-386) (-779) (-779) (-652 (-322 (-386))) (-652 (-652 (-322 (-386)))) (-1170))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907))) (-15 -4329 ((-2 (|:| -4329 (-386)) (|:| -2402 (-1170)) (|:| |explanations| (-652 (-1170)))) (-907) (-1074))))
+((-3464 (((-112) $ $) NIL)) (-1869 (((-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))) $) 19)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 21) (($ (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) 18)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-907) (-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))) (-15 -1869 ((-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))) $))))) (T -907))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *1 (-907)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227)))) (-5 *1 (-907)))))
+(-13 (-1111) (-10 -8 (-15 -3491 ($ (-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))))) (-15 -1869 ((-2 (|:| |pde| (-652 (-322 (-227)))) (|:| |constraints| (-652 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-779)) (|:| |boundaryType| (-572)) (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227)))))) (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170)) (|:| |tol| (-227))) $))))
+((-3011 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) 10) (($ $ |#2| (-779)) 12) (($ $ (-652 |#2|) (-652 (-779))) 15)) (-4019 (($ $ |#2|) 16) (($ $ (-652 |#2|)) 18) (($ $ |#2| (-779)) 19) (($ $ (-652 |#2|) (-652 (-779))) 21)))
+(((-908 |#1| |#2|) (-10 -8 (-15 -4019 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -4019 (|#1| |#1| |#2| (-779))) (-15 -4019 (|#1| |#1| (-652 |#2|))) (-15 -4019 (|#1| |#1| |#2|)) (-15 -3011 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -3011 (|#1| |#1| |#2| (-779))) (-15 -3011 (|#1| |#1| (-652 |#2|))) (-15 -3011 (|#1| |#1| |#2|))) (-909 |#2|) (-1111)) (T -908))
+NIL
+(-10 -8 (-15 -4019 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -4019 (|#1| |#1| |#2| (-779))) (-15 -4019 (|#1| |#1| (-652 |#2|))) (-15 -4019 (|#1| |#1| |#2|)) (-15 -3011 (|#1| |#1| (-652 |#2|) (-652 (-779)))) (-15 -3011 (|#1| |#1| |#2| (-779))) (-15 -3011 (|#1| |#1| (-652 |#2|))) (-15 -3011 (|#1| |#1| |#2|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3011 (($ $ |#1|) 46) (($ $ (-652 |#1|)) 45) (($ $ |#1| (-779)) 44) (($ $ (-652 |#1|) (-652 (-779))) 43)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ |#1|) 42) (($ $ (-652 |#1|)) 41) (($ $ |#1| (-779)) 40) (($ $ (-652 |#1|) (-652 (-779))) 39)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-909 |#1|) (-141) (-1111)) (T -909))
+((-3011 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111)))) (-3011 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-3011 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4)) (-4 *4 (-1111)))) (-4019 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-4019 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111)))) (-4019 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111)))) (-4019 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4)) (-4 *4 (-1111)))))
+(-13 (-1060) (-10 -8 (-15 -3011 ($ $ |t#1|)) (-15 -3011 ($ $ (-652 |t#1|))) (-15 -3011 ($ $ |t#1| (-779))) (-15 -3011 ($ $ (-652 |t#1|) (-652 (-779)))) (-15 -4019 ($ $ |t#1|)) (-15 -4019 ($ $ (-652 |t#1|))) (-15 -4019 ($ $ |t#1| (-779))) (-15 -4019 ($ $ (-652 |t#1|) (-652 (-779))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) 26)) (-2938 (((-112) $ (-779)) NIL)) (-2927 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-4423 (($ $ $) NIL (|has| $ (-6 -4455)))) (-1439 (($ $ $) NIL (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) (($ $ "left" $) NIL (|has| $ (-6 -4455))) (($ $ "right" $) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3058 (($ $) 25)) (-1392 (($ |#1|) 12) (($ $ $) 17)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3041 (($ $) 23)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) 20)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1762 (((-572) $ $) NIL)) (-3727 (((-112) $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-1215 |#1|) $) 9) (((-870) $) 29 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 21 (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-910 |#1|) (-13 (-120 |#1|) (-621 (-1215 |#1|)) (-10 -8 (-15 -1392 ($ |#1|)) (-15 -1392 ($ $ $)))) (-1111)) (T -910))
+((-1392 (*1 *1 *2) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111)))) (-1392 (*1 *1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111)))))
+(-13 (-120 |#1|) (-621 (-1215 |#1|)) (-10 -8 (-15 -1392 ($ |#1|)) (-15 -1392 ($ $ $))))
+((-1857 ((|#2| (-1153 |#1| |#2|)) 48)))
+(((-911 |#1| |#2|) (-10 -7 (-15 -1857 (|#2| (-1153 |#1| |#2|)))) (-930) (-13 (-1060) (-10 -7 (-6 (-4456 "*"))))) (T -911))
+((-1857 (*1 *2 *3) (-12 (-5 *3 (-1153 *4 *2)) (-14 *4 (-930)) (-4 *2 (-13 (-1060) (-10 -7 (-6 (-4456 "*"))))) (-5 *1 (-911 *4 *2)))))
+(-10 -7 (-15 -1857 (|#2| (-1153 |#1| |#2|))))
+((-3464 (((-112) $ $) 7)) (-3522 (((-1113 |#1|) $) 35)) (-1586 (($) 19 T CONST)) (-2982 (((-3 $ "failed") $) 16)) (-2325 (((-1113 |#1|) $ |#1|) 34)) (-4422 (((-112) $) 18)) (-2536 (($ $ $) 32 (-3783 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-3928 (($ $ $) 31 (-3783 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-3618 (((-1170) $) 10)) (-1809 (($ $) 25)) (-2614 (((-1131) $) 11)) (-2679 ((|#1| $ |#1|) 38)) (-3170 (($ (-652 (-652 |#1|))) 36)) (-1625 (($ (-652 |#1|)) 37)) (-4242 (($ $ $) 22)) (-1433 (($ $ $) 21)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2619 (($) 20 T CONST)) (-3976 (((-112) $ $) 29 (-3783 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-3954 (((-112) $ $) 28 (-3783 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 30 (-3783 (|has| |#1| (-858)) (|has| |#1| (-375))))) (-3943 (((-112) $ $) 33)) (-4029 (($ $ $) 24)) (** (($ $ (-930)) 14) (($ $ (-779)) 17) (($ $ (-572)) 23)) (* (($ $ $) 15)))
+(((-912 |#1|) (-141) (-1111)) (T -912))
+((-1625 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-912 *3)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-4 *1 (-912 *3)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3)))) (-2325 (*1 *2 *1 *3) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3)))) (-3943 (*1 *2 *1 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
+(-13 (-481) (-292 |t#1| |t#1|) (-10 -8 (-15 -1625 ($ (-652 |t#1|))) (-15 -3170 ($ (-652 (-652 |t#1|)))) (-15 -3522 ((-1113 |t#1|) $)) (-15 -2325 ((-1113 |t#1|) $ |t#1|)) (-15 -3943 ((-112) $ $)) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-858)) |%noBranch|)))
+(((-102) . T) ((-621 (-870)) . T) ((-292 |#1| |#1|) . T) ((-481) . T) ((-734) . T) ((-858) -3783 (|has| |#1| (-858)) (|has| |#1| (-375))) ((-1123) . T) ((-1111) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3669 (((-652 (-652 (-779))) $) 160)) (-2408 (((-652 (-779)) (-914 |#1|) $) 188)) (-3683 (((-652 (-779)) (-914 |#1|) $) 189)) (-3522 (((-1113 |#1|) $) 152)) (-3937 (((-652 (-914 |#1|)) $) 149)) (-2688 (((-914 |#1|) $ (-572)) 154) (((-914 |#1|) $) 155)) (-3133 (($ (-652 (-914 |#1|))) 162)) (-2068 (((-779) $) 156)) (-1970 (((-1113 (-1113 |#1|)) $) 186)) (-2325 (((-1113 |#1|) $ |#1|) 177) (((-1113 (-1113 |#1|)) $ (-1113 |#1|)) 197) (((-1113 (-652 |#1|)) $ (-652 |#1|)) 200)) (-4211 (((-112) (-914 |#1|) $) 137)) (-3618 (((-1170) $) NIL)) (-2900 (((-1284) $) 142) (((-1284) $ (-572) (-572)) 201)) (-2614 (((-1131) $) NIL)) (-3877 (((-652 (-914 |#1|)) $) 143)) (-2679 (((-914 |#1|) $ (-779)) 150)) (-1497 (((-779) $) 157)) (-3491 (((-870) $) 174) (((-652 (-914 |#1|)) $) 28) (($ (-652 (-914 |#1|))) 161)) (-3424 (((-112) $ $) NIL)) (-1556 (((-652 |#1|) $) 159)) (-3921 (((-112) $ $) 194)) (-3965 (((-112) $ $) 192)) (-3943 (((-112) $ $) 191)))
+(((-913 |#1|) (-13 (-1111) (-10 -8 (-15 -3491 ((-652 (-914 |#1|)) $)) (-15 -3877 ((-652 (-914 |#1|)) $)) (-15 -2679 ((-914 |#1|) $ (-779))) (-15 -2688 ((-914 |#1|) $ (-572))) (-15 -2688 ((-914 |#1|) $)) (-15 -2068 ((-779) $)) (-15 -1497 ((-779) $)) (-15 -1556 ((-652 |#1|) $)) (-15 -3937 ((-652 (-914 |#1|)) $)) (-15 -3669 ((-652 (-652 (-779))) $)) (-15 -3491 ($ (-652 (-914 |#1|)))) (-15 -3133 ($ (-652 (-914 |#1|)))) (-15 -2325 ((-1113 |#1|) $ |#1|)) (-15 -1970 ((-1113 (-1113 |#1|)) $)) (-15 -2325 ((-1113 (-1113 |#1|)) $ (-1113 |#1|))) (-15 -2325 ((-1113 (-652 |#1|)) $ (-652 |#1|))) (-15 -4211 ((-112) (-914 |#1|) $)) (-15 -2408 ((-652 (-779)) (-914 |#1|) $)) (-15 -3683 ((-652 (-779)) (-914 |#1|) $)) (-15 -3522 ((-1113 |#1|) $)) (-15 -3943 ((-112) $ $)) (-15 -3965 ((-112) $ $)) (-15 -2900 ((-1284) $)) (-15 -2900 ((-1284) $ (-572) (-572))))) (-1111)) (T -913))
+((-3491 (*1 *2 *1) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2679 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4)) (-4 *4 (-1111)))) (-2688 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4)) (-4 *4 (-1111)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-914 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-779)))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3)))) (-2325 (*1 *2 *1 *3) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1113 (-1113 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2325 (*1 *2 *1 *3) (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-913 *4)) (-5 *3 (-1113 *4)))) (-2325 (*1 *2 *1 *3) (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-652 *4))) (-5 *1 (-913 *4)) (-5 *3 (-652 *4)))) (-4211 (*1 *2 *3 *1) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-913 *4)))) (-2408 (*1 *2 *3 *1) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779))) (-5 *1 (-913 *4)))) (-3683 (*1 *2 *3 *1) (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779))) (-5 *1 (-913 *4)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3943 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-3965 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2900 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))) (-2900 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-913 *4)) (-4 *4 (-1111)))))
+(-13 (-1111) (-10 -8 (-15 -3491 ((-652 (-914 |#1|)) $)) (-15 -3877 ((-652 (-914 |#1|)) $)) (-15 -2679 ((-914 |#1|) $ (-779))) (-15 -2688 ((-914 |#1|) $ (-572))) (-15 -2688 ((-914 |#1|) $)) (-15 -2068 ((-779) $)) (-15 -1497 ((-779) $)) (-15 -1556 ((-652 |#1|) $)) (-15 -3937 ((-652 (-914 |#1|)) $)) (-15 -3669 ((-652 (-652 (-779))) $)) (-15 -3491 ($ (-652 (-914 |#1|)))) (-15 -3133 ($ (-652 (-914 |#1|)))) (-15 -2325 ((-1113 |#1|) $ |#1|)) (-15 -1970 ((-1113 (-1113 |#1|)) $)) (-15 -2325 ((-1113 (-1113 |#1|)) $ (-1113 |#1|))) (-15 -2325 ((-1113 (-652 |#1|)) $ (-652 |#1|))) (-15 -4211 ((-112) (-914 |#1|) $)) (-15 -2408 ((-652 (-779)) (-914 |#1|) $)) (-15 -3683 ((-652 (-779)) (-914 |#1|) $)) (-15 -3522 ((-1113 |#1|) $)) (-15 -3943 ((-112) $ $)) (-15 -3965 ((-112) $ $)) (-15 -2900 ((-1284) $)) (-15 -2900 ((-1284) $ (-572) (-572)))))
+((-3464 (((-112) $ $) NIL)) (-3522 (((-1113 |#1|) $) 60)) (-2641 (((-652 $) (-652 $)) 103)) (-4304 (((-572) $) 83)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-2068 (((-779) $) 80)) (-2325 (((-1113 |#1|) $ |#1|) 70)) (-4422 (((-112) $) NIL)) (-2270 (((-112) $) 88)) (-2313 (((-779) $) 84)) (-2536 (($ $ $) NIL (-3783 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-3928 (($ $ $) NIL (-3783 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-2654 (((-2 (|:| |preimage| (-652 |#1|)) (|:| |image| (-652 |#1|))) $) 55)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 130)) (-2614 (((-1131) $) NIL)) (-3539 (((-1113 |#1|) $) 136 (|has| |#1| (-375)))) (-3601 (((-112) $) 81)) (-2679 ((|#1| $ |#1|) 68)) (-1497 (((-779) $) 62)) (-3170 (($ (-652 (-652 |#1|))) 118)) (-2135 (((-982) $) 74)) (-1625 (($ (-652 |#1|)) 32)) (-4242 (($ $ $) NIL)) (-1433 (($ $ $) NIL)) (-2520 (($ (-652 (-652 |#1|))) 57)) (-3110 (($ (-652 (-652 |#1|))) 123)) (-4127 (($ (-652 |#1|)) 132)) (-3491 (((-870) $) 117) (($ (-652 (-652 |#1|))) 91) (($ (-652 |#1|)) 92)) (-3424 (((-112) $ $) NIL)) (-2619 (($) 24 T CONST)) (-3976 (((-112) $ $) NIL (-3783 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-3954 (((-112) $ $) NIL (-3783 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-3921 (((-112) $ $) 66)) (-3965 (((-112) $ $) NIL (-3783 (|has| |#1| (-375)) (|has| |#1| (-858))))) (-3943 (((-112) $ $) 90)) (-4029 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ $ $) 33)))
+(((-914 |#1|) (-13 (-912 |#1|) (-10 -8 (-15 -2654 ((-2 (|:| |preimage| (-652 |#1|)) (|:| |image| (-652 |#1|))) $)) (-15 -2520 ($ (-652 (-652 |#1|)))) (-15 -3491 ($ (-652 (-652 |#1|)))) (-15 -3491 ($ (-652 |#1|))) (-15 -3110 ($ (-652 (-652 |#1|)))) (-15 -1497 ((-779) $)) (-15 -2135 ((-982) $)) (-15 -2068 ((-779) $)) (-15 -2313 ((-779) $)) (-15 -4304 ((-572) $)) (-15 -3601 ((-112) $)) (-15 -2270 ((-112) $)) (-15 -2641 ((-652 $) (-652 $))) (IF (|has| |#1| (-375)) (-15 -3539 ((-1113 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -4127 ($ (-652 |#1|))) (IF (|has| |#1| (-375)) (-15 -4127 ($ (-652 |#1|))) |%noBranch|)))) (-1111)) (T -914))
+((-2654 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-652 *3)) (|:| |image| (-652 *3)))) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2520 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-2641 (*1 *2 *2) (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1111)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-914 *3)) (-4 *3 (-375)) (-4 *3 (-1111)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
+(-13 (-912 |#1|) (-10 -8 (-15 -2654 ((-2 (|:| |preimage| (-652 |#1|)) (|:| |image| (-652 |#1|))) $)) (-15 -2520 ($ (-652 (-652 |#1|)))) (-15 -3491 ($ (-652 (-652 |#1|)))) (-15 -3491 ($ (-652 |#1|))) (-15 -3110 ($ (-652 (-652 |#1|)))) (-15 -1497 ((-779) $)) (-15 -2135 ((-982) $)) (-15 -2068 ((-779) $)) (-15 -2313 ((-779) $)) (-15 -4304 ((-572) $)) (-15 -3601 ((-112) $)) (-15 -2270 ((-112) $)) (-15 -2641 ((-652 $) (-652 $))) (IF (|has| |#1| (-375)) (-15 -3539 ((-1113 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-553)) (-15 -4127 ($ (-652 |#1|))) (IF (|has| |#1| (-375)) (-15 -4127 ($ (-652 |#1|))) |%noBranch|))))
+((-3648 (((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|)) 160)) (-2800 ((|#1|) 97)) (-3151 (((-426 (-1184 |#4|)) (-1184 |#4|)) 169)) (-1368 (((-426 (-1184 |#4|)) (-652 |#3|) (-1184 |#4|)) 84)) (-4000 (((-426 (-1184 |#4|)) (-1184 |#4|)) 179)) (-4016 (((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|) |#3|) 113)))
+(((-915 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3648 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|))) (-15 -4000 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -3151 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -2800 (|#1|)) (-15 -4016 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|) |#3|)) (-15 -1368 ((-426 (-1184 |#4|)) (-652 |#3|) (-1184 |#4|)))) (-918) (-801) (-858) (-958 |#1| |#2| |#3|)) (T -915))
+((-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *7)) (-4 *7 (-858)) (-4 *5 (-918)) (-4 *6 (-801)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-426 (-1184 *8))) (-5 *1 (-915 *5 *6 *7 *8)) (-5 *4 (-1184 *8)))) (-4016 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7)) (-4 *7 (-958 *5 *6 *4)) (-4 *5 (-918)) (-4 *6 (-801)) (-4 *4 (-858)) (-5 *1 (-915 *5 *6 *4 *7)))) (-2800 (*1 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918)) (-5 *1 (-915 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))) (-3151 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7))) (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7)))) (-3648 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-915 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3648 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|))) (-15 -4000 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -3151 ((-426 (-1184 |#4|)) (-1184 |#4|))) (-15 -2800 (|#1|)) (-15 -4016 ((-3 (-652 (-1184 |#4|)) "failed") (-652 (-1184 |#4|)) (-1184 |#4|) |#3|)) (-15 -1368 ((-426 (-1184 |#4|)) (-652 |#3|) (-1184 |#4|))))
+((-3648 (((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|)) 39)) (-2800 ((|#1|) 72)) (-3151 (((-426 (-1184 |#2|)) (-1184 |#2|)) 121)) (-1368 (((-426 (-1184 |#2|)) (-1184 |#2|)) 105)) (-4000 (((-426 (-1184 |#2|)) (-1184 |#2|)) 132)))
+(((-916 |#1| |#2|) (-10 -7 (-15 -3648 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|))) (-15 -4000 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -3151 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -2800 (|#1|)) (-15 -1368 ((-426 (-1184 |#2|)) (-1184 |#2|)))) (-918) (-1255 |#1|)) (T -916))
+((-1368 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5))) (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))) (-2800 (*1 *2) (-12 (-4 *2 (-918)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1255 *2)))) (-3151 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5))) (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5))) (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))) (-3648 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-918)) (-5 *1 (-916 *4 *5)))))
+(-10 -7 (-15 -3648 ((-3 (-652 (-1184 |#2|)) "failed") (-652 (-1184 |#2|)) (-1184 |#2|))) (-15 -4000 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -3151 ((-426 (-1184 |#2|)) (-1184 |#2|))) (-15 -2800 (|#1|)) (-15 -1368 ((-426 (-1184 |#2|)) (-1184 |#2|))))
+((-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 42)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 18)) (-2210 (((-3 $ "failed") $) 36)))
+(((-917 |#1|) (-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)))) (-918)) (T -917))
+NIL
+(-10 -8 (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-2730 (((-426 (-1184 $)) (-1184 $)) 66)) (-1861 (($ $) 57)) (-2359 (((-426 $) $) 58)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 63)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-3439 (((-112) $) 59)) (-4422 (((-112) $) 35)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3508 (((-426 (-1184 $)) (-1184 $)) 64)) (-3115 (((-426 (-1184 $)) (-1184 $)) 65)) (-2972 (((-426 $) $) 56)) (-3453 (((-3 $ "failed") $ $) 48)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 62 (|has| $ (-146)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2210 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-918) (-141)) (T -918))
+((-2500 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-918)))) (-2730 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))) (-3115 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))) (-3508 (*1 *2 *3) (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))) (-3317 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-652 (-1184 *1))) (-5 *3 (-1184 *1)) (-4 *1 (-918)))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-146)) (-4 *1 (-918)) (-5 *2 (-1279 *1)))) (-2210 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-918)))))
+(-13 (-1233) (-10 -8 (-15 -2730 ((-426 (-1184 $)) (-1184 $))) (-15 -3115 ((-426 (-1184 $)) (-1184 $))) (-15 -3508 ((-426 (-1184 $)) (-1184 $))) (-15 -2500 ((-1184 $) (-1184 $) (-1184 $))) (-15 -3317 ((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $))) (IF (|has| $ (-146)) (PROGN (-15 -3130 ((-3 (-1279 $) "failed") (-697 $))) (-15 -2210 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-3484 (((-112) $) NIL)) (-3541 (((-779)) NIL)) (-2055 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-4380 (((-1201 (-930) (-779)) (-572)) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 $ "failed") $) NIL)) (-1869 (($ $) NIL)) (-2372 (($ (-1279 $)) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-1345 (($) NIL)) (-2754 (((-112) $) NIL)) (-3156 (($ $) NIL) (($ $ (-779)) NIL)) (-3439 (((-112) $) NIL)) (-2068 (((-841 (-930)) $) NIL) (((-930) $) NIL)) (-4422 (((-112) $) NIL)) (-2833 (($) NIL (|has| $ (-375)))) (-3466 (((-112) $) NIL (|has| $ (-375)))) (-2140 (($ $ (-930)) NIL (|has| $ (-375))) (($ $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2179 (((-1184 $) $ (-930)) NIL (|has| $ (-375))) (((-1184 $) $) NIL)) (-4370 (((-930) $) NIL)) (-1532 (((-1184 $) $) NIL (|has| $ (-375)))) (-2202 (((-3 (-1184 $) "failed") $ $) NIL (|has| $ (-375))) (((-1184 $) $) NIL (|has| $ (-375)))) (-2423 (($ $ (-1184 $)) NIL (|has| $ (-375)))) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL T CONST)) (-1795 (($ (-930)) NIL)) (-2011 (((-112) $) NIL)) (-2614 (((-1131) $) NIL)) (-4267 (($) NIL (|has| $ (-375)))) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL)) (-2972 (((-426 $) $) NIL)) (-4148 (((-930)) NIL) (((-841 (-930))) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1468 (((-3 (-779) "failed") $ $) NIL) (((-779) $) NIL)) (-1670 (((-135)) NIL)) (-3011 (($ $ (-779)) NIL) (($ $) NIL)) (-1497 (((-930) $) NIL) (((-841 (-930)) $) NIL)) (-3858 (((-1184 $)) NIL)) (-2817 (($) NIL)) (-3068 (($) NIL (|has| $ (-375)))) (-2862 (((-697 $) (-1279 $)) NIL) (((-1279 $) $) NIL)) (-3222 (((-572) $) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL)) (-2210 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $) (-930)) NIL) (((-1279 $)) NIL)) (-2466 (((-112) $ $) NIL)) (-2947 (((-112) $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-2933 (($ $ (-779)) NIL (|has| $ (-375))) (($ $) NIL (|has| $ (-375)))) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-919 |#1|) (-13 (-356) (-335 $) (-622 (-572))) (-930)) (T -919))
+NIL
+(-13 (-356) (-335 $) (-622 (-572)))
+((-4162 (((-3 (-2 (|:| -2068 (-779)) (|:| -4358 |#5|)) "failed") (-343 |#2| |#3| |#4| |#5|)) 77)) (-1681 (((-112) (-343 |#2| |#3| |#4| |#5|)) 17)) (-2068 (((-3 (-779) "failed") (-343 |#2| |#3| |#4| |#5|)) 15)))
+(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2068 ((-3 (-779) "failed") (-343 |#2| |#3| |#4| |#5|))) (-15 -1681 ((-112) (-343 |#2| |#3| |#4| |#5|))) (-15 -4162 ((-3 (-2 (|:| -2068 (-779)) (|:| -4358 |#5|)) "failed") (-343 |#2| |#3| |#4| |#5|)))) (-13 (-564) (-1049 (-572))) (-438 |#1|) (-1255 |#2|) (-1255 (-415 |#3|)) (-349 |#2| |#3| |#4|)) (T -920))
+((-4162 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-2 (|:| -2068 (-779)) (|:| -4358 *8))) (-5 *1 (-920 *4 *5 *6 *7 *8)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7 *8)))) (-2068 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-779)) (-5 *1 (-920 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2068 ((-3 (-779) "failed") (-343 |#2| |#3| |#4| |#5|))) (-15 -1681 ((-112) (-343 |#2| |#3| |#4| |#5|))) (-15 -4162 ((-3 (-2 (|:| -2068 (-779)) (|:| -4358 |#5|)) "failed") (-343 |#2| |#3| |#4| |#5|))))
+((-4162 (((-3 (-2 (|:| -2068 (-779)) (|:| -4358 |#3|)) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|)) 64)) (-1681 (((-112) (-343 (-415 (-572)) |#1| |#2| |#3|)) 16)) (-2068 (((-3 (-779) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|)) 14)))
+(((-921 |#1| |#2| |#3|) (-10 -7 (-15 -2068 ((-3 (-779) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -1681 ((-112) (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -4162 ((-3 (-2 (|:| -2068 (-779)) (|:| -4358 |#3|)) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|)))) (-1255 (-415 (-572))) (-1255 (-415 |#1|)) (-349 (-415 (-572)) |#1| |#2|)) (T -921))
+((-4162 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6)) (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-2 (|:| -2068 (-779)) (|:| -4358 *6))) (-5 *1 (-921 *4 *5 *6)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6)) (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6)))) (-2068 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6)) (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-779)) (-5 *1 (-921 *4 *5 *6)))))
+(-10 -7 (-15 -2068 ((-3 (-779) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -1681 ((-112) (-343 (-415 (-572)) |#1| |#2| |#3|))) (-15 -4162 ((-3 (-2 (|:| -2068 (-779)) (|:| -4358 |#3|)) "failed") (-343 (-415 (-572)) |#1| |#2| |#3|))))
+((-2883 ((|#2| |#2|) 26)) (-2126 (((-572) (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))))) 15)) (-3999 (((-930) (-572)) 38)) (-1842 (((-572) |#2|) 45)) (-3184 (((-572) |#2|) 21) (((-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))) |#1|) 20)))
+(((-922 |#1| |#2|) (-10 -7 (-15 -3999 ((-930) (-572))) (-15 -3184 ((-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))) |#1|)) (-15 -3184 ((-572) |#2|)) (-15 -2126 ((-572) (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))))) (-15 -1842 ((-572) |#2|)) (-15 -2883 (|#2| |#2|))) (-1255 (-415 (-572))) (-1255 (-415 |#1|))) (T -922))
+((-2883 (*1 *2 *2) (-12 (-4 *3 (-1255 (-415 (-572)))) (-5 *1 (-922 *3 *2)) (-4 *2 (-1255 (-415 *3))))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3)) (-4 *3 (-1255 (-415 *4))))) (-2126 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))))) (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *5)) (-4 *5 (-1255 (-415 *4))))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3)) (-4 *3 (-1255 (-415 *4))))) (-3184 (*1 *2 *3) (-12 (-4 *3 (-1255 (-415 (-572)))) (-5 *2 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))) (-5 *1 (-922 *3 *4)) (-4 *4 (-1255 (-415 *3))))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-572)) (-4 *4 (-1255 (-415 *3))) (-5 *2 (-930)) (-5 *1 (-922 *4 *5)) (-4 *5 (-1255 (-415 *4))))))
+(-10 -7 (-15 -3999 ((-930) (-572))) (-15 -3184 ((-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))) |#1|)) (-15 -3184 ((-572) |#2|)) (-15 -2126 ((-572) (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))))) (-15 -1842 ((-572) |#2|)) (-15 -2883 (|#2| |#2|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 ((|#1| $) 100)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-3407 (($ $ $) NIL)) (-2982 (((-3 $ "failed") $) 94)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-2137 (($ |#1| (-426 |#1|)) 92)) (-4374 (((-1184 |#1|) |#1| |#1|) 53)) (-4038 (($ $) 61)) (-4422 (((-112) $) NIL)) (-2743 (((-572) $) 97)) (-3144 (($ $ (-572)) 99)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3996 ((|#1| $) 96)) (-3336 (((-426 |#1|) $) 95)) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) 93)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-1669 (($ $) 50)) (-3491 (((-870) $) 124) (($ (-572)) 73) (($ $) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 41) (((-415 |#1|) $) 78) (($ (-415 (-426 |#1|))) 86)) (-2455 (((-779)) 71 T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) 26 T CONST)) (-2619 (($) 15 T CONST)) (-3921 (((-112) $ $) 87)) (-4029 (($ $ $) NIL)) (-4018 (($ $) 108) (($ $ $) NIL)) (-4005 (($ $ $) 49)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 110) (($ $ $) 48) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-923 |#1|) (-13 (-370) (-38 |#1|) (-10 -8 (-15 -3491 ((-415 |#1|) $)) (-15 -3491 ($ (-415 (-426 |#1|)))) (-15 -1669 ($ $)) (-15 -3336 ((-426 |#1|) $)) (-15 -3996 (|#1| $)) (-15 -3144 ($ $ (-572))) (-15 -2743 ((-572) $)) (-15 -4374 ((-1184 |#1|) |#1| |#1|)) (-15 -4038 ($ $)) (-15 -2137 ($ |#1| (-426 |#1|))) (-15 -3923 (|#1| $)))) (-313)) (T -923))
+((-3491 (*1 *2 *1) (-12 (-5 *2 (-415 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-415 (-426 *3))) (-4 *3 (-313)) (-5 *1 (-923 *3)))) (-1669 (*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-426 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-3996 (*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-4374 (*1 *2 *3 *3) (-12 (-5 *2 (-1184 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))) (-4038 (*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))) (-2137 (*1 *1 *2 *3) (-12 (-5 *3 (-426 *2)) (-4 *2 (-313)) (-5 *1 (-923 *2)))) (-3923 (*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
+(-13 (-370) (-38 |#1|) (-10 -8 (-15 -3491 ((-415 |#1|) $)) (-15 -3491 ($ (-415 (-426 |#1|)))) (-15 -1669 ($ $)) (-15 -3336 ((-426 |#1|) $)) (-15 -3996 (|#1| $)) (-15 -3144 ($ $ (-572))) (-15 -2743 ((-572) $)) (-15 -4374 ((-1184 |#1|) |#1| |#1|)) (-15 -4038 ($ $)) (-15 -2137 ($ |#1| (-426 |#1|))) (-15 -3923 (|#1| $))))
+((-2137 (((-52) (-961 |#1|) (-426 (-961 |#1|)) (-1188)) 17) (((-52) (-415 (-961 |#1|)) (-1188)) 18)))
+(((-924 |#1|) (-10 -7 (-15 -2137 ((-52) (-415 (-961 |#1|)) (-1188))) (-15 -2137 ((-52) (-961 |#1|) (-426 (-961 |#1|)) (-1188)))) (-13 (-313) (-148))) (T -924))
+((-2137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-426 (-961 *6))) (-5 *5 (-1188)) (-5 *3 (-961 *6)) (-4 *6 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *6)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *5)))))
+(-10 -7 (-15 -2137 ((-52) (-415 (-961 |#1|)) (-1188))) (-15 -2137 ((-52) (-961 |#1|) (-426 (-961 |#1|)) (-1188))))
+((-1797 ((|#4| (-652 |#4|)) 147) (((-1184 |#4|) (-1184 |#4|) (-1184 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-1370 (((-1184 |#4|) (-652 (-1184 |#4|))) 140) (((-1184 |#4|) (-1184 |#4|) (-1184 |#4|)) 61) ((|#4| (-652 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
+(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#4| |#4| |#4|)) (-15 -1370 (|#4| (-652 |#4|))) (-15 -1370 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -1370 ((-1184 |#4|) (-652 (-1184 |#4|)))) (-15 -1797 (|#4| |#4| |#4|)) (-15 -1797 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -1797 (|#4| (-652 |#4|)))) (-801) (-858) (-313) (-958 |#3| |#1| |#2|)) (T -925))
+((-1797 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5)) (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)))) (-1797 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6)))) (-1797 (*1 *2 *2 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-652 (-1184 *7))) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-1184 *7)) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5)) (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4)))))
+(-10 -7 (-15 -1370 (|#4| |#4| |#4|)) (-15 -1370 (|#4| (-652 |#4|))) (-15 -1370 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -1370 ((-1184 |#4|) (-652 (-1184 |#4|)))) (-15 -1797 (|#4| |#4| |#4|)) (-15 -1797 ((-1184 |#4|) (-1184 |#4|) (-1184 |#4|))) (-15 -1797 (|#4| (-652 |#4|))))
+((-1355 (((-913 (-572)) (-982)) 38) (((-913 (-572)) (-652 (-572))) 34)) (-1562 (((-913 (-572)) (-652 (-572))) 67) (((-913 (-572)) (-930)) 68)) (-2019 (((-913 (-572))) 39)) (-2490 (((-913 (-572))) 53) (((-913 (-572)) (-652 (-572))) 52)) (-1782 (((-913 (-572))) 51) (((-913 (-572)) (-652 (-572))) 50)) (-4182 (((-913 (-572))) 49) (((-913 (-572)) (-652 (-572))) 48)) (-4194 (((-913 (-572))) 47) (((-913 (-572)) (-652 (-572))) 46)) (-2096 (((-913 (-572))) 45) (((-913 (-572)) (-652 (-572))) 44)) (-2072 (((-913 (-572))) 55) (((-913 (-572)) (-652 (-572))) 54)) (-4284 (((-913 (-572)) (-652 (-572))) 72) (((-913 (-572)) (-930)) 74)) (-3075 (((-913 (-572)) (-652 (-572))) 69) (((-913 (-572)) (-930)) 70)) (-1380 (((-913 (-572)) (-652 (-572))) 65) (((-913 (-572)) (-930)) 66)) (-2318 (((-913 (-572)) (-652 (-930))) 57)))
+(((-926) (-10 -7 (-15 -1562 ((-913 (-572)) (-930))) (-15 -1562 ((-913 (-572)) (-652 (-572)))) (-15 -1380 ((-913 (-572)) (-930))) (-15 -1380 ((-913 (-572)) (-652 (-572)))) (-15 -2318 ((-913 (-572)) (-652 (-930)))) (-15 -3075 ((-913 (-572)) (-930))) (-15 -3075 ((-913 (-572)) (-652 (-572)))) (-15 -4284 ((-913 (-572)) (-930))) (-15 -4284 ((-913 (-572)) (-652 (-572)))) (-15 -2096 ((-913 (-572)) (-652 (-572)))) (-15 -2096 ((-913 (-572)))) (-15 -4194 ((-913 (-572)) (-652 (-572)))) (-15 -4194 ((-913 (-572)))) (-15 -4182 ((-913 (-572)) (-652 (-572)))) (-15 -4182 ((-913 (-572)))) (-15 -1782 ((-913 (-572)) (-652 (-572)))) (-15 -1782 ((-913 (-572)))) (-15 -2490 ((-913 (-572)) (-652 (-572)))) (-15 -2490 ((-913 (-572)))) (-15 -2072 ((-913 (-572)) (-652 (-572)))) (-15 -2072 ((-913 (-572)))) (-15 -2019 ((-913 (-572)))) (-15 -1355 ((-913 (-572)) (-652 (-572)))) (-15 -1355 ((-913 (-572)) (-982))))) (T -926))
+((-1355 (*1 *2 *3) (-12 (-5 *3 (-982)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2019 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2072 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2490 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1782 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4182 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4194 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2096 (*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(-10 -7 (-15 -1562 ((-913 (-572)) (-930))) (-15 -1562 ((-913 (-572)) (-652 (-572)))) (-15 -1380 ((-913 (-572)) (-930))) (-15 -1380 ((-913 (-572)) (-652 (-572)))) (-15 -2318 ((-913 (-572)) (-652 (-930)))) (-15 -3075 ((-913 (-572)) (-930))) (-15 -3075 ((-913 (-572)) (-652 (-572)))) (-15 -4284 ((-913 (-572)) (-930))) (-15 -4284 ((-913 (-572)) (-652 (-572)))) (-15 -2096 ((-913 (-572)) (-652 (-572)))) (-15 -2096 ((-913 (-572)))) (-15 -4194 ((-913 (-572)) (-652 (-572)))) (-15 -4194 ((-913 (-572)))) (-15 -4182 ((-913 (-572)) (-652 (-572)))) (-15 -4182 ((-913 (-572)))) (-15 -1782 ((-913 (-572)) (-652 (-572)))) (-15 -1782 ((-913 (-572)))) (-15 -2490 ((-913 (-572)) (-652 (-572)))) (-15 -2490 ((-913 (-572)))) (-15 -2072 ((-913 (-572)) (-652 (-572)))) (-15 -2072 ((-913 (-572)))) (-15 -2019 ((-913 (-572)))) (-15 -1355 ((-913 (-572)) (-652 (-572)))) (-15 -1355 ((-913 (-572)) (-982))))
+((-1752 (((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188))) 14)) (-3492 (((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188))) 13)))
+(((-927 |#1|) (-10 -7 (-15 -3492 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1752 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188))))) (-460)) (T -927))
+((-1752 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460)) (-5 *1 (-927 *4)))) (-3492 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460)) (-5 *1 (-927 *4)))))
+(-10 -7 (-15 -3492 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1752 ((-652 (-961 |#1|)) (-652 (-961 |#1|)) (-652 (-1188)))))
+((-3491 (((-322 |#1|) (-485)) 16)))
+(((-928 |#1|) (-10 -7 (-15 -3491 ((-322 |#1|) (-485)))) (-564)) (T -928))
+((-3491 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-322 *4)) (-5 *1 (-928 *4)) (-4 *4 (-564)))))
+(-10 -7 (-15 -3491 ((-322 |#1|) (-485))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-4422 (((-112) $) 35)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-929) (-141)) (T -929))
+((-3350 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-2 (|:| -2379 (-652 *1)) (|:| -4267 *1))) (-5 *3 (-652 *1)))) (-4123 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-929)))))
+(-13 (-460) (-10 -8 (-15 -3350 ((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $))) (-15 -4123 ((-3 (-652 $) "failed") (-652 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1370 (($ $ $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2619 (($) NIL T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ $ $) NIL)))
+(((-930) (-13 (-802) (-734) (-10 -8 (-15 -1370 ($ $ $)) (-6 (-4456 "*"))))) (T -930))
+((-1370 (*1 *1 *1 *1) (-5 *1 (-930))))
+(-13 (-802) (-734) (-10 -8 (-15 -1370 ($ $ $)) (-6 (-4456 "*"))))
((|NonNegativeInteger|) (|%igt| |#1| 0))
-((-1913 ((|#2| (-650 |#1|) (-650 |#1|)) 28)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -1913 (|#2| (-650 |#1|) (-650 |#1|)))) (-368) (-1253 |#1|)) (T -929))
-((-1913 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-4 *2 (-1253 *4)) (-5 *1 (-929 *4 *2)))))
-(-10 -7 (-15 -1913 (|#2| (-650 |#1|) (-650 |#1|))))
-((-2121 (((-1182 |#2|) (-650 |#2|) (-650 |#2|)) 17) (((-1250 |#1| |#2|) (-1250 |#1| |#2|) (-650 |#2|) (-650 |#2|)) 13)))
-(((-930 |#1| |#2|) (-10 -7 (-15 -2121 ((-1250 |#1| |#2|) (-1250 |#1| |#2|) (-650 |#2|) (-650 |#2|))) (-15 -2121 ((-1182 |#2|) (-650 |#2|) (-650 |#2|)))) (-1186) (-368)) (T -930))
-((-2121 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *5)) (-4 *5 (-368)) (-5 *2 (-1182 *5)) (-5 *1 (-930 *4 *5)) (-14 *4 (-1186)))) (-2121 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1250 *4 *5)) (-5 *3 (-650 *5)) (-14 *4 (-1186)) (-4 *5 (-368)) (-5 *1 (-930 *4 *5)))))
-(-10 -7 (-15 -2121 ((-1250 |#1| |#2|) (-1250 |#1| |#2|) (-650 |#2|) (-650 |#2|))) (-15 -2121 ((-1182 |#2|) (-650 |#2|) (-650 |#2|))))
-((-1315 (((-570) (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-1168)) 174)) (-3932 ((|#4| |#4|) 193)) (-1667 (((-650 (-413 (-959 |#1|))) (-650 (-1186))) 146)) (-3391 (((-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-650 (-650 |#4|)) (-777) (-777) (-570)) 88)) (-1420 (((-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-650 |#4|)) 69)) (-1498 (((-695 |#4|) (-695 |#4|) (-650 |#4|)) 65)) (-2043 (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-1168)) 186)) (-2967 (((-570) (-695 |#4|) (-928) (-1168)) 166) (((-570) (-695 |#4|) (-650 (-1186)) (-928) (-1168)) 165) (((-570) (-695 |#4|) (-650 |#4|) (-928) (-1168)) 164) (((-570) (-695 |#4|) (-1168)) 154) (((-570) (-695 |#4|) (-650 (-1186)) (-1168)) 153) (((-570) (-695 |#4|) (-650 |#4|) (-1168)) 152) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-928)) 151) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)) (-928)) 150) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|) (-928)) 149) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|)) 148) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186))) 147) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|)) 143)) (-2208 ((|#4| (-959 |#1|)) 80)) (-2076 (((-112) (-650 |#4|) (-650 (-650 |#4|))) 190)) (-2673 (((-650 (-650 (-570))) (-570) (-570)) 159)) (-4308 (((-650 (-650 |#4|)) (-650 (-650 |#4|))) 106)) (-3418 (((-777) (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|))))) 100)) (-3066 (((-777) (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|))))) 99)) (-1736 (((-112) (-650 (-959 |#1|))) 19) (((-112) (-650 |#4|)) 15)) (-2961 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-650 |#4|)) (|:| |n0| (-650 |#4|))) (-650 |#4|) (-650 |#4|)) 84)) (-2745 (((-650 |#4|) |#4|) 57)) (-3885 (((-650 (-413 (-959 |#1|))) (-650 |#4|)) 142) (((-695 (-413 (-959 |#1|))) (-695 |#4|)) 66) (((-413 (-959 |#1|)) |#4|) 139)) (-2080 (((-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))))))) (|:| |rgsz| (-570))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-777) (-1168) (-570)) 112)) (-1898 (((-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))) (-695 |#4|) (-777)) 98)) (-2806 (((-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-695 |#4|) (-777)) 121)) (-3091 (((-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-2 (|:| -2565 (-695 (-413 (-959 |#1|)))) (|:| |vec| (-650 (-413 (-959 |#1|)))) (|:| -4412 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) 56)))
-(((-931 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|) (-928))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)) (-928))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-928))) (-15 -2967 ((-570) (-695 |#4|) (-650 |#4|) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-650 (-1186)) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-650 |#4|) (-928) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-650 (-1186)) (-928) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-928) (-1168))) (-15 -1315 ((-570) (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-1168))) (-15 -2043 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-1168))) (-15 -2080 ((-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))))))) (|:| |rgsz| (-570))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-777) (-1168) (-570))) (-15 -3885 ((-413 (-959 |#1|)) |#4|)) (-15 -3885 ((-695 (-413 (-959 |#1|))) (-695 |#4|))) (-15 -3885 ((-650 (-413 (-959 |#1|))) (-650 |#4|))) (-15 -1667 ((-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -2208 (|#4| (-959 |#1|))) (-15 -2961 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-650 |#4|)) (|:| |n0| (-650 |#4|))) (-650 |#4|) (-650 |#4|))) (-15 -1898 ((-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))) (-695 |#4|) (-777))) (-15 -1420 ((-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-650 |#4|))) (-15 -3091 ((-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-2 (|:| -2565 (-695 (-413 (-959 |#1|)))) (|:| |vec| (-650 (-413 (-959 |#1|)))) (|:| -4412 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (-15 -2745 ((-650 |#4|) |#4|)) (-15 -3066 ((-777) (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -3418 ((-777) (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -4308 ((-650 (-650 |#4|)) (-650 (-650 |#4|)))) (-15 -2673 ((-650 (-650 (-570))) (-570) (-570))) (-15 -2076 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -2806 ((-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-695 |#4|) (-777))) (-15 -1498 ((-695 |#4|) (-695 |#4|) (-650 |#4|))) (-15 -3391 ((-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-650 (-650 |#4|)) (-777) (-777) (-570))) (-15 -3932 (|#4| |#4|)) (-15 -1736 ((-112) (-650 |#4|))) (-15 -1736 ((-112) (-650 (-959 |#1|))))) (-13 (-311) (-148)) (-13 (-856) (-620 (-1186))) (-799) (-956 |#1| |#3| |#2|)) (T -931))
-((-1736 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7)))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186)))) (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-956 *3 *5 *4)))) (-3391 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-5 *4 (-695 *12)) (-5 *5 (-650 (-413 (-959 *9)))) (-5 *6 (-650 (-650 *12))) (-5 *7 (-777)) (-5 *8 (-570)) (-4 *9 (-13 (-311) (-148))) (-4 *12 (-956 *9 *11 *10)) (-4 *10 (-13 (-856) (-620 (-1186)))) (-4 *11 (-799)) (-5 *2 (-2 (|:| |eqzro| (-650 *12)) (|:| |neqzro| (-650 *12)) (|:| |wcond| (-650 (-959 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *9)))) (|:| -2681 (-650 (-1277 (-413 (-959 *9))))))))) (-5 *1 (-931 *9 *10 *11 *12)))) (-1498 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *7)) (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-777)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |det| *8) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (-5 *1 (-931 *5 *6 *7 *8)))) (-2076 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *5 *6 *7 *8)))) (-2673 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-650 (-570)))) (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *6 *5)))) (-4308 (*1 *2 *2) (-12 (-5 *2 (-650 (-650 *6))) (-4 *6 (-956 *3 *5 *4)) (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186)))) (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *6)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| *7) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 *7))))) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777)) (-5 *1 (-931 *4 *5 *6 *7)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| *7) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 *7))))) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777)) (-5 *1 (-931 *4 *5 *6 *7)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 *3)) (-5 *1 (-931 *4 *5 *6 *3)) (-4 *3 (-956 *4 *6 *5)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2565 (-695 (-413 (-959 *4)))) (|:| |vec| (-650 (-413 (-959 *4)))) (|:| -4412 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-2 (|:| |partsol| (-1277 (-413 (-959 *4)))) (|:| -2681 (-650 (-1277 (-413 (-959 *4))))))) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-1420 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1277 (-413 (-959 *4)))) (|:| -2681 (-650 (-1277 (-413 (-959 *4))))))) (-5 *3 (-650 *7)) (-4 *4 (-13 (-311) (-148))) (-4 *7 (-956 *4 *6 *5)) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7)))) (-1898 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| *8) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 *8))))) (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-777)))) (-2961 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-4 *7 (-956 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-650 *7)) (|:| |n0| (-650 *7)))) (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-311) (-148))) (-4 *2 (-956 *4 *6 *5)) (-5 *1 (-931 *4 *5 *6 *2)) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-695 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7)))) (-3885 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-413 (-959 *4))) (-5 *1 (-931 *4 *5 *6 *3)) (-4 *3 (-956 *4 *6 *5)))) (-2080 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-695 *11)) (-5 *4 (-650 (-413 (-959 *8)))) (-5 *5 (-777)) (-5 *6 (-1168)) (-4 *8 (-13 (-311) (-148))) (-4 *11 (-956 *8 *10 *9)) (-4 *9 (-13 (-856) (-620 (-1186)))) (-4 *10 (-799)) (-5 *2 (-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 *11)) (|:| |neqzro| (-650 *11)) (|:| |wcond| (-650 (-959 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *8)))) (|:| -2681 (-650 (-1277 (-413 (-959 *8)))))))))) (|:| |rgsz| (-570)))) (-5 *1 (-931 *8 *9 *10 *11)) (-5 *7 (-570)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7)) (|:| |wcond| (-650 (-959 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *4)))) (|:| -2681 (-650 (-1277 (-413 (-959 *4)))))))))) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *5)))) (|:| -2681 (-650 (-1277 (-413 (-959 *5)))))))))) (-5 *4 (-1168)) (-4 *5 (-13 (-311) (-148))) (-4 *8 (-956 *5 *7 *6)) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *5 *6 *7 *8)))) (-2967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-928)) (-5 *5 (-1168)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *6 *7 *8 *9)))) (-2967 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 (-1186))) (-5 *5 (-928)) (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148))) (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *7 *8 *9 *10)))) (-2967 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 *10)) (-5 *5 (-928)) (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148))) (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *7 *8 *9 *10)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-1168)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *5 *6 *7 *8)))) (-2967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-1168)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *6 *7 *8 *9)))) (-2967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 *9)) (-5 *5 (-1168)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *6 *7 *8 *9)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-928)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *5)))) (|:| -2681 (-650 (-1277 (-413 (-959 *5)))))))))) (-5 *1 (-931 *5 *6 *7 *8)))) (-2967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-928)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9)) (|:| |wcond| (-650 (-959 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *6)))) (|:| -2681 (-650 (-1277 (-413 (-959 *6)))))))))) (-5 *1 (-931 *6 *7 *8 *9)))) (-2967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *5 (-928)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9)) (|:| |wcond| (-650 (-959 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *6)))) (|:| -2681 (-650 (-1277 (-413 (-959 *6)))))))))) (-5 *1 (-931 *6 *7 *8 *9)) (-5 *4 (-650 *9)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7)) (|:| |wcond| (-650 (-959 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *4)))) (|:| -2681 (-650 (-1277 (-413 (-959 *4)))))))))) (-5 *1 (-931 *4 *5 *6 *7)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-650 (-1186))) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *5)))) (|:| -2681 (-650 (-1277 (-413 (-959 *5)))))))))) (-5 *1 (-931 *5 *6 *7 *8)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 *5)))) (|:| -2681 (-650 (-1277 (-413 (-959 *5)))))))))) (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-650 *8)))))
-(-10 -7 (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|) (-928))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)) (-928))) (-15 -2967 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-695 |#4|) (-928))) (-15 -2967 ((-570) (-695 |#4|) (-650 |#4|) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-650 (-1186)) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-650 |#4|) (-928) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-650 (-1186)) (-928) (-1168))) (-15 -2967 ((-570) (-695 |#4|) (-928) (-1168))) (-15 -1315 ((-570) (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-1168))) (-15 -2043 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|))))))))) (-1168))) (-15 -2080 ((-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))))))) (|:| |rgsz| (-570))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-777) (-1168) (-570))) (-15 -3885 ((-413 (-959 |#1|)) |#4|)) (-15 -3885 ((-695 (-413 (-959 |#1|))) (-695 |#4|))) (-15 -3885 ((-650 (-413 (-959 |#1|))) (-650 |#4|))) (-15 -1667 ((-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -2208 (|#4| (-959 |#1|))) (-15 -2961 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-650 |#4|)) (|:| |n0| (-650 |#4|))) (-650 |#4|) (-650 |#4|))) (-15 -1898 ((-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))) (-695 |#4|) (-777))) (-15 -1420 ((-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-650 |#4|))) (-15 -3091 ((-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))) (-2 (|:| -2565 (-695 (-413 (-959 |#1|)))) (|:| |vec| (-650 (-413 (-959 |#1|)))) (|:| -4412 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (-15 -2745 ((-650 |#4|) |#4|)) (-15 -3066 ((-777) (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -3418 ((-777) (-650 (-2 (|:| -4412 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -4308 ((-650 (-650 |#4|)) (-650 (-650 |#4|)))) (-15 -2673 ((-650 (-650 (-570))) (-570) (-570))) (-15 -2076 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -2806 ((-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-695 |#4|) (-777))) (-15 -1498 ((-695 |#4|) (-695 |#4|) (-650 |#4|))) (-15 -3391 ((-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1277 (-413 (-959 |#1|)))) (|:| -2681 (-650 (-1277 (-413 (-959 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-650 (-650 |#4|)) (-777) (-777) (-570))) (-15 -3932 (|#4| |#4|)) (-15 -1736 ((-112) (-650 |#4|))) (-15 -1736 ((-112) (-650 (-959 |#1|)))))
-((-2997 (((-934) |#1| (-1186)) 17) (((-934) |#1| (-1186) (-1103 (-227))) 21)) (-2470 (((-934) |#1| |#1| (-1186) (-1103 (-227))) 19) (((-934) |#1| (-1186) (-1103 (-227))) 15)))
-(((-932 |#1|) (-10 -7 (-15 -2470 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2470 ((-934) |#1| |#1| (-1186) (-1103 (-227)))) (-15 -2997 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2997 ((-934) |#1| (-1186)))) (-620 (-542))) (T -932))
-((-2997 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) (-2997 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) (-2470 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) (-2470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))))
-(-10 -7 (-15 -2470 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2470 ((-934) |#1| |#1| (-1186) (-1103 (-227)))) (-15 -2997 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2997 ((-934) |#1| (-1186))))
-((-4322 (($ $ (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 121)) (-2825 (((-1103 (-227)) $) 64)) (-2812 (((-1103 (-227)) $) 63)) (-2800 (((-1103 (-227)) $) 62)) (-1398 (((-650 (-650 (-227))) $) 69)) (-2369 (((-1103 (-227)) $) 65)) (-2343 (((-570) (-570)) 57)) (-2028 (((-570) (-570)) 52)) (-3552 (((-570) (-570)) 55)) (-2395 (((-112) (-112)) 59)) (-3545 (((-570)) 56)) (-1501 (($ $ (-1103 (-227))) 124) (($ $) 125)) (-3128 (($ (-1 (-950 (-227)) (-227)) (-1103 (-227))) 131) (($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 132)) (-2470 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 135) (($ $ (-1103 (-227))) 127)) (-3786 (((-570)) 60)) (-3804 (((-570)) 50)) (-3798 (((-570)) 53)) (-4084 (((-650 (-650 (-950 (-227)))) $) 151)) (-2679 (((-112) (-112)) 61)) (-2869 (((-868) $) 149)) (-3510 (((-112)) 58)))
-(((-933) (-13 (-983) (-10 -8 (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ $ (-1103 (-227)))) (-15 -4322 ($ $ (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -1501 ($ $ (-1103 (-227)))) (-15 -1501 ($ $)) (-15 -2369 ((-1103 (-227)) $)) (-15 -1398 ((-650 (-650 (-227))) $)) (-15 -3804 ((-570))) (-15 -2028 ((-570) (-570))) (-15 -3798 ((-570))) (-15 -3552 ((-570) (-570))) (-15 -3545 ((-570))) (-15 -2343 ((-570) (-570))) (-15 -3510 ((-112))) (-15 -2395 ((-112) (-112))) (-15 -3786 ((-570))) (-15 -2679 ((-112) (-112)))))) (T -933))
-((-3128 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-3128 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-2470 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-2470 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-2470 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-4322 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-1501 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-1501 (*1 *1 *1) (-5 *1 (-933))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-933)))) (-3804 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-2028 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-3798 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-3552 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-3545 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-3510 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-3786 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-2679 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(-13 (-983) (-10 -8 (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ $ (-1103 (-227)))) (-15 -4322 ($ $ (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -1501 ($ $ (-1103 (-227)))) (-15 -1501 ($ $)) (-15 -2369 ((-1103 (-227)) $)) (-15 -1398 ((-650 (-650 (-227))) $)) (-15 -3804 ((-570))) (-15 -2028 ((-570) (-570))) (-15 -3798 ((-570))) (-15 -3552 ((-570) (-570))) (-15 -3545 ((-570))) (-15 -2343 ((-570) (-570))) (-15 -3510 ((-112))) (-15 -2395 ((-112) (-112))) (-15 -3786 ((-570))) (-15 -2679 ((-112) (-112)))))
-((-4322 (($ $ (-1103 (-227))) 122) (($ $ (-1103 (-227)) (-1103 (-227))) 123)) (-2812 (((-1103 (-227)) $) 73)) (-2800 (((-1103 (-227)) $) 72)) (-2369 (((-1103 (-227)) $) 74)) (-2035 (((-570) (-570)) 66)) (-2699 (((-570) (-570)) 61)) (-2797 (((-570) (-570)) 64)) (-3827 (((-112) (-112)) 68)) (-1636 (((-570)) 65)) (-1501 (($ $ (-1103 (-227))) 126) (($ $) 127)) (-3128 (($ (-1 (-950 (-227)) (-227)) (-1103 (-227))) 141) (($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 142)) (-2997 (($ (-1 (-227) (-227)) (-1103 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2470 (($ (-1 (-227) (-227)) (-1103 (-227))) 137) (($ (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227))) 138) (($ (-650 (-1 (-227) (-227))) (-1103 (-227))) 146) (($ (-650 (-1 (-227) (-227))) (-1103 (-227)) (-1103 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 140) (($ $ (-1103 (-227))) 128)) (-2087 (((-112) $) 69)) (-4256 (((-570)) 70)) (-2772 (((-570)) 59)) (-3906 (((-570)) 62)) (-4084 (((-650 (-650 (-950 (-227)))) $) 35)) (-3403 (((-112) (-112)) 71)) (-2869 (((-868) $) 167)) (-3452 (((-112)) 67)))
-(((-934) (-13 (-962) (-10 -8 (-15 -2470 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)))) (-15 -2470 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2997 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2997 ($ (-1 (-227) (-227)))) (-15 -2470 ($ $ (-1103 (-227)))) (-15 -2087 ((-112) $)) (-15 -4322 ($ $ (-1103 (-227)))) (-15 -4322 ($ $ (-1103 (-227)) (-1103 (-227)))) (-15 -1501 ($ $ (-1103 (-227)))) (-15 -1501 ($ $)) (-15 -2369 ((-1103 (-227)) $)) (-15 -2772 ((-570))) (-15 -2699 ((-570) (-570))) (-15 -3906 ((-570))) (-15 -2797 ((-570) (-570))) (-15 -1636 ((-570))) (-15 -2035 ((-570) (-570))) (-15 -3452 ((-112))) (-15 -3827 ((-112) (-112))) (-15 -4256 ((-570))) (-15 -3403 ((-112) (-112)))))) (T -934))
-((-2470 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2470 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2470 (*1 *1 *2 *3) (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2470 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2470 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2470 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-3128 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-3128 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2997 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-934)))) (-2470 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934)))) (-4322 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-4322 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-1501 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-1501 (*1 *1 *1) (-5 *1 (-934))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-2772 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-3906 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-2797 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-1636 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-2035 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-3452 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))) (-3827 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))) (-4256 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-3403 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))))
-(-13 (-962) (-10 -8 (-15 -2470 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)))) (-15 -2470 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2470 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -3128 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2997 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2997 ($ (-1 (-227) (-227)))) (-15 -2470 ($ $ (-1103 (-227)))) (-15 -2087 ((-112) $)) (-15 -4322 ($ $ (-1103 (-227)))) (-15 -4322 ($ $ (-1103 (-227)) (-1103 (-227)))) (-15 -1501 ($ $ (-1103 (-227)))) (-15 -1501 ($ $)) (-15 -2369 ((-1103 (-227)) $)) (-15 -2772 ((-570))) (-15 -2699 ((-570) (-570))) (-15 -3906 ((-570))) (-15 -2797 ((-570) (-570))) (-15 -1636 ((-570))) (-15 -2035 ((-570) (-570))) (-15 -3452 ((-112))) (-15 -3827 ((-112) (-112))) (-15 -4256 ((-570))) (-15 -3403 ((-112) (-112)))))
-((-3233 (((-650 (-1103 (-227))) (-650 (-650 (-950 (-227))))) 34)))
-(((-935) (-10 -7 (-15 -3233 ((-650 (-1103 (-227))) (-650 (-650 (-950 (-227)))))))) (T -935))
-((-3233 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-650 (-1103 (-227)))) (-5 *1 (-935)))))
-(-10 -7 (-15 -3233 ((-650 (-1103 (-227))) (-650 (-650 (-950 (-227)))))))
-((-4170 ((|#2| |#2|) 28)) (-1610 ((|#2| |#2|) 29)) (-3722 ((|#2| |#2|) 27)) (-2592 ((|#2| |#2| (-512)) 26)))
-(((-936 |#1| |#2|) (-10 -7 (-15 -2592 (|#2| |#2| (-512))) (-15 -3722 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -1610 (|#2| |#2|))) (-1109) (-436 |#1|)) (T -936))
-((-1610 (*1 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) (-2592 (*1 *2 *2 *3) (-12 (-5 *3 (-512)) (-4 *4 (-1109)) (-5 *1 (-936 *4 *2)) (-4 *2 (-436 *4)))))
-(-10 -7 (-15 -2592 (|#2| |#2| (-512))) (-15 -3722 (|#2| |#2|)) (-15 -4170 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)))
-((-4170 (((-320 (-570)) (-1186)) 16)) (-1610 (((-320 (-570)) (-1186)) 14)) (-3722 (((-320 (-570)) (-1186)) 12)) (-2592 (((-320 (-570)) (-1186) (-512)) 19)))
-(((-937) (-10 -7 (-15 -2592 ((-320 (-570)) (-1186) (-512))) (-15 -3722 ((-320 (-570)) (-1186))) (-15 -4170 ((-320 (-570)) (-1186))) (-15 -1610 ((-320 (-570)) (-1186))))) (T -937))
-((-1610 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-512)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))))
-(-10 -7 (-15 -2592 ((-320 (-570)) (-1186) (-512))) (-15 -3722 ((-320 (-570)) (-1186))) (-15 -4170 ((-320 (-570)) (-1186))) (-15 -1610 ((-320 (-570)) (-1186))))
-((-4429 (((-896 |#1| |#3|) |#2| (-899 |#1|) (-896 |#1| |#3|)) 25)) (-1704 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -1704 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4429 ((-896 |#1| |#3|) |#2| (-899 |#1|) (-896 |#1| |#3|)))) (-1109) (-893 |#1|) (-13 (-1109) (-1047 |#2|))) (T -938))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-13 (-1109) (-1047 *3))) (-4 *3 (-893 *5)) (-5 *1 (-938 *5 *3 *6)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1109) (-1047 *5))) (-4 *5 (-893 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-938 *4 *5 *6)))))
-(-10 -7 (-15 -1704 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4429 ((-896 |#1| |#3|) |#2| (-899 |#1|) (-896 |#1| |#3|))))
-((-4429 (((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)) 30)))
-(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -4429 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-1109) (-13 (-562) (-893 |#1|)) (-13 (-436 |#2|) (-620 (-899 |#1|)) (-893 |#1|) (-1047 (-618 $)))) (T -939))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-13 (-436 *6) (-620 *4) (-893 *5) (-1047 (-618 $)))) (-5 *4 (-899 *5)) (-4 *6 (-13 (-562) (-893 *5))) (-5 *1 (-939 *5 *6 *3)))))
-(-10 -7 (-15 -4429 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))))
-((-4429 (((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|)) 13)))
-(((-940 |#1|) (-10 -7 (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|)))) (-551)) (T -940))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 (-570) *3)) (-5 *4 (-899 (-570))) (-4 *3 (-551)) (-5 *1 (-940 *3)))))
-(-10 -7 (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))))
-((-4429 (((-896 |#1| |#2|) (-618 |#2|) (-899 |#1|) (-896 |#1| |#2|)) 57)))
-(((-941 |#1| |#2|) (-10 -7 (-15 -4429 ((-896 |#1| |#2|) (-618 |#2|) (-899 |#1|) (-896 |#1| |#2|)))) (-1109) (-13 (-1109) (-1047 (-618 $)) (-620 (-899 |#1|)) (-893 |#1|))) (T -941))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6)) (-5 *3 (-618 *6)) (-4 *5 (-1109)) (-4 *6 (-13 (-1109) (-1047 (-618 $)) (-620 *4) (-893 *5))) (-5 *4 (-899 *5)) (-5 *1 (-941 *5 *6)))))
-(-10 -7 (-15 -4429 ((-896 |#1| |#2|) (-618 |#2|) (-899 |#1|) (-896 |#1| |#2|))))
-((-4429 (((-892 |#1| |#2| |#3|) |#3| (-899 |#1|) (-892 |#1| |#2| |#3|)) 17)))
-(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -4429 ((-892 |#1| |#2| |#3|) |#3| (-899 |#1|) (-892 |#1| |#2| |#3|)))) (-1109) (-893 |#1|) (-672 |#2|)) (T -942))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *6 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-893 *5)) (-4 *3 (-672 *6)) (-5 *1 (-942 *5 *6 *3)))))
-(-10 -7 (-15 -4429 ((-892 |#1| |#2| |#3|) |#3| (-899 |#1|) (-892 |#1| |#2| |#3|))))
-((-4429 (((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|)) 17 (|has| |#3| (-893 |#1|))) (((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|) (-1 (-896 |#1| |#5|) |#3| (-899 |#1|) (-896 |#1| |#5|))) 16)))
-(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4429 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|) (-1 (-896 |#1| |#5|) |#3| (-899 |#1|) (-896 |#1| |#5|)))) (IF (|has| |#3| (-893 |#1|)) (-15 -4429 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|))) |%noBranch|)) (-1109) (-799) (-856) (-13 (-1058) (-893 |#1|)) (-13 (-956 |#4| |#2| |#3|) (-620 (-899 |#1|)))) (T -943))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-13 (-956 *8 *6 *7) (-620 *4))) (-5 *4 (-899 *5)) (-4 *7 (-893 *5)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-13 (-1058) (-893 *5))) (-5 *1 (-943 *5 *6 *7 *8 *3)))) (-4429 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-896 *6 *3) *8 (-899 *6) (-896 *6 *3))) (-4 *8 (-856)) (-5 *2 (-896 *6 *3)) (-5 *4 (-899 *6)) (-4 *6 (-1109)) (-4 *3 (-13 (-956 *9 *7 *8) (-620 *4))) (-4 *7 (-799)) (-4 *9 (-13 (-1058) (-893 *6))) (-5 *1 (-943 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -4429 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|) (-1 (-896 |#1| |#5|) |#3| (-899 |#1|) (-896 |#1| |#5|)))) (IF (|has| |#3| (-893 |#1|)) (-15 -4429 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|))) |%noBranch|))
-((-1686 ((|#2| |#2| (-650 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -1686 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1686 (|#2| |#2| (-650 (-1 (-112) |#3|))))) (-1109) (-436 |#1|) (-1227)) (T -944))
-((-1686 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-1 (-112) *5))) (-4 *5 (-1227)) (-4 *4 (-1109)) (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4)))) (-1686 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1227)) (-4 *4 (-1109)) (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4)))))
-(-10 -7 (-15 -1686 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1686 (|#2| |#2| (-650 (-1 (-112) |#3|)))))
-((-1686 (((-320 (-570)) (-1186) (-650 (-1 (-112) |#1|))) 18) (((-320 (-570)) (-1186) (-1 (-112) |#1|)) 15)))
-(((-945 |#1|) (-10 -7 (-15 -1686 ((-320 (-570)) (-1186) (-1 (-112) |#1|))) (-15 -1686 ((-320 (-570)) (-1186) (-650 (-1 (-112) |#1|))))) (-1227)) (T -945))
-((-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-650 (-1 (-112) *5))) (-4 *5 (-1227)) (-5 *2 (-320 (-570))) (-5 *1 (-945 *5)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1227)) (-5 *2 (-320 (-570))) (-5 *1 (-945 *5)))))
-(-10 -7 (-15 -1686 ((-320 (-570)) (-1186) (-1 (-112) |#1|))) (-15 -1686 ((-320 (-570)) (-1186) (-650 (-1 (-112) |#1|)))))
-((-4429 (((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)) 25)))
-(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -4429 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-1109) (-13 (-562) (-893 |#1|) (-620 (-899 |#1|))) (-1001 |#2|)) (T -946))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-1001 *6)) (-4 *6 (-13 (-562) (-893 *5) (-620 *4))) (-5 *4 (-899 *5)) (-5 *1 (-946 *5 *6 *3)))))
-(-10 -7 (-15 -4429 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))))
-((-4429 (((-896 |#1| (-1186)) (-1186) (-899 |#1|) (-896 |#1| (-1186))) 18)))
-(((-947 |#1|) (-10 -7 (-15 -4429 ((-896 |#1| (-1186)) (-1186) (-899 |#1|) (-896 |#1| (-1186))))) (-1109)) (T -947))
-((-4429 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 (-1186))) (-5 *3 (-1186)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-5 *1 (-947 *5)))))
-(-10 -7 (-15 -4429 ((-896 |#1| (-1186)) (-1186) (-899 |#1|) (-896 |#1| (-1186)))))
-((-3075 (((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) 34)) (-4429 (((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-1 |#3| (-650 |#3|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) 33)))
-(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -4429 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-1 |#3| (-650 |#3|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-15 -3075 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))))) (-1109) (-1058) (-13 (-1058) (-620 (-899 |#1|)) (-1047 |#2|))) (T -948))
-((-3075 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-899 *6))) (-5 *5 (-1 (-896 *6 *8) *8 (-899 *6) (-896 *6 *8))) (-4 *6 (-1109)) (-4 *8 (-13 (-1058) (-620 (-899 *6)) (-1047 *7))) (-5 *2 (-896 *6 *8)) (-4 *7 (-1058)) (-5 *1 (-948 *6 *7 *8)))) (-4429 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-650 (-899 *7))) (-5 *5 (-1 *9 (-650 *9))) (-5 *6 (-1 (-896 *7 *9) *9 (-899 *7) (-896 *7 *9))) (-4 *7 (-1109)) (-4 *9 (-13 (-1058) (-620 (-899 *7)) (-1047 *8))) (-5 *2 (-896 *7 *9)) (-5 *3 (-650 *9)) (-4 *8 (-1058)) (-5 *1 (-948 *7 *8 *9)))))
-(-10 -7 (-15 -4429 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-1 |#3| (-650 |#3|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-15 -3075 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))))
-((-1468 (((-1182 (-413 (-570))) (-570)) 79)) (-4278 (((-1182 (-570)) (-570)) 82)) (-3098 (((-1182 (-570)) (-570)) 76)) (-1568 (((-570) (-1182 (-570))) 72)) (-4260 (((-1182 (-413 (-570))) (-570)) 65)) (-1457 (((-1182 (-570)) (-570)) 49)) (-3279 (((-1182 (-570)) (-570)) 84)) (-4200 (((-1182 (-570)) (-570)) 83)) (-1544 (((-1182 (-413 (-570))) (-570)) 67)))
-(((-949) (-10 -7 (-15 -1544 ((-1182 (-413 (-570))) (-570))) (-15 -4200 ((-1182 (-570)) (-570))) (-15 -3279 ((-1182 (-570)) (-570))) (-15 -1457 ((-1182 (-570)) (-570))) (-15 -4260 ((-1182 (-413 (-570))) (-570))) (-15 -1568 ((-570) (-1182 (-570)))) (-15 -3098 ((-1182 (-570)) (-570))) (-15 -4278 ((-1182 (-570)) (-570))) (-15 -1468 ((-1182 (-413 (-570))) (-570))))) (T -949))
-((-1468 (*1 *2 *3) (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))) (-4278 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-570)) (-5 *1 (-949)))) (-4260 (*1 *2 *3) (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-3279 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-4200 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-1544 (*1 *2 *3) (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))))
-(-10 -7 (-15 -1544 ((-1182 (-413 (-570))) (-570))) (-15 -4200 ((-1182 (-570)) (-570))) (-15 -3279 ((-1182 (-570)) (-570))) (-15 -1457 ((-1182 (-570)) (-570))) (-15 -4260 ((-1182 (-413 (-570))) (-570))) (-15 -1568 ((-570) (-1182 (-570)))) (-15 -3098 ((-1182 (-570)) (-570))) (-15 -4278 ((-1182 (-570)) (-570))) (-15 -1468 ((-1182 (-413 (-570))) (-570))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2866 (($ (-777)) NIL (|has| |#1| (-23)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-1830 (($ (-650 |#1|)) 9)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-4031 (((-695 |#1|) $ $) NIL (|has| |#1| (-1058)))) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4234 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-2065 (((-112) $ (-777)) NIL)) (-1831 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-3308 (($ $ (-650 |#1|)) 25)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 18) (($ $ (-1244 (-570))) NIL)) (-3407 ((|#1| $ $) NIL (|has| |#1| (-1058)))) (-4388 (((-928) $) 13)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3775 (($ $ $) 23)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542)))) (($ (-650 |#1|)) 14)) (-2881 (($ (-650 |#1|)) NIL)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-4003 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3992 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-570) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-732))) (($ $ |#1|) NIL (|has| |#1| (-732)))) (-2857 (((-777) $) 11 (|has| $ (-6 -4452)))))
-(((-950 |#1|) (-989 |#1|) (-1058)) (T -950))
-NIL
-(-989 |#1|)
-((-3669 (((-487 |#1| |#2|) (-959 |#2|)) 22)) (-1771 (((-249 |#1| |#2|) (-959 |#2|)) 35)) (-2597 (((-959 |#2|) (-487 |#1| |#2|)) 27)) (-3424 (((-249 |#1| |#2|) (-487 |#1| |#2|)) 57)) (-1933 (((-959 |#2|) (-249 |#1| |#2|)) 32)) (-3327 (((-487 |#1| |#2|) (-249 |#1| |#2|)) 48)))
-(((-951 |#1| |#2|) (-10 -7 (-15 -3327 ((-487 |#1| |#2|) (-249 |#1| |#2|))) (-15 -3424 ((-249 |#1| |#2|) (-487 |#1| |#2|))) (-15 -3669 ((-487 |#1| |#2|) (-959 |#2|))) (-15 -2597 ((-959 |#2|) (-487 |#1| |#2|))) (-15 -1933 ((-959 |#2|) (-249 |#1| |#2|))) (-15 -1771 ((-249 |#1| |#2|) (-959 |#2|)))) (-650 (-1186)) (-1058)) (T -951))
-((-1771 (*1 *2 *3) (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-249 *4 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186))))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-487 *4 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186))))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-249 *4 *5)) (-5 *1 (-951 *4 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-487 *4 *5)) (-5 *1 (-951 *4 *5)))))
-(-10 -7 (-15 -3327 ((-487 |#1| |#2|) (-249 |#1| |#2|))) (-15 -3424 ((-249 |#1| |#2|) (-487 |#1| |#2|))) (-15 -3669 ((-487 |#1| |#2|) (-959 |#2|))) (-15 -2597 ((-959 |#2|) (-487 |#1| |#2|))) (-15 -1933 ((-959 |#2|) (-249 |#1| |#2|))) (-15 -1771 ((-249 |#1| |#2|) (-959 |#2|))))
-((-3516 (((-650 |#2|) |#2| |#2|) 10)) (-4062 (((-777) (-650 |#1|)) 48 (|has| |#1| (-854)))) (-3743 (((-650 |#2|) |#2|) 11)) (-3761 (((-777) (-650 |#1|) (-570) (-570)) 52 (|has| |#1| (-854)))) (-1443 ((|#1| |#2|) 38 (|has| |#1| (-854)))))
-(((-952 |#1| |#2|) (-10 -7 (-15 -3516 ((-650 |#2|) |#2| |#2|)) (-15 -3743 ((-650 |#2|) |#2|)) (IF (|has| |#1| (-854)) (PROGN (-15 -1443 (|#1| |#2|)) (-15 -4062 ((-777) (-650 |#1|))) (-15 -3761 ((-777) (-650 |#1|) (-570) (-570)))) |%noBranch|)) (-368) (-1253 |#1|)) (T -952))
-((-3761 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-570)) (-4 *5 (-854)) (-4 *5 (-368)) (-5 *2 (-777)) (-5 *1 (-952 *5 *6)) (-4 *6 (-1253 *5)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-854)) (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-952 *4 *5)) (-4 *5 (-1253 *4)))) (-1443 (*1 *2 *3) (-12 (-4 *2 (-368)) (-4 *2 (-854)) (-5 *1 (-952 *2 *3)) (-4 *3 (-1253 *2)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3)) (-4 *3 (-1253 *4)))) (-3516 (*1 *2 *3 *3) (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -3516 ((-650 |#2|) |#2| |#2|)) (-15 -3743 ((-650 |#2|) |#2|)) (IF (|has| |#1| (-854)) (PROGN (-15 -1443 (|#1| |#2|)) (-15 -4062 ((-777) (-650 |#1|))) (-15 -3761 ((-777) (-650 |#1|) (-570) (-570)))) |%noBranch|))
-((-2536 (((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)) 19)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -2536 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) (-1058) (-1058)) (T -953))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-959 *6)) (-5 *1 (-953 *5 *6)))))
-(-10 -7 (-15 -2536 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|))))
-((-3449 (((-1250 |#1| (-959 |#2|)) (-959 |#2|) (-1273 |#1|)) 18)))
-(((-954 |#1| |#2|) (-10 -7 (-15 -3449 ((-1250 |#1| (-959 |#2|)) (-959 |#2|) (-1273 |#1|)))) (-1186) (-1058)) (T -954))
-((-3449 (*1 *2 *3 *4) (-12 (-5 *4 (-1273 *5)) (-14 *5 (-1186)) (-4 *6 (-1058)) (-5 *2 (-1250 *5 (-959 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-959 *6)))))
-(-10 -7 (-15 -3449 ((-1250 |#1| (-959 |#2|)) (-959 |#2|) (-1273 |#1|))))
-((-4205 (((-777) $) 88) (((-777) $ (-650 |#4|)) 93)) (-3312 (($ $) 203)) (-2929 (((-424 $) $) 195)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 141)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4387 ((|#2| $) NIL) (((-413 (-570)) $) NIL) (((-570) $) NIL) ((|#4| $) 73)) (-2067 (($ $ $ |#4|) 95)) (-3054 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) 131) (((-695 |#2|) (-695 $)) 121)) (-2211 (($ $) 210) (($ $ |#4|) 213)) (-4381 (((-650 $) $) 77)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 229) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 222)) (-1739 (((-650 $) $) 34)) (-2402 (($ |#2| |#3|) NIL) (($ $ |#4| (-777)) NIL) (($ $ (-650 |#4|) (-650 (-777))) 71)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |#4|) 192)) (-3235 (((-3 (-650 $) "failed") $) 52)) (-3055 (((-3 (-650 $) "failed") $) 39)) (-3353 (((-3 (-2 (|:| |var| |#4|) (|:| -2940 (-777))) "failed") $) 57)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 134)) (-4187 (((-424 (-1182 $)) (-1182 $)) 147)) (-2874 (((-424 (-1182 $)) (-1182 $)) 145)) (-2340 (((-424 $) $) 165)) (-3034 (($ $ (-650 (-298 $))) 24) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-650 |#4|) (-650 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-650 |#4|) (-650 $)) NIL)) (-2896 (($ $ |#4|) 97)) (-2601 (((-899 (-384)) $) 243) (((-899 (-570)) $) 236) (((-542) $) 251)) (-2128 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 184)) (-3481 ((|#2| $ |#3|) NIL) (($ $ |#4| (-777)) 62) (($ $ (-650 |#4|) (-650 (-777))) 69)) (-1660 (((-3 $ "failed") $) 186)) (-1344 (((-112) $ $) 216)))
-(((-955 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2874 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4187 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2561 ((-3 (-1277 |#1|) "failed") (-695 |#1|))) (-15 -2211 (|#1| |#1| |#4|)) (-15 -2128 (|#1| |#1| |#4|)) (-15 -2896 (|#1| |#1| |#4|)) (-15 -2067 (|#1| |#1| |#1| |#4|)) (-15 -4381 ((-650 |#1|) |#1|)) (-15 -4205 ((-777) |#1| (-650 |#4|))) (-15 -4205 ((-777) |#1|)) (-15 -3353 ((-3 (-2 (|:| |var| |#4|) (|:| -2940 (-777))) "failed") |#1|)) (-15 -3235 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3055 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -2402 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -2402 (|#1| |#1| |#4| (-777))) (-15 -2026 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1| |#4|)) (-15 -1739 ((-650 |#1|) |#1|)) (-15 -3481 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3481 (|#1| |#1| |#4| (-777))) (-15 -3054 ((-695 |#2|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2435 ((-3 |#4| "failed") |#1|)) (-15 -4387 (|#4| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#4| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#4| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -2402 (|#1| |#2| |#3|)) (-15 -3481 (|#2| |#1| |#3|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -1344 ((-112) |#1| |#1|))) (-956 |#2| |#3| |#4|) (-1058) (-799) (-856)) (T -955))
-NIL
-(-10 -8 (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -2874 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4187 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2561 ((-3 (-1277 |#1|) "failed") (-695 |#1|))) (-15 -2211 (|#1| |#1| |#4|)) (-15 -2128 (|#1| |#1| |#4|)) (-15 -2896 (|#1| |#1| |#4|)) (-15 -2067 (|#1| |#1| |#1| |#4|)) (-15 -4381 ((-650 |#1|) |#1|)) (-15 -4205 ((-777) |#1| (-650 |#4|))) (-15 -4205 ((-777) |#1|)) (-15 -3353 ((-3 (-2 (|:| |var| |#4|) (|:| -2940 (-777))) "failed") |#1|)) (-15 -3235 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3055 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -2402 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -2402 (|#1| |#1| |#4| (-777))) (-15 -2026 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1| |#4|)) (-15 -1739 ((-650 |#1|) |#1|)) (-15 -3481 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3481 (|#1| |#1| |#4| (-777))) (-15 -3054 ((-695 |#2|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2435 ((-3 |#4| "failed") |#1|)) (-15 -4387 (|#4| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#4| |#1|)) (-15 -3034 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -3034 (|#1| |#1| |#4| |#2|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -2402 (|#1| |#2| |#3|)) (-15 -3481 (|#2| |#1| |#3|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -1344 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 |#3|) $) 112)) (-3449 (((-1182 $) $ |#3|) 127) (((-1182 |#1|) $) 126)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2046 (($ $) 90 (|has| |#1| (-562)))) (-3426 (((-112) $) 92 (|has| |#1| (-562)))) (-4205 (((-777) $) 114) (((-777) $ (-650 |#3|)) 113)) (-3997 (((-3 $ "failed") $ $) 20)) (-3585 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3312 (($ $) 100 (|has| |#1| (-458)))) (-2929 (((-424 $) $) 99 (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) 138)) (-4387 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) ((|#3| $) 139)) (-2067 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-4394 (($ $) 156)) (-3054 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-3957 (((-3 $ "failed") $) 37)) (-2211 (($ $) 178 (|has| |#1| (-458))) (($ $ |#3|) 107 (|has| |#1| (-458)))) (-4381 (((-650 $) $) 111)) (-2145 (((-112) $) 98 (|has| |#1| (-916)))) (-2425 (($ $ |#1| |#2| $) 174)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| |#3| (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| |#3| (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-2005 (((-112) $) 35)) (-2928 (((-777) $) 171)) (-2417 (($ (-1182 |#1|) |#3|) 119) (($ (-1182 $) |#3|) 118)) (-1739 (((-650 $) $) 128)) (-1338 (((-112) $) 154)) (-2402 (($ |#1| |#2|) 155) (($ $ |#3| (-777)) 121) (($ $ (-650 |#3|) (-650 (-777))) 120)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |#3|) 122)) (-2689 ((|#2| $) 172) (((-777) $ |#3|) 124) (((-650 (-777)) $ (-650 |#3|)) 123)) (-3989 (($ (-1 |#2| |#2|) $) 173)) (-2536 (($ (-1 |#1| |#1|) $) 153)) (-3168 (((-3 |#3| "failed") $) 125)) (-4355 (($ $) 151)) (-4369 ((|#1| $) 150)) (-3867 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-3240 (((-1168) $) 10)) (-3235 (((-3 (-650 $) "failed") $) 116)) (-3055 (((-3 (-650 $) "failed") $) 117)) (-3353 (((-3 (-2 (|:| |var| |#3|) (|:| -2940 (-777))) "failed") $) 115)) (-3891 (((-1129) $) 11)) (-4326 (((-112) $) 168)) (-4337 ((|#1| $) 169)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-3903 (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-2340 (((-424 $) $) 101 (|has| |#1| (-916)))) (-2837 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-650 |#3|) (-650 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-650 |#3|) (-650 $)) 140)) (-2896 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-2375 (($ $ |#3|) 46) (($ $ (-650 |#3|)) 45) (($ $ |#3| (-777)) 44) (($ $ (-650 |#3|) (-650 (-777))) 43)) (-2650 ((|#2| $) 152) (((-777) $ |#3|) 132) (((-650 (-777)) $ (-650 |#3|)) 131)) (-2601 (((-899 (-384)) $) 84 (-12 (|has| |#3| (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| |#3| (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| |#3| (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ |#3|) 108 (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 106 (-3212 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-562))) (($ (-413 (-570))) 80 (-3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))))) (-3125 (((-650 |#1|) $) 170)) (-3481 ((|#1| $ |#2|) 157) (($ $ |#3| (-777)) 130) (($ $ (-650 |#3|) (-650 (-777))) 129)) (-1660 (((-3 $ "failed") $) 81 (-3749 (-3212 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) 32 T CONST)) (-2109 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ |#3|) 42) (($ $ (-650 |#3|)) 41) (($ $ |#3| (-777)) 40) (($ $ (-650 |#3|) (-650 (-777))) 39)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-956 |#1| |#2| |#3|) (-141) (-1058) (-799) (-856)) (T -956))
-((-2211 (*1 *1 *1) (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-2650 (*1 *2 *1 *3) (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-777)))) (-2650 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777))))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *2 (-856)))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)))) (-1739 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-3449 (*1 *2 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-1182 *1)) (-4 *1 (-956 *4 *5 *3)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-1182 *3)))) (-3168 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-2689 (*1 *2 *1 *3) (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-777)))) (-2689 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777))))) (-2026 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-956 *4 *5 *3)))) (-2402 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *2 (-856)))) (-2402 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)))) (-2417 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *4)) (-4 *4 (-1058)) (-4 *1 (-956 *4 *5 *3)) (-4 *5 (-799)) (-4 *3 (-856)))) (-2417 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)))) (-3055 (*1 *2 *1) (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-3235 (*1 *2 *1) (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-3353 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| |var| *5) (|:| -2940 (-777)))))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-777)))) (-4205 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *5)))) (-4381 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-2067 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-174)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-174)))) (-2128 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-458)))) (-2211 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-458)))) (-3312 (*1 *1 *1) (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-2929 (*1 *2 *1) (-12 (-4 *3 (-458)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-424 *1)) (-4 *1 (-956 *3 *4 *5)))))
-(-13 (-907 |t#3|) (-330 |t#1| |t#2|) (-313 $) (-520 |t#3| |t#1|) (-520 |t#3| $) (-1047 |t#3|) (-382 |t#1|) (-10 -8 (-15 -2650 ((-777) $ |t#3|)) (-15 -2650 ((-650 (-777)) $ (-650 |t#3|))) (-15 -3481 ($ $ |t#3| (-777))) (-15 -3481 ($ $ (-650 |t#3|) (-650 (-777)))) (-15 -1739 ((-650 $) $)) (-15 -3449 ((-1182 $) $ |t#3|)) (-15 -3449 ((-1182 |t#1|) $)) (-15 -3168 ((-3 |t#3| "failed") $)) (-15 -2689 ((-777) $ |t#3|)) (-15 -2689 ((-650 (-777)) $ (-650 |t#3|))) (-15 -2026 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |t#3|)) (-15 -2402 ($ $ |t#3| (-777))) (-15 -2402 ($ $ (-650 |t#3|) (-650 (-777)))) (-15 -2417 ($ (-1182 |t#1|) |t#3|)) (-15 -2417 ($ (-1182 $) |t#3|)) (-15 -3055 ((-3 (-650 $) "failed") $)) (-15 -3235 ((-3 (-650 $) "failed") $)) (-15 -3353 ((-3 (-2 (|:| |var| |t#3|) (|:| -2940 (-777))) "failed") $)) (-15 -4205 ((-777) $)) (-15 -4205 ((-777) $ (-650 |t#3|))) (-15 -1598 ((-650 |t#3|) $)) (-15 -4381 ((-650 $) $)) (IF (|has| |t#1| (-620 (-542))) (IF (|has| |t#3| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-620 (-899 (-570)))) (IF (|has| |t#3| (-620 (-899 (-570)))) (-6 (-620 (-899 (-570)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-620 (-899 (-384)))) (IF (|has| |t#3| (-620 (-899 (-384)))) (-6 (-620 (-899 (-384)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-893 (-570))) (IF (|has| |t#3| (-893 (-570))) (-6 (-893 (-570))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-893 (-384))) (IF (|has| |t#3| (-893 (-384))) (-6 (-893 (-384))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2067 ($ $ $ |t#3|)) (-15 -2896 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-6 (-458)) (-15 -2128 ($ $ |t#3|)) (-15 -2211 ($ $)) (-15 -2211 ($ $ |t#3|)) (-15 -2929 ((-424 $) $)) (-15 -3312 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4450)) (-6 -4450) |%noBranch|) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 |#3|) . T) ((-622 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) ((-294) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-313 $) . T) ((-330 |#1| |#2|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -3749 (|has| |#1| (-916)) (|has| |#1| (-458))) ((-520 |#3| |#1|) . T) ((-520 |#3| $) . T) ((-520 $ $) . T) ((-562) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-732) . T) ((-907 |#3|) . T) ((-893 (-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) ((-916) |has| |#1| (-916)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1047 |#3|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) |has| |#1| (-916)))
-((-1598 (((-650 |#2|) |#5|) 40)) (-3449 (((-1182 |#5|) |#5| |#2| (-1182 |#5|)) 23) (((-413 (-1182 |#5|)) |#5| |#2|) 16)) (-2417 ((|#5| (-413 (-1182 |#5|)) |#2|) 30)) (-3168 (((-3 |#2| "failed") |#5|) 71)) (-3235 (((-3 (-650 |#5|) "failed") |#5|) 65)) (-4095 (((-3 (-2 (|:| |val| |#5|) (|:| -2940 (-570))) "failed") |#5|) 53)) (-3055 (((-3 (-650 |#5|) "failed") |#5|) 67)) (-3353 (((-3 (-2 (|:| |var| |#2|) (|:| -2940 (-570))) "failed") |#5|) 57)))
-(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1598 ((-650 |#2|) |#5|)) (-15 -3168 ((-3 |#2| "failed") |#5|)) (-15 -3449 ((-413 (-1182 |#5|)) |#5| |#2|)) (-15 -2417 (|#5| (-413 (-1182 |#5|)) |#2|)) (-15 -3449 ((-1182 |#5|) |#5| |#2| (-1182 |#5|))) (-15 -3055 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -3235 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -3353 ((-3 (-2 (|:| |var| |#2|) (|:| -2940 (-570))) "failed") |#5|)) (-15 -4095 ((-3 (-2 (|:| |val| |#5|) (|:| -2940 (-570))) "failed") |#5|))) (-799) (-856) (-1058) (-956 |#3| |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2869 ($ |#4|)) (-15 -1587 (|#4| $)) (-15 -1599 (|#4| $))))) (T -957))
-((-4095 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2940 (-570)))) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))) (-3353 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2940 (-570)))) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))) (-3235 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))) (-3055 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))) (-3449 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))) (-4 *7 (-956 *6 *5 *4)) (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058)) (-5 *1 (-957 *5 *4 *6 *7 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-1182 *2))) (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058)) (-4 *2 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))) (-5 *1 (-957 *5 *4 *6 *7 *2)) (-4 *7 (-956 *6 *5 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-413 (-1182 *3))) (-5 *1 (-957 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))) (-3168 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-1058)) (-4 *6 (-956 *5 *4 *2)) (-4 *2 (-856)) (-5 *1 (-957 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *6)) (-15 -1587 (*6 $)) (-15 -1599 (*6 $))))))) (-1598 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *5)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))))
-(-10 -7 (-15 -1598 ((-650 |#2|) |#5|)) (-15 -3168 ((-3 |#2| "failed") |#5|)) (-15 -3449 ((-413 (-1182 |#5|)) |#5| |#2|)) (-15 -2417 (|#5| (-413 (-1182 |#5|)) |#2|)) (-15 -3449 ((-1182 |#5|) |#5| |#2| (-1182 |#5|))) (-15 -3055 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -3235 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -3353 ((-3 (-2 (|:| |var| |#2|) (|:| -2940 (-570))) "failed") |#5|)) (-15 -4095 ((-3 (-2 (|:| |val| |#5|) (|:| -2940 (-570))) "failed") |#5|)))
-((-2536 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-958 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2536 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-799) (-856) (-1058) (-956 |#3| |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -3992 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777)))))) (T -958))
-((-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-856)) (-4 *8 (-1058)) (-4 *6 (-799)) (-4 *2 (-13 (-1109) (-10 -8 (-15 -3992 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777)))))) (-5 *1 (-958 *6 *7 *8 *5 *2)) (-4 *5 (-956 *8 *6 *7)))))
-(-10 -7 (-15 -2536 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1186)) $) 16)) (-3449 (((-1182 $) $ (-1186)) 21) (((-1182 |#1|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-1186))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 8) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1186) "failed") $) NIL)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1186) $) NIL)) (-2067 (($ $ $ (-1186)) NIL (|has| |#1| (-174)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1186)) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-537 (-1186)) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1186) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1186) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-2417 (($ (-1182 |#1|) (-1186)) NIL) (($ (-1182 $) (-1186)) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-1186)) NIL)) (-2689 (((-537 (-1186)) $) NIL) (((-777) $ (-1186)) NIL) (((-650 (-777)) $ (-650 (-1186))) NIL)) (-3989 (($ (-1 (-537 (-1186)) (-537 (-1186))) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3168 (((-3 (-1186) "failed") $) 19)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-1186)) (|:| -2940 (-777))) "failed") $) NIL)) (-1363 (($ $ (-1186)) 29 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1186) |#1|) NIL) (($ $ (-650 (-1186)) (-650 |#1|)) NIL) (($ $ (-1186) $) NIL) (($ $ (-650 (-1186)) (-650 $)) NIL)) (-2896 (($ $ (-1186)) NIL (|has| |#1| (-174)))) (-2375 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-2650 (((-537 (-1186)) $) NIL) (((-777) $ (-1186)) NIL) (((-650 (-777)) $ (-650 (-1186))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-1186) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1186) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1186) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1186)) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) 25) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1186)) 27) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-959 |#1|) (-13 (-956 |#1| (-537 (-1186)) (-1186)) (-10 -8 (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1186))) |%noBranch|))) (-1058)) (T -959))
-((-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-959 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)))))
-(-13 (-956 |#1| (-537 (-1186)) (-1186)) (-10 -8 (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1186))) |%noBranch|)))
-((-3245 (((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) |#3| (-777)) 49)) (-1979 (((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) (-413 (-570)) (-777)) 44)) (-1882 (((-2 (|:| -2940 (-777)) (|:| -1747 |#4|) (|:| |radicand| (-650 |#4|))) |#4| (-777)) 65)) (-3751 (((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) |#5| (-777)) 74 (|has| |#3| (-458)))))
-(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3245 ((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) |#3| (-777))) (-15 -1979 ((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) (-413 (-570)) (-777))) (IF (|has| |#3| (-458)) (-15 -3751 ((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) |#5| (-777))) |%noBranch|) (-15 -1882 ((-2 (|:| -2940 (-777)) (|:| -1747 |#4|) (|:| |radicand| (-650 |#4|))) |#4| (-777)))) (-799) (-856) (-562) (-956 |#3| |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2869 ($ |#4|)) (-15 -1587 (|#4| $)) (-15 -1599 (|#4| $))))) (T -960))
-((-1882 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) (-4 *3 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *3) (|:| |radicand| (-650 *3)))) (-5 *1 (-960 *5 *6 *7 *3 *8)) (-5 *4 (-777)) (-4 *8 (-13 (-368) (-10 -8 (-15 -2869 ($ *3)) (-15 -1587 (*3 $)) (-15 -1599 (*3 $))))))) (-3751 (*1 *2 *3 *4) (-12 (-4 *7 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *3) (|:| |radicand| *3))) (-5 *1 (-960 *5 *6 *7 *8 *3)) (-5 *4 (-777)) (-4 *3 (-13 (-368) (-10 -8 (-15 -2869 ($ *8)) (-15 -1587 (*8 $)) (-15 -1599 (*8 $))))))) (-1979 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-570))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *9) (|:| |radicand| *9))) (-5 *1 (-960 *5 *6 *7 *8 *9)) (-5 *4 (-777)) (-4 *9 (-13 (-368) (-10 -8 (-15 -2869 ($ *8)) (-15 -1587 (*8 $)) (-15 -1599 (*8 $))))))) (-3245 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-562)) (-4 *7 (-956 *3 *5 *6)) (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *8) (|:| |radicand| *8))) (-5 *1 (-960 *5 *6 *3 *7 *8)) (-5 *4 (-777)) (-4 *8 (-13 (-368) (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))))
-(-10 -7 (-15 -3245 ((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) |#3| (-777))) (-15 -1979 ((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) (-413 (-570)) (-777))) (IF (|has| |#3| (-458)) (-15 -3751 ((-2 (|:| -2940 (-777)) (|:| -1747 |#5|) (|:| |radicand| |#5|)) |#5| (-777))) |%noBranch|) (-15 -1882 ((-2 (|:| -2940 (-777)) (|:| -1747 |#4|) (|:| |radicand| (-650 |#4|))) |#4| (-777))))
-((-2847 (((-112) $ $) NIL)) (-1859 (($ (-1129)) 8)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 15) (((-1129) $) 12)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 11)))
-(((-961) (-13 (-1109) (-619 (-1129)) (-10 -8 (-15 -1859 ($ (-1129)))))) (T -961))
-((-1859 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-961)))))
-(-13 (-1109) (-619 (-1129)) (-10 -8 (-15 -1859 ($ (-1129)))))
-((-2812 (((-1103 (-227)) $) 8)) (-2800 (((-1103 (-227)) $) 9)) (-4084 (((-650 (-650 (-950 (-227)))) $) 10)) (-2869 (((-868) $) 6)))
-(((-962) (-141)) (T -962))
-((-4084 (*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-650 (-650 (-950 (-227))))))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227))))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227))))))
-(-13 (-619 (-868)) (-10 -8 (-15 -4084 ((-650 (-650 (-950 (-227)))) $)) (-15 -2800 ((-1103 (-227)) $)) (-15 -2812 ((-1103 (-227)) $))))
-(((-619 (-868)) . T))
-((-2331 (((-3 (-695 |#1|) "failed") |#2| (-928)) 18)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -2331 ((-3 (-695 |#1|) "failed") |#2| (-928)))) (-562) (-662 |#1|)) (T -963))
-((-2331 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-928)) (-4 *5 (-562)) (-5 *2 (-695 *5)) (-5 *1 (-963 *5 *3)) (-4 *3 (-662 *5)))))
-(-10 -7 (-15 -2331 ((-3 (-695 |#1|) "failed") |#2| (-928))))
-((-3693 (((-965 |#2|) (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|) 16)) (-2295 ((|#2| (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|) 18)) (-2536 (((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)) 13)))
-(((-964 |#1| |#2|) (-10 -7 (-15 -3693 ((-965 |#2|) (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -2536 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) (-1227) (-1227)) (T -964))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-965 *6)) (-5 *1 (-964 *5 *6)))) (-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-965 *5)) (-4 *5 (-1227)) (-4 *2 (-1227)) (-5 *1 (-964 *5 *2)))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-965 *6)) (-4 *6 (-1227)) (-4 *5 (-1227)) (-5 *2 (-965 *5)) (-5 *1 (-964 *6 *5)))))
-(-10 -7 (-15 -3693 ((-965 |#2|) (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -2536 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) |#1|) 19 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 18 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 16)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2296 (($ (-777) |#1|) 15)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) 11 (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) 20 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 17) (($ $ (-1244 (-570))) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) 21)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 14)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2857 (((-777) $) 8 (|has| $ (-6 -4452)))))
-(((-965 |#1|) (-19 |#1|) (-1227)) (T -965))
+((-2953 ((|#2| (-652 |#1|) (-652 |#1|)) 28)))
+(((-931 |#1| |#2|) (-10 -7 (-15 -2953 (|#2| (-652 |#1|) (-652 |#1|)))) (-370) (-1255 |#1|)) (T -931))
+((-2953 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-4 *2 (-1255 *4)) (-5 *1 (-931 *4 *2)))))
+(-10 -7 (-15 -2953 (|#2| (-652 |#1|) (-652 |#1|))))
+((-3182 (((-1184 |#2|) (-652 |#2|) (-652 |#2|)) 17) (((-1252 |#1| |#2|) (-1252 |#1| |#2|) (-652 |#2|) (-652 |#2|)) 13)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -3182 ((-1252 |#1| |#2|) (-1252 |#1| |#2|) (-652 |#2|) (-652 |#2|))) (-15 -3182 ((-1184 |#2|) (-652 |#2|) (-652 |#2|)))) (-1188) (-370)) (T -932))
+((-3182 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *5)) (-4 *5 (-370)) (-5 *2 (-1184 *5)) (-5 *1 (-932 *4 *5)) (-14 *4 (-1188)))) (-3182 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1252 *4 *5)) (-5 *3 (-652 *5)) (-14 *4 (-1188)) (-4 *5 (-370)) (-5 *1 (-932 *4 *5)))))
+(-10 -7 (-15 -3182 ((-1252 |#1| |#2|) (-1252 |#1| |#2|) (-652 |#2|) (-652 |#2|))) (-15 -3182 ((-1184 |#2|) (-652 |#2|) (-652 |#2|))))
+((-4221 (((-572) (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170)) 174)) (-2792 ((|#4| |#4|) 193)) (-2275 (((-652 (-415 (-961 |#1|))) (-652 (-1188))) 146)) (-1456 (((-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-652 (-652 |#4|)) (-779) (-779) (-572)) 88)) (-2064 (((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-652 |#4|)) 69)) (-3316 (((-697 |#4|) (-697 |#4|) (-652 |#4|)) 65)) (-1667 (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170)) 186)) (-2652 (((-572) (-697 |#4|) (-930) (-1170)) 166) (((-572) (-697 |#4|) (-652 (-1188)) (-930) (-1170)) 165) (((-572) (-697 |#4|) (-652 |#4|) (-930) (-1170)) 164) (((-572) (-697 |#4|) (-1170)) 154) (((-572) (-697 |#4|) (-652 (-1188)) (-1170)) 153) (((-572) (-697 |#4|) (-652 |#4|) (-1170)) 152) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-930)) 151) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)) (-930)) 150) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|) (-930)) 149) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|)) 148) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188))) 147) (((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|)) 143)) (-2856 ((|#4| (-961 |#1|)) 80)) (-3910 (((-112) (-652 |#4|) (-652 (-652 |#4|))) 190)) (-1699 (((-652 (-652 (-572))) (-572) (-572)) 159)) (-2156 (((-652 (-652 |#4|)) (-652 (-652 |#4|))) 106)) (-1693 (((-779) (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|))))) 100)) (-2361 (((-779) (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|))))) 99)) (-1723 (((-112) (-652 (-961 |#1|))) 19) (((-112) (-652 |#4|)) 15)) (-2599 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-652 |#4|)) (|:| |n0| (-652 |#4|))) (-652 |#4|) (-652 |#4|)) 84)) (-4346 (((-652 |#4|) |#4|) 57)) (-3724 (((-652 (-415 (-961 |#1|))) (-652 |#4|)) 142) (((-697 (-415 (-961 |#1|))) (-697 |#4|)) 66) (((-415 (-961 |#1|)) |#4|) 139)) (-3957 (((-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))))))) (|:| |rgsz| (-572))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-779) (-1170) (-572)) 112)) (-2795 (((-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))) (-697 |#4|) (-779)) 98)) (-3741 (((-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-697 |#4|) (-779)) 121)) (-1360 (((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| -1866 (-697 (-415 (-961 |#1|)))) (|:| |vec| (-652 (-415 (-961 |#1|)))) (|:| -1526 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) 56)))
+(((-933 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|) (-930))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)) (-930))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-930))) (-15 -2652 ((-572) (-697 |#4|) (-652 |#4|) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-652 (-1188)) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-652 |#4|) (-930) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-652 (-1188)) (-930) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-930) (-1170))) (-15 -4221 ((-572) (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -1667 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -3957 ((-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))))))) (|:| |rgsz| (-572))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-779) (-1170) (-572))) (-15 -3724 ((-415 (-961 |#1|)) |#4|)) (-15 -3724 ((-697 (-415 (-961 |#1|))) (-697 |#4|))) (-15 -3724 ((-652 (-415 (-961 |#1|))) (-652 |#4|))) (-15 -2275 ((-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -2856 (|#4| (-961 |#1|))) (-15 -2599 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-652 |#4|)) (|:| |n0| (-652 |#4|))) (-652 |#4|) (-652 |#4|))) (-15 -2795 ((-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))) (-697 |#4|) (-779))) (-15 -2064 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-652 |#4|))) (-15 -1360 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| -1866 (-697 (-415 (-961 |#1|)))) (|:| |vec| (-652 (-415 (-961 |#1|)))) (|:| -1526 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (-15 -4346 ((-652 |#4|) |#4|)) (-15 -2361 ((-779) (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -1693 ((-779) (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -2156 ((-652 (-652 |#4|)) (-652 (-652 |#4|)))) (-15 -1699 ((-652 (-652 (-572))) (-572) (-572))) (-15 -3910 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -3741 ((-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-697 |#4|) (-779))) (-15 -3316 ((-697 |#4|) (-697 |#4|) (-652 |#4|))) (-15 -1456 ((-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-652 (-652 |#4|)) (-779) (-779) (-572))) (-15 -2792 (|#4| |#4|)) (-15 -1723 ((-112) (-652 |#4|))) (-15 -1723 ((-112) (-652 (-961 |#1|))))) (-13 (-313) (-148)) (-13 (-858) (-622 (-1188))) (-801) (-958 |#1| |#3| |#2|)) (T -933))
+((-1723 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *4 *5 *6 *7)))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188)))) (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-958 *3 *5 *4)))) (-1456 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-5 *4 (-697 *12)) (-5 *5 (-652 (-415 (-961 *9)))) (-5 *6 (-652 (-652 *12))) (-5 *7 (-779)) (-5 *8 (-572)) (-4 *9 (-13 (-313) (-148))) (-4 *12 (-958 *9 *11 *10)) (-4 *10 (-13 (-858) (-622 (-1188)))) (-4 *11 (-801)) (-5 *2 (-2 (|:| |eqzro| (-652 *12)) (|:| |neqzro| (-652 *12)) (|:| |wcond| (-652 (-961 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *9)))) (|:| -1769 (-652 (-1279 (-415 (-961 *9))))))))) (-5 *1 (-933 *9 *10 *11 *12)))) (-3316 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *7)) (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-779)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |det| *8) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *5 *6 *7 *8)))) (-1699 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-652 (-572)))) (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *6 *5)))) (-2156 (*1 *2 *2) (-12 (-5 *2 (-652 (-652 *6))) (-4 *6 (-958 *3 *5 *4)) (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188)))) (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *6)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| *7) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 *7))))) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779)) (-5 *1 (-933 *4 *5 *6 *7)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| *7) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 *7))))) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779)) (-5 *1 (-933 *4 *5 *6 *7)))) (-4346 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 *3)) (-5 *1 (-933 *4 *5 *6 *3)) (-4 *3 (-958 *4 *6 *5)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1866 (-697 (-415 (-961 *4)))) (|:| |vec| (-652 (-415 (-961 *4)))) (|:| -1526 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -1769 (-652 (-1279 (-415 (-961 *4))))))) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-2064 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -1769 (-652 (-1279 (-415 (-961 *4))))))) (-5 *3 (-652 *7)) (-4 *4 (-13 (-313) (-148))) (-4 *7 (-958 *4 *6 *5)) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| *8) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 *8))))) (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-779)))) (-2599 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-4 *7 (-958 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-652 *7)) (|:| |n0| (-652 *7)))) (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-313) (-148))) (-4 *2 (-958 *4 *6 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-697 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-415 (-961 *4))) (-5 *1 (-933 *4 *5 *6 *3)) (-4 *3 (-958 *4 *6 *5)))) (-3957 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-697 *11)) (-5 *4 (-652 (-415 (-961 *8)))) (-5 *5 (-779)) (-5 *6 (-1170)) (-4 *8 (-13 (-313) (-148))) (-4 *11 (-958 *8 *10 *9)) (-4 *9 (-13 (-858) (-622 (-1188)))) (-4 *10 (-801)) (-5 *2 (-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 *11)) (|:| |neqzro| (-652 *11)) (|:| |wcond| (-652 (-961 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *8)))) (|:| -1769 (-652 (-1279 (-415 (-961 *8)))))))))) (|:| |rgsz| (-572)))) (-5 *1 (-933 *8 *9 *10 *11)) (-5 *7 (-572)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7)) (|:| |wcond| (-652 (-961 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -1769 (-652 (-1279 (-415 (-961 *4)))))))))) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))) (-4221 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -1769 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *4 (-1170)) (-4 *5 (-13 (-313) (-148))) (-4 *8 (-958 *5 *7 *6)) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *5 *6 *7 *8)))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-930)) (-5 *5 (-1170)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *6 *7 *8 *9)))) (-2652 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 (-1188))) (-5 *5 (-930)) (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148))) (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *7 *8 *9 *10)))) (-2652 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 *10)) (-5 *5 (-930)) (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148))) (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *7 *8 *9 *10)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-1170)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *5 *6 *7 *8)))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-1170)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *6 *7 *8 *9)))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 *9)) (-5 *5 (-1170)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *6 *7 *8 *9)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-930)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -1769 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *1 (-933 *5 *6 *7 *8)))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-930)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9)) (|:| |wcond| (-652 (-961 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *6)))) (|:| -1769 (-652 (-1279 (-415 (-961 *6)))))))))) (-5 *1 (-933 *6 *7 *8 *9)))) (-2652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-697 *9)) (-5 *5 (-930)) (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9)) (|:| |wcond| (-652 (-961 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *6)))) (|:| -1769 (-652 (-1279 (-415 (-961 *6)))))))))) (-5 *1 (-933 *6 *7 *8 *9)) (-5 *4 (-652 *9)))) (-2652 (*1 *2 *3) (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7)) (|:| |wcond| (-652 (-961 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *4)))) (|:| -1769 (-652 (-1279 (-415 (-961 *4)))))))))) (-5 *1 (-933 *4 *5 *6 *7)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-5 *4 (-652 (-1188))) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -1769 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *1 (-933 *5 *6 *7 *8)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-652 (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8)) (|:| |wcond| (-652 (-961 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 *5)))) (|:| -1769 (-652 (-1279 (-415 (-961 *5)))))))))) (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
+(-10 -7 (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 |#4|) (-930))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-652 (-1188)) (-930))) (-15 -2652 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-697 |#4|) (-930))) (-15 -2652 ((-572) (-697 |#4|) (-652 |#4|) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-652 (-1188)) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-652 |#4|) (-930) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-652 (-1188)) (-930) (-1170))) (-15 -2652 ((-572) (-697 |#4|) (-930) (-1170))) (-15 -4221 ((-572) (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -1667 ((-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|))))))))) (-1170))) (-15 -3957 ((-2 (|:| |rgl| (-652 (-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))))))) (|:| |rgsz| (-572))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-779) (-1170) (-572))) (-15 -3724 ((-415 (-961 |#1|)) |#4|)) (-15 -3724 ((-697 (-415 (-961 |#1|))) (-697 |#4|))) (-15 -3724 ((-652 (-415 (-961 |#1|))) (-652 |#4|))) (-15 -2275 ((-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -2856 (|#4| (-961 |#1|))) (-15 -2599 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-652 |#4|)) (|:| |n0| (-652 |#4|))) (-652 |#4|) (-652 |#4|))) (-15 -2795 ((-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))) (-697 |#4|) (-779))) (-15 -2064 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-652 |#4|))) (-15 -1360 ((-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))) (-2 (|:| -1866 (-697 (-415 (-961 |#1|)))) (|:| |vec| (-652 (-415 (-961 |#1|)))) (|:| -1526 (-779)) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (-15 -4346 ((-652 |#4|) |#4|)) (-15 -2361 ((-779) (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -1693 ((-779) (-652 (-2 (|:| -1526 (-779)) (|:| |eqns| (-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))) (|:| |fgb| (-652 |#4|)))))) (-15 -2156 ((-652 (-652 |#4|)) (-652 (-652 |#4|)))) (-15 -1699 ((-652 (-652 (-572))) (-572) (-572))) (-15 -3910 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -3741 ((-652 (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572))))) (-697 |#4|) (-779))) (-15 -3316 ((-697 |#4|) (-697 |#4|) (-652 |#4|))) (-15 -1456 ((-2 (|:| |eqzro| (-652 |#4|)) (|:| |neqzro| (-652 |#4|)) (|:| |wcond| (-652 (-961 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1279 (-415 (-961 |#1|)))) (|:| -1769 (-652 (-1279 (-415 (-961 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))) (-697 |#4|) (-652 (-415 (-961 |#1|))) (-652 (-652 |#4|)) (-779) (-779) (-572))) (-15 -2792 (|#4| |#4|)) (-15 -1723 ((-112) (-652 |#4|))) (-15 -1723 ((-112) (-652 (-961 |#1|)))))
+((-2973 (((-936) |#1| (-1188)) 17) (((-936) |#1| (-1188) (-1105 (-227))) 21)) (-3596 (((-936) |#1| |#1| (-1188) (-1105 (-227))) 19) (((-936) |#1| (-1188) (-1105 (-227))) 15)))
+(((-934 |#1|) (-10 -7 (-15 -3596 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -3596 ((-936) |#1| |#1| (-1188) (-1105 (-227)))) (-15 -2973 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -2973 ((-936) |#1| (-1188)))) (-622 (-544))) (T -934))
+((-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))) (-2973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))) (-3596 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))) (-3596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936)) (-5 *1 (-934 *3)) (-4 *3 (-622 (-544))))))
+(-10 -7 (-15 -3596 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -3596 ((-936) |#1| |#1| (-1188) (-1105 (-227)))) (-15 -2973 ((-936) |#1| (-1188) (-1105 (-227)))) (-15 -2973 ((-936) |#1| (-1188))))
+((-2306 (($ $ (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 121)) (-3031 (((-1105 (-227)) $) 64)) (-3023 (((-1105 (-227)) $) 63)) (-3009 (((-1105 (-227)) $) 62)) (-3406 (((-652 (-652 (-227))) $) 69)) (-3884 (((-1105 (-227)) $) 65)) (-1672 (((-572) (-572)) 57)) (-1527 (((-572) (-572)) 52)) (-3691 (((-572) (-572)) 55)) (-4143 (((-112) (-112)) 59)) (-3615 (((-572)) 56)) (-3348 (($ $ (-1105 (-227))) 124) (($ $) 125)) (-1739 (($ (-1 (-952 (-227)) (-227)) (-1105 (-227))) 131) (($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 132)) (-3596 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 135) (($ $ (-1105 (-227))) 127)) (-4054 (((-572)) 60)) (-4212 (((-572)) 50)) (-4166 (((-572)) 53)) (-1716 (((-652 (-652 (-952 (-227)))) $) 151)) (-1749 (((-112) (-112)) 61)) (-3491 (((-870) $) 149)) (-3290 (((-112)) 58)))
+(((-935) (-13 (-985) (-10 -8 (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ $ (-1105 (-227)))) (-15 -2306 ($ $ (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3348 ($ $ (-1105 (-227)))) (-15 -3348 ($ $)) (-15 -3884 ((-1105 (-227)) $)) (-15 -3406 ((-652 (-652 (-227))) $)) (-15 -4212 ((-572))) (-15 -1527 ((-572) (-572))) (-15 -4166 ((-572))) (-15 -3691 ((-572) (-572))) (-15 -3615 ((-572))) (-15 -1672 ((-572) (-572))) (-15 -3290 ((-112))) (-15 -4143 ((-112) (-112))) (-15 -4054 ((-572))) (-15 -1749 ((-112) (-112)))))) (T -935))
+((-1739 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-1739 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-3596 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-3596 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-935)))) (-3596 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-2306 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-3348 (*1 *1 *1) (-5 *1 (-935))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-935)))) (-4212 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-1527 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-4166 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-3615 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-1672 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-3290 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))) (-4143 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))) (-4054 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
+(-13 (-985) (-10 -8 (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ $ (-1105 (-227)))) (-15 -2306 ($ $ (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3348 ($ $ (-1105 (-227)))) (-15 -3348 ($ $)) (-15 -3884 ((-1105 (-227)) $)) (-15 -3406 ((-652 (-652 (-227))) $)) (-15 -4212 ((-572))) (-15 -1527 ((-572) (-572))) (-15 -4166 ((-572))) (-15 -3691 ((-572) (-572))) (-15 -3615 ((-572))) (-15 -1672 ((-572) (-572))) (-15 -3290 ((-112))) (-15 -4143 ((-112) (-112))) (-15 -4054 ((-572))) (-15 -1749 ((-112) (-112)))))
+((-2306 (($ $ (-1105 (-227))) 122) (($ $ (-1105 (-227)) (-1105 (-227))) 123)) (-3023 (((-1105 (-227)) $) 73)) (-3009 (((-1105 (-227)) $) 72)) (-3884 (((-1105 (-227)) $) 74)) (-1589 (((-572) (-572)) 66)) (-3902 (((-572) (-572)) 61)) (-3688 (((-572) (-572)) 64)) (-3210 (((-112) (-112)) 68)) (-1971 (((-572)) 65)) (-3348 (($ $ (-1105 (-227))) 126) (($ $) 127)) (-1739 (($ (-1 (-952 (-227)) (-227)) (-1105 (-227))) 141) (($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 142)) (-2973 (($ (-1 (-227) (-227)) (-1105 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3596 (($ (-1 (-227) (-227)) (-1105 (-227))) 137) (($ (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227))) 138) (($ (-652 (-1 (-227) (-227))) (-1105 (-227))) 146) (($ (-652 (-1 (-227) (-227))) (-1105 (-227)) (-1105 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227))) 140) (($ $ (-1105 (-227))) 128)) (-4030 (((-112) $) 69)) (-2920 (((-572)) 70)) (-3462 (((-572)) 59)) (-2597 (((-572)) 62)) (-1716 (((-652 (-652 (-952 (-227)))) $) 35)) (-4008 (((-112) (-112)) 71)) (-3491 (((-870) $) 167)) (-3940 (((-112)) 67)))
+(((-936) (-13 (-964) (-10 -8 (-15 -3596 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)))) (-15 -3596 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2973 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2973 ($ (-1 (-227) (-227)))) (-15 -3596 ($ $ (-1105 (-227)))) (-15 -4030 ((-112) $)) (-15 -2306 ($ $ (-1105 (-227)))) (-15 -2306 ($ $ (-1105 (-227)) (-1105 (-227)))) (-15 -3348 ($ $ (-1105 (-227)))) (-15 -3348 ($ $)) (-15 -3884 ((-1105 (-227)) $)) (-15 -3462 ((-572))) (-15 -3902 ((-572) (-572))) (-15 -2597 ((-572))) (-15 -3688 ((-572) (-572))) (-15 -1971 ((-572))) (-15 -1589 ((-572) (-572))) (-15 -3940 ((-112))) (-15 -3210 ((-112) (-112))) (-15 -2920 ((-572))) (-15 -4008 ((-112) (-112)))))) (T -936))
+((-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-3596 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-3596 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-3596 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-3596 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-1739 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-1739 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2973 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227))) (-5 *1 (-936)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-936)))) (-3596 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-2306 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3348 (*1 *1 *1) (-5 *1 (-936))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))) (-3462 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-2597 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-1971 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-3940 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))) (-2920 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
+(-13 (-964) (-10 -8 (-15 -3596 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)))) (-15 -3596 ($ (-652 (-1 (-227) (-227))) (-1105 (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)))) (-15 -3596 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)))) (-15 -1739 ($ (-1 (-952 (-227)) (-227)) (-1105 (-227)) (-1105 (-227)) (-1105 (-227)))) (-15 -2973 ($ (-1 (-227) (-227)) (-1105 (-227)))) (-15 -2973 ($ (-1 (-227) (-227)))) (-15 -3596 ($ $ (-1105 (-227)))) (-15 -4030 ((-112) $)) (-15 -2306 ($ $ (-1105 (-227)))) (-15 -2306 ($ $ (-1105 (-227)) (-1105 (-227)))) (-15 -3348 ($ $ (-1105 (-227)))) (-15 -3348 ($ $)) (-15 -3884 ((-1105 (-227)) $)) (-15 -3462 ((-572))) (-15 -3902 ((-572) (-572))) (-15 -2597 ((-572))) (-15 -3688 ((-572) (-572))) (-15 -1971 ((-572))) (-15 -1589 ((-572) (-572))) (-15 -3940 ((-112))) (-15 -3210 ((-112) (-112))) (-15 -2920 ((-572))) (-15 -4008 ((-112) (-112)))))
+((-3553 (((-652 (-1105 (-227))) (-652 (-652 (-952 (-227))))) 34)))
+(((-937) (-10 -7 (-15 -3553 ((-652 (-1105 (-227))) (-652 (-652 (-952 (-227)))))))) (T -937))
+((-3553 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-652 (-1105 (-227)))) (-5 *1 (-937)))))
+(-10 -7 (-15 -3553 ((-652 (-1105 (-227))) (-652 (-652 (-952 (-227)))))))
+((-2934 ((|#2| |#2|) 28)) (-2231 ((|#2| |#2|) 29)) (-4338 ((|#2| |#2|) 27)) (-3214 ((|#2| |#2| (-514)) 26)))
+(((-938 |#1| |#2|) (-10 -7 (-15 -3214 (|#2| |#2| (-514))) (-15 -4338 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -2231 (|#2| |#2|))) (-1111) (-438 |#1|)) (T -938))
+((-2231 (*1 *2 *2) (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3)))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3)))) (-4338 (*1 *2 *2) (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3)))) (-3214 (*1 *2 *2 *3) (-12 (-5 *3 (-514)) (-4 *4 (-1111)) (-5 *1 (-938 *4 *2)) (-4 *2 (-438 *4)))))
+(-10 -7 (-15 -3214 (|#2| |#2| (-514))) (-15 -4338 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)))
+((-2934 (((-322 (-572)) (-1188)) 16)) (-2231 (((-322 (-572)) (-1188)) 14)) (-4338 (((-322 (-572)) (-1188)) 12)) (-3214 (((-322 (-572)) (-1188) (-514)) 19)))
+(((-939) (-10 -7 (-15 -3214 ((-322 (-572)) (-1188) (-514))) (-15 -4338 ((-322 (-572)) (-1188))) (-15 -2934 ((-322 (-572)) (-1188))) (-15 -2231 ((-322 (-572)) (-1188))))) (T -939))
+((-2231 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-514)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))))
+(-10 -7 (-15 -3214 ((-322 (-572)) (-1188) (-514))) (-15 -4338 ((-322 (-572)) (-1188))) (-15 -2934 ((-322 (-572)) (-1188))) (-15 -2231 ((-322 (-572)) (-1188))))
+((-4034 (((-898 |#1| |#3|) |#2| (-901 |#1|) (-898 |#1| |#3|)) 25)) (-1393 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4034 ((-898 |#1| |#3|) |#2| (-901 |#1|) (-898 |#1| |#3|)))) (-1111) (-895 |#1|) (-13 (-1111) (-1049 |#2|))) (T -940))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-13 (-1111) (-1049 *3))) (-4 *3 (-895 *5)) (-5 *1 (-940 *5 *3 *6)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1111) (-1049 *5))) (-4 *5 (-895 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-940 *4 *5 *6)))))
+(-10 -7 (-15 -1393 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4034 ((-898 |#1| |#3|) |#2| (-901 |#1|) (-898 |#1| |#3|))))
+((-4034 (((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)) 30)))
+(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -4034 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-1111) (-13 (-564) (-895 |#1|)) (-13 (-438 |#2|) (-622 (-901 |#1|)) (-895 |#1|) (-1049 (-620 $)))) (T -941))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-13 (-438 *6) (-622 *4) (-895 *5) (-1049 (-620 $)))) (-5 *4 (-901 *5)) (-4 *6 (-13 (-564) (-895 *5))) (-5 *1 (-941 *5 *6 *3)))))
+(-10 -7 (-15 -4034 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))))
+((-4034 (((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|)) 13)))
+(((-942 |#1|) (-10 -7 (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|)))) (-553)) (T -942))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 (-572) *3)) (-5 *4 (-901 (-572))) (-4 *3 (-553)) (-5 *1 (-942 *3)))))
+(-10 -7 (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))))
+((-4034 (((-898 |#1| |#2|) (-620 |#2|) (-901 |#1|) (-898 |#1| |#2|)) 57)))
+(((-943 |#1| |#2|) (-10 -7 (-15 -4034 ((-898 |#1| |#2|) (-620 |#2|) (-901 |#1|) (-898 |#1| |#2|)))) (-1111) (-13 (-1111) (-1049 (-620 $)) (-622 (-901 |#1|)) (-895 |#1|))) (T -943))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6)) (-5 *3 (-620 *6)) (-4 *5 (-1111)) (-4 *6 (-13 (-1111) (-1049 (-620 $)) (-622 *4) (-895 *5))) (-5 *4 (-901 *5)) (-5 *1 (-943 *5 *6)))))
+(-10 -7 (-15 -4034 ((-898 |#1| |#2|) (-620 |#2|) (-901 |#1|) (-898 |#1| |#2|))))
+((-4034 (((-894 |#1| |#2| |#3|) |#3| (-901 |#1|) (-894 |#1| |#2| |#3|)) 17)))
+(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -4034 ((-894 |#1| |#2| |#3|) |#3| (-901 |#1|) (-894 |#1| |#2| |#3|)))) (-1111) (-895 |#1|) (-674 |#2|)) (T -944))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-894 *5 *6 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-4 *6 (-895 *5)) (-4 *3 (-674 *6)) (-5 *1 (-944 *5 *6 *3)))))
+(-10 -7 (-15 -4034 ((-894 |#1| |#2| |#3|) |#3| (-901 |#1|) (-894 |#1| |#2| |#3|))))
+((-4034 (((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|)) 17 (|has| |#3| (-895 |#1|))) (((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|) (-1 (-898 |#1| |#5|) |#3| (-901 |#1|) (-898 |#1| |#5|))) 16)))
+(((-945 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4034 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|) (-1 (-898 |#1| |#5|) |#3| (-901 |#1|) (-898 |#1| |#5|)))) (IF (|has| |#3| (-895 |#1|)) (-15 -4034 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|))) |%noBranch|)) (-1111) (-801) (-858) (-13 (-1060) (-895 |#1|)) (-13 (-958 |#4| |#2| |#3|) (-622 (-901 |#1|)))) (T -945))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-13 (-958 *8 *6 *7) (-622 *4))) (-5 *4 (-901 *5)) (-4 *7 (-895 *5)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-13 (-1060) (-895 *5))) (-5 *1 (-945 *5 *6 *7 *8 *3)))) (-4034 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-898 *6 *3) *8 (-901 *6) (-898 *6 *3))) (-4 *8 (-858)) (-5 *2 (-898 *6 *3)) (-5 *4 (-901 *6)) (-4 *6 (-1111)) (-4 *3 (-13 (-958 *9 *7 *8) (-622 *4))) (-4 *7 (-801)) (-4 *9 (-13 (-1060) (-895 *6))) (-5 *1 (-945 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -4034 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|) (-1 (-898 |#1| |#5|) |#3| (-901 |#1|) (-898 |#1| |#5|)))) (IF (|has| |#3| (-895 |#1|)) (-15 -4034 ((-898 |#1| |#5|) |#5| (-901 |#1|) (-898 |#1| |#5|))) |%noBranch|))
+((-2315 ((|#2| |#2| (-652 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -2315 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2315 (|#2| |#2| (-652 (-1 (-112) |#3|))))) (-1111) (-438 |#1|) (-1229)) (T -946))
+((-2315 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-1 (-112) *5))) (-4 *5 (-1229)) (-4 *4 (-1111)) (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4)))) (-2315 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1229)) (-4 *4 (-1111)) (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4)))))
+(-10 -7 (-15 -2315 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2315 (|#2| |#2| (-652 (-1 (-112) |#3|)))))
+((-2315 (((-322 (-572)) (-1188) (-652 (-1 (-112) |#1|))) 18) (((-322 (-572)) (-1188) (-1 (-112) |#1|)) 15)))
+(((-947 |#1|) (-10 -7 (-15 -2315 ((-322 (-572)) (-1188) (-1 (-112) |#1|))) (-15 -2315 ((-322 (-572)) (-1188) (-652 (-1 (-112) |#1|))))) (-1229)) (T -947))
+((-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-652 (-1 (-112) *5))) (-4 *5 (-1229)) (-5 *2 (-322 (-572))) (-5 *1 (-947 *5)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1229)) (-5 *2 (-322 (-572))) (-5 *1 (-947 *5)))))
+(-10 -7 (-15 -2315 ((-322 (-572)) (-1188) (-1 (-112) |#1|))) (-15 -2315 ((-322 (-572)) (-1188) (-652 (-1 (-112) |#1|)))))
+((-4034 (((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)) 25)))
+(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -4034 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-1111) (-13 (-564) (-895 |#1|) (-622 (-901 |#1|))) (-1003 |#2|)) (T -948))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-1003 *6)) (-4 *6 (-13 (-564) (-895 *5) (-622 *4))) (-5 *4 (-901 *5)) (-5 *1 (-948 *5 *6 *3)))))
+(-10 -7 (-15 -4034 ((-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))))
+((-4034 (((-898 |#1| (-1188)) (-1188) (-901 |#1|) (-898 |#1| (-1188))) 18)))
+(((-949 |#1|) (-10 -7 (-15 -4034 ((-898 |#1| (-1188)) (-1188) (-901 |#1|) (-898 |#1| (-1188))))) (-1111)) (T -949))
+((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 (-1188))) (-5 *3 (-1188)) (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-5 *1 (-949 *5)))))
+(-10 -7 (-15 -4034 ((-898 |#1| (-1188)) (-1188) (-901 |#1|) (-898 |#1| (-1188)))))
+((-4344 (((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) 34)) (-4034 (((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-1 |#3| (-652 |#3|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))) 33)))
+(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -4034 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-1 |#3| (-652 |#3|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-15 -4344 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|))))) (-1111) (-1060) (-13 (-1060) (-622 (-901 |#1|)) (-1049 |#2|))) (T -950))
+((-4344 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-901 *6))) (-5 *5 (-1 (-898 *6 *8) *8 (-901 *6) (-898 *6 *8))) (-4 *6 (-1111)) (-4 *8 (-13 (-1060) (-622 (-901 *6)) (-1049 *7))) (-5 *2 (-898 *6 *8)) (-4 *7 (-1060)) (-5 *1 (-950 *6 *7 *8)))) (-4034 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-652 (-901 *7))) (-5 *5 (-1 *9 (-652 *9))) (-5 *6 (-1 (-898 *7 *9) *9 (-901 *7) (-898 *7 *9))) (-4 *7 (-1111)) (-4 *9 (-13 (-1060) (-622 (-901 *7)) (-1049 *8))) (-5 *2 (-898 *7 *9)) (-5 *3 (-652 *9)) (-4 *8 (-1060)) (-5 *1 (-950 *7 *8 *9)))))
+(-10 -7 (-15 -4034 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-1 |#3| (-652 |#3|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))) (-15 -4344 ((-898 |#1| |#3|) (-652 |#3|) (-652 (-901 |#1|)) (-898 |#1| |#3|) (-1 (-898 |#1| |#3|) |#3| (-901 |#1|) (-898 |#1| |#3|)))))
+((-1536 (((-1184 (-415 (-572))) (-572)) 79)) (-3154 (((-1184 (-572)) (-572)) 82)) (-1450 (((-1184 (-572)) (-572)) 76)) (-2669 (((-572) (-1184 (-572))) 72)) (-2966 (((-1184 (-415 (-572))) (-572)) 65)) (-1458 (((-1184 (-572)) (-572)) 49)) (-2779 (((-1184 (-572)) (-572)) 84)) (-3607 (((-1184 (-572)) (-572)) 83)) (-2452 (((-1184 (-415 (-572))) (-572)) 67)))
+(((-951) (-10 -7 (-15 -2452 ((-1184 (-415 (-572))) (-572))) (-15 -3607 ((-1184 (-572)) (-572))) (-15 -2779 ((-1184 (-572)) (-572))) (-15 -1458 ((-1184 (-572)) (-572))) (-15 -2966 ((-1184 (-415 (-572))) (-572))) (-15 -2669 ((-572) (-1184 (-572)))) (-15 -1450 ((-1184 (-572)) (-572))) (-15 -3154 ((-1184 (-572)) (-572))) (-15 -1536 ((-1184 (-415 (-572))) (-572))))) (T -951))
+((-1536 (*1 *2 *3) (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))) (-3154 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-1450 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-572)) (-5 *1 (-951)))) (-2966 (*1 *2 *3) (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-2779 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-3607 (*1 *2 *3) (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))) (-2452 (*1 *2 *3) (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
+(-10 -7 (-15 -2452 ((-1184 (-415 (-572))) (-572))) (-15 -3607 ((-1184 (-572)) (-572))) (-15 -2779 ((-1184 (-572)) (-572))) (-15 -1458 ((-1184 (-572)) (-572))) (-15 -2966 ((-1184 (-415 (-572))) (-572))) (-15 -2669 ((-572) (-1184 (-572)))) (-15 -1450 ((-1184 (-572)) (-572))) (-15 -3154 ((-1184 (-572)) (-572))) (-15 -1536 ((-1184 (-415 (-572))) (-572))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3488 (($ (-779)) NIL (|has| |#1| (-23)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-2460 (($ (-652 |#1|)) 9)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-1504 (((-697 |#1|) $ $) NIL (|has| |#1| (-1060)))) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2691 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-3818 (((-112) $ (-779)) NIL)) (-2040 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3103 (($ $ (-652 |#1|)) 25)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 18) (($ $ (-1246 (-572))) NIL)) (-1606 ((|#1| $ $) NIL (|has| |#1| (-1060)))) (-1670 (((-930) $) 13)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3947 (($ $ $) 23)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544)))) (($ (-652 |#1|)) 14)) (-3503 (($ (-652 |#1|)) NIL)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-4018 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4005 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-572) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-734))) (($ $ |#1|) NIL (|has| |#1| (-734)))) (-3475 (((-779) $) 11 (|has| $ (-6 -4454)))))
+(((-952 |#1|) (-991 |#1|) (-1060)) (T -952))
+NIL
+(-991 |#1|)
+((-2305 (((-489 |#1| |#2|) (-961 |#2|)) 22)) (-3992 (((-251 |#1| |#2|) (-961 |#2|)) 35)) (-2195 (((-961 |#2|) (-489 |#1| |#2|)) 27)) (-1754 (((-251 |#1| |#2|) (-489 |#1| |#2|)) 57)) (-1897 (((-961 |#2|) (-251 |#1| |#2|)) 32)) (-1995 (((-489 |#1| |#2|) (-251 |#1| |#2|)) 48)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -1995 ((-489 |#1| |#2|) (-251 |#1| |#2|))) (-15 -1754 ((-251 |#1| |#2|) (-489 |#1| |#2|))) (-15 -2305 ((-489 |#1| |#2|) (-961 |#2|))) (-15 -2195 ((-961 |#2|) (-489 |#1| |#2|))) (-15 -1897 ((-961 |#2|) (-251 |#1| |#2|))) (-15 -3992 ((-251 |#1| |#2|) (-961 |#2|)))) (-652 (-1188)) (-1060)) (T -953))
+((-3992 (*1 *2 *3) (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-251 *4 *5)) (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))) (-2305 (*1 *2 *3) (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-489 *4 *5)) (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-251 *4 *5)) (-5 *1 (-953 *4 *5)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060)) (-5 *2 (-489 *4 *5)) (-5 *1 (-953 *4 *5)))))
+(-10 -7 (-15 -1995 ((-489 |#1| |#2|) (-251 |#1| |#2|))) (-15 -1754 ((-251 |#1| |#2|) (-489 |#1| |#2|))) (-15 -2305 ((-489 |#1| |#2|) (-961 |#2|))) (-15 -2195 ((-961 |#2|) (-489 |#1| |#2|))) (-15 -1897 ((-961 |#2|) (-251 |#1| |#2|))) (-15 -3992 ((-251 |#1| |#2|) (-961 |#2|))))
+((-3333 (((-652 |#2|) |#2| |#2|) 10)) (-1513 (((-779) (-652 |#1|)) 48 (|has| |#1| (-856)))) (-1750 (((-652 |#2|) |#2|) 11)) (-3838 (((-779) (-652 |#1|) (-572) (-572)) 52 (|has| |#1| (-856)))) (-2794 ((|#1| |#2|) 38 (|has| |#1| (-856)))))
+(((-954 |#1| |#2|) (-10 -7 (-15 -3333 ((-652 |#2|) |#2| |#2|)) (-15 -1750 ((-652 |#2|) |#2|)) (IF (|has| |#1| (-856)) (PROGN (-15 -2794 (|#1| |#2|)) (-15 -1513 ((-779) (-652 |#1|))) (-15 -3838 ((-779) (-652 |#1|) (-572) (-572)))) |%noBranch|)) (-370) (-1255 |#1|)) (T -954))
+((-3838 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-572)) (-4 *5 (-856)) (-4 *5 (-370)) (-5 *2 (-779)) (-5 *1 (-954 *5 *6)) (-4 *6 (-1255 *5)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-856)) (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-954 *4 *5)) (-4 *5 (-1255 *4)))) (-2794 (*1 *2 *3) (-12 (-4 *2 (-370)) (-4 *2 (-856)) (-5 *1 (-954 *2 *3)) (-4 *3 (-1255 *2)))) (-1750 (*1 *2 *3) (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3)) (-4 *3 (-1255 *4)))) (-3333 (*1 *2 *3 *3) (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -3333 ((-652 |#2|) |#2| |#2|)) (-15 -1750 ((-652 |#2|) |#2|)) (IF (|has| |#1| (-856)) (PROGN (-15 -2794 (|#1| |#2|)) (-15 -1513 ((-779) (-652 |#1|))) (-15 -3838 ((-779) (-652 |#1|) (-572) (-572)))) |%noBranch|))
+((-3161 (((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)) 19)))
+(((-955 |#1| |#2|) (-10 -7 (-15 -3161 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) (-1060) (-1060)) (T -955))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-961 *6)) (-5 *1 (-955 *5 *6)))))
+(-10 -7 (-15 -3161 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|))))
+((-4063 (((-1252 |#1| (-961 |#2|)) (-961 |#2|) (-1275 |#1|)) 18)))
+(((-956 |#1| |#2|) (-10 -7 (-15 -4063 ((-1252 |#1| (-961 |#2|)) (-961 |#2|) (-1275 |#1|)))) (-1188) (-1060)) (T -956))
+((-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-1275 *5)) (-14 *5 (-1188)) (-4 *6 (-1060)) (-5 *2 (-1252 *5 (-961 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-961 *6)))))
+(-10 -7 (-15 -4063 ((-1252 |#1| (-961 |#2|)) (-961 |#2|) (-1275 |#1|))))
+((-3664 (((-779) $) 88) (((-779) $ (-652 |#4|)) 93)) (-1861 (($ $) 203)) (-2359 (((-426 $) $) 195)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 141)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-1869 ((|#2| $) NIL) (((-415 (-572)) $) NIL) (((-572) $) NIL) ((|#4| $) 73)) (-3829 (($ $ $ |#4|) 95)) (-2245 (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 131) (((-697 |#2|) (-697 $)) 121)) (-2889 (($ $) 210) (($ $ |#4|) 213)) (-1863 (((-652 $) $) 77)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 229) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 222)) (-3715 (((-652 $) $) 34)) (-3042 (($ |#2| |#3|) NIL) (($ $ |#4| (-779)) NIL) (($ $ (-652 |#4|) (-652 (-779))) 71)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |#4|) 192)) (-3570 (((-3 (-652 $) "failed") $) 52)) (-2257 (((-3 (-652 $) "failed") $) 39)) (-2298 (((-3 (-2 (|:| |var| |#4|) (|:| -2477 (-779))) "failed") $) 57)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 134)) (-3508 (((-426 (-1184 $)) (-1184 $)) 147)) (-3115 (((-426 (-1184 $)) (-1184 $)) 145)) (-2972 (((-426 $) $) 165)) (-3654 (($ $ (-652 (-300 $))) 24) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-652 |#4|) (-652 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-652 |#4|) (-652 $)) NIL)) (-2020 (($ $ |#4|) 97)) (-3222 (((-901 (-386)) $) 243) (((-901 (-572)) $) 236) (((-544) $) 251)) (-3262 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 184)) (-4206 ((|#2| $ |#3|) NIL) (($ $ |#4| (-779)) 62) (($ $ (-652 |#4|) (-652 (-779))) 69)) (-2210 (((-3 $ "failed") $) 186)) (-3424 (((-112) $ $) 216)))
+(((-957 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -3115 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3508 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3130 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -2889 (|#1| |#1| |#4|)) (-15 -3262 (|#1| |#1| |#4|)) (-15 -2020 (|#1| |#1| |#4|)) (-15 -3829 (|#1| |#1| |#1| |#4|)) (-15 -1863 ((-652 |#1|) |#1|)) (-15 -3664 ((-779) |#1| (-652 |#4|))) (-15 -3664 ((-779) |#1|)) (-15 -2298 ((-3 (-2 (|:| |var| |#4|) (|:| -2477 (-779))) "failed") |#1|)) (-15 -3570 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -2257 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -3042 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3042 (|#1| |#1| |#4| (-779))) (-15 -1505 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1| |#4|)) (-15 -3715 ((-652 |#1|) |#1|)) (-15 -4206 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -4206 (|#1| |#1| |#4| (-779))) (-15 -2245 ((-697 |#2|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3072 ((-3 |#4| "failed") |#1|)) (-15 -1869 (|#4| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#4| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#4| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -3042 (|#1| |#2| |#3|)) (-15 -4206 (|#2| |#1| |#3|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -3424 ((-112) |#1| |#1|))) (-958 |#2| |#3| |#4|) (-1060) (-801) (-858)) (T -957))
+NIL
+(-10 -8 (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -2210 ((-3 |#1| "failed") |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -3115 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3508 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3130 ((-3 (-1279 |#1|) "failed") (-697 |#1|))) (-15 -2889 (|#1| |#1| |#4|)) (-15 -3262 (|#1| |#1| |#4|)) (-15 -2020 (|#1| |#1| |#4|)) (-15 -3829 (|#1| |#1| |#1| |#4|)) (-15 -1863 ((-652 |#1|) |#1|)) (-15 -3664 ((-779) |#1| (-652 |#4|))) (-15 -3664 ((-779) |#1|)) (-15 -2298 ((-3 (-2 (|:| |var| |#4|) (|:| -2477 (-779))) "failed") |#1|)) (-15 -3570 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -2257 ((-3 (-652 |#1|) "failed") |#1|)) (-15 -3042 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -3042 (|#1| |#1| |#4| (-779))) (-15 -1505 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1| |#4|)) (-15 -3715 ((-652 |#1|) |#1|)) (-15 -4206 (|#1| |#1| (-652 |#4|) (-652 (-779)))) (-15 -4206 (|#1| |#1| |#4| (-779))) (-15 -2245 ((-697 |#2|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3072 ((-3 |#4| "failed") |#1|)) (-15 -1869 (|#4| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#4| |#1|)) (-15 -3654 (|#1| |#1| (-652 |#4|) (-652 |#2|))) (-15 -3654 (|#1| |#1| |#4| |#2|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -3042 (|#1| |#2| |#3|)) (-15 -4206 (|#2| |#1| |#3|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -3424 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 |#3|) $) 112)) (-4063 (((-1184 $) $ |#3|) 127) (((-1184 |#1|) $) 126)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-1697 (($ $) 90 (|has| |#1| (-564)))) (-1774 (((-112) $) 92 (|has| |#1| (-564)))) (-3664 (((-779) $) 114) (((-779) $ (-652 |#3|)) 113)) (-2092 (((-3 $ "failed") $ $) 20)) (-2730 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-1861 (($ $) 100 (|has| |#1| (-460)))) (-2359 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 166) (((-3 (-415 (-572)) "failed") $) 163 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 161 (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) 138)) (-1869 ((|#1| $) 165) (((-415 (-572)) $) 164 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 162 (|has| |#1| (-1049 (-572)))) ((|#3| $) 139)) (-3829 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1874 (($ $) 156)) (-2245 (((-697 (-572)) (-697 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 135 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 134) (((-697 |#1|) (-697 $)) 133)) (-2982 (((-3 $ "failed") $) 37)) (-2889 (($ $) 178 (|has| |#1| (-460))) (($ $ |#3|) 107 (|has| |#1| (-460)))) (-1863 (((-652 $) $) 111)) (-3439 (((-112) $) 98 (|has| |#1| (-918)))) (-3163 (($ $ |#1| |#2| $) 174)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| |#3| (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| |#3| (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-4422 (((-112) $) 35)) (-2348 (((-779) $) 171)) (-3060 (($ (-1184 |#1|) |#3|) 119) (($ (-1184 $) |#3|) 118)) (-3715 (((-652 $) $) 128)) (-3357 (((-112) $) 154)) (-3042 (($ |#1| |#2|) 155) (($ $ |#3| (-779)) 121) (($ $ (-652 |#3|) (-652 (-779))) 120)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |#3|) 122)) (-3808 ((|#2| $) 172) (((-779) $ |#3|) 124) (((-652 (-779)) $ (-652 |#3|)) 123)) (-2008 (($ (-1 |#2| |#2|) $) 173)) (-3161 (($ (-1 |#1| |#1|) $) 153)) (-4107 (((-3 |#3| "failed") $) 125)) (-1840 (($ $) 151)) (-1853 ((|#1| $) 150)) (-1335 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-3618 (((-1170) $) 10)) (-3570 (((-3 (-652 $) "failed") $) 116)) (-2257 (((-3 (-652 $) "failed") $) 117)) (-2298 (((-3 (-2 (|:| |var| |#3|) (|:| -2477 (-779))) "failed") $) 115)) (-2614 (((-1131) $) 11)) (-1817 (((-112) $) 168)) (-1829 ((|#1| $) 169)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-1370 (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-2972 (((-426 $) $) 101 (|has| |#1| (-918)))) (-3453 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) 147) (($ $ (-300 $)) 146) (($ $ $ $) 145) (($ $ (-652 $) (-652 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-652 |#3|) (-652 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-652 |#3|) (-652 $)) 140)) (-2020 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3011 (($ $ |#3|) 46) (($ $ (-652 |#3|)) 45) (($ $ |#3| (-779)) 44) (($ $ (-652 |#3|) (-652 (-779))) 43)) (-1497 ((|#2| $) 152) (((-779) $ |#3|) 132) (((-652 (-779)) $ (-652 |#3|)) 131)) (-3222 (((-901 (-386)) $) 84 (-12 (|has| |#3| (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| |#3| (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| |#3| (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) 177 (|has| |#1| (-460))) (($ $ |#3|) 108 (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 106 (-3804 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-564))) (($ (-415 (-572))) 80 (-3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))))) (-1708 (((-652 |#1|) $) 170)) (-4206 ((|#1| $ |#2|) 157) (($ $ |#3| (-779)) 130) (($ $ (-652 |#3|) (-652 (-779))) 129)) (-2210 (((-3 $ "failed") $) 81 (-3783 (-3804 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) 32 T CONST)) (-4257 (($ $ $ (-779)) 175 (|has| |#1| (-174)))) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ |#3|) 42) (($ $ (-652 |#3|)) 41) (($ $ |#3| (-779)) 40) (($ $ (-652 |#3|) (-652 (-779))) 39)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 158 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 160 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 159 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-958 |#1| |#2| |#3|) (-141) (-1060) (-801) (-858)) (T -958))
+((-2889 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-1497 (*1 *2 *1 *3) (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-779)))) (-1497 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779))))) (-4206 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *2 (-858)))) (-4206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)))) (-3715 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-4063 (*1 *2 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-1184 *1)) (-4 *1 (-958 *4 *5 *3)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-1184 *3)))) (-4107 (*1 *2 *1) (|partial| -12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-3808 (*1 *2 *1 *3) (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-779)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779))))) (-1505 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-958 *4 *5 *3)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *2 (-858)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)))) (-3060 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1060)) (-4 *1 (-958 *4 *5 *3)) (-4 *5 (-801)) (-4 *3 (-858)))) (-3060 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)))) (-2257 (*1 *2 *1) (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-3570 (*1 *2 *1) (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-2298 (*1 *2 *1) (|partial| -12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| |var| *5) (|:| -2477 (-779)))))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-779)))) (-3664 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *5)))) (-1863 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5)))) (-3829 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-174)))) (-2020 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-174)))) (-3262 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-460)))) (-2889 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *3 (-460)))) (-1861 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-2359 (*1 *2 *1) (-12 (-4 *3 (-460)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-426 *1)) (-4 *1 (-958 *3 *4 *5)))))
+(-13 (-909 |t#3|) (-332 |t#1| |t#2|) (-315 $) (-522 |t#3| |t#1|) (-522 |t#3| $) (-1049 |t#3|) (-384 |t#1|) (-10 -8 (-15 -1497 ((-779) $ |t#3|)) (-15 -1497 ((-652 (-779)) $ (-652 |t#3|))) (-15 -4206 ($ $ |t#3| (-779))) (-15 -4206 ($ $ (-652 |t#3|) (-652 (-779)))) (-15 -3715 ((-652 $) $)) (-15 -4063 ((-1184 $) $ |t#3|)) (-15 -4063 ((-1184 |t#1|) $)) (-15 -4107 ((-3 |t#3| "failed") $)) (-15 -3808 ((-779) $ |t#3|)) (-15 -3808 ((-652 (-779)) $ (-652 |t#3|))) (-15 -1505 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |t#3|)) (-15 -3042 ($ $ |t#3| (-779))) (-15 -3042 ($ $ (-652 |t#3|) (-652 (-779)))) (-15 -3060 ($ (-1184 |t#1|) |t#3|)) (-15 -3060 ($ (-1184 $) |t#3|)) (-15 -2257 ((-3 (-652 $) "failed") $)) (-15 -3570 ((-3 (-652 $) "failed") $)) (-15 -2298 ((-3 (-2 (|:| |var| |t#3|) (|:| -2477 (-779))) "failed") $)) (-15 -3664 ((-779) $)) (-15 -3664 ((-779) $ (-652 |t#3|))) (-15 -2220 ((-652 |t#3|) $)) (-15 -1863 ((-652 $) $)) (IF (|has| |t#1| (-622 (-544))) (IF (|has| |t#3| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-622 (-901 (-572)))) (IF (|has| |t#3| (-622 (-901 (-572)))) (-6 (-622 (-901 (-572)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-622 (-901 (-386)))) (IF (|has| |t#3| (-622 (-901 (-386)))) (-6 (-622 (-901 (-386)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-895 (-572))) (IF (|has| |t#3| (-895 (-572))) (-6 (-895 (-572))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-895 (-386))) (IF (|has| |t#3| (-895 (-386))) (-6 (-895 (-386))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3829 ($ $ $ |t#3|)) (-15 -2020 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-6 (-460)) (-15 -3262 ($ $ |t#3|)) (-15 -2889 ($ $)) (-15 -2889 ($ $ |t#3|)) (-15 -2359 ((-426 $) $)) (-15 -1861 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4452)) (-6 -4452) |%noBranch|) (IF (|has| |t#1| (-918)) (-6 (-918)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 |#3|) . T) ((-624 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) ((-296) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-315 $) . T) ((-332 |#1| |#2|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -3783 (|has| |#1| (-918)) (|has| |#1| (-460))) ((-522 |#3| |#1|) . T) ((-522 |#3| $) . T) ((-522 $ $) . T) ((-564) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-734) . T) ((-909 |#3|) . T) ((-895 (-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) ((-918) |has| |#1| (-918)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1049 |#3|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) |has| |#1| (-918)))
+((-2220 (((-652 |#2|) |#5|) 40)) (-4063 (((-1184 |#5|) |#5| |#2| (-1184 |#5|)) 23) (((-415 (-1184 |#5|)) |#5| |#2|) 16)) (-3060 ((|#5| (-415 (-1184 |#5|)) |#2|) 30)) (-4107 (((-3 |#2| "failed") |#5|) 71)) (-3570 (((-3 (-652 |#5|) "failed") |#5|) 65)) (-1828 (((-3 (-2 (|:| |val| |#5|) (|:| -2477 (-572))) "failed") |#5|) 53)) (-2257 (((-3 (-652 |#5|) "failed") |#5|) 67)) (-2298 (((-3 (-2 (|:| |var| |#2|) (|:| -2477 (-572))) "failed") |#5|) 57)))
+(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2220 ((-652 |#2|) |#5|)) (-15 -4107 ((-3 |#2| "failed") |#5|)) (-15 -4063 ((-415 (-1184 |#5|)) |#5| |#2|)) (-15 -3060 (|#5| (-415 (-1184 |#5|)) |#2|)) (-15 -4063 ((-1184 |#5|) |#5| |#2| (-1184 |#5|))) (-15 -2257 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -3570 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -2298 ((-3 (-2 (|:| |var| |#2|) (|:| -2477 (-572))) "failed") |#5|)) (-15 -1828 ((-3 (-2 (|:| |val| |#5|) (|:| -2477 (-572))) "failed") |#5|))) (-801) (-858) (-1060) (-958 |#3| |#1| |#2|) (-13 (-370) (-10 -8 (-15 -3491 ($ |#4|)) (-15 -2209 (|#4| $)) (-15 -2224 (|#4| $))))) (T -959))
+((-1828 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2477 (-572)))) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))) (-2298 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2477 (-572)))) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))) (-3570 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))) (-2257 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))) (-4063 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))) (-4 *7 (-958 *6 *5 *4)) (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060)) (-5 *1 (-959 *5 *4 *6 *7 *3)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-1184 *2))) (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060)) (-4 *2 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))) (-5 *1 (-959 *5 *4 *6 *7 *2)) (-4 *7 (-958 *6 *5 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-415 (-1184 *3))) (-5 *1 (-959 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))) (-4107 (*1 *2 *3) (|partial| -12 (-4 *4 (-801)) (-4 *5 (-1060)) (-4 *6 (-958 *5 *4 *2)) (-4 *2 (-858)) (-5 *1 (-959 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *6)) (-15 -2209 (*6 $)) (-15 -2224 (*6 $))))))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *5)) (-5 *1 (-959 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))))
+(-10 -7 (-15 -2220 ((-652 |#2|) |#5|)) (-15 -4107 ((-3 |#2| "failed") |#5|)) (-15 -4063 ((-415 (-1184 |#5|)) |#5| |#2|)) (-15 -3060 (|#5| (-415 (-1184 |#5|)) |#2|)) (-15 -4063 ((-1184 |#5|) |#5| |#2| (-1184 |#5|))) (-15 -2257 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -3570 ((-3 (-652 |#5|) "failed") |#5|)) (-15 -2298 ((-3 (-2 (|:| |var| |#2|) (|:| -2477 (-572))) "failed") |#5|)) (-15 -1828 ((-3 (-2 (|:| |val| |#5|) (|:| -2477 (-572))) "failed") |#5|)))
+((-3161 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3161 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-801) (-858) (-1060) (-958 |#3| |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -4005 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779)))))) (T -960))
+((-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-858)) (-4 *8 (-1060)) (-4 *6 (-801)) (-4 *2 (-13 (-1111) (-10 -8 (-15 -4005 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779)))))) (-5 *1 (-960 *6 *7 *8 *5 *2)) (-4 *5 (-958 *8 *6 *7)))))
+(-10 -7 (-15 -3161 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1188)) $) 16)) (-4063 (((-1184 $) $ (-1188)) 21) (((-1184 |#1|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-1188))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 8) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1188) "failed") $) NIL)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1188) $) NIL)) (-3829 (($ $ $ (-1188)) NIL (|has| |#1| (-174)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1188)) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-539 (-1188)) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1188) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1188) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3060 (($ (-1184 |#1|) (-1188)) NIL) (($ (-1184 $) (-1188)) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-1188)) NIL)) (-3808 (((-539 (-1188)) $) NIL) (((-779) $ (-1188)) NIL) (((-652 (-779)) $ (-652 (-1188))) NIL)) (-2008 (($ (-1 (-539 (-1188)) (-539 (-1188))) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4107 (((-3 (-1188) "failed") $) 19)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-1188)) (|:| -2477 (-779))) "failed") $) NIL)) (-4161 (($ $ (-1188)) 29 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1188) |#1|) NIL) (($ $ (-652 (-1188)) (-652 |#1|)) NIL) (($ $ (-1188) $) NIL) (($ $ (-652 (-1188)) (-652 $)) NIL)) (-2020 (($ $ (-1188)) NIL (|has| |#1| (-174)))) (-3011 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-1497 (((-539 (-1188)) $) NIL) (((-779) $ (-1188)) NIL) (((-652 (-779)) $ (-652 (-1188))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-1188) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1188) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1188) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1188)) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) 25) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1188)) 27) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-961 |#1|) (-13 (-958 |#1| (-539 (-1188)) (-1188)) (-10 -8 (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1188))) |%noBranch|))) (-1060)) (T -961))
+((-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-961 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))))
+(-13 (-958 |#1| (-539 (-1188)) (-1188)) (-10 -8 (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1188))) |%noBranch|)))
+((-3675 (((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) |#3| (-779)) 49)) (-2339 (((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) (-415 (-572)) (-779)) 44)) (-2616 (((-2 (|:| -2477 (-779)) (|:| -2379 |#4|) (|:| |radicand| (-652 |#4|))) |#4| (-779)) 65)) (-1801 (((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) |#5| (-779)) 74 (|has| |#3| (-460)))))
+(((-962 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3675 ((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) |#3| (-779))) (-15 -2339 ((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) (-415 (-572)) (-779))) (IF (|has| |#3| (-460)) (-15 -1801 ((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) |#5| (-779))) |%noBranch|) (-15 -2616 ((-2 (|:| -2477 (-779)) (|:| -2379 |#4|) (|:| |radicand| (-652 |#4|))) |#4| (-779)))) (-801) (-858) (-564) (-958 |#3| |#1| |#2|) (-13 (-370) (-10 -8 (-15 -3491 ($ |#4|)) (-15 -2209 (|#4| $)) (-15 -2224 (|#4| $))))) (T -962))
+((-2616 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564)) (-4 *3 (-958 *7 *5 *6)) (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *3) (|:| |radicand| (-652 *3)))) (-5 *1 (-962 *5 *6 *7 *3 *8)) (-5 *4 (-779)) (-4 *8 (-13 (-370) (-10 -8 (-15 -3491 ($ *3)) (-15 -2209 (*3 $)) (-15 -2224 (*3 $))))))) (-1801 (*1 *2 *3 *4) (-12 (-4 *7 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564)) (-4 *8 (-958 *7 *5 *6)) (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *3) (|:| |radicand| *3))) (-5 *1 (-962 *5 *6 *7 *8 *3)) (-5 *4 (-779)) (-4 *3 (-13 (-370) (-10 -8 (-15 -3491 ($ *8)) (-15 -2209 (*8 $)) (-15 -2224 (*8 $))))))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-572))) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564)) (-4 *8 (-958 *7 *5 *6)) (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *9) (|:| |radicand| *9))) (-5 *1 (-962 *5 *6 *7 *8 *9)) (-5 *4 (-779)) (-4 *9 (-13 (-370) (-10 -8 (-15 -3491 ($ *8)) (-15 -2209 (*8 $)) (-15 -2224 (*8 $))))))) (-3675 (*1 *2 *3 *4) (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-564)) (-4 *7 (-958 *3 *5 *6)) (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *8) (|:| |radicand| *8))) (-5 *1 (-962 *5 *6 *3 *7 *8)) (-5 *4 (-779)) (-4 *8 (-13 (-370) (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))))
+(-10 -7 (-15 -3675 ((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) |#3| (-779))) (-15 -2339 ((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) (-415 (-572)) (-779))) (IF (|has| |#3| (-460)) (-15 -1801 ((-2 (|:| -2477 (-779)) (|:| -2379 |#5|) (|:| |radicand| |#5|)) |#5| (-779))) |%noBranch|) (-15 -2616 ((-2 (|:| -2477 (-779)) (|:| -2379 |#4|) (|:| |radicand| (-652 |#4|))) |#4| (-779))))
+((-3464 (((-112) $ $) NIL)) (-2488 (($ (-1131)) 8)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 15) (((-1131) $) 12)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 11)))
+(((-963) (-13 (-1111) (-621 (-1131)) (-10 -8 (-15 -2488 ($ (-1131)))))) (T -963))
+((-2488 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-963)))))
+(-13 (-1111) (-621 (-1131)) (-10 -8 (-15 -2488 ($ (-1131)))))
+((-3023 (((-1105 (-227)) $) 8)) (-3009 (((-1105 (-227)) $) 9)) (-1716 (((-652 (-652 (-952 (-227)))) $) 10)) (-3491 (((-870) $) 6)))
+(((-964) (-141)) (T -964))
+((-1716 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-652 (-652 (-952 (-227))))))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227))))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227))))))
+(-13 (-621 (-870)) (-10 -8 (-15 -1716 ((-652 (-652 (-952 (-227)))) $)) (-15 -3009 ((-1105 (-227)) $)) (-15 -3023 ((-1105 (-227)) $))))
+(((-621 (-870)) . T))
+((-1567 (((-3 (-697 |#1|) "failed") |#2| (-930)) 18)))
+(((-965 |#1| |#2|) (-10 -7 (-15 -1567 ((-3 (-697 |#1|) "failed") |#2| (-930)))) (-564) (-664 |#1|)) (T -965))
+((-1567 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-930)) (-4 *5 (-564)) (-5 *2 (-697 *5)) (-5 *1 (-965 *5 *3)) (-4 *3 (-664 *5)))))
+(-10 -7 (-15 -1567 ((-3 (-697 |#1|) "failed") |#2| (-930))))
+((-4424 (((-967 |#2|) (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|) 16)) (-2925 ((|#2| (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|) 18)) (-3161 (((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)) 13)))
+(((-966 |#1| |#2|) (-10 -7 (-15 -4424 ((-967 |#2|) (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -3161 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)))) (-1229) (-1229)) (T -966))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-967 *6)) (-5 *1 (-966 *5 *6)))) (-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-967 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-966 *5 *2)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-967 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-967 *5)) (-5 *1 (-966 *6 *5)))))
+(-10 -7 (-15 -4424 ((-967 |#2|) (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-967 |#1|) |#2|)) (-15 -3161 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) |#1|) 19 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 18 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 16)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2924 (($ (-779) |#1|) 15)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) 11 (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) 20 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) 17) (($ $ (-1246 (-572))) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) 21)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 14)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3475 (((-779) $) 8 (|has| $ (-6 -4454)))))
+(((-967 |#1|) (-19 |#1|) (-1229)) (T -967))
NIL
(-19 |#1|)
-((-3726 (($ $ (-1101 $)) 7) (($ $ (-1186)) 6)))
-(((-966) (-141)) (T -966))
-((-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-966)))) (-3726 (*1 *1 *1 *2) (-12 (-4 *1 (-966)) (-5 *2 (-1186)))))
-(-13 (-10 -8 (-15 -3726 ($ $ (-1186))) (-15 -3726 ($ $ (-1101 $)))))
-((-2310 (((-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)) (-1186)) 26) (((-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186))) 27) (((-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 |#1|))) (-959 |#1|) (-1186) (-959 |#1|) (-1186)) 49)))
-(((-967 |#1|) (-10 -7 (-15 -2310 ((-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 |#1|))) (-959 |#1|) (-1186) (-959 |#1|) (-1186))) (-15 -2310 ((-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -2310 ((-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)) (-1186)))) (-13 (-368) (-148))) (T -967))
-((-2310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-5 *5 (-1186)) (-4 *6 (-13 (-368) (-148))) (-5 *2 (-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 *6))) (|:| |prim| (-1182 *6)))) (-5 *1 (-967 *6)))) (-2310 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-368) (-148))) (-5 *2 (-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 *5))) (|:| |prim| (-1182 *5)))) (-5 *1 (-967 *5)))) (-2310 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-959 *5)) (-5 *4 (-1186)) (-4 *5 (-13 (-368) (-148))) (-5 *2 (-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 *5)))) (-5 *1 (-967 *5)))))
-(-10 -7 (-15 -2310 ((-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 |#1|))) (-959 |#1|) (-1186) (-959 |#1|) (-1186))) (-15 -2310 ((-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -2310 ((-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)) (-1186))))
-((-3306 (((-650 |#1|) |#1| |#1|) 47)) (-2145 (((-112) |#1|) 44)) (-2684 ((|#1| |#1|) 79)) (-3560 ((|#1| |#1|) 78)))
-(((-968 |#1|) (-10 -7 (-15 -2145 ((-112) |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -3306 ((-650 |#1|) |#1| |#1|))) (-551)) (T -968))
-((-3306 (*1 *2 *3 *3) (-12 (-5 *2 (-650 *3)) (-5 *1 (-968 *3)) (-4 *3 (-551)))) (-2684 (*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551)))) (-3560 (*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-968 *3)) (-4 *3 (-551)))))
-(-10 -7 (-15 -2145 ((-112) |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -2684 (|#1| |#1|)) (-15 -3306 ((-650 |#1|) |#1| |#1|)))
-((-3504 (((-1282) (-868)) 9)))
-(((-969) (-10 -7 (-15 -3504 ((-1282) (-868))))) (T -969))
-((-3504 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-969)))))
-(-10 -7 (-15 -3504 ((-1282) (-868))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 78 (|has| |#1| (-562)))) (-2046 (($ $) 79 (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 34)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-4394 (($ $) 31)) (-3957 (((-3 $ "failed") $) 42)) (-2211 (($ $) NIL (|has| |#1| (-458)))) (-2425 (($ $ |#1| |#2| $) 62)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) 17)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| |#2|) NIL)) (-2689 ((|#2| $) 24)) (-3989 (($ (-1 |#2| |#2|) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-4355 (($ $) 28)) (-4369 ((|#1| $) 26)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) 51)) (-4337 ((|#1| $) NIL)) (-2829 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-562))))) (-2837 (((-3 $ "failed") $ $) 91 (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-562)))) (-2650 ((|#2| $) 22)) (-2128 ((|#1| $) NIL (|has| |#1| (-458)))) (-2869 (((-868) $) NIL) (($ (-570)) 46) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 41) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ |#2|) 37)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) 15 T CONST)) (-2109 (($ $ $ (-777)) 74 (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) 84 (|has| |#1| (-562)))) (-1981 (($) 27 T CONST)) (-1998 (($) 12 T CONST)) (-3892 (((-112) $ $) 83)) (-4013 (($ $ |#1|) 92 (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) 69) (($ $ (-777)) 67)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-970 |#1| |#2|) (-13 (-330 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| |#2| (-132)) (-15 -2829 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|))) (-1058) (-798)) (T -970))
-((-2829 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-970 *3 *2)) (-4 *2 (-132)) (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *2 (-798)))))
-(-13 (-330 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| |#2| (-132)) (-15 -2829 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL (-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))))) (-1548 (($ $ $) 65 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))) (-3997 (((-3 $ "failed") $ $) 52 (-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))))) (-2401 (((-777)) 36 (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-3226 ((|#2| $) 22)) (-4311 ((|#1| $) 21)) (-2333 (($) NIL (-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))) CONST)) (-3957 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-2066 (($) NIL (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-2005 (((-112) $) NIL (-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-1908 (($ $ $) NIL (-3749 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-1764 (($ $ $) NIL (-3749 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-3953 (($ |#1| |#2|) 20)) (-1997 (((-928) $) NIL (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 39 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-4298 (($ (-928)) NIL (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-3891 (((-1129) $) NIL)) (-2733 (($ $ $) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-2319 (($ $ $) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-2869 (((-868) $) 14)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 42 (-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))) CONST)) (-1998 (($) 25 (-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-3959 (((-112) $ $) NIL (-3749 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-3933 (((-112) $ $) NIL (-3749 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-3892 (((-112) $ $) 19)) (-3945 (((-112) $ $) NIL (-3749 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-3918 (((-112) $ $) 69 (-3749 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-4013 (($ $ $) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-4003 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3992 (($ $ $) 45 (-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))))) (** (($ $ (-570)) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479)))) (($ $ (-777)) 32 (-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ $ (-928)) NIL (-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (* (($ (-570) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-777) $) 48 (-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))) (($ (-928) $) NIL (-3749 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))) (($ $ $) 28 (-3749 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))))
-(((-971 |#1| |#2|) (-13 (-1109) (-10 -8 (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-479)) (IF (|has| |#2| (-479)) (-6 (-479)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-799)) (IF (|has| |#2| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-856)) (IF (|has| |#2| (-856)) (-6 (-856)) |%noBranch|) |%noBranch|) (-15 -3953 ($ |#1| |#2|)) (-15 -4311 (|#1| $)) (-15 -3226 (|#2| $)))) (-1109) (-1109)) (T -971))
-((-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-971 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-4311 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1109)))) (-3226 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-971 *3 *2)) (-4 *3 (-1109)))))
-(-13 (-1109) (-10 -8 (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-479)) (IF (|has| |#2| (-479)) (-6 (-479)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-799)) (IF (|has| |#2| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-856)) (IF (|has| |#2| (-856)) (-6 (-856)) |%noBranch|) |%noBranch|) (-15 -3953 ($ |#1| |#2|)) (-15 -4311 (|#1| $)) (-15 -3226 (|#2| $))))
-((-4156 (((-1113) $) 12)) (-1333 (($ (-512) (-1113)) 14)) (-1770 (((-512) $) 9)) (-2869 (((-868) $) 24)))
-(((-972) (-13 (-619 (-868)) (-10 -8 (-15 -1770 ((-512) $)) (-15 -4156 ((-1113) $)) (-15 -1333 ($ (-512) (-1113)))))) (T -972))
-((-1770 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-972)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-972)))) (-1333 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-972)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -1770 ((-512) $)) (-15 -4156 ((-1113) $)) (-15 -1333 ($ (-512) (-1113)))))
-((-2847 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3224 (($ $ $) 30)) (-3201 (($ $) 24)) (-3240 (((-1168) $) NIL)) (-3868 (((-697 (-879 $ $)) $) 55)) (-2946 (((-697 $) $) 45)) (-3873 (((-697 (-879 $ $)) $) 56)) (-4223 (((-697 (-879 $ $)) $) 57)) (-2113 (((-697 |#1|) $) 36)) (-3157 (((-697 (-879 $ $)) $) 54)) (-1847 (($ $ $) 31)) (-3891 (((-1129) $) NIL)) (-3915 (($) NIL T CONST)) (-3889 (($ $ $) 32)) (-4272 (($ $ $) 29)) (-2242 (($ $ $) 27)) (-2869 (((-868) $) 59) (($ |#1|) 12)) (-1344 (((-112) $ $) NIL)) (-3212 (($ $ $) 28)) (-3892 (((-112) $ $) NIL)))
-(((-973 |#1|) (-13 (-976) (-622 |#1|) (-10 -8 (-15 -2113 ((-697 |#1|) $)) (-15 -2946 ((-697 $) $)) (-15 -3157 ((-697 (-879 $ $)) $)) (-15 -3868 ((-697 (-879 $ $)) $)) (-15 -3873 ((-697 (-879 $ $)) $)) (-15 -4223 ((-697 (-879 $ $)) $)) (-15 -2242 ($ $ $)) (-15 -4272 ($ $ $)))) (-1109)) (T -973))
-((-2113 (*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-697 (-973 *3))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-2242 (*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109)))) (-4272 (*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109)))))
-(-13 (-976) (-622 |#1|) (-10 -8 (-15 -2113 ((-697 |#1|) $)) (-15 -2946 ((-697 $) $)) (-15 -3157 ((-697 (-879 $ $)) $)) (-15 -3868 ((-697 (-879 $ $)) $)) (-15 -3873 ((-697 (-879 $ $)) $)) (-15 -4223 ((-697 (-879 $ $)) $)) (-15 -2242 ($ $ $)) (-15 -4272 ($ $ $))))
-((-3828 (((-973 |#1|) (-973 |#1|)) 46)) (-1867 (((-973 |#1|) (-973 |#1|)) 22)) (-1724 (((-1111 |#1|) (-973 |#1|)) 41)))
-(((-974 |#1|) (-13 (-1227) (-10 -7 (-15 -1867 ((-973 |#1|) (-973 |#1|))) (-15 -1724 ((-1111 |#1|) (-973 |#1|))) (-15 -3828 ((-973 |#1|) (-973 |#1|))))) (-1109)) (T -974))
-((-1867 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1109)) (-5 *1 (-974 *3)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-973 *4)) (-4 *4 (-1109)) (-5 *2 (-1111 *4)) (-5 *1 (-974 *4)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1109)) (-5 *1 (-974 *3)))))
-(-13 (-1227) (-10 -7 (-15 -1867 ((-973 |#1|) (-973 |#1|))) (-15 -1724 ((-1111 |#1|) (-973 |#1|))) (-15 -3828 ((-973 |#1|) (-973 |#1|)))))
-((-2536 (((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)) 29)))
-(((-975 |#1| |#2|) (-13 (-1227) (-10 -7 (-15 -2536 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|))))) (-1109) (-1109)) (T -975))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-973 *6)) (-5 *1 (-975 *5 *6)))))
-(-13 (-1227) (-10 -7 (-15 -2536 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)))))
-((-2847 (((-112) $ $) 15)) (-1989 (($) 14 T CONST)) (-3224 (($ $ $) 6)) (-3201 (($ $) 8)) (-3240 (((-1168) $) 19)) (-1847 (($ $ $) 12)) (-3891 (((-1129) $) 18)) (-3915 (($) 13 T CONST)) (-3889 (($ $ $) 11)) (-2869 (((-868) $) 17)) (-1344 (((-112) $ $) 20)) (-3212 (($ $ $) 7)) (-3892 (((-112) $ $) 16)))
-(((-976) (-141)) (T -976))
-((-1989 (*1 *1) (-4 *1 (-976))) (-3915 (*1 *1) (-4 *1 (-976))) (-1847 (*1 *1 *1 *1) (-4 *1 (-976))) (-3889 (*1 *1 *1 *1) (-4 *1 (-976))))
-(-13 (-113) (-1109) (-10 -8 (-15 -1989 ($) -3722) (-15 -3915 ($) -3722) (-15 -1847 ($ $ $)) (-15 -3889 ($ $ $))))
-(((-102) . T) ((-113) . T) ((-619 (-868)) . T) ((-1109) . T) ((-1227) . T))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-2333 (($) 7 T CONST)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3675 (($ $ $) 44)) (-4356 (($ $ $) 45)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1764 ((|#1| $) 46)) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-977 |#1|) (-141) (-856)) (T -977))
-((-1764 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))) (-4356 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))) (-3675 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4452) (-15 -1764 (|t#1| $)) (-15 -4356 ($ $ $)) (-15 -3675 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-3199 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3903 |#2|)) |#2| |#2|) 105)) (-3862 ((|#2| |#2| |#2|) 103)) (-3650 (((-2 (|:| |coef2| |#2|) (|:| -3903 |#2|)) |#2| |#2|) 107)) (-3269 (((-2 (|:| |coef1| |#2|) (|:| -3903 |#2|)) |#2| |#2|) 109)) (-3254 (((-2 (|:| |coef2| |#2|) (|:| -3393 |#1|)) |#2| |#2|) 131 (|has| |#1| (-458)))) (-1728 (((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|) 56)) (-2317 (((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|) 80)) (-3790 (((-2 (|:| |coef1| |#2|) (|:| -2067 |#1|)) |#2| |#2|) 82)) (-3655 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1934 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 89)) (-3491 (((-2 (|:| |coef2| |#2|) (|:| -2896 |#1|)) |#2|) 121)) (-1706 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 92)) (-4184 (((-650 (-777)) |#2| |#2|) 102)) (-4155 ((|#1| |#2| |#2|) 50)) (-3470 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3393 |#1|)) |#2| |#2|) 129 (|has| |#1| (-458)))) (-3393 ((|#1| |#2| |#2|) 127 (|has| |#1| (-458)))) (-3102 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|) 54)) (-3023 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|) 79)) (-2067 ((|#1| |#2| |#2|) 76)) (-1504 (((-2 (|:| -1747 |#1|) (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2|) 41)) (-1776 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3276 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3834 ((|#2| |#2| |#2|) 93)) (-3057 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 87)) (-2950 ((|#2| |#2| |#2| (-777)) 85)) (-3903 ((|#2| |#2| |#2|) 135 (|has| |#1| (-458)))) (-2837 (((-1277 |#2|) (-1277 |#2|) |#1|) 22)) (-4038 (((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2|) 46)) (-1702 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2896 |#1|)) |#2|) 119)) (-2896 ((|#1| |#2|) 116)) (-3193 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 91)) (-3268 ((|#2| |#2| |#2| (-777)) 90)) (-1801 (((-650 |#2|) |#2| |#2|) 99)) (-4328 ((|#2| |#2| |#1| |#1| (-777)) 62)) (-2146 ((|#1| |#1| |#1| (-777)) 61)) (* (((-1277 |#2|) |#1| (-1277 |#2|)) 17)))
-(((-978 |#1| |#2|) (-10 -7 (-15 -2067 (|#1| |#2| |#2|)) (-15 -3023 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -2317 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -3790 ((-2 (|:| |coef1| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -2950 (|#2| |#2| |#2| (-777))) (-15 -3057 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -1934 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3268 (|#2| |#2| |#2| (-777))) (-15 -3193 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -1706 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3834 (|#2| |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3655 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3862 (|#2| |#2| |#2|)) (-15 -3199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3903 |#2|)) |#2| |#2|)) (-15 -3650 ((-2 (|:| |coef2| |#2|) (|:| -3903 |#2|)) |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| -3903 |#2|)) |#2| |#2|)) (-15 -2896 (|#1| |#2|)) (-15 -1702 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2896 |#1|)) |#2|)) (-15 -3491 ((-2 (|:| |coef2| |#2|) (|:| -2896 |#1|)) |#2|)) (-15 -1801 ((-650 |#2|) |#2| |#2|)) (-15 -4184 ((-650 (-777)) |#2| |#2|)) (IF (|has| |#1| (-458)) (PROGN (-15 -3393 (|#1| |#2| |#2|)) (-15 -3470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3393 |#1|)) |#2| |#2|)) (-15 -3254 ((-2 (|:| |coef2| |#2|) (|:| -3393 |#1|)) |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1277 |#2|) |#1| (-1277 |#2|))) (-15 -2837 ((-1277 |#2|) (-1277 |#2|) |#1|)) (-15 -1504 ((-2 (|:| -1747 |#1|) (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2|)) (-15 -4038 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2|)) (-15 -2146 (|#1| |#1| |#1| (-777))) (-15 -4328 (|#2| |#2| |#1| |#1| (-777))) (-15 -1776 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4155 (|#1| |#2| |#2|)) (-15 -3102 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -1728 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|))) (-562) (-1253 |#1|)) (T -978))
-((-1728 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3102 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-4155 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1253 *2)))) (-1776 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3)))) (-4328 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3)))) (-2146 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *2 (-562)) (-5 *1 (-978 *2 *4)) (-4 *4 (-1253 *2)))) (-4038 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-1504 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1747 *4) (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-2837 (*1 *2 *2 *3) (-12 (-5 *2 (-1277 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-562)) (-5 *1 (-978 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1277 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-562)) (-5 *1 (-978 *3 *4)))) (-3903 (*1 *2 *2 *2) (-12 (-4 *3 (-458)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3393 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3470 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3393 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3393 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-4 *2 (-458)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1253 *2)))) (-4184 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-777))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-1801 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2896 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-1702 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2896 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-2896 (*1 *2 *3) (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1253 *2)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3903 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3650 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3903 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3199 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3903 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3862 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3)))) (-3655 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3834 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3)))) (-1706 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))) (-3193 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))) (-3268 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2)) (-4 *2 (-1253 *4)))) (-1934 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))) (-3057 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))) (-2950 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2)) (-4 *2 (-1253 *4)))) (-3790 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2067 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-2317 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-3023 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))) (-2067 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1253 *2)))))
-(-10 -7 (-15 -2067 (|#1| |#2| |#2|)) (-15 -3023 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -2317 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -3790 ((-2 (|:| |coef1| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -2950 (|#2| |#2| |#2| (-777))) (-15 -3057 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -1934 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3268 (|#2| |#2| |#2| (-777))) (-15 -3193 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -1706 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3834 (|#2| |#2| |#2|)) (-15 -3276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3655 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3862 (|#2| |#2| |#2|)) (-15 -3199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3903 |#2|)) |#2| |#2|)) (-15 -3650 ((-2 (|:| |coef2| |#2|) (|:| -3903 |#2|)) |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| -3903 |#2|)) |#2| |#2|)) (-15 -2896 (|#1| |#2|)) (-15 -1702 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2896 |#1|)) |#2|)) (-15 -3491 ((-2 (|:| |coef2| |#2|) (|:| -2896 |#1|)) |#2|)) (-15 -1801 ((-650 |#2|) |#2| |#2|)) (-15 -4184 ((-650 (-777)) |#2| |#2|)) (IF (|has| |#1| (-458)) (PROGN (-15 -3393 (|#1| |#2| |#2|)) (-15 -3470 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3393 |#1|)) |#2| |#2|)) (-15 -3254 ((-2 (|:| |coef2| |#2|) (|:| -3393 |#1|)) |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1277 |#2|) |#1| (-1277 |#2|))) (-15 -2837 ((-1277 |#2|) (-1277 |#2|) |#1|)) (-15 -1504 ((-2 (|:| -1747 |#1|) (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2|)) (-15 -4038 ((-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) |#2| |#2|)) (-15 -2146 (|#1| |#1| |#1| (-777))) (-15 -4328 (|#2| |#2| |#1| |#1| (-777))) (-15 -1776 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4155 (|#1| |#2| |#2|)) (-15 -3102 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|)) (-15 -1728 ((-2 (|:| |coef2| |#2|) (|:| -2067 |#1|)) |#2| |#2|)))
-((-2847 (((-112) $ $) NIL)) (-2925 (((-1226) $) 13)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3812 (((-1144) $) 10)) (-2869 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-979) (-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2925 ((-1226) $))))) (T -979))
-((-3812 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-979)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-979)))))
-(-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2925 ((-1226) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 40)) (-3997 (((-3 $ "failed") $ $) 54)) (-2333 (($) NIL T CONST)) (-1664 (((-650 (-879 (-928) (-928))) $) 67)) (-3094 (((-928) $) 94)) (-3976 (((-650 (-928)) $) 17)) (-3820 (((-1166 $) (-777)) 39)) (-2381 (($ (-650 (-928))) 16)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2733 (($ $) 70)) (-2869 (((-868) $) 90) (((-650 (-928)) $) 11)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 8 T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 44)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 42)) (-3992 (($ $ $) 46)) (* (($ (-928) $) NIL) (($ (-777) $) 49)) (-2857 (((-777) $) 22)))
-(((-980) (-13 (-801) (-619 (-650 (-928))) (-10 -8 (-15 -2381 ($ (-650 (-928)))) (-15 -3976 ((-650 (-928)) $)) (-15 -2857 ((-777) $)) (-15 -3820 ((-1166 $) (-777))) (-15 -1664 ((-650 (-879 (-928) (-928))) $)) (-15 -3094 ((-928) $)) (-15 -2733 ($ $))))) (T -980))
-((-2381 (*1 *1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-980)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-980)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-980)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1166 (-980))) (-5 *1 (-980)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-650 (-879 (-928) (-928)))) (-5 *1 (-980)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-980)))) (-2733 (*1 *1 *1) (-5 *1 (-980))))
-(-13 (-801) (-619 (-650 (-928))) (-10 -8 (-15 -2381 ($ (-650 (-928)))) (-15 -3976 ((-650 (-928)) $)) (-15 -2857 ((-777) $)) (-15 -3820 ((-1166 $) (-777))) (-15 -1664 ((-650 (-879 (-928) (-928))) $)) (-15 -3094 ((-928) $)) (-15 -2733 ($ $))))
-((-4013 (($ $ |#2|) 31)) (-4003 (($ $) 23) (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-413 (-570)) $) 27) (($ $ (-413 (-570))) 29)))
-(((-981 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -4013 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-982 |#2| |#3| |#4|) (-1058) (-798) (-856)) (T -981))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -4013 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 |#3|) $) 86)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-3296 (((-112) $) 85)) (-2005 (((-112) $) 35)) (-1338 (((-112) $) 74)) (-2402 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-650 |#3|) (-650 |#2|)) 87)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-2650 ((|#2| $) 76)) (-2161 (($ $) 84)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3481 ((|#1| $ |#2|) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-982 |#1| |#2| |#3|) (-141) (-1058) (-798) (-856)) (T -982))
-((-4369 (*1 *2 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *3 (-798)) (-4 *4 (-856)) (-4 *2 (-1058)))) (-4355 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *4 (-856)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *2 *4)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *2 (-798)))) (-2402 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-982 *4 *3 *2)) (-4 *4 (-1058)) (-4 *3 (-798)) (-4 *2 (-856)))) (-2402 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 *5)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-798)) (-4 *6 (-856)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798)) (-4 *5 (-856)) (-5 *2 (-650 *5)))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798)) (-4 *5 (-856)) (-5 *2 (-112)))) (-2161 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *4 (-856)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2402 ($ $ |t#3| |t#2|)) (-15 -2402 ($ $ (-650 |t#3|) (-650 |t#2|))) (-15 -4355 ($ $)) (-15 -4369 (|t#1| $)) (-15 -2650 (|t#2| $)) (-15 -1598 ((-650 |t#3|) $)) (-15 -3296 ((-112) $)) (-15 -2161 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-294) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2825 (((-1103 (-227)) $) 8)) (-2812 (((-1103 (-227)) $) 9)) (-2800 (((-1103 (-227)) $) 10)) (-4084 (((-650 (-650 (-950 (-227)))) $) 11)) (-2869 (((-868) $) 6)))
-(((-983) (-141)) (T -983))
-((-4084 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-650 (-650 (-950 (-227))))))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))))
-(-13 (-619 (-868)) (-10 -8 (-15 -4084 ((-650 (-650 (-950 (-227)))) $)) (-15 -2800 ((-1103 (-227)) $)) (-15 -2812 ((-1103 (-227)) $)) (-15 -2825 ((-1103 (-227)) $))))
-(((-619 (-868)) . T))
-((-1598 (((-650 |#4|) $) 23)) (-3330 (((-112) $) 55)) (-2114 (((-112) $) 54)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#4|) 42)) (-2157 (((-112) $) 56)) (-3303 (((-112) $ $) 62)) (-3105 (((-112) $ $) 65)) (-3580 (((-112) $) 60)) (-2303 (((-650 |#5|) (-650 |#5|) $) 98)) (-3541 (((-650 |#5|) (-650 |#5|) $) 95)) (-3357 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3734 (((-650 |#4|) $) 27)) (-3640 (((-112) |#4| $) 34)) (-4092 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1342 (($ $ |#4|) 39)) (-2691 (($ $ |#4|) 38)) (-3130 (($ $ |#4|) 40)) (-3892 (((-112) $ $) 46)))
-(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2114 ((-112) |#1|)) (-15 -2303 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -3541 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -3357 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4092 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2157 ((-112) |#1|)) (-15 -3105 ((-112) |#1| |#1|)) (-15 -3303 ((-112) |#1| |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -3330 ((-112) |#1|)) (-15 -2018 ((-2 (|:| |under| |#1|) (|:| -2037 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1342 (|#1| |#1| |#4|)) (-15 -3130 (|#1| |#1| |#4|)) (-15 -2691 (|#1| |#1| |#4|)) (-15 -3640 ((-112) |#4| |#1|)) (-15 -3734 ((-650 |#4|) |#1|)) (-15 -1598 ((-650 |#4|) |#1|)) (-15 -3892 ((-112) |#1| |#1|))) (-985 |#2| |#3| |#4| |#5|) (-1058) (-799) (-856) (-1074 |#2| |#3| |#4|)) (T -984))
-NIL
-(-10 -8 (-15 -2114 ((-112) |#1|)) (-15 -2303 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -3541 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -3357 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4092 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2157 ((-112) |#1|)) (-15 -3105 ((-112) |#1| |#1|)) (-15 -3303 ((-112) |#1| |#1|)) (-15 -3580 ((-112) |#1|)) (-15 -3330 ((-112) |#1|)) (-15 -2018 ((-2 (|:| |under| |#1|) (|:| -2037 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1342 (|#1| |#1| |#4|)) (-15 -3130 (|#1| |#1| |#4|)) (-15 -2691 (|#1| |#1| |#4|)) (-15 -3640 ((-112) |#4| |#1|)) (-15 -3734 ((-650 |#4|) |#1|)) (-15 -1598 ((-650 |#4|) |#1|)) (-15 -3892 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-1598 (((-650 |#3|) $) 34)) (-3330 (((-112) $) 27)) (-2114 (((-112) $) 18 (|has| |#1| (-562)))) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) 28)) (-2855 (((-112) $ (-777)) 45)) (-3960 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4452)))) (-2333 (($) 46 T CONST)) (-2157 (((-112) $) 23 (|has| |#1| (-562)))) (-3303 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3105 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3580 (((-112) $) 26 (|has| |#1| (-562)))) (-2303 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) 37)) (-4387 (($ (-650 |#4|)) 36)) (-3153 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4452)))) (-3976 (((-650 |#4|) $) 53 (|has| $ (-6 -4452)))) (-2486 ((|#3| $) 35)) (-2497 (((-112) $ (-777)) 44)) (-3069 (((-650 |#4|) $) 54 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 48)) (-3734 (((-650 |#3|) $) 33)) (-3640 (((-112) |#3| $) 32)) (-2065 (((-112) $ (-777)) 43)) (-3240 (((-1168) $) 10)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-3891 (((-1129) $) 11)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2231 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) 39)) (-2171 (((-112) $) 42)) (-1698 (($) 41)) (-3901 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4452)))) (-3064 (($ $) 40)) (-2601 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 61)) (-1342 (($ $ |#3|) 29)) (-2691 (($ $ |#3|) 31)) (-3130 (($ $ |#3|) 30)) (-2869 (((-868) $) 12) (((-650 |#4|) $) 38)) (-1344 (((-112) $ $) 9)) (-2061 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 6)) (-2857 (((-777) $) 47 (|has| $ (-6 -4452)))))
-(((-985 |#1| |#2| |#3| |#4|) (-141) (-1058) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -985))
-((-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *1 (-985 *3 *4 *5 *6)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *1 (-985 *3 *4 *5 *6)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-1074 *3 *4 *2)) (-4 *2 (-856)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))) (-3640 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *3 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112)))) (-2691 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))) (-3130 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))) (-1342 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))) (-2018 (*1 *2 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2037 *1) (|:| |upper| *1))) (-4 *1 (-985 *4 *5 *3 *6)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-3303 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-3105 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-4092 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3357 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3541 (*1 *2 *2 *1) (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)))) (-2303 (*1 *2 *2 *1) (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)))) (-2114 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))))
-(-13 (-1109) (-152 |t#4|) (-619 (-650 |t#4|)) (-10 -8 (-6 -4452) (-15 -2435 ((-3 $ "failed") (-650 |t#4|))) (-15 -4387 ($ (-650 |t#4|))) (-15 -2486 (|t#3| $)) (-15 -1598 ((-650 |t#3|) $)) (-15 -3734 ((-650 |t#3|) $)) (-15 -3640 ((-112) |t#3| $)) (-15 -2691 ($ $ |t#3|)) (-15 -3130 ($ $ |t#3|)) (-15 -1342 ($ $ |t#3|)) (-15 -2018 ((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |t#3|)) (-15 -3330 ((-112) $)) (IF (|has| |t#1| (-562)) (PROGN (-15 -3580 ((-112) $)) (-15 -3303 ((-112) $ $)) (-15 -3105 ((-112) $ $)) (-15 -2157 ((-112) $)) (-15 -4092 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3357 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3541 ((-650 |t#4|) (-650 |t#4|) $)) (-15 -2303 ((-650 |t#4|) (-650 |t#4|) $)) (-15 -2114 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-1109) . T) ((-1227) . T))
-((-4430 (((-650 |#4|) |#4| |#4|) 136)) (-1464 (((-650 |#4|) (-650 |#4|) (-112)) 125 (|has| |#1| (-458))) (((-650 |#4|) (-650 |#4|)) 126 (|has| |#1| (-458)))) (-3010 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 44)) (-1893 (((-112) |#4|) 43)) (-1680 (((-650 |#4|) |#4|) 121 (|has| |#1| (-458)))) (-3699 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-1 (-112) |#4|) (-650 |#4|)) 24)) (-1483 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|)) 30)) (-4403 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|)) 31)) (-1872 (((-3 (-2 (|:| |bas| (-482 |#1| |#2| |#3| |#4|)) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|)) 90)) (-2406 (((-650 |#4|) (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-4254 (((-650 |#4|) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2705 (((-650 |#4|) (-650 |#4|)) 128)) (-1629 (((-650 |#4|) (-650 |#4|) (-650 |#4|) (-112)) 59) (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 61)) (-4432 ((|#4| |#4| (-650 |#4|)) 60)) (-2515 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 132 (|has| |#1| (-458)))) (-2178 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 135 (|has| |#1| (-458)))) (-3623 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 134 (|has| |#1| (-458)))) (-2668 (((-650 |#4|) (-650 |#4|) (-650 |#4|) (-1 (-650 |#4|) (-650 |#4|))) 105) (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 107) (((-650 |#4|) (-650 |#4|) |#4|) 140) (((-650 |#4|) |#4| |#4|) 137) (((-650 |#4|) (-650 |#4|)) 106)) (-2643 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-3830 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 52)) (-2433 (((-112) (-650 |#4|)) 79)) (-2931 (((-112) (-650 |#4|) (-650 (-650 |#4|))) 67)) (-2981 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 37)) (-3943 (((-112) |#4|) 36)) (-3815 (((-650 |#4|) (-650 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-2773 (((-650 |#4|) (-650 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-1334 (((-650 |#4|) (-650 |#4|)) 83)) (-1477 (((-650 |#4|) (-650 |#4|)) 97)) (-1963 (((-112) (-650 |#4|) (-650 |#4|)) 65)) (-3796 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 50)) (-2821 (((-112) |#4|) 45)))
-(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2668 ((-650 |#4|) (-650 |#4|))) (-15 -2668 ((-650 |#4|) |#4| |#4|)) (-15 -2705 ((-650 |#4|) (-650 |#4|))) (-15 -4430 ((-650 |#4|) |#4| |#4|)) (-15 -2668 ((-650 |#4|) (-650 |#4|) |#4|)) (-15 -2668 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2668 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-1 (-650 |#4|) (-650 |#4|)))) (-15 -1963 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2931 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -2433 ((-112) (-650 |#4|))) (-15 -3699 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-1 (-112) |#4|) (-650 |#4|))) (-15 -1483 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -4403 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -3830 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -1893 ((-112) |#4|)) (-15 -3010 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -3943 ((-112) |#4|)) (-15 -2981 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2821 ((-112) |#4|)) (-15 -3796 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -1629 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -1629 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-112))) (-15 -4432 (|#4| |#4| (-650 |#4|))) (-15 -1334 ((-650 |#4|) (-650 |#4|))) (-15 -1872 ((-3 (-2 (|:| |bas| (-482 |#1| |#2| |#3| |#4|)) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|))) (-15 -1477 ((-650 |#4|) (-650 |#4|))) (-15 -2406 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4254 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-458)) (PROGN (-15 -1680 ((-650 |#4|) |#4|)) (-15 -1464 ((-650 |#4|) (-650 |#4|))) (-15 -1464 ((-650 |#4|) (-650 |#4|) (-112))) (-15 -2515 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -3623 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2178 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (PROGN (-15 -2773 ((-650 |#4|) (-650 |#4|))) (-15 -3815 ((-650 |#4|) (-650 |#4|))) (-15 -2643 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) |%noBranch|)) (-562) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -986))
-((-2643 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-3815 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2178 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-3623 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2515 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-1464 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7)))) (-1464 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-1680 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-4254 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-986 *5 *6 *7 *8)))) (-2406 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-650 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *1 (-986 *6 *7 *8 *9)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-1872 (*1 *2 *3) (|partial| -12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-482 *4 *5 *6 *7)) (|:| -1999 (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-1334 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-4432 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *2)))) (-1629 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7)))) (-1629 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-2821 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-2981 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-3943 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-1893 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-4403 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8)))) (-1963 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2668 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-650 *7) (-650 *7))) (-5 *2 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2668 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2668 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *3)))) (-4430 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2668 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2668 ((-650 |#4|) (-650 |#4|))) (-15 -2668 ((-650 |#4|) |#4| |#4|)) (-15 -2705 ((-650 |#4|) (-650 |#4|))) (-15 -4430 ((-650 |#4|) |#4| |#4|)) (-15 -2668 ((-650 |#4|) (-650 |#4|) |#4|)) (-15 -2668 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2668 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-1 (-650 |#4|) (-650 |#4|)))) (-15 -1963 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2931 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -2433 ((-112) (-650 |#4|))) (-15 -3699 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-1 (-112) |#4|) (-650 |#4|))) (-15 -1483 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -4403 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -3830 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -1893 ((-112) |#4|)) (-15 -3010 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -3943 ((-112) |#4|)) (-15 -2981 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2821 ((-112) |#4|)) (-15 -3796 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -1629 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -1629 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-112))) (-15 -4432 (|#4| |#4| (-650 |#4|))) (-15 -1334 ((-650 |#4|) (-650 |#4|))) (-15 -1872 ((-3 (-2 (|:| |bas| (-482 |#1| |#2| |#3| |#4|)) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|))) (-15 -1477 ((-650 |#4|) (-650 |#4|))) (-15 -2406 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4254 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-458)) (PROGN (-15 -1680 ((-650 |#4|) |#4|)) (-15 -1464 ((-650 |#4|) (-650 |#4|))) (-15 -1464 ((-650 |#4|) (-650 |#4|) (-112))) (-15 -2515 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -3623 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2178 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (PROGN (-15 -2773 ((-650 |#4|) (-650 |#4|))) (-15 -3815 ((-650 |#4|) (-650 |#4|))) (-15 -2643 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) |%noBranch|))
-((-2826 (((-2 (|:| R (-695 |#1|)) (|:| A (-695 |#1|)) (|:| |Ainv| (-695 |#1|))) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2292 (((-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1277 |#1|)))) (-695 |#1|) (-1277 |#1|)) 46)) (-2275 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-987 |#1|) (-10 -7 (-15 -2826 ((-2 (|:| R (-695 |#1|)) (|:| A (-695 |#1|)) (|:| |Ainv| (-695 |#1|))) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2275 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2292 ((-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1277 |#1|)))) (-695 |#1|) (-1277 |#1|)))) (-368)) (T -987))
-((-2292 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-5 *2 (-650 (-2 (|:| C (-695 *5)) (|:| |g| (-1277 *5))))) (-5 *1 (-987 *5)) (-5 *3 (-695 *5)) (-5 *4 (-1277 *5)))) (-2275 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-695 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) (-5 *1 (-987 *5)))) (-2826 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-368)) (-5 *2 (-2 (|:| R (-695 *6)) (|:| A (-695 *6)) (|:| |Ainv| (-695 *6)))) (-5 *1 (-987 *6)) (-5 *3 (-695 *6)))))
-(-10 -7 (-15 -2826 ((-2 (|:| R (-695 |#1|)) (|:| A (-695 |#1|)) (|:| |Ainv| (-695 |#1|))) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2275 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2292 ((-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1277 |#1|)))) (-695 |#1|) (-1277 |#1|))))
-((-2929 (((-424 |#4|) |#4|) 56)))
-(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2929 ((-424 |#4|) |#4|))) (-856) (-799) (-458) (-956 |#3| |#2| |#1|)) (T -988))
-((-2929 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-458)) (-5 *2 (-424 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(-10 -7 (-15 -2929 ((-424 |#4|) |#4|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2866 (($ (-777)) 115 (|has| |#1| (-23)))) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4453))) (($ $) 91 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4453))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 60 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-4125 (($ $) 93 (|has| $ (-6 -4453)))) (-4366 (($ $) 103)) (-3153 (($ $) 80 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#1| $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 52)) (-2619 (((-570) (-1 (-112) |#1|) $) 100) (((-570) |#1| $) 99 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 98 (|has| |#1| (-1109)))) (-1830 (($ (-650 |#1|)) 121)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-4031 (((-695 |#1|) $ $) 108 (|has| |#1| (-1058)))) (-2296 (($ (-777) |#1|) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-1908 (($ $ $) 90 (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-1764 (($ $ $) 89 (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4234 ((|#1| $) 105 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-2065 (((-112) $ (-777)) 10)) (-1831 ((|#1| $) 106 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 43 (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4222 (($ $ |#1|) 42 (|has| $ (-6 -4453)))) (-3308 (($ $ (-650 |#1|)) 119)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1244 (-570))) 71)) (-3407 ((|#1| $ $) 109 (|has| |#1| (-1058)))) (-4388 (((-928) $) 120)) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3775 (($ $ $) 107)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2181 (($ $ $ (-570)) 94 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| |#1| (-620 (-542)))) (($ (-650 |#1|)) 122)) (-2881 (($ (-650 |#1|)) 72)) (-1505 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) 87 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 86 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-3945 (((-112) $ $) 88 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 85 (|has| |#1| (-856)))) (-4003 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3992 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-570) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-732))) (($ $ |#1|) 110 (|has| |#1| (-732)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-989 |#1|) (-141) (-1058)) (T -989))
-((-1830 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-989 *3)))) (-4388 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1058)) (-5 *2 (-928)))) (-3775 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1058)))) (-3308 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-989 *3)) (-4 *3 (-1058)))))
-(-13 (-1275 |t#1|) (-624 (-650 |t#1|)) (-10 -8 (-15 -1830 ($ (-650 |t#1|))) (-15 -4388 ((-928) $)) (-15 -3775 ($ $ $)) (-15 -3308 ($ $ (-650 |t#1|)))))
-(((-34) . T) ((-102) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-624 (-650 |#1|)) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-19 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1227) . T) ((-1275 |#1|) . T))
-((-2536 (((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)) 17)))
-(((-990 |#1| |#2|) (-10 -7 (-15 -2536 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) (-1058) (-1058)) (T -990))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-950 *6)) (-5 *1 (-990 *5 *6)))))
-(-10 -7 (-15 -2536 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|))))
-((-2468 ((|#1| (-950 |#1|)) 14)) (-2715 ((|#1| (-950 |#1|)) 13)) (-2688 ((|#1| (-950 |#1|)) 12)) (-4065 ((|#1| (-950 |#1|)) 16)) (-3133 ((|#1| (-950 |#1|)) 24)) (-1748 ((|#1| (-950 |#1|)) 15)) (-1391 ((|#1| (-950 |#1|)) 17)) (-3978 ((|#1| (-950 |#1|)) 23)) (-2434 ((|#1| (-950 |#1|)) 22)))
-(((-991 |#1|) (-10 -7 (-15 -2688 (|#1| (-950 |#1|))) (-15 -2715 (|#1| (-950 |#1|))) (-15 -2468 (|#1| (-950 |#1|))) (-15 -1748 (|#1| (-950 |#1|))) (-15 -4065 (|#1| (-950 |#1|))) (-15 -1391 (|#1| (-950 |#1|))) (-15 -2434 (|#1| (-950 |#1|))) (-15 -3978 (|#1| (-950 |#1|))) (-15 -3133 (|#1| (-950 |#1|)))) (-1058)) (T -991))
-((-3133 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(-10 -7 (-15 -2688 (|#1| (-950 |#1|))) (-15 -2715 (|#1| (-950 |#1|))) (-15 -2468 (|#1| (-950 |#1|))) (-15 -1748 (|#1| (-950 |#1|))) (-15 -4065 (|#1| (-950 |#1|))) (-15 -1391 (|#1| (-950 |#1|))) (-15 -2434 (|#1| (-950 |#1|))) (-15 -3978 (|#1| (-950 |#1|))) (-15 -3133 (|#1| (-950 |#1|))))
-((-2780 (((-3 |#1| "failed") |#1|) 18)) (-4049 (((-3 |#1| "failed") |#1|) 6)) (-1482 (((-3 |#1| "failed") |#1|) 16)) (-3190 (((-3 |#1| "failed") |#1|) 4)) (-3453 (((-3 |#1| "failed") |#1|) 20)) (-3910 (((-3 |#1| "failed") |#1|) 8)) (-4342 (((-3 |#1| "failed") |#1| (-777)) 1)) (-3807 (((-3 |#1| "failed") |#1|) 3)) (-1817 (((-3 |#1| "failed") |#1|) 2)) (-3090 (((-3 |#1| "failed") |#1|) 21)) (-3267 (((-3 |#1| "failed") |#1|) 9)) (-2040 (((-3 |#1| "failed") |#1|) 19)) (-1611 (((-3 |#1| "failed") |#1|) 7)) (-2576 (((-3 |#1| "failed") |#1|) 17)) (-1371 (((-3 |#1| "failed") |#1|) 5)) (-2221 (((-3 |#1| "failed") |#1|) 24)) (-1454 (((-3 |#1| "failed") |#1|) 12)) (-2038 (((-3 |#1| "failed") |#1|) 22)) (-2664 (((-3 |#1| "failed") |#1|) 10)) (-2305 (((-3 |#1| "failed") |#1|) 26)) (-3647 (((-3 |#1| "failed") |#1|) 14)) (-3772 (((-3 |#1| "failed") |#1|) 27)) (-3265 (((-3 |#1| "failed") |#1|) 15)) (-3875 (((-3 |#1| "failed") |#1|) 25)) (-3874 (((-3 |#1| "failed") |#1|) 13)) (-2003 (((-3 |#1| "failed") |#1|) 23)) (-3037 (((-3 |#1| "failed") |#1|) 11)))
-(((-992 |#1|) (-141) (-1212)) (T -992))
-((-3772 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2305 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3875 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2221 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2003 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2038 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3090 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3453 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2040 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2780 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2576 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-1482 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3265 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3647 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3874 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-1454 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3037 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-2664 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3267 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3910 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-1611 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-4049 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-1371 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3190 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-3807 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-1817 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))) (-4342 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-777)) (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(-13 (-10 -7 (-15 -4342 ((-3 |t#1| "failed") |t#1| (-777))) (-15 -1817 ((-3 |t#1| "failed") |t#1|)) (-15 -3807 ((-3 |t#1| "failed") |t#1|)) (-15 -3190 ((-3 |t#1| "failed") |t#1|)) (-15 -1371 ((-3 |t#1| "failed") |t#1|)) (-15 -4049 ((-3 |t#1| "failed") |t#1|)) (-15 -1611 ((-3 |t#1| "failed") |t#1|)) (-15 -3910 ((-3 |t#1| "failed") |t#1|)) (-15 -3267 ((-3 |t#1| "failed") |t#1|)) (-15 -2664 ((-3 |t#1| "failed") |t#1|)) (-15 -3037 ((-3 |t#1| "failed") |t#1|)) (-15 -1454 ((-3 |t#1| "failed") |t#1|)) (-15 -3874 ((-3 |t#1| "failed") |t#1|)) (-15 -3647 ((-3 |t#1| "failed") |t#1|)) (-15 -3265 ((-3 |t#1| "failed") |t#1|)) (-15 -1482 ((-3 |t#1| "failed") |t#1|)) (-15 -2576 ((-3 |t#1| "failed") |t#1|)) (-15 -2780 ((-3 |t#1| "failed") |t#1|)) (-15 -2040 ((-3 |t#1| "failed") |t#1|)) (-15 -3453 ((-3 |t#1| "failed") |t#1|)) (-15 -3090 ((-3 |t#1| "failed") |t#1|)) (-15 -2038 ((-3 |t#1| "failed") |t#1|)) (-15 -2003 ((-3 |t#1| "failed") |t#1|)) (-15 -2221 ((-3 |t#1| "failed") |t#1|)) (-15 -3875 ((-3 |t#1| "failed") |t#1|)) (-15 -2305 ((-3 |t#1| "failed") |t#1|)) (-15 -3772 ((-3 |t#1| "failed") |t#1|))))
-((-2188 ((|#4| |#4| (-650 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4294 ((|#4| |#4| (-650 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2536 ((|#4| (-1 |#4| (-959 |#1|)) |#4|) 31)))
-(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4294 (|#4| |#4| |#3|)) (-15 -4294 (|#4| |#4| (-650 |#3|))) (-15 -2188 (|#4| |#4| |#3|)) (-15 -2188 (|#4| |#4| (-650 |#3|))) (-15 -2536 (|#4| (-1 |#4| (-959 |#1|)) |#4|))) (-1058) (-799) (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186))))) (-956 (-959 |#1|) |#2| |#3|)) (T -993))
-((-2536 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-959 *4))) (-4 *4 (-1058)) (-4 *2 (-956 (-959 *4) *5 *6)) (-4 *5 (-799)) (-4 *6 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186)))))) (-5 *1 (-993 *4 *5 *6 *2)))) (-2188 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186)))))) (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2)) (-4 *2 (-956 (-959 *4) *5 *6)))) (-2188 (*1 *2 *2 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186)))))) (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3)))) (-4294 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186)))))) (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2)) (-4 *2 (-956 (-959 *4) *5 *6)))) (-4294 (*1 *2 *2 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)) (-15 -1433 ((-3 $ "failed") (-1186)))))) (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3)))))
-(-10 -7 (-15 -4294 (|#4| |#4| |#3|)) (-15 -4294 (|#4| |#4| (-650 |#3|))) (-15 -2188 (|#4| |#4| |#3|)) (-15 -2188 (|#4| |#4| (-650 |#3|))) (-15 -2536 (|#4| (-1 |#4| (-959 |#1|)) |#4|)))
-((-1725 ((|#2| |#3|) 35)) (-4053 (((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|) 79)) (-1868 (((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) 100)))
-(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -4053 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|)) (-15 -1725 (|#2| |#3|))) (-354) (-1253 |#1|) (-1253 |#2|) (-730 |#2| |#3|)) (T -994))
-((-1725 (*1 *2 *3) (-12 (-4 *3 (-1253 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-994 *4 *2 *3 *5)) (-4 *4 (-354)) (-4 *5 (-730 *2 *3)))) (-4053 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 *3)) (-5 *2 (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-994 *4 *3 *5 *6)) (-4 *6 (-730 *3 *5)))) (-1868 (*1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| -2681 (-695 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-695 *4)))) (-5 *1 (-994 *3 *4 *5 *6)) (-4 *6 (-730 *4 *5)))))
-(-10 -7 (-15 -1868 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -4053 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|)) (-15 -1725 (|#2| |#3|)))
-((-2196 (((-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570)))) (-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570))))) 82)))
-(((-995 |#1| |#2|) (-10 -7 (-15 -2196 ((-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570)))) (-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570))))))) (-650 (-1186)) (-777)) (T -995))
-((-2196 (*1 *2 *2) (-12 (-5 *2 (-996 (-413 (-570)) (-870 *3) (-242 *4 (-777)) (-249 *3 (-413 (-570))))) (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-995 *3 *4)))))
-(-10 -7 (-15 -2196 ((-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570)))) (-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570)))))))
-((-2847 (((-112) $ $) NIL)) (-1833 (((-3 (-112) "failed") $) 71)) (-3828 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-2199 (($ $ (-3 (-112) "failed")) 72)) (-4172 (($ (-650 |#4|) |#4|) 25)) (-3240 (((-1168) $) NIL)) (-1515 (($ $) 69)) (-3891 (((-1129) $) NIL)) (-2171 (((-112) $) 70)) (-1698 (($) 30)) (-3387 ((|#4| $) 74)) (-2575 (((-650 |#4|) $) 73)) (-2869 (((-868) $) 68)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-996 |#1| |#2| |#3| |#4|) (-13 (-1109) (-619 (-868)) (-10 -8 (-15 -1698 ($)) (-15 -4172 ($ (-650 |#4|) |#4|)) (-15 -1833 ((-3 (-112) "failed") $)) (-15 -2199 ($ $ (-3 (-112) "failed"))) (-15 -2171 ((-112) $)) (-15 -2575 ((-650 |#4|) $)) (-15 -3387 (|#4| $)) (-15 -1515 ($ $)) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (-15 -3828 ($ $)) |%noBranch|) |%noBranch|))) (-458) (-856) (-799) (-956 |#1| |#3| |#2|)) (T -996))
-((-1698 (*1 *1) (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) (-4172 (*1 *1 *2 *3) (-12 (-5 *2 (-650 *3)) (-4 *3 (-956 *4 *6 *5)) (-4 *4 (-458)) (-4 *5 (-856)) (-4 *6 (-799)) (-5 *1 (-996 *4 *5 *6 *3)))) (-1833 (*1 *2 *1) (|partial| -12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-112)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-2199 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-2171 (*1 *2 *1) (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-112)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-2575 (*1 *2 *1) (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-650 *6)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-3387 (*1 *2 *1) (-12 (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)))) (-1515 (*1 *1 *1) (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) (-3828 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-311)) (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))))
-(-13 (-1109) (-619 (-868)) (-10 -8 (-15 -1698 ($)) (-15 -4172 ($ (-650 |#4|) |#4|)) (-15 -1833 ((-3 (-112) "failed") $)) (-15 -2199 ($ $ (-3 (-112) "failed"))) (-15 -2171 ((-112) $)) (-15 -2575 ((-650 |#4|) $)) (-15 -3387 (|#4| $)) (-15 -1515 ($ $)) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (-15 -3828 ($ $)) |%noBranch|) |%noBranch|)))
-((-1921 (((-112) |#5| |#5|) 44)) (-3463 (((-112) |#5| |#5|) 59)) (-2349 (((-112) |#5| (-650 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2174 (((-112) (-650 |#4|) (-650 |#4|)) 65)) (-3180 (((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) 70)) (-2547 (((-1282)) 32)) (-4329 (((-1282) (-1168) (-1168) (-1168)) 28)) (-2754 (((-650 |#5|) (-650 |#5|)) 100)) (-3866 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) 92)) (-1861 (((-650 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112)) 122)) (-3846 (((-112) |#5| |#5|) 53)) (-3485 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3467 (((-112) (-650 |#4|) (-650 |#4|)) 64)) (-3197 (((-112) (-650 |#4|) (-650 |#4|)) 66)) (-1693 (((-112) (-650 |#4|) (-650 |#4|)) 67)) (-2011 (((-3 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-4216 (((-650 |#5|) (-650 |#5|)) 49)))
-(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4329 ((-1282) (-1168) (-1168) (-1168))) (-15 -2547 ((-1282))) (-15 -1921 ((-112) |#5| |#5|)) (-15 -4216 ((-650 |#5|) (-650 |#5|))) (-15 -3846 ((-112) |#5| |#5|)) (-15 -3463 ((-112) |#5| |#5|)) (-15 -2174 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3467 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3197 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -1693 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3485 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2349 ((-112) |#5| |#5|)) (-15 -2349 ((-112) |#5| (-650 |#5|))) (-15 -2754 ((-650 |#5|) (-650 |#5|))) (-15 -3180 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -3866 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-15 -1861 ((-650 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2011 ((-3 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -997))
-((-2011 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| -2557 (-650 *9)) (|:| -4246 *4) (|:| |ineq| (-650 *9)))) (-5 *1 (-997 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9)) (-4 *4 (-1080 *6 *7 *8 *9)))) (-1861 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| -2557 (-650 *9)) (|:| -4246 *10) (|:| |ineq| (-650 *9))))) (-5 *1 (-997 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9)))) (-3866 (*1 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -4246 *7)))) (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-997 *3 *4 *5 *6 *7)))) (-3180 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)))) (-2754 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-997 *3 *4 *5 *6 *7)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-997 *5 *6 *7 *8 *3)))) (-2349 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3485 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-1693 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3467 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-2174 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3463 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3846 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-997 *3 *4 *5 *6 *7)))) (-1921 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-2547 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-4329 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4329 ((-1282) (-1168) (-1168) (-1168))) (-15 -2547 ((-1282))) (-15 -1921 ((-112) |#5| |#5|)) (-15 -4216 ((-650 |#5|) (-650 |#5|))) (-15 -3846 ((-112) |#5| |#5|)) (-15 -3463 ((-112) |#5| |#5|)) (-15 -2174 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3467 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3197 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -1693 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3485 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2349 ((-112) |#5| |#5|)) (-15 -2349 ((-112) |#5| (-650 |#5|))) (-15 -2754 ((-650 |#5|) (-650 |#5|))) (-15 -3180 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -3866 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-15 -1861 ((-650 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2011 ((-3 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1433 (((-1186) $) 15)) (-4156 (((-1168) $) 16)) (-2662 (($ (-1186) (-1168)) 14)) (-2869 (((-868) $) 13)))
-(((-998) (-13 (-619 (-868)) (-10 -8 (-15 -2662 ($ (-1186) (-1168))) (-15 -1433 ((-1186) $)) (-15 -4156 ((-1168) $))))) (T -998))
-((-2662 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-998)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-998)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-998)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2662 ($ (-1186) (-1168))) (-15 -1433 ((-1186) $)) (-15 -4156 ((-1168) $))))
-((-2536 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#4| (-1 |#2| |#1|) |#3|))) (-562) (-562) (-1001 |#1|) (-1001 |#2|)) (T -999))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-4 *2 (-1001 *6)) (-5 *1 (-999 *5 *6 *4 *2)) (-4 *4 (-1001 *5)))))
-(-10 -7 (-15 -2536 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-1186) "failed") $) 66) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) 96)) (-4387 ((|#2| $) NIL) (((-1186) $) 61) (((-413 (-570)) $) NIL) (((-570) $) 93)) (-3054 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) 115) (((-695 |#2|) (-695 $)) 28)) (-2066 (($) 99)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 76) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 85)) (-3249 (($ $) 10)) (-3525 (((-3 $ "failed") $) 20)) (-2536 (($ (-1 |#2| |#2|) $) 22)) (-3458 (($) 16)) (-4113 (($ $) 55)) (-2375 (($ $) NIL) (($ $ (-777)) NIL) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4424 (($ $) 12)) (-2601 (((-899 (-570)) $) 71) (((-899 (-384)) $) 80) (((-542) $) 40) (((-384) $) 44) (((-227) $) 48)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 91) (($ |#2|) NIL) (($ (-1186)) 58)) (-2294 (((-777)) 31)) (-3918 (((-112) $ $) 51)))
-(((-1000 |#1| |#2|) (-10 -8 (-15 -3918 ((-112) |#1| |#1|)) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2601 ((-227) |#1|)) (-15 -2601 ((-384) |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2869 (|#1| (-1186))) (-15 -2435 ((-3 (-1186) "failed") |#1|)) (-15 -4387 ((-1186) |#1|)) (-15 -2066 (|#1|)) (-15 -4113 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -3054 ((-695 |#2|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| |#1|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-1001 |#2|) (-562)) (T -1000))
-((-2294 (*1 *2) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-1000 *3 *4)) (-4 *3 (-1001 *4)))))
-(-10 -8 (-15 -3918 ((-112) |#1| |#1|)) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2601 ((-227) |#1|)) (-15 -2601 ((-384) |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2869 (|#1| (-1186))) (-15 -2435 ((-3 (-1186) "failed") |#1|)) (-15 -4387 ((-1186) |#1|)) (-15 -2066 (|#1|)) (-15 -4113 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -4429 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -3054 ((-695 |#2|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| |#1|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3150 ((|#1| $) 147 (|has| |#1| (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-3585 (((-424 (-1182 $)) (-1182 $)) 138 (|has| |#1| (-916)))) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 141 (|has| |#1| (-916)))) (-1799 (((-112) $ $) 65)) (-2419 (((-570) $) 128 (|has| |#1| (-826)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 185) (((-3 (-1186) "failed") $) 136 (|has| |#1| (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) 119 (|has| |#1| (-1047 (-570)))) (((-3 (-570) "failed") $) 117 (|has| |#1| (-1047 (-570))))) (-4387 ((|#1| $) 186) (((-1186) $) 137 (|has| |#1| (-1047 (-1186)))) (((-413 (-570)) $) 120 (|has| |#1| (-1047 (-570)))) (((-570) $) 118 (|has| |#1| (-1047 (-570))))) (-2788 (($ $ $) 61)) (-3054 (((-695 (-570)) (-695 $)) 160 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 159 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 158) (((-695 |#1|) (-695 $)) 157)) (-3957 (((-3 $ "failed") $) 37)) (-2066 (($) 145 (|has| |#1| (-551)))) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2145 (((-112) $) 79)) (-2811 (((-112) $) 130 (|has| |#1| (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 154 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 153 (|has| |#1| (-893 (-384))))) (-2005 (((-112) $) 35)) (-3249 (($ $) 149)) (-1587 ((|#1| $) 151)) (-3525 (((-3 $ "failed") $) 116 (|has| |#1| (-1161)))) (-2746 (((-112) $) 129 (|has| |#1| (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1908 (($ $ $) 126 (|has| |#1| (-856)))) (-1764 (($ $ $) 125 (|has| |#1| (-856)))) (-2536 (($ (-1 |#1| |#1|) $) 177)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3458 (($) 115 (|has| |#1| (-1161)) CONST)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-4113 (($ $) 146 (|has| |#1| (-311)))) (-2037 ((|#1| $) 143 (|has| |#1| (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) 140 (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 139 (|has| |#1| (-916)))) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) 183 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 181 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 180 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 179 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 178 (|has| |#1| (-520 (-1186) |#1|)))) (-2002 (((-777) $) 64)) (-2057 (($ $ |#1|) 184 (|has| |#1| (-290 |#1| |#1|)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-2375 (($ $) 176 (|has| |#1| (-235))) (($ $ (-777)) 174 (|has| |#1| (-235))) (($ $ (-1186)) 172 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 171 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 170 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 169 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-4424 (($ $) 148)) (-1599 ((|#1| $) 150)) (-2601 (((-899 (-570)) $) 156 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 155 (|has| |#1| (-620 (-899 (-384))))) (((-542) $) 133 (|has| |#1| (-620 (-542)))) (((-384) $) 132 (|has| |#1| (-1031))) (((-227) $) 131 (|has| |#1| (-1031)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 142 (-3212 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ |#1|) 189) (($ (-1186)) 135 (|has| |#1| (-1047 (-1186))))) (-1660 (((-3 $ "failed") $) 134 (-3749 (|has| |#1| (-146)) (-3212 (|has| $ (-146)) (|has| |#1| (-916)))))) (-2294 (((-777)) 32 T CONST)) (-3850 ((|#1| $) 144 (|has| |#1| (-551)))) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-2521 (($ $) 127 (|has| |#1| (-826)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $) 175 (|has| |#1| (-235))) (($ $ (-777)) 173 (|has| |#1| (-235))) (($ $ (-1186)) 168 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 167 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 166 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 165 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-3959 (((-112) $ $) 123 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 122 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 124 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 121 (|has| |#1| (-856)))) (-4013 (($ $ $) 73) (($ |#1| |#1|) 152)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
-(((-1001 |#1|) (-141) (-562)) (T -1001))
-((-4013 (*1 *1 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-3249 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311)))) (-4113 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311)))) (-2066 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-551)) (-4 *2 (-562)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551)))))
-(-13 (-368) (-38 |t#1|) (-1047 |t#1|) (-343 |t#1|) (-233 |t#1|) (-382 |t#1|) (-891 |t#1|) (-406 |t#1|) (-10 -8 (-15 -4013 ($ |t#1| |t#1|)) (-15 -1587 (|t#1| $)) (-15 -1599 (|t#1| $)) (-15 -3249 ($ $)) (-15 -4424 ($ $)) (IF (|has| |t#1| (-1161)) (-6 (-1161)) |%noBranch|) (IF (|has| |t#1| (-1047 (-570))) (PROGN (-6 (-1047 (-570))) (-6 (-1047 (-413 (-570))))) |%noBranch|) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-826)) (-6 (-826)) |%noBranch|) (IF (|has| |t#1| (-1031)) (-6 (-1031)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1047 (-1186))) (-6 (-1047 (-1186))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -3150 (|t#1| $)) (-15 -4113 ($ $))) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -2066 ($)) (-15 -3850 (|t#1| $)) (-15 -2037 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 #1=(-1186)) |has| |#1| (-1047 (-1186))) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-227)) |has| |#1| (-1031)) ((-620 (-384)) |has| |#1| (-1031)) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-233 |#1|) . T) ((-235) |has| |#1| (-235)) ((-245) . T) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-294) . T) ((-311) . T) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-368) . T) ((-343 |#1|) . T) ((-382 |#1|) . T) ((-406 |#1|) . T) ((-458) . T) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) . T) ((-723 |#1|) . T) ((-723 $) . T) ((-732) . T) ((-797) |has| |#1| (-826)) ((-798) |has| |#1| (-826)) ((-800) |has| |#1| (-826)) ((-801) |has| |#1| (-826)) ((-826) |has| |#1| (-826)) ((-854) |has| |#1| (-826)) ((-856) -3749 (|has| |#1| (-856)) (|has| |#1| (-826))) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-916) |has| |#1| (-916)) ((-927) . T) ((-1031) |has| |#1| (-1031)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-570))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #1#) |has| |#1| (-1047 (-1186))) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-1161)) ((-1227) . T) ((-1231) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2983 (($ (-1151 |#1| |#2|)) 11)) (-4297 (((-1151 |#1| |#2|) $) 12)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2057 ((|#2| $ (-242 |#1| |#2|)) 16)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL)))
-(((-1002 |#1| |#2|) (-13 (-21) (-290 (-242 |#1| |#2|) |#2|) (-10 -8 (-15 -2983 ($ (-1151 |#1| |#2|))) (-15 -4297 ((-1151 |#1| |#2|) $)))) (-928) (-368)) (T -1002))
-((-2983 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4)) (-14 *3 (-928)) (-4 *4 (-368)) (-5 *1 (-1002 *3 *4)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-1151 *3 *4)) (-5 *1 (-1002 *3 *4)) (-14 *3 (-928)) (-4 *4 (-368)))))
-(-13 (-21) (-290 (-242 |#1| |#2|) |#2|) (-10 -8 (-15 -2983 ($ (-1151 |#1| |#2|))) (-15 -4297 ((-1151 |#1| |#2|) $))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3812 (((-1144) $) 9)) (-2869 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1003) (-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $))))) (T -1003))
-((-3812 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1003)))))
-(-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $))))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) 8)) (-2333 (($) 7 T CONST)) (-3420 (($ $) 47)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-1831 (((-777) $) 46)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2421 ((|#1| $) 45)) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-3043 ((|#1| |#1| $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3908 ((|#1| $) 48)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2636 ((|#1| $) 44)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1004 |#1|) (-141) (-1227)) (T -1004))
-((-3043 (*1 *2 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4452) (-15 -3043 (|t#1| |t#1| $)) (-15 -3908 (|t#1| $)) (-15 -3420 ($ $)) (-15 -1831 ((-777) $)) (-15 -2421 (|t#1| $)) (-15 -2636 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2564 (((-112) $) 43)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4387 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 44)) (-2477 (((-3 (-413 (-570)) "failed") $) 78)) (-3994 (((-112) $) 72)) (-1577 (((-413 (-570)) $) 76)) (-2005 (((-112) $) 42)) (-3046 ((|#2| $) 22)) (-2536 (($ (-1 |#2| |#2|) $) 19)) (-4315 (($ $) 58)) (-2375 (($ $) NIL) (($ $ (-777)) NIL) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2601 (((-542) $) 67)) (-2733 (($ $) 17)) (-2869 (((-868) $) 53) (($ (-570)) 39) (($ |#2|) 37) (($ (-413 (-570))) NIL)) (-2294 (((-777)) 10)) (-2521 ((|#2| $) 71)) (-3892 (((-112) $ $) 26)) (-3918 (((-112) $ $) 69)) (-4003 (($ $) 30) (($ $ $) 29)) (-3992 (($ $ $) 27)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL)))
-(((-1005 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| (-413 (-570)))) (-15 -3918 ((-112) |#1| |#1|)) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 -4315 (|#1| |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2521 (|#2| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -2733 (|#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 -2005 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -2564 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|))) (-1006 |#2|) (-174)) (T -1005))
-((-2294 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-1005 *3 *4)) (-4 *3 (-1006 *4)))))
-(-10 -8 (-15 -2869 (|#1| (-413 (-570)))) (-15 -3918 ((-112) |#1| |#1|)) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 -4315 (|#1| |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2521 (|#2| |#1|)) (-15 -3046 (|#2| |#1|)) (-15 -2733 (|#1| |#1|)) (-15 -2536 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 -2005 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -2564 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-2435 (((-3 (-570) "failed") $) 127 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 125 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 122)) (-4387 (((-570) $) 126 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 124 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 123)) (-3054 (((-695 (-570)) (-695 $)) 97 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 96 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 95) (((-695 |#1|) (-695 $)) 94)) (-3957 (((-3 $ "failed") $) 37)) (-2473 ((|#1| $) 87)) (-2477 (((-3 (-413 (-570)) "failed") $) 83 (|has| |#1| (-551)))) (-3994 (((-112) $) 85 (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) 84 (|has| |#1| (-551)))) (-2569 (($ |#1| |#1| |#1| |#1|) 88)) (-2005 (((-112) $) 35)) (-3046 ((|#1| $) 89)) (-1908 (($ $ $) 76 (|has| |#1| (-856)))) (-1764 (($ $ $) 75 (|has| |#1| (-856)))) (-2536 (($ (-1 |#1| |#1|) $) 98)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 80 (|has| |#1| (-368)))) (-1489 ((|#1| $) 90)) (-1782 ((|#1| $) 91)) (-3231 ((|#1| $) 92)) (-3891 (((-1129) $) 11)) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) 104 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 102 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 101 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 100 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 99 (|has| |#1| (-520 (-1186) |#1|)))) (-2057 (($ $ |#1|) 105 (|has| |#1| (-290 |#1| |#1|)))) (-2375 (($ $) 121 (|has| |#1| (-235))) (($ $ (-777)) 119 (|has| |#1| (-235))) (($ $ (-1186)) 117 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 116 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 115 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 114 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-2601 (((-542) $) 81 (|has| |#1| (-620 (-542))))) (-2733 (($ $) 93)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ (-413 (-570))) 70 (-3749 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-1660 (((-3 $ "failed") $) 82 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2521 ((|#1| $) 86 (|has| |#1| (-1069)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $) 120 (|has| |#1| (-235))) (($ $ (-777)) 118 (|has| |#1| (-235))) (($ $ (-1186)) 113 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 112 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 111 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 110 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-3959 (((-112) $ $) 73 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 72 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 74 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 71 (|has| |#1| (-856)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 79 (|has| |#1| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-413 (-570))) 78 (|has| |#1| (-368))) (($ (-413 (-570)) $) 77 (|has| |#1| (-368)))))
-(((-1006 |#1|) (-141) (-174)) (T -1006))
-((-2733 (*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2569 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))))
-(-13 (-38 |t#1|) (-417 |t#1|) (-233 |t#1|) (-343 |t#1|) (-382 |t#1|) (-10 -8 (-15 -2733 ($ $)) (-15 -3231 (|t#1| $)) (-15 -1782 (|t#1| $)) (-15 -1489 (|t#1| $)) (-15 -3046 (|t#1| $)) (-15 -2569 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2473 (|t#1| $)) (IF (|has| |t#1| (-294)) (-6 (-294)) |%noBranch|) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-245)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -2521 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -3994 ((-112) $)) (-15 -1577 ((-413 (-570)) $)) (-15 -2477 ((-3 (-413 (-570)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-368)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-368)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-368))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-233 |#1|) . T) ((-235) |has| |#1| (-235)) ((-245) |has| |#1| (-368)) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-294) -3749 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-343 |#1|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-652 #0#) |has| |#1| (-368)) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-368)) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-368)) ((-646 |#1|) . T) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-368)) ((-723 |#1|) . T) ((-732) . T) ((-856) |has| |#1| (-856)) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) |has| |#1| (-368)) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-1065 #0#) |has| |#1| (-368)) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1227) |has| |#1| (-290 |#1| |#1|)))
-((-2536 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#3| (-1 |#4| |#2|) |#1|))) (-1006 |#2|) (-174) (-1006 |#4|) (-174)) (T -1007))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1006 *6)) (-5 *1 (-1007 *4 *5 *2 *6)) (-4 *4 (-1006 *5)))))
-(-10 -7 (-15 -2536 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2473 ((|#1| $) 12)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-551)))) (-3994 (((-112) $) NIL (|has| |#1| (-551)))) (-1577 (((-413 (-570)) $) NIL (|has| |#1| (-551)))) (-2569 (($ |#1| |#1| |#1| |#1|) 16)) (-2005 (((-112) $) NIL)) (-3046 ((|#1| $) NIL)) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-1489 ((|#1| $) 15)) (-1782 ((|#1| $) 14)) (-3231 ((|#1| $) 13)) (-3891 (((-1129) $) NIL)) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-2057 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-2375 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2733 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2521 ((|#1| $) NIL (|has| |#1| (-1069)))) (-1981 (($) 8 T CONST)) (-1998 (($) 10 T CONST)) (-3414 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-368)))))
-(((-1008 |#1|) (-1006 |#1|) (-174)) (T -1008))
-NIL
-(-1006 |#1|)
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2855 (((-112) $ (-777)) NIL)) (-2333 (($) NIL T CONST)) (-3420 (($ $) 23)) (-3291 (($ (-650 |#1|)) 33)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-1831 (((-777) $) 26)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3398 ((|#1| $) 28)) (-2801 (($ |#1| $) 17)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2421 ((|#1| $) 27)) (-4126 ((|#1| $) 22)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-3043 ((|#1| |#1| $) 16)) (-2171 (((-112) $) 18)) (-1698 (($) NIL)) (-3908 ((|#1| $) 21)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) NIL)) (-2636 ((|#1| $) 30)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1009 |#1|) (-13 (-1004 |#1|) (-10 -8 (-15 -3291 ($ (-650 |#1|))))) (-1109)) (T -1009))
-((-3291 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1009 *3)))))
-(-13 (-1004 |#1|) (-10 -8 (-15 -3291 ($ (-650 |#1|)))))
-((-2459 (($ $) 12)) (-3035 (($ $ (-570)) 13)))
-(((-1010 |#1|) (-10 -8 (-15 -2459 (|#1| |#1|)) (-15 -3035 (|#1| |#1| (-570)))) (-1011)) (T -1010))
-NIL
-(-10 -8 (-15 -2459 (|#1| |#1|)) (-15 -3035 (|#1| |#1| (-570))))
-((-2459 (($ $) 6)) (-3035 (($ $ (-570)) 7)) (** (($ $ (-413 (-570))) 8)))
-(((-1011) (-141)) (T -1011))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-413 (-570))))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-570)))) (-2459 (*1 *1 *1) (-4 *1 (-1011))))
-(-13 (-10 -8 (-15 -2459 ($ $)) (-15 -3035 ($ $ (-570))) (-15 ** ($ $ (-413 (-570))))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1818 (((-2 (|:| |num| (-1277 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| (-413 |#2|) (-368)))) (-2046 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-3426 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-3524 (((-695 (-413 |#2|)) (-1277 $)) NIL) (((-695 (-413 |#2|))) NIL)) (-1439 (((-413 |#2|) $) NIL)) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-413 |#2|) (-354)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2929 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-1799 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2401 (((-777)) NIL (|has| (-413 |#2|) (-373)))) (-1612 (((-112)) NIL)) (-4347 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-3 (-413 |#2|) "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-413 |#2|) $) NIL)) (-2615 (($ (-1277 (-413 |#2|)) (-1277 $)) NIL) (($ (-1277 (-413 |#2|))) 79) (($ (-1277 |#2|) |#2|) NIL)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-413 |#2|) (-354)))) (-2788 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4385 (((-695 (-413 |#2|)) $ (-1277 $)) NIL) (((-695 (-413 |#2|)) $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-413 |#2|))) (|:| |vec| (-1277 (-413 |#2|)))) (-695 $) (-1277 $)) NIL) (((-695 (-413 |#2|)) (-695 $)) NIL)) (-4137 (((-1277 $) (-1277 $)) NIL)) (-2295 (($ |#3|) 73) (((-3 $ "failed") (-413 |#3|)) NIL (|has| (-413 |#2|) (-368)))) (-3957 (((-3 $ "failed") $) NIL)) (-3309 (((-650 (-650 |#1|))) NIL (|has| |#1| (-373)))) (-3118 (((-112) |#1| |#1|) NIL)) (-4412 (((-928)) NIL)) (-2066 (($) NIL (|has| (-413 |#2|) (-373)))) (-3343 (((-112)) NIL)) (-1944 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2799 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| (-413 |#2|) (-368)))) (-2211 (($ $) NIL)) (-2310 (($) NIL (|has| (-413 |#2|) (-354)))) (-4240 (((-112) $) NIL (|has| (-413 |#2|) (-354)))) (-2118 (($ $ (-777)) NIL (|has| (-413 |#2|) (-354))) (($ $) NIL (|has| (-413 |#2|) (-354)))) (-2145 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-3995 (((-928) $) NIL (|has| (-413 |#2|) (-354))) (((-839 (-928)) $) NIL (|has| (-413 |#2|) (-354)))) (-2005 (((-112) $) NIL)) (-2457 (((-777)) NIL)) (-3962 (((-1277 $) (-1277 $)) NIL)) (-3046 (((-413 |#2|) $) NIL)) (-3728 (((-650 (-959 |#1|)) (-1186)) NIL (|has| |#1| (-368)))) (-3525 (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-3658 ((|#3| $) NIL (|has| (-413 |#2|) (-368)))) (-1997 (((-928) $) NIL (|has| (-413 |#2|) (-373)))) (-2283 ((|#3| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-3240 (((-1168) $) NIL)) (-2751 (((-695 (-413 |#2|))) 57)) (-1644 (((-695 (-413 |#2|))) 56)) (-4315 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-3792 (($ (-1277 |#2|) |#2|) 80)) (-1741 (((-695 (-413 |#2|))) 55)) (-2314 (((-695 (-413 |#2|))) 54)) (-4318 (((-2 (|:| |num| (-695 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-4097 (((-2 (|:| |num| (-1277 |#2|)) (|:| |den| |#2|)) $) 86)) (-4345 (((-1277 $)) 51)) (-1868 (((-1277 $)) 50)) (-3549 (((-112) $) NIL)) (-3428 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3458 (($) NIL (|has| (-413 |#2|) (-354)) CONST)) (-4298 (($ (-928)) NIL (|has| (-413 |#2|) (-373)))) (-3665 (((-3 |#2| "failed")) 70)) (-3891 (((-1129) $) NIL)) (-2268 (((-777)) NIL)) (-3643 (($) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| (-413 |#2|) (-368)))) (-3903 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| (-413 |#2|) (-354)))) (-2340 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-413 |#2|) (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| (-413 |#2|) (-368)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-2002 (((-777) $) NIL (|has| (-413 |#2|) (-368)))) (-2057 ((|#1| $ |#1| |#1|) NIL)) (-3095 (((-3 |#2| "failed")) 68)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2896 (((-413 |#2|) (-1277 $)) NIL) (((-413 |#2|)) 47)) (-4058 (((-777) $) NIL (|has| (-413 |#2|) (-354))) (((-3 (-777) "failed") $ $) NIL (|has| (-413 |#2|) (-354)))) (-2375 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-2318 (((-695 (-413 |#2|)) (-1277 $) (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368)))) (-3144 ((|#3|) 58)) (-1900 (($) NIL (|has| (-413 |#2|) (-354)))) (-2987 (((-1277 (-413 |#2|)) $ (-1277 $)) NIL) (((-695 (-413 |#2|)) (-1277 $) (-1277 $)) NIL) (((-1277 (-413 |#2|)) $) 81) (((-695 (-413 |#2|)) (-1277 $)) NIL)) (-2601 (((-1277 (-413 |#2|)) $) NIL) (($ (-1277 (-413 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| (-413 |#2|) (-354)))) (-2883 (((-1277 $) (-1277 $)) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 |#2|)) NIL) (($ (-413 (-570))) NIL (-3749 (|has| (-413 |#2|) (-1047 (-413 (-570)))) (|has| (-413 |#2|) (-368)))) (($ $) NIL (|has| (-413 |#2|) (-368)))) (-1660 (($ $) NIL (|has| (-413 |#2|) (-354))) (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-146)))) (-1816 ((|#3| $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1380 (((-112)) 65)) (-4395 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) NIL)) (-2939 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-4171 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1956 (((-112)) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-3749 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| (-413 |#2|) (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 |#2|)) NIL) (($ (-413 |#2|) $) NIL) (($ (-413 (-570)) $) NIL (|has| (-413 |#2|) (-368))) (($ $ (-413 (-570))) NIL (|has| (-413 |#2|) (-368)))))
-(((-1012 |#1| |#2| |#3| |#4| |#5|) (-347 |#1| |#2| |#3|) (-1231) (-1253 |#1|) (-1253 (-413 |#2|)) (-413 |#2|) (-777)) (T -1012))
-NIL
-(-347 |#1| |#2| |#3|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2798 (((-650 (-570)) $) 73)) (-3556 (($ (-650 (-570))) 81)) (-3150 (((-570) $) 48 (|has| (-570) (-311)))) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL (|has| (-570) (-826)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) 60) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) 57 (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) 60 (|has| (-570) (-1047 (-570))))) (-4387 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2788 (($ $ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2066 (($) NIL (|has| (-570) (-551)))) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-3678 (((-650 (-570)) $) 79)) (-2811 (((-112) $) NIL (|has| (-570) (-826)))) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL)) (-1587 (((-570) $) 45)) (-3525 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-2746 (((-112) $) NIL (|has| (-570) (-826)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-570) (-856)))) (-2536 (($ (-1 (-570) (-570)) $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL)) (-3458 (($) NIL (|has| (-570) (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4113 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) 50)) (-2086 (((-1166 (-570)) $) 78)) (-2656 (($ (-650 (-570)) (-650 (-570))) 82)) (-2037 (((-570) $) 64 (|has| (-570) (-551)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-2340 (((-424 $) $) NIL)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3034 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-2002 (((-777) $) NIL)) (-2057 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $) 15 (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-4424 (($ $) NIL)) (-1599 (((-570) $) 47)) (-1673 (((-650 (-570)) $) 80)) (-2601 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-2869 (((-868) $) 107) (($ (-570)) 51) (($ $) NIL) (($ (-413 (-570))) 27) (($ (-570)) 51) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) 25)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2294 (((-777)) 13 T CONST)) (-3850 (((-570) $) 62 (|has| (-570) (-551)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-2521 (($ $) NIL (|has| (-570) (-826)))) (-1981 (($) 14 T CONST)) (-1998 (($) 17 T CONST)) (-3414 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-3959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3892 (((-112) $ $) 21)) (-3945 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3918 (((-112) $ $) 40 (|has| (-570) (-856)))) (-4013 (($ $ $) 36) (($ (-570) (-570)) 38)) (-4003 (($ $) 23) (($ $ $) 30)) (-3992 (($ $ $) 28)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 32) (($ $ $) 34) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) 32) (($ $ (-570)) NIL)))
-(((-1013 |#1|) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -2798 ((-650 (-570)) $)) (-15 -2086 ((-1166 (-570)) $)) (-15 -3678 ((-650 (-570)) $)) (-15 -1673 ((-650 (-570)) $)) (-15 -3556 ($ (-650 (-570)))) (-15 -2656 ($ (-650 (-570)) (-650 (-570)))))) (-570)) (T -1013))
-((-4113 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-2656 (*1 *1 *2 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))))
-(-13 (-1001 (-570)) (-619 (-413 (-570))) (-10 -8 (-15 -4113 ((-413 (-570)) $)) (-15 -2798 ((-650 (-570)) $)) (-15 -2086 ((-1166 (-570)) $)) (-15 -3678 ((-650 (-570)) $)) (-15 -1673 ((-650 (-570)) $)) (-15 -3556 ($ (-650 (-570)))) (-15 -2656 ($ (-650 (-570)) (-650 (-570))))))
-((-2546 (((-52) (-413 (-570)) (-570)) 9)))
-(((-1014) (-10 -7 (-15 -2546 ((-52) (-413 (-570)) (-570))))) (T -1014))
-((-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-570))) (-5 *4 (-570)) (-5 *2 (-52)) (-5 *1 (-1014)))))
-(-10 -7 (-15 -2546 ((-52) (-413 (-570)) (-570))))
-((-2401 (((-570)) 23)) (-3527 (((-570)) 28)) (-2263 (((-1282) (-570)) 26)) (-2717 (((-570) (-570)) 29) (((-570)) 22)))
-(((-1015) (-10 -7 (-15 -2717 ((-570))) (-15 -2401 ((-570))) (-15 -2717 ((-570) (-570))) (-15 -2263 ((-1282) (-570))) (-15 -3527 ((-570))))) (T -1015))
-((-3527 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1015)))) (-2717 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) (-2401 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) (-2717 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))))
-(-10 -7 (-15 -2717 ((-570))) (-15 -2401 ((-570))) (-15 -2717 ((-570) (-570))) (-15 -2263 ((-1282) (-570))) (-15 -3527 ((-570))))
-((-3644 (((-424 |#1|) |#1|) 43)) (-2340 (((-424 |#1|) |#1|) 41)))
-(((-1016 |#1|) (-10 -7 (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3644 ((-424 |#1|) |#1|))) (-1253 (-413 (-570)))) (T -1016))
-((-3644 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1253 (-413 (-570)))))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1253 (-413 (-570)))))))
-(-10 -7 (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3644 ((-424 |#1|) |#1|)))
-((-2477 (((-3 (-413 (-570)) "failed") |#1|) 15)) (-3994 (((-112) |#1|) 14)) (-1577 (((-413 (-570)) |#1|) 10)))
-(((-1017 |#1|) (-10 -7 (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|))) (-1047 (-413 (-570)))) (T -1017))
-((-2477 (*1 *2 *3) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3)) (-4 *3 (-1047 *2)))) (-3994 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1017 *3)) (-4 *3 (-1047 (-413 (-570)))))) (-1577 (*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3)) (-4 *3 (-1047 *2)))))
-(-10 -7 (-15 -1577 ((-413 (-570)) |#1|)) (-15 -3994 ((-112) |#1|)) (-15 -2477 ((-3 (-413 (-570)) "failed") |#1|)))
-((-3040 ((|#2| $ "value" |#2|) 12)) (-2057 ((|#2| $ "value") 10)) (-3984 (((-112) $ $) 18)))
-(((-1018 |#1| |#2|) (-10 -8 (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -2057 (|#2| |#1| "value"))) (-1019 |#2|) (-1227)) (T -1018))
-NIL
-(-10 -8 (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -3984 ((-112) |#1| |#1|)) (-15 -2057 (|#2| |#1| "value")))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-2333 (($) 7 T CONST)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48)) (-2352 (((-570) $ $) 45)) (-1355 (((-112) $) 47)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1019 |#1|) (-141) (-1227)) (T -1019))
-((-2671 (*1 *2 *1) (-12 (-4 *3 (-1227)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3)))) (-3044 (*1 *2 *1) (-12 (-4 *3 (-1227)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1227)))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1019 *2)) (-4 *2 (-1227)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-650 *3)))) (-2352 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-570)))) (-3984 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-1427 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-1815 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *1)) (|has| *1 (-6 -4453)) (-4 *1 (-1019 *3)) (-4 *3 (-1227)))) (-3040 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4453)) (-4 *1 (-1019 *2)) (-4 *2 (-1227)))) (-2854 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1019 *2)) (-4 *2 (-1227)))))
-(-13 (-495 |t#1|) (-10 -8 (-15 -2671 ((-650 $) $)) (-15 -3044 ((-650 $) $)) (-15 -2708 ((-112) $)) (-15 -4156 (|t#1| $)) (-15 -2057 (|t#1| $ "value")) (-15 -1355 ((-112) $)) (-15 -2466 ((-650 |t#1|) $)) (-15 -2352 ((-570) $ $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -3984 ((-112) $ $)) (-15 -1427 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4453)) (PROGN (-15 -1815 ($ $ (-650 $))) (-15 -3040 (|t#1| $ "value" |t#1|)) (-15 -2854 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2459 (($ $) 9) (($ $ (-928)) 49) (($ (-413 (-570))) 13) (($ (-570)) 15)) (-2056 (((-3 $ "failed") (-1182 $) (-928) (-868)) 24) (((-3 $ "failed") (-1182 $) (-928)) 32)) (-3035 (($ $ (-570)) 58)) (-2294 (((-777)) 18)) (-1745 (((-650 $) (-1182 $)) NIL) (((-650 $) (-1182 (-413 (-570)))) 63) (((-650 $) (-1182 (-570))) 68) (((-650 $) (-959 $)) 72) (((-650 $) (-959 (-413 (-570)))) 76) (((-650 $) (-959 (-570))) 80)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ $ (-413 (-570))) 53)))
-(((-1020 |#1|) (-10 -8 (-15 -2459 (|#1| (-570))) (-15 -2459 (|#1| (-413 (-570)))) (-15 -2459 (|#1| |#1| (-928))) (-15 -1745 ((-650 |#1|) (-959 (-570)))) (-15 -1745 ((-650 |#1|) (-959 (-413 (-570))))) (-15 -1745 ((-650 |#1|) (-959 |#1|))) (-15 -1745 ((-650 |#1|) (-1182 (-570)))) (-15 -1745 ((-650 |#1|) (-1182 (-413 (-570))))) (-15 -1745 ((-650 |#1|) (-1182 |#1|))) (-15 -2056 ((-3 |#1| "failed") (-1182 |#1|) (-928))) (-15 -2056 ((-3 |#1| "failed") (-1182 |#1|) (-928) (-868))) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3035 (|#1| |#1| (-570))) (-15 -2459 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -2294 ((-777))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928)))) (-1021)) (T -1020))
-((-2294 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1020 *3)) (-4 *3 (-1021)))))
-(-10 -8 (-15 -2459 (|#1| (-570))) (-15 -2459 (|#1| (-413 (-570)))) (-15 -2459 (|#1| |#1| (-928))) (-15 -1745 ((-650 |#1|) (-959 (-570)))) (-15 -1745 ((-650 |#1|) (-959 (-413 (-570))))) (-15 -1745 ((-650 |#1|) (-959 |#1|))) (-15 -1745 ((-650 |#1|) (-1182 (-570)))) (-15 -1745 ((-650 |#1|) (-1182 (-413 (-570))))) (-15 -1745 ((-650 |#1|) (-1182 |#1|))) (-15 -2056 ((-3 |#1| "failed") (-1182 |#1|) (-928))) (-15 -2056 ((-3 |#1| "failed") (-1182 |#1|) (-928) (-868))) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3035 (|#1| |#1| (-570))) (-15 -2459 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -2294 ((-777))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 102)) (-2046 (($ $) 103)) (-3426 (((-112) $) 105)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 122)) (-2929 (((-424 $) $) 123)) (-2459 (($ $) 86) (($ $ (-928)) 72) (($ (-413 (-570))) 71) (($ (-570)) 70)) (-1799 (((-112) $ $) 113)) (-2419 (((-570) $) 139)) (-2333 (($) 18 T CONST)) (-2056 (((-3 $ "failed") (-1182 $) (-928) (-868)) 80) (((-3 $ "failed") (-1182 $) (-928)) 79)) (-2435 (((-3 (-570) "failed") $) 99 (|has| (-413 (-570)) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 97 (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-3 (-413 (-570)) "failed") $) 94)) (-4387 (((-570) $) 98 (|has| (-413 (-570)) (-1047 (-570)))) (((-413 (-570)) $) 96 (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-413 (-570)) $) 95)) (-4375 (($ $ (-868)) 69)) (-3078 (($ $ (-868)) 68)) (-2788 (($ $ $) 117)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 116)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 111)) (-2145 (((-112) $) 124)) (-2811 (((-112) $) 137)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 85)) (-2746 (((-112) $) 138)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 120)) (-1908 (($ $ $) 136)) (-1764 (($ $ $) 135)) (-2418 (((-3 (-1182 $) "failed") $) 81)) (-4401 (((-3 (-868) "failed") $) 83)) (-2328 (((-3 (-1182 $) "failed") $) 82)) (-3867 (($ (-650 $)) 109) (($ $ $) 108)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 125)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 110)) (-3903 (($ (-650 $)) 107) (($ $ $) 106)) (-2340 (((-424 $) $) 121)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 118)) (-2837 (((-3 $ "failed") $ $) 101)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 112)) (-2002 (((-777) $) 114)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 115)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 129) (($ $) 100) (($ (-413 (-570))) 93) (($ (-570)) 92) (($ (-413 (-570))) 89)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 104)) (-3478 (((-413 (-570)) $ $) 67)) (-1745 (((-650 $) (-1182 $)) 78) (((-650 $) (-1182 (-413 (-570)))) 77) (((-650 $) (-1182 (-570))) 76) (((-650 $) (-959 $)) 75) (((-650 $) (-959 (-413 (-570)))) 74) (((-650 $) (-959 (-570))) 73)) (-2521 (($ $) 140)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3959 (((-112) $ $) 133)) (-3933 (((-112) $ $) 132)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 134)) (-3918 (((-112) $ $) 131)) (-4013 (($ $ $) 130)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 126) (($ $ (-413 (-570))) 84)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ (-413 (-570)) $) 128) (($ $ (-413 (-570))) 127) (($ (-570) $) 91) (($ $ (-570)) 90) (($ (-413 (-570)) $) 88) (($ $ (-413 (-570))) 87)))
-(((-1021) (-141)) (T -1021))
-((-2459 (*1 *1 *1) (-4 *1 (-1021))) (-4401 (*1 *2 *1) (|partial| -12 (-4 *1 (-1021)) (-5 *2 (-868)))) (-2328 (*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021)))) (-2418 (*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021)))) (-2056 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-5 *4 (-868)) (-4 *1 (-1021)))) (-2056 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-4 *1 (-1021)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-1182 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-2459 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-928)))) (-2459 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1021)))) (-2459 (*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1021)))) (-4375 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868)))) (-3078 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868)))) (-3478 (*1 *2 *1 *1) (-12 (-4 *1 (-1021)) (-5 *2 (-413 (-570))))))
-(-13 (-148) (-854) (-174) (-368) (-417 (-413 (-570))) (-38 (-570)) (-38 (-413 (-570))) (-1011) (-10 -8 (-15 -4401 ((-3 (-868) "failed") $)) (-15 -2328 ((-3 (-1182 $) "failed") $)) (-15 -2418 ((-3 (-1182 $) "failed") $)) (-15 -2056 ((-3 $ "failed") (-1182 $) (-928) (-868))) (-15 -2056 ((-3 $ "failed") (-1182 $) (-928))) (-15 -1745 ((-650 $) (-1182 $))) (-15 -1745 ((-650 $) (-1182 (-413 (-570))))) (-15 -1745 ((-650 $) (-1182 (-570)))) (-15 -1745 ((-650 $) (-959 $))) (-15 -1745 ((-650 $) (-959 (-413 (-570))))) (-15 -1745 ((-650 $) (-959 (-570)))) (-15 -2459 ($ $ (-928))) (-15 -2459 ($ $)) (-15 -2459 ($ (-413 (-570)))) (-15 -2459 ($ (-570))) (-15 -4375 ($ $ (-868))) (-15 -3078 ($ $ (-868))) (-15 -3478 ((-413 (-570)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 #1=(-570)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-417 (-413 (-570))) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 #1#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 #1#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 #1#) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-927) . T) ((-1011) . T) ((-1047 (-413 (-570))) . T) ((-1047 (-570)) |has| (-413 (-570)) (-1047 (-570))) ((-1060 #0#) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 #1#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T))
-((-2682 (((-2 (|:| |ans| |#2|) (|:| -2420 |#2|) (|:| |sol?| (-112))) (-570) |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1022 |#1| |#2|) (-10 -7 (-15 -2682 ((-2 (|:| |ans| |#2|) (|:| -2420 |#2|) (|:| |sol?| (-112))) (-570) |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-27) (-436 |#1|))) (T -1022))
-((-2682 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1186)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-650 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3730 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1212) (-27) (-436 *8))) (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2420 *4) (|:| |sol?| (-112)))) (-5 *1 (-1022 *8 *4)))))
-(-10 -7 (-15 -2682 ((-2 (|:| |ans| |#2|) (|:| -2420 |#2|) (|:| |sol?| (-112))) (-570) |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-4408 (((-3 (-650 |#2|) "failed") (-570) |#2| |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1023 |#1| |#2|) (-10 -7 (-15 -4408 ((-3 (-650 |#2|) "failed") (-570) |#2| |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1212) (-27) (-436 |#1|))) (T -1023))
-((-4408 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1186)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-650 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3730 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1212) (-27) (-436 *8))) (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570)) (-5 *2 (-650 *4)) (-5 *1 (-1023 *8 *4)))))
-(-10 -7 (-15 -4408 ((-3 (-650 |#2|) "failed") (-570) |#2| |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -3730 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2094 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2557 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-570)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-570) (-1 |#2| |#2|)) 38)) (-2884 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |c| (-413 |#2|)) (|:| -1881 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|)) 69)) (-3838 (((-2 (|:| |ans| (-413 |#2|)) (|:| |nosol| (-112))) (-413 |#2|) (-413 |#2|)) 74)))
-(((-1024 |#1| |#2|) (-10 -7 (-15 -2884 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |c| (-413 |#2|)) (|:| -1881 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -3838 ((-2 (|:| |ans| (-413 |#2|)) (|:| |nosol| (-112))) (-413 |#2|) (-413 |#2|))) (-15 -2094 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2557 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-570)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-570) (-1 |#2| |#2|)))) (-13 (-368) (-148) (-1047 (-570))) (-1253 |#1|)) (T -1024))
-((-2094 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1253 *6)) (-4 *6 (-13 (-368) (-148) (-1047 *4))) (-5 *4 (-570)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2557 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1024 *6 *3)))) (-3838 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| |ans| (-413 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1024 *4 *5)) (-5 *3 (-413 *5)))) (-2884 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |c| (-413 *6)) (|:| -1881 *6))) (-5 *1 (-1024 *5 *6)) (-5 *3 (-413 *6)))))
-(-10 -7 (-15 -2884 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |c| (-413 |#2|)) (|:| -1881 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -3838 ((-2 (|:| |ans| (-413 |#2|)) (|:| |nosol| (-112))) (-413 |#2|) (-413 |#2|))) (-15 -2094 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2557 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-570)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-570) (-1 |#2| |#2|))))
-((-3816 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |h| |#2|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| -1881 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|)) 22)) (-1903 (((-3 (-650 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|)) 34)))
-(((-1025 |#1| |#2|) (-10 -7 (-15 -3816 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |h| |#2|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| -1881 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -1903 ((-3 (-650 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|)))) (-13 (-368) (-148) (-1047 (-570))) (-1253 |#1|)) (T -1025))
-((-1903 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1253 *4)) (-5 *2 (-650 (-413 *5))) (-5 *1 (-1025 *4 *5)) (-5 *3 (-413 *5)))) (-3816 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |h| *6) (|:| |c1| (-413 *6)) (|:| |c2| (-413 *6)) (|:| -1881 *6))) (-5 *1 (-1025 *5 *6)) (-5 *3 (-413 *6)))))
-(-10 -7 (-15 -3816 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |h| |#2|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| -1881 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -1903 ((-3 (-650 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|))))
-((-3159 (((-1 |#1|) (-650 (-2 (|:| -4156 |#1|) (|:| -2023 (-570))))) 34)) (-2840 (((-1 |#1|) (-1111 |#1|)) 42)) (-1668 (((-1 |#1|) (-1277 |#1|) (-1277 (-570)) (-570)) 31)))
-(((-1026 |#1|) (-10 -7 (-15 -2840 ((-1 |#1|) (-1111 |#1|))) (-15 -3159 ((-1 |#1|) (-650 (-2 (|:| -4156 |#1|) (|:| -2023 (-570)))))) (-15 -1668 ((-1 |#1|) (-1277 |#1|) (-1277 (-570)) (-570)))) (-1109)) (T -1026))
-((-1668 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1277 *6)) (-5 *4 (-1277 (-570))) (-5 *5 (-570)) (-4 *6 (-1109)) (-5 *2 (-1 *6)) (-5 *1 (-1026 *6)))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -4156 *4) (|:| -2023 (-570))))) (-4 *4 (-1109)) (-5 *2 (-1 *4)) (-5 *1 (-1026 *4)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-1109)) (-5 *2 (-1 *4)) (-5 *1 (-1026 *4)))))
-(-10 -7 (-15 -2840 ((-1 |#1|) (-1111 |#1|))) (-15 -3159 ((-1 |#1|) (-650 (-2 (|:| -4156 |#1|) (|:| -2023 (-570)))))) (-15 -1668 ((-1 |#1|) (-1277 |#1|) (-1277 (-570)) (-570))))
-((-3995 (((-777) (-341 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3995 ((-777) (-341 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-368) (-1253 |#1|) (-1253 (-413 |#2|)) (-347 |#1| |#2| |#3|) (-13 (-373) (-368))) (T -1027))
-((-3995 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-341 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-368)) (-4 *7 (-1253 *6)) (-4 *4 (-1253 (-413 *7))) (-4 *8 (-347 *6 *7 *4)) (-4 *9 (-13 (-373) (-368))) (-5 *2 (-777)) (-5 *1 (-1027 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3995 ((-777) (-341 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2847 (((-112) $ $) NIL)) (-2558 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-1144) $) 11)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1028) (-13 (-1092) (-10 -8 (-15 -2558 ((-1144) $)) (-15 -1781 ((-1144) $))))) (T -1028))
-((-2558 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028)))))
-(-13 (-1092) (-10 -8 (-15 -2558 ((-1144) $)) (-15 -1781 ((-1144) $))))
-((-1501 (((-3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) "failed") |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) 32) (((-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570))) 29)) (-3964 (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570))) 34) (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-413 (-570))) 30) (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) 33) (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1|) 28)) (-2286 (((-650 (-413 (-570))) (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) 20)) (-2346 (((-413 (-570)) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) 17)))
-(((-1029 |#1|) (-10 -7 (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1|)) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) "failed") |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -2346 ((-413 (-570)) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -2286 ((-650 (-413 (-570))) (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))))) (-1253 (-570))) (T -1029))
-((-2286 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-5 *2 (-650 (-413 (-570)))) (-5 *1 (-1029 *4)) (-4 *4 (-1253 (-570))))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) (-5 *2 (-413 (-570))) (-5 *1 (-1029 *4)) (-4 *4 (-1253 (-570))))) (-1501 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570))))) (-1501 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) (-5 *4 (-413 (-570))) (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570))))) (-3964 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-413 (-570))) (-5 *2 (-650 (-2 (|:| -2403 *5) (|:| -2420 *5)))) (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570))) (-5 *4 (-2 (|:| -2403 *5) (|:| -2420 *5))))) (-3964 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570))) (-5 *4 (-413 (-570))))) (-3964 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570))) (-5 *4 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))) (-3964 (*1 *2 *3) (-12 (-5 *2 (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570))))))
-(-10 -7 (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1|)) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) "failed") |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -2346 ((-413 (-570)) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -2286 ((-650 (-413 (-570))) (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))))
-((-1501 (((-3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) "failed") |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) 35) (((-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570))) 32)) (-3964 (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570))) 30) (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-413 (-570))) 26) (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) 28) (((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1|) 24)))
-(((-1030 |#1|) (-10 -7 (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1|)) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) "failed") |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))) (-1253 (-413 (-570)))) (T -1030))
-((-1501 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) (-5 *1 (-1030 *3)) (-4 *3 (-1253 (-413 (-570)))))) (-1501 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) (-5 *4 (-413 (-570))) (-5 *1 (-1030 *3)) (-4 *3 (-1253 *4)))) (-3964 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-413 (-570))) (-5 *2 (-650 (-2 (|:| -2403 *5) (|:| -2420 *5)))) (-5 *1 (-1030 *3)) (-4 *3 (-1253 *5)) (-5 *4 (-2 (|:| -2403 *5) (|:| -2420 *5))))) (-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-413 (-570))) (-5 *2 (-650 (-2 (|:| -2403 *4) (|:| -2420 *4)))) (-5 *1 (-1030 *3)) (-4 *3 (-1253 *4)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-5 *1 (-1030 *3)) (-4 *3 (-1253 (-413 (-570)))) (-5 *4 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))) (-3964 (*1 *2 *3) (-12 (-5 *2 (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-5 *1 (-1030 *3)) (-4 *3 (-1253 (-413 (-570)))))))
-(-10 -7 (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1|)) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -3964 ((-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-413 (-570)))) (-15 -1501 ((-3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) "failed") |#1| (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))) (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))))
-((-2601 (((-227) $) 6) (((-384) $) 9)))
-(((-1031) (-141)) (T -1031))
-NIL
-(-13 (-620 (-227)) (-620 (-384)))
-(((-620 (-227)) . T) ((-620 (-384)) . T))
-((-2577 (((-650 (-384)) (-959 (-570)) (-384)) 28) (((-650 (-384)) (-959 (-413 (-570))) (-384)) 27)) (-1597 (((-650 (-650 (-384))) (-650 (-959 (-570))) (-650 (-1186)) (-384)) 37)))
-(((-1032) (-10 -7 (-15 -2577 ((-650 (-384)) (-959 (-413 (-570))) (-384))) (-15 -2577 ((-650 (-384)) (-959 (-570)) (-384))) (-15 -1597 ((-650 (-650 (-384))) (-650 (-959 (-570))) (-650 (-1186)) (-384))))) (T -1032))
-((-1597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 (-384)))) (-5 *1 (-1032)) (-5 *5 (-384)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 (-384))) (-5 *1 (-1032)) (-5 *4 (-384)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 (-384))) (-5 *1 (-1032)) (-5 *4 (-384)))))
-(-10 -7 (-15 -2577 ((-650 (-384)) (-959 (-413 (-570))) (-384))) (-15 -2577 ((-650 (-384)) (-959 (-570)) (-384))) (-15 -1597 ((-650 (-650 (-384))) (-650 (-959 (-570))) (-650 (-1186)) (-384))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 75)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-2459 (($ $) NIL) (($ $ (-928)) NIL) (($ (-413 (-570))) NIL) (($ (-570)) NIL)) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) 70)) (-2333 (($) NIL T CONST)) (-2056 (((-3 $ "failed") (-1182 $) (-928) (-868)) NIL) (((-3 $ "failed") (-1182 $) (-928)) 55)) (-2435 (((-3 (-413 (-570)) "failed") $) NIL (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-570) "failed") $) NIL (-3749 (|has| (-413 (-570)) (-1047 (-570))) (|has| |#1| (-1047 (-570)))))) (-4387 (((-413 (-570)) $) 17 (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-413 (-570)) $) 17) ((|#1| $) 117) (((-570) $) NIL (-3749 (|has| (-413 (-570)) (-1047 (-570))) (|has| |#1| (-1047 (-570)))))) (-4375 (($ $ (-868)) 47)) (-3078 (($ $ (-868)) 48)) (-2788 (($ $ $) NIL)) (-3106 (((-413 (-570)) $ $) 21)) (-3957 (((-3 $ "failed") $) 88)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-2811 (((-112) $) 66)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL)) (-2746 (((-112) $) 69)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2418 (((-3 (-1182 $) "failed") $) 83)) (-4401 (((-3 (-868) "failed") $) 82)) (-2328 (((-3 (-1182 $) "failed") $) 80)) (-1335 (((-3 (-1070 $ (-1182 $)) "failed") $) 78)) (-3867 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 89)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ (-650 $)) NIL) (($ $ $) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2869 (((-868) $) 87) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ $) 63) (($ (-413 (-570))) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 119)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-3478 (((-413 (-570)) $ $) 27)) (-1745 (((-650 $) (-1182 $)) 61) (((-650 $) (-1182 (-413 (-570)))) NIL) (((-650 $) (-1182 (-570))) NIL) (((-650 $) (-959 $)) NIL) (((-650 $) (-959 (-413 (-570)))) NIL) (((-650 $) (-959 (-570))) NIL)) (-3981 (($ (-1070 $ (-1182 $)) (-868)) 46)) (-2521 (($ $) 22)) (-1981 (($) 32 T CONST)) (-1998 (($) 39 T CONST)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 76)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 24)) (-4013 (($ $ $) 37)) (-4003 (($ $) 38) (($ $ $) 74)) (-3992 (($ $ $) 112)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ $ (-413 (-570))) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 98) (($ $ $) 104) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ (-570) $) 98) (($ $ (-570)) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1033 |#1|) (-13 (-1021) (-417 |#1|) (-38 |#1|) (-10 -8 (-15 -3981 ($ (-1070 $ (-1182 $)) (-868))) (-15 -1335 ((-3 (-1070 $ (-1182 $)) "failed") $)) (-15 -3106 ((-413 (-570)) $ $)))) (-13 (-854) (-368) (-1031))) (T -1033))
-((-3981 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-1033 *4) (-1182 (-1033 *4)))) (-5 *3 (-868)) (-5 *1 (-1033 *4)) (-4 *4 (-13 (-854) (-368) (-1031))))) (-1335 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 (-1033 *3) (-1182 (-1033 *3)))) (-5 *1 (-1033 *3)) (-4 *3 (-13 (-854) (-368) (-1031))))) (-3106 (*1 *2 *1 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1033 *3)) (-4 *3 (-13 (-854) (-368) (-1031))))))
-(-13 (-1021) (-417 |#1|) (-38 |#1|) (-10 -8 (-15 -3981 ($ (-1070 $ (-1182 $)) (-868))) (-15 -1335 ((-3 (-1070 $ (-1182 $)) "failed") $)) (-15 -3106 ((-413 (-570)) $ $))))
-((-3440 (((-2 (|:| -2557 |#2|) (|:| -1567 (-650 |#1|))) |#2| (-650 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1034 |#1| |#2|) (-10 -7 (-15 -3440 (|#2| |#2| |#1|)) (-15 -3440 ((-2 (|:| -2557 |#2|) (|:| -1567 (-650 |#1|))) |#2| (-650 |#1|)))) (-368) (-662 |#1|)) (T -1034))
-((-3440 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-5 *2 (-2 (|:| -2557 *3) (|:| -1567 (-650 *5)))) (-5 *1 (-1034 *5 *3)) (-5 *4 (-650 *5)) (-4 *3 (-662 *5)))) (-3440 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-1034 *3 *2)) (-4 *2 (-662 *3)))))
-(-10 -7 (-15 -3440 (|#2| |#2| |#1|)) (-15 -3440 ((-2 (|:| -2557 |#2|) (|:| -1567 (-650 |#1|))) |#2| (-650 |#1|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3542 ((|#1| $ |#1|) 14)) (-3040 ((|#1| $ |#1|) 12)) (-2646 (($ |#1|) 10)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2057 ((|#1| $) 11)) (-3033 ((|#1| $) 13)) (-2869 (((-868) $) 21 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3892 (((-112) $ $) 9)))
-(((-1035 |#1|) (-13 (-1227) (-10 -8 (-15 -2646 ($ |#1|)) (-15 -2057 (|#1| $)) (-15 -3040 (|#1| $ |#1|)) (-15 -3033 (|#1| $)) (-15 -3542 (|#1| $ |#1|)) (-15 -3892 ((-112) $ $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) (-1227)) (T -1035))
-((-2646 (*1 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))) (-2057 (*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))) (-3040 (*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))) (-3033 (*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))) (-3542 (*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))) (-3892 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1035 *3)) (-4 *3 (-1227)))))
-(-13 (-1227) (-10 -8 (-15 -2646 ($ |#1|)) (-15 -2057 (|#1| $)) (-15 -3040 (|#1| $ |#1|)) (-15 -3033 (|#1| $)) (-15 -3542 (|#1| $ |#1|)) (-15 -3892 ((-112) $ $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) NIL)) (-1510 (((-650 $) (-650 |#4|)) 118) (((-650 $) (-650 |#4|) (-112)) 119) (((-650 $) (-650 |#4|) (-112) (-112)) 117) (((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1598 (((-650 |#3|) $) NIL)) (-3330 (((-112) $) NIL)) (-2114 (((-112) $) NIL (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3067 ((|#4| |#4| $) NIL)) (-3312 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| $) 112)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3960 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) 66)) (-2333 (($) NIL T CONST)) (-2157 (((-112) $) 29 (|has| |#1| (-562)))) (-3303 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3580 (((-112) $) NIL (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2303 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) NIL)) (-4387 (($ (-650 |#4|)) NIL)) (-1962 (((-3 $ "failed") $) 45)) (-2360 ((|#4| |#4| $) 69)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-3617 (($ |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) NIL)) (-1496 (((-112) |#4| $) NIL)) (-1825 (((-112) |#4| $) NIL)) (-1446 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2680 (((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112)) 133)) (-3976 (((-650 |#4|) $) 18 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2486 ((|#3| $) 38)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#4|) $) 19 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-2833 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 23)) (-3734 (((-650 |#3|) $) NIL)) (-3640 (((-112) |#3| $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3115 (((-3 |#4| (-650 $)) |#4| |#4| $) NIL)) (-3834 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| |#4| $) 110)) (-3637 (((-3 |#4| "failed") $) 42)) (-3778 (((-650 $) |#4| $) 93)) (-2740 (((-3 (-112) (-650 $)) |#4| $) NIL)) (-4057 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3502 (((-650 $) |#4| $) 115) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 116) (((-650 $) |#4| (-650 $)) NIL)) (-2386 (((-650 $) (-650 |#4|) (-112) (-112) (-112)) 128)) (-4399 (($ |#4| $) 82) (($ (-650 |#4|) $) 83) (((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4083 (((-650 |#4|) $) NIL)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1478 ((|#4| |#4| $) NIL)) (-1693 (((-112) $ $) NIL)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2899 ((|#4| |#4| $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-3 |#4| "failed") $) 40)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3484 (((-3 $ "failed") $ |#4|) 59)) (-3308 (($ $ |#4|) NIL) (((-650 $) |#4| $) 95) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 89)) (-2231 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 17)) (-1698 (($) 14)) (-2650 (((-777) $) NIL)) (-3901 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) 13)) (-2601 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 22)) (-1342 (($ $ |#3|) 52)) (-2691 (($ $ |#3|) 54)) (-2990 (($ $) NIL)) (-3130 (($ $ |#3|) NIL)) (-2869 (((-868) $) 35) (((-650 |#4|) $) 46)) (-3982 (((-777) $) NIL (|has| |#3| (-373)))) (-1344 (((-112) $ $) NIL)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-2922 (((-650 $) |#4| $) 92) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) NIL)) (-2061 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) NIL)) (-4242 (((-112) |#4| $) NIL)) (-1600 (((-112) |#3| $) 65)) (-3892 (((-112) $ $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1036 |#1| |#2| |#3| |#4|) (-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4399 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -2386 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -2680 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112))))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -1036))
-((-4399 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *3))) (-5 *1 (-1036 *5 *6 *7 *3)) (-4 *3 (-1074 *5 *6 *7)))) (-1510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) (-1510 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) (-2386 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) (-2680 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-650 *8)) (|:| |towers| (-650 (-1036 *5 *6 *7 *8))))) (-5 *1 (-1036 *5 *6 *7 *8)) (-5 *3 (-650 *8)))))
-(-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4399 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -2386 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -2680 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112)))))
-((-4321 (((-650 (-695 |#1|)) (-650 (-695 |#1|))) 70) (((-695 |#1|) (-695 |#1|)) 69) (((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-650 (-695 |#1|))) 68) (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 65)) (-3836 (((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928)) 63) (((-695 |#1|) (-695 |#1|) (-928)) 62)) (-3365 (((-650 (-695 (-570))) (-650 (-650 (-570)))) 81) (((-650 (-695 (-570))) (-650 (-912 (-570))) (-570)) 80) (((-695 (-570)) (-650 (-570))) 77) (((-695 (-570)) (-912 (-570)) (-570)) 75)) (-2463 (((-695 (-959 |#1|)) (-777)) 95)) (-3890 (((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928)) 49 (|has| |#1| (-6 (-4454 "*")))) (((-695 |#1|) (-695 |#1|) (-928)) 47 (|has| |#1| (-6 (-4454 "*"))))))
-(((-1037 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4454 "*"))) (-15 -3890 ((-695 |#1|) (-695 |#1|) (-928))) |%noBranch|) (IF (|has| |#1| (-6 (-4454 "*"))) (-15 -3890 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) |%noBranch|) (-15 -2463 ((-695 (-959 |#1|)) (-777))) (-15 -3836 ((-695 |#1|) (-695 |#1|) (-928))) (-15 -3836 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) (-15 -4321 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -4321 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -4321 ((-695 |#1|) (-695 |#1|))) (-15 -4321 ((-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -3365 ((-695 (-570)) (-912 (-570)) (-570))) (-15 -3365 ((-695 (-570)) (-650 (-570)))) (-15 -3365 ((-650 (-695 (-570))) (-650 (-912 (-570))) (-570))) (-15 -3365 ((-650 (-695 (-570))) (-650 (-650 (-570)))))) (-1058)) (T -1037))
-((-3365 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-570)))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-1037 *4)) (-4 *4 (-1058)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-912 (-570)))) (-5 *4 (-570)) (-5 *2 (-650 (-695 *4))) (-5 *1 (-1037 *5)) (-4 *5 (-1058)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1037 *4)) (-4 *4 (-1058)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-912 (-570))) (-5 *4 (-570)) (-5 *2 (-695 *4)) (-5 *1 (-1037 *5)) (-4 *5 (-1058)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-4321 (*1 *2 *2 *2) (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-4321 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-3836 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928)) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))) (-3836 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-695 (-959 *4))) (-5 *1 (-1037 *4)) (-4 *4 (-1058)))) (-3890 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928)) (|has| *4 (-6 (-4454 "*"))) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))) (-3890 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (|has| *4 (-6 (-4454 "*"))) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4454 "*"))) (-15 -3890 ((-695 |#1|) (-695 |#1|) (-928))) |%noBranch|) (IF (|has| |#1| (-6 (-4454 "*"))) (-15 -3890 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) |%noBranch|) (-15 -2463 ((-695 (-959 |#1|)) (-777))) (-15 -3836 ((-695 |#1|) (-695 |#1|) (-928))) (-15 -3836 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) (-15 -4321 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -4321 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -4321 ((-695 |#1|) (-695 |#1|))) (-15 -4321 ((-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -3365 ((-695 (-570)) (-912 (-570)) (-570))) (-15 -3365 ((-695 (-570)) (-650 (-570)))) (-15 -3365 ((-650 (-695 (-570))) (-650 (-912 (-570))) (-570))) (-15 -3365 ((-650 (-695 (-570))) (-650 (-650 (-570))))))
-((-4048 (((-695 |#1|) (-650 (-695 |#1|)) (-1277 |#1|)) 70 (|has| |#1| (-311)))) (-3210 (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1277 (-1277 |#1|))) 110 (|has| |#1| (-368))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1277 |#1|)) 117 (|has| |#1| (-368)))) (-1343 (((-1277 |#1|) (-650 (-1277 |#1|)) (-570)) 135 (-12 (|has| |#1| (-368)) (|has| |#1| (-373))))) (-1803 (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-928)) 123 (-12 (|has| |#1| (-368)) (|has| |#1| (-373)))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112)) 122 (-12 (|has| |#1| (-368)) (|has| |#1| (-373)))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|))) 121 (-12 (|has| |#1| (-368)) (|has| |#1| (-373)))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112) (-570) (-570)) 120 (-12 (|has| |#1| (-368)) (|has| |#1| (-373))))) (-1681 (((-112) (-650 (-695 |#1|))) 103 (|has| |#1| (-368))) (((-112) (-650 (-695 |#1|)) (-570)) 106 (|has| |#1| (-368)))) (-2209 (((-1277 (-1277 |#1|)) (-650 (-695 |#1|)) (-1277 |#1|)) 67 (|has| |#1| (-311)))) (-2202 (((-695 |#1|) (-650 (-695 |#1|)) (-695 |#1|)) 47)) (-4411 (((-695 |#1|) (-1277 (-1277 |#1|))) 40)) (-1456 (((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-570)) 94 (|has| |#1| (-368))) (((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|))) 93 (|has| |#1| (-368))) (((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-112) (-570)) 101 (|has| |#1| (-368)))))
-(((-1038 |#1|) (-10 -7 (-15 -4411 ((-695 |#1|) (-1277 (-1277 |#1|)))) (-15 -2202 ((-695 |#1|) (-650 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-311)) (PROGN (-15 -2209 ((-1277 (-1277 |#1|)) (-650 (-695 |#1|)) (-1277 |#1|))) (-15 -4048 ((-695 |#1|) (-650 (-695 |#1|)) (-1277 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -1456 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-112) (-570))) (-15 -1456 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -1456 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-570))) (-15 -1681 ((-112) (-650 (-695 |#1|)) (-570))) (-15 -1681 ((-112) (-650 (-695 |#1|)))) (-15 -3210 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1277 |#1|))) (-15 -3210 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1277 (-1277 |#1|))))) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#1| (-368)) (PROGN (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112) (-570) (-570))) (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)))) (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112))) (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-928))) (-15 -1343 ((-1277 |#1|) (-650 (-1277 |#1|)) (-570)))) |%noBranch|) |%noBranch|)) (-1058)) (T -1038))
-((-1343 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1277 *5))) (-5 *4 (-570)) (-5 *2 (-1277 *5)) (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-1803 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *4 (-373)) (-4 *4 (-1058)) (-5 *2 (-650 (-650 (-695 *4)))) (-5 *1 (-1038 *4)) (-5 *3 (-650 (-695 *4))))) (-1803 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-570)) (-4 *6 (-368)) (-4 *6 (-373)) (-4 *6 (-1058)) (-5 *2 (-650 (-650 (-695 *6)))) (-5 *1 (-1038 *6)) (-5 *3 (-650 (-695 *6))))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-1277 (-1277 *5))) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-1277 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368)) (-4 *4 (-1058)) (-5 *2 (-112)) (-5 *1 (-1038 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-112)) (-5 *1 (-1038 *5)))) (-1456 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-5 *2 (-695 *5)) (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-1058)))) (-1456 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-5 *1 (-1038 *4)) (-4 *4 (-368)) (-4 *4 (-1058)))) (-1456 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-650 (-695 *6))) (-5 *4 (-112)) (-5 *5 (-570)) (-5 *2 (-695 *6)) (-5 *1 (-1038 *6)) (-4 *6 (-368)) (-4 *6 (-1058)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-1277 *5)) (-4 *5 (-311)) (-4 *5 (-1058)) (-5 *2 (-695 *5)) (-5 *1 (-1038 *5)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-4 *5 (-311)) (-4 *5 (-1058)) (-5 *2 (-1277 (-1277 *5))) (-5 *1 (-1038 *5)) (-5 *4 (-1277 *5)))) (-2202 (*1 *2 *3 *2) (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-4 *4 (-1058)) (-5 *1 (-1038 *4)))) (-4411 (*1 *2 *3) (-12 (-5 *3 (-1277 (-1277 *4))) (-4 *4 (-1058)) (-5 *2 (-695 *4)) (-5 *1 (-1038 *4)))))
-(-10 -7 (-15 -4411 ((-695 |#1|) (-1277 (-1277 |#1|)))) (-15 -2202 ((-695 |#1|) (-650 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-311)) (PROGN (-15 -2209 ((-1277 (-1277 |#1|)) (-650 (-695 |#1|)) (-1277 |#1|))) (-15 -4048 ((-695 |#1|) (-650 (-695 |#1|)) (-1277 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -1456 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-112) (-570))) (-15 -1456 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -1456 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-570))) (-15 -1681 ((-112) (-650 (-695 |#1|)) (-570))) (-15 -1681 ((-112) (-650 (-695 |#1|)))) (-15 -3210 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1277 |#1|))) (-15 -3210 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1277 (-1277 |#1|))))) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#1| (-368)) (PROGN (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112) (-570) (-570))) (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)))) (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112))) (-15 -1803 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-928))) (-15 -1343 ((-1277 |#1|) (-650 (-1277 |#1|)) (-570)))) |%noBranch|) |%noBranch|))
-((-3971 ((|#1| (-928) |#1|) 18)))
-(((-1039 |#1|) (-10 -7 (-15 -3971 (|#1| (-928) |#1|))) (-13 (-1109) (-10 -8 (-15 -3992 ($ $ $))))) (T -1039))
-((-3971 (*1 *2 *3 *2) (-12 (-5 *3 (-928)) (-5 *1 (-1039 *2)) (-4 *2 (-13 (-1109) (-10 -8 (-15 -3992 ($ $ $))))))))
-(-10 -7 (-15 -3971 (|#1| (-928) |#1|)))
-((-3630 (((-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570))))))) (-695 (-413 (-959 (-570))))) 67)) (-2251 (((-650 (-695 (-320 (-570)))) (-320 (-570)) (-695 (-413 (-959 (-570))))) 52)) (-3628 (((-650 (-320 (-570))) (-695 (-413 (-959 (-570))))) 45)) (-3416 (((-650 (-695 (-320 (-570)))) (-695 (-413 (-959 (-570))))) 85)) (-3411 (((-695 (-320 (-570))) (-695 (-320 (-570)))) 38)) (-4299 (((-650 (-695 (-320 (-570)))) (-650 (-695 (-320 (-570))))) 74)) (-2350 (((-3 (-695 (-320 (-570))) "failed") (-695 (-413 (-959 (-570))))) 82)))
-(((-1040) (-10 -7 (-15 -3630 ((-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570))))))) (-695 (-413 (-959 (-570)))))) (-15 -2251 ((-650 (-695 (-320 (-570)))) (-320 (-570)) (-695 (-413 (-959 (-570)))))) (-15 -3628 ((-650 (-320 (-570))) (-695 (-413 (-959 (-570)))))) (-15 -2350 ((-3 (-695 (-320 (-570))) "failed") (-695 (-413 (-959 (-570)))))) (-15 -3411 ((-695 (-320 (-570))) (-695 (-320 (-570))))) (-15 -4299 ((-650 (-695 (-320 (-570)))) (-650 (-695 (-320 (-570)))))) (-15 -3416 ((-650 (-695 (-320 (-570)))) (-695 (-413 (-959 (-570)))))))) (T -1040))
-((-3416 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)))) (-4299 (*1 *2 *2) (-12 (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)))) (-3411 (*1 *2 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040)))) (-2350 (*1 *2 *3) (|partial| -12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-320 (-570)))) (-5 *1 (-1040)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *4 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)) (-5 *3 (-320 (-570))))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570)))))))) (-5 *1 (-1040)))))
-(-10 -7 (-15 -3630 ((-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570))))))) (-695 (-413 (-959 (-570)))))) (-15 -2251 ((-650 (-695 (-320 (-570)))) (-320 (-570)) (-695 (-413 (-959 (-570)))))) (-15 -3628 ((-650 (-320 (-570))) (-695 (-413 (-959 (-570)))))) (-15 -2350 ((-3 (-695 (-320 (-570))) "failed") (-695 (-413 (-959 (-570)))))) (-15 -3411 ((-695 (-320 (-570))) (-695 (-320 (-570))))) (-15 -4299 ((-650 (-695 (-320 (-570)))) (-650 (-695 (-320 (-570)))))) (-15 -3416 ((-650 (-695 (-320 (-570)))) (-695 (-413 (-959 (-570)))))))
-((-4163 ((|#1| |#1| (-928)) 18)))
-(((-1041 |#1|) (-10 -7 (-15 -4163 (|#1| |#1| (-928)))) (-13 (-1109) (-10 -8 (-15 * ($ $ $))))) (T -1041))
-((-4163 (*1 *2 *2 *3) (-12 (-5 *3 (-928)) (-5 *1 (-1041 *2)) (-4 *2 (-13 (-1109) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -4163 (|#1| |#1| (-928))))
-((-2869 ((|#1| (-316)) 11) (((-1282) |#1|) 9)))
-(((-1042 |#1|) (-10 -7 (-15 -2869 ((-1282) |#1|)) (-15 -2869 (|#1| (-316)))) (-1227)) (T -1042))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-316)) (-5 *1 (-1042 *2)) (-4 *2 (-1227)))) (-2869 (*1 *2 *3) (-12 (-5 *2 (-1282)) (-5 *1 (-1042 *3)) (-4 *3 (-1227)))))
-(-10 -7 (-15 -2869 ((-1282) |#1|)) (-15 -2869 (|#1| (-316))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2295 (($ |#4|) 25)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-2283 ((|#4| $) 27)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 46) (($ (-570)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2294 (((-777)) 43 T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 21 T CONST)) (-1998 (($) 23 T CONST)) (-3892 (((-112) $ $) 40)) (-4003 (($ $) 31) (($ $ $) NIL)) (-3992 (($ $ $) 29)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1043 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2295 ($ |#4|)) (-15 -2869 ($ |#4|)) (-15 -2283 (|#4| $)))) (-368) (-799) (-856) (-956 |#1| |#2| |#3|) (-650 |#4|)) (T -1043))
-((-2295 (*1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-650 *2)))) (-2869 (*1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-650 *2)))) (-2283 (*1 *2 *1) (-12 (-4 *2 (-956 *3 *4 *5)) (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-14 *6 (-650 *2)))))
-(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2295 ($ |#4|)) (-15 -2869 ($ |#4|)) (-15 -2283 (|#4| $))))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL)) (-2204 (((-1282) $ (-1186) (-1186)) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3956 (((-112) (-112)) 43)) (-2599 (((-112) (-112)) 42)) (-3040 (((-52) $ (-1186) (-52)) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 (-52) "failed") (-1186) $) NIL)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-3614 (($ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-3 (-52) "failed") (-1186) $) NIL)) (-3617 (($ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-2845 (((-52) $ (-1186) (-52)) NIL (|has| $ (-6 -4453)))) (-2774 (((-52) $ (-1186)) NIL)) (-3976 (((-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-650 (-52)) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-1186) $) NIL (|has| (-1186) (-856)))) (-3069 (((-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-650 (-52)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109))))) (-1894 (((-1186) $) NIL (|has| (-1186) (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4453))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-1988 (((-650 (-1186)) $) 37)) (-2093 (((-112) (-1186) $) NIL)) (-3398 (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL)) (-2801 (($ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL)) (-4075 (((-650 (-1186)) $) NIL)) (-4276 (((-112) (-1186) $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-1948 (((-52) $) NIL (|has| (-1186) (-856)))) (-2115 (((-3 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) "failed") (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL)) (-4222 (($ $ (-52)) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-298 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-650 (-52)) (-650 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-298 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-650 (-298 (-52)))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109))))) (-2856 (((-650 (-52)) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 (((-52) $ (-1186)) 39) (((-52) $ (-1186) (-52)) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (((-777) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109)))) (((-777) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL)) (-2869 (((-868) $) 41 (-3749 (|has| (-52) (-619 (-868))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1044) (-13 (-1203 (-1186) (-52)) (-10 -7 (-15 -3956 ((-112) (-112))) (-15 -2599 ((-112) (-112))) (-6 -4452)))) (T -1044))
-((-3956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044)))))
-(-13 (-1203 (-1186) (-52)) (-10 -7 (-15 -3956 ((-112) (-112))) (-15 -2599 ((-112) (-112))) (-6 -4452)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3812 (((-1144) $) 9)) (-2869 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1045) (-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $))))) (T -1045))
-((-3812 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1045)))))
-(-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $))))
-((-4387 ((|#2| $) 10)))
-(((-1046 |#1| |#2|) (-10 -8 (-15 -4387 (|#2| |#1|))) (-1047 |#2|) (-1227)) (T -1046))
-NIL
-(-10 -8 (-15 -4387 (|#2| |#1|)))
-((-2435 (((-3 |#1| "failed") $) 9)) (-4387 ((|#1| $) 8)) (-2869 (($ |#1|) 6)))
-(((-1047 |#1|) (-141) (-1227)) (T -1047))
-((-2435 (*1 *2 *1) (|partial| -12 (-4 *1 (-1047 *2)) (-4 *2 (-1227)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1227)))))
-(-13 (-622 |t#1|) (-10 -8 (-15 -2435 ((-3 |t#1| "failed") $)) (-15 -4387 (|t#1| $))))
-(((-622 |#1|) . T))
-((-2700 (((-650 (-650 (-298 (-413 (-959 |#2|))))) (-650 (-959 |#2|)) (-650 (-1186))) 38)))
-(((-1048 |#1| |#2|) (-10 -7 (-15 -2700 ((-650 (-650 (-298 (-413 (-959 |#2|))))) (-650 (-959 |#2|)) (-650 (-1186))))) (-562) (-13 (-562) (-1047 |#1|))) (T -1048))
-((-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-4 *6 (-13 (-562) (-1047 *5))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *6)))))) (-5 *1 (-1048 *5 *6)))))
-(-10 -7 (-15 -2700 ((-650 (-650 (-298 (-413 (-959 |#2|))))) (-650 (-959 |#2|)) (-650 (-1186)))))
-((-2979 (((-384)) 17)) (-2840 (((-1 (-384)) (-384) (-384)) 22)) (-1881 (((-1 (-384)) (-777)) 48)) (-4370 (((-384)) 37)) (-1493 (((-1 (-384)) (-384) (-384)) 38)) (-3581 (((-384)) 29)) (-3688 (((-1 (-384)) (-384)) 30)) (-4006 (((-384) (-777)) 43)) (-3967 (((-1 (-384)) (-777)) 44)) (-3014 (((-1 (-384)) (-777) (-777)) 47)) (-4036 (((-1 (-384)) (-777) (-777)) 45)))
-(((-1049) (-10 -7 (-15 -2979 ((-384))) (-15 -4370 ((-384))) (-15 -3581 ((-384))) (-15 -4006 ((-384) (-777))) (-15 -2840 ((-1 (-384)) (-384) (-384))) (-15 -1493 ((-1 (-384)) (-384) (-384))) (-15 -3688 ((-1 (-384)) (-384))) (-15 -3967 ((-1 (-384)) (-777))) (-15 -4036 ((-1 (-384)) (-777) (-777))) (-15 -3014 ((-1 (-384)) (-777) (-777))) (-15 -1881 ((-1 (-384)) (-777))))) (T -1049))
-((-1881 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-3014 (*1 *2 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-4036 (*1 *2 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))) (-1493 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))) (-2840 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-384)) (-5 *1 (-1049)))) (-3581 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))) (-4370 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))) (-2979 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))))
-(-10 -7 (-15 -2979 ((-384))) (-15 -4370 ((-384))) (-15 -3581 ((-384))) (-15 -4006 ((-384) (-777))) (-15 -2840 ((-1 (-384)) (-384) (-384))) (-15 -1493 ((-1 (-384)) (-384) (-384))) (-15 -3688 ((-1 (-384)) (-384))) (-15 -3967 ((-1 (-384)) (-777))) (-15 -4036 ((-1 (-384)) (-777) (-777))) (-15 -3014 ((-1 (-384)) (-777) (-777))) (-15 -1881 ((-1 (-384)) (-777))))
-((-2340 (((-424 |#1|) |#1|) 33)))
-(((-1050 |#1|) (-10 -7 (-15 -2340 ((-424 |#1|) |#1|))) (-1253 (-413 (-959 (-570))))) (T -1050))
-((-2340 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-1253 (-413 (-959 (-570))))))))
-(-10 -7 (-15 -2340 ((-424 |#1|) |#1|)))
-((-3063 (((-413 (-424 (-959 |#1|))) (-413 (-959 |#1|))) 14)))
-(((-1051 |#1|) (-10 -7 (-15 -3063 ((-413 (-424 (-959 |#1|))) (-413 (-959 |#1|))))) (-311)) (T -1051))
-((-3063 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-311)) (-5 *2 (-413 (-424 (-959 *4)))) (-5 *1 (-1051 *4)))))
-(-10 -7 (-15 -3063 ((-413 (-424 (-959 |#1|))) (-413 (-959 |#1|)))))
-((-1598 (((-650 (-1186)) (-413 (-959 |#1|))) 17)) (-3449 (((-413 (-1182 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186)) 24)) (-2417 (((-413 (-959 |#1|)) (-413 (-1182 (-413 (-959 |#1|)))) (-1186)) 26)) (-3168 (((-3 (-1186) "failed") (-413 (-959 |#1|))) 20)) (-3034 (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-298 (-413 (-959 |#1|))))) 32) (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|)))) 33) (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-1186)) (-650 (-413 (-959 |#1|)))) 28) (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|))) 29)) (-2869 (((-413 (-959 |#1|)) |#1|) 11)))
-(((-1052 |#1|) (-10 -7 (-15 -1598 ((-650 (-1186)) (-413 (-959 |#1|)))) (-15 -3168 ((-3 (-1186) "failed") (-413 (-959 |#1|)))) (-15 -3449 ((-413 (-1182 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -2417 ((-413 (-959 |#1|)) (-413 (-1182 (-413 (-959 |#1|)))) (-1186))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-1186)) (-650 (-413 (-959 |#1|))))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -2869 ((-413 (-959 |#1|)) |#1|))) (-562)) (T -1052))
-((-2869 (*1 *2 *3) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-1052 *3)) (-4 *3 (-562)))) (-3034 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-298 (-413 (-959 *4))))) (-5 *2 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *1 (-1052 *4)))) (-3034 (*1 *2 *2 *3) (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-5 *2 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *1 (-1052 *4)))) (-3034 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-650 (-1186))) (-5 *4 (-650 (-413 (-959 *5)))) (-5 *2 (-413 (-959 *5))) (-4 *5 (-562)) (-5 *1 (-1052 *5)))) (-3034 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-1052 *4)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-1182 (-413 (-959 *5))))) (-5 *4 (-1186)) (-5 *2 (-413 (-959 *5))) (-5 *1 (-1052 *5)) (-4 *5 (-562)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-562)) (-5 *2 (-413 (-1182 (-413 (-959 *5))))) (-5 *1 (-1052 *5)) (-5 *3 (-413 (-959 *5))))) (-3168 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-1186)) (-5 *1 (-1052 *4)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-1186))) (-5 *1 (-1052 *4)))))
-(-10 -7 (-15 -1598 ((-650 (-1186)) (-413 (-959 |#1|)))) (-15 -3168 ((-3 (-1186) "failed") (-413 (-959 |#1|)))) (-15 -3449 ((-413 (-1182 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -2417 ((-413 (-959 |#1|)) (-413 (-1182 (-413 (-959 |#1|)))) (-1186))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-1186)) (-650 (-413 (-959 |#1|))))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -3034 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -2869 ((-413 (-959 |#1|)) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-2333 (($) 18 T CONST)) (-4151 ((|#1| $) 23)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-3893 ((|#1| $) 22)) (-3074 ((|#1|) 20 T CONST)) (-2869 (((-868) $) 12)) (-2422 ((|#1| $) 21)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16)))
-(((-1053 |#1|) (-141) (-23)) (T -1053))
-((-4151 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))) (-3074 (*1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -4151 (|t#1| $)) (-15 -3893 (|t#1| $)) (-15 -2422 (|t#1| $)) (-15 -3074 (|t#1|) -3722)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-4237 (($) 25 T CONST)) (-2333 (($) 18 T CONST)) (-4151 ((|#1| $) 23)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-3893 ((|#1| $) 22)) (-3074 ((|#1|) 20 T CONST)) (-2869 (((-868) $) 12)) (-2422 ((|#1| $) 21)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16)))
-(((-1054 |#1|) (-141) (-23)) (T -1054))
-((-4237 (*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-23)))))
-(-13 (-1053 |t#1|) (-10 -8 (-15 -4237 ($) -3722)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1053 |#1|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 (-786 |#1| (-870 |#2|)))))) (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-1510 (((-650 $) (-650 (-786 |#1| (-870 |#2|)))) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112)) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112) (-112)) NIL)) (-1598 (((-650 (-870 |#2|)) $) NIL)) (-3330 (((-112) $) NIL)) (-2114 (((-112) $) NIL (|has| |#1| (-562)))) (-2665 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-3067 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3312 (((-650 (-2 (|:| |val| (-786 |#1| (-870 |#2|))) (|:| -4246 $))) (-786 |#1| (-870 |#2|)) $) NIL)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ (-870 |#2|)) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3960 (($ (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 (-786 |#1| (-870 |#2|)) "failed") $ (-870 |#2|)) NIL)) (-2333 (($) NIL T CONST)) (-2157 (((-112) $) NIL (|has| |#1| (-562)))) (-3303 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3580 (((-112) $) NIL (|has| |#1| (-562)))) (-2151 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))) $ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-2303 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| |#1| (-562)))) (-3541 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-4387 (($ (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-1962 (((-3 $ "failed") $) NIL)) (-2360 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-786 |#1| (-870 |#2|)) (-1109))))) (-3617 (($ (-786 |#1| (-870 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-786 |#1| (-870 |#2|))) (|:| |den| |#1|)) (-786 |#1| (-870 |#2|)) $) NIL (|has| |#1| (-562)))) (-1429 (((-112) (-786 |#1| (-870 |#2|)) $ (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-4079 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-2295 (((-786 |#1| (-870 |#2|)) (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $ (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (((-786 |#1| (-870 |#2|)) (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $ (-786 |#1| (-870 |#2|))) NIL (|has| $ (-6 -4452))) (((-786 |#1| (-870 |#2|)) (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-3993 (((-2 (|:| -2442 (-650 (-786 |#1| (-870 |#2|)))) (|:| -2965 (-650 (-786 |#1| (-870 |#2|))))) $) NIL)) (-1496 (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-1825 (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-1446 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-3976 (((-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1623 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-2486 (((-870 |#2|) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-786 |#1| (-870 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-786 |#1| (-870 |#2|)) (-1109))))) (-2833 (($ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $) NIL)) (-3734 (((-650 (-870 |#2|)) $) NIL)) (-3640 (((-112) (-870 |#2|) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3115 (((-3 (-786 |#1| (-870 |#2|)) (-650 $)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3834 (((-650 (-2 (|:| |val| (-786 |#1| (-870 |#2|))) (|:| -4246 $))) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3637 (((-3 (-786 |#1| (-870 |#2|)) "failed") $) NIL)) (-3778 (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL)) (-2740 (((-3 (-112) (-650 $)) (-786 |#1| (-870 |#2|)) $) NIL)) (-4057 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-3502 (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-650 $)) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) (-650 $)) NIL)) (-4399 (($ (-786 |#1| (-870 |#2|)) $) NIL) (($ (-650 (-786 |#1| (-870 |#2|))) $) NIL)) (-4083 (((-650 (-786 |#1| (-870 |#2|))) $) NIL)) (-2010 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-1478 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-1693 (((-112) $ $) NIL)) (-4092 (((-2 (|:| |num| (-786 |#1| (-870 |#2|))) (|:| |den| |#1|)) (-786 |#1| (-870 |#2|)) $) NIL (|has| |#1| (-562)))) (-1772 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-2899 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-3 (-786 |#1| (-870 |#2|)) "failed") $) NIL)) (-2115 (((-3 (-786 |#1| (-870 |#2|)) "failed") (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL)) (-3484 (((-3 $ "failed") $ (-786 |#1| (-870 |#2|))) NIL)) (-3308 (($ $ (-786 |#1| (-870 |#2|))) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) (-650 $)) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-650 $)) NIL)) (-2231 (((-112) (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|)))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ $ (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ $ (-298 (-786 |#1| (-870 |#2|)))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ $ (-650 (-298 (-786 |#1| (-870 |#2|))))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2650 (((-777) $) NIL)) (-3901 (((-777) (-786 |#1| (-870 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (((-777) (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-786 |#1| (-870 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-1342 (($ $ (-870 |#2|)) NIL)) (-2691 (($ $ (-870 |#2|)) NIL)) (-2990 (($ $) NIL)) (-3130 (($ $ (-870 |#2|)) NIL)) (-2869 (((-868) $) NIL) (((-650 (-786 |#1| (-870 |#2|))) $) NIL)) (-3982 (((-777) $) NIL (|has| (-870 |#2|) (-373)))) (-1344 (((-112) $ $) NIL)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 (-786 |#1| (-870 |#2|))))) "failed") (-650 (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 (-786 |#1| (-870 |#2|))))) "failed") (-650 (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-3810 (((-112) $ (-1 (-112) (-786 |#1| (-870 |#2|)) (-650 (-786 |#1| (-870 |#2|))))) NIL)) (-2922 (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) (-650 $)) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-650 $)) NIL)) (-2061 (((-112) (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2273 (((-650 (-870 |#2|)) $) NIL)) (-4242 (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-1600 (((-112) (-870 |#2|) $) NIL)) (-3892 (((-112) $ $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1055 |#1| |#2|) (-13 (-1080 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) (-10 -8 (-15 -1510 ((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112) (-112))))) (-458) (-650 (-1186))) (T -1055))
-((-1510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1055 *5 *6)))))
-(-13 (-1080 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) (-10 -8 (-15 -1510 ((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112) (-112)))))
-((-2840 (((-1 (-570)) (-1103 (-570))) 32)) (-1672 (((-570) (-570) (-570) (-570) (-570)) 29)) (-3417 (((-1 (-570)) |RationalNumber|) NIL)) (-1589 (((-1 (-570)) |RationalNumber|) NIL)) (-1500 (((-1 (-570)) (-570) |RationalNumber|) NIL)))
-(((-1056) (-10 -7 (-15 -2840 ((-1 (-570)) (-1103 (-570)))) (-15 -1500 ((-1 (-570)) (-570) |RationalNumber|)) (-15 -3417 ((-1 (-570)) |RationalNumber|)) (-15 -1589 ((-1 (-570)) |RationalNumber|)) (-15 -1672 ((-570) (-570) (-570) (-570) (-570))))) (T -1056))
-((-1672 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1056)))) (-1589 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))) (-3417 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)) (-5 *3 (-570)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-1103 (-570))) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))))
-(-10 -7 (-15 -2840 ((-1 (-570)) (-1103 (-570)))) (-15 -1500 ((-1 (-570)) (-570) |RationalNumber|)) (-15 -3417 ((-1 (-570)) |RationalNumber|)) (-15 -1589 ((-1 (-570)) |RationalNumber|)) (-15 -1672 ((-570) (-570) (-570) (-570) (-570))))
-((-2869 (((-868) $) NIL) (($ (-570)) 10)))
-(((-1057 |#1|) (-10 -8 (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-1058)) (T -1057))
-NIL
-(-10 -8 (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-1058) (-141)) (T -1058))
-((-2294 (*1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-777)))))
-(-13 (-1067) (-732) (-654 $) (-622 (-570)) (-10 -7 (-15 -2294 ((-777)) -3722) (-6 -4449)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2121 (((-413 (-959 |#2|)) (-650 |#2|) (-650 |#2|) (-777) (-777)) 54)))
-(((-1059 |#1| |#2|) (-10 -7 (-15 -2121 ((-413 (-959 |#2|)) (-650 |#2|) (-650 |#2|) (-777) (-777)))) (-1186) (-368)) (T -1059))
-((-2121 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-777)) (-4 *6 (-368)) (-5 *2 (-413 (-959 *6))) (-5 *1 (-1059 *5 *6)) (-14 *5 (-1186)))))
-(-10 -7 (-15 -2121 ((-413 (-959 |#2|)) (-650 |#2|) (-650 |#2|) (-777) (-777))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 15)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 16 T CONST)) (-3892 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
-(((-1060 |#1|) (-141) (-1067)) (T -1060))
-((-1981 (*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067)))))
-(-13 (-1109) (-10 -8 (-15 (-1981) ($) -3722) (-15 -2564 ((-112) $)) (-15 * ($ $ |t#1|))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-3919 (((-112) $) 38)) (-3206 (((-112) $) 17)) (-4218 (((-777) $) 13)) (-4230 (((-777) $) 14)) (-2445 (((-112) $) 30)) (-2074 (((-112) $) 40)))
-(((-1061 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4230 ((-777) |#1|)) (-15 -4218 ((-777) |#1|)) (-15 -2074 ((-112) |#1|)) (-15 -3919 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -3206 ((-112) |#1|))) (-1062 |#2| |#3| |#4| |#5| |#6|) (-777) (-777) (-1058) (-240 |#3| |#4|) (-240 |#2| |#4|)) (T -1061))
-NIL
-(-10 -8 (-15 -4230 ((-777) |#1|)) (-15 -4218 ((-777) |#1|)) (-15 -2074 ((-112) |#1|)) (-15 -3919 ((-112) |#1|)) (-15 -2445 ((-112) |#1|)) (-15 -3206 ((-112) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3919 (((-112) $) 56)) (-3997 (((-3 $ "failed") $ $) 20)) (-3206 (((-112) $) 58)) (-2855 (((-112) $ (-777)) 66)) (-2333 (($) 18 T CONST)) (-4085 (($ $) 39 (|has| |#3| (-311)))) (-3598 ((|#4| $ (-570)) 44)) (-4412 (((-777) $) 38 (|has| |#3| (-562)))) (-2774 ((|#3| $ (-570) (-570)) 46)) (-3976 (((-650 |#3|) $) 73 (|has| $ (-6 -4452)))) (-2020 (((-777) $) 37 (|has| |#3| (-562)))) (-2244 (((-650 |#5|) $) 36 (|has| |#3| (-562)))) (-4218 (((-777) $) 50)) (-4230 (((-777) $) 49)) (-2497 (((-112) $ (-777)) 65)) (-1863 (((-570) $) 54)) (-2554 (((-570) $) 52)) (-3069 (((-650 |#3|) $) 74 (|has| $ (-6 -4452)))) (-1314 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1109)) (|has| $ (-6 -4452))))) (-2163 (((-570) $) 53)) (-1448 (((-570) $) 51)) (-4297 (($ (-650 (-650 |#3|))) 59)) (-2833 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2247 (((-650 (-650 |#3|)) $) 48)) (-2065 (((-112) $ (-777)) 64)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-562)))) (-2231 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#3|) (-650 |#3|)) 80 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) 78 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 (-298 |#3|))) 77 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-2914 (((-112) $ $) 60)) (-2171 (((-112) $) 63)) (-1698 (($) 62)) (-2057 ((|#3| $ (-570) (-570)) 47) ((|#3| $ (-570) (-570) |#3|) 45)) (-2445 (((-112) $) 57)) (-3901 (((-777) |#3| $) 75 (-12 (|has| |#3| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4452)))) (-3064 (($ $) 61)) (-4101 ((|#5| $ (-570)) 43)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-2061 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4452)))) (-2074 (((-112) $) 55)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#3|) 40 (|has| |#3| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2857 (((-777) $) 67 (|has| $ (-6 -4452)))))
-(((-1062 |#1| |#2| |#3| |#4| |#5|) (-141) (-777) (-777) (-1058) (-240 |t#2| |t#3|) (-240 |t#1| |t#3|)) (T -1062))
-((-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) (-4297 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *5))) (-4 *5 (-1058)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-2074 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-650 (-650 *5))))) (-2057 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058)))) (-2774 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058)))) (-2057 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *2 (-1058)) (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)))) (-3598 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *2 *7)) (-4 *6 (-1058)) (-4 *7 (-240 *4 *6)) (-4 *2 (-240 *5 *6)))) (-4101 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *7 *2)) (-4 *6 (-1058)) (-4 *7 (-240 *5 *6)) (-4 *2 (-240 *4 *6)))) (-2536 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) (-2837 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058)) (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-562)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058)) (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-368)))) (-4085 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *2 *4)) (-4 *4 (-311)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) (-5 *2 (-777)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) (-5 *2 (-777)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) (-5 *2 (-650 *7)))))
-(-13 (-111 |t#3| |t#3|) (-495 |t#3|) (-10 -8 (-6 -4452) (IF (|has| |t#3| (-174)) (-6 (-723 |t#3|)) |%noBranch|) (-15 -4297 ($ (-650 (-650 |t#3|)))) (-15 -3206 ((-112) $)) (-15 -2445 ((-112) $)) (-15 -3919 ((-112) $)) (-15 -2074 ((-112) $)) (-15 -1863 ((-570) $)) (-15 -2163 ((-570) $)) (-15 -2554 ((-570) $)) (-15 -1448 ((-570) $)) (-15 -4218 ((-777) $)) (-15 -4230 ((-777) $)) (-15 -2247 ((-650 (-650 |t#3|)) $)) (-15 -2057 (|t#3| $ (-570) (-570))) (-15 -2774 (|t#3| $ (-570) (-570))) (-15 -2057 (|t#3| $ (-570) (-570) |t#3|)) (-15 -3598 (|t#4| $ (-570))) (-15 -4101 (|t#5| $ (-570))) (-15 -2536 ($ (-1 |t#3| |t#3|) $)) (-15 -2536 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-562)) (-15 -2837 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-368)) (-15 -4013 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-311)) (-15 -4085 ($ $)) |%noBranch|) (IF (|has| |t#3| (-562)) (PROGN (-15 -4412 ((-777) $)) (-15 -2020 ((-777) $)) (-15 -2244 ((-650 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-619 (-868)) . T) ((-313 |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))) ((-495 |#3|) . T) ((-520 |#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))) ((-652 (-570)) . T) ((-652 |#3|) . T) ((-654 |#3|) . T) ((-646 |#3|) |has| |#3| (-174)) ((-723 |#3|) |has| |#3| (-174)) ((-1060 |#3|) . T) ((-1065 |#3|) . T) ((-1109) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3919 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3206 (((-112) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-2333 (($) NIL T CONST)) (-4085 (($ $) 47 (|has| |#3| (-311)))) (-3598 (((-242 |#2| |#3|) $ (-570)) 36)) (-2903 (($ (-695 |#3|)) 45)) (-4412 (((-777) $) 49 (|has| |#3| (-562)))) (-2774 ((|#3| $ (-570) (-570)) NIL)) (-3976 (((-650 |#3|) $) NIL (|has| $ (-6 -4452)))) (-2020 (((-777) $) 51 (|has| |#3| (-562)))) (-2244 (((-650 (-242 |#1| |#3|)) $) 55 (|has| |#3| (-562)))) (-4218 (((-777) $) NIL)) (-4230 (((-777) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-1863 (((-570) $) NIL)) (-2554 (((-570) $) NIL)) (-3069 (((-650 |#3|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109))))) (-2163 (((-570) $) NIL)) (-1448 (((-570) $) NIL)) (-4297 (($ (-650 (-650 |#3|))) 31)) (-2833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2247 (((-650 (-650 |#3|)) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-562)))) (-2231 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#3|) (-650 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 (-298 |#3|))) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#3| $ (-570) (-570)) NIL) ((|#3| $ (-570) (-570) |#3|) NIL)) (-4388 (((-135)) 59 (|has| |#3| (-368)))) (-2445 (((-112) $) NIL)) (-3901 (((-777) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109)))) (((-777) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) 65 (|has| |#3| (-620 (-542))))) (-4101 (((-242 |#1| |#3|) $ (-570)) 40)) (-2869 (((-868) $) 19) (((-695 |#3|) $) 42)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452)))) (-2074 (((-112) $) NIL)) (-1981 (($) 16 T CONST)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#3|) NIL (|has| |#3| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1063 |#1| |#2| |#3|) (-13 (-1062 |#1| |#2| |#3| (-242 |#2| |#3|) (-242 |#1| |#3|)) (-619 (-695 |#3|)) (-10 -8 (IF (|has| |#3| (-368)) (-6 (-1284 |#3|)) |%noBranch|) (IF (|has| |#3| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (-15 -2903 ($ (-695 |#3|))))) (-777) (-777) (-1058)) (T -1063))
-((-2903 (*1 *1 *2) (-12 (-5 *2 (-695 *5)) (-4 *5 (-1058)) (-5 *1 (-1063 *3 *4 *5)) (-14 *3 (-777)) (-14 *4 (-777)))))
-(-13 (-1062 |#1| |#2| |#3| (-242 |#2| |#3|) (-242 |#1| |#3|)) (-619 (-695 |#3|)) (-10 -8 (IF (|has| |#3| (-368)) (-6 (-1284 |#3|)) |%noBranch|) (IF (|has| |#3| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (-15 -2903 ($ (-695 |#3|)))))
-((-2295 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2536 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1064 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2536 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2295 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-777) (-777) (-1058) (-240 |#2| |#3|) (-240 |#1| |#3|) (-1062 |#1| |#2| |#3| |#4| |#5|) (-1058) (-240 |#2| |#7|) (-240 |#1| |#7|) (-1062 |#1| |#2| |#7| |#8| |#9|)) (T -1064))
-((-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1058)) (-4 *2 (-1058)) (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7)) (-4 *9 (-240 *5 *7)) (-4 *10 (-240 *6 *2)) (-4 *11 (-240 *5 *2)) (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *12 (-1062 *5 *6 *2 *10 *11)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1058)) (-4 *10 (-1058)) (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7)) (-4 *9 (-240 *5 *7)) (-4 *2 (-1062 *5 *6 *10 *11 *12)) (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *11 (-240 *6 *10)) (-4 *12 (-240 *5 *10)))))
-(-10 -7 (-15 -2536 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2295 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ |#1|) 27)))
-(((-1065 |#1|) (-141) (-1067)) (T -1065))
-NIL
-(-13 (-21) (-1060 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1060 |#1|) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1433 (((-1186) $) 11)) (-4102 ((|#1| $) 12)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2662 (($ (-1186) |#1|) 10)) (-2869 (((-868) $) 22 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3892 (((-112) $ $) 17 (|has| |#1| (-1109)))))
-(((-1066 |#1| |#2|) (-13 (-1227) (-10 -8 (-15 -2662 ($ (-1186) |#1|)) (-15 -1433 ((-1186) $)) (-15 -4102 (|#1| $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) (-1102 |#2|) (-1227)) (T -1066))
-((-2662 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-4 *4 (-1227)) (-5 *1 (-1066 *3 *4)) (-4 *3 (-1102 *4)))) (-1433 (*1 *2 *1) (-12 (-4 *4 (-1227)) (-5 *2 (-1186)) (-5 *1 (-1066 *3 *4)) (-4 *3 (-1102 *4)))) (-4102 (*1 *2 *1) (-12 (-4 *2 (-1102 *3)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1227)))))
-(-13 (-1227) (-10 -8 (-15 -2662 ($ (-1186) |#1|)) (-15 -1433 ((-1186) $)) (-15 -4102 (|#1| $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-1067) (-141)) (T -1067))
-NIL
-(-13 (-21) (-1121))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1121) . T) ((-1109) . T))
-((-3025 (($ $) 17)) (-3325 (($ $) 25)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 55)) (-3046 (($ $) 27)) (-4113 (($ $) 12)) (-2037 (($ $) 43)) (-2601 (((-384) $) NIL) (((-227) $) NIL) (((-899 (-384)) $) 36)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 31) (($ (-570)) NIL) (($ (-413 (-570))) 31)) (-2294 (((-777)) 9)) (-3850 (($ $) 45)))
-(((-1068 |#1|) (-10 -8 (-15 -3325 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -2037 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| (-570))) (-15 -2601 ((-227) |#1|)) (-15 -2601 ((-384) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| |#1|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-1069)) (T -1068))
-((-2294 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1068 *3)) (-4 *3 (-1069)))))
-(-10 -8 (-15 -3325 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -2037 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3046 (|#1| |#1|)) (-15 -4429 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| (-570))) (-15 -2601 ((-227) |#1|)) (-15 -2601 ((-384) |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| |#1|)) (-15 -2294 ((-777))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3150 (((-570) $) 97)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3025 (($ $) 95)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-2459 (($ $) 105)) (-1799 (((-112) $ $) 65)) (-2419 (((-570) $) 122)) (-2333 (($) 18 T CONST)) (-3325 (($ $) 94)) (-2435 (((-3 (-570) "failed") $) 110) (((-3 (-413 (-570)) "failed") $) 107)) (-4387 (((-570) $) 111) (((-413 (-570)) $) 108)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2145 (((-112) $) 79)) (-2811 (((-112) $) 120)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 101)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 104)) (-3046 (($ $) 100)) (-2746 (((-112) $) 121)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1908 (($ $ $) 119)) (-1764 (($ $ $) 118)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-4113 (($ $) 96)) (-2037 (($ $) 98)) (-2340 (((-424 $) $) 82)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-2601 (((-384) $) 113) (((-227) $) 112) (((-899 (-384)) $) 102)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ (-570)) 109) (($ (-413 (-570))) 106)) (-2294 (((-777)) 32 T CONST)) (-3850 (($ $) 99)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-2521 (($ $) 123)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3959 (((-112) $ $) 116)) (-3933 (((-112) $ $) 115)) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 117)) (-3918 (((-112) $ $) 114)) (-4013 (($ $ $) 73)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 103)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75)))
+((-1619 (($ $ (-1103 $)) 7) (($ $ (-1188)) 6)))
+(((-968) (-141)) (T -968))
+((-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-968)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-968)) (-5 *2 (-1188)))))
+(-13 (-10 -8 (-15 -1619 ($ $ (-1188))) (-15 -1619 ($ $ (-1103 $)))))
+((-1345 (((-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)) (-1188)) 26) (((-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188))) 27) (((-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 |#1|))) (-961 |#1|) (-1188) (-961 |#1|) (-1188)) 49)))
+(((-969 |#1|) (-10 -7 (-15 -1345 ((-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 |#1|))) (-961 |#1|) (-1188) (-961 |#1|) (-1188))) (-15 -1345 ((-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1345 ((-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)) (-1188)))) (-13 (-370) (-148))) (T -969))
+((-1345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-5 *5 (-1188)) (-4 *6 (-13 (-370) (-148))) (-5 *2 (-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 *6))) (|:| |prim| (-1184 *6)))) (-5 *1 (-969 *6)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-370) (-148))) (-5 *2 (-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 *5))) (|:| |prim| (-1184 *5)))) (-5 *1 (-969 *5)))) (-1345 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-961 *5)) (-5 *4 (-1188)) (-4 *5 (-13 (-370) (-148))) (-5 *2 (-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 *5)))) (-5 *1 (-969 *5)))))
+(-10 -7 (-15 -1345 ((-2 (|:| |coef1| (-572)) (|:| |coef2| (-572)) (|:| |prim| (-1184 |#1|))) (-961 |#1|) (-1188) (-961 |#1|) (-1188))) (-15 -1345 ((-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)))) (-15 -1345 ((-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 |#1|))) (|:| |prim| (-1184 |#1|))) (-652 (-961 |#1|)) (-652 (-1188)) (-1188))))
+((-3090 (((-652 |#1|) |#1| |#1|) 47)) (-3439 (((-112) |#1|) 44)) (-1802 ((|#1| |#1|) 79)) (-3753 ((|#1| |#1|) 78)))
+(((-970 |#1|) (-10 -7 (-15 -3439 ((-112) |#1|)) (-15 -3753 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -3090 ((-652 |#1|) |#1| |#1|))) (-553)) (T -970))
+((-3090 (*1 *2 *3 *3) (-12 (-5 *2 (-652 *3)) (-5 *1 (-970 *3)) (-4 *3 (-553)))) (-1802 (*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))) (-3753 (*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))) (-3439 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-970 *3)) (-4 *3 (-553)))))
+(-10 -7 (-15 -3439 ((-112) |#1|)) (-15 -3753 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -3090 ((-652 |#1|) |#1| |#1|)))
+((-4116 (((-1284) (-870)) 9)))
+(((-971) (-10 -7 (-15 -4116 ((-1284) (-870))))) (T -971))
+((-4116 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-971)))))
+(-10 -7 (-15 -4116 ((-1284) (-870))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 78 (|has| |#1| (-564)))) (-1697 (($ $) 79 (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 34)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1874 (($ $) 31)) (-2982 (((-3 $ "failed") $) 42)) (-2889 (($ $) NIL (|has| |#1| (-460)))) (-3163 (($ $ |#1| |#2| $) 62)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) 17)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| |#2|) NIL)) (-3808 ((|#2| $) 24)) (-2008 (($ (-1 |#2| |#2|) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1840 (($ $) 28)) (-1853 ((|#1| $) 26)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) 51)) (-1829 ((|#1| $) NIL)) (-2697 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-564))))) (-3453 (((-3 $ "failed") $ $) 91 (|has| |#1| (-564))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-564)))) (-1497 ((|#2| $) 22)) (-3262 ((|#1| $) NIL (|has| |#1| (-460)))) (-3491 (((-870) $) NIL) (($ (-572)) 46) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 41) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ |#2|) 37)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) 15 T CONST)) (-4257 (($ $ $ (-779)) 74 (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) 84 (|has| |#1| (-564)))) (-2602 (($) 27 T CONST)) (-2619 (($) 12 T CONST)) (-3921 (((-112) $ $) 83)) (-4029 (($ $ |#1|) 92 (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) 69) (($ $ (-779)) 67)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-972 |#1| |#2|) (-13 (-332 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| |#2| (-132)) (-15 -2697 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|))) (-1060) (-800)) (T -972))
+((-2697 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-972 *3 *2)) (-4 *2 (-132)) (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *2 (-800)))))
+(-13 (-332 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| |#2| (-132)) (-15 -2697 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL (-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))))) (-2486 (($ $ $) 65 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))) (-2092 (((-3 $ "failed") $ $) 52 (-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))))) (-3037 (((-779)) 36 (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-3472 ((|#2| $) 22)) (-2196 ((|#1| $) 21)) (-1586 (($) NIL (-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))) CONST)) (-2982 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (-2688 (($) NIL (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-4422 (((-112) $) NIL (-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (-2536 (($ $ $) NIL (-3783 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3928 (($ $ $) NIL (-3783 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-2939 (($ |#1| |#2|) 20)) (-4370 (((-930) $) NIL (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 39 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-1795 (($ (-930)) NIL (-12 (|has| |#1| (-375)) (|has| |#2| (-375))))) (-2614 (((-1131) $) NIL)) (-4242 (($ $ $) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-1433 (($ $ $) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-3491 (((-870) $) 14)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 42 (-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))) CONST)) (-2619 (($) 25 (-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))) CONST)) (-3976 (((-112) $ $) NIL (-3783 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3954 (((-112) $ $) NIL (-3783 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3921 (((-112) $ $) 19)) (-3965 (((-112) $ $) NIL (-3783 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-3943 (((-112) $ $) 69 (-3783 (-12 (|has| |#1| (-801)) (|has| |#2| (-801))) (-12 (|has| |#1| (-858)) (|has| |#2| (-858)))))) (-4029 (($ $ $) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481))))) (-4018 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4005 (($ $ $) 45 (-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801)))))) (** (($ $ (-572)) NIL (-12 (|has| |#1| (-481)) (|has| |#2| (-481)))) (($ $ (-779)) 32 (-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734))))) (($ $ (-930)) NIL (-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))) (* (($ (-572) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-779) $) 48 (-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))) (($ (-930) $) NIL (-3783 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-801)) (|has| |#2| (-801))))) (($ $ $) 28 (-3783 (-12 (|has| |#1| (-481)) (|has| |#2| (-481))) (-12 (|has| |#1| (-734)) (|has| |#2| (-734)))))))
+(((-973 |#1| |#2|) (-13 (-1111) (-10 -8 (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-734)) (IF (|has| |#2| (-734)) (-6 (-734)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-481)) (IF (|has| |#2| (-481)) (-6 (-481)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-801)) (IF (|has| |#2| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-858)) (IF (|has| |#2| (-858)) (-6 (-858)) |%noBranch|) |%noBranch|) (-15 -2939 ($ |#1| |#2|)) (-15 -2196 (|#1| $)) (-15 -3472 (|#2| $)))) (-1111) (-1111)) (T -973))
+((-2939 (*1 *1 *2 *3) (-12 (-5 *1 (-973 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2196 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1111)))) (-3472 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-973 *3 *2)) (-4 *3 (-1111)))))
+(-13 (-1111) (-10 -8 (IF (|has| |#1| (-375)) (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-734)) (IF (|has| |#2| (-734)) (-6 (-734)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-481)) (IF (|has| |#2| (-481)) (-6 (-481)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-801)) (IF (|has| |#2| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-858)) (IF (|has| |#2| (-858)) (-6 (-858)) |%noBranch|) |%noBranch|) (-15 -2939 ($ |#1| |#2|)) (-15 -2196 (|#1| $)) (-15 -3472 (|#2| $))))
+((-1653 (((-1115) $) 12)) (-3304 (($ (-514) (-1115)) 14)) (-2402 (((-514) $) 9)) (-3491 (((-870) $) 24)))
+(((-974) (-13 (-621 (-870)) (-10 -8 (-15 -2402 ((-514) $)) (-15 -1653 ((-1115) $)) (-15 -3304 ($ (-514) (-1115)))))) (T -974))
+((-2402 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-974)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-974)))) (-3304 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-974)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -2402 ((-514) $)) (-15 -1653 ((-1115) $)) (-15 -3304 ($ (-514) (-1115)))))
+((-3464 (((-112) $ $) NIL)) (-2611 (($) NIL T CONST)) (-3814 (($ $ $) 30)) (-3795 (($ $) 24)) (-3618 (((-1170) $) NIL)) (-3581 (((-699 (-881 $ $)) $) 55)) (-2438 (((-699 $) $) 45)) (-3621 (((-699 (-881 $ $)) $) 56)) (-3815 (((-699 (-881 $ $)) $) 57)) (-4300 (((-699 |#1|) $) 36)) (-3997 (((-699 (-881 $ $)) $) 54)) (-3546 (($ $ $) 31)) (-2614 (((-1131) $) NIL)) (-1383 (($) NIL T CONST)) (-3742 (($ $ $) 32)) (-3087 (($ $ $) 29)) (-1902 (($ $ $) 27)) (-3491 (((-870) $) 59) (($ |#1|) 12)) (-3424 (((-112) $ $) NIL)) (-3804 (($ $ $) 28)) (-3921 (((-112) $ $) NIL)))
+(((-975 |#1|) (-13 (-978) (-624 |#1|) (-10 -8 (-15 -4300 ((-699 |#1|) $)) (-15 -2438 ((-699 $) $)) (-15 -3997 ((-699 (-881 $ $)) $)) (-15 -3581 ((-699 (-881 $ $)) $)) (-15 -3621 ((-699 (-881 $ $)) $)) (-15 -3815 ((-699 (-881 $ $)) $)) (-15 -1902 ($ $ $)) (-15 -3087 ($ $ $)))) (-1111)) (T -975))
+((-4300 (*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-699 (-975 *3))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))) (-1902 (*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))) (-3087 (*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))))
+(-13 (-978) (-624 |#1|) (-10 -8 (-15 -4300 ((-699 |#1|) $)) (-15 -2438 ((-699 $) $)) (-15 -3997 ((-699 (-881 $ $)) $)) (-15 -3581 ((-699 (-881 $ $)) $)) (-15 -3621 ((-699 (-881 $ $)) $)) (-15 -3815 ((-699 (-881 $ $)) $)) (-15 -1902 ($ $ $)) (-15 -3087 ($ $ $))))
+((-3221 (((-975 |#1|) (-975 |#1|)) 46)) (-2459 (((-975 |#1|) (-975 |#1|)) 22)) (-1613 (((-1113 |#1|) (-975 |#1|)) 41)))
+(((-976 |#1|) (-13 (-1229) (-10 -7 (-15 -2459 ((-975 |#1|) (-975 |#1|))) (-15 -1613 ((-1113 |#1|) (-975 |#1|))) (-15 -3221 ((-975 |#1|) (-975 |#1|))))) (-1111)) (T -976))
+((-2459 (*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1111)) (-5 *2 (-1113 *4)) (-5 *1 (-976 *4)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3)))))
+(-13 (-1229) (-10 -7 (-15 -2459 ((-975 |#1|) (-975 |#1|))) (-15 -1613 ((-1113 |#1|) (-975 |#1|))) (-15 -3221 ((-975 |#1|) (-975 |#1|)))))
+((-3161 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 29)))
+(((-977 |#1| |#2|) (-13 (-1229) (-10 -7 (-15 -3161 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|))))) (-1111) (-1111)) (T -977))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *2 (-975 *6)) (-5 *1 (-977 *5 *6)))))
+(-13 (-1229) (-10 -7 (-15 -3161 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))))
+((-3464 (((-112) $ $) 15)) (-2611 (($) 14 T CONST)) (-3814 (($ $ $) 6)) (-3795 (($ $) 8)) (-3618 (((-1170) $) 19)) (-3546 (($ $ $) 12)) (-2614 (((-1131) $) 18)) (-1383 (($) 13 T CONST)) (-3742 (($ $ $) 11)) (-3491 (((-870) $) 17)) (-3424 (((-112) $ $) 20)) (-3804 (($ $ $) 7)) (-3921 (((-112) $ $) 16)))
+(((-978) (-141)) (T -978))
+((-2611 (*1 *1) (-4 *1 (-978))) (-1383 (*1 *1) (-4 *1 (-978))) (-3546 (*1 *1 *1 *1) (-4 *1 (-978))) (-3742 (*1 *1 *1 *1) (-4 *1 (-978))))
+(-13 (-113) (-1111) (-10 -8 (-15 -2611 ($) -4338) (-15 -1383 ($) -4338) (-15 -3546 ($ $ $)) (-15 -3742 ($ $ $))))
+(((-102) . T) ((-113) . T) ((-621 (-870)) . T) ((-1111) . T) ((-1229) . T))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-1586 (($) 7 T CONST)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2363 (($ $ $) 44)) (-1377 (($ $ $) 45)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3928 ((|#1| $) 46)) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-979 |#1|) (-141) (-858)) (T -979))
+((-3928 (*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))) (-1377 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))) (-2363 (*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4454) (-15 -3928 (|t#1| $)) (-15 -1377 ($ $ $)) (-15 -2363 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3230 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1370 |#2|)) |#2| |#2|) 105)) (-3545 ((|#2| |#2| |#2|) 103)) (-2097 (((-2 (|:| |coef2| |#2|) (|:| -1370 |#2|)) |#2| |#2|) 107)) (-2683 (((-2 (|:| |coef1| |#2|) (|:| -1370 |#2|)) |#2| |#2|) 109)) (-2507 (((-2 (|:| |coef2| |#2|) (|:| -1478 |#1|)) |#2| |#2|) 131 (|has| |#1| (-460)))) (-1650 (((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|) 56)) (-1407 (((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|) 80)) (-4098 (((-2 (|:| |coef1| |#2|) (|:| -3829 |#1|)) |#2| |#2|) 82)) (-2141 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1907 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 89)) (-4294 (((-2 (|:| |coef2| |#2|) (|:| -2020 |#1|)) |#2|) 121)) (-1419 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 92)) (-3469 (((-652 (-779)) |#2| |#2|) 102)) (-4378 ((|#1| |#2| |#2|) 50)) (-4111 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1478 |#1|)) |#2| |#2|) 129 (|has| |#1| (-460)))) (-1478 ((|#1| |#2| |#2|) 127 (|has| |#1| (-460)))) (-1495 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|) 54)) (-1937 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|) 79)) (-3829 ((|#1| |#2| |#2|) 76)) (-3369 (((-2 (|:| -2379 |#1|) (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2|) 41)) (-4046 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2757 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3276 ((|#2| |#2| |#2|) 93)) (-2281 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 87)) (-2481 ((|#2| |#2| |#2| (-779)) 85)) (-1370 ((|#2| |#2| |#2|) 135 (|has| |#1| (-460)))) (-3453 (((-1279 |#2|) (-1279 |#2|) |#1|) 22)) (-2501 (((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2|) 46)) (-1366 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2020 |#1|)) |#2|) 119)) (-2020 ((|#1| |#2|) 116)) (-3157 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779)) 91)) (-2670 ((|#2| |#2| |#2| (-779)) 90)) (-4276 (((-652 |#2|) |#2| |#2|) 99)) (-2364 ((|#2| |#2| |#1| |#1| (-779)) 62)) (-3449 ((|#1| |#1| |#1| (-779)) 61)) (* (((-1279 |#2|) |#1| (-1279 |#2|)) 17)))
+(((-980 |#1| |#2|) (-10 -7 (-15 -3829 (|#1| |#2| |#2|)) (-15 -1937 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -1407 ((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -4098 ((-2 (|:| |coef1| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2| (-779))) (-15 -2281 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -1907 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -2670 (|#2| |#2| |#2| (-779))) (-15 -3157 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -1419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3276 (|#2| |#2| |#2|)) (-15 -2757 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2141 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3230 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1370 |#2|)) |#2| |#2|)) (-15 -2097 ((-2 (|:| |coef2| |#2|) (|:| -1370 |#2|)) |#2| |#2|)) (-15 -2683 ((-2 (|:| |coef1| |#2|) (|:| -1370 |#2|)) |#2| |#2|)) (-15 -2020 (|#1| |#2|)) (-15 -1366 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2020 |#1|)) |#2|)) (-15 -4294 ((-2 (|:| |coef2| |#2|) (|:| -2020 |#1|)) |#2|)) (-15 -4276 ((-652 |#2|) |#2| |#2|)) (-15 -3469 ((-652 (-779)) |#2| |#2|)) (IF (|has| |#1| (-460)) (PROGN (-15 -1478 (|#1| |#2| |#2|)) (-15 -4111 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1478 |#1|)) |#2| |#2|)) (-15 -2507 ((-2 (|:| |coef2| |#2|) (|:| -1478 |#1|)) |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1279 |#2|) |#1| (-1279 |#2|))) (-15 -3453 ((-1279 |#2|) (-1279 |#2|) |#1|)) (-15 -3369 ((-2 (|:| -2379 |#1|) (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2|)) (-15 -2501 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2|)) (-15 -3449 (|#1| |#1| |#1| (-779))) (-15 -2364 (|#2| |#2| |#1| |#1| (-779))) (-15 -4046 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4378 (|#1| |#2| |#2|)) (-15 -1495 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -1650 ((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|))) (-564) (-1255 |#1|)) (T -980))
+((-1650 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3829 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1495 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3829 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-4378 (*1 *2 *3 *3) (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))) (-4046 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-2364 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-3449 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *2 (-564)) (-5 *1 (-980 *2 *4)) (-4 *4 (-1255 *2)))) (-2501 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3369 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -2379 *4) (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3453 (*1 *2 *2 *3) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564)) (-5 *1 (-980 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564)) (-5 *1 (-980 *3 *4)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-460)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-2507 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1478 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-4111 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1478 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1478 (*1 *2 *3 *3) (-12 (-4 *2 (-564)) (-4 *2 (-460)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))) (-3469 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-779))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-4276 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-4294 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2020 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1366 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2020 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2020 (*1 *2 *3) (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))) (-2683 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1370 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2097 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1370 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3230 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1370 *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3545 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-2141 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-2757 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3276 (*1 *2 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))) (-1419 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-3157 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-2670 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2)) (-4 *2 (-1255 *4)))) (-1907 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-2281 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))) (-2481 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2)) (-4 *2 (-1255 *4)))) (-4098 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3829 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1407 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3829 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-1937 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3829 *4))) (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))) (-3829 (*1 *2 *3 *3) (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))))
+(-10 -7 (-15 -3829 (|#1| |#2| |#2|)) (-15 -1937 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -1407 ((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -4098 ((-2 (|:| |coef1| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2| (-779))) (-15 -2281 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -1907 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -2670 (|#2| |#2| |#2| (-779))) (-15 -3157 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -1419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-779))) (-15 -3276 (|#2| |#2| |#2|)) (-15 -2757 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2141 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3230 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1370 |#2|)) |#2| |#2|)) (-15 -2097 ((-2 (|:| |coef2| |#2|) (|:| -1370 |#2|)) |#2| |#2|)) (-15 -2683 ((-2 (|:| |coef1| |#2|) (|:| -1370 |#2|)) |#2| |#2|)) (-15 -2020 (|#1| |#2|)) (-15 -1366 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2020 |#1|)) |#2|)) (-15 -4294 ((-2 (|:| |coef2| |#2|) (|:| -2020 |#1|)) |#2|)) (-15 -4276 ((-652 |#2|) |#2| |#2|)) (-15 -3469 ((-652 (-779)) |#2| |#2|)) (IF (|has| |#1| (-460)) (PROGN (-15 -1478 (|#1| |#2| |#2|)) (-15 -4111 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1478 |#1|)) |#2| |#2|)) (-15 -2507 ((-2 (|:| |coef2| |#2|) (|:| -1478 |#1|)) |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1279 |#2|) |#1| (-1279 |#2|))) (-15 -3453 ((-1279 |#2|) (-1279 |#2|) |#1|)) (-15 -3369 ((-2 (|:| -2379 |#1|) (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2|)) (-15 -2501 ((-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) |#2| |#2|)) (-15 -3449 (|#1| |#1| |#1| (-779))) (-15 -2364 (|#2| |#2| |#1| |#1| (-779))) (-15 -4046 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4378 (|#1| |#2| |#2|)) (-15 -1495 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)) (-15 -1650 ((-2 (|:| |coef2| |#2|) (|:| -3829 |#1|)) |#2| |#2|)))
+((-3464 (((-112) $ $) NIL)) (-3550 (((-1228) $) 13)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4410 (((-1146) $) 10)) (-3491 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-981) (-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3550 ((-1228) $))))) (T -981))
+((-4410 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-981)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-981)))))
+(-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3550 ((-1228) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 40)) (-2092 (((-3 $ "failed") $ $) 54)) (-1586 (($) NIL T CONST)) (-2264 (((-652 (-881 (-930) (-930))) $) 67)) (-1402 (((-930) $) 94)) (-1442 (((-652 (-930)) $) 17)) (-4347 (((-1168 $) (-779)) 39)) (-4003 (($ (-652 (-930))) 16)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4242 (($ $) 70)) (-3491 (((-870) $) 90) (((-652 (-930)) $) 11)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 8 T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 44)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 42)) (-4005 (($ $ $) 46)) (* (($ (-930) $) NIL) (($ (-779) $) 49)) (-3475 (((-779) $) 22)))
+(((-982) (-13 (-803) (-621 (-652 (-930))) (-10 -8 (-15 -4003 ($ (-652 (-930)))) (-15 -1442 ((-652 (-930)) $)) (-15 -3475 ((-779) $)) (-15 -4347 ((-1168 $) (-779))) (-15 -2264 ((-652 (-881 (-930) (-930))) $)) (-15 -1402 ((-930) $)) (-15 -4242 ($ $))))) (T -982))
+((-4003 (*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-982)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1168 (-982))) (-5 *1 (-982)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-930) (-930)))) (-5 *1 (-982)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-982)))) (-4242 (*1 *1 *1) (-5 *1 (-982))))
+(-13 (-803) (-621 (-652 (-930))) (-10 -8 (-15 -4003 ($ (-652 (-930)))) (-15 -1442 ((-652 (-930)) $)) (-15 -3475 ((-779) $)) (-15 -4347 ((-1168 $) (-779))) (-15 -2264 ((-652 (-881 (-930) (-930))) $)) (-15 -1402 ((-930) $)) (-15 -4242 ($ $))))
+((-4029 (($ $ |#2|) 31)) (-4018 (($ $) 23) (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-415 (-572)) $) 27) (($ $ (-415 (-572))) 29)))
+(((-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -4029 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|))) (-984 |#2| |#3| |#4|) (-1060) (-800) (-858)) (T -983))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-415 (-572)))) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 -4029 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 * (|#1| (-930) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 |#3|) $) 86)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-2969 (((-112) $) 85)) (-4422 (((-112) $) 35)) (-3357 (((-112) $) 74)) (-3042 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-652 |#3|) (-652 |#2|)) 87)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-1497 ((|#2| $) 76)) (-3610 (($ $) 84)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4206 ((|#1| $ |#2|) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-984 |#1| |#2| |#3|) (-141) (-1060) (-800) (-858)) (T -984))
+((-1853 (*1 *2 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *3 (-800)) (-4 *4 (-858)) (-4 *2 (-1060)))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *4 (-858)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *2 *4)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *2 (-800)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-984 *4 *3 *2)) (-4 *4 (-1060)) (-4 *3 (-800)) (-4 *2 (-858)))) (-3042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 *5)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-800)) (-4 *6 (-858)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800)) (-4 *5 (-858)) (-5 *2 (-652 *5)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800)) (-4 *5 (-858)) (-5 *2 (-112)))) (-3610 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800)) (-4 *4 (-858)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3042 ($ $ |t#3| |t#2|)) (-15 -3042 ($ $ (-652 |t#3|) (-652 |t#2|))) (-15 -1840 ($ $)) (-15 -1853 (|t#1| $)) (-15 -1497 (|t#2| $)) (-15 -2220 ((-652 |t#3|) $)) (-15 -2969 ((-112) $)) (-15 -3610 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-296) |has| |#1| (-564)) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3031 (((-1105 (-227)) $) 8)) (-3023 (((-1105 (-227)) $) 9)) (-3009 (((-1105 (-227)) $) 10)) (-1716 (((-652 (-652 (-952 (-227)))) $) 11)) (-3491 (((-870) $) 6)))
+(((-985) (-141)) (T -985))
+((-1716 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-652 (-652 (-952 (-227))))))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
+(-13 (-621 (-870)) (-10 -8 (-15 -1716 ((-652 (-652 (-952 (-227)))) $)) (-15 -3009 ((-1105 (-227)) $)) (-15 -3023 ((-1105 (-227)) $)) (-15 -3031 ((-1105 (-227)) $))))
+(((-621 (-870)) . T))
+((-2220 (((-652 |#4|) $) 23)) (-2029 (((-112) $) 55)) (-4308 (((-112) $) 54)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#4|) 42)) (-3571 (((-112) $) 56)) (-3057 (((-112) $ $) 62)) (-1528 (((-112) $ $) 65)) (-2690 (((-112) $) 60)) (-4400 (((-652 |#5|) (-652 |#5|) $) 98)) (-3575 (((-652 |#5|) (-652 |#5|) $) 95)) (-2336 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1677 (((-652 |#4|) $) 27)) (-2002 (((-112) |#4| $) 34)) (-1798 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3399 (($ $ |#4|) 39)) (-3831 (($ $ |#4|) 38)) (-1757 (($ $ |#4|) 40)) (-3921 (((-112) $ $) 46)))
+(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4308 ((-112) |#1|)) (-15 -4400 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -3575 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -2336 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1798 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3571 ((-112) |#1|)) (-15 -1528 ((-112) |#1| |#1|)) (-15 -3057 ((-112) |#1| |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -2029 ((-112) |#1|)) (-15 -2641 ((-2 (|:| |under| |#1|) (|:| -1609 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -1757 (|#1| |#1| |#4|)) (-15 -3831 (|#1| |#1| |#4|)) (-15 -2002 ((-112) |#4| |#1|)) (-15 -1677 ((-652 |#4|) |#1|)) (-15 -2220 ((-652 |#4|) |#1|)) (-15 -3921 ((-112) |#1| |#1|))) (-987 |#2| |#3| |#4| |#5|) (-1060) (-801) (-858) (-1076 |#2| |#3| |#4|)) (T -986))
+NIL
+(-10 -8 (-15 -4308 ((-112) |#1|)) (-15 -4400 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -3575 ((-652 |#5|) (-652 |#5|) |#1|)) (-15 -2336 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1798 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3571 ((-112) |#1|)) (-15 -1528 ((-112) |#1| |#1|)) (-15 -3057 ((-112) |#1| |#1|)) (-15 -2690 ((-112) |#1|)) (-15 -2029 ((-112) |#1|)) (-15 -2641 ((-2 (|:| |under| |#1|) (|:| -1609 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -1757 (|#1| |#1| |#4|)) (-15 -3831 (|#1| |#1| |#4|)) (-15 -2002 ((-112) |#4| |#1|)) (-15 -1677 ((-652 |#4|) |#1|)) (-15 -2220 ((-652 |#4|) |#1|)) (-15 -3921 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-2220 (((-652 |#3|) $) 34)) (-2029 (((-112) $) 27)) (-4308 (((-112) $) 18 (|has| |#1| (-564)))) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) 28)) (-2938 (((-112) $ (-779)) 45)) (-1424 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454)))) (-1586 (($) 46 T CONST)) (-3571 (((-112) $) 23 (|has| |#1| (-564)))) (-3057 (((-112) $ $) 25 (|has| |#1| (-564)))) (-1528 (((-112) $ $) 24 (|has| |#1| (-564)))) (-2690 (((-112) $) 26 (|has| |#1| (-564)))) (-4400 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) 37)) (-1869 (($ (-652 |#4|)) 36)) (-3955 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454)))) (-1442 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-3698 ((|#3| $) 35)) (-2545 (((-112) $ (-779)) 44)) (-2396 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 48)) (-1677 (((-652 |#3|) $) 33)) (-2002 (((-112) |#3| $) 32)) (-3818 (((-112) $ (-779)) 43)) (-3618 (((-1170) $) 10)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-2614 (((-1131) $) 11)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3089 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) 39)) (-3712 (((-112) $) 42)) (-1321 (($) 41)) (-1371 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3679 (($ $) 40)) (-3222 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 61)) (-3399 (($ $ |#3|) 29)) (-3831 (($ $ |#3|) 31)) (-1757 (($ $ |#3|) 30)) (-3491 (((-870) $) 12) (((-652 |#4|) $) 38)) (-3424 (((-112) $ $) 9)) (-3776 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 6)) (-3475 (((-779) $) 47 (|has| $ (-6 -4454)))))
+(((-987 |#1| |#2| |#3| |#4|) (-141) (-1060) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -987))
+((-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *1 (-987 *3 *4 *5 *6)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *1 (-987 *3 *4 *5 *6)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-1076 *3 *4 *2)) (-4 *2 (-858)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))) (-2002 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *3 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112)))) (-3831 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))) (-1757 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1609 *1) (|:| |upper| *1))) (-4 *1 (-987 *4 *5 *3 *6)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-3057 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-1528 (*1 *2 *1 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))) (-1798 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2336 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3575 (*1 *2 *2 *1) (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)))) (-4400 (*1 *2 *2 *1) (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-5 *2 (-112)))))
+(-13 (-1111) (-152 |t#4|) (-621 (-652 |t#4|)) (-10 -8 (-6 -4454) (-15 -3072 ((-3 $ "failed") (-652 |t#4|))) (-15 -1869 ($ (-652 |t#4|))) (-15 -3698 (|t#3| $)) (-15 -2220 ((-652 |t#3|) $)) (-15 -1677 ((-652 |t#3|) $)) (-15 -2002 ((-112) |t#3| $)) (-15 -3831 ($ $ |t#3|)) (-15 -1757 ($ $ |t#3|)) (-15 -3399 ($ $ |t#3|)) (-15 -2641 ((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |t#3|)) (-15 -2029 ((-112) $)) (IF (|has| |t#1| (-564)) (PROGN (-15 -2690 ((-112) $)) (-15 -3057 ((-112) $ $)) (-15 -1528 ((-112) $ $)) (-15 -3571 ((-112) $)) (-15 -1798 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2336 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3575 ((-652 |t#4|) (-652 |t#4|) $)) (-15 -4400 ((-652 |t#4|) (-652 |t#4|) $)) (-15 -4308 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-1111) . T) ((-1229) . T))
+((-4045 (((-652 |#4|) |#4| |#4|) 136)) (-1514 (((-652 |#4|) (-652 |#4|) (-112)) 125 (|has| |#1| (-460))) (((-652 |#4|) (-652 |#4|)) 126 (|has| |#1| (-460)))) (-1811 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 44)) (-2740 (((-112) |#4|) 43)) (-4303 (((-652 |#4|) |#4|) 121 (|has| |#1| (-460)))) (-1363 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-1 (-112) |#4|) (-652 |#4|)) 24)) (-3168 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|)) 30)) (-1814 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|)) 31)) (-2511 (((-3 (-2 (|:| |bas| (-484 |#1| |#2| |#3| |#4|)) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|)) 90)) (-4215 (((-652 |#4|) (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2897 (((-652 |#4|) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3970 (((-652 |#4|) (-652 |#4|)) 128)) (-1911 (((-652 |#4|) (-652 |#4|) (-652 |#4|) (-112)) 59) (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 61)) (-4069 ((|#4| |#4| (-652 |#4|)) 60)) (-2720 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 132 (|has| |#1| (-460)))) (-2528 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 135 (|has| |#1| (-460)))) (-3131 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 134 (|has| |#1| (-460)))) (-1648 (((-652 |#4|) (-652 |#4|) (-652 |#4|) (-1 (-652 |#4|) (-652 |#4|))) 105) (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 107) (((-652 |#4|) (-652 |#4|) |#4|) 140) (((-652 |#4|) |#4| |#4|) 137) (((-652 |#4|) (-652 |#4|)) 106)) (-1428 (((-652 |#4|) (-652 |#4|) (-652 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-3244 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 52)) (-3256 (((-112) (-652 |#4|)) 79)) (-2384 (((-112) (-652 |#4|) (-652 (-652 |#4|))) 67)) (-2796 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 37)) (-2871 (((-112) |#4|) 36)) (-4301 (((-652 |#4|) (-652 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-3473 (((-652 |#4|) (-652 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-3314 (((-652 |#4|) (-652 |#4|)) 83)) (-3099 (((-652 |#4|) (-652 |#4|)) 97)) (-2163 (((-112) (-652 |#4|) (-652 |#4|)) 65)) (-4150 (((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|)) 50)) (-2625 (((-112) |#4|) 45)))
+(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1648 ((-652 |#4|) (-652 |#4|))) (-15 -1648 ((-652 |#4|) |#4| |#4|)) (-15 -3970 ((-652 |#4|) (-652 |#4|))) (-15 -4045 ((-652 |#4|) |#4| |#4|)) (-15 -1648 ((-652 |#4|) (-652 |#4|) |#4|)) (-15 -1648 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -1648 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-1 (-652 |#4|) (-652 |#4|)))) (-15 -2163 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2384 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -3256 ((-112) (-652 |#4|))) (-15 -1363 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-1 (-112) |#4|) (-652 |#4|))) (-15 -3168 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -1814 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -3244 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2740 ((-112) |#4|)) (-15 -1811 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2871 ((-112) |#4|)) (-15 -2796 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2625 ((-112) |#4|)) (-15 -4150 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -1911 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -1911 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-112))) (-15 -4069 (|#4| |#4| (-652 |#4|))) (-15 -3314 ((-652 |#4|) (-652 |#4|))) (-15 -2511 ((-3 (-2 (|:| |bas| (-484 |#1| |#2| |#3| |#4|)) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|))) (-15 -3099 ((-652 |#4|) (-652 |#4|))) (-15 -4215 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2897 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-460)) (PROGN (-15 -4303 ((-652 |#4|) |#4|)) (-15 -1514 ((-652 |#4|) (-652 |#4|))) (-15 -1514 ((-652 |#4|) (-652 |#4|) (-112))) (-15 -2720 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -3131 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -2528 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (PROGN (-15 -3473 ((-652 |#4|) (-652 |#4|))) (-15 -4301 ((-652 |#4|) (-652 |#4|))) (-15 -1428 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) |%noBranch|)) (-564) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -988))
+((-1428 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-4301 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-2528 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-3131 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-2720 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-1514 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-4303 (*1 *2 *3) (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-2897 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-988 *5 *6 *7 *8)))) (-4215 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-652 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *1 (-988 *6 *7 *8 *9)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-2511 (*1 *2 *3) (|partial| -12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-484 *4 *5 *6 *7)) (|:| -2620 (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-4069 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *2)))) (-1911 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))) (-1911 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-4150 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-2625 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-2796 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-2871 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-2740 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-3244 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7)))) (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8)))) (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8)))) (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8)))) (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8)))) (-2163 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7)))) (-1648 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-652 *7) (-652 *7))) (-5 *2 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))) (-1648 (*1 *2 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-1648 (*1 *2 *2 *3) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *3)))) (-4045 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))) (-1648 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1648 ((-652 |#4|) (-652 |#4|))) (-15 -1648 ((-652 |#4|) |#4| |#4|)) (-15 -3970 ((-652 |#4|) (-652 |#4|))) (-15 -4045 ((-652 |#4|) |#4| |#4|)) (-15 -1648 ((-652 |#4|) (-652 |#4|) |#4|)) (-15 -1648 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -1648 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-1 (-652 |#4|) (-652 |#4|)))) (-15 -2163 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -2384 ((-112) (-652 |#4|) (-652 (-652 |#4|)))) (-15 -3256 ((-112) (-652 |#4|))) (-15 -1363 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-1 (-112) |#4|) (-652 |#4|))) (-15 -3168 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -1814 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 (-1 (-112) |#4|)) (-652 |#4|))) (-15 -3244 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2740 ((-112) |#4|)) (-15 -1811 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2871 ((-112) |#4|)) (-15 -2796 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -2625 ((-112) |#4|)) (-15 -4150 ((-2 (|:| |goodPols| (-652 |#4|)) (|:| |badPols| (-652 |#4|))) (-652 |#4|))) (-15 -1911 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -1911 ((-652 |#4|) (-652 |#4|) (-652 |#4|) (-112))) (-15 -4069 (|#4| |#4| (-652 |#4|))) (-15 -3314 ((-652 |#4|) (-652 |#4|))) (-15 -2511 ((-3 (-2 (|:| |bas| (-484 |#1| |#2| |#3| |#4|)) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|))) (-15 -3099 ((-652 |#4|) (-652 |#4|))) (-15 -4215 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2897 ((-652 |#4|) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-460)) (PROGN (-15 -4303 ((-652 |#4|) |#4|)) (-15 -1514 ((-652 |#4|) (-652 |#4|))) (-15 -1514 ((-652 |#4|) (-652 |#4|) (-112))) (-15 -2720 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -3131 ((-652 |#4|) (-652 |#4|) (-652 |#4|))) (-15 -2528 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (PROGN (-15 -3473 ((-652 |#4|) (-652 |#4|))) (-15 -4301 ((-652 |#4|) (-652 |#4|))) (-15 -1428 ((-652 |#4|) (-652 |#4|) (-652 |#4|)))) |%noBranch|) |%noBranch|))
+((-2661 (((-2 (|:| R (-697 |#1|)) (|:| A (-697 |#1|)) (|:| |Ainv| (-697 |#1|))) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2434 (((-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|)) 46)) (-2277 (((-697 |#1|) (-697 |#1|) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-989 |#1|) (-10 -7 (-15 -2661 ((-2 (|:| R (-697 |#1|)) (|:| A (-697 |#1|)) (|:| |Ainv| (-697 |#1|))) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2277 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2434 ((-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|)))) (-370)) (T -989))
+((-2434 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-5 *2 (-652 (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5))))) (-5 *1 (-989 *5)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)))) (-2277 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-697 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370)) (-5 *1 (-989 *5)))) (-2661 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-370)) (-5 *2 (-2 (|:| R (-697 *6)) (|:| A (-697 *6)) (|:| |Ainv| (-697 *6)))) (-5 *1 (-989 *6)) (-5 *3 (-697 *6)))))
+(-10 -7 (-15 -2661 ((-2 (|:| R (-697 |#1|)) (|:| A (-697 |#1|)) (|:| |Ainv| (-697 |#1|))) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2277 ((-697 |#1|) (-697 |#1|) (-697 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2434 ((-652 (-2 (|:| C (-697 |#1|)) (|:| |g| (-1279 |#1|)))) (-697 |#1|) (-1279 |#1|))))
+((-2359 (((-426 |#4|) |#4|) 56)))
+(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2359 ((-426 |#4|) |#4|))) (-858) (-801) (-460) (-958 |#3| |#2| |#1|)) (T -990))
+((-2359 (*1 *2 *3) (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-460)) (-5 *2 (-426 *3)) (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
+(-10 -7 (-15 -2359 ((-426 |#4|) |#4|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3488 (($ (-779)) 115 (|has| |#1| (-23)))) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-4095 (($ $) 93 (|has| $ (-6 -4455)))) (-1852 (($ $) 103)) (-3955 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 52)) (-3239 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-2460 (($ (-652 |#1|)) 121)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1504 (((-697 |#1|) $ $) 108 (|has| |#1| (-1060)))) (-2924 (($ (-779) |#1|) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2536 (($ $ $) 90 (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3928 (($ $ $) 89 (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2691 ((|#1| $) 105 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-3818 (((-112) $ (-779)) 10)) (-2040 ((|#1| $) 106 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 43 (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3803 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-3103 (($ $ (-652 |#1|)) 119)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-1606 ((|#1| $ $) 109 (|has| |#1| (-1060)))) (-1670 (((-930) $) 120)) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3947 (($ $ $) 107)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2561 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| |#1| (-622 (-544)))) (($ (-652 |#1|)) 122)) (-3503 (($ (-652 |#1|)) 72)) (-2121 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 86 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3965 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-858)))) (-4018 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4005 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-572) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-734))) (($ $ |#1|) 110 (|has| |#1| (-734)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-991 |#1|) (-141) (-1060)) (T -991))
+((-2460 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-991 *3)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1060)) (-5 *2 (-930)))) (-3947 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1060)))) (-3103 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-991 *3)) (-4 *3 (-1060)))))
+(-13 (-1277 |t#1|) (-626 (-652 |t#1|)) (-10 -8 (-15 -2460 ($ (-652 |t#1|))) (-15 -1670 ((-930) $)) (-15 -3947 ($ $ $)) (-15 -3103 ($ $ (-652 |t#1|)))))
+(((-34) . T) ((-102) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-626 (-652 |#1|)) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-19 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T) ((-1277 |#1|) . T))
+((-3161 (((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)) 17)))
+(((-992 |#1| |#2|) (-10 -7 (-15 -3161 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) (-1060) (-1060)) (T -992))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-952 *6)) (-5 *1 (-992 *5 *6)))))
+(-10 -7 (-15 -3161 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|))))
+((-3576 ((|#1| (-952 |#1|)) 14)) (-4067 ((|#1| (-952 |#1|)) 13)) (-1843 ((|#1| (-952 |#1|)) 12)) (-1543 ((|#1| (-952 |#1|)) 16)) (-3747 ((|#1| (-952 |#1|)) 24)) (-3779 ((|#1| (-952 |#1|)) 15)) (-3200 ((|#1| (-952 |#1|)) 17)) (-3186 ((|#1| (-952 |#1|)) 23)) (-3268 ((|#1| (-952 |#1|)) 22)))
+(((-993 |#1|) (-10 -7 (-15 -1843 (|#1| (-952 |#1|))) (-15 -4067 (|#1| (-952 |#1|))) (-15 -3576 (|#1| (-952 |#1|))) (-15 -3779 (|#1| (-952 |#1|))) (-15 -1543 (|#1| (-952 |#1|))) (-15 -3200 (|#1| (-952 |#1|))) (-15 -3268 (|#1| (-952 |#1|))) (-15 -3186 (|#1| (-952 |#1|))) (-15 -3747 (|#1| (-952 |#1|)))) (-1060)) (T -993))
+((-3747 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(-10 -7 (-15 -1843 (|#1| (-952 |#1|))) (-15 -4067 (|#1| (-952 |#1|))) (-15 -3576 (|#1| (-952 |#1|))) (-15 -3779 (|#1| (-952 |#1|))) (-15 -1543 (|#1| (-952 |#1|))) (-15 -3200 (|#1| (-952 |#1|))) (-15 -3268 (|#1| (-952 |#1|))) (-15 -3186 (|#1| (-952 |#1|))) (-15 -3747 (|#1| (-952 |#1|))))
+((-3544 (((-3 |#1| "failed") |#1|) 18)) (-1358 (((-3 |#1| "failed") |#1|) 6)) (-3155 (((-3 |#1| "failed") |#1|) 16)) (-3125 (((-3 |#1| "failed") |#1|) 4)) (-3952 (((-3 |#1| "failed") |#1|) 20)) (-2636 (((-3 |#1| "failed") |#1|) 8)) (-2496 (((-3 |#1| "failed") |#1| (-779)) 1)) (-4241 (((-3 |#1| "failed") |#1|) 3)) (-3255 (((-3 |#1| "failed") |#1|) 2)) (-1348 (((-3 |#1| "failed") |#1|) 21)) (-2659 (((-3 |#1| "failed") |#1|) 9)) (-1636 (((-3 |#1| "failed") |#1|) 19)) (-1761 (((-3 |#1| "failed") |#1|) 7)) (-1958 (((-3 |#1| "failed") |#1|) 17)) (-3040 (((-3 |#1| "failed") |#1|) 5)) (-2990 (((-3 |#1| "failed") |#1|) 24)) (-1435 (((-3 |#1| "failed") |#1|) 12)) (-1617 (((-3 |#1| "failed") |#1|) 22)) (-1620 (((-3 |#1| "failed") |#1|) 10)) (-4417 (((-3 |#1| "failed") |#1|) 26)) (-2061 (((-3 |#1| "failed") |#1|) 14)) (-3925 (((-3 |#1| "failed") |#1|) 27)) (-2635 (((-3 |#1| "failed") |#1|) 15)) (-3645 (((-3 |#1| "failed") |#1|) 25)) (-3633 (((-3 |#1| "failed") |#1|) 13)) (-4404 (((-3 |#1| "failed") |#1|) 23)) (-2059 (((-3 |#1| "failed") |#1|) 11)))
+(((-994 |#1|) (-141) (-1214)) (T -994))
+((-3925 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4417 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3645 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2990 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4404 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1617 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1348 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3952 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1636 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3544 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1958 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3155 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2635 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2061 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3633 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1435 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2059 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1620 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2659 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2636 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1761 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-1358 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3040 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3125 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-4241 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-3255 (*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))) (-2496 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-779)) (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(-13 (-10 -7 (-15 -2496 ((-3 |t#1| "failed") |t#1| (-779))) (-15 -3255 ((-3 |t#1| "failed") |t#1|)) (-15 -4241 ((-3 |t#1| "failed") |t#1|)) (-15 -3125 ((-3 |t#1| "failed") |t#1|)) (-15 -3040 ((-3 |t#1| "failed") |t#1|)) (-15 -1358 ((-3 |t#1| "failed") |t#1|)) (-15 -1761 ((-3 |t#1| "failed") |t#1|)) (-15 -2636 ((-3 |t#1| "failed") |t#1|)) (-15 -2659 ((-3 |t#1| "failed") |t#1|)) (-15 -1620 ((-3 |t#1| "failed") |t#1|)) (-15 -2059 ((-3 |t#1| "failed") |t#1|)) (-15 -1435 ((-3 |t#1| "failed") |t#1|)) (-15 -3633 ((-3 |t#1| "failed") |t#1|)) (-15 -2061 ((-3 |t#1| "failed") |t#1|)) (-15 -2635 ((-3 |t#1| "failed") |t#1|)) (-15 -3155 ((-3 |t#1| "failed") |t#1|)) (-15 -1958 ((-3 |t#1| "failed") |t#1|)) (-15 -3544 ((-3 |t#1| "failed") |t#1|)) (-15 -1636 ((-3 |t#1| "failed") |t#1|)) (-15 -3952 ((-3 |t#1| "failed") |t#1|)) (-15 -1348 ((-3 |t#1| "failed") |t#1|)) (-15 -1617 ((-3 |t#1| "failed") |t#1|)) (-15 -4404 ((-3 |t#1| "failed") |t#1|)) (-15 -2990 ((-3 |t#1| "failed") |t#1|)) (-15 -3645 ((-3 |t#1| "failed") |t#1|)) (-15 -4417 ((-3 |t#1| "failed") |t#1|)) (-15 -3925 ((-3 |t#1| "failed") |t#1|))))
+((-2647 ((|#4| |#4| (-652 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2014 ((|#4| |#4| (-652 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3161 ((|#4| (-1 |#4| (-961 |#1|)) |#4|) 31)))
+(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2014 (|#4| |#4| |#3|)) (-15 -2014 (|#4| |#4| (-652 |#3|))) (-15 -2647 (|#4| |#4| |#3|)) (-15 -2647 (|#4| |#4| (-652 |#3|))) (-15 -3161 (|#4| (-1 |#4| (-961 |#1|)) |#4|))) (-1060) (-801) (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188))))) (-958 (-961 |#1|) |#2| |#3|)) (T -995))
+((-3161 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-961 *4))) (-4 *4 (-1060)) (-4 *2 (-958 (-961 *4) *5 *6)) (-4 *5 (-801)) (-4 *6 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188)))))) (-5 *1 (-995 *4 *5 *6 *2)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188)))))) (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2)) (-4 *2 (-958 (-961 *4) *5 *6)))) (-2647 (*1 *2 *2 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188)))))) (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-652 *6)) (-4 *6 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188)))))) (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2)) (-4 *2 (-958 (-961 *4) *5 *6)))) (-2014 (*1 *2 *2 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)) (-15 -2043 ((-3 $ "failed") (-1188)))))) (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3)))))
+(-10 -7 (-15 -2014 (|#4| |#4| |#3|)) (-15 -2014 (|#4| |#4| (-652 |#3|))) (-15 -2647 (|#4| |#4| |#3|)) (-15 -2647 (|#4| |#4| (-652 |#3|))) (-15 -3161 (|#4| (-1 |#4| (-961 |#1|)) |#4|)))
+((-1622 ((|#2| |#3|) 35)) (-1409 (((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|) 79)) (-2469 (((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) 100)))
+(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2469 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1409 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|)) (-15 -1622 (|#2| |#3|))) (-356) (-1255 |#1|) (-1255 |#2|) (-732 |#2| |#3|)) (T -996))
+((-1622 (*1 *2 *3) (-12 (-4 *3 (-1255 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-996 *4 *2 *3 *5)) (-4 *4 (-356)) (-4 *5 (-732 *2 *3)))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3)) (-5 *2 (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-996 *4 *3 *5 *6)) (-4 *6 (-732 *3 *5)))) (-2469 (*1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -1769 (-697 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-697 *4)))) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-732 *4 *5)))))
+(-10 -7 (-15 -2469 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1409 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|)) (-15 -1622 (|#2| |#3|)))
+((-2725 (((-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))) (-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572))))) 82)))
+(((-997 |#1| |#2|) (-10 -7 (-15 -2725 ((-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))) (-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572))))))) (-652 (-1188)) (-779)) (T -997))
+((-2725 (*1 *2 *2) (-12 (-5 *2 (-998 (-415 (-572)) (-872 *3) (-244 *4 (-779)) (-251 *3 (-415 (-572))))) (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-997 *3 *4)))))
+(-10 -7 (-15 -2725 ((-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))) (-998 (-415 (-572)) (-872 |#1|) (-244 |#2| (-779)) (-251 |#1| (-415 (-572)))))))
+((-3464 (((-112) $ $) NIL)) (-3408 (((-3 (-112) "failed") $) 71)) (-3221 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-313))))) (-2758 (($ $ (-3 (-112) "failed")) 72)) (-3356 (($ (-652 |#4|) |#4|) 25)) (-3618 (((-1170) $) NIL)) (-3470 (($ $) 69)) (-2614 (((-1131) $) NIL)) (-3712 (((-112) $) 70)) (-1321 (($) 30)) (-1408 ((|#4| $) 74)) (-1949 (((-652 |#4|) $) 73)) (-3491 (((-870) $) 68)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-998 |#1| |#2| |#3| |#4|) (-13 (-1111) (-621 (-870)) (-10 -8 (-15 -1321 ($)) (-15 -3356 ($ (-652 |#4|) |#4|)) (-15 -3408 ((-3 (-112) "failed") $)) (-15 -2758 ($ $ (-3 (-112) "failed"))) (-15 -3712 ((-112) $)) (-15 -1949 ((-652 |#4|) $)) (-15 -1408 (|#4| $)) (-15 -3470 ($ $)) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (-15 -3221 ($ $)) |%noBranch|) |%noBranch|))) (-460) (-858) (-801) (-958 |#1| |#3| |#2|)) (T -998))
+((-1321 (*1 *1) (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))) (-3356 (*1 *1 *2 *3) (-12 (-5 *2 (-652 *3)) (-4 *3 (-958 *4 *6 *5)) (-4 *4 (-460)) (-4 *5 (-858)) (-4 *6 (-801)) (-5 *1 (-998 *4 *5 *6 *3)))) (-3408 (*1 *2 *1) (|partial| -12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-2758 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-3712 (*1 *2 *1) (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-112)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-1949 (*1 *2 *1) (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-652 *6)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))) (-1408 (*1 *2 *1) (-12 (-4 *2 (-958 *3 *5 *4)) (-5 *1 (-998 *3 *4 *5 *2)) (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)))) (-3470 (*1 *1 *1) (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))) (-3221 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-313)) (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))))
+(-13 (-1111) (-621 (-870)) (-10 -8 (-15 -1321 ($)) (-15 -3356 ($ (-652 |#4|) |#4|)) (-15 -3408 ((-3 (-112) "failed") $)) (-15 -2758 ($ $ (-3 (-112) "failed"))) (-15 -3712 ((-112) $)) (-15 -1949 ((-652 |#4|) $)) (-15 -1408 (|#4| $)) (-15 -3470 ($ $)) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-148)) (-15 -3221 ($ $)) |%noBranch|) |%noBranch|)))
+((-3048 (((-112) |#5| |#5|) 44)) (-4047 (((-112) |#5| |#5|) 59)) (-1736 (((-112) |#5| (-652 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2487 (((-112) (-652 |#4|) (-652 |#4|)) 65)) (-4230 (((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) 70)) (-3010 (((-1284)) 32)) (-2377 (((-1284) (-1170) (-1170) (-1170)) 28)) (-3264 (((-652 |#5|) (-652 |#5|)) 100)) (-3573 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) 92)) (-3670 (((-652 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112)) 122)) (-3393 (((-112) |#5| |#5|) 53)) (-4245 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4082 (((-112) (-652 |#4|) (-652 |#4|)) 64)) (-3208 (((-112) (-652 |#4|) (-652 |#4|)) 66)) (-4398 (((-112) (-652 |#4|) (-652 |#4|)) 67)) (-1349 (((-3 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3763 (((-652 |#5|) (-652 |#5|)) 49)))
+(((-999 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2377 ((-1284) (-1170) (-1170) (-1170))) (-15 -3010 ((-1284))) (-15 -3048 ((-112) |#5| |#5|)) (-15 -3763 ((-652 |#5|) (-652 |#5|))) (-15 -3393 ((-112) |#5| |#5|)) (-15 -4047 ((-112) |#5| |#5|)) (-15 -2487 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4082 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3208 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4398 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4245 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1736 ((-112) |#5| |#5|)) (-15 -1736 ((-112) |#5| (-652 |#5|))) (-15 -3264 ((-652 |#5|) (-652 |#5|))) (-15 -4230 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3573 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-15 -3670 ((-652 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1349 ((-3 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -999))
+((-1349 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| -3179 (-652 *9)) (|:| -1746 *4) (|:| |ineq| (-652 *9)))) (-5 *1 (-999 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9)) (-4 *4 (-1082 *6 *7 *8 *9)))) (-3670 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| -3179 (-652 *9)) (|:| -1746 *10) (|:| |ineq| (-652 *9))))) (-5 *1 (-999 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -1746 *7)))) (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-999 *3 *4 *5 *6 *7)))) (-4230 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-999 *3 *4 *5 *6 *7)))) (-1736 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8 *3)))) (-1736 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-4245 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-4398 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3208 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4082 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-2487 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4047 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3393 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-999 *3 *4 *5 *6 *7)))) (-3048 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3010 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-999 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-2377 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2377 ((-1284) (-1170) (-1170) (-1170))) (-15 -3010 ((-1284))) (-15 -3048 ((-112) |#5| |#5|)) (-15 -3763 ((-652 |#5|) (-652 |#5|))) (-15 -3393 ((-112) |#5| |#5|)) (-15 -4047 ((-112) |#5| |#5|)) (-15 -2487 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4082 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3208 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4398 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4245 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1736 ((-112) |#5| |#5|)) (-15 -1736 ((-112) |#5| (-652 |#5|))) (-15 -3264 ((-652 |#5|) (-652 |#5|))) (-15 -4230 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3573 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-15 -3670 ((-652 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1349 ((-3 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2043 (((-1188) $) 15)) (-1653 (((-1170) $) 16)) (-3283 (($ (-1188) (-1170)) 14)) (-3491 (((-870) $) 13)))
+(((-1000) (-13 (-621 (-870)) (-10 -8 (-15 -3283 ($ (-1188) (-1170))) (-15 -2043 ((-1188) $)) (-15 -1653 ((-1170) $))))) (T -1000))
+((-3283 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-1000)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1000)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1000)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -3283 ($ (-1188) (-1170))) (-15 -2043 ((-1188) $)) (-15 -1653 ((-1170) $))))
+((-3161 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#4| (-1 |#2| |#1|) |#3|))) (-564) (-564) (-1003 |#1|) (-1003 |#2|)) (T -1001))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-564)) (-4 *6 (-564)) (-4 *2 (-1003 *6)) (-5 *1 (-1001 *5 *6 *4 *2)) (-4 *4 (-1003 *5)))))
+(-10 -7 (-15 -3161 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-1188) "failed") $) 66) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) 96)) (-1869 ((|#2| $) NIL) (((-1188) $) 61) (((-415 (-572)) $) NIL) (((-572) $) 93)) (-2245 (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 115) (((-697 |#2|) (-697 $)) 28)) (-2688 (($) 99)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 76) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 85)) (-3710 (($ $) 10)) (-3396 (((-3 $ "failed") $) 20)) (-3161 (($ (-1 |#2| |#2|) $) 22)) (-3477 (($) 16)) (-3964 (($ $) 55)) (-3011 (($ $) NIL) (($ $ (-779)) NIL) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3982 (($ $) 12)) (-3222 (((-901 (-572)) $) 71) (((-901 (-386)) $) 80) (((-544) $) 40) (((-386) $) 44) (((-227) $) 48)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 91) (($ |#2|) NIL) (($ (-1188)) 58)) (-2455 (((-779)) 31)) (-3943 (((-112) $ $) 51)))
+(((-1002 |#1| |#2|) (-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3222 ((-227) |#1|)) (-15 -3222 ((-386) |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3491 (|#1| (-1188))) (-15 -3072 ((-3 (-1188) "failed") |#1|)) (-15 -1869 ((-1188) |#1|)) (-15 -2688 (|#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -2245 ((-697 |#2|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| |#1|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-1003 |#2|) (-564)) (T -1002))
+((-2455 (*1 *2) (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-1002 *3 *4)) (-4 *3 (-1003 *4)))))
+(-10 -8 (-15 -3943 ((-112) |#1| |#1|)) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3222 ((-227) |#1|)) (-15 -3222 ((-386) |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3491 (|#1| (-1188))) (-15 -3072 ((-3 (-1188) "failed") |#1|)) (-15 -1869 ((-1188) |#1|)) (-15 -2688 (|#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3982 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -4034 ((-898 (-572) |#1|) |#1| (-901 (-572)) (-898 (-572) |#1|))) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -2245 ((-697 |#2|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| |#1|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3923 ((|#1| $) 147 (|has| |#1| (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-2730 (((-426 (-1184 $)) (-1184 $)) 138 (|has| |#1| (-918)))) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 141 (|has| |#1| (-918)))) (-4252 (((-112) $ $) 65)) (-4304 (((-572) $) 128 (|has| |#1| (-828)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 185) (((-3 (-1188) "failed") $) 136 (|has| |#1| (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) 119 (|has| |#1| (-1049 (-572)))) (((-3 (-572) "failed") $) 117 (|has| |#1| (-1049 (-572))))) (-1869 ((|#1| $) 186) (((-1188) $) 137 (|has| |#1| (-1049 (-1188)))) (((-415 (-572)) $) 120 (|has| |#1| (-1049 (-572)))) (((-572) $) 118 (|has| |#1| (-1049 (-572))))) (-3407 (($ $ $) 61)) (-2245 (((-697 (-572)) (-697 $)) 160 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 159 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 158) (((-697 |#1|) (-697 $)) 157)) (-2982 (((-3 $ "failed") $) 37)) (-2688 (($) 145 (|has| |#1| (-553)))) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3439 (((-112) $) 79)) (-3778 (((-112) $) 130 (|has| |#1| (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 154 (|has| |#1| (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 153 (|has| |#1| (-895 (-386))))) (-4422 (((-112) $) 35)) (-3710 (($ $) 149)) (-2209 ((|#1| $) 151)) (-3396 (((-3 $ "failed") $) 116 (|has| |#1| (-1163)))) (-4354 (((-112) $) 129 (|has| |#1| (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2536 (($ $ $) 126 (|has| |#1| (-858)))) (-3928 (($ $ $) 125 (|has| |#1| (-858)))) (-3161 (($ (-1 |#1| |#1|) $) 177)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-3477 (($) 115 (|has| |#1| (-1163)) CONST)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3964 (($ $) 146 (|has| |#1| (-313)))) (-1609 ((|#1| $) 143 (|has| |#1| (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) 140 (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 139 (|has| |#1| (-918)))) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) 183 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 181 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 180 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 179 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 178 (|has| |#1| (-522 (-1188) |#1|)))) (-4395 (((-779) $) 64)) (-2679 (($ $ |#1|) 184 (|has| |#1| (-292 |#1| |#1|)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-3011 (($ $) 176 (|has| |#1| (-237))) (($ $ (-779)) 174 (|has| |#1| (-237))) (($ $ (-1188)) 172 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 171 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 170 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 169 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3982 (($ $) 148)) (-2224 ((|#1| $) 150)) (-3222 (((-901 (-572)) $) 156 (|has| |#1| (-622 (-901 (-572))))) (((-901 (-386)) $) 155 (|has| |#1| (-622 (-901 (-386))))) (((-544) $) 133 (|has| |#1| (-622 (-544)))) (((-386) $) 132 (|has| |#1| (-1033))) (((-227) $) 131 (|has| |#1| (-1033)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 142 (-3804 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ |#1|) 189) (($ (-1188)) 135 (|has| |#1| (-1049 (-1188))))) (-2210 (((-3 $ "failed") $) 134 (-3783 (|has| |#1| (-146)) (-3804 (|has| $ (-146)) (|has| |#1| (-918)))))) (-2455 (((-779)) 32 T CONST)) (-3441 ((|#1| $) 144 (|has| |#1| (-553)))) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2775 (($ $) 127 (|has| |#1| (-828)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $) 175 (|has| |#1| (-237))) (($ $ (-779)) 173 (|has| |#1| (-237))) (($ $ (-1188)) 168 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 167 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 166 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 165 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-3976 (((-112) $ $) 123 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 122 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 124 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 121 (|has| |#1| (-858)))) (-4029 (($ $ $) 73) (($ |#1| |#1|) 152)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
+(((-1003 |#1|) (-141) (-564)) (T -1003))
+((-4029 (*1 *1 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-3710 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-3982 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313)))) (-3964 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313)))) (-2688 (*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-553)) (-4 *2 (-564)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553)))))
+(-13 (-370) (-38 |t#1|) (-1049 |t#1|) (-345 |t#1|) (-233 |t#1|) (-384 |t#1|) (-893 |t#1|) (-408 |t#1|) (-10 -8 (-15 -4029 ($ |t#1| |t#1|)) (-15 -2209 (|t#1| $)) (-15 -2224 (|t#1| $)) (-15 -3710 ($ $)) (-15 -3982 ($ $)) (IF (|has| |t#1| (-1163)) (-6 (-1163)) |%noBranch|) (IF (|has| |t#1| (-1049 (-572))) (PROGN (-6 (-1049 (-572))) (-6 (-1049 (-415 (-572))))) |%noBranch|) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |t#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1049 (-1188))) (-6 (-1049 (-1188))) |%noBranch|) (IF (|has| |t#1| (-313)) (PROGN (-15 -3923 (|t#1| $)) (-15 -3964 ($ $))) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -2688 ($)) (-15 -3441 (|t#1| $)) (-15 -1609 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-918)) (-6 (-918)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 #1=(-1188)) |has| |#1| (-1049 (-1188))) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-227)) |has| |#1| (-1033)) ((-622 (-386)) |has| |#1| (-1033)) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-622 (-901 (-386))) |has| |#1| (-622 (-901 (-386)))) ((-622 (-901 (-572))) |has| |#1| (-622 (-901 (-572)))) ((-233 |#1|) . T) ((-237) |has| |#1| (-237)) ((-247) . T) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-296) . T) ((-313) . T) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-370) . T) ((-345 |#1|) . T) ((-384 |#1|) . T) ((-408 |#1|) . T) ((-460) . T) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) . T) ((-725 |#1|) . T) ((-725 $) . T) ((-734) . T) ((-799) |has| |#1| (-828)) ((-800) |has| |#1| (-828)) ((-802) |has| |#1| (-828)) ((-803) |has| |#1| (-828)) ((-828) |has| |#1| (-828)) ((-856) |has| |#1| (-828)) ((-858) -3783 (|has| |#1| (-858)) (|has| |#1| (-828))) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-895 (-386)) |has| |#1| (-895 (-386))) ((-895 (-572)) |has| |#1| (-895 (-572))) ((-893 |#1|) . T) ((-918) |has| |#1| (-918)) ((-929) . T) ((-1033) |has| |#1| (-1033)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-572))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #1#) |has| |#1| (-1049 (-1188))) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-1163)) ((-1229) . T) ((-1233) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2818 (($ (-1153 |#1| |#2|)) 11)) (-1793 (((-1153 |#1| |#2|) $) 12)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2679 ((|#2| $ (-244 |#1| |#2|)) 16)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL)))
+(((-1004 |#1| |#2|) (-13 (-21) (-292 (-244 |#1| |#2|) |#2|) (-10 -8 (-15 -2818 ($ (-1153 |#1| |#2|))) (-15 -1793 ((-1153 |#1| |#2|) $)))) (-930) (-370)) (T -1004))
+((-2818 (*1 *1 *2) (-12 (-5 *2 (-1153 *3 *4)) (-14 *3 (-930)) (-4 *4 (-370)) (-5 *1 (-1004 *3 *4)))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-1153 *3 *4)) (-5 *1 (-1004 *3 *4)) (-14 *3 (-930)) (-4 *4 (-370)))))
+(-13 (-21) (-292 (-244 |#1| |#2|) |#2|) (-10 -8 (-15 -2818 ($ (-1153 |#1| |#2|))) (-15 -1793 ((-1153 |#1| |#2|) $))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4410 (((-1146) $) 9)) (-3491 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1005) (-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $))))) (T -1005))
+((-4410 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1005)))))
+(-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $))))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) 8)) (-1586 (($) 7 T CONST)) (-1713 (($ $) 47)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-2040 (((-779) $) 46)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-4314 ((|#1| $) 45)) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2106 ((|#1| |#1| $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2610 ((|#1| $) 48)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-1340 ((|#1| $) 44)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1006 |#1|) (-141) (-1229)) (T -1006))
+((-2106 (*1 *2 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-1713 (*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))) (-1340 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4454) (-15 -2106 (|t#1| |t#1| $)) (-15 -2610 (|t#1| $)) (-15 -1713 ($ $)) (-15 -2040 ((-779) $)) (-15 -4314 (|t#1| $)) (-15 -1340 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3143 (((-112) $) 43)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-1869 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#2| $) 44)) (-3624 (((-3 (-415 (-572)) "failed") $) 78)) (-2054 (((-112) $) 72)) (-2745 (((-415 (-572)) $) 76)) (-4422 (((-112) $) 42)) (-2140 ((|#2| $) 22)) (-3161 (($ (-1 |#2| |#2|) $) 19)) (-1809 (($ $) 58)) (-3011 (($ $) NIL) (($ $ (-779)) NIL) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3222 (((-544) $) 67)) (-4242 (($ $) 17)) (-3491 (((-870) $) 53) (($ (-572)) 39) (($ |#2|) 37) (($ (-415 (-572))) NIL)) (-2455 (((-779)) 10)) (-2775 ((|#2| $) 71)) (-3921 (((-112) $ $) 26)) (-3943 (((-112) $ $) 69)) (-4018 (($ $) 30) (($ $ $) 29)) (-4005 (($ $ $) 27)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL)))
+(((-1007 |#1| |#2|) (-10 -8 (-15 -3491 (|#1| (-415 (-572)))) (-15 -3943 ((-112) |#1| |#1|)) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 -1809 (|#1| |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -2775 (|#2| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 -4422 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -3143 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|))) (-1008 |#2|) (-174)) (T -1007))
+((-2455 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-1007 *3 *4)) (-4 *3 (-1008 *4)))))
+(-10 -8 (-15 -3491 (|#1| (-415 (-572)))) (-15 -3943 ((-112) |#1| |#1|)) (-15 * (|#1| (-415 (-572)) |#1|)) (-15 * (|#1| |#1| (-415 (-572)))) (-15 -1809 (|#1| |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -2775 (|#2| |#1|)) (-15 -2140 (|#2| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -3161 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 -4422 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 * (|#1| (-779) |#1|)) (-15 -3143 ((-112) |#1|)) (-15 * (|#1| (-930) |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3072 (((-3 (-572) "failed") $) 127 (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 125 (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) 122)) (-1869 (((-572) $) 126 (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) 124 (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) 123)) (-2245 (((-697 (-572)) (-697 $)) 97 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 96 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 95) (((-697 |#1|) (-697 $)) 94)) (-2982 (((-3 $ "failed") $) 37)) (-3106 ((|#1| $) 87)) (-3624 (((-3 (-415 (-572)) "failed") $) 83 (|has| |#1| (-553)))) (-2054 (((-112) $) 85 (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) 84 (|has| |#1| (-553)))) (-1909 (($ |#1| |#1| |#1| |#1|) 88)) (-4422 (((-112) $) 35)) (-2140 ((|#1| $) 89)) (-2536 (($ $ $) 76 (|has| |#1| (-858)))) (-3928 (($ $ $) 75 (|has| |#1| (-858)))) (-3161 (($ (-1 |#1| |#1|) $) 98)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 80 (|has| |#1| (-370)))) (-3240 ((|#1| $) 90)) (-4102 ((|#1| $) 91)) (-3532 ((|#1| $) 92)) (-2614 (((-1131) $) 11)) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) 104 (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) 102 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) 101 (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) 100 (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) 99 (|has| |#1| (-522 (-1188) |#1|)))) (-2679 (($ $ |#1|) 105 (|has| |#1| (-292 |#1| |#1|)))) (-3011 (($ $) 121 (|has| |#1| (-237))) (($ $ (-779)) 119 (|has| |#1| (-237))) (($ $ (-1188)) 117 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 116 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 115 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 114 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3222 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-4242 (($ $) 93)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 44) (($ (-415 (-572))) 70 (-3783 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-2210 (((-3 $ "failed") $) 82 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2775 ((|#1| $) 86 (|has| |#1| (-1071)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $) 120 (|has| |#1| (-237))) (($ $ (-779)) 118 (|has| |#1| (-237))) (($ $ (-1188)) 113 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 112 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 111 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 110 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-3976 (((-112) $ $) 73 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 72 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 74 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 71 (|has| |#1| (-858)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 79 (|has| |#1| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-415 (-572))) 78 (|has| |#1| (-370))) (($ (-415 (-572)) $) 77 (|has| |#1| (-370)))))
+(((-1008 |#1|) (-141) (-174)) (T -1008))
+((-4242 (*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-1909 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112)))) (-2745 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))) (-3624 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-415 (-572))))))
+(-13 (-38 |t#1|) (-419 |t#1|) (-233 |t#1|) (-345 |t#1|) (-384 |t#1|) (-10 -8 (-15 -4242 ($ $)) (-15 -3532 (|t#1| $)) (-15 -4102 (|t#1| $)) (-15 -3240 (|t#1| $)) (-15 -2140 (|t#1| $)) (-15 -1909 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3106 (|t#1| $)) (IF (|has| |t#1| (-296)) (-6 (-296)) |%noBranch|) (IF (|has| |t#1| (-858)) (-6 (-858)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-247)) |%noBranch|) (IF (|has| |t#1| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1071)) (-15 -2775 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-553)) (PROGN (-15 -2054 ((-112) $)) (-15 -2745 ((-415 (-572)) $)) (-15 -3624 ((-3 (-415 (-572)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-370)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-370)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-370))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-233 |#1|) . T) ((-237) |has| |#1| (-237)) ((-247) |has| |#1| (-370)) ((-292 |#1| $) |has| |#1| (-292 |#1| |#1|)) ((-296) -3783 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-315 |#1|) |has| |#1| (-315 |#1|)) ((-345 |#1|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-522 (-1188) |#1|) |has| |#1| (-522 (-1188) |#1|)) ((-522 |#1| |#1|) |has| |#1| (-315 |#1|)) ((-654 #0#) |has| |#1| (-370)) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-370)) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-370)) ((-648 |#1|) . T) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-370)) ((-725 |#1|) . T) ((-734) . T) ((-858) |has| |#1| (-858)) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1062 #0#) |has| |#1| (-370)) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-1067 #0#) |has| |#1| (-370)) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-370)) (|has| |#1| (-296))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) |has| |#1| (-292 |#1| |#1|)))
+((-3161 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#3| (-1 |#4| |#2|) |#1|))) (-1008 |#2|) (-174) (-1008 |#4|) (-174)) (T -1009))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1008 *6)) (-5 *1 (-1009 *4 *5 *2 *6)) (-4 *4 (-1008 *5)))))
+(-10 -7 (-15 -3161 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3106 ((|#1| $) 12)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-553)))) (-2054 (((-112) $) NIL (|has| |#1| (-553)))) (-2745 (((-415 (-572)) $) NIL (|has| |#1| (-553)))) (-1909 (($ |#1| |#1| |#1| |#1|) 16)) (-4422 (((-112) $) NIL)) (-2140 ((|#1| $) NIL)) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-3240 ((|#1| $) 15)) (-4102 ((|#1| $) 14)) (-3532 ((|#1| $) 13)) (-2614 (((-1131) $) NIL)) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-315 |#1|))) (($ $ (-300 |#1|)) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-300 |#1|))) NIL (|has| |#1| (-315 |#1|))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-522 (-1188) |#1|))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-522 (-1188) |#1|)))) (-2679 (($ $ |#1|) NIL (|has| |#1| (-292 |#1| |#1|)))) (-3011 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-4242 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2775 ((|#1| $) NIL (|has| |#1| (-1071)))) (-2602 (($) 8 T CONST)) (-2619 (($) 10 T CONST)) (-4019 (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-370)))))
+(((-1010 |#1|) (-1008 |#1|) (-174)) (T -1010))
+NIL
+(-1008 |#1|)
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2938 (((-112) $ (-779)) NIL)) (-1586 (($) NIL T CONST)) (-1713 (($ $) 23)) (-2911 (($ (-652 |#1|)) 33)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-2040 (((-779) $) 26)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1533 ((|#1| $) 28)) (-3704 (($ |#1| $) 17)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-4314 ((|#1| $) 27)) (-4105 ((|#1| $) 22)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2106 ((|#1| |#1| $) 16)) (-3712 (((-112) $) 18)) (-1321 (($) NIL)) (-2610 ((|#1| $) 21)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) NIL)) (-1340 ((|#1| $) 30)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1011 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -2911 ($ (-652 |#1|))))) (-1111)) (T -1011))
+((-2911 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1011 *3)))))
+(-13 (-1006 |#1|) (-10 -8 (-15 -2911 ($ (-652 |#1|)))))
+((-3093 (($ $) 12)) (-2033 (($ $ (-572)) 13)))
+(((-1012 |#1|) (-10 -8 (-15 -3093 (|#1| |#1|)) (-15 -2033 (|#1| |#1| (-572)))) (-1013)) (T -1012))
+NIL
+(-10 -8 (-15 -3093 (|#1| |#1|)) (-15 -2033 (|#1| |#1| (-572))))
+((-3093 (($ $) 6)) (-2033 (($ $ (-572)) 7)) (** (($ $ (-415 (-572))) 8)))
+(((-1013) (-141)) (T -1013))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-415 (-572))))) (-2033 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-572)))) (-3093 (*1 *1 *1) (-4 *1 (-1013))))
+(-13 (-10 -8 (-15 -3093 ($ $)) (-15 -2033 ($ $ (-572))) (-15 ** ($ $ (-415 (-572))))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3265 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| (-415 |#2|) (-370)))) (-1697 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-1774 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-3385 (((-697 (-415 |#2|)) (-1279 $)) NIL) (((-697 (-415 |#2|))) NIL)) (-2055 (((-415 |#2|) $) NIL)) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| (-415 |#2|) (-356)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2359 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-4252 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3037 (((-779)) NIL (|has| (-415 |#2|) (-375)))) (-1773 (((-112)) NIL)) (-2546 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-3 (-415 |#2|) "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| (-415 |#2|) (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| (-415 |#2|) (-1049 (-415 (-572))))) (((-415 |#2|) $) NIL)) (-2372 (($ (-1279 (-415 |#2|)) (-1279 $)) NIL) (($ (-1279 (-415 |#2|))) 79) (($ (-1279 |#2|) |#2|) NIL)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-415 |#2|) (-356)))) (-3407 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-1649 (((-697 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-415 |#2|) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-415 |#2|))) (|:| |vec| (-1279 (-415 |#2|)))) (-697 $) (-1279 $)) NIL) (((-697 (-415 |#2|)) (-697 $)) NIL)) (-4216 (((-1279 $) (-1279 $)) NIL)) (-2925 (($ |#3|) 73) (((-3 $ "failed") (-415 |#3|)) NIL (|has| (-415 |#2|) (-370)))) (-2982 (((-3 $ "failed") $) NIL)) (-1827 (((-652 (-652 |#1|))) NIL (|has| |#1| (-375)))) (-1646 (((-112) |#1| |#1|) NIL)) (-1526 (((-930)) NIL)) (-2688 (($) NIL (|has| (-415 |#2|) (-375)))) (-2170 (((-112)) NIL)) (-1987 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3418 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| (-415 |#2|) (-370)))) (-2889 (($ $) NIL)) (-1345 (($) NIL (|has| (-415 |#2|) (-356)))) (-2754 (((-112) $) NIL (|has| (-415 |#2|) (-356)))) (-3156 (($ $ (-779)) NIL (|has| (-415 |#2|) (-356))) (($ $) NIL (|has| (-415 |#2|) (-356)))) (-3439 (((-112) $) NIL (|has| (-415 |#2|) (-370)))) (-2068 (((-930) $) NIL (|has| (-415 |#2|) (-356))) (((-841 (-930)) $) NIL (|has| (-415 |#2|) (-356)))) (-4422 (((-112) $) NIL)) (-3494 (((-779)) NIL)) (-3016 (((-1279 $) (-1279 $)) NIL)) (-2140 (((-415 |#2|) $) NIL)) (-1628 (((-652 (-961 |#1|)) (-1188)) NIL (|has| |#1| (-370)))) (-3396 (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-2179 ((|#3| $) NIL (|has| (-415 |#2|) (-370)))) (-4370 (((-930) $) NIL (|has| (-415 |#2|) (-375)))) (-2913 ((|#3| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-3618 (((-1170) $) NIL)) (-3231 (((-697 (-415 |#2|))) 57)) (-2026 (((-697 (-415 |#2|))) 56)) (-1809 (($ $) NIL (|has| (-415 |#2|) (-370)))) (-4108 (($ (-1279 |#2|) |#2|) 80)) (-3733 (((-697 (-415 |#2|))) 55)) (-1378 (((-697 (-415 |#2|))) 54)) (-2261 (((-2 (|:| |num| (-697 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-1851 (((-2 (|:| |num| (-1279 |#2|)) (|:| |den| |#2|)) $) 86)) (-2525 (((-1279 $)) 51)) (-2469 (((-1279 $)) 50)) (-3662 (((-112) $) NIL)) (-1796 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3477 (($) NIL (|has| (-415 |#2|) (-356)) CONST)) (-1795 (($ (-930)) NIL (|has| (-415 |#2|) (-375)))) (-2272 (((-3 |#2| "failed")) 70)) (-2614 (((-1131) $) NIL)) (-2183 (((-779)) NIL)) (-4267 (($) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| (-415 |#2|) (-370)))) (-1370 (($ (-652 $)) NIL (|has| (-415 |#2|) (-370))) (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| (-415 |#2|) (-356)))) (-2972 (((-426 $) $) NIL (|has| (-415 |#2|) (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-415 |#2|) (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3453 (((-3 $ "failed") $ $) NIL (|has| (-415 |#2|) (-370)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| (-415 |#2|) (-370)))) (-4395 (((-779) $) NIL (|has| (-415 |#2|) (-370)))) (-2679 ((|#1| $ |#1| |#1|) NIL)) (-1413 (((-3 |#2| "failed")) 68)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| (-415 |#2|) (-370)))) (-2020 (((-415 |#2|) (-1279 $)) NIL) (((-415 |#2|)) 47)) (-1468 (((-779) $) NIL (|has| (-415 |#2|) (-356))) (((-3 (-779) "failed") $ $) NIL (|has| (-415 |#2|) (-356)))) (-3011 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-1421 (((-697 (-415 |#2|)) (-1279 $) (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370)))) (-3858 ((|#3|) 58)) (-2817 (($) NIL (|has| (-415 |#2|) (-356)))) (-2862 (((-1279 (-415 |#2|)) $ (-1279 $)) NIL) (((-697 (-415 |#2|)) (-1279 $) (-1279 $)) NIL) (((-1279 (-415 |#2|)) $) 81) (((-697 (-415 |#2|)) (-1279 $)) NIL)) (-3222 (((-1279 (-415 |#2|)) $) NIL) (($ (-1279 (-415 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| (-415 |#2|) (-356)))) (-1904 (((-1279 $) (-1279 $)) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 |#2|)) NIL) (($ (-415 (-572))) NIL (-3783 (|has| (-415 |#2|) (-1049 (-415 (-572)))) (|has| (-415 |#2|) (-370)))) (($ $) NIL (|has| (-415 |#2|) (-370)))) (-2210 (($ $) NIL (|has| (-415 |#2|) (-356))) (((-3 $ "failed") $) NIL (|has| (-415 |#2|) (-146)))) (-3245 ((|#3| $) NIL)) (-2455 (((-779)) NIL T CONST)) (-1715 (((-112)) 65)) (-1733 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) NIL)) (-2466 (((-112) $ $) NIL (|has| (-415 |#2|) (-370)))) (-3345 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2116 (((-112)) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-1 (-415 |#2|) (-415 |#2|)) (-779)) NIL (|has| (-415 |#2|) (-370))) (($ $ (-1 (-415 |#2|) (-415 |#2|))) NIL (|has| (-415 |#2|) (-370))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| (-415 |#2|) (-370)) (|has| (-415 |#2|) (-909 (-1188))))) (($ $ (-779)) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356)))) (($ $) NIL (-3783 (-12 (|has| (-415 |#2|) (-237)) (|has| (-415 |#2|) (-370))) (|has| (-415 |#2|) (-356))))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL (|has| (-415 |#2|) (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| (-415 |#2|) (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 |#2|)) NIL) (($ (-415 |#2|) $) NIL) (($ (-415 (-572)) $) NIL (|has| (-415 |#2|) (-370))) (($ $ (-415 (-572))) NIL (|has| (-415 |#2|) (-370)))))
+(((-1014 |#1| |#2| |#3| |#4| |#5|) (-349 |#1| |#2| |#3|) (-1233) (-1255 |#1|) (-1255 (-415 |#2|)) (-415 |#2|) (-779)) (T -1014))
+NIL
+(-349 |#1| |#2| |#3|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3696 (((-652 (-572)) $) 73)) (-3718 (($ (-652 (-572))) 81)) (-3923 (((-572) $) 48 (|has| (-572) (-313)))) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL (|has| (-572) (-828)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) 60) (((-3 (-1188) "failed") $) NIL (|has| (-572) (-1049 (-1188)))) (((-3 (-415 (-572)) "failed") $) 57 (|has| (-572) (-1049 (-572)))) (((-3 (-572) "failed") $) 60 (|has| (-572) (-1049 (-572))))) (-1869 (((-572) $) NIL) (((-1188) $) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) NIL (|has| (-572) (-1049 (-572)))) (((-572) $) NIL (|has| (-572) (-1049 (-572))))) (-3407 (($ $ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| (-572) (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2688 (($) NIL (|has| (-572) (-553)))) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-2389 (((-652 (-572)) $) 79)) (-3778 (((-112) $) NIL (|has| (-572) (-828)))) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (|has| (-572) (-895 (-572)))) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (|has| (-572) (-895 (-386))))) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL)) (-2209 (((-572) $) 45)) (-3396 (((-3 $ "failed") $) NIL (|has| (-572) (-1163)))) (-4354 (((-112) $) NIL (|has| (-572) (-828)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-572) (-858)))) (-3161 (($ (-1 (-572) (-572)) $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL)) (-3477 (($) NIL (|has| (-572) (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3964 (($ $) NIL (|has| (-572) (-313))) (((-415 (-572)) $) 50)) (-4020 (((-1168 (-572)) $) 78)) (-1552 (($ (-652 (-572)) (-652 (-572))) 82)) (-1609 (((-572) $) 64 (|has| (-572) (-553)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| (-572) (-918)))) (-2972 (((-426 $) $) NIL)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3654 (($ $ (-652 (-572)) (-652 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-572) (-572)) NIL (|has| (-572) (-315 (-572)))) (($ $ (-300 (-572))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-300 (-572)))) NIL (|has| (-572) (-315 (-572)))) (($ $ (-652 (-1188)) (-652 (-572))) NIL (|has| (-572) (-522 (-1188) (-572)))) (($ $ (-1188) (-572)) NIL (|has| (-572) (-522 (-1188) (-572))))) (-4395 (((-779) $) NIL)) (-2679 (($ $ (-572)) NIL (|has| (-572) (-292 (-572) (-572))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $) 15 (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3982 (($ $) NIL)) (-2224 (((-572) $) 47)) (-2345 (((-652 (-572)) $) 80)) (-3222 (((-901 (-572)) $) NIL (|has| (-572) (-622 (-901 (-572))))) (((-901 (-386)) $) NIL (|has| (-572) (-622 (-901 (-386))))) (((-544) $) NIL (|has| (-572) (-622 (-544)))) (((-386) $) NIL (|has| (-572) (-1033))) (((-227) $) NIL (|has| (-572) (-1033)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-572) (-918))))) (-3491 (((-870) $) 107) (($ (-572)) 51) (($ $) NIL) (($ (-415 (-572))) 27) (($ (-572)) 51) (($ (-1188)) NIL (|has| (-572) (-1049 (-1188)))) (((-415 (-572)) $) 25)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-572) (-918))) (|has| (-572) (-146))))) (-2455 (((-779)) 13 T CONST)) (-3441 (((-572) $) 62 (|has| (-572) (-553)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2775 (($ $) NIL (|has| (-572) (-828)))) (-2602 (($) 14 T CONST)) (-2619 (($) 17 T CONST)) (-4019 (($ $) NIL (|has| (-572) (-237))) (($ $ (-779)) NIL (|has| (-572) (-237))) (($ $ (-1188)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| (-572) (-909 (-1188)))) (($ $ (-1 (-572) (-572)) (-779)) NIL) (($ $ (-1 (-572) (-572))) NIL)) (-3976 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3921 (((-112) $ $) 21)) (-3965 (((-112) $ $) NIL (|has| (-572) (-858)))) (-3943 (((-112) $ $) 40 (|has| (-572) (-858)))) (-4029 (($ $ $) 36) (($ (-572) (-572)) 38)) (-4018 (($ $) 23) (($ $ $) 30)) (-4005 (($ $ $) 28)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 32) (($ $ $) 34) (($ $ (-415 (-572))) NIL) (($ (-415 (-572)) $) NIL) (($ (-572) $) 32) (($ $ (-572)) NIL)))
+(((-1015 |#1|) (-13 (-1003 (-572)) (-621 (-415 (-572))) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -3696 ((-652 (-572)) $)) (-15 -4020 ((-1168 (-572)) $)) (-15 -2389 ((-652 (-572)) $)) (-15 -2345 ((-652 (-572)) $)) (-15 -3718 ($ (-652 (-572)))) (-15 -1552 ($ (-652 (-572)) (-652 (-572)))))) (-572)) (T -1015))
+((-3964 (*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-3718 (*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))) (-1552 (*1 *1 *2 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
+(-13 (-1003 (-572)) (-621 (-415 (-572))) (-10 -8 (-15 -3964 ((-415 (-572)) $)) (-15 -3696 ((-652 (-572)) $)) (-15 -4020 ((-1168 (-572)) $)) (-15 -2389 ((-652 (-572)) $)) (-15 -2345 ((-652 (-572)) $)) (-15 -3718 ($ (-652 (-572)))) (-15 -1552 ($ (-652 (-572)) (-652 (-572))))))
+((-2998 (((-52) (-415 (-572)) (-572)) 9)))
+(((-1016) (-10 -7 (-15 -2998 ((-52) (-415 (-572)) (-572))))) (T -1016))
+((-2998 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-572))) (-5 *4 (-572)) (-5 *2 (-52)) (-5 *1 (-1016)))))
+(-10 -7 (-15 -2998 ((-52) (-415 (-572)) (-572))))
+((-3037 (((-572)) 23)) (-3422 (((-572)) 28)) (-2124 (((-1284) (-572)) 26)) (-4088 (((-572) (-572)) 29) (((-572)) 22)))
+(((-1017) (-10 -7 (-15 -4088 ((-572))) (-15 -3037 ((-572))) (-15 -4088 ((-572) (-572))) (-15 -2124 ((-1284) (-572))) (-15 -3422 ((-572))))) (T -1017))
+((-3422 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1017)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))) (-3037 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))) (-4088 (*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))))
+(-10 -7 (-15 -4088 ((-572))) (-15 -3037 ((-572))) (-15 -4088 ((-572) (-572))) (-15 -2124 ((-1284) (-572))) (-15 -3422 ((-572))))
+((-2035 (((-426 |#1|) |#1|) 43)) (-2972 (((-426 |#1|) |#1|) 41)))
+(((-1018 |#1|) (-10 -7 (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2035 ((-426 |#1|) |#1|))) (-1255 (-415 (-572)))) (T -1018))
+((-2035 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3)) (-4 *3 (-1255 (-415 (-572)))))) (-2972 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3)) (-4 *3 (-1255 (-415 (-572)))))))
+(-10 -7 (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2035 ((-426 |#1|) |#1|)))
+((-3624 (((-3 (-415 (-572)) "failed") |#1|) 15)) (-2054 (((-112) |#1|) 14)) (-2745 (((-415 (-572)) |#1|) 10)))
+(((-1019 |#1|) (-10 -7 (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|))) (-1049 (-415 (-572)))) (T -1019))
+((-3624 (*1 *2 *3) (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3)) (-4 *3 (-1049 *2)))) (-2054 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1049 (-415 (-572)))))) (-2745 (*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3)) (-4 *3 (-1049 *2)))))
+(-10 -7 (-15 -2745 ((-415 (-572)) |#1|)) (-15 -2054 ((-112) |#1|)) (-15 -3624 ((-3 (-415 (-572)) "failed") |#1|)))
+((-3659 ((|#2| $ "value" |#2|) 12)) (-2679 ((|#2| $ "value") 10)) (-1955 (((-112) $ $) 18)))
+(((-1020 |#1| |#2|) (-10 -8 (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -1955 ((-112) |#1| |#1|)) (-15 -2679 (|#2| |#1| "value"))) (-1021 |#2|) (-1229)) (T -1020))
+NIL
+(-10 -8 (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -1955 ((-112) |#1| |#1|)) (-15 -2679 (|#2| |#1| "value")))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-1586 (($) 7 T CONST)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48)) (-1762 (((-572) $ $) 45)) (-3727 (((-112) $) 47)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1021 |#1|) (-141) (-1229)) (T -1021))
+((-1678 (*1 *2 *1) (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3)))) (-2117 (*1 *2 *1) (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1229)))) (-2679 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1021 *2)) (-4 *2 (-1229)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))) (-1762 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))) (-1955 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-1890 (*1 *2 *1 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *1)) (|has| *1 (-6 -4455)) (-4 *1 (-1021 *3)) (-4 *3 (-1229)))) (-3659 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2)) (-4 *2 (-1229)))) (-2927 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2)) (-4 *2 (-1229)))))
+(-13 (-497 |t#1|) (-10 -8 (-15 -1678 ((-652 $) $)) (-15 -2117 ((-652 $) $)) (-15 -3989 ((-112) $)) (-15 -1653 (|t#1| $)) (-15 -2679 (|t#1| $ "value")) (-15 -3727 ((-112) $)) (-15 -3104 ((-652 |t#1|) $)) (-15 -1762 ((-572) $ $)) (IF (|has| |t#1| (-1111)) (PROGN (-15 -1955 ((-112) $ $)) (-15 -1890 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4455)) (PROGN (-15 -3235 ($ $ (-652 $))) (-15 -3659 (|t#1| $ "value" |t#1|)) (-15 -2927 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3093 (($ $) 9) (($ $ (-930)) 49) (($ (-415 (-572))) 13) (($ (-572)) 15)) (-3748 (((-3 $ "failed") (-1184 $) (-930) (-870)) 24) (((-3 $ "failed") (-1184 $) (-930)) 32)) (-2033 (($ $ (-572)) 58)) (-2455 (((-779)) 18)) (-3761 (((-652 $) (-1184 $)) NIL) (((-652 $) (-1184 (-415 (-572)))) 63) (((-652 $) (-1184 (-572))) 68) (((-652 $) (-961 $)) 72) (((-652 $) (-961 (-415 (-572)))) 76) (((-652 $) (-961 (-572))) 80)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ $ (-415 (-572))) 53)))
+(((-1022 |#1|) (-10 -8 (-15 -3093 (|#1| (-572))) (-15 -3093 (|#1| (-415 (-572)))) (-15 -3093 (|#1| |#1| (-930))) (-15 -3761 ((-652 |#1|) (-961 (-572)))) (-15 -3761 ((-652 |#1|) (-961 (-415 (-572))))) (-15 -3761 ((-652 |#1|) (-961 |#1|))) (-15 -3761 ((-652 |#1|) (-1184 (-572)))) (-15 -3761 ((-652 |#1|) (-1184 (-415 (-572))))) (-15 -3761 ((-652 |#1|) (-1184 |#1|))) (-15 -3748 ((-3 |#1| "failed") (-1184 |#1|) (-930))) (-15 -3748 ((-3 |#1| "failed") (-1184 |#1|) (-930) (-870))) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -2033 (|#1| |#1| (-572))) (-15 -3093 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -2455 ((-779))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930)))) (-1023)) (T -1022))
+((-2455 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1022 *3)) (-4 *3 (-1023)))))
+(-10 -8 (-15 -3093 (|#1| (-572))) (-15 -3093 (|#1| (-415 (-572)))) (-15 -3093 (|#1| |#1| (-930))) (-15 -3761 ((-652 |#1|) (-961 (-572)))) (-15 -3761 ((-652 |#1|) (-961 (-415 (-572))))) (-15 -3761 ((-652 |#1|) (-961 |#1|))) (-15 -3761 ((-652 |#1|) (-1184 (-572)))) (-15 -3761 ((-652 |#1|) (-1184 (-415 (-572))))) (-15 -3761 ((-652 |#1|) (-1184 |#1|))) (-15 -3748 ((-3 |#1| "failed") (-1184 |#1|) (-930))) (-15 -3748 ((-3 |#1| "failed") (-1184 |#1|) (-930) (-870))) (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -2033 (|#1| |#1| (-572))) (-15 -3093 (|#1| |#1|)) (-15 ** (|#1| |#1| (-572))) (-15 -2455 ((-779))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 102)) (-1697 (($ $) 103)) (-1774 (((-112) $) 105)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 122)) (-2359 (((-426 $) $) 123)) (-3093 (($ $) 86) (($ $ (-930)) 72) (($ (-415 (-572))) 71) (($ (-572)) 70)) (-4252 (((-112) $ $) 113)) (-4304 (((-572) $) 139)) (-1586 (($) 18 T CONST)) (-3748 (((-3 $ "failed") (-1184 $) (-930) (-870)) 80) (((-3 $ "failed") (-1184 $) (-930)) 79)) (-3072 (((-3 (-572) "failed") $) 99 (|has| (-415 (-572)) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 97 (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-3 (-415 (-572)) "failed") $) 94)) (-1869 (((-572) $) 98 (|has| (-415 (-572)) (-1049 (-572)))) (((-415 (-572)) $) 96 (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-415 (-572)) $) 95)) (-1564 (($ $ (-870)) 69)) (-4371 (($ $ (-870)) 68)) (-3407 (($ $ $) 117)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 116)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 111)) (-3439 (((-112) $) 124)) (-3778 (((-112) $) 137)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 85)) (-4354 (((-112) $) 138)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 120)) (-2536 (($ $ $) 136)) (-3928 (($ $ $) 135)) (-4295 (((-3 (-1184 $) "failed") $) 81)) (-1792 (((-3 (-870) "failed") $) 83)) (-1534 (((-3 (-1184 $) "failed") $) 82)) (-1335 (($ (-652 $)) 109) (($ $ $) 108)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 125)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 110)) (-1370 (($ (-652 $)) 107) (($ $ $) 106)) (-2972 (((-426 $) $) 121)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 118)) (-3453 (((-3 $ "failed") $ $) 101)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 112)) (-4395 (((-779) $) 114)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 115)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 129) (($ $) 100) (($ (-415 (-572))) 93) (($ (-572)) 92) (($ (-415 (-572))) 89)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 104)) (-4090 (((-415 (-572)) $ $) 67)) (-3761 (((-652 $) (-1184 $)) 78) (((-652 $) (-1184 (-415 (-572)))) 77) (((-652 $) (-1184 (-572))) 76) (((-652 $) (-961 $)) 75) (((-652 $) (-961 (-415 (-572)))) 74) (((-652 $) (-961 (-572))) 73)) (-2775 (($ $) 140)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3976 (((-112) $ $) 133)) (-3954 (((-112) $ $) 132)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 134)) (-3943 (((-112) $ $) 131)) (-4029 (($ $ $) 130)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 126) (($ $ (-415 (-572))) 84)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ (-415 (-572)) $) 128) (($ $ (-415 (-572))) 127) (($ (-572) $) 91) (($ $ (-572)) 90) (($ (-415 (-572)) $) 88) (($ $ (-415 (-572))) 87)))
+(((-1023) (-141)) (T -1023))
+((-3093 (*1 *1 *1) (-4 *1 (-1023))) (-1792 (*1 *2 *1) (|partial| -12 (-4 *1 (-1023)) (-5 *2 (-870)))) (-1534 (*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))) (-4295 (*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))) (-3748 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-5 *4 (-870)) (-4 *1 (-1023)))) (-3748 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-4 *1 (-1023)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-1184 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023)))) (-3093 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-930)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1023)))) (-3093 (*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1023)))) (-1564 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))) (-4371 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))) (-4090 (*1 *2 *1 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-415 (-572))))))
+(-13 (-148) (-856) (-174) (-370) (-419 (-415 (-572))) (-38 (-572)) (-38 (-415 (-572))) (-1013) (-10 -8 (-15 -1792 ((-3 (-870) "failed") $)) (-15 -1534 ((-3 (-1184 $) "failed") $)) (-15 -4295 ((-3 (-1184 $) "failed") $)) (-15 -3748 ((-3 $ "failed") (-1184 $) (-930) (-870))) (-15 -3748 ((-3 $ "failed") (-1184 $) (-930))) (-15 -3761 ((-652 $) (-1184 $))) (-15 -3761 ((-652 $) (-1184 (-415 (-572))))) (-15 -3761 ((-652 $) (-1184 (-572)))) (-15 -3761 ((-652 $) (-961 $))) (-15 -3761 ((-652 $) (-961 (-415 (-572))))) (-15 -3761 ((-652 $) (-961 (-572)))) (-15 -3093 ($ $ (-930))) (-15 -3093 ($ $)) (-15 -3093 ($ (-415 (-572)))) (-15 -3093 ($ (-572))) (-15 -1564 ($ $ (-870))) (-15 -4371 ($ $ (-870))) (-15 -4090 ((-415 (-572)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 #1=(-572)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-419 (-415 (-572))) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 #1#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 #1#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 #1#) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-929) . T) ((-1013) . T) ((-1049 (-415 (-572))) . T) ((-1049 (-572)) |has| (-415 (-572)) (-1049 (-572))) ((-1062 #0#) . T) ((-1062 #1#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 #1#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
+((-1779 (((-2 (|:| |ans| |#2|) (|:| -3058 |#2|) (|:| |sol?| (-112))) (-572) |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1024 |#1| |#2|) (-10 -7 (-15 -1779 ((-2 (|:| |ans| |#2|) (|:| -3058 |#2|) (|:| |sol?| (-112))) (-572) |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-27) (-438 |#1|))) (T -1024))
+((-1779 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1188)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-652 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1647 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1214) (-27) (-438 *8))) (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3058 *4) (|:| |sol?| (-112)))) (-5 *1 (-1024 *8 *4)))))
+(-10 -7 (-15 -1779 ((-2 (|:| |ans| |#2|) (|:| -3058 |#2|) (|:| |sol?| (-112))) (-572) |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1868 (((-3 (-652 |#2|) "failed") (-572) |#2| |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1025 |#1| |#2|) (-10 -7 (-15 -1868 ((-3 (-652 |#2|) "failed") (-572) |#2| |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))) (-13 (-1214) (-27) (-438 |#1|))) (T -1025))
+((-1868 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1188)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-652 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1647 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1214) (-27) (-438 *8))) (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572)) (-5 *2 (-652 *4)) (-5 *1 (-1025 *8 *4)))))
+(-10 -7 (-15 -1868 ((-3 (-652 |#2|) "failed") (-572) |#2| |#2| |#2| (-1188) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-652 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-652 |#2|)) (-1 (-3 (-2 (|:| -1647 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-4106 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3179 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-572)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-572) (-1 |#2| |#2|)) 38)) (-1915 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |c| (-415 |#2|)) (|:| -2508 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|)) 69)) (-3319 (((-2 (|:| |ans| (-415 |#2|)) (|:| |nosol| (-112))) (-415 |#2|) (-415 |#2|)) 74)))
+(((-1026 |#1| |#2|) (-10 -7 (-15 -1915 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |c| (-415 |#2|)) (|:| -2508 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -3319 ((-2 (|:| |ans| (-415 |#2|)) (|:| |nosol| (-112))) (-415 |#2|) (-415 |#2|))) (-15 -4106 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3179 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-572)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-572) (-1 |#2| |#2|)))) (-13 (-370) (-148) (-1049 (-572))) (-1255 |#1|)) (T -1026))
+((-4106 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1255 *6)) (-4 *6 (-13 (-370) (-148) (-1049 *4))) (-5 *4 (-572)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3179 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1026 *6 *3)))) (-3319 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| |ans| (-415 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-415 *5)))) (-1915 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |c| (-415 *6)) (|:| -2508 *6))) (-5 *1 (-1026 *5 *6)) (-5 *3 (-415 *6)))))
+(-10 -7 (-15 -1915 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |c| (-415 |#2|)) (|:| -2508 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -3319 ((-2 (|:| |ans| (-415 |#2|)) (|:| |nosol| (-112))) (-415 |#2|) (-415 |#2|))) (-15 -4106 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3179 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-572)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-572) (-1 |#2| |#2|))))
+((-4311 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |h| |#2|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| -2508 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|)) 22)) (-2850 (((-3 (-652 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|)) 34)))
+(((-1027 |#1| |#2|) (-10 -7 (-15 -4311 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |h| |#2|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| -2508 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -2850 ((-3 (-652 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|)))) (-13 (-370) (-148) (-1049 (-572))) (-1255 |#1|)) (T -1027))
+((-2850 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4)) (-5 *2 (-652 (-415 *5))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-415 *5)))) (-4311 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |h| *6) (|:| |c1| (-415 *6)) (|:| |c2| (-415 *6)) (|:| -2508 *6))) (-5 *1 (-1027 *5 *6)) (-5 *3 (-415 *6)))))
+(-10 -7 (-15 -4311 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-415 |#2|)) (|:| |h| |#2|) (|:| |c1| (-415 |#2|)) (|:| |c2| (-415 |#2|)) (|:| -2508 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|) (-1 |#2| |#2|))) (-15 -2850 ((-3 (-652 (-415 |#2|)) "failed") (-415 |#2|) (-415 |#2|) (-415 |#2|))))
+((-4021 (((-1 |#1|) (-652 (-2 (|:| -1653 |#1|) (|:| -1470 (-572))))) 34)) (-2793 (((-1 |#1|) (-1113 |#1|)) 42)) (-2286 (((-1 |#1|) (-1279 |#1|) (-1279 (-572)) (-572)) 31)))
+(((-1028 |#1|) (-10 -7 (-15 -2793 ((-1 |#1|) (-1113 |#1|))) (-15 -4021 ((-1 |#1|) (-652 (-2 (|:| -1653 |#1|) (|:| -1470 (-572)))))) (-15 -2286 ((-1 |#1|) (-1279 |#1|) (-1279 (-572)) (-572)))) (-1111)) (T -1028))
+((-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1279 *6)) (-5 *4 (-1279 (-572))) (-5 *5 (-572)) (-4 *6 (-1111)) (-5 *2 (-1 *6)) (-5 *1 (-1028 *6)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -1653 *4) (|:| -1470 (-572))))) (-4 *4 (-1111)) (-5 *2 (-1 *4)) (-5 *1 (-1028 *4)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1113 *4)) (-4 *4 (-1111)) (-5 *2 (-1 *4)) (-5 *1 (-1028 *4)))))
+(-10 -7 (-15 -2793 ((-1 |#1|) (-1113 |#1|))) (-15 -4021 ((-1 |#1|) (-652 (-2 (|:| -1653 |#1|) (|:| -1470 (-572)))))) (-15 -2286 ((-1 |#1|) (-1279 |#1|) (-1279 (-572)) (-572))))
+((-2068 (((-779) (-343 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1029 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2068 ((-779) (-343 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-370) (-1255 |#1|) (-1255 (-415 |#2|)) (-349 |#1| |#2| |#3|) (-13 (-375) (-370))) (T -1029))
+((-2068 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-343 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-370)) (-4 *7 (-1255 *6)) (-4 *4 (-1255 (-415 *7))) (-4 *8 (-349 *6 *7 *4)) (-4 *9 (-13 (-375) (-370))) (-5 *2 (-779)) (-5 *1 (-1029 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -2068 ((-779) (-343 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3464 (((-112) $ $) NIL)) (-3181 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-1146) $) 11)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1030) (-13 (-1094) (-10 -8 (-15 -3181 ((-1146) $)) (-15 -2414 ((-1146) $))))) (T -1030))
+((-3181 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030)))))
+(-13 (-1094) (-10 -8 (-15 -3181 ((-1146) $)) (-15 -2414 ((-1146) $))))
+((-3348 (((-3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) "failed") |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) 32) (((-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572))) 29)) (-3043 (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572))) 34) (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-415 (-572))) 30) (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) 33) (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1|) 28)) (-2369 (((-652 (-415 (-572))) (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) 20)) (-1705 (((-415 (-572)) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) 17)))
+(((-1031 |#1|) (-10 -7 (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1|)) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) "failed") |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -1705 ((-415 (-572)) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -2369 ((-652 (-415 (-572))) (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))))) (-1255 (-572))) (T -1031))
+((-2369 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-5 *2 (-652 (-415 (-572)))) (-5 *1 (-1031 *4)) (-4 *4 (-1255 (-572))))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) (-5 *2 (-415 (-572))) (-5 *1 (-1031 *4)) (-4 *4 (-1255 (-572))))) (-3348 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))))) (-3348 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) (-5 *4 (-415 (-572))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-415 (-572))) (-5 *2 (-652 (-2 (|:| -3041 *5) (|:| -3058 *5)))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-2 (|:| -3041 *5) (|:| -3058 *5))))) (-3043 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-415 (-572))))) (-3043 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))) (-3043 (*1 *2 *3) (-12 (-5 *2 (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))))))
+(-10 -7 (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1|)) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) "failed") |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -1705 ((-415 (-572)) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -2369 ((-652 (-415 (-572))) (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))))
+((-3348 (((-3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) "failed") |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) 35) (((-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572))) 32)) (-3043 (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572))) 30) (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-415 (-572))) 26) (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) 28) (((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1|) 24)))
+(((-1032 |#1|) (-10 -7 (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1|)) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) "failed") |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))) (-1255 (-415 (-572)))) (T -1032))
+((-3348 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572)))))) (-3348 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) (-5 *4 (-415 (-572))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *4)))) (-3043 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-415 (-572))) (-5 *2 (-652 (-2 (|:| -3041 *5) (|:| -3058 *5)))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *5)) (-5 *4 (-2 (|:| -3041 *5) (|:| -3058 *5))))) (-3043 (*1 *2 *3 *4) (-12 (-5 *4 (-415 (-572))) (-5 *2 (-652 (-2 (|:| -3041 *4) (|:| -3058 *4)))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *4)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *2 (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572)))) (-5 *4 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))) (-3043 (*1 *2 *3) (-12 (-5 *2 (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572)))))))
+(-10 -7 (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1|)) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-415 (-572)))) (-15 -3043 ((-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-415 (-572)))) (-15 -3348 ((-3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) "failed") |#1| (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))) (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))))
+((-3222 (((-227) $) 6) (((-386) $) 9)))
+(((-1033) (-141)) (T -1033))
+NIL
+(-13 (-622 (-227)) (-622 (-386)))
+(((-622 (-227)) . T) ((-622 (-386)) . T))
+((-1969 (((-652 (-386)) (-961 (-572)) (-386)) 28) (((-652 (-386)) (-961 (-415 (-572))) (-386)) 27)) (-2935 (((-652 (-652 (-386))) (-652 (-961 (-572))) (-652 (-1188)) (-386)) 37)))
+(((-1034) (-10 -7 (-15 -1969 ((-652 (-386)) (-961 (-415 (-572))) (-386))) (-15 -1969 ((-652 (-386)) (-961 (-572)) (-386))) (-15 -2935 ((-652 (-652 (-386))) (-652 (-961 (-572))) (-652 (-1188)) (-386))))) (T -1034))
+((-2935 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 (-386)))) (-5 *1 (-1034)) (-5 *5 (-386)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 (-386))) (-5 *1 (-1034)) (-5 *4 (-386)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 (-386))) (-5 *1 (-1034)) (-5 *4 (-386)))))
+(-10 -7 (-15 -1969 ((-652 (-386)) (-961 (-415 (-572))) (-386))) (-15 -1969 ((-652 (-386)) (-961 (-572)) (-386))) (-15 -2935 ((-652 (-652 (-386))) (-652 (-961 (-572))) (-652 (-1188)) (-386))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 75)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-3093 (($ $) NIL) (($ $ (-930)) NIL) (($ (-415 (-572))) NIL) (($ (-572)) NIL)) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) 70)) (-1586 (($) NIL T CONST)) (-3748 (((-3 $ "failed") (-1184 $) (-930) (-870)) NIL) (((-3 $ "failed") (-1184 $) (-930)) 55)) (-3072 (((-3 (-415 (-572)) "failed") $) NIL (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-572) "failed") $) NIL (-3783 (|has| (-415 (-572)) (-1049 (-572))) (|has| |#1| (-1049 (-572)))))) (-1869 (((-415 (-572)) $) 17 (|has| (-415 (-572)) (-1049 (-415 (-572))))) (((-415 (-572)) $) 17) ((|#1| $) 117) (((-572) $) NIL (-3783 (|has| (-415 (-572)) (-1049 (-572))) (|has| |#1| (-1049 (-572)))))) (-1564 (($ $ (-870)) 47)) (-4371 (($ $ (-870)) 48)) (-3407 (($ $ $) NIL)) (-1538 (((-415 (-572)) $ $) 21)) (-2982 (((-3 $ "failed") $) 88)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3778 (((-112) $) 66)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL)) (-4354 (((-112) $) 69)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-4295 (((-3 (-1184 $) "failed") $) 83)) (-1792 (((-3 (-870) "failed") $) 82)) (-1534 (((-3 (-1184 $) "failed") $) 80)) (-3325 (((-3 (-1072 $ (-1184 $)) "failed") $) 78)) (-1335 (($ (-652 $)) NIL) (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 89)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ (-652 $)) NIL) (($ $ $) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3491 (((-870) $) 87) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ $) 63) (($ (-415 (-572))) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ |#1|) 119)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-4090 (((-415 (-572)) $ $) 27)) (-3761 (((-652 $) (-1184 $)) 61) (((-652 $) (-1184 (-415 (-572)))) NIL) (((-652 $) (-1184 (-572))) NIL) (((-652 $) (-961 $)) NIL) (((-652 $) (-961 (-415 (-572)))) NIL) (((-652 $) (-961 (-572))) NIL)) (-1925 (($ (-1072 $ (-1184 $)) (-870)) 46)) (-2775 (($ $) 22)) (-2602 (($) 32 T CONST)) (-2619 (($) 39 T CONST)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 76)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 24)) (-4029 (($ $ $) 37)) (-4018 (($ $) 38) (($ $ $) 74)) (-4005 (($ $ $) 112)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL) (($ $ (-415 (-572))) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 98) (($ $ $) 104) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ (-572) $) 98) (($ $ (-572)) NIL) (($ (-415 (-572)) $) NIL) (($ $ (-415 (-572))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1035 |#1|) (-13 (-1023) (-419 |#1|) (-38 |#1|) (-10 -8 (-15 -1925 ($ (-1072 $ (-1184 $)) (-870))) (-15 -3325 ((-3 (-1072 $ (-1184 $)) "failed") $)) (-15 -1538 ((-415 (-572)) $ $)))) (-13 (-856) (-370) (-1033))) (T -1035))
+((-1925 (*1 *1 *2 *3) (-12 (-5 *2 (-1072 (-1035 *4) (-1184 (-1035 *4)))) (-5 *3 (-870)) (-5 *1 (-1035 *4)) (-4 *4 (-13 (-856) (-370) (-1033))))) (-3325 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072 (-1035 *3) (-1184 (-1035 *3)))) (-5 *1 (-1035 *3)) (-4 *3 (-13 (-856) (-370) (-1033))))) (-1538 (*1 *2 *1 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1035 *3)) (-4 *3 (-13 (-856) (-370) (-1033))))))
+(-13 (-1023) (-419 |#1|) (-38 |#1|) (-10 -8 (-15 -1925 ($ (-1072 $ (-1184 $)) (-870))) (-15 -3325 ((-3 (-1072 $ (-1184 $)) "failed") $)) (-15 -1538 ((-415 (-572)) $ $))))
+((-3864 (((-2 (|:| -3179 |#2|) (|:| -2185 (-652 |#1|))) |#2| (-652 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1036 |#1| |#2|) (-10 -7 (-15 -3864 (|#2| |#2| |#1|)) (-15 -3864 ((-2 (|:| -3179 |#2|) (|:| -2185 (-652 |#1|))) |#2| (-652 |#1|)))) (-370) (-664 |#1|)) (T -1036))
+((-3864 (*1 *2 *3 *4) (-12 (-4 *5 (-370)) (-5 *2 (-2 (|:| -3179 *3) (|:| -2185 (-652 *5)))) (-5 *1 (-1036 *5 *3)) (-5 *4 (-652 *5)) (-4 *3 (-664 *5)))) (-3864 (*1 *2 *2 *3) (-12 (-4 *3 (-370)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-664 *3)))))
+(-10 -7 (-15 -3864 (|#2| |#2| |#1|)) (-15 -3864 ((-2 (|:| -3179 |#2|) (|:| -2185 (-652 |#1|))) |#2| (-652 |#1|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3584 ((|#1| $ |#1|) 14)) (-3659 ((|#1| $ |#1|) 12)) (-1451 (($ |#1|) 10)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2679 ((|#1| $) 11)) (-2022 ((|#1| $) 13)) (-3491 (((-870) $) 21 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3921 (((-112) $ $) 9)))
+(((-1037 |#1|) (-13 (-1229) (-10 -8 (-15 -1451 ($ |#1|)) (-15 -2679 (|#1| $)) (-15 -3659 (|#1| $ |#1|)) (-15 -2022 (|#1| $)) (-15 -3584 (|#1| $ |#1|)) (-15 -3921 ((-112) $ $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|))) (-1229)) (T -1037))
+((-1451 (*1 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-2679 (*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-3659 (*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-2022 (*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-3584 (*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))) (-3921 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1037 *3)) (-4 *3 (-1229)))))
+(-13 (-1229) (-10 -8 (-15 -1451 ($ |#1|)) (-15 -2679 (|#1| $)) (-15 -3659 (|#1| $ |#1|)) (-15 -2022 (|#1| $)) (-15 -3584 (|#1| $ |#1|)) (-15 -3921 ((-112) $ $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) NIL)) (-3426 (((-652 $) (-652 |#4|)) 118) (((-652 $) (-652 |#4|) (-112)) 119) (((-652 $) (-652 |#4|) (-112) (-112)) 117) (((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2220 (((-652 |#3|) $) NIL)) (-2029 (((-112) $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2373 ((|#4| |#4| $) NIL)) (-1861 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| $) 112)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-1424 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 66)) (-1586 (($) NIL T CONST)) (-3571 (((-112) $) 29 (|has| |#1| (-564)))) (-3057 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1528 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2690 (((-112) $) NIL (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4400 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) NIL)) (-1869 (($ (-652 |#4|)) NIL)) (-2581 (((-3 $ "failed") $) 45)) (-3802 ((|#4| |#4| $) 69)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-4243 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1674 ((|#4| |#4| $) NIL)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) NIL)) (-3294 (((-112) |#4| $) NIL)) (-3342 (((-112) |#4| $) NIL)) (-3628 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1759 (((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)) 133)) (-1442 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3698 ((|#3| $) 38)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#4|) $) 19 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3049 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 23)) (-1677 (((-652 |#3|) $) NIL)) (-2002 (((-112) |#3| $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-1618 (((-3 |#4| (-652 $)) |#4| |#4| $) NIL)) (-3276 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| |#4| $) 110)) (-4261 (((-3 |#4| "failed") $) 42)) (-3981 (((-652 $) |#4| $) 93)) (-4302 (((-3 (-112) (-652 $)) |#4| $) NIL)) (-1457 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3225 (((-652 $) |#4| $) 115) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 116) (((-652 $) |#4| (-652 $)) NIL)) (-4048 (((-652 $) (-652 |#4|) (-112) (-112) (-112)) 128)) (-1772 (($ |#4| $) 82) (($ (-652 |#4|) $) 83) (((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1706 (((-652 |#4|) $) NIL)) (-1338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3113 ((|#4| |#4| $) NIL)) (-4398 (((-112) $ $) NIL)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2041 ((|#4| |#4| $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-3 |#4| "failed") $) 40)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4236 (((-3 $ "failed") $ |#4|) 59)) (-3103 (($ $ |#4|) NIL) (((-652 $) |#4| $) 95) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 89)) (-3089 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 17)) (-1321 (($) 14)) (-1497 (((-779) $) NIL)) (-1371 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) 13)) (-3222 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 22)) (-3399 (($ $ |#3|) 52)) (-3831 (($ $ |#3|) 54)) (-2894 (($ $) NIL)) (-1757 (($ $ |#3|) NIL)) (-3491 (((-870) $) 35) (((-652 |#4|) $) 46)) (-1935 (((-779) $) NIL (|has| |#3| (-375)))) (-3424 (((-112) $ $) NIL)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-2290 (((-652 $) |#4| $) 92) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) NIL)) (-3776 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) NIL)) (-2777 (((-112) |#4| $) NIL)) (-2947 (((-112) |#3| $) 65)) (-3921 (((-112) $ $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1038 |#1| |#2| |#3| |#4|) (-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1772 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -4048 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -1759 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112))))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -1038))
+((-1772 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *3))) (-5 *1 (-1038 *5 *6 *7 *3)) (-4 *3 (-1076 *5 *6 *7)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8)))) (-3426 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8)))) (-4048 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8)))) (-1759 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-652 *8)) (|:| |towers| (-652 (-1038 *5 *6 *7 *8))))) (-5 *1 (-1038 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
+(-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1772 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -4048 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -1759 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)))))
+((-2295 (((-652 (-697 |#1|)) (-652 (-697 |#1|))) 70) (((-697 |#1|) (-697 |#1|)) 69) (((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-652 (-697 |#1|))) 68) (((-697 |#1|) (-697 |#1|) (-697 |#1|)) 65)) (-3298 (((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930)) 63) (((-697 |#1|) (-697 |#1|) (-930)) 62)) (-2426 (((-652 (-697 (-572))) (-652 (-652 (-572)))) 81) (((-652 (-697 (-572))) (-652 (-914 (-572))) (-572)) 80) (((-697 (-572)) (-652 (-572))) 77) (((-697 (-572)) (-914 (-572)) (-572)) 75)) (-3547 (((-697 (-961 |#1|)) (-779)) 95)) (-3750 (((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930)) 49 (|has| |#1| (-6 (-4456 "*")))) (((-697 |#1|) (-697 |#1|) (-930)) 47 (|has| |#1| (-6 (-4456 "*"))))))
+(((-1039 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -3750 ((-697 |#1|) (-697 |#1|) (-930))) |%noBranch|) (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -3750 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) |%noBranch|) (-15 -3547 ((-697 (-961 |#1|)) (-779))) (-15 -3298 ((-697 |#1|) (-697 |#1|) (-930))) (-15 -3298 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) (-15 -2295 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2295 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2295 ((-697 |#1|) (-697 |#1|))) (-15 -2295 ((-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2426 ((-697 (-572)) (-914 (-572)) (-572))) (-15 -2426 ((-697 (-572)) (-652 (-572)))) (-15 -2426 ((-652 (-697 (-572))) (-652 (-914 (-572))) (-572))) (-15 -2426 ((-652 (-697 (-572))) (-652 (-652 (-572)))))) (-1060)) (T -1039))
+((-2426 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-572)))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-1039 *4)) (-4 *4 (-1060)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-914 (-572)))) (-5 *4 (-572)) (-5 *2 (-652 (-697 *4))) (-5 *1 (-1039 *5)) (-4 *5 (-1060)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1039 *4)) (-4 *4 (-1060)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-914 (-572))) (-5 *4 (-572)) (-5 *2 (-697 *4)) (-5 *1 (-1039 *5)) (-4 *5 (-1060)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-2295 (*1 *2 *2 *2) (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-2295 (*1 *2 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))) (-3298 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930)) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))) (-3298 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-697 (-961 *4))) (-5 *1 (-1039 *4)) (-4 *4 (-1060)))) (-3750 (*1 *2 *2 *3) (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930)) (|has| *4 (-6 (-4456 "*"))) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))) (-3750 (*1 *2 *2 *3) (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (|has| *4 (-6 (-4456 "*"))) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -3750 ((-697 |#1|) (-697 |#1|) (-930))) |%noBranch|) (IF (|has| |#1| (-6 (-4456 "*"))) (-15 -3750 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) |%noBranch|) (-15 -3547 ((-697 (-961 |#1|)) (-779))) (-15 -3298 ((-697 |#1|) (-697 |#1|) (-930))) (-15 -3298 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-930))) (-15 -2295 ((-697 |#1|) (-697 |#1|) (-697 |#1|))) (-15 -2295 ((-652 (-697 |#1|)) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2295 ((-697 |#1|) (-697 |#1|))) (-15 -2295 ((-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2426 ((-697 (-572)) (-914 (-572)) (-572))) (-15 -2426 ((-697 (-572)) (-652 (-572)))) (-15 -2426 ((-652 (-697 (-572))) (-652 (-914 (-572))) (-572))) (-15 -2426 ((-652 (-697 (-572))) (-652 (-652 (-572))))))
+((-1346 (((-697 |#1|) (-652 (-697 |#1|)) (-1279 |#1|)) 70 (|has| |#1| (-313)))) (-3339 (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 (-1279 |#1|))) 110 (|has| |#1| (-370))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 |#1|)) 117 (|has| |#1| (-370)))) (-3412 (((-1279 |#1|) (-652 (-1279 |#1|)) (-572)) 135 (-12 (|has| |#1| (-370)) (|has| |#1| (-375))))) (-3094 (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-930)) 123 (-12 (|has| |#1| (-370)) (|has| |#1| (-375)))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112)) 122 (-12 (|has| |#1| (-370)) (|has| |#1| (-375)))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|))) 121 (-12 (|has| |#1| (-370)) (|has| |#1| (-375)))) (((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112) (-572) (-572)) 120 (-12 (|has| |#1| (-370)) (|has| |#1| (-375))))) (-4312 (((-112) (-652 (-697 |#1|))) 103 (|has| |#1| (-370))) (((-112) (-652 (-697 |#1|)) (-572)) 106 (|has| |#1| (-370)))) (-2868 (((-1279 (-1279 |#1|)) (-652 (-697 |#1|)) (-1279 |#1|)) 67 (|has| |#1| (-313)))) (-2791 (((-697 |#1|) (-652 (-697 |#1|)) (-697 |#1|)) 47)) (-1900 (((-697 |#1|) (-1279 (-1279 |#1|))) 40)) (-1448 (((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-572)) 94 (|has| |#1| (-370))) (((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|))) 93 (|has| |#1| (-370))) (((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-112) (-572)) 101 (|has| |#1| (-370)))))
+(((-1040 |#1|) (-10 -7 (-15 -1900 ((-697 |#1|) (-1279 (-1279 |#1|)))) (-15 -2791 ((-697 |#1|) (-652 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-313)) (PROGN (-15 -2868 ((-1279 (-1279 |#1|)) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -1346 ((-697 |#1|) (-652 (-697 |#1|)) (-1279 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1448 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-112) (-572))) (-15 -1448 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -1448 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-572))) (-15 -4312 ((-112) (-652 (-697 |#1|)) (-572))) (-15 -4312 ((-112) (-652 (-697 |#1|)))) (-15 -3339 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -3339 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 (-1279 |#1|))))) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#1| (-370)) (PROGN (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112) (-572) (-572))) (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)))) (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112))) (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-930))) (-15 -3412 ((-1279 |#1|) (-652 (-1279 |#1|)) (-572)))) |%noBranch|) |%noBranch|)) (-1060)) (T -1040))
+((-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1279 *5))) (-5 *4 (-572)) (-5 *2 (-1279 *5)) (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-3094 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-370)) (-4 *4 (-375)) (-4 *4 (-1060)) (-5 *2 (-652 (-652 (-697 *4)))) (-5 *1 (-1040 *4)) (-5 *3 (-652 (-697 *4))))) (-3094 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-572)) (-4 *6 (-370)) (-4 *6 (-375)) (-4 *6 (-1060)) (-5 *2 (-652 (-652 (-697 *6)))) (-5 *1 (-1040 *6)) (-5 *3 (-652 (-697 *6))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-1279 (-1279 *5))) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-3339 (*1 *2 *3 *4) (-12 (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-652 (-697 *5))))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370)) (-4 *4 (-1060)) (-5 *2 (-112)) (-5 *1 (-1040 *4)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-4 *5 (-370)) (-4 *5 (-1060)) (-5 *2 (-112)) (-5 *1 (-1040 *5)))) (-1448 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-5 *2 (-697 *5)) (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-1060)))) (-1448 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-5 *1 (-1040 *4)) (-4 *4 (-370)) (-4 *4 (-1060)))) (-1448 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-652 (-697 *6))) (-5 *4 (-112)) (-5 *5 (-572)) (-5 *2 (-697 *6)) (-5 *1 (-1040 *6)) (-4 *6 (-370)) (-4 *6 (-1060)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-1279 *5)) (-4 *5 (-313)) (-4 *5 (-1060)) (-5 *2 (-697 *5)) (-5 *1 (-1040 *5)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-697 *5))) (-4 *5 (-313)) (-4 *5 (-1060)) (-5 *2 (-1279 (-1279 *5))) (-5 *1 (-1040 *5)) (-5 *4 (-1279 *5)))) (-2791 (*1 *2 *3 *2) (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-4 *4 (-1060)) (-5 *1 (-1040 *4)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1279 (-1279 *4))) (-4 *4 (-1060)) (-5 *2 (-697 *4)) (-5 *1 (-1040 *4)))))
+(-10 -7 (-15 -1900 ((-697 |#1|) (-1279 (-1279 |#1|)))) (-15 -2791 ((-697 |#1|) (-652 (-697 |#1|)) (-697 |#1|))) (IF (|has| |#1| (-313)) (PROGN (-15 -2868 ((-1279 (-1279 |#1|)) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -1346 ((-697 |#1|) (-652 (-697 |#1|)) (-1279 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -1448 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-112) (-572))) (-15 -1448 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -1448 ((-697 |#1|) (-652 (-697 |#1|)) (-652 (-697 |#1|)) (-572))) (-15 -4312 ((-112) (-652 (-697 |#1|)) (-572))) (-15 -4312 ((-112) (-652 (-697 |#1|)))) (-15 -3339 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 |#1|))) (-15 -3339 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-1279 (-1279 |#1|))))) |%noBranch|) (IF (|has| |#1| (-375)) (IF (|has| |#1| (-370)) (PROGN (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112) (-572) (-572))) (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)))) (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-112))) (-15 -3094 ((-652 (-652 (-697 |#1|))) (-652 (-697 |#1|)) (-930))) (-15 -3412 ((-1279 |#1|) (-652 (-1279 |#1|)) (-572)))) |%noBranch|) |%noBranch|))
+((-1437 ((|#1| (-930) |#1|) 18)))
+(((-1041 |#1|) (-10 -7 (-15 -1437 (|#1| (-930) |#1|))) (-13 (-1111) (-10 -8 (-15 -4005 ($ $ $))))) (T -1041))
+((-1437 (*1 *2 *3 *2) (-12 (-5 *3 (-930)) (-5 *1 (-1041 *2)) (-4 *2 (-13 (-1111) (-10 -8 (-15 -4005 ($ $ $))))))))
+(-10 -7 (-15 -1437 (|#1| (-930) |#1|)))
+((-1918 (((-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572))))))) (-697 (-415 (-961 (-572))))) 67)) (-1983 (((-652 (-697 (-322 (-572)))) (-322 (-572)) (-697 (-415 (-961 (-572))))) 52)) (-1899 (((-652 (-322 (-572))) (-697 (-415 (-961 (-572))))) 45)) (-1673 (((-652 (-697 (-322 (-572)))) (-697 (-415 (-961 (-572))))) 85)) (-1642 (((-697 (-322 (-572))) (-697 (-322 (-572)))) 38)) (-2048 (((-652 (-697 (-322 (-572)))) (-652 (-697 (-322 (-572))))) 74)) (-1744 (((-3 (-697 (-322 (-572))) "failed") (-697 (-415 (-961 (-572))))) 82)))
+(((-1042) (-10 -7 (-15 -1918 ((-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572))))))) (-697 (-415 (-961 (-572)))))) (-15 -1983 ((-652 (-697 (-322 (-572)))) (-322 (-572)) (-697 (-415 (-961 (-572)))))) (-15 -1899 ((-652 (-322 (-572))) (-697 (-415 (-961 (-572)))))) (-15 -1744 ((-3 (-697 (-322 (-572))) "failed") (-697 (-415 (-961 (-572)))))) (-15 -1642 ((-697 (-322 (-572))) (-697 (-322 (-572))))) (-15 -2048 ((-652 (-697 (-322 (-572)))) (-652 (-697 (-322 (-572)))))) (-15 -1673 ((-652 (-697 (-322 (-572)))) (-697 (-415 (-961 (-572)))))))) (T -1042))
+((-1673 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))) (-2048 (*1 *2 *2) (-12 (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))) (-1744 (*1 *2 *3) (|partial| -12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-322 (-572)))) (-5 *1 (-1042)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)) (-5 *3 (-322 (-572))))) (-1918 (*1 *2 *3) (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572)))))))) (-5 *1 (-1042)))))
+(-10 -7 (-15 -1918 ((-652 (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572)) (|:| |radvect| (-652 (-697 (-322 (-572))))))) (-697 (-415 (-961 (-572)))))) (-15 -1983 ((-652 (-697 (-322 (-572)))) (-322 (-572)) (-697 (-415 (-961 (-572)))))) (-15 -1899 ((-652 (-322 (-572))) (-697 (-415 (-961 (-572)))))) (-15 -1744 ((-3 (-697 (-322 (-572))) "failed") (-697 (-415 (-961 (-572)))))) (-15 -1642 ((-697 (-322 (-572))) (-697 (-322 (-572))))) (-15 -2048 ((-652 (-697 (-322 (-572)))) (-652 (-697 (-322 (-572)))))) (-15 -1673 ((-652 (-697 (-322 (-572)))) (-697 (-415 (-961 (-572)))))))
+((-3269 ((|#1| |#1| (-930)) 18)))
+(((-1043 |#1|) (-10 -7 (-15 -3269 (|#1| |#1| (-930)))) (-13 (-1111) (-10 -8 (-15 * ($ $ $))))) (T -1043))
+((-3269 (*1 *2 *2 *3) (-12 (-5 *3 (-930)) (-5 *1 (-1043 *2)) (-4 *2 (-13 (-1111) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3269 (|#1| |#1| (-930))))
+((-3491 ((|#1| (-318)) 11) (((-1284) |#1|) 9)))
+(((-1044 |#1|) (-10 -7 (-15 -3491 ((-1284) |#1|)) (-15 -3491 (|#1| (-318)))) (-1229)) (T -1044))
+((-3491 (*1 *2 *3) (-12 (-5 *3 (-318)) (-5 *1 (-1044 *2)) (-4 *2 (-1229)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-1284)) (-5 *1 (-1044 *3)) (-4 *3 (-1229)))))
+(-10 -7 (-15 -3491 ((-1284) |#1|)) (-15 -3491 (|#1| (-318))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2925 (($ |#4|) 25)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-2913 ((|#4| $) 27)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 46) (($ (-572)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2455 (((-779)) 43 T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 21 T CONST)) (-2619 (($) 23 T CONST)) (-3921 (((-112) $ $) 40)) (-4018 (($ $) 31) (($ $ $) NIL)) (-4005 (($ $ $) 29)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1045 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2925 ($ |#4|)) (-15 -3491 ($ |#4|)) (-15 -2913 (|#4| $)))) (-370) (-801) (-858) (-958 |#1| |#2| |#3|) (-652 |#4|)) (T -1045))
+((-2925 (*1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5)) (-14 *6 (-652 *2)))) (-3491 (*1 *1 *2) (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5)) (-14 *6 (-652 *2)))) (-2913 (*1 *2 *1) (-12 (-4 *2 (-958 *3 *4 *5)) (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-14 *6 (-652 *2)))))
+(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2925 ($ |#4|)) (-15 -3491 ($ |#4|)) (-15 -2913 (|#4| $))))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL)) (-2812 (((-1284) $ (-1188) (-1188)) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-2970 (((-112) (-112)) 43)) (-2217 (((-112) (-112)) 42)) (-3659 (((-52) $ (-1188) (-52)) NIL)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 (-52) "failed") (-1188) $) NIL)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-3033 (($ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-3 (-52) "failed") (-1188) $) NIL)) (-4243 (($ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-3061 (((-52) $ (-1188) (-52)) NIL (|has| $ (-6 -4455)))) (-2986 (((-52) $ (-1188)) NIL)) (-1442 (((-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-1188) $) NIL (|has| (-1188) (-858)))) (-2396 (((-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-2751 (((-1188) $) NIL (|has| (-1188) (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-2608 (((-652 (-1188)) $) 37)) (-4096 (((-112) (-1188) $) NIL)) (-1533 (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL)) (-3704 (($ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL)) (-1634 (((-652 (-1188)) $) NIL)) (-3132 (((-112) (-1188) $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-2570 (((-52) $) NIL (|has| (-1188) (-858)))) (-3124 (((-3 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) "failed") (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL)) (-3803 (($ $ (-52)) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-300 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-652 (-52)) (-652 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-300 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-652 (-300 (-52)))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-2950 (((-652 (-52)) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 (((-52) $ (-1188)) 39) (((-52) $ (-1188) (-52)) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (((-779) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111)))) (((-779) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL)) (-3491 (((-870) $) 41 (-3783 (|has| (-52) (-621 (-870))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1046) (-13 (-1205 (-1188) (-52)) (-10 -7 (-15 -2970 ((-112) (-112))) (-15 -2217 ((-112) (-112))) (-6 -4454)))) (T -1046))
+((-2970 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))) (-2217 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))))
+(-13 (-1205 (-1188) (-52)) (-10 -7 (-15 -2970 ((-112) (-112))) (-15 -2217 ((-112) (-112))) (-6 -4454)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4410 (((-1146) $) 9)) (-3491 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1047) (-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $))))) (T -1047))
+((-4410 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1047)))))
+(-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $))))
+((-1869 ((|#2| $) 10)))
+(((-1048 |#1| |#2|) (-10 -8 (-15 -1869 (|#2| |#1|))) (-1049 |#2|) (-1229)) (T -1048))
+NIL
+(-10 -8 (-15 -1869 (|#2| |#1|)))
+((-3072 (((-3 |#1| "failed") $) 9)) (-1869 ((|#1| $) 8)) (-3491 (($ |#1|) 6)))
+(((-1049 |#1|) (-141) (-1229)) (T -1049))
+((-3072 (*1 *2 *1) (|partial| -12 (-4 *1 (-1049 *2)) (-4 *2 (-1229)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1229)))))
+(-13 (-624 |t#1|) (-10 -8 (-15 -3072 ((-3 |t#1| "failed") $)) (-15 -1869 (|t#1| $))))
+(((-624 |#1|) . T))
+((-3913 (((-652 (-652 (-300 (-415 (-961 |#2|))))) (-652 (-961 |#2|)) (-652 (-1188))) 38)))
+(((-1050 |#1| |#2|) (-10 -7 (-15 -3913 ((-652 (-652 (-300 (-415 (-961 |#2|))))) (-652 (-961 |#2|)) (-652 (-1188))))) (-564) (-13 (-564) (-1049 |#1|))) (T -1050))
+((-3913 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-4 *6 (-13 (-564) (-1049 *5))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *6)))))) (-5 *1 (-1050 *5 *6)))))
+(-10 -7 (-15 -3913 ((-652 (-652 (-300 (-415 (-961 |#2|))))) (-652 (-961 |#2|)) (-652 (-1188)))))
+((-2774 (((-386)) 17)) (-2793 (((-1 (-386)) (-386) (-386)) 22)) (-2508 (((-1 (-386)) (-779)) 48)) (-1509 (((-386)) 37)) (-2107 (((-1 (-386)) (-386) (-386)) 38)) (-2701 (((-386)) 29)) (-2495 (((-1 (-386)) (-386)) 30)) (-2173 (((-386) (-779)) 43)) (-3082 (((-1 (-386)) (-779)) 44)) (-3636 (((-1 (-386)) (-779) (-779)) 47)) (-2478 (((-1 (-386)) (-779) (-779)) 45)))
+(((-1051) (-10 -7 (-15 -2774 ((-386))) (-15 -1509 ((-386))) (-15 -2701 ((-386))) (-15 -2173 ((-386) (-779))) (-15 -2793 ((-1 (-386)) (-386) (-386))) (-15 -2107 ((-1 (-386)) (-386) (-386))) (-15 -2495 ((-1 (-386)) (-386))) (-15 -3082 ((-1 (-386)) (-779))) (-15 -2478 ((-1 (-386)) (-779) (-779))) (-15 -3636 ((-1 (-386)) (-779) (-779))) (-15 -2508 ((-1 (-386)) (-779))))) (T -1051))
+((-2508 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-3636 (*1 *2 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-2478 (*1 *2 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))) (-2495 (*1 *2 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))) (-2107 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))) (-2793 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-386)) (-5 *1 (-1051)))) (-2701 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))) (-1509 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))) (-2774 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
+(-10 -7 (-15 -2774 ((-386))) (-15 -1509 ((-386))) (-15 -2701 ((-386))) (-15 -2173 ((-386) (-779))) (-15 -2793 ((-1 (-386)) (-386) (-386))) (-15 -2107 ((-1 (-386)) (-386) (-386))) (-15 -2495 ((-1 (-386)) (-386))) (-15 -3082 ((-1 (-386)) (-779))) (-15 -2478 ((-1 (-386)) (-779) (-779))) (-15 -3636 ((-1 (-386)) (-779) (-779))) (-15 -2508 ((-1 (-386)) (-779))))
+((-2972 (((-426 |#1|) |#1|) 33)))
+(((-1052 |#1|) (-10 -7 (-15 -2972 ((-426 |#1|) |#1|))) (-1255 (-415 (-961 (-572))))) (T -1052))
+((-2972 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1052 *3)) (-4 *3 (-1255 (-415 (-961 (-572))))))))
+(-10 -7 (-15 -2972 ((-426 |#1|) |#1|)))
+((-2340 (((-415 (-426 (-961 |#1|))) (-415 (-961 |#1|))) 14)))
+(((-1053 |#1|) (-10 -7 (-15 -2340 ((-415 (-426 (-961 |#1|))) (-415 (-961 |#1|))))) (-313)) (T -1053))
+((-2340 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-313)) (-5 *2 (-415 (-426 (-961 *4)))) (-5 *1 (-1053 *4)))))
+(-10 -7 (-15 -2340 ((-415 (-426 (-961 |#1|))) (-415 (-961 |#1|)))))
+((-2220 (((-652 (-1188)) (-415 (-961 |#1|))) 17)) (-4063 (((-415 (-1184 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188)) 24)) (-3060 (((-415 (-961 |#1|)) (-415 (-1184 (-415 (-961 |#1|)))) (-1188)) 26)) (-4107 (((-3 (-1188) "failed") (-415 (-961 |#1|))) 20)) (-3654 (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-300 (-415 (-961 |#1|))))) 32) (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|)))) 33) (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-1188)) (-652 (-415 (-961 |#1|)))) 28) (((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|))) 29)) (-3491 (((-415 (-961 |#1|)) |#1|) 11)))
+(((-1054 |#1|) (-10 -7 (-15 -2220 ((-652 (-1188)) (-415 (-961 |#1|)))) (-15 -4107 ((-3 (-1188) "failed") (-415 (-961 |#1|)))) (-15 -4063 ((-415 (-1184 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -3060 ((-415 (-961 |#1|)) (-415 (-1184 (-415 (-961 |#1|)))) (-1188))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-1188)) (-652 (-415 (-961 |#1|))))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -3491 ((-415 (-961 |#1|)) |#1|))) (-564)) (T -1054))
+((-3491 (*1 *2 *3) (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-564)))) (-3654 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-300 (-415 (-961 *4))))) (-5 *2 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *1 (-1054 *4)))) (-3654 (*1 *2 *2 *3) (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-5 *2 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *1 (-1054 *4)))) (-3654 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-652 (-1188))) (-5 *4 (-652 (-415 (-961 *5)))) (-5 *2 (-415 (-961 *5))) (-4 *5 (-564)) (-5 *1 (-1054 *5)))) (-3654 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-1054 *4)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-1184 (-415 (-961 *5))))) (-5 *4 (-1188)) (-5 *2 (-415 (-961 *5))) (-5 *1 (-1054 *5)) (-4 *5 (-564)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-564)) (-5 *2 (-415 (-1184 (-415 (-961 *5))))) (-5 *1 (-1054 *5)) (-5 *3 (-415 (-961 *5))))) (-4107 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-1188)) (-5 *1 (-1054 *4)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-1188))) (-5 *1 (-1054 *4)))))
+(-10 -7 (-15 -2220 ((-652 (-1188)) (-415 (-961 |#1|)))) (-15 -4107 ((-3 (-1188) "failed") (-415 (-961 |#1|)))) (-15 -4063 ((-415 (-1184 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -3060 ((-415 (-961 |#1|)) (-415 (-1184 (-415 (-961 |#1|)))) (-1188))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-1188)) (-652 (-415 (-961 |#1|))))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-300 (-415 (-961 |#1|))))) (-15 -3654 ((-415 (-961 |#1|)) (-415 (-961 |#1|)) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -3491 ((-415 (-961 |#1|)) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-1586 (($) 18 T CONST)) (-4342 ((|#1| $) 23)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3759 ((|#1| $) 22)) (-4334 ((|#1|) 20 T CONST)) (-3491 (((-870) $) 12)) (-4320 ((|#1| $) 21)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
+(((-1055 |#1|) (-141) (-23)) (T -1055))
+((-4342 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))) (-4334 (*1 *2) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -4342 (|t#1| $)) (-15 -3759 (|t#1| $)) (-15 -4320 (|t#1| $)) (-15 -4334 (|t#1|) -4338)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2722 (($) 25 T CONST)) (-1586 (($) 18 T CONST)) (-4342 ((|#1| $) 23)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3759 ((|#1| $) 22)) (-4334 ((|#1|) 20 T CONST)) (-3491 (((-870) $) 12)) (-4320 ((|#1| $) 21)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16)))
+(((-1056 |#1|) (-141) (-23)) (T -1056))
+((-2722 (*1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))))
+(-13 (-1055 |t#1|) (-10 -8 (-15 -2722 ($) -4338)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-621 (-870)) . T) ((-1055 |#1|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 (-788 |#1| (-872 |#2|)))))) (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-3426 (((-652 $) (-652 (-788 |#1| (-872 |#2|)))) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112)) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112) (-112)) NIL)) (-2220 (((-652 (-872 |#2|)) $) NIL)) (-2029 (((-112) $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-564)))) (-1629 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-2373 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-1861 (((-652 (-2 (|:| |val| (-788 |#1| (-872 |#2|))) (|:| -1746 $))) (-788 |#1| (-872 |#2|)) $) NIL)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ (-872 |#2|)) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-1424 (($ (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 (-788 |#1| (-872 |#2|)) "failed") $ (-872 |#2|)) NIL)) (-1586 (($) NIL T CONST)) (-3571 (((-112) $) NIL (|has| |#1| (-564)))) (-3057 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1528 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2690 (((-112) $) NIL (|has| |#1| (-564)))) (-3512 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))) $ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-4400 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| |#1| (-564)))) (-3575 (((-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-1869 (($ (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-2581 (((-3 $ "failed") $) NIL)) (-3802 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111))))) (-4243 (($ (-788 |#1| (-872 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-788 |#1| (-872 |#2|))) (|:| |den| |#1|)) (-788 |#1| (-872 |#2|)) $) NIL (|has| |#1| (-564)))) (-2182 (((-112) (-788 |#1| (-872 |#2|)) $ (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-1674 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-2925 (((-788 |#1| (-872 |#2|)) (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $ (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (((-788 |#1| (-872 |#2|)) (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $ (-788 |#1| (-872 |#2|))) NIL (|has| $ (-6 -4454))) (((-788 |#1| (-872 |#2|)) (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-2042 (((-2 (|:| -3083 (-652 (-788 |#1| (-872 |#2|)))) (|:| -3589 (-652 (-788 |#1| (-872 |#2|))))) $) NIL)) (-3294 (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-3342 (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-3628 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-1442 (((-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1870 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-3698 (((-872 |#2|) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-788 |#1| (-872 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111))))) (-3049 (($ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) $) NIL)) (-1677 (((-652 (-872 |#2|)) $) NIL)) (-2002 (((-112) (-872 |#2|) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-1618 (((-3 (-788 |#1| (-872 |#2|)) (-652 $)) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-3276 (((-652 (-2 (|:| |val| (-788 |#1| (-872 |#2|))) (|:| -1746 $))) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-4261 (((-3 (-788 |#1| (-872 |#2|)) "failed") $) NIL)) (-3981 (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL)) (-4302 (((-3 (-112) (-652 $)) (-788 |#1| (-872 |#2|)) $) NIL)) (-1457 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-3225 (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-652 $)) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) (-652 $)) NIL)) (-1772 (($ (-788 |#1| (-872 |#2|)) $) NIL) (($ (-652 (-788 |#1| (-872 |#2|))) $) NIL)) (-1706 (((-652 (-788 |#1| (-872 |#2|))) $) NIL)) (-1338 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-3113 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-4398 (((-112) $ $) NIL)) (-1798 (((-2 (|:| |num| (-788 |#1| (-872 |#2|))) (|:| |den| |#1|)) (-788 |#1| (-872 |#2|)) $) NIL (|has| |#1| (-564)))) (-4001 (((-112) (-788 |#1| (-872 |#2|)) $) NIL) (((-112) $) NIL)) (-2041 (((-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)) $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-3 (-788 |#1| (-872 |#2|)) "failed") $) NIL)) (-3124 (((-3 (-788 |#1| (-872 |#2|)) "failed") (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL)) (-4236 (((-3 $ "failed") $ (-788 |#1| (-872 |#2|))) NIL)) (-3103 (($ $ (-788 |#1| (-872 |#2|))) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) (-652 $)) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-652 $)) NIL)) (-3089 (((-112) (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-788 |#1| (-872 |#2|))) (-652 (-788 |#1| (-872 |#2|)))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ $ (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ $ (-300 (-788 |#1| (-872 |#2|)))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (($ $ (-652 (-300 (-788 |#1| (-872 |#2|))))) NIL (-12 (|has| (-788 |#1| (-872 |#2|)) (-315 (-788 |#1| (-872 |#2|)))) (|has| (-788 |#1| (-872 |#2|)) (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-1497 (((-779) $) NIL)) (-1371 (((-779) (-788 |#1| (-872 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-788 |#1| (-872 |#2|)) (-1111)))) (((-779) (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-788 |#1| (-872 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-788 |#1| (-872 |#2|)))) NIL)) (-3399 (($ $ (-872 |#2|)) NIL)) (-3831 (($ $ (-872 |#2|)) NIL)) (-2894 (($ $) NIL)) (-1757 (($ $ (-872 |#2|)) NIL)) (-3491 (((-870) $) NIL) (((-652 (-788 |#1| (-872 |#2|))) $) NIL)) (-1935 (((-779) $) NIL (|has| (-872 |#2|) (-375)))) (-3424 (((-112) $ $) NIL)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 (-788 |#1| (-872 |#2|))))) "failed") (-652 (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 (-788 |#1| (-872 |#2|))))) "failed") (-652 (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|))) (-1 (-112) (-788 |#1| (-872 |#2|)) (-788 |#1| (-872 |#2|)))) NIL)) (-4273 (((-112) $ (-1 (-112) (-788 |#1| (-872 |#2|)) (-652 (-788 |#1| (-872 |#2|))))) NIL)) (-2290 (((-652 $) (-788 |#1| (-872 |#2|)) $) NIL) (((-652 $) (-788 |#1| (-872 |#2|)) (-652 $)) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) $) NIL) (((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-652 $)) NIL)) (-3776 (((-112) (-1 (-112) (-788 |#1| (-872 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2254 (((-652 (-872 |#2|)) $) NIL)) (-2777 (((-112) (-788 |#1| (-872 |#2|)) $) NIL)) (-2947 (((-112) (-872 |#2|) $) NIL)) (-3921 (((-112) $ $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1057 |#1| |#2|) (-13 (-1082 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) (-10 -8 (-15 -3426 ((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112) (-112))))) (-460) (-652 (-1188))) (T -1057))
+((-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460)) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1057 *5 *6)))))
+(-13 (-1082 |#1| (-539 (-872 |#2|)) (-872 |#2|) (-788 |#1| (-872 |#2|))) (-10 -8 (-15 -3426 ((-652 $) (-652 (-788 |#1| (-872 |#2|))) (-112) (-112)))))
+((-2793 (((-1 (-572)) (-1105 (-572))) 32)) (-2334 (((-572) (-572) (-572) (-572) (-572)) 29)) (-1683 (((-1 (-572)) |RationalNumber|) NIL)) (-2855 (((-1 (-572)) |RationalNumber|) NIL)) (-3337 (((-1 (-572)) (-572) |RationalNumber|) NIL)))
+(((-1058) (-10 -7 (-15 -2793 ((-1 (-572)) (-1105 (-572)))) (-15 -3337 ((-1 (-572)) (-572) |RationalNumber|)) (-15 -1683 ((-1 (-572)) |RationalNumber|)) (-15 -2855 ((-1 (-572)) |RationalNumber|)) (-15 -2334 ((-572) (-572) (-572) (-572) (-572))))) (T -1058))
+((-2334 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1058)))) (-2855 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))) (-1683 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))) (-3337 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)) (-5 *3 (-572)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1105 (-572))) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
+(-10 -7 (-15 -2793 ((-1 (-572)) (-1105 (-572)))) (-15 -3337 ((-1 (-572)) (-572) |RationalNumber|)) (-15 -1683 ((-1 (-572)) |RationalNumber|)) (-15 -2855 ((-1 (-572)) |RationalNumber|)) (-15 -2334 ((-572) (-572) (-572) (-572) (-572))))
+((-3491 (((-870) $) NIL) (($ (-572)) 10)))
+(((-1059 |#1|) (-10 -8 (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-1060)) (T -1059))
+NIL
+(-10 -8 (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-1060) (-141)) (T -1060))
+((-2455 (*1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-779)))))
+(-13 (-1069) (-734) (-656 $) (-624 (-572)) (-10 -7 (-15 -2455 ((-779)) -4338) (-6 -4451)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-572)) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-734) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3182 (((-415 (-961 |#2|)) (-652 |#2|) (-652 |#2|) (-779) (-779)) 54)))
+(((-1061 |#1| |#2|) (-10 -7 (-15 -3182 ((-415 (-961 |#2|)) (-652 |#2|) (-652 |#2|) (-779) (-779)))) (-1188) (-370)) (T -1061))
+((-3182 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-779)) (-4 *6 (-370)) (-5 *2 (-415 (-961 *6))) (-5 *1 (-1061 *5 *6)) (-14 *5 (-1188)))))
+(-10 -7 (-15 -3182 ((-415 (-961 |#2|)) (-652 |#2|) (-652 |#2|) (-779) (-779))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 15)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 16 T CONST)) (-3921 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1062 |#1|) (-141) (-1069)) (T -1062))
+((-2602 (*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1069)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069)))))
+(-13 (-1111) (-10 -8 (-15 (-2602) ($) -4338) (-15 -3143 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-2696 (((-112) $) 38)) (-3295 (((-112) $) 17)) (-2366 (((-779) $) 13)) (-2378 (((-779) $) 14)) (-3365 (((-112) $) 30)) (-3889 (((-112) $) 40)))
+(((-1063 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2378 ((-779) |#1|)) (-15 -2366 ((-779) |#1|)) (-15 -3889 ((-112) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -3365 ((-112) |#1|)) (-15 -3295 ((-112) |#1|))) (-1064 |#2| |#3| |#4| |#5| |#6|) (-779) (-779) (-1060) (-242 |#3| |#4|) (-242 |#2| |#4|)) (T -1063))
+NIL
+(-10 -8 (-15 -2378 ((-779) |#1|)) (-15 -2366 ((-779) |#1|)) (-15 -3889 ((-112) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -3365 ((-112) |#1|)) (-15 -3295 ((-112) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2696 (((-112) $) 56)) (-2092 (((-3 $ "failed") $ $) 20)) (-3295 (((-112) $) 58)) (-2938 (((-112) $ (-779)) 66)) (-1586 (($) 18 T CONST)) (-1728 (($ $) 39 (|has| |#3| (-313)))) (-2863 ((|#4| $ (-572)) 44)) (-1526 (((-779) $) 38 (|has| |#3| (-564)))) (-2986 ((|#3| $ (-572) (-572)) 46)) (-1442 (((-652 |#3|) $) 73 (|has| $ (-6 -4454)))) (-1438 (((-779) $) 37 (|has| |#3| (-564)))) (-1924 (((-652 |#5|) $) 36 (|has| |#3| (-564)))) (-2366 (((-779) $) 50)) (-2378 (((-779) $) 49)) (-2545 (((-112) $ (-779)) 65)) (-3689 (((-572) $) 54)) (-3086 (((-572) $) 52)) (-2396 (((-652 |#3|) $) 74 (|has| $ (-6 -4454)))) (-4211 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1111)) (|has| $ (-6 -4454))))) (-3631 (((-572) $) 53)) (-3652 (((-572) $) 51)) (-1793 (($ (-652 (-652 |#3|))) 59)) (-3049 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1942 (((-652 (-652 |#3|)) $) 48)) (-3818 (((-112) $ (-779)) 64)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-564)))) (-3089 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#3|) (-652 |#3|)) 80 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) 78 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 (-300 |#3|))) 77 (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-2187 (((-112) $ $) 60)) (-3712 (((-112) $) 63)) (-1321 (($) 62)) (-2679 ((|#3| $ (-572) (-572)) 47) ((|#3| $ (-572) (-572) |#3|) 45)) (-3365 (((-112) $) 57)) (-1371 (((-779) |#3| $) 75 (-12 (|has| |#3| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4454)))) (-3679 (($ $) 61)) (-3845 ((|#5| $ (-572)) 43)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3776 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4454)))) (-3889 (((-112) $) 55)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#3|) 40 (|has| |#3| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3475 (((-779) $) 67 (|has| $ (-6 -4454)))))
+(((-1064 |#1| |#2| |#3| |#4| |#5|) (-141) (-779) (-779) (-1060) (-242 |t#2| |t#3|) (-242 |t#1| |t#3|)) (T -1064))
+((-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *5))) (-4 *5 (-1060)) (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-652 (-652 *5))))) (-2679 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060)))) (-2986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060)))) (-2679 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *2 (-1060)) (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)))) (-2863 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *2 *7)) (-4 *6 (-1060)) (-4 *7 (-242 *4 *6)) (-4 *2 (-242 *5 *6)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *7 *2)) (-4 *6 (-1060)) (-4 *7 (-242 *5 *6)) (-4 *2 (-242 *4 *6)))) (-3161 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)))) (-3453 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060)) (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-564)))) (-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060)) (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-370)))) (-1728 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *2 *4)) (-4 *4 (-313)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564)) (-5 *2 (-779)))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564)) (-5 *2 (-779)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564)) (-5 *2 (-652 *7)))))
+(-13 (-111 |t#3| |t#3|) (-497 |t#3|) (-10 -8 (-6 -4454) (IF (|has| |t#3| (-174)) (-6 (-725 |t#3|)) |%noBranch|) (-15 -1793 ($ (-652 (-652 |t#3|)))) (-15 -3295 ((-112) $)) (-15 -3365 ((-112) $)) (-15 -2696 ((-112) $)) (-15 -3889 ((-112) $)) (-15 -3689 ((-572) $)) (-15 -3631 ((-572) $)) (-15 -3086 ((-572) $)) (-15 -3652 ((-572) $)) (-15 -2366 ((-779) $)) (-15 -2378 ((-779) $)) (-15 -1942 ((-652 (-652 |t#3|)) $)) (-15 -2679 (|t#3| $ (-572) (-572))) (-15 -2986 (|t#3| $ (-572) (-572))) (-15 -2679 (|t#3| $ (-572) (-572) |t#3|)) (-15 -2863 (|t#4| $ (-572))) (-15 -3845 (|t#5| $ (-572))) (-15 -3161 ($ (-1 |t#3| |t#3|) $)) (-15 -3161 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-564)) (-15 -3453 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-370)) (-15 -4029 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-313)) (-15 -1728 ($ $)) |%noBranch|) (IF (|has| |t#3| (-564)) (PROGN (-15 -1526 ((-779) $)) (-15 -1438 ((-779) $)) (-15 -1924 ((-652 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-621 (-870)) . T) ((-315 |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))) ((-497 |#3|) . T) ((-522 |#3| |#3|) -12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))) ((-654 (-572)) . T) ((-654 |#3|) . T) ((-656 |#3|) . T) ((-648 |#3|) |has| |#3| (-174)) ((-725 |#3|) |has| |#3| (-174)) ((-1062 |#3|) . T) ((-1067 |#3|) . T) ((-1111) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2696 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3295 (((-112) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-1586 (($) NIL T CONST)) (-1728 (($ $) 47 (|has| |#3| (-313)))) (-2863 (((-244 |#2| |#3|) $ (-572)) 36)) (-2083 (($ (-697 |#3|)) 45)) (-1526 (((-779) $) 49 (|has| |#3| (-564)))) (-2986 ((|#3| $ (-572) (-572)) NIL)) (-1442 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-1438 (((-779) $) 51 (|has| |#3| (-564)))) (-1924 (((-652 (-244 |#1| |#3|)) $) 55 (|has| |#3| (-564)))) (-2366 (((-779) $) NIL)) (-2378 (((-779) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-3689 (((-572) $) NIL)) (-3086 (((-572) $) NIL)) (-2396 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-3631 (((-572) $) NIL)) (-3652 (((-572) $) NIL)) (-1793 (($ (-652 (-652 |#3|))) 31)) (-3049 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1942 (((-652 (-652 |#3|)) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-564)))) (-3089 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#3|) (-652 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 (-300 |#3|))) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#3| $ (-572) (-572)) NIL) ((|#3| $ (-572) (-572) |#3|) NIL)) (-1670 (((-135)) 59 (|has| |#3| (-370)))) (-3365 (((-112) $) NIL)) (-1371 (((-779) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111)))) (((-779) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) 65 (|has| |#3| (-622 (-544))))) (-3845 (((-244 |#1| |#3|) $ (-572)) 40)) (-3491 (((-870) $) 19) (((-697 |#3|) $) 42)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-3889 (((-112) $) NIL)) (-2602 (($) 16 T CONST)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#3|) NIL (|has| |#3| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1065 |#1| |#2| |#3|) (-13 (-1064 |#1| |#2| |#3| (-244 |#2| |#3|) (-244 |#1| |#3|)) (-621 (-697 |#3|)) (-10 -8 (IF (|has| |#3| (-370)) (-6 (-1286 |#3|)) |%noBranch|) (IF (|has| |#3| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (-15 -2083 ($ (-697 |#3|))))) (-779) (-779) (-1060)) (T -1065))
+((-2083 (*1 *1 *2) (-12 (-5 *2 (-697 *5)) (-4 *5 (-1060)) (-5 *1 (-1065 *3 *4 *5)) (-14 *3 (-779)) (-14 *4 (-779)))))
+(-13 (-1064 |#1| |#2| |#3| (-244 |#2| |#3|) (-244 |#1| |#3|)) (-621 (-697 |#3|)) (-10 -8 (IF (|has| |#3| (-370)) (-6 (-1286 |#3|)) |%noBranch|) (IF (|has| |#3| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|) (-15 -2083 ($ (-697 |#3|)))))
+((-2925 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3161 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1066 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3161 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2925 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-779) (-779) (-1060) (-242 |#2| |#3|) (-242 |#1| |#3|) (-1064 |#1| |#2| |#3| |#4| |#5|) (-1060) (-242 |#2| |#7|) (-242 |#1| |#7|) (-1064 |#1| |#2| |#7| |#8| |#9|)) (T -1066))
+((-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1060)) (-4 *2 (-1060)) (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7)) (-4 *9 (-242 *5 *7)) (-4 *10 (-242 *6 *2)) (-4 *11 (-242 *5 *2)) (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *12 (-1064 *5 *6 *2 *10 *11)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1060)) (-4 *10 (-1060)) (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7)) (-4 *9 (-242 *5 *7)) (-4 *2 (-1064 *5 *6 *10 *11 *12)) (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *11 (-242 *6 *10)) (-4 *12 (-242 *5 *10)))))
+(-10 -7 (-15 -3161 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2925 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ |#1|) 27)))
+(((-1067 |#1|) (-141) (-1069)) (T -1067))
+NIL
+(-13 (-21) (-1062 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1062 |#1|) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2043 (((-1188) $) 11)) (-1590 ((|#1| $) 12)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3283 (($ (-1188) |#1|) 10)) (-3491 (((-870) $) 22 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3921 (((-112) $ $) 17 (|has| |#1| (-1111)))))
+(((-1068 |#1| |#2|) (-13 (-1229) (-10 -8 (-15 -3283 ($ (-1188) |#1|)) (-15 -2043 ((-1188) $)) (-15 -1590 (|#1| $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|))) (-1104 |#2|) (-1229)) (T -1068))
+((-3283 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-4 *4 (-1229)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1104 *4)))) (-2043 (*1 *2 *1) (-12 (-4 *4 (-1229)) (-5 *2 (-1188)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-1104 *4)))) (-1590 (*1 *2 *1) (-12 (-4 *2 (-1104 *3)) (-5 *1 (-1068 *2 *3)) (-4 *3 (-1229)))))
+(-13 (-1229) (-10 -8 (-15 -3283 ($ (-1188) |#1|)) (-15 -2043 ((-1188) $)) (-15 -1590 (|#1| $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
(((-1069) (-141)) (T -1069))
-((-2521 (*1 *1 *1) (-4 *1 (-1069))) (-3046 (*1 *1 *1) (-4 *1 (-1069))) (-3850 (*1 *1 *1) (-4 *1 (-1069))) (-2037 (*1 *1 *1) (-4 *1 (-1069))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-570)))) (-4113 (*1 *1 *1) (-4 *1 (-1069))) (-3025 (*1 *1 *1) (-4 *1 (-1069))) (-3325 (*1 *1 *1) (-4 *1 (-1069))))
-(-13 (-368) (-854) (-1031) (-1047 (-570)) (-1047 (-413 (-570))) (-1011) (-620 (-899 (-384))) (-893 (-384)) (-148) (-10 -8 (-15 -3046 ($ $)) (-15 -3850 ($ $)) (-15 -2037 ($ $)) (-15 -3150 ((-570) $)) (-15 -4113 ($ $)) (-15 -3025 ($ $)) (-15 -3325 ($ $)) (-15 -2521 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-227)) . T) ((-620 (-384)) . T) ((-620 (-899 (-384))) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-893 (-384)) . T) ((-927) . T) ((-1011) . T) ((-1031) . T) ((-1047 (-413 (-570))) . T) ((-1047 (-570)) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) |#2| $) 26)) (-2401 ((|#1| $) 10)) (-2419 (((-570) |#2| $) 116)) (-2056 (((-3 $ "failed") |#2| (-928)) 75)) (-2420 ((|#1| $) 31)) (-3106 ((|#1| |#2| $ |#1|) 40)) (-1501 (($ $) 28)) (-3957 (((-3 |#2| "failed") |#2| $) 111)) (-2811 (((-112) |#2| $) NIL)) (-2746 (((-112) |#2| $) NIL)) (-1621 (((-112) |#2| $) 27)) (-1312 ((|#1| $) 117)) (-2403 ((|#1| $) 30)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3144 ((|#2| $) 102)) (-2869 (((-868) $) 92)) (-1344 (((-112) $ $) NIL)) (-3478 ((|#1| |#2| $ |#1|) 41)) (-1745 (((-650 $) |#2|) 77)) (-3892 (((-112) $ $) 97)))
-(((-1070 |#1| |#2|) (-13 (-1077 |#1| |#2|) (-10 -8 (-15 -2403 (|#1| $)) (-15 -2420 (|#1| $)) (-15 -2401 (|#1| $)) (-15 -1312 (|#1| $)) (-15 -1501 ($ $)) (-15 -1621 ((-112) |#2| $)) (-15 -3106 (|#1| |#2| $ |#1|)))) (-13 (-854) (-368)) (-1253 |#1|)) (T -1070))
-((-3106 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1253 *2)))) (-2403 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1253 *2)))) (-2420 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1253 *2)))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1253 *2)))) (-1312 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1253 *2)))) (-1501 (*1 *1 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1253 *2)))) (-1621 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-854) (-368))) (-5 *2 (-112)) (-5 *1 (-1070 *4 *3)) (-4 *3 (-1253 *4)))))
-(-13 (-1077 |#1| |#2|) (-10 -8 (-15 -2403 (|#1| $)) (-15 -2420 (|#1| $)) (-15 -2401 (|#1| $)) (-15 -1312 (|#1| $)) (-15 -1501 ($ $)) (-15 -1621 ((-112) |#2| $)) (-15 -3106 (|#1| |#2| $ |#1|))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-2198 (($ $ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-4396 (($ $ $ $) NIL)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2419 (((-570) $) NIL)) (-3609 (($ $ $) NIL)) (-2333 (($) NIL T CONST)) (-3433 (($ (-1186)) 10) (($ (-570)) 7)) (-2435 (((-3 (-570) "failed") $) NIL)) (-4387 (((-570) $) NIL)) (-2788 (($ $ $) NIL)) (-3054 (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-1577 (((-413 (-570)) $) NIL)) (-2066 (($) NIL) (($ $) NIL)) (-2799 (($ $ $) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-3879 (($ $ $ $) NIL)) (-2711 (($ $ $) NIL)) (-2811 (((-112) $) NIL)) (-2614 (($ $ $) NIL)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-2005 (((-112) $) NIL)) (-1973 (((-112) $) NIL)) (-3525 (((-3 $ "failed") $) NIL)) (-2746 (((-112) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-4258 (($ $ $ $) NIL)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-3520 (($ $) NIL)) (-1831 (($ $) NIL)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-1659 (($ $ $) NIL)) (-3458 (($) NIL T CONST)) (-3032 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3459 (($ $) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2160 (((-112) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2375 (($ $ (-777)) NIL) (($ $) NIL)) (-3337 (($ $) NIL)) (-3064 (($ $) NIL)) (-2601 (((-570) $) 16) (((-542) $) NIL) (((-899 (-570)) $) NIL) (((-384) $) NIL) (((-227) $) NIL) (($ (-1186)) 9)) (-2869 (((-868) $) 23) (($ (-570)) 6) (($ $) NIL) (($ (-570)) 6)) (-2294 (((-777)) NIL T CONST)) (-1790 (((-112) $ $) NIL)) (-1500 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-1540 (($) NIL)) (-2939 (((-112) $ $) NIL)) (-2677 (($ $ $ $) NIL)) (-2521 (($ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)) (-4003 (($ $) 22) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL)))
-(((-1071) (-13 (-551) (-624 (-1186)) (-10 -8 (-6 -4439) (-6 -4444) (-6 -4440) (-15 -3433 ($ (-1186))) (-15 -3433 ($ (-570)))))) (T -1071))
-((-3433 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1071)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1071)))))
-(-13 (-551) (-624 (-1186)) (-10 -8 (-6 -4439) (-6 -4444) (-6 -4440) (-15 -3433 ($ (-1186))) (-15 -3433 ($ (-570)))))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL)) (-2204 (((-1282) $ (-1186) (-1186)) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-2912 (($) 9)) (-3040 (((-52) $ (-1186) (-52)) NIL)) (-2735 (($ $) 32)) (-4158 (($ $) 30)) (-4283 (($ $) 29)) (-2617 (($ $) 31)) (-3005 (($ $) 35)) (-1573 (($ $) 36)) (-1517 (($ $) 28)) (-1431 (($ $) 33)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) 27 (|has| $ (-6 -4452)))) (-1390 (((-3 (-52) "failed") (-1186) $) 43)) (-2333 (($) NIL T CONST)) (-3799 (($) 7)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-3614 (($ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) 53 (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-3 (-52) "failed") (-1186) $) NIL)) (-3617 (($ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452)))) (-2136 (((-3 (-1168) "failed") $ (-1168) (-570)) 72)) (-2845 (((-52) $ (-1186) (-52)) NIL (|has| $ (-6 -4453)))) (-2774 (((-52) $ (-1186)) NIL)) (-3976 (((-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-650 (-52)) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-1186) $) NIL (|has| (-1186) (-856)))) (-3069 (((-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) 38 (|has| $ (-6 -4452))) (((-650 (-52)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109))))) (-1894 (((-1186) $) NIL (|has| (-1186) (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4453))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-1988 (((-650 (-1186)) $) NIL)) (-2093 (((-112) (-1186) $) NIL)) (-3398 (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL)) (-2801 (($ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) 46)) (-4075 (((-650 (-1186)) $) NIL)) (-4276 (((-112) (-1186) $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-4011 (((-384) $ (-1186)) 52)) (-2678 (((-650 (-1168)) $ (-1168)) 74)) (-1948 (((-52) $) NIL (|has| (-1186) (-856)))) (-2115 (((-3 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) "failed") (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL)) (-4222 (($ $ (-52)) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-298 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL (-12 (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-313 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (($ $ (-650 (-52)) (-650 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-298 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-650 (-298 (-52)))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109))))) (-2856 (((-650 (-52)) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 (((-52) $ (-1186)) NIL) (((-52) $ (-1186) (-52)) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL)) (-3156 (($ $ (-1186)) 54)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109)))) (((-777) (-52) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-52) (-1109)))) (((-777) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) 40)) (-1505 (($ $ $) 41)) (-2869 (((-868) $) NIL (-3749 (|has| (-52) (-619 (-868))) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-619 (-868)))))) (-2017 (($ $ (-1186) (-384)) 50)) (-1412 (($ $ (-1186) (-384)) 51)) (-1344 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 (-1186)) (|:| -3165 (-52)))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-52) (-1109)) (|has| (-2 (|:| -4144 (-1186)) (|:| -3165 (-52))) (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1072) (-13 (-1203 (-1186) (-52)) (-10 -8 (-15 -1505 ($ $ $)) (-15 -3799 ($)) (-15 -1517 ($ $)) (-15 -4283 ($ $)) (-15 -4158 ($ $)) (-15 -2617 ($ $)) (-15 -1431 ($ $)) (-15 -2735 ($ $)) (-15 -3005 ($ $)) (-15 -1573 ($ $)) (-15 -2017 ($ $ (-1186) (-384))) (-15 -1412 ($ $ (-1186) (-384))) (-15 -4011 ((-384) $ (-1186))) (-15 -2678 ((-650 (-1168)) $ (-1168))) (-15 -3156 ($ $ (-1186))) (-15 -2912 ($)) (-15 -2136 ((-3 (-1168) "failed") $ (-1168) (-570))) (-6 -4452)))) (T -1072))
-((-1505 (*1 *1 *1 *1) (-5 *1 (-1072))) (-3799 (*1 *1) (-5 *1 (-1072))) (-1517 (*1 *1 *1) (-5 *1 (-1072))) (-4283 (*1 *1 *1) (-5 *1 (-1072))) (-4158 (*1 *1 *1) (-5 *1 (-1072))) (-2617 (*1 *1 *1) (-5 *1 (-1072))) (-1431 (*1 *1 *1) (-5 *1 (-1072))) (-2735 (*1 *1 *1) (-5 *1 (-1072))) (-3005 (*1 *1 *1) (-5 *1 (-1072))) (-1573 (*1 *1 *1) (-5 *1 (-1072))) (-2017 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072)))) (-1412 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-384)) (-5 *1 (-1072)))) (-2678 (*1 *2 *1 *3) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1072)) (-5 *3 (-1168)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1072)))) (-2912 (*1 *1) (-5 *1 (-1072))) (-2136 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-1072)))))
-(-13 (-1203 (-1186) (-52)) (-10 -8 (-15 -1505 ($ $ $)) (-15 -3799 ($)) (-15 -1517 ($ $)) (-15 -4283 ($ $)) (-15 -4158 ($ $)) (-15 -2617 ($ $)) (-15 -1431 ($ $)) (-15 -2735 ($ $)) (-15 -3005 ($ $)) (-15 -1573 ($ $)) (-15 -2017 ($ $ (-1186) (-384))) (-15 -1412 ($ $ (-1186) (-384))) (-15 -4011 ((-384) $ (-1186))) (-15 -2678 ((-650 (-1168)) $ (-1168))) (-15 -3156 ($ $ (-1186))) (-15 -2912 ($)) (-15 -2136 ((-3 (-1168) "failed") $ (-1168) (-570))) (-6 -4452)))
-((-3446 (($ $) 46)) (-2123 (((-112) $ $) 82)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-959 (-413 (-570)))) 251) (((-3 $ "failed") (-959 (-570))) 250) (((-3 $ "failed") (-959 |#2|)) 253)) (-4387 ((|#2| $) NIL) (((-413 (-570)) $) NIL) (((-570) $) NIL) ((|#4| $) NIL) (($ (-959 (-413 (-570)))) 239) (($ (-959 (-570))) 235) (($ (-959 |#2|)) 255)) (-4394 (($ $) NIL) (($ $ |#4|) 44)) (-1429 (((-112) $ $) 131) (((-112) $ (-650 $)) 135)) (-3158 (((-112) $) 60)) (-1504 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 125)) (-2423 (($ $) 160)) (-3587 (($ $) 156)) (-4302 (($ $) 155)) (-4220 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3663 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1623 (((-112) $ $) 143) (((-112) $ (-650 $)) 144)) (-2486 ((|#4| $) 32)) (-3904 (($ $ $) 128)) (-1858 (((-112) $) 59)) (-3832 (((-777) $) 35)) (-1487 (($ $) 174)) (-3561 (($ $) 171)) (-2197 (((-650 $) $) 72)) (-4228 (($ $) 62)) (-4160 (($ $) 167)) (-1687 (((-650 $) $) 69)) (-2718 (($ $) 64)) (-4369 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3101 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4131 (-777))) $ $) 130)) (-3676 (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $) 126) (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $ |#4|) 127)) (-2516 (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $) 121) (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $ |#4|) 123)) (-4252 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3596 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3451 (((-650 $) $) 54)) (-2010 (((-112) $ $) 140) (((-112) $ (-650 $)) 141)) (-1478 (($ $ $) 116)) (-3458 (($ $) 37)) (-1693 (((-112) $ $) 80)) (-1772 (((-112) $ $) 136) (((-112) $ (-650 $)) 138)) (-2899 (($ $ $) 112)) (-2657 (($ $) 41)) (-3903 ((|#2| |#2| $) 164) (($ (-650 $)) NIL) (($ $ $) NIL)) (-3092 (($ $ |#2|) NIL) (($ $ $) 153)) (-2634 (($ $ |#2|) 148) (($ $ $) 151)) (-2541 (($ $) 49)) (-2639 (($ $) 55)) (-2601 (((-899 (-384)) $) NIL) (((-899 (-570)) $) NIL) (((-542) $) NIL) (($ (-959 (-413 (-570)))) 241) (($ (-959 (-570))) 237) (($ (-959 |#2|)) 252) (((-1168) $) 279) (((-959 |#2|) $) 184)) (-2869 (((-868) $) 29) (($ (-570)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-959 |#2|) $) 185) (($ (-413 (-570))) NIL) (($ $) NIL)) (-4409 (((-3 (-112) "failed") $ $) 79)))
-(((-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -3903 (|#1| |#1| |#1|)) (-15 -3903 (|#1| (-650 |#1|))) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 ((-959 |#2|) |#1|)) (-15 -2601 ((-959 |#2|) |#1|)) (-15 -2601 ((-1168) |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -3903 (|#2| |#2| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -2634 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#2|)) (-15 -2634 (|#1| |#1| |#2|)) (-15 -3587 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -2601 (|#1| (-959 |#2|))) (-15 -4387 (|#1| (-959 |#2|))) (-15 -2435 ((-3 |#1| "failed") (-959 |#2|))) (-15 -2601 (|#1| (-959 (-570)))) (-15 -4387 (|#1| (-959 (-570)))) (-15 -2435 ((-3 |#1| "failed") (-959 (-570)))) (-15 -2601 (|#1| (-959 (-413 (-570))))) (-15 -4387 (|#1| (-959 (-413 (-570))))) (-15 -2435 ((-3 |#1| "failed") (-959 (-413 (-570))))) (-15 -1478 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3101 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4131 (-777))) |#1| |#1|)) (-15 -3904 (|#1| |#1| |#1|)) (-15 -1504 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -3676 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1| |#4|)) (-15 -3676 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2516 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -3357 |#1|)) |#1| |#1| |#4|)) (-15 -2516 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -3596 (|#1| |#1| |#1| |#4|)) (-15 -4252 (|#1| |#1| |#1| |#4|)) (-15 -3596 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1| |#1| |#4|)) (-15 -4220 (|#1| |#1| |#1| |#4|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -4220 (|#1| |#1| |#1|)) (-15 -1623 ((-112) |#1| (-650 |#1|))) (-15 -1623 ((-112) |#1| |#1|)) (-15 -2010 ((-112) |#1| (-650 |#1|))) (-15 -2010 ((-112) |#1| |#1|)) (-15 -1772 ((-112) |#1| (-650 |#1|))) (-15 -1772 ((-112) |#1| |#1|)) (-15 -1429 ((-112) |#1| (-650 |#1|))) (-15 -1429 ((-112) |#1| |#1|)) (-15 -2123 ((-112) |#1| |#1|)) (-15 -1693 ((-112) |#1| |#1|)) (-15 -4409 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2197 ((-650 |#1|) |#1|)) (-15 -1687 ((-650 |#1|) |#1|)) (-15 -2718 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -3158 ((-112) |#1|)) (-15 -1858 ((-112) |#1|)) (-15 -4394 (|#1| |#1| |#4|)) (-15 -4369 (|#1| |#1| |#4|)) (-15 -2639 (|#1| |#1|)) (-15 -3451 ((-650 |#1|) |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3832 ((-777) |#1|)) (-15 -2486 (|#4| |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2869 (|#1| |#4|)) (-15 -2435 ((-3 |#4| "failed") |#1|)) (-15 -4387 (|#4| |#1|)) (-15 -4369 (|#2| |#1|)) (-15 -4394 (|#1| |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-1074 |#2| |#3| |#4|) (-1058) (-799) (-856)) (T -1073))
-NIL
-(-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -3903 (|#1| |#1| |#1|)) (-15 -3903 (|#1| (-650 |#1|))) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 ((-959 |#2|) |#1|)) (-15 -2601 ((-959 |#2|) |#1|)) (-15 -2601 ((-1168) |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -4160 (|#1| |#1|)) (-15 -2423 (|#1| |#1|)) (-15 -3903 (|#2| |#2| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -2634 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#2|)) (-15 -2634 (|#1| |#1| |#2|)) (-15 -3587 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -2601 (|#1| (-959 |#2|))) (-15 -4387 (|#1| (-959 |#2|))) (-15 -2435 ((-3 |#1| "failed") (-959 |#2|))) (-15 -2601 (|#1| (-959 (-570)))) (-15 -4387 (|#1| (-959 (-570)))) (-15 -2435 ((-3 |#1| "failed") (-959 (-570)))) (-15 -2601 (|#1| (-959 (-413 (-570))))) (-15 -4387 (|#1| (-959 (-413 (-570))))) (-15 -2435 ((-3 |#1| "failed") (-959 (-413 (-570))))) (-15 -1478 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3101 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4131 (-777))) |#1| |#1|)) (-15 -3904 (|#1| |#1| |#1|)) (-15 -1504 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -3676 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1| |#4|)) (-15 -3676 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -2516 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -3357 |#1|)) |#1| |#1| |#4|)) (-15 -2516 ((-2 (|:| -1747 |#1|) (|:| |gap| (-777)) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -3596 (|#1| |#1| |#1| |#4|)) (-15 -4252 (|#1| |#1| |#1| |#4|)) (-15 -3596 (|#1| |#1| |#1|)) (-15 -4252 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1| |#1| |#4|)) (-15 -4220 (|#1| |#1| |#1| |#4|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -4220 (|#1| |#1| |#1|)) (-15 -1623 ((-112) |#1| (-650 |#1|))) (-15 -1623 ((-112) |#1| |#1|)) (-15 -2010 ((-112) |#1| (-650 |#1|))) (-15 -2010 ((-112) |#1| |#1|)) (-15 -1772 ((-112) |#1| (-650 |#1|))) (-15 -1772 ((-112) |#1| |#1|)) (-15 -1429 ((-112) |#1| (-650 |#1|))) (-15 -1429 ((-112) |#1| |#1|)) (-15 -2123 ((-112) |#1| |#1|)) (-15 -1693 ((-112) |#1| |#1|)) (-15 -4409 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2197 ((-650 |#1|) |#1|)) (-15 -1687 ((-650 |#1|) |#1|)) (-15 -2718 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -3158 ((-112) |#1|)) (-15 -1858 ((-112) |#1|)) (-15 -4394 (|#1| |#1| |#4|)) (-15 -4369 (|#1| |#1| |#4|)) (-15 -2639 (|#1| |#1|)) (-15 -3451 ((-650 |#1|) |#1|)) (-15 -2541 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2657 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3832 ((-777) |#1|)) (-15 -2486 (|#4| |#1|)) (-15 -2601 ((-542) |#1|)) (-15 -2601 ((-899 (-570)) |#1|)) (-15 -2601 ((-899 (-384)) |#1|)) (-15 -2869 (|#1| |#4|)) (-15 -2435 ((-3 |#4| "failed") |#1|)) (-15 -4387 (|#4| |#1|)) (-15 -4369 (|#2| |#1|)) (-15 -4394 (|#1| |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 |#3|) $) 112)) (-3449 (((-1182 $) $ |#3|) 127) (((-1182 |#1|) $) 126)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2046 (($ $) 90 (|has| |#1| (-562)))) (-3426 (((-112) $) 92 (|has| |#1| (-562)))) (-4205 (((-777) $) 114) (((-777) $ (-650 |#3|)) 113)) (-3446 (($ $) 273)) (-2123 (((-112) $ $) 259)) (-3997 (((-3 $ "failed") $ $) 20)) (-3862 (($ $ $) 218 (|has| |#1| (-562)))) (-3577 (((-650 $) $ $) 213 (|has| |#1| (-562)))) (-3585 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3312 (($ $) 100 (|has| |#1| (-458)))) (-2929 (((-424 $) $) 99 (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-959 (-413 (-570)))) 233 (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))) (((-3 $ "failed") (-959 (-570))) 230 (-3749 (-12 (-3201 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186)))))) (((-3 $ "failed") (-959 |#1|)) 227 (-3749 (-12 (-3201 (|has| |#1| (-38 (-413 (-570))))) (-3201 (|has| |#1| (-38 (-570)))) (|has| |#3| (-620 (-1186)))) (-12 (-3201 (|has| |#1| (-551))) (-3201 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (-3201 (|has| |#1| (-1001 (-570)))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))))) (-4387 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) ((|#3| $) 139) (($ (-959 (-413 (-570)))) 232 (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))) (($ (-959 (-570))) 229 (-3749 (-12 (-3201 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186)))))) (($ (-959 |#1|)) 226 (-3749 (-12 (-3201 (|has| |#1| (-38 (-413 (-570))))) (-3201 (|has| |#1| (-38 (-570)))) (|has| |#3| (-620 (-1186)))) (-12 (-3201 (|has| |#1| (-551))) (-3201 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (-3201 (|has| |#1| (-1001 (-570)))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))))) (-2067 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 214 (|has| |#1| (-562)))) (-4394 (($ $) 156) (($ $ |#3|) 268)) (-3054 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-1429 (((-112) $ $) 258) (((-112) $ (-650 $)) 257)) (-3957 (((-3 $ "failed") $) 37)) (-3158 (((-112) $) 266)) (-1504 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 238)) (-2423 (($ $) 207 (|has| |#1| (-458)))) (-2211 (($ $) 178 (|has| |#1| (-458))) (($ $ |#3|) 107 (|has| |#1| (-458)))) (-4381 (((-650 $) $) 111)) (-2145 (((-112) $) 98 (|has| |#1| (-916)))) (-3587 (($ $) 223 (|has| |#1| (-562)))) (-4302 (($ $) 224 (|has| |#1| (-562)))) (-4220 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3663 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2425 (($ $ |#1| |#2| $) 174)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| |#3| (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| |#3| (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-2005 (((-112) $) 35)) (-2928 (((-777) $) 171)) (-1623 (((-112) $ $) 252) (((-112) $ (-650 $)) 251)) (-1389 (($ $ $ $ $) 209 (|has| |#1| (-562)))) (-2486 ((|#3| $) 277)) (-2417 (($ (-1182 |#1|) |#3|) 119) (($ (-1182 $) |#3|) 118)) (-1739 (((-650 $) $) 128)) (-1338 (((-112) $) 154)) (-2402 (($ |#1| |#2|) 155) (($ $ |#3| (-777)) 121) (($ $ (-650 |#3|) (-650 (-777))) 120)) (-3904 (($ $ $) 237)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |#3|) 122)) (-1858 (((-112) $) 267)) (-2689 ((|#2| $) 172) (((-777) $ |#3|) 124) (((-650 (-777)) $ (-650 |#3|)) 123)) (-3832 (((-777) $) 276)) (-3989 (($ (-1 |#2| |#2|) $) 173)) (-2536 (($ (-1 |#1| |#1|) $) 153)) (-3168 (((-3 |#3| "failed") $) 125)) (-1487 (($ $) 204 (|has| |#1| (-458)))) (-3561 (($ $) 205 (|has| |#1| (-458)))) (-2197 (((-650 $) $) 262)) (-4228 (($ $) 265)) (-4160 (($ $) 206 (|has| |#1| (-458)))) (-1687 (((-650 $) $) 263)) (-2718 (($ $) 264)) (-4355 (($ $) 151)) (-4369 ((|#1| $) 150) (($ $ |#3|) 269)) (-3867 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-3101 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4131 (-777))) $ $) 236)) (-3676 (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $) 240) (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $ |#3|) 239)) (-2516 (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $) 242) (((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $ |#3|) 241)) (-4252 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3596 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3240 (((-1168) $) 10)) (-3834 (($ $ $) 212 (|has| |#1| (-562)))) (-3451 (((-650 $) $) 271)) (-3235 (((-3 (-650 $) "failed") $) 116)) (-3055 (((-3 (-650 $) "failed") $) 117)) (-3353 (((-3 (-2 (|:| |var| |#3|) (|:| -2940 (-777))) "failed") $) 115)) (-2010 (((-112) $ $) 254) (((-112) $ (-650 $)) 253)) (-1478 (($ $ $) 234)) (-3458 (($ $) 275)) (-1693 (((-112) $ $) 260)) (-1772 (((-112) $ $) 256) (((-112) $ (-650 $)) 255)) (-2899 (($ $ $) 235)) (-2657 (($ $) 274)) (-3891 (((-1129) $) 11)) (-3402 (((-2 (|:| -3903 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-562)))) (-3795 (((-2 (|:| -3903 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-562)))) (-4326 (((-112) $) 168)) (-4337 ((|#1| $) 169)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-3903 ((|#1| |#1| $) 208 (|has| |#1| (-458))) (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-2340 (((-424 $) $) 101 (|has| |#1| (-916)))) (-4139 (((-2 (|:| -3903 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-562)))) (-2837 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-3092 (($ $ |#1|) 221 (|has| |#1| (-562))) (($ $ $) 219 (|has| |#1| (-562)))) (-2634 (($ $ |#1|) 222 (|has| |#1| (-562))) (($ $ $) 220 (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-650 |#3|) (-650 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-650 |#3|) (-650 $)) 140)) (-2896 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-2375 (($ $ |#3|) 46) (($ $ (-650 |#3|)) 45) (($ $ |#3| (-777)) 44) (($ $ (-650 |#3|) (-650 (-777))) 43)) (-2650 ((|#2| $) 152) (((-777) $ |#3|) 132) (((-650 (-777)) $ (-650 |#3|)) 131)) (-2541 (($ $) 272)) (-2639 (($ $) 270)) (-2601 (((-899 (-384)) $) 84 (-12 (|has| |#3| (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| |#3| (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| |#3| (-620 (-542))) (|has| |#1| (-620 (-542))))) (($ (-959 (-413 (-570)))) 231 (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))) (($ (-959 (-570))) 228 (-3749 (-12 (-3201 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186)))))) (($ (-959 |#1|)) 225 (|has| |#3| (-620 (-1186)))) (((-1168) $) 203 (-12 (|has| |#1| (-1047 (-570))) (|has| |#3| (-620 (-1186))))) (((-959 |#1|) $) 202 (|has| |#3| (-620 (-1186))))) (-2128 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ |#3|) 108 (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 106 (-3212 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-959 |#1|) $) 201 (|has| |#3| (-620 (-1186)))) (($ (-413 (-570))) 80 (-3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570)))))) (($ $) 87 (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) 170)) (-3481 ((|#1| $ |#2|) 157) (($ $ |#3| (-777)) 130) (($ $ (-650 |#3|) (-650 (-777))) 129)) (-1660 (((-3 $ "failed") $) 81 (-3749 (-3212 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) 32 T CONST)) (-2109 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1981 (($) 19 T CONST)) (-4409 (((-3 (-112) "failed") $ $) 261)) (-1998 (($) 34 T CONST)) (-1714 (($ $ $ $ (-777)) 210 (|has| |#1| (-562)))) (-4300 (($ $ $ (-777)) 211 (|has| |#1| (-562)))) (-3414 (($ $ |#3|) 42) (($ $ (-650 |#3|)) 41) (($ $ |#3| (-777)) 40) (($ $ (-650 |#3|) (-650 (-777))) 39)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1074 |#1| |#2| |#3|) (-141) (-1058) (-799) (-856)) (T -1074))
-((-2486 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-777)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2657 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2541 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3451 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-2639 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-4369 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-4394 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2718 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-1687 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-2197 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-4409 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1693 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-2123 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1429 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1429 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-1772 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1772 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-2010 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-1623 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-4220 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3663 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-4220 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-3663 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-4252 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3596 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-4252 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-3596 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-2516 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -3357 *1))) (-4 *1 (-1074 *3 *4 *5)))) (-2516 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -3357 *1))) (-4 *1 (-1074 *4 *5 *3)))) (-3676 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1074 *3 *4 *5)))) (-3676 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1074 *4 *5 *3)))) (-1504 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1074 *3 *4 *5)))) (-3904 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3101 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4131 (-777)))) (-4 *1 (-1074 *3 *4 *5)))) (-2899 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-1478 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2435 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))) (-4387 (*1 *1 *2) (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))) (-2435 (*1 *1 *2) (|partial| -3749 (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) (-4387 (*1 *1 *2) (-3749 (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) (-2601 (*1 *1 *2) (-3749 (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) (-2435 (*1 *1 *2) (|partial| -3749 (-12 (-5 *2 (-959 *3)) (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-3201 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-3201 (-4 *3 (-551))) (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-3201 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))))) (-4387 (*1 *1 *2) (-3749 (-12 (-5 *2 (-959 *3)) (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-3201 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-3201 (-4 *3 (-551))) (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-3201 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *5 (-620 (-1186))) (-4 *4 (-799)) (-4 *5 (-856)))) (-4302 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3587 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-2634 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3092 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-2634 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3092 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3862 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-4139 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -3903 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1074 *3 *4 *5)))) (-3795 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -3903 *1) (|:| |coef1| *1))) (-4 *1 (-1074 *3 *4 *5)))) (-3402 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -3903 *1) (|:| |coef2| *1))) (-4 *1 (-1074 *3 *4 *5)))) (-2067 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3577 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-4300 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562)))) (-1714 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562)))) (-1389 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3903 (*1 *2 *2 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-2423 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-3561 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-1487 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))))
-(-13 (-956 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2486 (|t#3| $)) (-15 -3832 ((-777) $)) (-15 -3458 ($ $)) (-15 -2657 ($ $)) (-15 -3446 ($ $)) (-15 -2541 ($ $)) (-15 -3451 ((-650 $) $)) (-15 -2639 ($ $)) (-15 -4369 ($ $ |t#3|)) (-15 -4394 ($ $ |t#3|)) (-15 -1858 ((-112) $)) (-15 -3158 ((-112) $)) (-15 -4228 ($ $)) (-15 -2718 ($ $)) (-15 -1687 ((-650 $) $)) (-15 -2197 ((-650 $) $)) (-15 -4409 ((-3 (-112) "failed") $ $)) (-15 -1693 ((-112) $ $)) (-15 -2123 ((-112) $ $)) (-15 -1429 ((-112) $ $)) (-15 -1429 ((-112) $ (-650 $))) (-15 -1772 ((-112) $ $)) (-15 -1772 ((-112) $ (-650 $))) (-15 -2010 ((-112) $ $)) (-15 -2010 ((-112) $ (-650 $))) (-15 -1623 ((-112) $ $)) (-15 -1623 ((-112) $ (-650 $))) (-15 -4220 ($ $ $)) (-15 -3663 ($ $ $)) (-15 -4220 ($ $ $ |t#3|)) (-15 -3663 ($ $ $ |t#3|)) (-15 -4252 ($ $ $)) (-15 -3596 ($ $ $)) (-15 -4252 ($ $ $ |t#3|)) (-15 -3596 ($ $ $ |t#3|)) (-15 -2516 ((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $)) (-15 -2516 ((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -3357 $)) $ $ |t#3|)) (-15 -3676 ((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -3676 ((-2 (|:| -1747 $) (|:| |gap| (-777)) (|:| -1437 $) (|:| -3357 $)) $ $ |t#3|)) (-15 -1504 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -3904 ($ $ $)) (-15 -3101 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4131 (-777))) $ $)) (-15 -2899 ($ $ $)) (-15 -1478 ($ $ $)) (IF (|has| |t#3| (-620 (-1186))) (PROGN (-6 (-619 (-959 |t#1|))) (-6 (-620 (-959 |t#1|))) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -2435 ((-3 $ "failed") (-959 (-413 (-570))))) (-15 -4387 ($ (-959 (-413 (-570))))) (-15 -2601 ($ (-959 (-413 (-570))))) (-15 -2435 ((-3 $ "failed") (-959 (-570)))) (-15 -4387 ($ (-959 (-570)))) (-15 -2601 ($ (-959 (-570)))) (IF (|has| |t#1| (-1001 (-570))) |%noBranch| (PROGN (-15 -2435 ((-3 $ "failed") (-959 |t#1|))) (-15 -4387 ($ (-959 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-570))) (IF (|has| |t#1| (-38 (-413 (-570)))) |%noBranch| (PROGN (-15 -2435 ((-3 $ "failed") (-959 (-570)))) (-15 -4387 ($ (-959 (-570)))) (-15 -2601 ($ (-959 (-570)))) (IF (|has| |t#1| (-551)) |%noBranch| (PROGN (-15 -2435 ((-3 $ "failed") (-959 |t#1|))) (-15 -4387 ($ (-959 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-570))) |%noBranch| (IF (|has| |t#1| (-38 (-413 (-570)))) |%noBranch| (PROGN (-15 -2435 ((-3 $ "failed") (-959 |t#1|))) (-15 -4387 ($ (-959 |t#1|)))))) (-15 -2601 ($ (-959 |t#1|))) (IF (|has| |t#1| (-1047 (-570))) (-6 (-620 (-1168))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -4302 ($ $)) (-15 -3587 ($ $)) (-15 -2634 ($ $ |t#1|)) (-15 -3092 ($ $ |t#1|)) (-15 -2634 ($ $ $)) (-15 -3092 ($ $ $)) (-15 -3862 ($ $ $)) (-15 -4139 ((-2 (|:| -3903 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3795 ((-2 (|:| -3903 $) (|:| |coef1| $)) $ $)) (-15 -3402 ((-2 (|:| -3903 $) (|:| |coef2| $)) $ $)) (-15 -2067 ($ $ $)) (-15 -3577 ((-650 $) $ $)) (-15 -3834 ($ $ $)) (-15 -4300 ($ $ $ (-777))) (-15 -1714 ($ $ $ $ (-777))) (-15 -1389 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-15 -3903 (|t#1| |t#1| $)) (-15 -2423 ($ $)) (-15 -4160 ($ $)) (-15 -3561 ($ $)) (-15 -1487 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 |#3|) . T) ((-622 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-619 (-868)) . T) ((-619 (-959 |#1|)) |has| |#3| (-620 (-1186))) ((-174) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) ((-620 (-959 |#1|)) |has| |#3| (-620 (-1186))) ((-620 (-1168)) -12 (|has| |#1| (-1047 (-570))) (|has| |#3| (-620 (-1186)))) ((-294) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-313 $) . T) ((-330 |#1| |#2|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -3749 (|has| |#1| (-916)) (|has| |#1| (-458))) ((-520 |#3| |#1|) . T) ((-520 |#3| $) . T) ((-520 $ $) . T) ((-562) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-732) . T) ((-907 |#3|) . T) ((-893 (-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) ((-956 |#1| |#2| |#3|) . T) ((-916) |has| |#1| (-916)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1047 |#3|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) |has| |#1| (-916)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-1444 (((-650 (-1144)) $) 18)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 27) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-1144) $) 20)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1075) (-13 (-1092) (-10 -8 (-15 -1444 ((-650 (-1144)) $)) (-15 -1781 ((-1144) $))))) (T -1075))
-((-1444 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1075)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1075)))))
-(-13 (-1092) (-10 -8 (-15 -1444 ((-650 (-1144)) $)) (-15 -1781 ((-1144) $))))
-((-2564 (((-112) |#3| $) 15)) (-2056 (((-3 $ "failed") |#3| (-928)) 29)) (-3957 (((-3 |#3| "failed") |#3| $) 45)) (-2811 (((-112) |#3| $) 19)) (-2746 (((-112) |#3| $) 17)))
-(((-1076 |#1| |#2| |#3|) (-10 -8 (-15 -2056 ((-3 |#1| "failed") |#3| (-928))) (-15 -3957 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2811 ((-112) |#3| |#1|)) (-15 -2746 ((-112) |#3| |#1|)) (-15 -2564 ((-112) |#3| |#1|))) (-1077 |#2| |#3|) (-13 (-854) (-368)) (-1253 |#2|)) (T -1076))
-NIL
-(-10 -8 (-15 -2056 ((-3 |#1| "failed") |#3| (-928))) (-15 -3957 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2811 ((-112) |#3| |#1|)) (-15 -2746 ((-112) |#3| |#1|)) (-15 -2564 ((-112) |#3| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) |#2| $) 22)) (-2419 (((-570) |#2| $) 23)) (-2056 (((-3 $ "failed") |#2| (-928)) 16)) (-3106 ((|#1| |#2| $ |#1|) 14)) (-3957 (((-3 |#2| "failed") |#2| $) 19)) (-2811 (((-112) |#2| $) 20)) (-2746 (((-112) |#2| $) 21)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-3144 ((|#2| $) 18)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3478 ((|#1| |#2| $ |#1|) 15)) (-1745 (((-650 $) |#2|) 17)) (-3892 (((-112) $ $) 6)))
-(((-1077 |#1| |#2|) (-141) (-13 (-854) (-368)) (-1253 |t#1|)) (T -1077))
-((-2419 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1253 *4)) (-5 *2 (-570)))) (-2564 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1253 *4)) (-5 *2 (-112)))) (-2746 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1253 *4)) (-5 *2 (-112)))) (-2811 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1253 *4)) (-5 *2 (-112)))) (-3957 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368))) (-4 *2 (-1253 *3)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368))) (-4 *2 (-1253 *3)))) (-1745 (*1 *2 *3) (-12 (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1253 *4)) (-5 *2 (-650 *1)) (-4 *1 (-1077 *4 *3)))) (-2056 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-928)) (-4 *4 (-13 (-854) (-368))) (-4 *1 (-1077 *4 *2)) (-4 *2 (-1253 *4)))) (-3478 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368))) (-4 *3 (-1253 *2)))) (-3106 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368))) (-4 *3 (-1253 *2)))))
-(-13 (-1109) (-10 -8 (-15 -2419 ((-570) |t#2| $)) (-15 -2564 ((-112) |t#2| $)) (-15 -2746 ((-112) |t#2| $)) (-15 -2811 ((-112) |t#2| $)) (-15 -3957 ((-3 |t#2| "failed") |t#2| $)) (-15 -3144 (|t#2| $)) (-15 -1745 ((-650 $) |t#2|)) (-15 -2056 ((-3 $ "failed") |t#2| (-928))) (-15 -3478 (|t#1| |t#2| $ |t#1|)) (-15 -3106 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2648 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-777)) 114)) (-2859 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777)) 63)) (-2707 (((-1282) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-777)) 99)) (-3666 (((-777) (-650 |#4|) (-650 |#5|)) 30)) (-1511 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777)) 65) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777) (-112)) 67)) (-2182 (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112)) 87)) (-2601 (((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) 92)) (-3202 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-112)) 62)) (-4020 (((-777) (-650 |#4|) (-650 |#5|)) 21)))
-(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4020 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3666 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3202 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-112))) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2648 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-777))) (-15 -2601 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -2707 ((-1282) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-777)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1078))
-((-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9)))) (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1282)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168)) (-5 *1 (-1078 *4 *5 *6 *7 *8)))) (-2648 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-650 *11)) (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -4246 *11)))))) (-5 *6 (-777)) (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -4246 *11)))) (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9)) (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-5 *1 (-1078 *7 *8 *9 *10 *11)))) (-2182 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-2182 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-1511 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1511 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-1511 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1078 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3)))) (-2859 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2859 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3202 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-4020 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4020 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3666 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3202 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-112))) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2648 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-777))) (-15 -2601 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -2707 ((-1282) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-777))))
-((-1496 (((-112) |#5| $) 26)) (-1825 (((-112) |#5| $) 29)) (-1446 (((-112) |#5| $) 18) (((-112) $) 52)) (-3502 (((-650 $) |#5| $) NIL) (((-650 $) (-650 |#5|) $) 94) (((-650 $) (-650 |#5|) (-650 $)) 92) (((-650 $) |#5| (-650 $)) 95)) (-3308 (($ $ |#5|) NIL) (((-650 $) |#5| $) NIL) (((-650 $) |#5| (-650 $)) 73) (((-650 $) (-650 |#5|) $) 75) (((-650 $) (-650 |#5|) (-650 $)) 77)) (-2922 (((-650 $) |#5| $) NIL) (((-650 $) |#5| (-650 $)) 64) (((-650 $) (-650 |#5|) $) 69) (((-650 $) (-650 |#5|) (-650 $)) 71)) (-4242 (((-112) |#5| $) 32)))
-(((-1079 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3308 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -3308 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -3308 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -3308 ((-650 |#1|) |#5| |#1|)) (-15 -2922 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -2922 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -2922 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -2922 ((-650 |#1|) |#5| |#1|)) (-15 -3502 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -3502 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -3502 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -3502 ((-650 |#1|) |#5| |#1|)) (-15 -1825 ((-112) |#5| |#1|)) (-15 -1446 ((-112) |#1|)) (-15 -4242 ((-112) |#5| |#1|)) (-15 -1496 ((-112) |#5| |#1|)) (-15 -1446 ((-112) |#5| |#1|)) (-15 -3308 (|#1| |#1| |#5|))) (-1080 |#2| |#3| |#4| |#5|) (-458) (-799) (-856) (-1074 |#2| |#3| |#4|)) (T -1079))
-NIL
-(-10 -8 (-15 -3308 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -3308 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -3308 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -3308 ((-650 |#1|) |#5| |#1|)) (-15 -2922 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -2922 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -2922 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -2922 ((-650 |#1|) |#5| |#1|)) (-15 -3502 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -3502 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -3502 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -3502 ((-650 |#1|) |#5| |#1|)) (-15 -1825 ((-112) |#5| |#1|)) (-15 -1446 ((-112) |#1|)) (-15 -4242 ((-112) |#5| |#1|)) (-15 -1496 ((-112) |#5| |#1|)) (-15 -1446 ((-112) |#5| |#1|)) (-15 -3308 (|#1| |#1| |#5|)))
-((-2847 (((-112) $ $) 7)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) 86)) (-1510 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1598 (((-650 |#3|) $) 34)) (-3330 (((-112) $) 27)) (-2114 (((-112) $) 18 (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) 102) (((-112) $) 98)) (-3067 ((|#4| |#4| $) 93)) (-3312 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| $) 127)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) 28)) (-2855 (((-112) $ (-777)) 45)) (-3960 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) 80)) (-2333 (($) 46 T CONST)) (-2157 (((-112) $) 23 (|has| |#1| (-562)))) (-3303 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3105 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3580 (((-112) $) 26 (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2303 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) 37)) (-4387 (($ (-650 |#4|)) 36)) (-1962 (((-3 $ "failed") $) 83)) (-2360 ((|#4| |#4| $) 90)) (-3153 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4079 ((|#4| |#4| $) 88)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) 106)) (-1496 (((-112) |#4| $) 137)) (-1825 (((-112) |#4| $) 134)) (-1446 (((-112) |#4| $) 138) (((-112) $) 135)) (-3976 (((-650 |#4|) $) 53 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) 105) (((-112) $) 104)) (-2486 ((|#3| $) 35)) (-2497 (((-112) $ (-777)) 44)) (-3069 (((-650 |#4|) $) 54 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 48)) (-3734 (((-650 |#3|) $) 33)) (-3640 (((-112) |#3| $) 32)) (-2065 (((-112) $ (-777)) 43)) (-3240 (((-1168) $) 10)) (-3115 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3834 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| |#4| $) 128)) (-3637 (((-3 |#4| "failed") $) 84)) (-3778 (((-650 $) |#4| $) 130)) (-2740 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4057 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3502 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-4399 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-4083 (((-650 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-1478 ((|#4| |#4| $) 91)) (-1693 (((-112) $ $) 111)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) 101) (((-112) $) 97)) (-2899 ((|#4| |#4| $) 92)) (-3891 (((-1129) $) 11)) (-1948 (((-3 |#4| "failed") $) 85)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3484 (((-3 $ "failed") $ |#4|) 79)) (-3308 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-2231 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) 39)) (-2171 (((-112) $) 42)) (-1698 (($) 41)) (-2650 (((-777) $) 107)) (-3901 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4452)))) (-3064 (($ $) 40)) (-2601 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 61)) (-1342 (($ $ |#3|) 29)) (-2691 (($ $ |#3|) 31)) (-2990 (($ $) 89)) (-3130 (($ $ |#3|) 30)) (-2869 (((-868) $) 12) (((-650 |#4|) $) 38)) (-3982 (((-777) $) 77 (|has| |#3| (-373)))) (-1344 (((-112) $ $) 9)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-2922 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-2061 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) 82)) (-4242 (((-112) |#4| $) 136)) (-1600 (((-112) |#3| $) 81)) (-3892 (((-112) $ $) 6)) (-2857 (((-777) $) 47 (|has| $ (-6 -4452)))))
-(((-1080 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1080))
-((-1446 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1496 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-4242 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-1825 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-2740 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 (-112) (-650 *1))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-4057 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *1)))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-4057 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-3778 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3115 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 *3 (-650 *1))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3834 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *1)))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3312 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *1)))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3502 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3502 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *7)))) (-3502 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)))) (-3502 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) (-2922 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) (-2922 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *7)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)))) (-4399 (*1 *1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5 *2)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-4399 (*1 *1 *2 *1) (-12 (-5 *2 (-650 *6)) (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)))) (-3308 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3308 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) (-3308 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *7)))) (-3308 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *5 *6 *7 *8)))))
-(-13 (-1220 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1446 ((-112) |t#4| $)) (-15 -1496 ((-112) |t#4| $)) (-15 -4242 ((-112) |t#4| $)) (-15 -1446 ((-112) $)) (-15 -1825 ((-112) |t#4| $)) (-15 -2740 ((-3 (-112) (-650 $)) |t#4| $)) (-15 -4057 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) |t#4| $)) (-15 -4057 ((-112) |t#4| $)) (-15 -3778 ((-650 $) |t#4| $)) (-15 -3115 ((-3 |t#4| (-650 $)) |t#4| |t#4| $)) (-15 -3834 ((-650 (-2 (|:| |val| |t#4|) (|:| -4246 $))) |t#4| |t#4| $)) (-15 -3312 ((-650 (-2 (|:| |val| |t#4|) (|:| -4246 $))) |t#4| $)) (-15 -3502 ((-650 $) |t#4| $)) (-15 -3502 ((-650 $) (-650 |t#4|) $)) (-15 -3502 ((-650 $) (-650 |t#4|) (-650 $))) (-15 -3502 ((-650 $) |t#4| (-650 $))) (-15 -2922 ((-650 $) |t#4| $)) (-15 -2922 ((-650 $) |t#4| (-650 $))) (-15 -2922 ((-650 $) (-650 |t#4|) $)) (-15 -2922 ((-650 $) (-650 |t#4|) (-650 $))) (-15 -4399 ($ |t#4| $)) (-15 -4399 ($ (-650 |t#4|) $)) (-15 -3308 ((-650 $) |t#4| $)) (-15 -3308 ((-650 $) |t#4| (-650 $))) (-15 -3308 ((-650 $) (-650 |t#4|) $)) (-15 -3308 ((-650 $) (-650 |t#4|) (-650 $))) (-15 -1510 ((-650 $) (-650 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1220 |#1| |#2| |#3| |#4|) . T) ((-1227) . T))
-((-1735 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|) 86)) (-1395 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|) 127)) (-4026 (((-650 |#5|) |#4| |#5|) 74)) (-1329 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1974 (((-1282)) 36)) (-2446 (((-1282)) 25)) (-3670 (((-1282) (-1168) (-1168) (-1168)) 32)) (-2725 (((-1282) (-1168) (-1168) (-1168)) 21)) (-3177 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#4| |#4| |#5|) 107)) (-2153 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#3| (-112)) 118) (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1766 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|) 113)))
-(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2725 ((-1282) (-1168) (-1168) (-1168))) (-15 -2446 ((-1282))) (-15 -3670 ((-1282) (-1168) (-1168) (-1168))) (-15 -1974 ((-1282))) (-15 -3177 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -2153 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2153 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#3| (-112))) (-15 -1766 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -1395 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -1329 ((-112) |#4| |#5|)) (-15 -1329 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -4026 ((-650 |#5|) |#4| |#5|)) (-15 -1735 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1081))
-((-1735 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-4026 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1329 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1329 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1395 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1766 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9)))) (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856)) (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -4246 *9)))) (-5 *1 (-1081 *6 *7 *4 *8 *9)))) (-2153 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3177 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1974 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-3670 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-2446 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-2725 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2725 ((-1282) (-1168) (-1168) (-1168))) (-15 -2446 ((-1282))) (-15 -3670 ((-1282) (-1168) (-1168) (-1168))) (-15 -1974 ((-1282))) (-15 -3177 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -2153 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2153 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#3| (-112))) (-15 -1766 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -1395 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -1329 ((-112) |#4| |#5|)) (-15 -1329 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -4026 ((-650 |#5|) |#4| |#5|)) (-15 -1735 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|)))
-((-2847 (((-112) $ $) NIL)) (-2925 (((-1226) $) 13)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3812 (((-1144) $) 10)) (-2869 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1082) (-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2925 ((-1226) $))))) (T -1082))
-((-3812 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1082)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-1082)))))
-(-13 (-1092) (-10 -8 (-15 -3812 ((-1144) $)) (-15 -2925 ((-1226) $))))
-((-2557 (((-112) $ $) 7)))
-(((-1083) (-13 (-1227) (-10 -8 (-15 -2557 ((-112) $ $))))) (T -1083))
-((-2557 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1083)))))
-(-13 (-1227) (-10 -8 (-15 -2557 ((-112) $ $))))
-((-2847 (((-112) $ $) NIL)) (-1770 (((-1186) $) 8)) (-3240 (((-1168) $) 17)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 11)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 14)))
-(((-1084 |#1|) (-13 (-1109) (-10 -8 (-15 -1770 ((-1186) $)))) (-1186)) (T -1084))
-((-1770 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1084 *3)) (-14 *3 *2))))
-(-13 (-1109) (-10 -8 (-15 -1770 ((-1186) $))))
-((-2847 (((-112) $ $) NIL)) (-1686 (($ $ (-650 (-1186)) (-1 (-112) (-650 |#3|))) 34)) (-4017 (($ |#3| |#3|) 23) (($ |#3| |#3| (-650 (-1186))) 21)) (-3871 ((|#3| $) 13)) (-2435 (((-3 (-298 |#3|) "failed") $) 60)) (-4387 (((-298 |#3|) $) NIL)) (-3849 (((-650 (-1186)) $) 16)) (-3898 (((-899 |#1|) $) 11)) (-3859 ((|#3| $) 12)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2057 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-928)) 41)) (-2869 (((-868) $) 89) (($ (-298 |#3|)) 22)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 38)))
-(((-1085 |#1| |#2| |#3|) (-13 (-1109) (-290 |#3| |#3|) (-1047 (-298 |#3|)) (-10 -8 (-15 -4017 ($ |#3| |#3|)) (-15 -4017 ($ |#3| |#3| (-650 (-1186)))) (-15 -1686 ($ $ (-650 (-1186)) (-1 (-112) (-650 |#3|)))) (-15 -3898 ((-899 |#1|) $)) (-15 -3859 (|#3| $)) (-15 -3871 (|#3| $)) (-15 -2057 (|#3| $ |#3| (-928))) (-15 -3849 ((-650 (-1186)) $)))) (-1109) (-13 (-1058) (-893 |#1|) (-620 (-899 |#1|))) (-13 (-436 |#2|) (-893 |#1|) (-620 (-899 |#1|)))) (T -1085))
-((-4017 (*1 *1 *2 *2) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1085 *3 *4 *2)) (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))) (-4017 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1085 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) (-1686 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1 (-112) (-650 *6))) (-4 *6 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1085 *4 *5 *6)))) (-3898 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 *2))) (-5 *2 (-899 *3)) (-5 *1 (-1085 *3 *4 *5)) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 *2))))) (-3859 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1085 *3 *4 *2)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))))) (-3871 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1085 *3 *4 *2)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))))) (-2057 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-928)) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1085 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) (-3849 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-5 *2 (-650 (-1186))) (-5 *1 (-1085 *3 *4 *5)) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))))
-(-13 (-1109) (-290 |#3| |#3|) (-1047 (-298 |#3|)) (-10 -8 (-15 -4017 ($ |#3| |#3|)) (-15 -4017 ($ |#3| |#3| (-650 (-1186)))) (-15 -1686 ($ $ (-650 (-1186)) (-1 (-112) (-650 |#3|)))) (-15 -3898 ((-899 |#1|) $)) (-15 -3859 (|#3| $)) (-15 -3871 (|#3| $)) (-15 -2057 (|#3| $ |#3| (-928))) (-15 -3849 ((-650 (-1186)) $))))
-((-2847 (((-112) $ $) NIL)) (-1653 (($ (-650 (-1085 |#1| |#2| |#3|))) 14)) (-4067 (((-650 (-1085 |#1| |#2| |#3|)) $) 21)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2057 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-928)) 27)) (-2869 (((-868) $) 17)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 20)))
-(((-1086 |#1| |#2| |#3|) (-13 (-1109) (-290 |#3| |#3|) (-10 -8 (-15 -1653 ($ (-650 (-1085 |#1| |#2| |#3|)))) (-15 -4067 ((-650 (-1085 |#1| |#2| |#3|)) $)) (-15 -2057 (|#3| $ |#3| (-928))))) (-1109) (-13 (-1058) (-893 |#1|) (-620 (-899 |#1|))) (-13 (-436 |#2|) (-893 |#1|) (-620 (-899 |#1|)))) (T -1086))
-((-1653 (*1 *1 *2) (-12 (-5 *2 (-650 (-1085 *3 *4 *5))) (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1086 *3 *4 *5)))) (-4067 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-5 *2 (-650 (-1085 *3 *4 *5))) (-5 *1 (-1086 *3 *4 *5)) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))) (-2057 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-928)) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1086 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))))
-(-13 (-1109) (-290 |#3| |#3|) (-10 -8 (-15 -1653 ($ (-650 (-1085 |#1| |#2| |#3|)))) (-15 -4067 ((-650 (-1085 |#1| |#2| |#3|)) $)) (-15 -2057 (|#3| $ |#3| (-928)))))
-((-1506 (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112)) 88) (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|))) 92) (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112)) 90)))
-(((-1087 |#1| |#2|) (-10 -7 (-15 -1506 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -1506 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -1506 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112)))) (-13 (-311) (-148)) (-650 (-1186))) (T -1087))
-((-1506 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5)))))) (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))))) (-1506 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *4)) (|:| -2987 (-650 (-959 *4)))))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-650 (-959 *4))) (-14 *5 (-650 (-1186))))) (-1506 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5)))))) (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))))))
-(-10 -7 (-15 -1506 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -1506 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -1506 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112))))
-((-2340 (((-424 |#3|) |#3|) 18)))
-(((-1088 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-424 |#3|) |#3|))) (-1253 (-413 (-570))) (-13 (-368) (-148) (-730 (-413 (-570)) |#1|)) (-1253 |#2|)) (T -1088))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-1253 (-413 (-570)))) (-4 *5 (-13 (-368) (-148) (-730 (-413 (-570)) *4))) (-5 *2 (-424 *3)) (-5 *1 (-1088 *4 *5 *3)) (-4 *3 (-1253 *5)))))
-(-10 -7 (-15 -2340 ((-424 |#3|) |#3|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 136)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-368)))) (-2046 (($ $) NIL (|has| |#1| (-368)))) (-3426 (((-112) $) NIL (|has| |#1| (-368)))) (-3524 (((-695 |#1|) (-1277 $)) NIL) (((-695 |#1|)) 121)) (-1439 ((|#1| $) 125)) (-2000 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-354)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2401 (((-777)) 43 (|has| |#1| (-373)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-2615 (($ (-1277 |#1|) (-1277 $)) NIL) (($ (-1277 |#1|)) 46)) (-3290 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-354)))) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4385 (((-695 |#1|) $ (-1277 $)) NIL) (((-695 |#1|) $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 113) (((-695 |#1|) (-695 $)) 108)) (-2295 (($ |#2|) 65) (((-3 $ "failed") (-413 |#2|)) NIL (|has| |#1| (-368)))) (-3957 (((-3 $ "failed") $) NIL)) (-4412 (((-928)) 84)) (-2066 (($) 47 (|has| |#1| (-373)))) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2310 (($) NIL (|has| |#1| (-354)))) (-4240 (((-112) $) NIL (|has| |#1| (-354)))) (-2118 (($ $ (-777)) NIL (|has| |#1| (-354))) (($ $) NIL (|has| |#1| (-354)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-3995 (((-928) $) NIL (|has| |#1| (-354))) (((-839 (-928)) $) NIL (|has| |#1| (-354)))) (-2005 (((-112) $) NIL)) (-3046 ((|#1| $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-3658 ((|#2| $) 91 (|has| |#1| (-368)))) (-1997 (((-928) $) 145 (|has| |#1| (-373)))) (-2283 ((|#2| $) 62)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-3458 (($) NIL (|has| |#1| (-354)) CONST)) (-4298 (($ (-928)) 135 (|has| |#1| (-373)))) (-3891 (((-1129) $) NIL)) (-3643 (($) 127)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-1617 (((-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))) NIL (|has| |#1| (-354)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2896 ((|#1| (-1277 $)) NIL) ((|#1|) 117)) (-4058 (((-777) $) NIL (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) NIL (|has| |#1| (-354)))) (-2375 (($ $) NIL (-3749 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) NIL (-3749 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1 |#1| |#1|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-2318 (((-695 |#1|) (-1277 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-3144 ((|#2|) 81)) (-1900 (($) NIL (|has| |#1| (-354)))) (-2987 (((-1277 |#1|) $ (-1277 $)) 96) (((-695 |#1|) (-1277 $) (-1277 $)) NIL) (((-1277 |#1|) $) 75) (((-695 |#1|) (-1277 $)) 92)) (-2601 (((-1277 |#1|) $) NIL) (($ (-1277 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (|has| |#1| (-354)))) (-2869 (((-868) $) 61) (($ (-570)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-368))) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-1660 (($ $) NIL (|has| |#1| (-354))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1816 ((|#2| $) 89)) (-2294 (((-777)) 83 T CONST)) (-1344 (((-112) $ $) NIL)) (-2681 (((-1277 $)) 88)) (-2939 (((-112) $ $) NIL (|has| |#1| (-368)))) (-1981 (($) 32 T CONST)) (-1998 (($) 19 T CONST)) (-3414 (($ $) NIL (-3749 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) NIL (-3749 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1 |#1| |#1|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-3892 (((-112) $ $) 67)) (-4013 (($ $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) 71) (($ $ $) NIL)) (-3992 (($ $ $) 69)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-413 (-570)) $) NIL (|has| |#1| (-368))) (($ $ (-413 (-570))) NIL (|has| |#1| (-368)))))
-(((-1089 |#1| |#2| |#3|) (-730 |#1| |#2|) (-174) (-1253 |#1|) |#2|) (T -1089))
-NIL
-(-730 |#1| |#2|)
-((-2340 (((-424 |#3|) |#3|) 19)))
-(((-1090 |#1| |#2| |#3|) (-10 -7 (-15 -2340 ((-424 |#3|) |#3|))) (-1253 (-413 (-959 (-570)))) (-13 (-368) (-148) (-730 (-413 (-959 (-570))) |#1|)) (-1253 |#2|)) (T -1090))
-((-2340 (*1 *2 *3) (-12 (-4 *4 (-1253 (-413 (-959 (-570))))) (-4 *5 (-13 (-368) (-148) (-730 (-413 (-959 (-570))) *4))) (-5 *2 (-424 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1253 *5)))))
-(-10 -7 (-15 -2340 ((-424 |#3|) |#3|)))
-((-2847 (((-112) $ $) NIL)) (-1908 (($ $ $) 16)) (-1764 (($ $ $) 17)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3315 (($) 6)) (-2601 (((-1186) $) 20)) (-2869 (((-868) $) 13)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 15)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 9)))
-(((-1091) (-13 (-856) (-620 (-1186)) (-10 -8 (-15 -3315 ($))))) (T -1091))
-((-3315 (*1 *1) (-5 *1 (-1091))))
-(-13 (-856) (-620 (-1186)) (-10 -8 (-15 -3315 ($))))
-((-2847 (((-112) $ $) 7)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-1191)) 17) (((-1191) $) 16)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-1092) (-141)) (T -1092))
+NIL
+(-13 (-21) (-1123))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-1123) . T) ((-1111) . T))
+((-1957 (($ $) 17)) (-1984 (($ $) 25)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 55)) (-2140 (($ $) 27)) (-3964 (($ $) 12)) (-1609 (($ $) 43)) (-3222 (((-386) $) NIL) (((-227) $) NIL) (((-901 (-386)) $) 36)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL) (($ (-415 (-572))) 31) (($ (-572)) NIL) (($ (-415 (-572))) 31)) (-2455 (((-779)) 9)) (-3441 (($ $) 45)))
+(((-1070 |#1|) (-10 -8 (-15 -1984 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -2140 (|#1| |#1|)) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| (-572))) (-15 -3222 ((-227) |#1|)) (-15 -3222 ((-386) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| |#1|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-1071)) (T -1070))
+((-2455 (*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1070 *3)) (-4 *3 (-1071)))))
+(-10 -8 (-15 -1984 (|#1| |#1|)) (-15 -1957 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -2140 (|#1| |#1|)) (-15 -4034 ((-898 (-386) |#1|) |#1| (-901 (-386)) (-898 (-386) |#1|))) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| (-572))) (-15 -3222 ((-227) |#1|)) (-15 -3222 ((-386) |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| |#1|)) (-15 -2455 ((-779))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3923 (((-572) $) 97)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-1957 (($ $) 95)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-3093 (($ $) 105)) (-4252 (((-112) $ $) 65)) (-4304 (((-572) $) 122)) (-1586 (($) 18 T CONST)) (-1984 (($ $) 94)) (-3072 (((-3 (-572) "failed") $) 110) (((-3 (-415 (-572)) "failed") $) 107)) (-1869 (((-572) $) 111) (((-415 (-572)) $) 108)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3439 (((-112) $) 79)) (-3778 (((-112) $) 120)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 101)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 104)) (-2140 (($ $) 100)) (-4354 (((-112) $) 121)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-2536 (($ $ $) 119)) (-3928 (($ $ $) 118)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-3964 (($ $) 96)) (-1609 (($ $) 98)) (-2972 (((-426 $) $) 82)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-3222 (((-386) $) 113) (((-227) $) 112) (((-901 (-386)) $) 102)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ (-572)) 109) (($ (-415 (-572))) 106)) (-2455 (((-779)) 32 T CONST)) (-3441 (($ $) 99)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2775 (($ $) 123)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3976 (((-112) $ $) 116)) (-3954 (((-112) $ $) 115)) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 117)) (-3943 (((-112) $ $) 114)) (-4029 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77) (($ $ (-415 (-572))) 103)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75)))
+(((-1071) (-141)) (T -1071))
+((-2775 (*1 *1 *1) (-4 *1 (-1071))) (-2140 (*1 *1 *1) (-4 *1 (-1071))) (-3441 (*1 *1 *1) (-4 *1 (-1071))) (-1609 (*1 *1 *1) (-4 *1 (-1071))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-572)))) (-3964 (*1 *1 *1) (-4 *1 (-1071))) (-1957 (*1 *1 *1) (-4 *1 (-1071))) (-1984 (*1 *1 *1) (-4 *1 (-1071))))
+(-13 (-370) (-856) (-1033) (-1049 (-572)) (-1049 (-415 (-572))) (-1013) (-622 (-901 (-386))) (-895 (-386)) (-148) (-10 -8 (-15 -2140 ($ $)) (-15 -3441 ($ $)) (-15 -1609 ($ $)) (-15 -3923 ((-572) $)) (-15 -3964 ($ $)) (-15 -1957 ($ $)) (-15 -1984 ($ $)) (-15 -2775 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-622 (-227)) . T) ((-622 (-386)) . T) ((-622 (-901 (-386))) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 $) . T) ((-734) . T) ((-799) . T) ((-800) . T) ((-802) . T) ((-803) . T) ((-856) . T) ((-858) . T) ((-895 (-386)) . T) ((-929) . T) ((-1013) . T) ((-1033) . T) ((-1049 (-415 (-572))) . T) ((-1049 (-572)) . T) ((-1062 #0#) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) |#2| $) 26)) (-3037 ((|#1| $) 10)) (-4304 (((-572) |#2| $) 116)) (-3748 (((-3 $ "failed") |#2| (-930)) 75)) (-3058 ((|#1| $) 31)) (-1538 ((|#1| |#2| $ |#1|) 40)) (-3348 (($ $) 28)) (-2982 (((-3 |#2| "failed") |#2| $) 111)) (-3778 (((-112) |#2| $) NIL)) (-4354 (((-112) |#2| $) NIL)) (-1848 (((-112) |#2| $) 27)) (-4188 ((|#1| $) 117)) (-3041 ((|#1| $) 30)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3858 ((|#2| $) 102)) (-3491 (((-870) $) 92)) (-3424 (((-112) $ $) NIL)) (-4090 ((|#1| |#2| $ |#1|) 41)) (-3761 (((-652 $) |#2|) 77)) (-3921 (((-112) $ $) 97)))
+(((-1072 |#1| |#2|) (-13 (-1079 |#1| |#2|) (-10 -8 (-15 -3041 (|#1| $)) (-15 -3058 (|#1| $)) (-15 -3037 (|#1| $)) (-15 -4188 (|#1| $)) (-15 -3348 ($ $)) (-15 -1848 ((-112) |#2| $)) (-15 -1538 (|#1| |#2| $ |#1|)))) (-13 (-856) (-370)) (-1255 |#1|)) (T -1072))
+((-1538 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3041 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3058 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3037 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-4188 (*1 *2 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-3348 (*1 *1 *1) (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1255 *2)))) (-1848 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-856) (-370))) (-5 *2 (-112)) (-5 *1 (-1072 *4 *3)) (-4 *3 (-1255 *4)))))
+(-13 (-1079 |#1| |#2|) (-10 -8 (-15 -3041 (|#1| $)) (-15 -3058 (|#1| $)) (-15 -3037 (|#1| $)) (-15 -4188 (|#1| $)) (-15 -3348 ($ $)) (-15 -1848 ((-112) |#2| $)) (-15 -1538 (|#1| |#2| $ |#1|))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2746 (($ $ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1742 (($ $ $ $) NIL)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-4304 (((-572) $) NIL)) (-4235 (($ $ $) NIL)) (-1586 (($) NIL T CONST)) (-3793 (($ (-1188)) 10) (($ (-572)) 7)) (-3072 (((-3 (-572) "failed") $) NIL)) (-1869 (((-572) $) NIL)) (-3407 (($ $ $) NIL)) (-2245 (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-697 (-572)) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL)) (-2054 (((-112) $) NIL)) (-2745 (((-415 (-572)) $) NIL)) (-2688 (($) NIL) (($ $) NIL)) (-3418 (($ $ $) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3677 (($ $ $ $) NIL)) (-4023 (($ $ $) NIL)) (-3778 (((-112) $) NIL)) (-2362 (($ $ $) NIL)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-4422 (((-112) $) NIL)) (-2270 (((-112) $) NIL)) (-3396 (((-3 $ "failed") $) NIL)) (-4354 (((-112) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2945 (($ $ $ $) NIL)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-4135 (($ $) NIL)) (-2040 (($ $) NIL)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-2197 (($ $ $) NIL)) (-3477 (($) NIL T CONST)) (-3651 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) NIL) (($ (-652 $)) NIL)) (-4002 (($ $) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3601 (((-112) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3011 (($ $ (-779)) NIL) (($ $) NIL)) (-3935 (($ $) NIL)) (-3679 (($ $) NIL)) (-3222 (((-572) $) 16) (((-544) $) NIL) (((-901 (-572)) $) NIL) (((-386) $) NIL) (((-227) $) NIL) (($ (-1188)) 9)) (-3491 (((-870) $) 23) (($ (-572)) 6) (($ $) NIL) (($ (-572)) 6)) (-2455 (((-779)) NIL T CONST)) (-4170 (((-112) $ $) NIL)) (-3337 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-1556 (($) NIL)) (-2466 (((-112) $ $) NIL)) (-1732 (($ $ $ $) NIL)) (-2775 (($ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)) (-4018 (($ $) 22) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL)))
+(((-1073) (-13 (-553) (-626 (-1188)) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -3793 ($ (-1188))) (-15 -3793 ($ (-572)))))) (T -1073))
+((-3793 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1073)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1073)))))
+(-13 (-553) (-626 (-1188)) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -3793 ($ (-1188))) (-15 -3793 ($ (-572)))))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL)) (-2812 (((-1284) $ (-1188) (-1188)) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-2161 (($) 9)) (-3659 (((-52) $ (-1188) (-52)) NIL)) (-4259 (($ $) 32)) (-4393 (($ $) 30)) (-3205 (($ $) 29)) (-2399 (($ $) 31)) (-3062 (($ $) 35)) (-2713 (($ $) 36)) (-3498 (($ $) 28)) (-3885 (($ $) 33)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) 27 (|has| $ (-6 -4454)))) (-1998 (((-3 (-52) "failed") (-1188) $) 43)) (-1586 (($) NIL T CONST)) (-4178 (($) 7)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-3033 (($ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) 53 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-3 (-52) "failed") (-1188) $) NIL)) (-4243 (($ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454)))) (-3338 (((-3 (-1170) "failed") $ (-1170) (-572)) 72)) (-3061 (((-52) $ (-1188) (-52)) NIL (|has| $ (-6 -4455)))) (-2986 (((-52) $ (-1188)) NIL)) (-1442 (((-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-1188) $) NIL (|has| (-1188) (-858)))) (-2396 (((-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) 38 (|has| $ (-6 -4454))) (((-652 (-52)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-2751 (((-1188) $) NIL (|has| (-1188) (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4455))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-2608 (((-652 (-1188)) $) NIL)) (-4096 (((-112) (-1188) $) NIL)) (-1533 (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL)) (-3704 (($ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) 46)) (-1634 (((-652 (-1188)) $) NIL)) (-3132 (((-112) (-1188) $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-2243 (((-386) $ (-1188)) 52)) (-1741 (((-652 (-1170)) $ (-1170)) 74)) (-2570 (((-52) $) NIL (|has| (-1188) (-858)))) (-3124 (((-3 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) "failed") (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL)) (-3803 (($ $ (-52)) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-300 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL (-12 (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-315 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (($ $ (-652 (-52)) (-652 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-300 (-52))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111)))) (($ $ (-652 (-300 (-52)))) NIL (-12 (|has| (-52) (-315 (-52))) (|has| (-52) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111))))) (-2950 (((-652 (-52)) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 (((-52) $ (-1188)) NIL) (((-52) $ (-1188) (-52)) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL)) (-3988 (($ $ (-1188)) 54)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111)))) (((-779) (-52) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-52) (-1111)))) (((-779) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) 40)) (-2121 (($ $ $) 41)) (-3491 (((-870) $) NIL (-3783 (|has| (-52) (-621 (-870))) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-621 (-870)))))) (-1426 (($ $ (-1188) (-386)) 50)) (-2316 (($ $ (-1188) (-386)) 51)) (-3424 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 (-1188)) (|:| -3762 (-52)))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-52) (-1111)) (|has| (-2 (|:| -1640 (-1188)) (|:| -3762 (-52))) (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1074) (-13 (-1205 (-1188) (-52)) (-10 -8 (-15 -2121 ($ $ $)) (-15 -4178 ($)) (-15 -3498 ($ $)) (-15 -3205 ($ $)) (-15 -4393 ($ $)) (-15 -2399 ($ $)) (-15 -3885 ($ $)) (-15 -4259 ($ $)) (-15 -3062 ($ $)) (-15 -2713 ($ $)) (-15 -1426 ($ $ (-1188) (-386))) (-15 -2316 ($ $ (-1188) (-386))) (-15 -2243 ((-386) $ (-1188))) (-15 -1741 ((-652 (-1170)) $ (-1170))) (-15 -3988 ($ $ (-1188))) (-15 -2161 ($)) (-15 -3338 ((-3 (-1170) "failed") $ (-1170) (-572))) (-6 -4454)))) (T -1074))
+((-2121 (*1 *1 *1 *1) (-5 *1 (-1074))) (-4178 (*1 *1) (-5 *1 (-1074))) (-3498 (*1 *1 *1) (-5 *1 (-1074))) (-3205 (*1 *1 *1) (-5 *1 (-1074))) (-4393 (*1 *1 *1) (-5 *1 (-1074))) (-2399 (*1 *1 *1) (-5 *1 (-1074))) (-3885 (*1 *1 *1) (-5 *1 (-1074))) (-4259 (*1 *1 *1) (-5 *1 (-1074))) (-3062 (*1 *1 *1) (-5 *1 (-1074))) (-2713 (*1 *1 *1) (-5 *1 (-1074))) (-1426 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))) (-2316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))) (-2243 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-386)) (-5 *1 (-1074)))) (-1741 (*1 *2 *1 *3) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1074)) (-5 *3 (-1170)))) (-3988 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1074)))) (-2161 (*1 *1) (-5 *1 (-1074))) (-3338 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-1074)))))
+(-13 (-1205 (-1188) (-52)) (-10 -8 (-15 -2121 ($ $ $)) (-15 -4178 ($)) (-15 -3498 ($ $)) (-15 -3205 ($ $)) (-15 -4393 ($ $)) (-15 -2399 ($ $)) (-15 -3885 ($ $)) (-15 -4259 ($ $)) (-15 -3062 ($ $)) (-15 -2713 ($ $)) (-15 -1426 ($ $ (-1188) (-386))) (-15 -2316 ($ $ (-1188) (-386))) (-15 -2243 ((-386) $ (-1188))) (-15 -1741 ((-652 (-1170)) $ (-1170))) (-15 -3988 ($ $ (-1188))) (-15 -2161 ($)) (-15 -3338 ((-3 (-1170) "failed") $ (-1170) (-572))) (-6 -4454)))
+((-4058 (($ $) 46)) (-3207 (((-112) $ $) 82)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-961 (-415 (-572)))) 251) (((-3 $ "failed") (-961 (-572))) 250) (((-3 $ "failed") (-961 |#2|)) 253)) (-1869 ((|#2| $) NIL) (((-415 (-572)) $) NIL) (((-572) $) NIL) ((|#4| $) NIL) (($ (-961 (-415 (-572)))) 239) (($ (-961 (-572))) 235) (($ (-961 |#2|)) 255)) (-1874 (($ $) NIL) (($ $ |#4|) 44)) (-2182 (((-112) $ $) 131) (((-112) $ (-652 $)) 135)) (-4009 (((-112) $) 60)) (-3369 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 125)) (-4332 (($ $) 160)) (-2753 (($ $) 156)) (-2088 (($ $) 155)) (-3785 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2248 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1870 (((-112) $ $) 143) (((-112) $ (-652 $)) 144)) (-3698 ((|#4| $) 32)) (-2574 (($ $ $) 128)) (-3647 (((-112) $) 59)) (-3263 (((-779) $) 35)) (-3217 (($ $) 174)) (-2514 (($ $) 171)) (-2736 (((-652 $) $) 72)) (-2632 (($ $) 62)) (-3249 (($ $) 167)) (-4355 (((-652 $) $) 69)) (-4099 (($ $) 64)) (-1853 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1483 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4154 (-779))) $ $) 130)) (-2375 (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $) 126) (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $ |#4|) 127)) (-2731 (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $) 121) (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $ |#4|) 123)) (-2877 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2840 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3930 (((-652 $) $) 54)) (-1338 (((-112) $ $) 140) (((-112) $ (-652 $)) 141)) (-3113 (($ $ $) 116)) (-3477 (($ $) 37)) (-4398 (((-112) $ $) 80)) (-4001 (((-112) $ $) 136) (((-112) $ (-652 $)) 138)) (-2041 (($ $ $) 112)) (-1563 (($ $) 41)) (-1370 ((|#2| |#2| $) 164) (($ (-652 $)) NIL) (($ $ $) NIL)) (-1374 (($ $ |#2|) NIL) (($ $ $) 153)) (-1320 (($ $ |#2|) 148) (($ $ $) 151)) (-2976 (($ $) 49)) (-1376 (($ $) 55)) (-3222 (((-901 (-386)) $) NIL) (((-901 (-572)) $) NIL) (((-544) $) NIL) (($ (-961 (-415 (-572)))) 241) (($ (-961 (-572))) 237) (($ (-961 |#2|)) 252) (((-1170) $) 279) (((-961 |#2|) $) 184)) (-3491 (((-870) $) 29) (($ (-572)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-961 |#2|) $) 185) (($ (-415 (-572))) NIL) (($ $) NIL)) (-1880 (((-3 (-112) "failed") $ $) 79)))
+(((-1075 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1370 (|#1| (-652 |#1|))) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 ((-961 |#2|) |#1|)) (-15 -3222 ((-961 |#2|) |#1|)) (-15 -3222 ((-1170) |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2514 (|#1| |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -1370 (|#2| |#2| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -1320 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#2|)) (-15 -1320 (|#1| |#1| |#2|)) (-15 -2753 (|#1| |#1|)) (-15 -2088 (|#1| |#1|)) (-15 -3222 (|#1| (-961 |#2|))) (-15 -1869 (|#1| (-961 |#2|))) (-15 -3072 ((-3 |#1| "failed") (-961 |#2|))) (-15 -3222 (|#1| (-961 (-572)))) (-15 -1869 (|#1| (-961 (-572)))) (-15 -3072 ((-3 |#1| "failed") (-961 (-572)))) (-15 -3222 (|#1| (-961 (-415 (-572))))) (-15 -1869 (|#1| (-961 (-415 (-572))))) (-15 -3072 ((-3 |#1| "failed") (-961 (-415 (-572))))) (-15 -3113 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1|)) (-15 -1483 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4154 (-779))) |#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -3369 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2375 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1| |#4|)) (-15 -2375 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2731 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -2336 |#1|)) |#1| |#1| |#4|)) (-15 -2731 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1| |#4|)) (-15 -2877 (|#1| |#1| |#1| |#4|)) (-15 -2840 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2248 (|#1| |#1| |#1| |#4|)) (-15 -3785 (|#1| |#1| |#1| |#4|)) (-15 -2248 (|#1| |#1| |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -1870 ((-112) |#1| (-652 |#1|))) (-15 -1870 ((-112) |#1| |#1|)) (-15 -1338 ((-112) |#1| (-652 |#1|))) (-15 -1338 ((-112) |#1| |#1|)) (-15 -4001 ((-112) |#1| (-652 |#1|))) (-15 -4001 ((-112) |#1| |#1|)) (-15 -2182 ((-112) |#1| (-652 |#1|))) (-15 -2182 ((-112) |#1| |#1|)) (-15 -3207 ((-112) |#1| |#1|)) (-15 -4398 ((-112) |#1| |#1|)) (-15 -1880 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2736 ((-652 |#1|) |#1|)) (-15 -4355 ((-652 |#1|) |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -3647 ((-112) |#1|)) (-15 -1874 (|#1| |#1| |#4|)) (-15 -1853 (|#1| |#1| |#4|)) (-15 -1376 (|#1| |#1|)) (-15 -3930 ((-652 |#1|) |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3263 ((-779) |#1|)) (-15 -3698 (|#4| |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3491 (|#1| |#4|)) (-15 -3072 ((-3 |#4| "failed") |#1|)) (-15 -1869 (|#4| |#1|)) (-15 -1853 (|#2| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-1076 |#2| |#3| |#4|) (-1060) (-801) (-858)) (T -1075))
+NIL
+(-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1370 (|#1| (-652 |#1|))) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 ((-961 |#2|) |#1|)) (-15 -3222 ((-961 |#2|) |#1|)) (-15 -3222 ((-1170) |#1|)) (-15 -3217 (|#1| |#1|)) (-15 -2514 (|#1| |#1|)) (-15 -3249 (|#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -1370 (|#2| |#2| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -1320 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#2|)) (-15 -1320 (|#1| |#1| |#2|)) (-15 -2753 (|#1| |#1|)) (-15 -2088 (|#1| |#1|)) (-15 -3222 (|#1| (-961 |#2|))) (-15 -1869 (|#1| (-961 |#2|))) (-15 -3072 ((-3 |#1| "failed") (-961 |#2|))) (-15 -3222 (|#1| (-961 (-572)))) (-15 -1869 (|#1| (-961 (-572)))) (-15 -3072 ((-3 |#1| "failed") (-961 (-572)))) (-15 -3222 (|#1| (-961 (-415 (-572))))) (-15 -1869 (|#1| (-961 (-415 (-572))))) (-15 -3072 ((-3 |#1| "failed") (-961 (-415 (-572))))) (-15 -3113 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1|)) (-15 -1483 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4154 (-779))) |#1| |#1|)) (-15 -2574 (|#1| |#1| |#1|)) (-15 -3369 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2375 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1| |#4|)) (-15 -2375 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2731 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -2336 |#1|)) |#1| |#1| |#4|)) (-15 -2731 ((-2 (|:| -2379 |#1|) (|:| |gap| (-779)) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2840 (|#1| |#1| |#1| |#4|)) (-15 -2877 (|#1| |#1| |#1| |#4|)) (-15 -2840 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2248 (|#1| |#1| |#1| |#4|)) (-15 -3785 (|#1| |#1| |#1| |#4|)) (-15 -2248 (|#1| |#1| |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -1870 ((-112) |#1| (-652 |#1|))) (-15 -1870 ((-112) |#1| |#1|)) (-15 -1338 ((-112) |#1| (-652 |#1|))) (-15 -1338 ((-112) |#1| |#1|)) (-15 -4001 ((-112) |#1| (-652 |#1|))) (-15 -4001 ((-112) |#1| |#1|)) (-15 -2182 ((-112) |#1| (-652 |#1|))) (-15 -2182 ((-112) |#1| |#1|)) (-15 -3207 ((-112) |#1| |#1|)) (-15 -4398 ((-112) |#1| |#1|)) (-15 -1880 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2736 ((-652 |#1|) |#1|)) (-15 -4355 ((-652 |#1|) |#1|)) (-15 -4099 (|#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -4009 ((-112) |#1|)) (-15 -3647 ((-112) |#1|)) (-15 -1874 (|#1| |#1| |#4|)) (-15 -1853 (|#1| |#1| |#4|)) (-15 -1376 (|#1| |#1|)) (-15 -3930 ((-652 |#1|) |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3263 ((-779) |#1|)) (-15 -3698 (|#4| |#1|)) (-15 -3222 ((-544) |#1|)) (-15 -3222 ((-901 (-572)) |#1|)) (-15 -3222 ((-901 (-386)) |#1|)) (-15 -3491 (|#1| |#4|)) (-15 -3072 ((-3 |#4| "failed") |#1|)) (-15 -1869 (|#4| |#1|)) (-15 -1853 (|#2| |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 |#3|) $) 112)) (-4063 (((-1184 $) $ |#3|) 127) (((-1184 |#1|) $) 126)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-1697 (($ $) 90 (|has| |#1| (-564)))) (-1774 (((-112) $) 92 (|has| |#1| (-564)))) (-3664 (((-779) $) 114) (((-779) $ (-652 |#3|)) 113)) (-4058 (($ $) 273)) (-3207 (((-112) $ $) 259)) (-2092 (((-3 $ "failed") $ $) 20)) (-3545 (($ $ $) 218 (|has| |#1| (-564)))) (-2664 (((-652 $) $ $) 213 (|has| |#1| (-564)))) (-2730 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-1861 (($ $) 100 (|has| |#1| (-460)))) (-2359 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 166) (((-3 (-415 (-572)) "failed") $) 163 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 161 (|has| |#1| (-1049 (-572)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-961 (-415 (-572)))) 233 (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))) (((-3 $ "failed") (-961 (-572))) 230 (-3783 (-12 (-3795 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188)))))) (((-3 $ "failed") (-961 |#1|)) 227 (-3783 (-12 (-3795 (|has| |#1| (-38 (-415 (-572))))) (-3795 (|has| |#1| (-38 (-572)))) (|has| |#3| (-622 (-1188)))) (-12 (-3795 (|has| |#1| (-553))) (-3795 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (-3795 (|has| |#1| (-1003 (-572)))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))))) (-1869 ((|#1| $) 165) (((-415 (-572)) $) 164 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 162 (|has| |#1| (-1049 (-572)))) ((|#3| $) 139) (($ (-961 (-415 (-572)))) 232 (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))) (($ (-961 (-572))) 229 (-3783 (-12 (-3795 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188)))))) (($ (-961 |#1|)) 226 (-3783 (-12 (-3795 (|has| |#1| (-38 (-415 (-572))))) (-3795 (|has| |#1| (-38 (-572)))) (|has| |#3| (-622 (-1188)))) (-12 (-3795 (|has| |#1| (-553))) (-3795 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (-3795 (|has| |#1| (-1003 (-572)))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))))) (-3829 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 214 (|has| |#1| (-564)))) (-1874 (($ $) 156) (($ $ |#3|) 268)) (-2245 (((-697 (-572)) (-697 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 135 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 134) (((-697 |#1|) (-697 $)) 133)) (-2182 (((-112) $ $) 258) (((-112) $ (-652 $)) 257)) (-2982 (((-3 $ "failed") $) 37)) (-4009 (((-112) $) 266)) (-3369 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 238)) (-4332 (($ $) 207 (|has| |#1| (-460)))) (-2889 (($ $) 178 (|has| |#1| (-460))) (($ $ |#3|) 107 (|has| |#1| (-460)))) (-1863 (((-652 $) $) 111)) (-3439 (((-112) $) 98 (|has| |#1| (-918)))) (-2753 (($ $) 223 (|has| |#1| (-564)))) (-2088 (($ $) 224 (|has| |#1| (-564)))) (-3785 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2248 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3163 (($ $ |#1| |#2| $) 174)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| |#3| (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| |#3| (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-4422 (((-112) $) 35)) (-2348 (((-779) $) 171)) (-1870 (((-112) $ $) 252) (((-112) $ (-652 $)) 251)) (-3189 (($ $ $ $ $) 209 (|has| |#1| (-564)))) (-3698 ((|#3| $) 277)) (-3060 (($ (-1184 |#1|) |#3|) 119) (($ (-1184 $) |#3|) 118)) (-3715 (((-652 $) $) 128)) (-3357 (((-112) $) 154)) (-3042 (($ |#1| |#2|) 155) (($ $ |#3| (-779)) 121) (($ $ (-652 |#3|) (-652 (-779))) 120)) (-2574 (($ $ $) 237)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |#3|) 122)) (-3647 (((-112) $) 267)) (-3808 ((|#2| $) 172) (((-779) $ |#3|) 124) (((-652 (-779)) $ (-652 |#3|)) 123)) (-3263 (((-779) $) 276)) (-2008 (($ (-1 |#2| |#2|) $) 173)) (-3161 (($ (-1 |#1| |#1|) $) 153)) (-4107 (((-3 |#3| "failed") $) 125)) (-3217 (($ $) 204 (|has| |#1| (-460)))) (-2514 (($ $) 205 (|has| |#1| (-460)))) (-2736 (((-652 $) $) 262)) (-2632 (($ $) 265)) (-3249 (($ $) 206 (|has| |#1| (-460)))) (-4355 (((-652 $) $) 263)) (-4099 (($ $) 264)) (-1840 (($ $) 151)) (-1853 ((|#1| $) 150) (($ $ |#3|) 269)) (-1335 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-1483 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4154 (-779))) $ $) 236)) (-2375 (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $) 240) (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $ |#3|) 239)) (-2731 (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $) 242) (((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $ |#3|) 241)) (-2877 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2840 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3618 (((-1170) $) 10)) (-3276 (($ $ $) 212 (|has| |#1| (-564)))) (-3930 (((-652 $) $) 271)) (-3570 (((-3 (-652 $) "failed") $) 116)) (-2257 (((-3 (-652 $) "failed") $) 117)) (-2298 (((-3 (-2 (|:| |var| |#3|) (|:| -2477 (-779))) "failed") $) 115)) (-1338 (((-112) $ $) 254) (((-112) $ (-652 $)) 253)) (-3113 (($ $ $) 234)) (-3477 (($ $) 275)) (-4398 (((-112) $ $) 260)) (-4001 (((-112) $ $) 256) (((-112) $ (-652 $)) 255)) (-2041 (($ $ $) 235)) (-1563 (($ $) 274)) (-2614 (((-1131) $) 11)) (-1577 (((-2 (|:| -1370 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-564)))) (-4140 (((-2 (|:| -1370 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-564)))) (-1817 (((-112) $) 168)) (-1829 ((|#1| $) 169)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-1370 ((|#1| |#1| $) 208 (|has| |#1| (-460))) (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-2972 (((-426 $) $) 101 (|has| |#1| (-918)))) (-4237 (((-2 (|:| -1370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-564)))) (-3453 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-1374 (($ $ |#1|) 221 (|has| |#1| (-564))) (($ $ $) 219 (|has| |#1| (-564)))) (-1320 (($ $ |#1|) 222 (|has| |#1| (-564))) (($ $ $) 220 (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) 147) (($ $ (-300 $)) 146) (($ $ $ $) 145) (($ $ (-652 $) (-652 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-652 |#3|) (-652 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-652 |#3|) (-652 $)) 140)) (-2020 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3011 (($ $ |#3|) 46) (($ $ (-652 |#3|)) 45) (($ $ |#3| (-779)) 44) (($ $ (-652 |#3|) (-652 (-779))) 43)) (-1497 ((|#2| $) 152) (((-779) $ |#3|) 132) (((-652 (-779)) $ (-652 |#3|)) 131)) (-2976 (($ $) 272)) (-1376 (($ $) 270)) (-3222 (((-901 (-386)) $) 84 (-12 (|has| |#3| (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| |#3| (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| |#3| (-622 (-544))) (|has| |#1| (-622 (-544))))) (($ (-961 (-415 (-572)))) 231 (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188))))) (($ (-961 (-572))) 228 (-3783 (-12 (-3795 (|has| |#1| (-38 (-415 (-572))))) (|has| |#1| (-38 (-572))) (|has| |#3| (-622 (-1188)))) (-12 (|has| |#1| (-38 (-415 (-572)))) (|has| |#3| (-622 (-1188)))))) (($ (-961 |#1|)) 225 (|has| |#3| (-622 (-1188)))) (((-1170) $) 203 (-12 (|has| |#1| (-1049 (-572))) (|has| |#3| (-622 (-1188))))) (((-961 |#1|) $) 202 (|has| |#3| (-622 (-1188))))) (-3262 ((|#1| $) 177 (|has| |#1| (-460))) (($ $ |#3|) 108 (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 106 (-3804 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-961 |#1|) $) 201 (|has| |#3| (-622 (-1188)))) (($ (-415 (-572))) 80 (-3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572)))))) (($ $) 87 (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) 170)) (-4206 ((|#1| $ |#2|) 157) (($ $ |#3| (-779)) 130) (($ $ (-652 |#3|) (-652 (-779))) 129)) (-2210 (((-3 $ "failed") $) 81 (-3783 (-3804 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) 32 T CONST)) (-4257 (($ $ $ (-779)) 175 (|has| |#1| (-174)))) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2602 (($) 19 T CONST)) (-1880 (((-3 (-112) "failed") $ $) 261)) (-2619 (($) 34 T CONST)) (-1510 (($ $ $ $ (-779)) 210 (|has| |#1| (-564)))) (-2062 (($ $ $ (-779)) 211 (|has| |#1| (-564)))) (-4019 (($ $ |#3|) 42) (($ $ (-652 |#3|)) 41) (($ $ |#3| (-779)) 40) (($ $ (-652 |#3|) (-652 (-779))) 39)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 158 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 160 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 159 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1076 |#1| |#2| |#3|) (-141) (-1060) (-801) (-858)) (T -1076))
+((-3698 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-779)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1563 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-4058 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2976 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-3930 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-1874 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2632 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-4099 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-4355 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-2736 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-1880 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-4398 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-3207 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2182 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-2182 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-4001 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-4001 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-1338 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-1338 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-1870 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))) (-1870 (*1 *2 *1 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)))) (-3785 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2248 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-3785 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-2248 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-2877 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2840 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-2877 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-2840 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *2 (-858)))) (-2731 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -2336 *1))) (-4 *1 (-1076 *3 *4 *5)))) (-2731 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -2336 *1))) (-4 *1 (-1076 *4 *5 *3)))) (-2375 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1076 *3 *4 *5)))) (-2375 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1076 *4 *5 *3)))) (-3369 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1076 *3 *4 *5)))) (-2574 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-1483 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4154 (-779)))) (-4 *1 (-1076 *3 *4 *5)))) (-2041 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-3113 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)))) (-3072 (*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))) (-3072 (*1 *1 *2) (|partial| -3783 (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))))) (-1869 (*1 *1 *2) (-3783 (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))))) (-3222 (*1 *1 *2) (-3783 (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5)) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))))) (-3072 (*1 *1 *2) (|partial| -3783 (-12 (-5 *2 (-961 *3)) (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-3795 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-3795 (-4 *3 (-553))) (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-3795 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))))) (-1869 (*1 *1 *2) (-3783 (-12 (-5 *2 (-961 *3)) (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-3795 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-3795 (-4 *3 (-553))) (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))) (-12 (-5 *2 (-961 *3)) (-12 (-3795 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801)) (-4 *5 (-858))))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *5 (-622 (-1188))) (-4 *4 (-801)) (-4 *5 (-858)))) (-2088 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-2753 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-1320 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-1320 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-1374 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-3545 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-4237 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -1370 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1076 *3 *4 *5)))) (-4140 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -1370 *1) (|:| |coef1| *1))) (-4 *1 (-1076 *3 *4 *5)))) (-1577 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-2 (|:| -1370 *1) (|:| |coef2| *1))) (-4 *1 (-1076 *3 *4 *5)))) (-3829 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-2664 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))) (-3276 (*1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-2062 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))) (-1510 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))) (-3189 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-564)))) (-1370 (*1 *2 *2 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-4332 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-3249 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-2514 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))) (-3217 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-460)))))
+(-13 (-958 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3698 (|t#3| $)) (-15 -3263 ((-779) $)) (-15 -3477 ($ $)) (-15 -1563 ($ $)) (-15 -4058 ($ $)) (-15 -2976 ($ $)) (-15 -3930 ((-652 $) $)) (-15 -1376 ($ $)) (-15 -1853 ($ $ |t#3|)) (-15 -1874 ($ $ |t#3|)) (-15 -3647 ((-112) $)) (-15 -4009 ((-112) $)) (-15 -2632 ($ $)) (-15 -4099 ($ $)) (-15 -4355 ((-652 $) $)) (-15 -2736 ((-652 $) $)) (-15 -1880 ((-3 (-112) "failed") $ $)) (-15 -4398 ((-112) $ $)) (-15 -3207 ((-112) $ $)) (-15 -2182 ((-112) $ $)) (-15 -2182 ((-112) $ (-652 $))) (-15 -4001 ((-112) $ $)) (-15 -4001 ((-112) $ (-652 $))) (-15 -1338 ((-112) $ $)) (-15 -1338 ((-112) $ (-652 $))) (-15 -1870 ((-112) $ $)) (-15 -1870 ((-112) $ (-652 $))) (-15 -3785 ($ $ $)) (-15 -2248 ($ $ $)) (-15 -3785 ($ $ $ |t#3|)) (-15 -2248 ($ $ $ |t#3|)) (-15 -2877 ($ $ $)) (-15 -2840 ($ $ $)) (-15 -2877 ($ $ $ |t#3|)) (-15 -2840 ($ $ $ |t#3|)) (-15 -2731 ((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $)) (-15 -2731 ((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -2336 $)) $ $ |t#3|)) (-15 -2375 ((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -2375 ((-2 (|:| -2379 $) (|:| |gap| (-779)) (|:| -1882 $) (|:| -2336 $)) $ $ |t#3|)) (-15 -3369 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -2574 ($ $ $)) (-15 -1483 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4154 (-779))) $ $)) (-15 -2041 ($ $ $)) (-15 -3113 ($ $ $)) (IF (|has| |t#3| (-622 (-1188))) (PROGN (-6 (-621 (-961 |t#1|))) (-6 (-622 (-961 |t#1|))) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -3072 ((-3 $ "failed") (-961 (-415 (-572))))) (-15 -1869 ($ (-961 (-415 (-572))))) (-15 -3222 ($ (-961 (-415 (-572))))) (-15 -3072 ((-3 $ "failed") (-961 (-572)))) (-15 -1869 ($ (-961 (-572)))) (-15 -3222 ($ (-961 (-572)))) (IF (|has| |t#1| (-1003 (-572))) |%noBranch| (PROGN (-15 -3072 ((-3 $ "failed") (-961 |t#1|))) (-15 -1869 ($ (-961 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-572))) (IF (|has| |t#1| (-38 (-415 (-572)))) |%noBranch| (PROGN (-15 -3072 ((-3 $ "failed") (-961 (-572)))) (-15 -1869 ($ (-961 (-572)))) (-15 -3222 ($ (-961 (-572)))) (IF (|has| |t#1| (-553)) |%noBranch| (PROGN (-15 -3072 ((-3 $ "failed") (-961 |t#1|))) (-15 -1869 ($ (-961 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-572))) |%noBranch| (IF (|has| |t#1| (-38 (-415 (-572)))) |%noBranch| (PROGN (-15 -3072 ((-3 $ "failed") (-961 |t#1|))) (-15 -1869 ($ (-961 |t#1|)))))) (-15 -3222 ($ (-961 |t#1|))) (IF (|has| |t#1| (-1049 (-572))) (-6 (-622 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-15 -2088 ($ $)) (-15 -2753 ($ $)) (-15 -1320 ($ $ |t#1|)) (-15 -1374 ($ $ |t#1|)) (-15 -1320 ($ $ $)) (-15 -1374 ($ $ $)) (-15 -3545 ($ $ $)) (-15 -4237 ((-2 (|:| -1370 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4140 ((-2 (|:| -1370 $) (|:| |coef1| $)) $ $)) (-15 -1577 ((-2 (|:| -1370 $) (|:| |coef2| $)) $ $)) (-15 -3829 ($ $ $)) (-15 -2664 ((-652 $) $ $)) (-15 -3276 ($ $ $)) (-15 -2062 ($ $ $ (-779))) (-15 -1510 ($ $ $ $ (-779))) (-15 -3189 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-460)) (PROGN (-15 -1370 (|t#1| |t#1| $)) (-15 -4332 ($ $)) (-15 -3249 ($ $)) (-15 -2514 ($ $)) (-15 -3217 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 |#3|) . T) ((-624 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-621 (-870)) . T) ((-621 (-961 |#1|)) |has| |#3| (-622 (-1188))) ((-174) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| |#1| (-622 (-544))) (|has| |#3| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#3| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#3| (-622 (-901 (-572))))) ((-622 (-961 |#1|)) |has| |#3| (-622 (-1188))) ((-622 (-1170)) -12 (|has| |#1| (-1049 (-572))) (|has| |#3| (-622 (-1188)))) ((-296) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-315 $) . T) ((-332 |#1| |#2|) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -3783 (|has| |#1| (-918)) (|has| |#1| (-460))) ((-522 |#3| |#1|) . T) ((-522 |#3| $) . T) ((-522 $ $) . T) ((-564) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460))) ((-734) . T) ((-909 |#3|) . T) ((-895 (-386)) -12 (|has| |#1| (-895 (-386))) (|has| |#3| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-895 (-572))) (|has| |#3| (-895 (-572)))) ((-958 |#1| |#2| |#3|) . T) ((-918) |has| |#1| (-918)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 |#1|) . T) ((-1049 |#3|) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) |has| |#1| (-918)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2057 (((-652 (-1146)) $) 18)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 27) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-1146) $) 20)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1077) (-13 (-1094) (-10 -8 (-15 -2057 ((-652 (-1146)) $)) (-15 -2414 ((-1146) $))))) (T -1077))
+((-2057 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1077)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1077)))))
+(-13 (-1094) (-10 -8 (-15 -2057 ((-652 (-1146)) $)) (-15 -2414 ((-1146) $))))
+((-3143 (((-112) |#3| $) 15)) (-3748 (((-3 $ "failed") |#3| (-930)) 29)) (-2982 (((-3 |#3| "failed") |#3| $) 45)) (-3778 (((-112) |#3| $) 19)) (-4354 (((-112) |#3| $) 17)))
+(((-1078 |#1| |#2| |#3|) (-10 -8 (-15 -3748 ((-3 |#1| "failed") |#3| (-930))) (-15 -2982 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3778 ((-112) |#3| |#1|)) (-15 -4354 ((-112) |#3| |#1|)) (-15 -3143 ((-112) |#3| |#1|))) (-1079 |#2| |#3|) (-13 (-856) (-370)) (-1255 |#2|)) (T -1078))
+NIL
+(-10 -8 (-15 -3748 ((-3 |#1| "failed") |#3| (-930))) (-15 -2982 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3778 ((-112) |#3| |#1|)) (-15 -4354 ((-112) |#3| |#1|)) (-15 -3143 ((-112) |#3| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) |#2| $) 22)) (-4304 (((-572) |#2| $) 23)) (-3748 (((-3 $ "failed") |#2| (-930)) 16)) (-1538 ((|#1| |#2| $ |#1|) 14)) (-2982 (((-3 |#2| "failed") |#2| $) 19)) (-3778 (((-112) |#2| $) 20)) (-4354 (((-112) |#2| $) 21)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3858 ((|#2| $) 18)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-4090 ((|#1| |#2| $ |#1|) 15)) (-3761 (((-652 $) |#2|) 17)) (-3921 (((-112) $ $) 6)))
+(((-1079 |#1| |#2|) (-141) (-13 (-856) (-370)) (-1255 |t#1|)) (T -1079))
+((-4304 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-572)))) (-3143 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-112)))) (-4354 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-112)))) (-3778 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-112)))) (-2982 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370))) (-4 *2 (-1255 *3)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370))) (-4 *2 (-1255 *3)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-652 *1)) (-4 *1 (-1079 *4 *3)))) (-3748 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-930)) (-4 *4 (-13 (-856) (-370))) (-4 *1 (-1079 *4 *2)) (-4 *2 (-1255 *4)))) (-4090 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370))) (-4 *3 (-1255 *2)))) (-1538 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370))) (-4 *3 (-1255 *2)))))
+(-13 (-1111) (-10 -8 (-15 -4304 ((-572) |t#2| $)) (-15 -3143 ((-112) |t#2| $)) (-15 -4354 ((-112) |t#2| $)) (-15 -3778 ((-112) |t#2| $)) (-15 -2982 ((-3 |t#2| "failed") |t#2| $)) (-15 -3858 (|t#2| $)) (-15 -3761 ((-652 $) |t#2|)) (-15 -3748 ((-3 $ "failed") |t#2| (-930))) (-15 -4090 (|t#1| |t#2| $ |t#1|)) (-15 -1538 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-1472 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-779)) 114)) (-2971 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779)) 63)) (-3330 (((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-779)) 99)) (-2284 (((-779) (-652 |#4|) (-652 |#5|)) 30)) (-3437 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779)) 65) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779) (-112)) 67)) (-2572 (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112)) 87)) (-3222 (((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) 92)) (-3251 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-112)) 62)) (-2327 (((-779) (-652 |#4|) (-652 |#5|)) 21)))
+(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2327 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -2284 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3251 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-112))) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1472 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-779))) (-15 -3222 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3330 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-779)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1080))
+((-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9)))) (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170)) (-5 *1 (-1080 *4 *5 *6 *7 *8)))) (-1472 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-652 *11)) (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -1746 *11)))))) (-5 *6 (-779)) (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -1746 *11)))) (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9)) (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-5 *1 (-1080 *7 *8 *9 *10 *11)))) (-2572 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-2572 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1080 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) (-2971 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2971 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3251 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2327 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -2284 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3251 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-112))) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1472 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-779))) (-15 -3222 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3330 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-779))))
+((-3294 (((-112) |#5| $) 26)) (-3342 (((-112) |#5| $) 29)) (-3628 (((-112) |#5| $) 18) (((-112) $) 52)) (-3225 (((-652 $) |#5| $) NIL) (((-652 $) (-652 |#5|) $) 94) (((-652 $) (-652 |#5|) (-652 $)) 92) (((-652 $) |#5| (-652 $)) 95)) (-3103 (($ $ |#5|) NIL) (((-652 $) |#5| $) NIL) (((-652 $) |#5| (-652 $)) 73) (((-652 $) (-652 |#5|) $) 75) (((-652 $) (-652 |#5|) (-652 $)) 77)) (-2290 (((-652 $) |#5| $) NIL) (((-652 $) |#5| (-652 $)) 64) (((-652 $) (-652 |#5|) $) 69) (((-652 $) (-652 |#5|) (-652 $)) 71)) (-2777 (((-112) |#5| $) 32)))
+(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3103 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -3103 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -3103 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -3103 ((-652 |#1|) |#5| |#1|)) (-15 -2290 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -2290 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -2290 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -2290 ((-652 |#1|) |#5| |#1|)) (-15 -3225 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -3225 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -3225 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -3225 ((-652 |#1|) |#5| |#1|)) (-15 -3342 ((-112) |#5| |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2777 ((-112) |#5| |#1|)) (-15 -3294 ((-112) |#5| |#1|)) (-15 -3628 ((-112) |#5| |#1|)) (-15 -3103 (|#1| |#1| |#5|))) (-1082 |#2| |#3| |#4| |#5|) (-460) (-801) (-858) (-1076 |#2| |#3| |#4|)) (T -1081))
+NIL
+(-10 -8 (-15 -3103 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -3103 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -3103 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -3103 ((-652 |#1|) |#5| |#1|)) (-15 -2290 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -2290 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -2290 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -2290 ((-652 |#1|) |#5| |#1|)) (-15 -3225 ((-652 |#1|) |#5| (-652 |#1|))) (-15 -3225 ((-652 |#1|) (-652 |#5|) (-652 |#1|))) (-15 -3225 ((-652 |#1|) (-652 |#5|) |#1|)) (-15 -3225 ((-652 |#1|) |#5| |#1|)) (-15 -3342 ((-112) |#5| |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2777 ((-112) |#5| |#1|)) (-15 -3294 ((-112) |#5| |#1|)) (-15 -3628 ((-112) |#5| |#1|)) (-15 -3103 (|#1| |#1| |#5|)))
+((-3464 (((-112) $ $) 7)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) 86)) (-3426 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-2220 (((-652 |#3|) $) 34)) (-2029 (((-112) $) 27)) (-4308 (((-112) $) 18 (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) 102) (((-112) $) 98)) (-2373 ((|#4| |#4| $) 93)) (-1861 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| $) 127)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) 28)) (-2938 (((-112) $ (-779)) 45)) (-1424 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-1586 (($) 46 T CONST)) (-3571 (((-112) $) 23 (|has| |#1| (-564)))) (-3057 (((-112) $ $) 25 (|has| |#1| (-564)))) (-1528 (((-112) $ $) 24 (|has| |#1| (-564)))) (-2690 (((-112) $) 26 (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4400 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) 37)) (-1869 (($ (-652 |#4|)) 36)) (-2581 (((-3 $ "failed") $) 83)) (-3802 ((|#4| |#4| $) 90)) (-3955 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1674 ((|#4| |#4| $) 88)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) 106)) (-3294 (((-112) |#4| $) 137)) (-3342 (((-112) |#4| $) 134)) (-3628 (((-112) |#4| $) 138) (((-112) $) 135)) (-1442 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) 105) (((-112) $) 104)) (-3698 ((|#3| $) 35)) (-2545 (((-112) $ (-779)) 44)) (-2396 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 48)) (-1677 (((-652 |#3|) $) 33)) (-2002 (((-112) |#3| $) 32)) (-3818 (((-112) $ (-779)) 43)) (-3618 (((-1170) $) 10)) (-1618 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3276 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| |#4| $) 128)) (-4261 (((-3 |#4| "failed") $) 84)) (-3981 (((-652 $) |#4| $) 130)) (-4302 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1457 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3225 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-1772 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-1706 (((-652 |#4|) $) 108)) (-1338 (((-112) |#4| $) 100) (((-112) $) 96)) (-3113 ((|#4| |#4| $) 91)) (-4398 (((-112) $ $) 111)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) 101) (((-112) $) 97)) (-2041 ((|#4| |#4| $) 92)) (-2614 (((-1131) $) 11)) (-2570 (((-3 |#4| "failed") $) 85)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4236 (((-3 $ "failed") $ |#4|) 79)) (-3103 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-3089 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) 39)) (-3712 (((-112) $) 42)) (-1321 (($) 41)) (-1497 (((-779) $) 107)) (-1371 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3679 (($ $) 40)) (-3222 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 61)) (-3399 (($ $ |#3|) 29)) (-3831 (($ $ |#3|) 31)) (-2894 (($ $) 89)) (-1757 (($ $ |#3|) 30)) (-3491 (((-870) $) 12) (((-652 |#4|) $) 38)) (-1935 (((-779) $) 77 (|has| |#3| (-375)))) (-3424 (((-112) $ $) 9)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-2290 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-3776 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) 82)) (-2777 (((-112) |#4| $) 136)) (-2947 (((-112) |#3| $) 81)) (-3921 (((-112) $ $) 6)) (-3475 (((-779) $) 47 (|has| $ (-6 -4454)))))
+(((-1082 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1082))
+((-3628 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-3294 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-2777 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-3342 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-4302 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 (-112) (-652 *1))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1457 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *1)))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1457 (*1 *2 *3 *1) (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-3981 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1618 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 *3 (-652 *1))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-3276 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *1)))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-1861 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *1)))) (-4 *1 (-1082 *4 *5 *6 *3)))) (-3225 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-3225 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *7)))) (-3225 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)))) (-3225 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)))) (-2290 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-2290 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)))) (-2290 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *7)))) (-2290 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)))) (-1772 (*1 *1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5 *2)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-1772 (*1 *1 *2 *1) (-12 (-5 *2 (-652 *6)) (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)))) (-3103 (*1 *2 *3 *1) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)))) (-3103 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)))) (-3103 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *7)))) (-3103 (*1 *2 *3 *2) (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1082 *5 *6 *7 *8)))))
+(-13 (-1222 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3628 ((-112) |t#4| $)) (-15 -3294 ((-112) |t#4| $)) (-15 -2777 ((-112) |t#4| $)) (-15 -3628 ((-112) $)) (-15 -3342 ((-112) |t#4| $)) (-15 -4302 ((-3 (-112) (-652 $)) |t#4| $)) (-15 -1457 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) |t#4| $)) (-15 -1457 ((-112) |t#4| $)) (-15 -3981 ((-652 $) |t#4| $)) (-15 -1618 ((-3 |t#4| (-652 $)) |t#4| |t#4| $)) (-15 -3276 ((-652 (-2 (|:| |val| |t#4|) (|:| -1746 $))) |t#4| |t#4| $)) (-15 -1861 ((-652 (-2 (|:| |val| |t#4|) (|:| -1746 $))) |t#4| $)) (-15 -3225 ((-652 $) |t#4| $)) (-15 -3225 ((-652 $) (-652 |t#4|) $)) (-15 -3225 ((-652 $) (-652 |t#4|) (-652 $))) (-15 -3225 ((-652 $) |t#4| (-652 $))) (-15 -2290 ((-652 $) |t#4| $)) (-15 -2290 ((-652 $) |t#4| (-652 $))) (-15 -2290 ((-652 $) (-652 |t#4|) $)) (-15 -2290 ((-652 $) (-652 |t#4|) (-652 $))) (-15 -1772 ($ |t#4| $)) (-15 -1772 ($ (-652 |t#4|) $)) (-15 -3103 ((-652 $) |t#4| $)) (-15 -3103 ((-652 $) |t#4| (-652 $))) (-15 -3103 ((-652 $) (-652 |t#4|) $)) (-15 -3103 ((-652 $) (-652 |t#4|) (-652 $))) (-15 -3426 ((-652 $) (-652 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
+((-1712 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|) 86)) (-3139 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|) 127)) (-2383 (((-652 |#5|) |#4| |#5|) 74)) (-3259 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2282 (((-1284)) 36)) (-3375 (((-1284)) 25)) (-2319 (((-1284) (-1170) (-1170) (-1170)) 32)) (-4167 (((-1284) (-1170) (-1170) (-1170)) 21)) (-4200 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#4| |#4| |#5|) 107)) (-3533 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#3| (-112)) 118) (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3950 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|) 113)))
+(((-1083 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4167 ((-1284) (-1170) (-1170) (-1170))) (-15 -3375 ((-1284))) (-15 -2319 ((-1284) (-1170) (-1170) (-1170))) (-15 -2282 ((-1284))) (-15 -4200 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3533 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3533 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#3| (-112))) (-15 -3950 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3139 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3259 ((-112) |#4| |#5|)) (-15 -3259 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -2383 ((-652 |#5|) |#4| |#5|)) (-15 -1712 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1083))
+((-1712 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2383 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3259 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3259 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3139 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3950 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3533 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9)))) (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858)) (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -1746 *9)))) (-5 *1 (-1083 *6 *7 *4 *8 *9)))) (-3533 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1083 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-4200 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))) (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2282 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-2319 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3375 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-4167 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4167 ((-1284) (-1170) (-1170) (-1170))) (-15 -3375 ((-1284))) (-15 -2319 ((-1284) (-1170) (-1170) (-1170))) (-15 -2282 ((-1284))) (-15 -4200 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3533 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3533 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#3| (-112))) (-15 -3950 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3139 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3259 ((-112) |#4| |#5|)) (-15 -3259 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -2383 ((-652 |#5|) |#4| |#5|)) (-15 -1712 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|)))
+((-3464 (((-112) $ $) NIL)) (-3550 (((-1228) $) 13)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4410 (((-1146) $) 10)) (-3491 (((-870) $) 20) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1084) (-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3550 ((-1228) $))))) (T -1084))
+((-4410 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1084)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-1084)))))
+(-13 (-1094) (-10 -8 (-15 -4410 ((-1146) $)) (-15 -3550 ((-1228) $))))
+((-3179 (((-112) $ $) 7)))
+(((-1085) (-13 (-1229) (-10 -8 (-15 -3179 ((-112) $ $))))) (T -1085))
+((-3179 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1085)))))
+(-13 (-1229) (-10 -8 (-15 -3179 ((-112) $ $))))
+((-3464 (((-112) $ $) NIL)) (-2402 (((-1188) $) 8)) (-3618 (((-1170) $) 17)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 11)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 14)))
+(((-1086 |#1|) (-13 (-1111) (-10 -8 (-15 -2402 ((-1188) $)))) (-1188)) (T -1086))
+((-2402 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1086 *3)) (-14 *3 *2))))
+(-13 (-1111) (-10 -8 (-15 -2402 ((-1188) $))))
+((-3464 (((-112) $ $) NIL)) (-2315 (($ $ (-652 (-1188)) (-1 (-112) (-652 |#3|))) 34)) (-1487 (($ |#3| |#3|) 23) (($ |#3| |#3| (-652 (-1188))) 21)) (-1336 ((|#3| $) 13)) (-3072 (((-3 (-300 |#3|) "failed") $) 60)) (-1869 (((-300 |#3|) $) NIL)) (-3430 (((-652 (-1188)) $) 16)) (-1364 (((-901 |#1|) $) 11)) (-1325 ((|#3| $) 12)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2679 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-930)) 41)) (-3491 (((-870) $) 89) (($ (-300 |#3|)) 22)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 38)))
+(((-1087 |#1| |#2| |#3|) (-13 (-1111) (-292 |#3| |#3|) (-1049 (-300 |#3|)) (-10 -8 (-15 -1487 ($ |#3| |#3|)) (-15 -1487 ($ |#3| |#3| (-652 (-1188)))) (-15 -2315 ($ $ (-652 (-1188)) (-1 (-112) (-652 |#3|)))) (-15 -1364 ((-901 |#1|) $)) (-15 -1325 (|#3| $)) (-15 -1336 (|#3| $)) (-15 -2679 (|#3| $ |#3| (-930))) (-15 -3430 ((-652 (-1188)) $)))) (-1111) (-13 (-1060) (-895 |#1|) (-622 (-901 |#1|))) (-13 (-438 |#2|) (-895 |#1|) (-622 (-901 |#1|)))) (T -1087))
+((-1487 (*1 *1 *2 *2) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1087 *3 *4 *2)) (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))) (-1487 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1087 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))) (-2315 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1 (-112) (-652 *6))) (-4 *6 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1087 *4 *5 *6)))) (-1364 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 *2))) (-5 *2 (-901 *3)) (-5 *1 (-1087 *3 *4 *5)) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 *2))))) (-1325 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1087 *3 *4 *2)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))))) (-1336 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1087 *3 *4 *2)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))))) (-2679 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-930)) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1087 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))) (-3430 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-5 *2 (-652 (-1188))) (-5 *1 (-1087 *3 *4 *5)) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
+(-13 (-1111) (-292 |#3| |#3|) (-1049 (-300 |#3|)) (-10 -8 (-15 -1487 ($ |#3| |#3|)) (-15 -1487 ($ |#3| |#3| (-652 (-1188)))) (-15 -2315 ($ $ (-652 (-1188)) (-1 (-112) (-652 |#3|)))) (-15 -1364 ((-901 |#1|) $)) (-15 -1325 (|#3| $)) (-15 -1336 (|#3| $)) (-15 -2679 (|#3| $ |#3| (-930))) (-15 -3430 ((-652 (-1188)) $))))
+((-3464 (((-112) $ $) NIL)) (-2280 (($ (-652 (-1087 |#1| |#2| |#3|))) 14)) (-1548 (((-652 (-1087 |#1| |#2| |#3|)) $) 21)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2679 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-930)) 27)) (-3491 (((-870) $) 17)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 20)))
+(((-1088 |#1| |#2| |#3|) (-13 (-1111) (-292 |#3| |#3|) (-10 -8 (-15 -2280 ($ (-652 (-1087 |#1| |#2| |#3|)))) (-15 -1548 ((-652 (-1087 |#1| |#2| |#3|)) $)) (-15 -2679 (|#3| $ |#3| (-930))))) (-1111) (-13 (-1060) (-895 |#1|) (-622 (-901 |#1|))) (-13 (-438 |#2|) (-895 |#1|) (-622 (-901 |#1|)))) (T -1088))
+((-2280 (*1 *1 *2) (-12 (-5 *2 (-652 (-1087 *3 *4 *5))) (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))) (-5 *1 (-1088 *3 *4 *5)))) (-1548 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3)))) (-5 *2 (-652 (-1087 *3 *4 *5))) (-5 *1 (-1088 *3 *4 *5)) (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))) (-2679 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-930)) (-4 *4 (-1111)) (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4)))) (-5 *1 (-1088 *4 *5 *2)) (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))))
+(-13 (-1111) (-292 |#3| |#3|) (-10 -8 (-15 -2280 ($ (-652 (-1087 |#1| |#2| |#3|)))) (-15 -1548 ((-652 (-1087 |#1| |#2| |#3|)) $)) (-15 -2679 (|#3| $ |#3| (-930)))))
+((-3379 (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112)) 88) (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|))) 92) (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112)) 90)))
+(((-1089 |#1| |#2|) (-10 -7 (-15 -3379 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -3379 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -3379 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112)))) (-13 (-313) (-148)) (-652 (-1188))) (T -1089))
+((-3379 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5)))))) (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))))) (-3379 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *4)) (|:| -2862 (-652 (-961 *4)))))) (-5 *1 (-1089 *4 *5)) (-5 *3 (-652 (-961 *4))) (-14 *5 (-652 (-1188))))) (-3379 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5)))))) (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))))))
+(-10 -7 (-15 -3379 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -3379 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -3379 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112))))
+((-2972 (((-426 |#3|) |#3|) 18)))
+(((-1090 |#1| |#2| |#3|) (-10 -7 (-15 -2972 ((-426 |#3|) |#3|))) (-1255 (-415 (-572))) (-13 (-370) (-148) (-732 (-415 (-572)) |#1|)) (-1255 |#2|)) (T -1090))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-13 (-370) (-148) (-732 (-415 (-572)) *4))) (-5 *2 (-426 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1255 *5)))))
+(-10 -7 (-15 -2972 ((-426 |#3|) |#3|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 136)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-370)))) (-1697 (($ $) NIL (|has| |#1| (-370)))) (-1774 (((-112) $) NIL (|has| |#1| (-370)))) (-3385 (((-697 |#1|) (-1279 $)) NIL) (((-697 |#1|)) 121)) (-2055 ((|#1| $) 125)) (-4380 (((-1201 (-930) (-779)) (-572)) NIL (|has| |#1| (-356)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3037 (((-779)) 43 (|has| |#1| (-375)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-2372 (($ (-1279 |#1|) (-1279 $)) NIL) (($ (-1279 |#1|)) 46)) (-2899 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-356)))) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1649 (((-697 |#1|) $ (-1279 $)) NIL) (((-697 |#1|) $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 113) (((-697 |#1|) (-697 $)) 108)) (-2925 (($ |#2|) 65) (((-3 $ "failed") (-415 |#2|)) NIL (|has| |#1| (-370)))) (-2982 (((-3 $ "failed") $) NIL)) (-1526 (((-930)) 84)) (-2688 (($) 47 (|has| |#1| (-375)))) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-1345 (($) NIL (|has| |#1| (-356)))) (-2754 (((-112) $) NIL (|has| |#1| (-356)))) (-3156 (($ $ (-779)) NIL (|has| |#1| (-356))) (($ $) NIL (|has| |#1| (-356)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-2068 (((-930) $) NIL (|has| |#1| (-356))) (((-841 (-930)) $) NIL (|has| |#1| (-356)))) (-4422 (((-112) $) NIL)) (-2140 ((|#1| $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-356)))) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-2179 ((|#2| $) 91 (|has| |#1| (-370)))) (-4370 (((-930) $) 145 (|has| |#1| (-375)))) (-2913 ((|#2| $) 62)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-3477 (($) NIL (|has| |#1| (-356)) CONST)) (-1795 (($ (-930)) 135 (|has| |#1| (-375)))) (-2614 (((-1131) $) NIL)) (-4267 (($) 127)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-1815 (((-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))) NIL (|has| |#1| (-356)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-2020 ((|#1| (-1279 $)) NIL) ((|#1|) 117)) (-1468 (((-779) $) NIL (|has| |#1| (-356))) (((-3 (-779) "failed") $ $) NIL (|has| |#1| (-356)))) (-3011 (($ $) NIL (-3783 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) NIL (-3783 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1 |#1| |#1|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-1421 (((-697 |#1|) (-1279 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-3858 ((|#2|) 81)) (-2817 (($) NIL (|has| |#1| (-356)))) (-2862 (((-1279 |#1|) $ (-1279 $)) 96) (((-697 |#1|) (-1279 $) (-1279 $)) NIL) (((-1279 |#1|) $) 75) (((-697 |#1|) (-1279 $)) 92)) (-3222 (((-1279 |#1|) $) NIL) (($ (-1279 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (|has| |#1| (-356)))) (-3491 (((-870) $) 61) (($ (-572)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-370))) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-370)) (|has| |#1| (-1049 (-415 (-572))))))) (-2210 (($ $) NIL (|has| |#1| (-356))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3245 ((|#2| $) 89)) (-2455 (((-779)) 83 T CONST)) (-3424 (((-112) $ $) NIL)) (-1769 (((-1279 $)) 88)) (-2466 (((-112) $ $) NIL (|has| |#1| (-370)))) (-2602 (($) 32 T CONST)) (-2619 (($) 19 T CONST)) (-4019 (($ $) NIL (-3783 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-779)) NIL (-3783 (-12 (|has| |#1| (-237)) (|has| |#1| (-370))) (|has| |#1| (-356)))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-370)) (|has| |#1| (-909 (-1188))))) (($ $ (-1 |#1| |#1|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-370)))) (-3921 (((-112) $ $) 67)) (-4029 (($ $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) 71) (($ $ $) NIL)) (-4005 (($ $ $) 69)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-415 (-572)) $) NIL (|has| |#1| (-370))) (($ $ (-415 (-572))) NIL (|has| |#1| (-370)))))
+(((-1091 |#1| |#2| |#3|) (-732 |#1| |#2|) (-174) (-1255 |#1|) |#2|) (T -1091))
+NIL
+(-732 |#1| |#2|)
+((-2972 (((-426 |#3|) |#3|) 19)))
+(((-1092 |#1| |#2| |#3|) (-10 -7 (-15 -2972 ((-426 |#3|) |#3|))) (-1255 (-415 (-961 (-572)))) (-13 (-370) (-148) (-732 (-415 (-961 (-572))) |#1|)) (-1255 |#2|)) (T -1092))
+((-2972 (*1 *2 *3) (-12 (-4 *4 (-1255 (-415 (-961 (-572))))) (-4 *5 (-13 (-370) (-148) (-732 (-415 (-961 (-572))) *4))) (-5 *2 (-426 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1255 *5)))))
+(-10 -7 (-15 -2972 ((-426 |#3|) |#3|)))
+((-3464 (((-112) $ $) NIL)) (-2536 (($ $ $) 16)) (-3928 (($ $ $) 17)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1895 (($) 6)) (-3222 (((-1188) $) 20)) (-3491 (((-870) $) 13)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 15)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 9)))
+(((-1093) (-13 (-858) (-622 (-1188)) (-10 -8 (-15 -1895 ($))))) (T -1093))
+((-1895 (*1 *1) (-5 *1 (-1093))))
+(-13 (-858) (-622 (-1188)) (-10 -8 (-15 -1895 ($))))
+((-3464 (((-112) $ $) 7)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-1193)) 17) (((-1193) $) 16)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-1094) (-141)) (T -1094))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-622 #0=(-1191)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T))
-((-4402 ((|#1| |#1| (-1 (-570) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2278 (((-1282)) 21)) (-2311 (((-650 |#1|)) 13)))
-(((-1093 |#1|) (-10 -7 (-15 -2278 ((-1282))) (-15 -2311 ((-650 |#1|))) (-15 -4402 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4402 (|#1| |#1| (-1 (-570) |#1| |#1|)))) (-133)) (T -1093))
-((-4402 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-570) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2)))) (-4402 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2)))) (-2311 (*1 *2) (-12 (-5 *2 (-650 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-133)))) (-2278 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1093 *3)) (-4 *3 (-133)))))
-(-10 -7 (-15 -2278 ((-1282))) (-15 -2311 ((-650 |#1|))) (-15 -4402 (|#1| |#1| (-1 (-112) |#1|))) (-15 -4402 (|#1| |#1| (-1 (-570) |#1| |#1|))))
-((-1556 (($ (-109) $) 20)) (-3119 (((-697 (-109)) (-512) $) 19)) (-1698 (($) 7)) (-1403 (($) 21)) (-1746 (($) 22)) (-1984 (((-650 (-177)) $) 10)) (-2869 (((-868) $) 25)))
-(((-1094) (-13 (-619 (-868)) (-10 -8 (-15 -1698 ($)) (-15 -1984 ((-650 (-177)) $)) (-15 -3119 ((-697 (-109)) (-512) $)) (-15 -1556 ($ (-109) $)) (-15 -1403 ($)) (-15 -1746 ($))))) (T -1094))
-((-1698 (*1 *1) (-5 *1 (-1094))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-650 (-177))) (-5 *1 (-1094)))) (-3119 (*1 *2 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-1094)))) (-1556 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1094)))) (-1403 (*1 *1) (-5 *1 (-1094))) (-1746 (*1 *1) (-5 *1 (-1094))))
-(-13 (-619 (-868)) (-10 -8 (-15 -1698 ($)) (-15 -1984 ((-650 (-177)) $)) (-15 -3119 ((-697 (-109)) (-512) $)) (-15 -1556 ($ (-109) $)) (-15 -1403 ($)) (-15 -1746 ($))))
-((-1757 (((-1277 (-695 |#1|)) (-650 (-695 |#1|))) 45) (((-1277 (-695 (-959 |#1|))) (-650 (-1186)) (-695 (-959 |#1|))) 75) (((-1277 (-695 (-413 (-959 |#1|)))) (-650 (-1186)) (-695 (-413 (-959 |#1|)))) 92)) (-2987 (((-1277 |#1|) (-695 |#1|) (-650 (-695 |#1|))) 39)))
-(((-1095 |#1|) (-10 -7 (-15 -1757 ((-1277 (-695 (-413 (-959 |#1|)))) (-650 (-1186)) (-695 (-413 (-959 |#1|))))) (-15 -1757 ((-1277 (-695 (-959 |#1|))) (-650 (-1186)) (-695 (-959 |#1|)))) (-15 -1757 ((-1277 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -2987 ((-1277 |#1|) (-695 |#1|) (-650 (-695 |#1|))))) (-368)) (T -1095))
-((-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-695 *5))) (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 (-1277 *5)) (-5 *1 (-1095 *5)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368)) (-5 *2 (-1277 (-695 *4))) (-5 *1 (-1095 *4)))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368)) (-5 *2 (-1277 (-695 (-959 *5)))) (-5 *1 (-1095 *5)) (-5 *4 (-695 (-959 *5))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368)) (-5 *2 (-1277 (-695 (-413 (-959 *5))))) (-5 *1 (-1095 *5)) (-5 *4 (-695 (-413 (-959 *5)))))))
-(-10 -7 (-15 -1757 ((-1277 (-695 (-413 (-959 |#1|)))) (-650 (-1186)) (-695 (-413 (-959 |#1|))))) (-15 -1757 ((-1277 (-695 (-959 |#1|))) (-650 (-1186)) (-695 (-959 |#1|)))) (-15 -1757 ((-1277 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -2987 ((-1277 |#1|) (-695 |#1|) (-650 (-695 |#1|)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2603 (((-650 (-777)) $) NIL) (((-650 (-777)) $ (-1186)) NIL)) (-2023 (((-777) $) NIL) (((-777) $ (-1186)) NIL)) (-1598 (((-650 (-1097 (-1186))) $) NIL)) (-3449 (((-1182 $) $ (-1097 (-1186))) NIL) (((-1182 |#1|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-1097 (-1186)))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3285 (($ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1097 (-1186)) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL) (((-3 (-1134 |#1| (-1186)) "failed") $) NIL)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1097 (-1186)) $) NIL) (((-1186) $) NIL) (((-1134 |#1| (-1186)) $) NIL)) (-2067 (($ $ $ (-1097 (-1186))) NIL (|has| |#1| (-174)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1097 (-1186))) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-537 (-1097 (-1186))) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1097 (-1186)) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1097 (-1186)) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-3995 (((-777) $ (-1186)) NIL) (((-777) $) NIL)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-2417 (($ (-1182 |#1|) (-1097 (-1186))) NIL) (($ (-1182 $) (-1097 (-1186))) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-537 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-1097 (-1186))) NIL)) (-2689 (((-537 (-1097 (-1186))) $) NIL) (((-777) $ (-1097 (-1186))) NIL) (((-650 (-777)) $ (-650 (-1097 (-1186)))) NIL)) (-3989 (($ (-1 (-537 (-1097 (-1186))) (-537 (-1097 (-1186)))) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2299 (((-1 $ (-777)) (-1186)) NIL) (((-1 $ (-777)) $) NIL (|has| |#1| (-235)))) (-3168 (((-3 (-1097 (-1186)) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-2134 (((-1097 (-1186)) $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-1386 (((-112) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-1097 (-1186))) (|:| -2940 (-777))) "failed") $) NIL)) (-2803 (($ $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1097 (-1186)) |#1|) NIL) (($ $ (-650 (-1097 (-1186))) (-650 |#1|)) NIL) (($ $ (-1097 (-1186)) $) NIL) (($ $ (-650 (-1097 (-1186))) (-650 $)) NIL) (($ $ (-1186) $) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 $)) NIL (|has| |#1| (-235))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-235)))) (-2896 (($ $ (-1097 (-1186))) NIL (|has| |#1| (-174)))) (-2375 (($ $ (-1097 (-1186))) NIL) (($ $ (-650 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2753 (((-650 (-1186)) $) NIL)) (-2650 (((-537 (-1097 (-1186))) $) NIL) (((-777) $ (-1097 (-1186))) NIL) (((-650 (-777)) $ (-650 (-1097 (-1186)))) NIL) (((-777) $ (-1186)) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-1097 (-1186)) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1097 (-1186)) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1097 (-1186)) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1097 (-1186))) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1097 (-1186))) NIL) (($ (-1186)) NIL) (($ (-1134 |#1| (-1186))) NIL) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-537 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-1097 (-1186))) NIL) (($ $ (-650 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1096 |#1|) (-13 (-256 |#1| (-1186) (-1097 (-1186)) (-537 (-1097 (-1186)))) (-1047 (-1134 |#1| (-1186)))) (-1058)) (T -1096))
-NIL
-(-13 (-256 |#1| (-1186) (-1097 (-1186)) (-537 (-1097 (-1186)))) (-1047 (-1134 |#1| (-1186))))
-((-2847 (((-112) $ $) NIL)) (-2023 (((-777) $) NIL)) (-1433 ((|#1| $) 10)) (-2435 (((-3 |#1| "failed") $) NIL)) (-4387 ((|#1| $) NIL)) (-3995 (((-777) $) 11)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-2299 (($ |#1| (-777)) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2375 (($ $) NIL) (($ $ (-777)) NIL)) (-2869 (((-868) $) NIL) (($ |#1|) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 16)))
-(((-1097 |#1|) (-269 |#1|) (-856)) (T -1097))
-NIL
-(-269 |#1|)
-((-2536 (((-650 |#2|) (-1 |#2| |#1|) (-1103 |#1|)) 29 (|has| |#1| (-854))) (((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|)) 14)))
-(((-1098 |#1| |#2|) (-10 -7 (-15 -2536 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) (IF (|has| |#1| (-854)) (-15 -2536 ((-650 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) |%noBranch|)) (-1227) (-1227)) (T -1098))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-854)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-650 *6)) (-5 *1 (-1098 *5 *6)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1103 *6)) (-5 *1 (-1098 *5 *6)))))
-(-10 -7 (-15 -2536 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) (IF (|has| |#1| (-854)) (-15 -2536 ((-650 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-4346 (((-650 (-1144)) $) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1099) (-13 (-1092) (-10 -8 (-15 -4346 ((-650 (-1144)) $))))) (T -1099))
-((-4346 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1099)))))
-(-13 (-1092) (-10 -8 (-15 -4346 ((-650 (-1144)) $))))
-((-2536 (((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|)) 19)))
-(((-1100 |#1| |#2|) (-10 -7 (-15 -2536 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|)))) (-1227) (-1227)) (T -1100))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1101 *6)) (-5 *1 (-1100 *5 *6)))))
-(-10 -7 (-15 -2536 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|))))
-((-2847 (((-112) $ $) NIL (|has| (-1103 |#1|) (-1109)))) (-1433 (((-1186) $) NIL)) (-4102 (((-1103 |#1|) $) NIL)) (-3240 (((-1168) $) NIL (|has| (-1103 |#1|) (-1109)))) (-3891 (((-1129) $) NIL (|has| (-1103 |#1|) (-1109)))) (-2662 (($ (-1186) (-1103 |#1|)) NIL)) (-2869 (((-868) $) NIL (|has| (-1103 |#1|) (-1109)))) (-1344 (((-112) $ $) NIL (|has| (-1103 |#1|) (-1109)))) (-3892 (((-112) $ $) NIL (|has| (-1103 |#1|) (-1109)))))
-(((-1101 |#1|) (-13 (-1227) (-10 -8 (-15 -2662 ($ (-1186) (-1103 |#1|))) (-15 -1433 ((-1186) $)) (-15 -4102 ((-1103 |#1|) $)) (IF (|has| (-1103 |#1|) (-1109)) (-6 (-1109)) |%noBranch|))) (-1227)) (T -1101))
-((-2662 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1103 *4)) (-4 *4 (-1227)) (-5 *1 (-1101 *4)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1101 *3)) (-4 *3 (-1227)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-1227)))))
-(-13 (-1227) (-10 -8 (-15 -2662 ($ (-1186) (-1103 |#1|))) (-15 -1433 ((-1186) $)) (-15 -4102 ((-1103 |#1|) $)) (IF (|has| (-1103 |#1|) (-1109)) (-6 (-1109)) |%noBranch|)))
-((-4102 (($ |#1| |#1|) 8)) (-2609 ((|#1| $) 11)) (-2060 ((|#1| $) 13)) (-3740 (((-570) $) 9)) (-3946 ((|#1| $) 10)) (-3752 ((|#1| $) 12)) (-2601 (($ |#1|) 6)) (-1852 (($ |#1| |#1|) 15)) (-3668 (($ $ (-570)) 14)))
-(((-1102 |#1|) (-141) (-1227)) (T -1102))
-((-1852 (*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))) (-3668 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1102 *3)) (-4 *3 (-1227)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1227)) (-5 *2 (-570)))) (-4102 (*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))))
-(-13 (-624 |t#1|) (-10 -8 (-15 -1852 ($ |t#1| |t#1|)) (-15 -3668 ($ $ (-570))) (-15 -2060 (|t#1| $)) (-15 -3752 (|t#1| $)) (-15 -2609 (|t#1| $)) (-15 -3946 (|t#1| $)) (-15 -3740 ((-570) $)) (-15 -4102 ($ |t#1| |t#1|))))
-(((-624 |#1|) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4102 (($ |#1| |#1|) 16)) (-2536 (((-650 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-854)))) (-2609 ((|#1| $) 12)) (-2060 ((|#1| $) 11)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3740 (((-570) $) 15)) (-3946 ((|#1| $) 14)) (-3752 ((|#1| $) 13)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3920 (((-650 |#1|) $) 44 (|has| |#1| (-854))) (((-650 |#1|) (-650 $)) 43 (|has| |#1| (-854)))) (-2601 (($ |#1|) 29)) (-2869 (((-868) $) 28 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1852 (($ |#1| |#1|) 10)) (-3668 (($ $ (-570)) 17)) (-3892 (((-112) $ $) 22 (|has| |#1| (-1109)))))
-(((-1103 |#1|) (-13 (-1102 |#1|) (-10 -7 (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-650 |#1|))) |%noBranch|))) (-1227)) (T -1103))
-NIL
-(-13 (-1102 |#1|) (-10 -7 (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-650 |#1|))) |%noBranch|)))
-((-4102 (($ |#1| |#1|) 8)) (-2536 ((|#2| (-1 |#1| |#1|) $) 16)) (-2609 ((|#1| $) 11)) (-2060 ((|#1| $) 13)) (-3740 (((-570) $) 9)) (-3946 ((|#1| $) 10)) (-3752 ((|#1| $) 12)) (-3920 ((|#2| (-650 $)) 18) ((|#2| $) 17)) (-2601 (($ |#1|) 6)) (-1852 (($ |#1| |#1|) 15)) (-3668 (($ $ (-570)) 14)))
-(((-1104 |#1| |#2|) (-141) (-854) (-1158 |t#1|)) (T -1104))
-((-3920 (*1 *2 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854)) (-4 *2 (-1158 *4)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *2)) (-4 *3 (-854)) (-4 *2 (-1158 *3)))) (-2536 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854)) (-4 *2 (-1158 *4)))))
-(-13 (-1102 |t#1|) (-10 -8 (-15 -3920 (|t#2| (-650 $))) (-15 -3920 (|t#2| $)) (-15 -2536 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-624 |#1|) . T) ((-1102 |#1|) . T))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3637 (((-1144) $) 12)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 18) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1781 (((-650 (-1144)) $) 10)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1105) (-13 (-1092) (-10 -8 (-15 -1781 ((-650 (-1144)) $)) (-15 -3637 ((-1144) $))))) (T -1105))
-((-1781 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1105)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1105)))))
-(-13 (-1092) (-10 -8 (-15 -1781 ((-650 (-1144)) $)) (-15 -3637 ((-1144) $))))
-((-1637 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1832 (($ $ $) 10)) (-1565 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1106 |#1| |#2|) (-10 -8 (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#1| |#1|))) (-1107 |#2|) (-1109)) (T -1106))
-NIL
-(-10 -8 (-15 -1637 (|#1| |#2| |#1|)) (-15 -1637 (|#1| |#1| |#2|)) (-15 -1637 (|#1| |#1| |#1|)) (-15 -1832 (|#1| |#1| |#1|)) (-15 -1565 (|#1| |#1| |#2|)) (-15 -1565 (|#1| |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-1637 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-1832 (($ $ $) 21)) (-3198 (((-112) $ $) 20)) (-2855 (((-112) $ (-777)) 36)) (-1322 (($) 26) (($ (-650 |#1|)) 25)) (-3960 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4452)))) (-2333 (($) 37 T CONST)) (-3153 (($ $) 60 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#1| $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4452)))) (-3976 (((-650 |#1|) $) 44 (|has| $ (-6 -4452)))) (-2994 (((-112) $ $) 29)) (-2497 (((-112) $ (-777)) 35)) (-3069 (((-650 |#1|) $) 45 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 39)) (-2065 (((-112) $ (-777)) 34)) (-3240 (((-1168) $) 10)) (-3502 (($ $ $) 24)) (-3891 (((-1129) $) 11)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2231 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#1|) (-650 |#1|)) 51 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 49 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 (-298 |#1|))) 48 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 30)) (-2171 (((-112) $) 33)) (-1698 (($) 32)) (-1565 (($ $ $) 23) (($ $ |#1|) 22)) (-3901 (((-777) |#1| $) 46 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4452)))) (-3064 (($ $) 31)) (-2601 (((-542) $) 61 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 52)) (-2869 (((-868) $) 12)) (-2542 (($) 28) (($ (-650 |#1|)) 27)) (-1344 (((-112) $ $) 9)) (-2061 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 6)) (-2857 (((-777) $) 38 (|has| $ (-6 -4452)))))
-(((-1107 |#1|) (-141) (-1109)) (T -1107))
-((-2994 (*1 *2 *1 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-2542 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3)))) (-1322 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3)))) (-3502 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-1565 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-1565 (*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-1832 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-3198 (*1 *2 *1 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-1637 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-1637 (*1 *1 *2 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))))
-(-13 (-1109) (-152 |t#1|) (-10 -8 (-6 -4442) (-15 -2994 ((-112) $ $)) (-15 -2542 ($)) (-15 -2542 ($ (-650 |t#1|))) (-15 -1322 ($)) (-15 -1322 ($ (-650 |t#1|))) (-15 -3502 ($ $ $)) (-15 -1565 ($ $ $)) (-15 -1565 ($ $ |t#1|)) (-15 -1832 ($ $ $)) (-15 -3198 ((-112) $ $)) (-15 -1637 ($ $ $)) (-15 -1637 ($ $ |t#1|)) (-15 -1637 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) . T) ((-1227) . T))
-((-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 8)) (-1344 (((-112) $ $) 12)))
-(((-1108 |#1|) (-10 -8 (-15 -1344 ((-112) |#1| |#1|)) (-15 -3240 ((-1168) |#1|)) (-15 -3891 ((-1129) |#1|))) (-1109)) (T -1108))
-NIL
-(-10 -8 (-15 -1344 ((-112) |#1| |#1|)) (-15 -3240 ((-1168) |#1|)) (-15 -3891 ((-1129) |#1|)))
-((-2847 (((-112) $ $) 7)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-1109) (-141)) (T -1109))
-((-3891 (*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1129)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1168)))) (-1344 (*1 *2 *1 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-112)))))
-(-13 (-102) (-619 (-868)) (-10 -8 (-15 -3891 ((-1129) $)) (-15 -3240 ((-1168) $)) (-15 -1344 ((-112) $ $))))
-(((-102) . T) ((-619 (-868)) . T))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) 36)) (-3785 (($ (-650 (-928))) 70)) (-4343 (((-3 $ "failed") $ (-928) (-928)) 81)) (-2066 (($) 40)) (-1314 (((-112) (-928) $) 42)) (-1997 (((-928) $) 64)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) 39)) (-2259 (((-3 $ "failed") $ (-928)) 77)) (-3891 (((-1129) $) NIL)) (-3316 (((-1277 $)) 47)) (-1889 (((-650 (-928)) $) 27)) (-3578 (((-777) $ (-928) (-928)) 78)) (-2869 (((-868) $) 32)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 24)))
-(((-1110 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2259 ((-3 $ "failed") $ (-928))) (-15 -4343 ((-3 $ "failed") $ (-928) (-928))) (-15 -1889 ((-650 (-928)) $)) (-15 -3785 ($ (-650 (-928)))) (-15 -3316 ((-1277 $))) (-15 -1314 ((-112) (-928) $)) (-15 -3578 ((-777) $ (-928) (-928))))) (-928) (-928)) (T -1110))
-((-2259 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4343 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-3785 (*1 *1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-3316 (*1 *2) (-12 (-5 *2 (-1277 (-1110 *3 *4))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-1314 (*1 *2 *3 *1) (-12 (-5 *3 (-928)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3578 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-777)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-373) (-10 -8 (-15 -2259 ((-3 $ "failed") $ (-928))) (-15 -4343 ((-3 $ "failed") $ (-928) (-928))) (-15 -1889 ((-650 (-928)) $)) (-15 -3785 ($ (-650 (-928)))) (-15 -3316 ((-1277 $))) (-15 -1314 ((-112) (-928) $)) (-15 -3578 ((-777) $ (-928) (-928)))))
-((-2847 (((-112) $ $) NIL)) (-3965 (($) NIL (|has| |#1| (-373)))) (-1637 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-1832 (($ $ $) 81)) (-3198 (((-112) $ $) 82)) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| |#1| (-373)))) (-1322 (($ (-650 |#1|)) NIL) (($) 13)) (-3350 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3614 (($ |#1| $) 74 (|has| $ (-6 -4452))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4452)))) (-2066 (($) NIL (|has| |#1| (-373)))) (-3976 (((-650 |#1|) $) 19 (|has| $ (-6 -4452)))) (-2994 (((-112) $ $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-1908 ((|#1| $) 55 (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1764 ((|#1| $) 53 (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 34)) (-1997 (((-928) $) NIL (|has| |#1| (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3502 (($ $ $) 79)) (-3398 ((|#1| $) 25)) (-2801 (($ |#1| $) 69)) (-4298 (($ (-928)) NIL (|has| |#1| (-373)))) (-3891 (((-1129) $) NIL)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4126 ((|#1| $) 27)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 21)) (-1698 (($) 11)) (-1565 (($ $ |#1|) NIL) (($ $ $) 80)) (-2910 (($) NIL) (($ (-650 |#1|)) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 16)) (-2601 (((-542) $) 50 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 62)) (-2137 (($ $) NIL (|has| |#1| (-373)))) (-2869 (((-868) $) NIL)) (-2293 (((-777) $) NIL)) (-2542 (($ (-650 |#1|)) NIL) (($) 12)) (-1344 (((-112) $ $) NIL)) (-4132 (($ (-650 |#1|)) NIL)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 52)) (-2857 (((-777) $) 10 (|has| $ (-6 -4452)))))
-(((-1111 |#1|) (-431 |#1|) (-1109)) (T -1111))
-NIL
-(-431 |#1|)
-((-2847 (((-112) $ $) 7)) (-3149 (((-112) $) 33)) (-3802 ((|#2| $) 28)) (-2984 (((-112) $) 34)) (-1643 ((|#1| $) 29)) (-3753 (((-112) $) 36)) (-3336 (((-112) $) 38)) (-2823 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3081 (((-112) $) 32)) (-3823 ((|#3| $) 27)) (-3891 (((-1129) $) 11)) (-3852 (((-112) $) 31)) (-1531 ((|#4| $) 26)) (-1393 ((|#5| $) 25)) (-2557 (((-112) $ $) 39)) (-2057 (($ $ (-570)) 41) (($ $ (-650 (-570))) 40)) (-3825 (((-650 $) $) 30)) (-2601 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-650 $)) 42)) (-2869 (((-868) $) 12)) (-2323 (($ $) 23)) (-3135 (($ $) 24)) (-1344 (((-112) $ $) 9)) (-2392 (((-112) $) 37)) (-3892 (((-112) $ $) 6)) (-2857 (((-570) $) 22)))
-(((-1112 |#1| |#2| |#3| |#4| |#5|) (-141) (-1109) (-1109) (-1109) (-1109) (-1109)) (T -1112))
-((-2557 (*1 *2 *1 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3825 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-1112 *3 *4 *5 *6 *7)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *2 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *2 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *2 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-1393 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *2)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)))) (-2323 (*1 *1 *1) (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-570)))))
-(-13 (-1109) (-624 |t#1|) (-624 |t#2|) (-624 |t#3|) (-624 |t#4|) (-624 |t#4|) (-624 |t#5|) (-624 (-650 $)) (-290 (-570) $) (-290 (-650 (-570)) $) (-10 -8 (-15 -2557 ((-112) $ $)) (-15 -3336 ((-112) $)) (-15 -2392 ((-112) $)) (-15 -3753 ((-112) $)) (-15 -2823 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -3149 ((-112) $)) (-15 -3081 ((-112) $)) (-15 -3852 ((-112) $)) (-15 -3825 ((-650 $) $)) (-15 -1643 (|t#1| $)) (-15 -3802 (|t#2| $)) (-15 -3823 (|t#3| $)) (-15 -1531 (|t#4| $)) (-15 -1393 (|t#5| $)) (-15 -3135 ($ $)) (-15 -2323 ($ $)) (-15 -2857 ((-570) $))))
-(((-102) . T) ((-619 (-868)) . T) ((-624 (-650 $)) . T) ((-624 |#1|) . T) ((-624 |#2|) . T) ((-624 |#3|) . T) ((-624 |#4|) . T) ((-624 |#5|) . T) ((-290 (-570) $) . T) ((-290 (-650 (-570)) $) . T) ((-1109) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-3149 (((-112) $) NIL)) (-3802 (((-1186) $) NIL)) (-2984 (((-112) $) NIL)) (-1643 (((-1168) $) NIL)) (-3753 (((-112) $) NIL)) (-3336 (((-112) $) NIL)) (-2823 (((-112) $) NIL)) (-3240 (((-1168) $) NIL)) (-3081 (((-112) $) NIL)) (-3823 (((-570) $) NIL)) (-3891 (((-1129) $) NIL)) (-3852 (((-112) $) NIL)) (-1531 (((-227) $) NIL)) (-1393 (((-868) $) NIL)) (-2557 (((-112) $ $) NIL)) (-2057 (($ $ (-570)) NIL) (($ $ (-650 (-570))) NIL)) (-3825 (((-650 $) $) NIL)) (-2601 (($ (-1168)) NIL) (($ (-1186)) NIL) (($ (-570)) NIL) (($ (-227)) NIL) (($ (-868)) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL)) (-2323 (($ $) NIL)) (-3135 (($ $) NIL)) (-1344 (((-112) $ $) NIL)) (-2392 (((-112) $) NIL)) (-3892 (((-112) $ $) NIL)) (-2857 (((-570) $) NIL)))
-(((-1113) (-1112 (-1168) (-1186) (-570) (-227) (-868))) (T -1113))
-NIL
-(-1112 (-1168) (-1186) (-570) (-227) (-868))
-((-2847 (((-112) $ $) NIL)) (-3149 (((-112) $) 45)) (-3802 ((|#2| $) 48)) (-2984 (((-112) $) 20)) (-1643 ((|#1| $) 21)) (-3753 (((-112) $) 42)) (-3336 (((-112) $) 14)) (-2823 (((-112) $) 44)) (-3240 (((-1168) $) NIL)) (-3081 (((-112) $) 46)) (-3823 ((|#3| $) 50)) (-3891 (((-1129) $) NIL)) (-3852 (((-112) $) 47)) (-1531 ((|#4| $) 49)) (-1393 ((|#5| $) 51)) (-2557 (((-112) $ $) 41)) (-2057 (($ $ (-570)) 62) (($ $ (-650 (-570))) 64)) (-3825 (((-650 $) $) 27)) (-2601 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-650 $)) 52)) (-2869 (((-868) $) 28)) (-2323 (($ $) 26)) (-3135 (($ $) 58)) (-1344 (((-112) $ $) NIL)) (-2392 (((-112) $) 23)) (-3892 (((-112) $ $) 40)) (-2857 (((-570) $) 60)))
-(((-1114 |#1| |#2| |#3| |#4| |#5|) (-1112 |#1| |#2| |#3| |#4| |#5|) (-1109) (-1109) (-1109) (-1109) (-1109)) (T -1114))
-NIL
-(-1112 |#1| |#2| |#3| |#4| |#5|)
-((-2237 (((-1282) $) 22)) (-2562 (($ (-1186) (-440) |#2|) 11)) (-2869 (((-868) $) 16)))
-(((-1115 |#1| |#2|) (-13 (-401) (-10 -8 (-15 -2562 ($ (-1186) (-440) |#2|)))) (-1109) (-436 |#1|)) (T -1115))
-((-2562 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-440)) (-4 *5 (-1109)) (-5 *1 (-1115 *5 *4)) (-4 *4 (-436 *5)))))
-(-13 (-401) (-10 -8 (-15 -2562 ($ (-1186) (-440) |#2|))))
-((-1921 (((-112) |#5| |#5|) 44)) (-3463 (((-112) |#5| |#5|) 59)) (-2349 (((-112) |#5| (-650 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2174 (((-112) (-650 |#4|) (-650 |#4|)) 65)) (-3180 (((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) 70)) (-2547 (((-1282)) 32)) (-4329 (((-1282) (-1168) (-1168) (-1168)) 28)) (-2754 (((-650 |#5|) (-650 |#5|)) 101)) (-3866 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) 93)) (-1861 (((-650 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112)) 123)) (-3846 (((-112) |#5| |#5|) 53)) (-3485 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3467 (((-112) (-650 |#4|) (-650 |#4|)) 64)) (-3197 (((-112) (-650 |#4|) (-650 |#4|)) 66)) (-1693 (((-112) (-650 |#4|) (-650 |#4|)) 67)) (-2011 (((-3 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-4216 (((-650 |#5|) (-650 |#5|)) 49)))
-(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4329 ((-1282) (-1168) (-1168) (-1168))) (-15 -2547 ((-1282))) (-15 -1921 ((-112) |#5| |#5|)) (-15 -4216 ((-650 |#5|) (-650 |#5|))) (-15 -3846 ((-112) |#5| |#5|)) (-15 -3463 ((-112) |#5| |#5|)) (-15 -2174 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3467 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3197 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -1693 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3485 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2349 ((-112) |#5| |#5|)) (-15 -2349 ((-112) |#5| (-650 |#5|))) (-15 -2754 ((-650 |#5|) (-650 |#5|))) (-15 -3180 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -3866 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-15 -1861 ((-650 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2011 ((-3 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1116))
-((-2011 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| -2557 (-650 *9)) (|:| -4246 *4) (|:| |ineq| (-650 *9)))) (-5 *1 (-1116 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9)) (-4 *4 (-1080 *6 *7 *8 *9)))) (-1861 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| -2557 (-650 *9)) (|:| -4246 *10) (|:| |ineq| (-650 *9))))) (-5 *1 (-1116 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9)))) (-3866 (*1 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -4246 *7)))) (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1116 *3 *4 *5 *6 *7)))) (-3180 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)))) (-2754 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-1116 *3 *4 *5 *6 *7)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1116 *5 *6 *7 *8 *3)))) (-2349 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3485 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-1693 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3467 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-2174 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3463 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3846 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-1116 *3 *4 *5 *6 *7)))) (-1921 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-2547 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282)) (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-4329 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4329 ((-1282) (-1168) (-1168) (-1168))) (-15 -2547 ((-1282))) (-15 -1921 ((-112) |#5| |#5|)) (-15 -4216 ((-650 |#5|) (-650 |#5|))) (-15 -3846 ((-112) |#5| |#5|)) (-15 -3463 ((-112) |#5| |#5|)) (-15 -2174 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3467 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3197 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -1693 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -3485 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2349 ((-112) |#5| |#5|)) (-15 -2349 ((-112) |#5| (-650 |#5|))) (-15 -2754 ((-650 |#5|) (-650 |#5|))) (-15 -3180 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -3866 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-15 -1861 ((-650 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2011 ((-3 (-2 (|:| -2557 (-650 |#4|)) (|:| -4246 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2822 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|) 108)) (-3171 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#4| |#4| |#5|) 80)) (-3272 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|) 102)) (-2448 (((-650 |#5|) |#4| |#5|) 124)) (-2249 (((-650 |#5|) |#4| |#5|) 131)) (-2469 (((-650 |#5|) |#4| |#5|) 132)) (-1876 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|) 109)) (-3570 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|) 130)) (-2162 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4226 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#3| (-112)) 92) (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4080 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|) 87)) (-1974 (((-1282)) 36)) (-2446 (((-1282)) 25)) (-3670 (((-1282) (-1168) (-1168) (-1168)) 32)) (-2725 (((-1282) (-1168) (-1168) (-1168)) 21)))
-(((-1117 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2725 ((-1282) (-1168) (-1168) (-1168))) (-15 -2446 ((-1282))) (-15 -3670 ((-1282) (-1168) (-1168) (-1168))) (-15 -1974 ((-1282))) (-15 -3171 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -4226 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4226 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#3| (-112))) (-15 -4080 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -3272 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -2162 ((-112) |#4| |#5|)) (-15 -1876 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2448 ((-650 |#5|) |#4| |#5|)) (-15 -3570 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2249 ((-650 |#5|) |#4| |#5|)) (-15 -2162 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2469 ((-650 |#5|) |#4| |#5|)) (-15 -2822 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1117))
-((-2822 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2469 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2162 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2249 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3570 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1876 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2162 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3272 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-4080 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-4226 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9)))) (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856)) (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -4246 *9)))) (-5 *1 (-1117 *6 *7 *4 *8 *9)))) (-4226 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1117 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3171 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1974 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282)) (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-3670 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282)) (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-2446 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282)) (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-2725 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282)) (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2725 ((-1282) (-1168) (-1168) (-1168))) (-15 -2446 ((-1282))) (-15 -3670 ((-1282) (-1168) (-1168) (-1168))) (-15 -1974 ((-1282))) (-15 -3171 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -4226 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4226 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) |#3| (-112))) (-15 -4080 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -3272 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#4| |#5|)) (-15 -2162 ((-112) |#4| |#5|)) (-15 -1876 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2448 ((-650 |#5|) |#4| |#5|)) (-15 -3570 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2249 ((-650 |#5|) |#4| |#5|)) (-15 -2162 ((-650 (-2 (|:| |val| (-112)) (|:| -4246 |#5|))) |#4| |#5|)) (-15 -2469 ((-650 |#5|) |#4| |#5|)) (-15 -2822 ((-650 (-2 (|:| |val| |#4|) (|:| -4246 |#5|))) |#4| |#5|)))
-((-2847 (((-112) $ $) 7)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) 86)) (-1510 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1598 (((-650 |#3|) $) 34)) (-3330 (((-112) $) 27)) (-2114 (((-112) $) 18 (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) 102) (((-112) $) 98)) (-3067 ((|#4| |#4| $) 93)) (-3312 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| $) 127)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) 28)) (-2855 (((-112) $ (-777)) 45)) (-3960 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) 80)) (-2333 (($) 46 T CONST)) (-2157 (((-112) $) 23 (|has| |#1| (-562)))) (-3303 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3105 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3580 (((-112) $) 26 (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2303 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) 37)) (-4387 (($ (-650 |#4|)) 36)) (-1962 (((-3 $ "failed") $) 83)) (-2360 ((|#4| |#4| $) 90)) (-3153 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4079 ((|#4| |#4| $) 88)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) 106)) (-1496 (((-112) |#4| $) 137)) (-1825 (((-112) |#4| $) 134)) (-1446 (((-112) |#4| $) 138) (((-112) $) 135)) (-3976 (((-650 |#4|) $) 53 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) 105) (((-112) $) 104)) (-2486 ((|#3| $) 35)) (-2497 (((-112) $ (-777)) 44)) (-3069 (((-650 |#4|) $) 54 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 48)) (-3734 (((-650 |#3|) $) 33)) (-3640 (((-112) |#3| $) 32)) (-2065 (((-112) $ (-777)) 43)) (-3240 (((-1168) $) 10)) (-3115 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3834 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| |#4| $) 128)) (-3637 (((-3 |#4| "failed") $) 84)) (-3778 (((-650 $) |#4| $) 130)) (-2740 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4057 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3502 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-4399 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-4083 (((-650 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-1478 ((|#4| |#4| $) 91)) (-1693 (((-112) $ $) 111)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) 101) (((-112) $) 97)) (-2899 ((|#4| |#4| $) 92)) (-3891 (((-1129) $) 11)) (-1948 (((-3 |#4| "failed") $) 85)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3484 (((-3 $ "failed") $ |#4|) 79)) (-3308 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-2231 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) 39)) (-2171 (((-112) $) 42)) (-1698 (($) 41)) (-2650 (((-777) $) 107)) (-3901 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4452)))) (-3064 (($ $) 40)) (-2601 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 61)) (-1342 (($ $ |#3|) 29)) (-2691 (($ $ |#3|) 31)) (-2990 (($ $) 89)) (-3130 (($ $ |#3|) 30)) (-2869 (((-868) $) 12) (((-650 |#4|) $) 38)) (-3982 (((-777) $) 77 (|has| |#3| (-373)))) (-1344 (((-112) $ $) 9)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-2922 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-2061 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) 82)) (-4242 (((-112) |#4| $) 136)) (-1600 (((-112) |#3| $) 81)) (-3892 (((-112) $ $) 6)) (-2857 (((-777) $) 47 (|has| $ (-6 -4452)))))
-(((-1118 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1118))
-NIL
-(-13 (-1080 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1220 |#1| |#2| |#3| |#4|) . T) ((-1227) . T))
-((-2570 (((-650 (-570)) (-570) (-570) (-570)) 38)) (-2370 (((-650 (-570)) (-570) (-570) (-570)) 28)) (-1909 (((-650 (-570)) (-570) (-570) (-570)) 33)) (-1883 (((-570) (-570) (-570)) 21)) (-1337 (((-1277 (-570)) (-650 (-570)) (-1277 (-570)) (-570)) 76) (((-1277 (-570)) (-1277 (-570)) (-1277 (-570)) (-570)) 71)) (-2464 (((-650 (-570)) (-650 (-928)) (-650 (-570)) (-112)) 54)) (-2953 (((-695 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570))) 75)) (-3586 (((-695 (-570)) (-650 (-928)) (-650 (-570))) 59)) (-1445 (((-650 (-695 (-570))) (-650 (-928))) 64)) (-1330 (((-650 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570))) 79)) (-2368 (((-695 (-570)) (-650 (-570)) (-650 (-570)) (-650 (-570))) 89)))
-(((-1119) (-10 -7 (-15 -2368 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-650 (-570)))) (-15 -1330 ((-650 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -1445 ((-650 (-695 (-570))) (-650 (-928)))) (-15 -3586 ((-695 (-570)) (-650 (-928)) (-650 (-570)))) (-15 -2953 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -2464 ((-650 (-570)) (-650 (-928)) (-650 (-570)) (-112))) (-15 -1337 ((-1277 (-570)) (-1277 (-570)) (-1277 (-570)) (-570))) (-15 -1337 ((-1277 (-570)) (-650 (-570)) (-1277 (-570)) (-570))) (-15 -1883 ((-570) (-570) (-570))) (-15 -1909 ((-650 (-570)) (-570) (-570) (-570))) (-15 -2370 ((-650 (-570)) (-570) (-570) (-570))) (-15 -2570 ((-650 (-570)) (-570) (-570) (-570))))) (T -1119))
-((-2570 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))) (-2370 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))) (-1909 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))) (-1883 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1119)))) (-1337 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1277 (-570))) (-5 *3 (-650 (-570))) (-5 *4 (-570)) (-5 *1 (-1119)))) (-1337 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1277 (-570))) (-5 *3 (-570)) (-5 *1 (-1119)))) (-2464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-650 (-570))) (-5 *3 (-650 (-928))) (-5 *4 (-112)) (-5 *1 (-1119)))) (-2953 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-695 (-570))) (-5 *3 (-650 (-570))) (-5 *1 (-1119)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-928))) (-5 *4 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1119)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-1119)))) (-1330 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *3 (-695 (-570))) (-5 *1 (-1119)))) (-2368 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1119)))))
-(-10 -7 (-15 -2368 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-650 (-570)))) (-15 -1330 ((-650 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -1445 ((-650 (-695 (-570))) (-650 (-928)))) (-15 -3586 ((-695 (-570)) (-650 (-928)) (-650 (-570)))) (-15 -2953 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -2464 ((-650 (-570)) (-650 (-928)) (-650 (-570)) (-112))) (-15 -1337 ((-1277 (-570)) (-1277 (-570)) (-1277 (-570)) (-570))) (-15 -1337 ((-1277 (-570)) (-650 (-570)) (-1277 (-570)) (-570))) (-15 -1883 ((-570) (-570) (-570))) (-15 -1909 ((-650 (-570)) (-570) (-570) (-570))) (-15 -2370 ((-650 (-570)) (-570) (-570) (-570))) (-15 -2570 ((-650 (-570)) (-570) (-570) (-570))))
-((** (($ $ (-928)) 10)))
-(((-1120 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-928)))) (-1121)) (T -1120))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-928))))
-((-2847 (((-112) $ $) 7)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)) (** (($ $ (-928)) 14)) (* (($ $ $) 15)))
-(((-1121) (-141)) (T -1121))
-((* (*1 *1 *1 *1) (-4 *1 (-1121))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-928)))))
-(-13 (-1109) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-928)))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL (|has| |#3| (-1109)))) (-2564 (((-112) $) NIL (|has| |#3| (-132)))) (-3720 (($ (-928)) NIL (|has| |#3| (-1058)))) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-1548 (($ $ $) NIL (|has| |#3| (-799)))) (-3997 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2855 (((-112) $ (-777)) NIL)) (-2401 (((-777)) NIL (|has| |#3| (-373)))) (-2419 (((-570) $) NIL (|has| |#3| (-854)))) (-3040 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1109)))) (-4387 (((-570) $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) ((|#3| $) NIL (|has| |#3| (-1109)))) (-3054 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) (((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 $) (-1277 $)) NIL (|has| |#3| (-1058))) (((-695 |#3|) (-695 $)) NIL (|has| |#3| (-1058)))) (-3957 (((-3 $ "failed") $) NIL (|has| |#3| (-732)))) (-2066 (($) NIL (|has| |#3| (-373)))) (-2845 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#3| $ (-570)) 12)) (-2811 (((-112) $) NIL (|has| |#3| (-854)))) (-3976 (((-650 |#3|) $) NIL (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL (|has| |#3| (-732)))) (-2746 (((-112) $) NIL (|has| |#3| (-854)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3069 (((-650 |#3|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#3| |#3|) $) NIL)) (-1997 (((-928) $) NIL (|has| |#3| (-373)))) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#3| (-1109)))) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-4298 (($ (-928)) NIL (|has| |#3| (-373)))) (-3891 (((-1129) $) NIL (|has| |#3| (-1109)))) (-1948 ((|#3| $) NIL (|has| (-570) (-856)))) (-4222 (($ $ |#3|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#3|))) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 |#3|) (-650 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109))))) (-2856 (((-650 |#3|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#3| $ (-570) |#3|) NIL) ((|#3| $ (-570)) NIL)) (-3407 ((|#3| $ $) NIL (|has| |#3| (-1058)))) (-1968 (($ (-1277 |#3|)) NIL)) (-4388 (((-135)) NIL (|has| |#3| (-368)))) (-2375 (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058)))) (-3901 (((-777) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452))) (((-777) |#3| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#3| (-1109))))) (-3064 (($ $) NIL)) (-2869 (((-1277 |#3|) $) NIL) (($ (-570)) NIL (-3749 (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) (($ |#3|) NIL (|has| |#3| (-1109))) (((-868) $) NIL (|has| |#3| (-619 (-868))))) (-2294 (((-777)) NIL (|has| |#3| (-1058)) CONST)) (-1344 (((-112) $ $) NIL (|has| |#3| (-1109)))) (-2061 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4452)))) (-2521 (($ $) NIL (|has| |#3| (-854)))) (-1981 (($) NIL (|has| |#3| (-132)) CONST)) (-1998 (($) NIL (|has| |#3| (-732)) CONST)) (-3414 (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058)))) (-3959 (((-112) $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3933 (((-112) $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3892 (((-112) $ $) NIL (|has| |#3| (-1109)))) (-3945 (((-112) $ $) NIL (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3918 (((-112) $ $) 24 (-3749 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-4013 (($ $ |#3|) NIL (|has| |#3| (-368)))) (-4003 (($ $ $) NIL (|has| |#3| (-1058))) (($ $) NIL (|has| |#3| (-1058)))) (-3992 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-777)) NIL (|has| |#3| (-732))) (($ $ (-928)) NIL (|has| |#3| (-732)))) (* (($ (-570) $) NIL (|has| |#3| (-1058))) (($ $ $) NIL (|has| |#3| (-732))) (($ $ |#3|) NIL (|has| |#3| (-732))) (($ |#3| $) NIL (|has| |#3| (-732))) (($ (-777) $) NIL (|has| |#3| (-132))) (($ (-928) $) NIL (|has| |#3| (-25)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1122 |#1| |#2| |#3|) (-240 |#1| |#3|) (-777) (-777) (-799)) (T -1122))
-NIL
-(-240 |#1| |#3|)
-((-1318 (((-650 (-1250 |#2| |#1|)) (-1250 |#2| |#1|) (-1250 |#2| |#1|)) 50)) (-1874 (((-570) (-1250 |#2| |#1|)) 94 (|has| |#1| (-458)))) (-4379 (((-570) (-1250 |#2| |#1|)) 76)) (-4117 (((-650 (-1250 |#2| |#1|)) (-1250 |#2| |#1|) (-1250 |#2| |#1|)) 58)) (-2377 (((-570) (-1250 |#2| |#1|) (-1250 |#2| |#1|)) 93 (|has| |#1| (-458)))) (-3487 (((-650 |#1|) (-1250 |#2| |#1|) (-1250 |#2| |#1|)) 61)) (-1426 (((-570) (-1250 |#2| |#1|) (-1250 |#2| |#1|)) 75)))
-(((-1123 |#1| |#2|) (-10 -7 (-15 -1318 ((-650 (-1250 |#2| |#1|)) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -4117 ((-650 (-1250 |#2| |#1|)) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -3487 ((-650 |#1|) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -1426 ((-570) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -4379 ((-570) (-1250 |#2| |#1|))) (IF (|has| |#1| (-458)) (PROGN (-15 -2377 ((-570) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -1874 ((-570) (-1250 |#2| |#1|)))) |%noBranch|)) (-826) (-1186)) (T -1123))
-((-1874 (*1 *2 *3) (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-2377 (*1 *2 *3 *3) (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-4379 (*1 *2 *3) (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-1426 (*1 *2 *3 *3) (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-3487 (*1 *2 *3 *3) (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 *4)) (-5 *1 (-1123 *4 *5)))) (-4117 (*1 *2 *3 *3) (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1250 *5 *4))) (-5 *1 (-1123 *4 *5)) (-5 *3 (-1250 *5 *4)))) (-1318 (*1 *2 *3 *3) (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1250 *5 *4))) (-5 *1 (-1123 *4 *5)) (-5 *3 (-1250 *5 *4)))))
-(-10 -7 (-15 -1318 ((-650 (-1250 |#2| |#1|)) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -4117 ((-650 (-1250 |#2| |#1|)) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -3487 ((-650 |#1|) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -1426 ((-570) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -4379 ((-570) (-1250 |#2| |#1|))) (IF (|has| |#1| (-458)) (PROGN (-15 -2377 ((-570) (-1250 |#2| |#1|) (-1250 |#2| |#1|))) (-15 -1874 ((-570) (-1250 |#2| |#1|)))) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-1972 (($ (-512) (-1127)) 13)) (-1372 (((-1127) $) 19)) (-1770 (((-512) $) 16)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 26) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1124) (-13 (-1092) (-10 -8 (-15 -1972 ($ (-512) (-1127))) (-15 -1770 ((-512) $)) (-15 -1372 ((-1127) $))))) (T -1124))
-((-1972 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-1124)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1124)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1124)))))
-(-13 (-1092) (-10 -8 (-15 -1972 ($ (-512) (-1127))) (-15 -1770 ((-512) $)) (-15 -1372 ((-1127) $))))
-((-2419 (((-3 (-570) "failed") |#2| (-1186) |#2| (-1168)) 19) (((-3 (-570) "failed") |#2| (-1186) (-849 |#2|)) 17) (((-3 (-570) "failed") |#2|) 60)))
-(((-1125 |#1| |#2|) (-10 -7 (-15 -2419 ((-3 (-570) "failed") |#2|)) (-15 -2419 ((-3 (-570) "failed") |#2| (-1186) (-849 |#2|))) (-15 -2419 ((-3 (-570) "failed") |#2| (-1186) |#2| (-1168)))) (-13 (-562) (-1047 (-570)) (-645 (-570)) (-458)) (-13 (-27) (-1212) (-436 |#1|))) (T -1125))
-((-2419 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-1168)) (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) (-5 *1 (-1125 *6 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6))))) (-2419 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6))) (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) (-5 *1 (-1125 *6 *3)))) (-2419 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))))
-(-10 -7 (-15 -2419 ((-3 (-570) "failed") |#2|)) (-15 -2419 ((-3 (-570) "failed") |#2| (-1186) (-849 |#2|))) (-15 -2419 ((-3 (-570) "failed") |#2| (-1186) |#2| (-1168))))
-((-2419 (((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)) (-1168)) 38) (((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-849 (-413 (-959 |#1|)))) 33) (((-3 (-570) "failed") (-413 (-959 |#1|))) 14)))
-(((-1126 |#1|) (-10 -7 (-15 -2419 ((-3 (-570) "failed") (-413 (-959 |#1|)))) (-15 -2419 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-849 (-413 (-959 |#1|))))) (-15 -2419 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)) (-1168)))) (-458)) (T -1126))
-((-2419 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1186)) (-5 *5 (-1168)) (-4 *6 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *6)))) (-2419 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 (-413 (-959 *6)))) (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *6)))) (-2419 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *4)))))
-(-10 -7 (-15 -2419 ((-3 (-570) "failed") (-413 (-959 |#1|)))) (-15 -2419 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-849 (-413 (-959 |#1|))))) (-15 -2419 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)) (-1168))))
-((-2847 (((-112) $ $) NIL)) (-2925 (((-1191) $) 12)) (-2876 (((-650 (-1191)) $) 14)) (-1372 (($ (-650 (-1191)) (-1191)) 10)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 29)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 17)))
-(((-1127) (-13 (-1109) (-10 -8 (-15 -1372 ($ (-650 (-1191)) (-1191))) (-15 -2925 ((-1191) $)) (-15 -2876 ((-650 (-1191)) $))))) (T -1127))
-((-1372 (*1 *1 *2 *3) (-12 (-5 *2 (-650 (-1191))) (-5 *3 (-1191)) (-5 *1 (-1127)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1127)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1127)))))
-(-13 (-1109) (-10 -8 (-15 -1372 ($ (-650 (-1191)) (-1191))) (-15 -2925 ((-1191) $)) (-15 -2876 ((-650 (-1191)) $))))
-((-3828 (((-320 (-570)) (-48)) 12)))
-(((-1128) (-10 -7 (-15 -3828 ((-320 (-570)) (-48))))) (T -1128))
-((-3828 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-320 (-570))) (-5 *1 (-1128)))))
-(-10 -7 (-15 -3828 ((-320 (-570)) (-48))))
-((-2847 (((-112) $ $) NIL)) (-2867 (($ $) 44)) (-2564 (((-112) $) 70)) (-1958 (($ $ $) 53)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 98)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-2198 (($ $ $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-4396 (($ $ $ $) 81)) (-3312 (($ $) NIL)) (-2929 (((-424 $) $) NIL)) (-1799 (((-112) $ $) NIL)) (-2401 (((-777)) 83)) (-2419 (((-570) $) NIL)) (-3609 (($ $ $) 78)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL)) (-4387 (((-570) $) NIL)) (-2788 (($ $ $) 64)) (-3054 (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 92) (((-695 (-570)) (-695 $)) 32)) (-3957 (((-3 $ "failed") $) NIL)) (-2477 (((-3 (-413 (-570)) "failed") $) NIL)) (-3994 (((-112) $) NIL)) (-1577 (((-413 (-570)) $) NIL)) (-2066 (($) 95) (($ $) 96)) (-2799 (($ $ $) 63)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL)) (-2145 (((-112) $) NIL)) (-3879 (($ $ $ $) NIL)) (-2711 (($ $ $) 93)) (-2811 (((-112) $) NIL)) (-2614 (($ $ $) NIL)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-3224 (($ $ $) 52)) (-2005 (((-112) $) 72)) (-1973 (((-112) $) 69)) (-3201 (($ $) 45)) (-3525 (((-3 $ "failed") $) NIL)) (-2746 (((-112) $) 82)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-4258 (($ $ $ $) 79)) (-1908 (($ $ $) 74) (($) 42 T CONST)) (-1764 (($ $ $) 73) (($) 41 T CONST)) (-3520 (($ $) NIL)) (-1997 (((-928) $) 88)) (-1831 (($ $) 77)) (-3867 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3240 (((-1168) $) NIL)) (-1659 (($ $ $) NIL)) (-3458 (($) NIL T CONST)) (-4298 (($ (-928)) 87)) (-3032 (($ $) 57)) (-3891 (((-1129) $) 76)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-3903 (($ $ $) 67) (($ (-650 $)) NIL)) (-3459 (($ $) NIL)) (-2340 (((-424 $) $) NIL)) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL)) (-2837 (((-3 $ "failed") $ $) NIL)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2160 (((-112) $) NIL)) (-2002 (((-777) $) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 66)) (-2375 (($ $ (-777)) NIL) (($ $) NIL)) (-3337 (($ $) 58)) (-3064 (($ $) NIL)) (-2601 (((-570) $) 17) (((-542) $) NIL) (((-899 (-570)) $) NIL) (((-384) $) NIL) (((-227) $) NIL)) (-2869 (((-868) $) 35) (($ (-570)) 94) (($ $) NIL) (($ (-570)) 94)) (-2294 (((-777)) NIL T CONST)) (-1790 (((-112) $ $) NIL)) (-1500 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-1540 (($) 40)) (-2939 (((-112) $ $) NIL)) (-3212 (($ $ $) 50)) (-2677 (($ $ $ $) 80)) (-2521 (($ $) 68)) (-2911 (($ $ $) 47)) (-1981 (($) 7 T CONST)) (-2898 (($ $ $) 51)) (-1998 (($) 39 T CONST)) (-4245 (((-1168) $) 26) (((-1168) $ (-112)) 27) (((-1282) (-828) $) 28) (((-1282) (-828) $ (-112)) 29)) (-2909 (($ $) 48)) (-3414 (($ $ (-777)) NIL) (($ $) NIL)) (-2886 (($ $ $) 49)) (-3959 (((-112) $ $) 56)) (-3933 (((-112) $ $) 54)) (-3892 (((-112) $ $) 43)) (-3945 (((-112) $ $) 55)) (-3918 (((-112) $ $) 10)) (-2895 (($ $ $) 46)) (-4003 (($ $) 16) (($ $ $) 60)) (-3992 (($ $ $) 59)) (** (($ $ (-928)) NIL) (($ $ (-777)) 62)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 38) (($ $ $) 37)))
-(((-1129) (-13 (-551) (-850) (-113) (-667) (-834) (-10 -8 (-6 -4439) (-6 -4444) (-6 -4440) (-15 -1958 ($ $ $)) (-15 -2909 ($ $)) (-15 -2886 ($ $ $)) (-15 -2898 ($ $ $))))) (T -1129))
-((-1958 (*1 *1 *1 *1) (-5 *1 (-1129))) (-2909 (*1 *1 *1) (-5 *1 (-1129))) (-2886 (*1 *1 *1 *1) (-5 *1 (-1129))) (-2898 (*1 *1 *1 *1) (-5 *1 (-1129))))
-(-13 (-551) (-850) (-113) (-667) (-834) (-10 -8 (-6 -4439) (-6 -4444) (-6 -4440) (-15 -1958 ($ $ $)) (-15 -2909 ($ $)) (-15 -2886 ($ $ $)) (-15 -2898 ($ $ $))))
+(((-93) . T) ((-102) . T) ((-624 #0=(-1193)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T))
+((-1803 ((|#1| |#1| (-1 (-572) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2908 (((-1284)) 21)) (-2944 (((-652 |#1|)) 13)))
+(((-1095 |#1|) (-10 -7 (-15 -2908 ((-1284))) (-15 -2944 ((-652 |#1|))) (-15 -1803 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1803 (|#1| |#1| (-1 (-572) |#1| |#1|)))) (-133)) (T -1095))
+((-1803 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-572) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2)))) (-1803 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2)))) (-2944 (*1 *2) (-12 (-5 *2 (-652 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))) (-2908 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))))
+(-10 -7 (-15 -2908 ((-1284))) (-15 -2944 ((-652 |#1|))) (-15 -1803 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1803 (|#1| |#1| (-1 (-572) |#1| |#1|))))
+((-2559 (($ (-109) $) 20)) (-1656 (((-699 (-109)) (-514) $) 19)) (-1321 (($) 7)) (-2533 (($) 21)) (-3769 (($) 22)) (-2387 (((-652 (-177)) $) 10)) (-3491 (((-870) $) 25)))
+(((-1096) (-13 (-621 (-870)) (-10 -8 (-15 -1321 ($)) (-15 -2387 ((-652 (-177)) $)) (-15 -1656 ((-699 (-109)) (-514) $)) (-15 -2559 ($ (-109) $)) (-15 -2533 ($)) (-15 -3769 ($))))) (T -1096))
+((-1321 (*1 *1) (-5 *1 (-1096))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-652 (-177))) (-5 *1 (-1096)))) (-1656 (*1 *2 *3 *1) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-1096)))) (-2559 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1096)))) (-2533 (*1 *1) (-5 *1 (-1096))) (-3769 (*1 *1) (-5 *1 (-1096))))
+(-13 (-621 (-870)) (-10 -8 (-15 -1321 ($)) (-15 -2387 ((-652 (-177)) $)) (-15 -1656 ((-699 (-109)) (-514) $)) (-15 -2559 ($ (-109) $)) (-15 -2533 ($)) (-15 -3769 ($))))
+((-3862 (((-1279 (-697 |#1|)) (-652 (-697 |#1|))) 45) (((-1279 (-697 (-961 |#1|))) (-652 (-1188)) (-697 (-961 |#1|))) 75) (((-1279 (-697 (-415 (-961 |#1|)))) (-652 (-1188)) (-697 (-415 (-961 |#1|)))) 92)) (-2862 (((-1279 |#1|) (-697 |#1|) (-652 (-697 |#1|))) 39)))
+(((-1097 |#1|) (-10 -7 (-15 -3862 ((-1279 (-697 (-415 (-961 |#1|)))) (-652 (-1188)) (-697 (-415 (-961 |#1|))))) (-15 -3862 ((-1279 (-697 (-961 |#1|))) (-652 (-1188)) (-697 (-961 |#1|)))) (-15 -3862 ((-1279 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2862 ((-1279 |#1|) (-697 |#1|) (-652 (-697 |#1|))))) (-370)) (T -1097))
+((-2862 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-697 *5))) (-5 *3 (-697 *5)) (-4 *5 (-370)) (-5 *2 (-1279 *5)) (-5 *1 (-1097 *5)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-1097 *4)))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370)) (-5 *2 (-1279 (-697 (-961 *5)))) (-5 *1 (-1097 *5)) (-5 *4 (-697 (-961 *5))))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370)) (-5 *2 (-1279 (-697 (-415 (-961 *5))))) (-5 *1 (-1097 *5)) (-5 *4 (-697 (-415 (-961 *5)))))))
+(-10 -7 (-15 -3862 ((-1279 (-697 (-415 (-961 |#1|)))) (-652 (-1188)) (-697 (-415 (-961 |#1|))))) (-15 -3862 ((-1279 (-697 (-961 |#1|))) (-652 (-1188)) (-697 (-961 |#1|)))) (-15 -3862 ((-1279 (-697 |#1|)) (-652 (-697 |#1|)))) (-15 -2862 ((-1279 |#1|) (-697 |#1|) (-652 (-697 |#1|)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2259 (((-652 (-779)) $) NIL) (((-652 (-779)) $ (-1188)) NIL)) (-1470 (((-779) $) NIL) (((-779) $ (-1188)) NIL)) (-2220 (((-652 (-1099 (-1188))) $) NIL)) (-4063 (((-1184 $) $ (-1099 (-1188))) NIL) (((-1184 |#1|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-1099 (-1188)))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2844 (($ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1099 (-1188)) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL) (((-3 (-1136 |#1| (-1188)) "failed") $) NIL)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1099 (-1188)) $) NIL) (((-1188) $) NIL) (((-1136 |#1| (-1188)) $) NIL)) (-3829 (($ $ $ (-1099 (-1188))) NIL (|has| |#1| (-174)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ (-1099 (-1188))) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-539 (-1099 (-1188))) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1099 (-1188)) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1099 (-1188)) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2068 (((-779) $ (-1188)) NIL) (((-779) $) NIL)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3060 (($ (-1184 |#1|) (-1099 (-1188))) NIL) (($ (-1184 $) (-1099 (-1188))) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-539 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-1099 (-1188))) NIL)) (-3808 (((-539 (-1099 (-1188))) $) NIL) (((-779) $ (-1099 (-1188))) NIL) (((-652 (-779)) $ (-652 (-1099 (-1188)))) NIL)) (-2008 (($ (-1 (-539 (-1099 (-1188))) (-539 (-1099 (-1188)))) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4376 (((-1 $ (-779)) (-1188)) NIL) (((-1 $ (-779)) $) NIL (|has| |#1| (-237)))) (-4107 (((-3 (-1099 (-1188)) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-2755 (((-1099 (-1188)) $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-3740 (((-112) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-1099 (-1188))) (|:| -2477 (-779))) "failed") $) NIL)) (-3419 (($ $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1099 (-1188)) |#1|) NIL) (($ $ (-652 (-1099 (-1188))) (-652 |#1|)) NIL) (($ $ (-1099 (-1188)) $) NIL) (($ $ (-652 (-1099 (-1188))) (-652 $)) NIL) (($ $ (-1188) $) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 $)) NIL (|has| |#1| (-237))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-237))) (($ $ (-652 (-1188)) (-652 |#1|)) NIL (|has| |#1| (-237)))) (-2020 (($ $ (-1099 (-1188))) NIL (|has| |#1| (-174)))) (-3011 (($ $ (-1099 (-1188))) NIL) (($ $ (-652 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3253 (((-652 (-1188)) $) NIL)) (-1497 (((-539 (-1099 (-1188))) $) NIL) (((-779) $ (-1099 (-1188))) NIL) (((-652 (-779)) $ (-652 (-1099 (-1188)))) NIL) (((-779) $ (-1188)) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-1099 (-1188)) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1099 (-1188)) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1099 (-1188)) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) NIL (|has| |#1| (-460))) (($ $ (-1099 (-1188))) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-1099 (-1188))) NIL) (($ (-1188)) NIL) (($ (-1136 |#1| (-1188))) NIL) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-539 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-1099 (-1188))) NIL) (($ $ (-652 (-1099 (-1188)))) NIL) (($ $ (-1099 (-1188)) (-779)) NIL) (($ $ (-652 (-1099 (-1188))) (-652 (-779))) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-779)) NIL (|has| |#1| (-237))) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1098 |#1|) (-13 (-258 |#1| (-1188) (-1099 (-1188)) (-539 (-1099 (-1188)))) (-1049 (-1136 |#1| (-1188)))) (-1060)) (T -1098))
+NIL
+(-13 (-258 |#1| (-1188) (-1099 (-1188)) (-539 (-1099 (-1188)))) (-1049 (-1136 |#1| (-1188))))
+((-3464 (((-112) $ $) NIL)) (-1470 (((-779) $) NIL)) (-2043 ((|#1| $) 10)) (-3072 (((-3 |#1| "failed") $) NIL)) (-1869 ((|#1| $) NIL)) (-2068 (((-779) $) 11)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-4376 (($ |#1| (-779)) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3011 (($ $) NIL) (($ $ (-779)) NIL)) (-3491 (((-870) $) NIL) (($ |#1|) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 16)))
+(((-1099 |#1|) (-271 |#1|) (-858)) (T -1099))
+NIL
+(-271 |#1|)
+((-3161 (((-652 |#2|) (-1 |#2| |#1|) (-1105 |#1|)) 29 (|has| |#1| (-856))) (((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|)) 14)))
+(((-1100 |#1| |#2|) (-10 -7 (-15 -3161 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) (IF (|has| |#1| (-856)) (-15 -3161 ((-652 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) |%noBranch|)) (-1229) (-1229)) (T -1100))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-856)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-652 *6)) (-5 *1 (-1100 *5 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1105 *6)) (-5 *1 (-1100 *5 *6)))))
+(-10 -7 (-15 -3161 ((-1105 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) (IF (|has| |#1| (-856)) (-15 -3161 ((-652 |#2|) (-1 |#2| |#1|) (-1105 |#1|))) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 16) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2537 (((-652 (-1146)) $) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1101) (-13 (-1094) (-10 -8 (-15 -2537 ((-652 (-1146)) $))))) (T -1101))
+((-2537 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1101)))))
+(-13 (-1094) (-10 -8 (-15 -2537 ((-652 (-1146)) $))))
+((-3161 (((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|)) 19)))
+(((-1102 |#1| |#2|) (-10 -7 (-15 -3161 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|)))) (-1229) (-1229)) (T -1102))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1103 *6)) (-5 *1 (-1102 *5 *6)))))
+(-10 -7 (-15 -3161 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|))))
+((-3464 (((-112) $ $) NIL (|has| (-1105 |#1|) (-1111)))) (-2043 (((-1188) $) NIL)) (-1590 (((-1105 |#1|) $) NIL)) (-3618 (((-1170) $) NIL (|has| (-1105 |#1|) (-1111)))) (-2614 (((-1131) $) NIL (|has| (-1105 |#1|) (-1111)))) (-3283 (($ (-1188) (-1105 |#1|)) NIL)) (-3491 (((-870) $) NIL (|has| (-1105 |#1|) (-1111)))) (-3424 (((-112) $ $) NIL (|has| (-1105 |#1|) (-1111)))) (-3921 (((-112) $ $) NIL (|has| (-1105 |#1|) (-1111)))))
+(((-1103 |#1|) (-13 (-1229) (-10 -8 (-15 -3283 ($ (-1188) (-1105 |#1|))) (-15 -2043 ((-1188) $)) (-15 -1590 ((-1105 |#1|) $)) (IF (|has| (-1105 |#1|) (-1111)) (-6 (-1111)) |%noBranch|))) (-1229)) (T -1103))
+((-3283 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1105 *4)) (-4 *4 (-1229)) (-5 *1 (-1103 *4)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1103 *3)) (-4 *3 (-1229)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-1105 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-1229)))))
+(-13 (-1229) (-10 -8 (-15 -3283 ($ (-1188) (-1105 |#1|))) (-15 -2043 ((-1188) $)) (-15 -1590 ((-1105 |#1|) $)) (IF (|has| (-1105 |#1|) (-1111)) (-6 (-1111)) |%noBranch|)))
+((-1590 (($ |#1| |#1|) 8)) (-2331 ((|#1| $) 11)) (-2680 ((|#1| $) 13)) (-4350 (((-572) $) 9)) (-2891 ((|#1| $) 10)) (-4360 ((|#1| $) 12)) (-3222 (($ |#1|) 6)) (-2479 (($ |#1| |#1|) 15)) (-3711 (($ $ (-572)) 14)))
+(((-1104 |#1|) (-141) (-1229)) (T -1104))
+((-2479 (*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1104 *3)) (-4 *3 (-1229)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))) (-4350 (*1 *2 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))) (-1590 (*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
+(-13 (-626 |t#1|) (-10 -8 (-15 -2479 ($ |t#1| |t#1|)) (-15 -3711 ($ $ (-572))) (-15 -2680 (|t#1| $)) (-15 -4360 (|t#1| $)) (-15 -2331 (|t#1| $)) (-15 -2891 (|t#1| $)) (-15 -4350 ((-572) $)) (-15 -1590 ($ |t#1| |t#1|))))
+(((-626 |#1|) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1590 (($ |#1| |#1|) 16)) (-3161 (((-652 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-856)))) (-2331 ((|#1| $) 12)) (-2680 ((|#1| $) 11)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-4350 (((-572) $) 15)) (-2891 ((|#1| $) 14)) (-4360 ((|#1| $) 13)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1386 (((-652 |#1|) $) 44 (|has| |#1| (-856))) (((-652 |#1|) (-652 $)) 43 (|has| |#1| (-856)))) (-3222 (($ |#1|) 29)) (-3491 (((-870) $) 28 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2479 (($ |#1| |#1|) 10)) (-3711 (($ $ (-572)) 17)) (-3921 (((-112) $ $) 22 (|has| |#1| (-1111)))))
+(((-1105 |#1|) (-13 (-1104 |#1|) (-10 -7 (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-652 |#1|))) |%noBranch|))) (-1229)) (T -1105))
+NIL
+(-13 (-1104 |#1|) (-10 -7 (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-652 |#1|))) |%noBranch|)))
+((-1590 (($ |#1| |#1|) 8)) (-3161 ((|#2| (-1 |#1| |#1|) $) 16)) (-2331 ((|#1| $) 11)) (-2680 ((|#1| $) 13)) (-4350 (((-572) $) 9)) (-2891 ((|#1| $) 10)) (-4360 ((|#1| $) 12)) (-1386 ((|#2| (-652 $)) 18) ((|#2| $) 17)) (-3222 (($ |#1|) 6)) (-2479 (($ |#1| |#1|) 15)) (-3711 (($ $ (-572)) 14)))
+(((-1106 |#1| |#2|) (-141) (-856) (-1160 |t#1|)) (T -1106))
+((-1386 (*1 *2 *3) (-12 (-5 *3 (-652 *1)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856)) (-4 *2 (-1160 *4)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1160 *3)))) (-3161 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856)) (-4 *2 (-1160 *4)))))
+(-13 (-1104 |t#1|) (-10 -8 (-15 -1386 (|t#2| (-652 $))) (-15 -1386 (|t#2| $)) (-15 -3161 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-626 |#1|) . T) ((-1104 |#1|) . T))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-4261 (((-1146) $) 12)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 18) (($ (-1193)) NIL) (((-1193) $) NIL)) (-2414 (((-652 (-1146)) $) 10)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1107) (-13 (-1094) (-10 -8 (-15 -2414 ((-652 (-1146)) $)) (-15 -4261 ((-1146) $))))) (T -1107))
+((-2414 (*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1107)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1107)))))
+(-13 (-1094) (-10 -8 (-15 -2414 ((-652 (-1146)) $)) (-15 -4261 ((-1146) $))))
+((-2266 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3395 (($ $ $) 10)) (-2645 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1108 |#1| |#2|) (-10 -8 (-15 -2266 (|#1| |#2| |#1|)) (-15 -2266 (|#1| |#1| |#2|)) (-15 -2266 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| |#2|)) (-15 -2645 (|#1| |#1| |#1|))) (-1109 |#2|) (-1111)) (T -1108))
+NIL
+(-10 -8 (-15 -2266 (|#1| |#2| |#1|)) (-15 -2266 (|#1| |#1| |#2|)) (-15 -2266 (|#1| |#1| |#1|)) (-15 -3395 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| |#2|)) (-15 -2645 (|#1| |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-2266 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3395 (($ $ $) 21)) (-3219 (((-112) $ $) 20)) (-2938 (((-112) $ (-779)) 36)) (-1926 (($) 26) (($ (-652 |#1|)) 25)) (-1424 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4454)))) (-1586 (($) 37 T CONST)) (-3955 (($ $) 60 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#1| $) 59 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4454)))) (-1442 (((-652 |#1|) $) 44 (|has| $ (-6 -4454)))) (-2942 (((-112) $ $) 29)) (-2545 (((-112) $ (-779)) 35)) (-2396 (((-652 |#1|) $) 45 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 39)) (-3818 (((-112) $ (-779)) 34)) (-3618 (((-1170) $) 10)) (-3225 (($ $ $) 24)) (-2614 (((-1131) $) 11)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3089 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#1|) (-652 |#1|)) 51 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 49 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 (-300 |#1|))) 48 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 30)) (-3712 (((-112) $) 33)) (-1321 (($) 32)) (-2645 (($ $ $) 23) (($ $ |#1|) 22)) (-1371 (((-779) |#1| $) 46 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4454)))) (-3679 (($ $) 31)) (-3222 (((-544) $) 61 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 52)) (-3491 (((-870) $) 12)) (-3826 (($) 28) (($ (-652 |#1|)) 27)) (-3424 (((-112) $ $) 9)) (-3776 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 6)) (-3475 (((-779) $) 38 (|has| $ (-6 -4454)))))
+(((-1109 |#1|) (-141) (-1111)) (T -1109))
+((-2942 (*1 *2 *1 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-3826 (*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-3826 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3)))) (-1926 (*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3)))) (-3225 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-2645 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-3395 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-3219 (*1 *2 *1 *1) (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))) (-2266 (*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-2266 (*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))) (-2266 (*1 *1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
+(-13 (-1111) (-152 |t#1|) (-10 -8 (-6 -4444) (-15 -2942 ((-112) $ $)) (-15 -3826 ($)) (-15 -3826 ($ (-652 |t#1|))) (-15 -1926 ($)) (-15 -1926 ($ (-652 |t#1|))) (-15 -3225 ($ $ $)) (-15 -2645 ($ $ $)) (-15 -2645 ($ $ |t#1|)) (-15 -3395 ($ $ $)) (-15 -3219 ((-112) $ $)) (-15 -2266 ($ $ $)) (-15 -2266 ($ $ |t#1|)) (-15 -2266 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) . T) ((-1229) . T))
+((-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 8)) (-3424 (((-112) $ $) 12)))
+(((-1110 |#1|) (-10 -8 (-15 -3424 ((-112) |#1| |#1|)) (-15 -3618 ((-1170) |#1|)) (-15 -2614 ((-1131) |#1|))) (-1111)) (T -1110))
+NIL
+(-10 -8 (-15 -3424 ((-112) |#1| |#1|)) (-15 -3618 ((-1170) |#1|)) (-15 -2614 ((-1131) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-1111) (-141)) (T -1111))
+((-2614 (*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1131)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1170)))) (-3424 (*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))))
+(-13 (-102) (-621 (-870)) (-10 -8 (-15 -2614 ((-1131) $)) (-15 -3618 ((-1170) $)) (-15 -3424 ((-112) $ $))))
+(((-102) . T) ((-621 (-870)) . T))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) 36)) (-4044 (($ (-652 (-930))) 70)) (-2504 (((-3 $ "failed") $ (-930) (-930)) 81)) (-2688 (($) 40)) (-4211 (((-112) (-930) $) 42)) (-4370 (((-930) $) 64)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) 39)) (-2081 (((-3 $ "failed") $ (-930)) 77)) (-2614 (((-1131) $) NIL)) (-1903 (((-1279 $)) 47)) (-2699 (((-652 (-930)) $) 27)) (-4198 (((-779) $ (-930) (-930)) 78)) (-3491 (((-870) $) 32)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 24)))
+(((-1112 |#1| |#2|) (-13 (-375) (-10 -8 (-15 -2081 ((-3 $ "failed") $ (-930))) (-15 -2504 ((-3 $ "failed") $ (-930) (-930))) (-15 -2699 ((-652 (-930)) $)) (-15 -4044 ($ (-652 (-930)))) (-15 -1903 ((-1279 $))) (-15 -4211 ((-112) (-930) $)) (-15 -4198 ((-779) $ (-930) (-930))))) (-930) (-930)) (T -1112))
+((-2081 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2504 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-1903 (*1 *2) (-12 (-5 *2 (-1279 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930)))) (-4211 (*1 *2 *3 *1) (-12 (-5 *3 (-930)) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-779)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-375) (-10 -8 (-15 -2081 ((-3 $ "failed") $ (-930))) (-15 -2504 ((-3 $ "failed") $ (-930) (-930))) (-15 -2699 ((-652 (-930)) $)) (-15 -4044 ($ (-652 (-930)))) (-15 -1903 ((-1279 $))) (-15 -4211 ((-112) (-930) $)) (-15 -4198 ((-779) $ (-930) (-930)))))
+((-3464 (((-112) $ $) NIL)) (-3054 (($) NIL (|has| |#1| (-375)))) (-2266 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3395 (($ $ $) 81)) (-3219 (((-112) $ $) 82)) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| |#1| (-375)))) (-1926 (($ (-652 |#1|)) NIL) (($) 13)) (-2265 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3033 (($ |#1| $) 74 (|has| $ (-6 -4454))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4454)))) (-2688 (($) NIL (|has| |#1| (-375)))) (-1442 (((-652 |#1|) $) 19 (|has| $ (-6 -4454)))) (-2942 (((-112) $ $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-2536 ((|#1| $) 55 (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3928 ((|#1| $) 53 (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 34)) (-4370 (((-930) $) NIL (|has| |#1| (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-3225 (($ $ $) 79)) (-1533 ((|#1| $) 25)) (-3704 (($ |#1| $) 69)) (-1795 (($ (-930)) NIL (|has| |#1| (-375)))) (-2614 (((-1131) $) NIL)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4105 ((|#1| $) 27)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 21)) (-1321 (($) 11)) (-2645 (($ $ |#1|) NIL) (($ $ $) 80)) (-2145 (($) NIL) (($ (-652 |#1|)) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 16)) (-3222 (((-544) $) 50 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 62)) (-3347 (($ $) NIL (|has| |#1| (-375)))) (-3491 (((-870) $) NIL)) (-2443 (((-779) $) NIL)) (-3826 (($ (-652 |#1|)) NIL) (($) 12)) (-3424 (((-112) $ $) NIL)) (-4163 (($ (-652 |#1|)) NIL)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 52)) (-3475 (((-779) $) 10 (|has| $ (-6 -4454)))))
+(((-1113 |#1|) (-433 |#1|) (-1111)) (T -1113))
+NIL
+(-433 |#1|)
+((-3464 (((-112) $ $) 7)) (-3911 (((-112) $) 33)) (-4401 ((|#2| $) 28)) (-2828 (((-112) $) 34)) (-2271 ((|#1| $) 29)) (-1812 (((-112) $) 36)) (-2101 (((-112) $) 38)) (-2649 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-4387 (((-112) $) 32)) (-4418 ((|#3| $) 27)) (-2614 (((-1131) $) 11)) (-3463 (((-112) $) 31)) (-2150 ((|#4| $) 26)) (-1999 ((|#5| $) 25)) (-3179 (((-112) $ $) 39)) (-2679 (($ $ (-572)) 41) (($ $ (-652 (-572))) 40)) (-4420 (((-652 $) $) 30)) (-3222 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-652 $)) 42)) (-3491 (((-870) $) 12)) (-1479 (($ $) 23)) (-3765 (($ $) 24)) (-3424 (((-112) $ $) 9)) (-4112 (((-112) $) 37)) (-3921 (((-112) $ $) 6)) (-3475 (((-572) $) 22)))
+(((-1114 |#1| |#2| |#3| |#4| |#5|) (-141) (-1111) (-1111) (-1111) (-1111) (-1111)) (T -1114))
+((-3179 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))) (-4420 (*1 *2 *1) (-12 (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-1114 *3 *4 *5 *6 *7)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *2 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-4418 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *2 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2 *6)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *2)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))) (-3765 (*1 *1 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))) (-1479 (*1 *1 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-572)))))
+(-13 (-1111) (-626 |t#1|) (-626 |t#2|) (-626 |t#3|) (-626 |t#4|) (-626 |t#4|) (-626 |t#5|) (-626 (-652 $)) (-292 (-572) $) (-292 (-652 (-572)) $) (-10 -8 (-15 -3179 ((-112) $ $)) (-15 -2101 ((-112) $)) (-15 -4112 ((-112) $)) (-15 -1812 ((-112) $)) (-15 -2649 ((-112) $)) (-15 -2828 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -4387 ((-112) $)) (-15 -3463 ((-112) $)) (-15 -4420 ((-652 $) $)) (-15 -2271 (|t#1| $)) (-15 -4401 (|t#2| $)) (-15 -4418 (|t#3| $)) (-15 -2150 (|t#4| $)) (-15 -1999 (|t#5| $)) (-15 -3765 ($ $)) (-15 -1479 ($ $)) (-15 -3475 ((-572) $))))
+(((-102) . T) ((-621 (-870)) . T) ((-626 (-652 $)) . T) ((-626 |#1|) . T) ((-626 |#2|) . T) ((-626 |#3|) . T) ((-626 |#4|) . T) ((-626 |#5|) . T) ((-292 (-572) $) . T) ((-292 (-652 (-572)) $) . T) ((-1111) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3911 (((-112) $) NIL)) (-4401 (((-1188) $) NIL)) (-2828 (((-112) $) NIL)) (-2271 (((-1170) $) NIL)) (-1812 (((-112) $) NIL)) (-2101 (((-112) $) NIL)) (-2649 (((-112) $) NIL)) (-3618 (((-1170) $) NIL)) (-4387 (((-112) $) NIL)) (-4418 (((-572) $) NIL)) (-2614 (((-1131) $) NIL)) (-3463 (((-112) $) NIL)) (-2150 (((-227) $) NIL)) (-1999 (((-870) $) NIL)) (-3179 (((-112) $ $) NIL)) (-2679 (($ $ (-572)) NIL) (($ $ (-652 (-572))) NIL)) (-4420 (((-652 $) $) NIL)) (-3222 (($ (-1170)) NIL) (($ (-1188)) NIL) (($ (-572)) NIL) (($ (-227)) NIL) (($ (-870)) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL)) (-1479 (($ $) NIL)) (-3765 (($ $) NIL)) (-3424 (((-112) $ $) NIL)) (-4112 (((-112) $) NIL)) (-3921 (((-112) $ $) NIL)) (-3475 (((-572) $) NIL)))
+(((-1115) (-1114 (-1170) (-1188) (-572) (-227) (-870))) (T -1115))
+NIL
+(-1114 (-1170) (-1188) (-572) (-227) (-870))
+((-3464 (((-112) $ $) NIL)) (-3911 (((-112) $) 45)) (-4401 ((|#2| $) 48)) (-2828 (((-112) $) 20)) (-2271 ((|#1| $) 21)) (-1812 (((-112) $) 42)) (-2101 (((-112) $) 14)) (-2649 (((-112) $) 44)) (-3618 (((-1170) $) NIL)) (-4387 (((-112) $) 46)) (-4418 ((|#3| $) 50)) (-2614 (((-1131) $) NIL)) (-3463 (((-112) $) 47)) (-2150 ((|#4| $) 49)) (-1999 ((|#5| $) 51)) (-3179 (((-112) $ $) 41)) (-2679 (($ $ (-572)) 62) (($ $ (-652 (-572))) 64)) (-4420 (((-652 $) $) 27)) (-3222 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-652 $)) 52)) (-3491 (((-870) $) 28)) (-1479 (($ $) 26)) (-3765 (($ $) 58)) (-3424 (((-112) $ $) NIL)) (-4112 (((-112) $) 23)) (-3921 (((-112) $ $) 40)) (-3475 (((-572) $) 60)))
+(((-1116 |#1| |#2| |#3| |#4| |#5|) (-1114 |#1| |#2| |#3| |#4| |#5|) (-1111) (-1111) (-1111) (-1111) (-1111)) (T -1116))
+NIL
+(-1114 |#1| |#2| |#3| |#4| |#5|)
+((-2864 (((-1284) $) 22)) (-3185 (($ (-1188) (-442) |#2|) 11)) (-3491 (((-870) $) 16)))
+(((-1117 |#1| |#2|) (-13 (-403) (-10 -8 (-15 -3185 ($ (-1188) (-442) |#2|)))) (-1111) (-438 |#1|)) (T -1117))
+((-3185 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1188)) (-5 *3 (-442)) (-4 *5 (-1111)) (-5 *1 (-1117 *5 *4)) (-4 *4 (-438 *5)))))
+(-13 (-403) (-10 -8 (-15 -3185 ($ (-1188) (-442) |#2|))))
+((-3048 (((-112) |#5| |#5|) 44)) (-4047 (((-112) |#5| |#5|) 59)) (-1736 (((-112) |#5| (-652 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2487 (((-112) (-652 |#4|) (-652 |#4|)) 65)) (-4230 (((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) 70)) (-3010 (((-1284)) 32)) (-2377 (((-1284) (-1170) (-1170) (-1170)) 28)) (-3264 (((-652 |#5|) (-652 |#5|)) 101)) (-3573 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) 93)) (-3670 (((-652 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112)) 123)) (-3393 (((-112) |#5| |#5|) 53)) (-4245 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4082 (((-112) (-652 |#4|) (-652 |#4|)) 64)) (-3208 (((-112) (-652 |#4|) (-652 |#4|)) 66)) (-4398 (((-112) (-652 |#4|) (-652 |#4|)) 67)) (-1349 (((-3 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3763 (((-652 |#5|) (-652 |#5|)) 49)))
+(((-1118 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2377 ((-1284) (-1170) (-1170) (-1170))) (-15 -3010 ((-1284))) (-15 -3048 ((-112) |#5| |#5|)) (-15 -3763 ((-652 |#5|) (-652 |#5|))) (-15 -3393 ((-112) |#5| |#5|)) (-15 -4047 ((-112) |#5| |#5|)) (-15 -2487 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4082 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3208 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4398 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4245 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1736 ((-112) |#5| |#5|)) (-15 -1736 ((-112) |#5| (-652 |#5|))) (-15 -3264 ((-652 |#5|) (-652 |#5|))) (-15 -4230 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3573 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-15 -3670 ((-652 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1349 ((-3 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1118))
+((-1349 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| -3179 (-652 *9)) (|:| -1746 *4) (|:| |ineq| (-652 *9)))) (-5 *1 (-1118 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9)) (-4 *4 (-1082 *6 *7 *8 *9)))) (-3670 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| -3179 (-652 *9)) (|:| -1746 *10) (|:| |ineq| (-652 *9))))) (-5 *1 (-1118 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -1746 *7)))) (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))) (-4230 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))) (-1736 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1118 *5 *6 *7 *8 *3)))) (-1736 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-4245 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-4398 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3208 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4082 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-2487 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-4047 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3393 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3763 (*1 *2 *2) (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))) (-3048 (*1 *2 *3 *3) (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))) (-3010 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-2377 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2377 ((-1284) (-1170) (-1170) (-1170))) (-15 -3010 ((-1284))) (-15 -3048 ((-112) |#5| |#5|)) (-15 -3763 ((-652 |#5|) (-652 |#5|))) (-15 -3393 ((-112) |#5| |#5|)) (-15 -4047 ((-112) |#5| |#5|)) (-15 -2487 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4082 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -3208 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4398 ((-112) (-652 |#4|) (-652 |#4|))) (-15 -4245 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1736 ((-112) |#5| |#5|)) (-15 -1736 ((-112) |#5| (-652 |#5|))) (-15 -3264 ((-652 |#5|) (-652 |#5|))) (-15 -4230 ((-112) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3573 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-15 -3670 ((-652 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|)))) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -1349 ((-3 (-2 (|:| -3179 (-652 |#4|)) (|:| -1746 |#5|) (|:| |ineq| (-652 |#4|))) "failed") (-652 |#4|) |#5| (-652 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2637 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|) 108)) (-4139 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#4| |#4| |#5|) 80)) (-2714 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|) 102)) (-3386 (((-652 |#5|) |#4| |#5|) 124)) (-1963 (((-652 |#5|) |#4| |#5|) 131)) (-3585 (((-652 |#5|) |#4| |#5|) 132)) (-2553 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|) 109)) (-2601 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|) 130)) (-3619 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2603 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#3| (-112)) 92) (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1684 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|) 87)) (-2282 (((-1284)) 36)) (-3375 (((-1284)) 25)) (-2319 (((-1284) (-1170) (-1170) (-1170)) 32)) (-4167 (((-1284) (-1170) (-1170) (-1170)) 21)))
+(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4167 ((-1284) (-1170) (-1170) (-1170))) (-15 -3375 ((-1284))) (-15 -2319 ((-1284) (-1170) (-1170) (-1170))) (-15 -2282 ((-1284))) (-15 -4139 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -2603 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2603 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#3| (-112))) (-15 -1684 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -2714 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3619 ((-112) |#4| |#5|)) (-15 -2553 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -3386 ((-652 |#5|) |#4| |#5|)) (-15 -2601 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -1963 ((-652 |#5|) |#4| |#5|)) (-15 -3619 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -3585 ((-652 |#5|) |#4| |#5|)) (-15 -2637 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1119))
+((-2637 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3585 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1963 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2601 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3386 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2553 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2714 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-1684 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2603 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9)))) (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858)) (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -1746 *9)))) (-5 *1 (-1119 *6 *7 *4 *8 *9)))) (-2603 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1119 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-4139 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))) (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-2282 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-2319 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))) (-3375 (*1 *2) (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284)) (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))) (-4167 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284)) (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4167 ((-1284) (-1170) (-1170) (-1170))) (-15 -3375 ((-1284))) (-15 -2319 ((-1284) (-1170) (-1170) (-1170))) (-15 -2282 ((-1284))) (-15 -4139 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -2603 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2603 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) |#3| (-112))) (-15 -1684 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -2714 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#4| |#5|)) (-15 -3619 ((-112) |#4| |#5|)) (-15 -2553 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -3386 ((-652 |#5|) |#4| |#5|)) (-15 -2601 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -1963 ((-652 |#5|) |#4| |#5|)) (-15 -3619 ((-652 (-2 (|:| |val| (-112)) (|:| -1746 |#5|))) |#4| |#5|)) (-15 -3585 ((-652 |#5|) |#4| |#5|)) (-15 -2637 ((-652 (-2 (|:| |val| |#4|) (|:| -1746 |#5|))) |#4| |#5|)))
+((-3464 (((-112) $ $) 7)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) 86)) (-3426 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-2220 (((-652 |#3|) $) 34)) (-2029 (((-112) $) 27)) (-4308 (((-112) $) 18 (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) 102) (((-112) $) 98)) (-2373 ((|#4| |#4| $) 93)) (-1861 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| $) 127)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) 28)) (-2938 (((-112) $ (-779)) 45)) (-1424 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-1586 (($) 46 T CONST)) (-3571 (((-112) $) 23 (|has| |#1| (-564)))) (-3057 (((-112) $ $) 25 (|has| |#1| (-564)))) (-1528 (((-112) $ $) 24 (|has| |#1| (-564)))) (-2690 (((-112) $) 26 (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4400 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) 37)) (-1869 (($ (-652 |#4|)) 36)) (-2581 (((-3 $ "failed") $) 83)) (-3802 ((|#4| |#4| $) 90)) (-3955 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1674 ((|#4| |#4| $) 88)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) 106)) (-3294 (((-112) |#4| $) 137)) (-3342 (((-112) |#4| $) 134)) (-3628 (((-112) |#4| $) 138) (((-112) $) 135)) (-1442 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) 105) (((-112) $) 104)) (-3698 ((|#3| $) 35)) (-2545 (((-112) $ (-779)) 44)) (-2396 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 48)) (-1677 (((-652 |#3|) $) 33)) (-2002 (((-112) |#3| $) 32)) (-3818 (((-112) $ (-779)) 43)) (-3618 (((-1170) $) 10)) (-1618 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3276 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| |#4| $) 128)) (-4261 (((-3 |#4| "failed") $) 84)) (-3981 (((-652 $) |#4| $) 130)) (-4302 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1457 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3225 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-1772 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-1706 (((-652 |#4|) $) 108)) (-1338 (((-112) |#4| $) 100) (((-112) $) 96)) (-3113 ((|#4| |#4| $) 91)) (-4398 (((-112) $ $) 111)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) 101) (((-112) $) 97)) (-2041 ((|#4| |#4| $) 92)) (-2614 (((-1131) $) 11)) (-2570 (((-3 |#4| "failed") $) 85)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4236 (((-3 $ "failed") $ |#4|) 79)) (-3103 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-3089 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) 39)) (-3712 (((-112) $) 42)) (-1321 (($) 41)) (-1497 (((-779) $) 107)) (-1371 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3679 (($ $) 40)) (-3222 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 61)) (-3399 (($ $ |#3|) 29)) (-3831 (($ $ |#3|) 31)) (-2894 (($ $) 89)) (-1757 (($ $ |#3|) 30)) (-3491 (((-870) $) 12) (((-652 |#4|) $) 38)) (-1935 (((-779) $) 77 (|has| |#3| (-375)))) (-3424 (((-112) $ $) 9)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-2290 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-3776 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) 82)) (-2777 (((-112) |#4| $) 136)) (-2947 (((-112) |#3| $) 81)) (-3921 (((-112) $ $) 6)) (-3475 (((-779) $) 47 (|has| $ (-6 -4454)))))
+(((-1120 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1120))
+NIL
+(-13 (-1082 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
+((-1919 (((-652 (-572)) (-572) (-572) (-572)) 38)) (-3896 (((-652 (-572)) (-572) (-572) (-572)) 28)) (-2904 (((-652 (-572)) (-572) (-572) (-572)) 33)) (-2628 (((-572) (-572) (-572)) 21)) (-3346 (((-1279 (-572)) (-652 (-572)) (-1279 (-572)) (-572)) 76) (((-1279 (-572)) (-1279 (-572)) (-1279 (-572)) (-572)) 71)) (-3557 (((-652 (-572)) (-652 (-930)) (-652 (-572)) (-112)) 54)) (-2512 (((-697 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572))) 75)) (-2741 (((-697 (-572)) (-652 (-930)) (-652 (-572))) 59)) (-2805 (((-652 (-697 (-572))) (-652 (-930))) 64)) (-3270 (((-652 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572))) 79)) (-3873 (((-697 (-572)) (-652 (-572)) (-652 (-572)) (-652 (-572))) 89)))
+(((-1121) (-10 -7 (-15 -3873 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-652 (-572)))) (-15 -3270 ((-652 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -2805 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -2741 ((-697 (-572)) (-652 (-930)) (-652 (-572)))) (-15 -2512 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -3557 ((-652 (-572)) (-652 (-930)) (-652 (-572)) (-112))) (-15 -3346 ((-1279 (-572)) (-1279 (-572)) (-1279 (-572)) (-572))) (-15 -3346 ((-1279 (-572)) (-652 (-572)) (-1279 (-572)) (-572))) (-15 -2628 ((-572) (-572) (-572))) (-15 -2904 ((-652 (-572)) (-572) (-572) (-572))) (-15 -3896 ((-652 (-572)) (-572) (-572) (-572))) (-15 -1919 ((-652 (-572)) (-572) (-572) (-572))))) (T -1121))
+((-1919 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))) (-3896 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))) (-2904 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))) (-2628 (*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1121)))) (-3346 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-652 (-572))) (-5 *4 (-572)) (-5 *1 (-1121)))) (-3346 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-572)) (-5 *1 (-1121)))) (-3557 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-652 (-572))) (-5 *3 (-652 (-930))) (-5 *4 (-112)) (-5 *1 (-1121)))) (-2512 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-697 (-572))) (-5 *3 (-652 (-572))) (-5 *1 (-1121)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1121)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-1121)))) (-3270 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *3 (-697 (-572))) (-5 *1 (-1121)))) (-3873 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1121)))))
+(-10 -7 (-15 -3873 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-652 (-572)))) (-15 -3270 ((-652 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -2805 ((-652 (-697 (-572))) (-652 (-930)))) (-15 -2741 ((-697 (-572)) (-652 (-930)) (-652 (-572)))) (-15 -2512 ((-697 (-572)) (-652 (-572)) (-652 (-572)) (-697 (-572)))) (-15 -3557 ((-652 (-572)) (-652 (-930)) (-652 (-572)) (-112))) (-15 -3346 ((-1279 (-572)) (-1279 (-572)) (-1279 (-572)) (-572))) (-15 -3346 ((-1279 (-572)) (-652 (-572)) (-1279 (-572)) (-572))) (-15 -2628 ((-572) (-572) (-572))) (-15 -2904 ((-652 (-572)) (-572) (-572) (-572))) (-15 -3896 ((-652 (-572)) (-572) (-572) (-572))) (-15 -1919 ((-652 (-572)) (-572) (-572) (-572))))
+((** (($ $ (-930)) 10)))
+(((-1122 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-930)))) (-1123)) (T -1122))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-930))))
+((-3464 (((-112) $ $) 7)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)) (** (($ $ (-930)) 14)) (* (($ $ $) 15)))
+(((-1123) (-141)) (T -1123))
+((* (*1 *1 *1 *1) (-4 *1 (-1123))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-930)))))
+(-13 (-1111) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-930)))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL (|has| |#3| (-1111)))) (-3143 (((-112) $) NIL (|has| |#3| (-132)))) (-1572 (($ (-930)) NIL (|has| |#3| (-1060)))) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-2486 (($ $ $) NIL (|has| |#3| (-801)))) (-2092 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2938 (((-112) $ (-779)) NIL)) (-3037 (((-779)) NIL (|has| |#3| (-375)))) (-4304 (((-572) $) NIL (|has| |#3| (-856)))) (-3659 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1111)))) (-1869 (((-572) $) NIL (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111)))) (((-415 (-572)) $) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111)))) ((|#3| $) NIL (|has| |#3| (-1111)))) (-2245 (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#3| (-647 (-572))) (|has| |#3| (-1060)))) (((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) NIL (|has| |#3| (-1060))) (((-697 |#3|) (-697 $)) NIL (|has| |#3| (-1060)))) (-2982 (((-3 $ "failed") $) NIL (|has| |#3| (-734)))) (-2688 (($) NIL (|has| |#3| (-375)))) (-3061 ((|#3| $ (-572) |#3|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#3| $ (-572)) 12)) (-3778 (((-112) $) NIL (|has| |#3| (-856)))) (-1442 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL (|has| |#3| (-734)))) (-4354 (((-112) $) NIL (|has| |#3| (-856)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-2396 (((-652 |#3|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3049 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#3| |#3|) $) NIL)) (-4370 (((-930) $) NIL (|has| |#3| (-375)))) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#3| (-1111)))) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-1795 (($ (-930)) NIL (|has| |#3| (-375)))) (-2614 (((-1131) $) NIL (|has| |#3| (-1111)))) (-2570 ((|#3| $) NIL (|has| (-572) (-858)))) (-3803 (($ $ |#3|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#3|))) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-300 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111)))) (($ $ (-652 |#3|) (-652 |#3|)) NIL (-12 (|has| |#3| (-315 |#3|)) (|has| |#3| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-2950 (((-652 |#3|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#3| $ (-572) |#3|) NIL) ((|#3| $ (-572)) NIL)) (-1606 ((|#3| $ $) NIL (|has| |#3| (-1060)))) (-3153 (($ (-1279 |#3|)) NIL)) (-1670 (((-135)) NIL (|has| |#3| (-370)))) (-3011 (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060)))) (-1371 (((-779) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454))) (((-779) |#3| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#3| (-1111))))) (-3679 (($ $) NIL)) (-3491 (((-1279 |#3|) $) NIL) (($ (-572)) NIL (-3783 (-12 (|has| |#3| (-1049 (-572))) (|has| |#3| (-1111))) (|has| |#3| (-1060)))) (($ (-415 (-572))) NIL (-12 (|has| |#3| (-1049 (-415 (-572)))) (|has| |#3| (-1111)))) (($ |#3|) NIL (|has| |#3| (-1111))) (((-870) $) NIL (|has| |#3| (-621 (-870))))) (-2455 (((-779)) NIL (|has| |#3| (-1060)) CONST)) (-3424 (((-112) $ $) NIL (|has| |#3| (-1111)))) (-3776 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4454)))) (-2775 (($ $) NIL (|has| |#3| (-856)))) (-2602 (($) NIL (|has| |#3| (-132)) CONST)) (-2619 (($) NIL (|has| |#3| (-734)) CONST)) (-4019 (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-779)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1060)))) (($ $ (-1188)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#3| (-909 (-1188))) (|has| |#3| (-1060)))) (($ $ (-1 |#3| |#3|) (-779)) NIL (|has| |#3| (-1060))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1060)))) (-3976 (((-112) $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3954 (((-112) $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3921 (((-112) $ $) NIL (|has| |#3| (-1111)))) (-3965 (((-112) $ $) NIL (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-3943 (((-112) $ $) 24 (-3783 (|has| |#3| (-801)) (|has| |#3| (-856))))) (-4029 (($ $ |#3|) NIL (|has| |#3| (-370)))) (-4018 (($ $ $) NIL (|has| |#3| (-1060))) (($ $) NIL (|has| |#3| (-1060)))) (-4005 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-779)) NIL (|has| |#3| (-734))) (($ $ (-930)) NIL (|has| |#3| (-734)))) (* (($ (-572) $) NIL (|has| |#3| (-1060))) (($ $ $) NIL (|has| |#3| (-734))) (($ $ |#3|) NIL (|has| |#3| (-734))) (($ |#3| $) NIL (|has| |#3| (-734))) (($ (-779) $) NIL (|has| |#3| (-132))) (($ (-930) $) NIL (|has| |#3| (-25)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1124 |#1| |#2| |#3|) (-242 |#1| |#3|) (-779) (-779) (-801)) (T -1124))
+NIL
+(-242 |#1| |#3|)
+((-4316 (((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 50)) (-2534 (((-572) (-1252 |#2| |#1|)) 94 (|has| |#1| (-460)))) (-1603 (((-572) (-1252 |#2| |#1|)) 76)) (-4004 (((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 58)) (-3963 (((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 93 (|has| |#1| (-460)))) (-4254 (((-652 |#1|) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 61)) (-1879 (((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|)) 75)))
+(((-1125 |#1| |#2|) (-10 -7 (-15 -4316 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -4004 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -4254 ((-652 |#1|) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -1879 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -1603 ((-572) (-1252 |#2| |#1|))) (IF (|has| |#1| (-460)) (PROGN (-15 -3963 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2534 ((-572) (-1252 |#2| |#1|)))) |%noBranch|)) (-828) (-1188)) (T -1125))
+((-2534 (*1 *2 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-3963 (*1 *2 *3 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-1879 (*1 *2 *3 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))) (-4254 (*1 *2 *3 *3) (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 *4)) (-5 *1 (-1125 *4 *5)))) (-4004 (*1 *2 *3 *3) (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4))) (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))) (-4316 (*1 *2 *3 *3) (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4))) (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))))
+(-10 -7 (-15 -4316 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -4004 ((-652 (-1252 |#2| |#1|)) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -4254 ((-652 |#1|) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -1879 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -1603 ((-572) (-1252 |#2| |#1|))) (IF (|has| |#1| (-460)) (PROGN (-15 -3963 ((-572) (-1252 |#2| |#1|) (-1252 |#2| |#1|))) (-15 -2534 ((-572) (-1252 |#2| |#1|)))) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-2258 (($ (-514) (-1129)) 13)) (-1980 (((-1129) $) 19)) (-2402 (((-514) $) 16)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 26) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1126) (-13 (-1094) (-10 -8 (-15 -2258 ($ (-514) (-1129))) (-15 -2402 ((-514) $)) (-15 -1980 ((-1129) $))))) (T -1126))
+((-2258 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-1126)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1126)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1126)))))
+(-13 (-1094) (-10 -8 (-15 -2258 ($ (-514) (-1129))) (-15 -2402 ((-514) $)) (-15 -1980 ((-1129) $))))
+((-4304 (((-3 (-572) "failed") |#2| (-1188) |#2| (-1170)) 19) (((-3 (-572) "failed") |#2| (-1188) (-851 |#2|)) 17) (((-3 (-572) "failed") |#2|) 60)))
+(((-1127 |#1| |#2|) (-10 -7 (-15 -4304 ((-3 (-572) "failed") |#2|)) (-15 -4304 ((-3 (-572) "failed") |#2| (-1188) (-851 |#2|))) (-15 -4304 ((-3 (-572) "failed") |#2| (-1188) |#2| (-1170)))) (-13 (-564) (-1049 (-572)) (-647 (-572)) (-460)) (-13 (-27) (-1214) (-438 |#1|))) (T -1127))
+((-4304 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-1170)) (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572)) (-5 *1 (-1127 *6 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))))) (-4304 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6))) (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572)) (-5 *1 (-1127 *6 *3)))) (-4304 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572)) (-5 *1 (-1127 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))))
+(-10 -7 (-15 -4304 ((-3 (-572) "failed") |#2|)) (-15 -4304 ((-3 (-572) "failed") |#2| (-1188) (-851 |#2|))) (-15 -4304 ((-3 (-572) "failed") |#2| (-1188) |#2| (-1170))))
+((-4304 (((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)) (-1170)) 38) (((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-851 (-415 (-961 |#1|)))) 33) (((-3 (-572) "failed") (-415 (-961 |#1|))) 14)))
+(((-1128 |#1|) (-10 -7 (-15 -4304 ((-3 (-572) "failed") (-415 (-961 |#1|)))) (-15 -4304 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-851 (-415 (-961 |#1|))))) (-15 -4304 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)) (-1170)))) (-460)) (T -1128))
+((-4304 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1188)) (-5 *5 (-1170)) (-4 *6 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *6)))) (-4304 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 (-415 (-961 *6)))) (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *6)))) (-4304 (*1 *2 *3) (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *4)))))
+(-10 -7 (-15 -4304 ((-3 (-572) "failed") (-415 (-961 |#1|)))) (-15 -4304 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-851 (-415 (-961 |#1|))))) (-15 -4304 ((-3 (-572) "failed") (-415 (-961 |#1|)) (-1188) (-415 (-961 |#1|)) (-1170))))
+((-3464 (((-112) $ $) NIL)) (-3550 (((-1193) $) 12)) (-3497 (((-652 (-1193)) $) 14)) (-1980 (($ (-652 (-1193)) (-1193)) 10)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 29)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 17)))
+(((-1129) (-13 (-1111) (-10 -8 (-15 -1980 ($ (-652 (-1193)) (-1193))) (-15 -3550 ((-1193) $)) (-15 -3497 ((-652 (-1193)) $))))) (T -1129))
+((-1980 (*1 *1 *2 *3) (-12 (-5 *2 (-652 (-1193))) (-5 *3 (-1193)) (-5 *1 (-1129)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1129)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1129)))))
+(-13 (-1111) (-10 -8 (-15 -1980 ($ (-652 (-1193)) (-1193))) (-15 -3550 ((-1193) $)) (-15 -3497 ((-652 (-1193)) $))))
+((-3221 (((-322 (-572)) (-48)) 12)))
+(((-1130) (-10 -7 (-15 -3221 ((-322 (-572)) (-48))))) (T -1130))
+((-3221 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-322 (-572))) (-5 *1 (-1130)))))
+(-10 -7 (-15 -3221 ((-322 (-572)) (-48))))
+((-3464 (((-112) $ $) NIL)) (-3489 (($ $) 44)) (-3143 (((-112) $) 70)) (-3827 (($ $ $) 53)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 98)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2746 (($ $ $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1742 (($ $ $ $) 81)) (-1861 (($ $) NIL)) (-2359 (((-426 $) $) NIL)) (-4252 (((-112) $ $) NIL)) (-3037 (((-779)) 83)) (-4304 (((-572) $) NIL)) (-4235 (($ $ $) 78)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL)) (-1869 (((-572) $) NIL)) (-3407 (($ $ $) 64)) (-2245 (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 92) (((-697 (-572)) (-697 $)) 32)) (-2982 (((-3 $ "failed") $) NIL)) (-3624 (((-3 (-415 (-572)) "failed") $) NIL)) (-2054 (((-112) $) NIL)) (-2745 (((-415 (-572)) $) NIL)) (-2688 (($) 95) (($ $) 96)) (-3418 (($ $ $) 63)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL)) (-3439 (((-112) $) NIL)) (-3677 (($ $ $ $) NIL)) (-4023 (($ $ $) 93)) (-3778 (((-112) $) NIL)) (-2362 (($ $ $) NIL)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL)) (-3814 (($ $ $) 52)) (-4422 (((-112) $) 72)) (-2270 (((-112) $) 69)) (-3795 (($ $) 45)) (-3396 (((-3 $ "failed") $) NIL)) (-4354 (((-112) $) 82)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-2945 (($ $ $ $) 79)) (-2536 (($ $ $) 74) (($) 42 T CONST)) (-3928 (($ $ $) 73) (($) 41 T CONST)) (-4135 (($ $) NIL)) (-4370 (((-930) $) 88)) (-2040 (($ $) 77)) (-1335 (($ $ $) NIL) (($ (-652 $)) NIL)) (-3618 (((-1170) $) NIL)) (-2197 (($ $ $) NIL)) (-3477 (($) NIL T CONST)) (-1795 (($ (-930)) 87)) (-3651 (($ $) 57)) (-2614 (((-1131) $) 76)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL)) (-1370 (($ $ $) 67) (($ (-652 $)) NIL)) (-4002 (($ $) NIL)) (-2972 (((-426 $) $) NIL)) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL)) (-3453 (((-3 $ "failed") $ $) NIL)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL)) (-3601 (((-112) $) NIL)) (-4395 (((-779) $) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 66)) (-3011 (($ $ (-779)) NIL) (($ $) NIL)) (-3935 (($ $) 58)) (-3679 (($ $) NIL)) (-3222 (((-572) $) 17) (((-544) $) NIL) (((-901 (-572)) $) NIL) (((-386) $) NIL) (((-227) $) NIL)) (-3491 (((-870) $) 35) (($ (-572)) 94) (($ $) NIL) (($ (-572)) 94)) (-2455 (((-779)) NIL T CONST)) (-4170 (((-112) $ $) NIL)) (-3337 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-1556 (($) 40)) (-2466 (((-112) $ $) NIL)) (-3804 (($ $ $) 50)) (-1732 (($ $ $ $) 80)) (-2775 (($ $) 68)) (-3536 (($ $ $) 47)) (-2602 (($) 7 T CONST)) (-3523 (($ $ $) 51)) (-2619 (($) 39 T CONST)) (-2810 (((-1170) $) 26) (((-1170) $ (-112)) 27) (((-1284) (-830) $) 28) (((-1284) (-830) $ (-112)) 29)) (-3534 (($ $) 48)) (-4019 (($ $ (-779)) NIL) (($ $) NIL)) (-3514 (($ $ $) 49)) (-3976 (((-112) $ $) 56)) (-3954 (((-112) $ $) 54)) (-3921 (((-112) $ $) 43)) (-3965 (((-112) $ $) 55)) (-3943 (((-112) $ $) 10)) (-3525 (($ $ $) 46)) (-4018 (($ $) 16) (($ $ $) 60)) (-4005 (($ $ $) 59)) (** (($ $ (-930)) NIL) (($ $ (-779)) 62)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 38) (($ $ $) 37)))
+(((-1131) (-13 (-553) (-852) (-113) (-669) (-836) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -3827 ($ $ $)) (-15 -3534 ($ $)) (-15 -3514 ($ $ $)) (-15 -3523 ($ $ $))))) (T -1131))
+((-3827 (*1 *1 *1 *1) (-5 *1 (-1131))) (-3534 (*1 *1 *1) (-5 *1 (-1131))) (-3514 (*1 *1 *1 *1) (-5 *1 (-1131))) (-3523 (*1 *1 *1 *1) (-5 *1 (-1131))))
+(-13 (-553) (-852) (-113) (-669) (-836) (-10 -8 (-6 -4441) (-6 -4446) (-6 -4442) (-15 -3827 ($ $ $)) (-15 -3534 ($ $)) (-15 -3514 ($ $ $)) (-15 -3523 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-1999 ((|#1| $) 45)) (-2855 (((-112) $ (-777)) 8)) (-2333 (($) 7 T CONST)) (-4191 ((|#1| |#1| $) 47)) (-3940 ((|#1| $) 46)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3398 ((|#1| $) 40)) (-2801 (($ |#1| $) 41)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4126 ((|#1| $) 42)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-3307 (((-777) $) 44)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) 43)) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1130 |#1|) (-141) (-1227)) (T -1130))
-((-4191 (*1 *2 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1227)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1227)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1227)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4452) (-15 -4191 (|t#1| |t#1| $)) (-15 -3940 (|t#1| $)) (-15 -1999 (|t#1| $)) (-15 -3307 ((-777) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-1439 ((|#3| $) 87)) (-2435 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4387 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#3| $) 47)) (-3054 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL) (((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 $) (-1277 $)) 84) (((-695 |#3|) (-695 $)) 76)) (-2375 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-2186 ((|#3| $) 89)) (-1992 ((|#4| $) 43)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ |#3|) 25)) (** (($ $ (-928)) NIL) (($ $ (-777)) 24) (($ $ (-570)) 95)))
-(((-1131 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 -2186 (|#3| |#1|)) (-15 -1439 (|#3| |#1|)) (-15 -1992 (|#4| |#1|)) (-15 -3054 ((-695 |#3|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2869 (|#1| |#3|)) (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -4387 (|#3| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2869 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -2869 ((-868) |#1|))) (-1132 |#2| |#3| |#4| |#5|) (-777) (-1058) (-240 |#2| |#3|) (-240 |#2| |#3|)) (T -1131))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 -2186 (|#3| |#1|)) (-15 -1439 (|#3| |#1|)) (-15 -1992 (|#4| |#1|)) (-15 -3054 ((-695 |#3|) (-695 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 |#3|)) (|:| |vec| (-1277 |#3|))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 |#1|) (-1277 |#1|))) (-15 -3054 ((-695 (-570)) (-695 |#1|))) (-15 -2869 (|#1| |#3|)) (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -4387 (|#3| |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -2375 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2869 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1439 ((|#2| $) 77)) (-3919 (((-112) $) 117)) (-3997 (((-3 $ "failed") $ $) 20)) (-3206 (((-112) $) 115)) (-2855 (((-112) $ (-777)) 107)) (-1990 (($ |#2|) 80)) (-2333 (($) 18 T CONST)) (-4085 (($ $) 134 (|has| |#2| (-311)))) (-3598 ((|#3| $ (-570)) 129)) (-2435 (((-3 (-570) "failed") $) 92 (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 89 (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) 86)) (-4387 (((-570) $) 91 (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) 88 (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) 87)) (-3054 (((-695 (-570)) (-695 $)) 84 (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 83 (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) 82) (((-695 |#2|) (-695 $)) 81)) (-3957 (((-3 $ "failed") $) 37)) (-4412 (((-777) $) 135 (|has| |#2| (-562)))) (-2774 ((|#2| $ (-570) (-570)) 127)) (-3976 (((-650 |#2|) $) 100 (|has| $ (-6 -4452)))) (-2005 (((-112) $) 35)) (-2020 (((-777) $) 136 (|has| |#2| (-562)))) (-2244 (((-650 |#4|) $) 137 (|has| |#2| (-562)))) (-4218 (((-777) $) 123)) (-4230 (((-777) $) 124)) (-2497 (((-112) $ (-777)) 108)) (-2728 ((|#2| $) 72 (|has| |#2| (-6 (-4454 "*"))))) (-1863 (((-570) $) 119)) (-2554 (((-570) $) 121)) (-3069 (((-650 |#2|) $) 99 (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452))))) (-2163 (((-570) $) 120)) (-1448 (((-570) $) 122)) (-4297 (($ (-650 (-650 |#2|))) 114)) (-2833 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-2247 (((-650 (-650 |#2|)) $) 125)) (-2065 (((-112) $ (-777)) 109)) (-3240 (((-1168) $) 10)) (-4066 (((-3 $ "failed") $) 71 (|has| |#2| (-368)))) (-3891 (((-1129) $) 11)) (-2837 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-562)))) (-2231 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) 96 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 95 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 93 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) 113)) (-2171 (((-112) $) 110)) (-1698 (($) 111)) (-2057 ((|#2| $ (-570) (-570) |#2|) 128) ((|#2| $ (-570) (-570)) 126)) (-2375 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-777)) 55) (($ $ (-650 (-1186)) (-650 (-777))) 48 (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) 47 (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) 46 (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) 45 (|has| |#2| (-907 (-1186)))) (($ $ (-777)) 43 (|has| |#2| (-235))) (($ $) 41 (|has| |#2| (-235)))) (-2186 ((|#2| $) 76)) (-2776 (($ (-650 |#2|)) 79)) (-2445 (((-112) $) 116)) (-1992 ((|#3| $) 78)) (-2439 ((|#2| $) 73 (|has| |#2| (-6 (-4454 "*"))))) (-3901 (((-777) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4452))) (((-777) |#2| $) 98 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 112)) (-4101 ((|#4| $ (-570)) 130)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 90 (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) 85)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2061 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4452)))) (-2074 (((-112) $) 118)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-777)) 53) (($ $ (-650 (-1186)) (-650 (-777))) 52 (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) 51 (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) 50 (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) 49 (|has| |#2| (-907 (-1186)))) (($ $ (-777)) 44 (|has| |#2| (-235))) (($ $) 42 (|has| |#2| (-235)))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#2|) 133 (|has| |#2| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 70 (|has| |#2| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2857 (((-777) $) 106 (|has| $ (-6 -4452)))))
-(((-1132 |#1| |#2| |#3| |#4|) (-141) (-777) (-1058) (-240 |t#1| |t#2|) (-240 |t#1| |t#2|)) (T -1132))
-((-1990 (*1 *1 *2) (-12 (-4 *2 (-1058)) (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-650 *4)) (-4 *4 (-1058)) (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4)))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *2 (-240 *3 *4)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (-4 *2 (-1058)))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (-4 *2 (-1058)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *2 (-240 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *2 (-240 *3 *4)) (-4 *5 (-240 *3 *4)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058)))) (-4066 (*1 *1 *1) (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-240 *2 *3)) (-4 *5 (-240 *2 *3)) (-4 *3 (-368)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4)) (-4 *4 (-368)))))
-(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1062 |t#1| |t#1| |t#2| |t#3| |t#4|) (-417 |t#2|) (-382 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-723 |t#2|)) |%noBranch|) (-15 -1990 ($ |t#2|)) (-15 -2776 ($ (-650 |t#2|))) (-15 -1992 (|t#3| $)) (-15 -1439 (|t#2| $)) (-15 -2186 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4454 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2439 (|t#2| $)) (-15 -2728 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-368)) (PROGN (-15 -4066 ((-3 $ "failed") $)) (-15 ** ($ $ (-570)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4454 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 #0=(-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-233 |#2|) . T) ((-235) |has| |#2| (-235)) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-382 |#2|) . T) ((-417 |#2|) . T) ((-495 |#2|) . T) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-652 $) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-646 |#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-6 (-4454 "*")))) ((-645 (-570)) |has| |#2| (-645 (-570))) ((-645 |#2|) . T) ((-723 |#2|) -3749 (|has| |#2| (-174)) (|has| |#2| (-6 (-4454 "*")))) ((-732) . T) ((-907 (-1186)) |has| |#2| (-907 (-1186))) ((-1062 |#1| |#1| |#2| |#3| |#4|) . T) ((-1047 #0#) |has| |#2| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#2| (-1047 (-570))) ((-1047 |#2|) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1227) . T))
-((-2166 ((|#4| |#4|) 81)) (-3098 ((|#4| |#4|) 76)) (-1711 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|))) |#4| |#3|) 91)) (-4238 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1648 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3098 (|#4| |#4|)) (-15 -1648 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2166 (|#4| |#4|)) (-15 -4238 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1711 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|))) |#4| |#3|))) (-311) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -1133))
-((-1711 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-378 *5)) (-4 *4 (-378 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4)))) (-5 *1 (-1133 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-1648 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
-(-10 -7 (-15 -3098 (|#4| |#4|)) (-15 -1648 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2166 (|#4| |#4|)) (-15 -4238 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1711 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2681 (-650 |#3|))) |#4| |#3|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 18)) (-1598 (((-650 |#2|) $) 174)) (-3449 (((-1182 $) $ |#2|) 60) (((-1182 |#1|) $) 49)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 116 (|has| |#1| (-562)))) (-2046 (($ $) 118 (|has| |#1| (-562)))) (-3426 (((-112) $) 120 (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 |#2|)) 213)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) 167) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 |#2| "failed") $) NIL)) (-4387 ((|#1| $) 165) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) ((|#2| $) NIL)) (-2067 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-4394 (($ $) 217)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) 90)) (-2211 (($ $) NIL (|has| |#1| (-458))) (($ $ |#2|) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-537 |#2|) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2005 (((-112) $) 20)) (-2928 (((-777) $) 30)) (-2417 (($ (-1182 |#1|) |#2|) 54) (($ (-1182 $) |#2|) 71)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) 38)) (-2402 (($ |#1| (-537 |#2|)) 78) (($ $ |#2| (-777)) 58) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ |#2|) NIL)) (-2689 (((-537 |#2|) $) 205) (((-777) $ |#2|) 206) (((-650 (-777)) $ (-650 |#2|)) 207)) (-3989 (($ (-1 (-537 |#2|) (-537 |#2|)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) 128)) (-3168 (((-3 |#2| "failed") $) 177)) (-4355 (($ $) 216)) (-4369 ((|#1| $) 43)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| |#2|) (|:| -2940 (-777))) "failed") $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) 39)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 148 (|has| |#1| (-458)))) (-3903 (($ (-650 $)) 153 (|has| |#1| (-458))) (($ $ $) 138 (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2837 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-562)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-650 |#2|) (-650 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-650 |#2|) (-650 $)) 194)) (-2896 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2375 (($ $ |#2|) 215) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2650 (((-537 |#2|) $) 201) (((-777) $ |#2|) 196) (((-650 (-777)) $ (-650 |#2|)) 199)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-2128 ((|#1| $) 134 (|has| |#1| (-458))) (($ $ |#2|) 137 (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-2869 (((-868) $) 159) (($ (-570)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-562))) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-3125 (((-650 |#1|) $) 162)) (-3481 ((|#1| $ (-537 |#2|)) 80) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) 87 T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) 123 (|has| |#1| (-562)))) (-1981 (($) 12 T CONST)) (-1998 (($) 14 T CONST)) (-3414 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3892 (((-112) $ $) 106)) (-4013 (($ $ |#1|) 132 (|has| |#1| (-368)))) (-4003 (($ $) 93) (($ $ $) 104)) (-3992 (($ $ $) 55)) (** (($ $ (-928)) 110) (($ $ (-777)) 109)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 96) (($ $ $) 72) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
-(((-1134 |#1| |#2|) (-956 |#1| (-537 |#2|) |#2|) (-1058) (-856)) (T -1134))
-NIL
-(-956 |#1| (-537 |#2|) |#2|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 |#2|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3900 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 128 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3876 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 124 (|has| |#1| (-38 (-413 (-570)))))) (-1513 (($ $) 156 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2471 (((-959 |#1|) $ (-777)) NIL) (((-959 |#1|) $ (-777) (-777)) NIL)) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-777) $ |#2|) NIL) (((-777) $ |#2| (-777)) NIL)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1338 (((-112) $) NIL)) (-2402 (($ $ (-650 |#2|) (-650 (-537 |#2|))) NIL) (($ $ |#2| (-537 |#2|)) NIL) (($ |#1| (-537 |#2|)) NIL) (($ $ |#2| (-777)) 63) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3447 (($ $) 122 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-1363 (($ $ |#2|) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-1983 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-413 (-570)))))) (-3308 (($ $ (-777)) 16)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-2651 (($ $) 120 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (($ $ |#2| $) 106) (($ $ (-650 |#2|) (-650 $)) 99) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL)) (-2375 (($ $ |#2|) 109) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2650 (((-537 |#2|) $) NIL)) (-1373 (((-1 (-1166 |#3|) |#3|) (-650 |#2|) (-650 (-1166 |#3|))) 87)) (-1523 (($ $) 158 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 126 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 18)) (-2869 (((-868) $) 198) (($ (-570)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-562))) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#2|) 70) (($ |#3|) 68)) (-3481 ((|#1| $ (-537 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL) ((|#3| $ (-777)) 43)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) 164 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) 160 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 168 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-2900 (($ $) 170 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 166 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 162 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 52 T CONST)) (-1998 (($) 62 T CONST)) (-3414 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) 200 (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 66)) (** (($ $ (-928)) NIL) (($ $ (-777)) 77) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 112 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 65) (($ $ (-413 (-570))) 117 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 115 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1135 |#1| |#2| |#3|) (-13 (-746 |#1| |#2|) (-10 -8 (-15 -3481 (|#3| $ (-777))) (-15 -2869 ($ |#2|)) (-15 -2869 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1373 ((-1 (-1166 |#3|) |#3|) (-650 |#2|) (-650 (-1166 |#3|)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $ |#2| |#1|)) (-15 -1983 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1058) (-856) (-956 |#1| (-537 |#2|) |#2|)) (T -1135))
-((-3481 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *2 (-956 *4 (-537 *5) *5)) (-5 *1 (-1135 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-856)))) (-2869 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *2 (-856)) (-5 *1 (-1135 *3 *2 *4)) (-4 *4 (-956 *3 (-537 *2) *2)))) (-2869 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2)) (-4 *2 (-956 *3 (-537 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2)) (-4 *2 (-956 *3 (-537 *4) *4)))) (-1373 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1166 *7))) (-4 *6 (-856)) (-4 *7 (-956 *5 (-537 *6) *6)) (-4 *5 (-1058)) (-5 *2 (-1 (-1166 *7) *7)) (-5 *1 (-1135 *5 *6 *7)))) (-1363 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-4 *2 (-856)) (-5 *1 (-1135 *3 *2 *4)) (-4 *4 (-956 *3 (-537 *2) *2)))) (-1983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1135 *4 *3 *5))) (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058)) (-4 *3 (-856)) (-5 *1 (-1135 *4 *3 *5)) (-4 *5 (-956 *4 (-537 *3) *3)))))
-(-13 (-746 |#1| |#2|) (-10 -8 (-15 -3481 (|#3| $ (-777))) (-15 -2869 ($ |#2|)) (-15 -2869 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1373 ((-1 (-1166 |#3|) |#3|) (-650 |#2|) (-650 (-1166 |#3|)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $ |#2| |#1|)) (-15 -1983 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2847 (((-112) $ $) 7)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) 86)) (-1510 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1598 (((-650 |#3|) $) 34)) (-3330 (((-112) $) 27)) (-2114 (((-112) $) 18 (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) 102) (((-112) $) 98)) (-3067 ((|#4| |#4| $) 93)) (-3312 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| $) 127)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) 28)) (-2855 (((-112) $ (-777)) 45)) (-3960 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) 80)) (-2333 (($) 46 T CONST)) (-2157 (((-112) $) 23 (|has| |#1| (-562)))) (-3303 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3105 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3580 (((-112) $) 26 (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2303 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) 37)) (-4387 (($ (-650 |#4|)) 36)) (-1962 (((-3 $ "failed") $) 83)) (-2360 ((|#4| |#4| $) 90)) (-3153 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4079 ((|#4| |#4| $) 88)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) 106)) (-1496 (((-112) |#4| $) 137)) (-1825 (((-112) |#4| $) 134)) (-1446 (((-112) |#4| $) 138) (((-112) $) 135)) (-3976 (((-650 |#4|) $) 53 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) 105) (((-112) $) 104)) (-2486 ((|#3| $) 35)) (-2497 (((-112) $ (-777)) 44)) (-3069 (((-650 |#4|) $) 54 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 48)) (-3734 (((-650 |#3|) $) 33)) (-3640 (((-112) |#3| $) 32)) (-2065 (((-112) $ (-777)) 43)) (-3240 (((-1168) $) 10)) (-3115 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3834 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| |#4| $) 128)) (-3637 (((-3 |#4| "failed") $) 84)) (-3778 (((-650 $) |#4| $) 130)) (-2740 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4057 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3502 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-4399 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-4083 (((-650 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-1478 ((|#4| |#4| $) 91)) (-1693 (((-112) $ $) 111)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) 101) (((-112) $) 97)) (-2899 ((|#4| |#4| $) 92)) (-3891 (((-1129) $) 11)) (-1948 (((-3 |#4| "failed") $) 85)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3484 (((-3 $ "failed") $ |#4|) 79)) (-3308 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-2231 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) 39)) (-2171 (((-112) $) 42)) (-1698 (($) 41)) (-2650 (((-777) $) 107)) (-3901 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4452)))) (-3064 (($ $) 40)) (-2601 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 61)) (-1342 (($ $ |#3|) 29)) (-2691 (($ $ |#3|) 31)) (-2990 (($ $) 89)) (-3130 (($ $ |#3|) 30)) (-2869 (((-868) $) 12) (((-650 |#4|) $) 38)) (-3982 (((-777) $) 77 (|has| |#3| (-373)))) (-1344 (((-112) $ $) 9)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-2922 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-2061 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) 82)) (-4242 (((-112) |#4| $) 136)) (-1600 (((-112) |#3| $) 81)) (-3892 (((-112) $ $) 6)) (-2857 (((-777) $) 47 (|has| $ (-6 -4452)))))
-(((-1136 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1136))
-NIL
-(-13 (-1118 |t#1| |t#2| |t#3| |t#4|) (-790 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-790 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1118 |#1| |#2| |#3| |#4|) . T) ((-1220 |#1| |#2| |#3| |#4|) . T) ((-1227) . T))
-((-2577 (((-650 |#2|) |#1|) 15)) (-3583 (((-650 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-650 |#2|) |#1|) 61)) (-3633 (((-650 |#2|) |#2| |#2| |#2|) 45) (((-650 |#2|) |#1|) 59)) (-1709 ((|#2| |#1|) 54)) (-1670 (((-2 (|:| |solns| (-650 |#2|)) (|:| |maps| (-650 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2447 (((-650 |#2|) |#2| |#2|) 42) (((-650 |#2|) |#1|) 58)) (-2407 (((-650 |#2|) |#2| |#2| |#2| |#2|) 46) (((-650 |#2|) |#1|) 60)) (-3236 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-2731 ((|#2| |#2| |#2| |#2|) 51)) (-2932 ((|#2| |#2| |#2|) 50)) (-2851 ((|#2| |#2| |#2| |#2| |#2|) 52)))
-(((-1137 |#1| |#2|) (-10 -7 (-15 -2577 ((-650 |#2|) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1670 ((-2 (|:| |solns| (-650 |#2|)) (|:| |maps| (-650 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2447 ((-650 |#2|) |#1|)) (-15 -3633 ((-650 |#2|) |#1|)) (-15 -2407 ((-650 |#2|) |#1|)) (-15 -3583 ((-650 |#2|) |#1|)) (-15 -2447 ((-650 |#2|) |#2| |#2|)) (-15 -3633 ((-650 |#2|) |#2| |#2| |#2|)) (-15 -2407 ((-650 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3583 ((-650 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2932 (|#2| |#2| |#2|)) (-15 -2731 (|#2| |#2| |#2| |#2|)) (-15 -2851 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1253 |#2|) (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (T -1137))
-((-3236 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))) (-2851 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))) (-2731 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))) (-2932 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))) (-3583 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))) (-2407 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))) (-3633 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))) (-2447 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4)))) (-2407 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4)))) (-3633 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4)))) (-2447 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4)))) (-1670 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-2 (|:| |solns| (-650 *5)) (|:| |maps| (-650 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1137 *3 *5)) (-4 *3 (-1253 *5)))) (-1709 (*1 *2 *3) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -2577 ((-650 |#2|) |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1670 ((-2 (|:| |solns| (-650 |#2|)) (|:| |maps| (-650 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2447 ((-650 |#2|) |#1|)) (-15 -3633 ((-650 |#2|) |#1|)) (-15 -2407 ((-650 |#2|) |#1|)) (-15 -3583 ((-650 |#2|) |#1|)) (-15 -2447 ((-650 |#2|) |#2| |#2|)) (-15 -3633 ((-650 |#2|) |#2| |#2| |#2|)) (-15 -2407 ((-650 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3583 ((-650 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2932 (|#2| |#2| |#2|)) (-15 -2731 (|#2| |#2| |#2| |#2|)) (-15 -2851 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3236 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2158 (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|))))) 118) (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186))) 117) (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|)))) 115) (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 113) (((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|)))) 97) (((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))) (-1186)) 98) (((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|))) 92) (((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)) (-1186)) 82)) (-4241 (((-650 (-650 (-320 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 111) (((-650 (-320 |#1|)) (-413 (-959 |#1|)) (-1186)) 54)) (-1534 (((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-413 (-959 |#1|)) (-1186)) 122) (((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186)) 121)))
-(((-1138 |#1|) (-10 -7 (-15 -2158 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -2158 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)))) (-15 -2158 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -2158 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -4241 ((-650 (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -4241 ((-650 (-650 (-320 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -1534 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -1534 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-413 (-959 |#1|)) (-1186)))) (-13 (-311) (-148))) (T -1138))
-((-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-320 *5)))) (-5 *1 (-1138 *5)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-320 *5))) (-5 *1 (-1138 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-650 (-298 (-413 (-959 *4))))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *4))))) (-5 *1 (-1138 *4)))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-298 (-413 (-959 *5))))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *4))))) (-5 *1 (-1138 *4)))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4)))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1138 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4)))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1138 *5)))))
-(-10 -7 (-15 -2158 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -2158 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)))) (-15 -2158 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -2158 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -2158 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -4241 ((-650 (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -4241 ((-650 (-650 (-320 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -1534 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -1534 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-413 (-959 |#1|)) (-1186))))
-((-2775 (((-413 (-1182 (-320 |#1|))) (-1277 (-320 |#1|)) (-413 (-1182 (-320 |#1|))) (-570)) 36)) (-3209 (((-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|)))) 48)))
-(((-1139 |#1|) (-10 -7 (-15 -3209 ((-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))))) (-15 -2775 ((-413 (-1182 (-320 |#1|))) (-1277 (-320 |#1|)) (-413 (-1182 (-320 |#1|))) (-570)))) (-562)) (T -1139))
-((-2775 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-413 (-1182 (-320 *5)))) (-5 *3 (-1277 (-320 *5))) (-5 *4 (-570)) (-4 *5 (-562)) (-5 *1 (-1139 *5)))) (-3209 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-413 (-1182 (-320 *3)))) (-4 *3 (-562)) (-5 *1 (-1139 *3)))))
-(-10 -7 (-15 -3209 ((-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))))) (-15 -2775 ((-413 (-1182 (-320 |#1|))) (-1277 (-320 |#1|)) (-413 (-1182 (-320 |#1|))) (-570))))
-((-2577 (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-320 |#1|))) (-650 (-1186))) 244) (((-650 (-298 (-320 |#1|))) (-320 |#1|) (-1186)) 23) (((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)) (-1186)) 29) (((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|))) 28) (((-650 (-298 (-320 |#1|))) (-320 |#1|)) 24)))
-(((-1140 |#1|) (-10 -7 (-15 -2577 ((-650 (-298 (-320 |#1|))) (-320 |#1|))) (-15 -2577 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)))) (-15 -2577 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)) (-1186))) (-15 -2577 ((-650 (-298 (-320 |#1|))) (-320 |#1|) (-1186))) (-15 -2577 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-320 |#1|))) (-650 (-1186))))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (T -1140))
-((-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1140 *5)) (-5 *3 (-650 (-298 (-320 *5)))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5)) (-5 *3 (-320 *5)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5)) (-5 *3 (-298 (-320 *5))))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4)) (-5 *3 (-298 (-320 *4))))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4)) (-5 *3 (-320 *4)))))
-(-10 -7 (-15 -2577 ((-650 (-298 (-320 |#1|))) (-320 |#1|))) (-15 -2577 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)))) (-15 -2577 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)) (-1186))) (-15 -2577 ((-650 (-298 (-320 |#1|))) (-320 |#1|) (-1186))) (-15 -2577 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-320 |#1|))) (-650 (-1186)))))
-((-3241 ((|#2| |#2|) 28 (|has| |#1| (-856))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-2050 ((|#2| |#2|) 27 (|has| |#1| (-856))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1141 |#1| |#2|) (-10 -7 (-15 -2050 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3241 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-856)) (PROGN (-15 -2050 (|#2| |#2|)) (-15 -3241 (|#2| |#2|))) |%noBranch|)) (-1227) (-13 (-610 (-570) |#1|) (-10 -7 (-6 -4452) (-6 -4453)))) (T -1141))
-((-3241 (*1 *2 *2) (-12 (-4 *3 (-856)) (-4 *3 (-1227)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4452) (-6 -4453)))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-856)) (-4 *3 (-1227)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4452) (-6 -4453)))))) (-3241 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4452) (-6 -4453)))))) (-2050 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4452) (-6 -4453)))))))
-(-10 -7 (-15 -2050 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3241 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-856)) (PROGN (-15 -2050 (|#2| |#2|)) (-15 -3241 (|#2| |#2|))) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-3711 (((-1174 3 |#1|) $) 141)) (-3724 (((-112) $) 101)) (-1926 (($ $ (-650 (-950 |#1|))) 44) (($ $ (-650 (-650 |#1|))) 104) (($ (-650 (-950 |#1|))) 103) (((-650 (-950 |#1|)) $) 102)) (-1769 (((-112) $) 72)) (-1830 (($ $ (-950 |#1|)) 76) (($ $ (-650 |#1|)) 81) (($ $ (-777)) 83) (($ (-950 |#1|)) 77) (((-950 |#1|) $) 75)) (-1530 (((-2 (|:| -3109 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777))) $) 139)) (-3755 (((-777) $) 53)) (-2457 (((-777) $) 52)) (-4073 (($ $ (-777) (-950 |#1|)) 67)) (-4279 (((-112) $) 111)) (-2589 (($ $ (-650 (-650 (-950 |#1|))) (-650 (-173)) (-173)) 118) (($ $ (-650 (-650 (-650 |#1|))) (-650 (-173)) (-173)) 120) (($ $ (-650 (-650 (-950 |#1|))) (-112) (-112)) 115) (($ $ (-650 (-650 (-650 |#1|))) (-112) (-112)) 127) (($ (-650 (-650 (-950 |#1|)))) 116) (($ (-650 (-650 (-950 |#1|))) (-112) (-112)) 117) (((-650 (-650 (-950 |#1|))) $) 114)) (-4356 (($ (-650 $)) 56) (($ $ $) 57)) (-2527 (((-650 (-173)) $) 133)) (-3916 (((-650 (-950 |#1|)) $) 130)) (-1366 (((-650 (-650 (-173))) $) 132)) (-4263 (((-650 (-650 (-650 (-950 |#1|)))) $) NIL)) (-3687 (((-650 (-650 (-650 (-777)))) $) 131)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3754 (((-777) $ (-650 (-950 |#1|))) 65)) (-3432 (((-112) $) 84)) (-3174 (($ $ (-650 (-950 |#1|))) 86) (($ $ (-650 (-650 |#1|))) 92) (($ (-650 (-950 |#1|))) 87) (((-650 (-950 |#1|)) $) 85)) (-1682 (($) 48) (($ (-1174 3 |#1|)) 49)) (-3064 (($ $) 63)) (-4021 (((-650 $) $) 62)) (-3363 (($ (-650 $)) 59)) (-2006 (((-650 $) $) 61)) (-2869 (((-868) $) 146)) (-3087 (((-112) $) 94)) (-3610 (($ $ (-650 (-950 |#1|))) 96) (($ $ (-650 (-650 |#1|))) 99) (($ (-650 (-950 |#1|))) 97) (((-650 (-950 |#1|)) $) 95)) (-2875 (($ $) 140)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1142 |#1|) (-1143 |#1|) (-1058)) (T -1142))
-NIL
-(-1143 |#1|)
-((-2847 (((-112) $ $) 7)) (-3711 (((-1174 3 |#1|) $) 14)) (-3724 (((-112) $) 30)) (-1926 (($ $ (-650 (-950 |#1|))) 34) (($ $ (-650 (-650 |#1|))) 33) (($ (-650 (-950 |#1|))) 32) (((-650 (-950 |#1|)) $) 31)) (-1769 (((-112) $) 45)) (-1830 (($ $ (-950 |#1|)) 50) (($ $ (-650 |#1|)) 49) (($ $ (-777)) 48) (($ (-950 |#1|)) 47) (((-950 |#1|) $) 46)) (-1530 (((-2 (|:| -3109 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777))) $) 16)) (-3755 (((-777) $) 59)) (-2457 (((-777) $) 60)) (-4073 (($ $ (-777) (-950 |#1|)) 51)) (-4279 (((-112) $) 22)) (-2589 (($ $ (-650 (-650 (-950 |#1|))) (-650 (-173)) (-173)) 29) (($ $ (-650 (-650 (-650 |#1|))) (-650 (-173)) (-173)) 28) (($ $ (-650 (-650 (-950 |#1|))) (-112) (-112)) 27) (($ $ (-650 (-650 (-650 |#1|))) (-112) (-112)) 26) (($ (-650 (-650 (-950 |#1|)))) 25) (($ (-650 (-650 (-950 |#1|))) (-112) (-112)) 24) (((-650 (-650 (-950 |#1|))) $) 23)) (-4356 (($ (-650 $)) 58) (($ $ $) 57)) (-2527 (((-650 (-173)) $) 17)) (-3916 (((-650 (-950 |#1|)) $) 21)) (-1366 (((-650 (-650 (-173))) $) 18)) (-4263 (((-650 (-650 (-650 (-950 |#1|)))) $) 19)) (-3687 (((-650 (-650 (-650 (-777)))) $) 20)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-3754 (((-777) $ (-650 (-950 |#1|))) 52)) (-3432 (((-112) $) 40)) (-3174 (($ $ (-650 (-950 |#1|))) 44) (($ $ (-650 (-650 |#1|))) 43) (($ (-650 (-950 |#1|))) 42) (((-650 (-950 |#1|)) $) 41)) (-1682 (($) 62) (($ (-1174 3 |#1|)) 61)) (-3064 (($ $) 53)) (-4021 (((-650 $) $) 54)) (-3363 (($ (-650 $)) 56)) (-2006 (((-650 $) $) 55)) (-2869 (((-868) $) 12)) (-3087 (((-112) $) 35)) (-3610 (($ $ (-650 (-950 |#1|))) 39) (($ $ (-650 (-650 |#1|))) 38) (($ (-650 (-950 |#1|))) 37) (((-650 (-950 |#1|)) $) 36)) (-2875 (($ $) 15)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-1143 |#1|) (-141) (-1058)) (T -1143))
-((-2869 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-868)))) (-1682 (*1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-1682 (*1 *1 *2) (-12 (-5 *2 (-1174 3 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-2457 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-4356 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-4356 (*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-3363 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-2006 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)))) (-4021 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)))) (-3064 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-3754 (*1 *2 *1 *3) (-12 (-5 *3 (-650 (-950 *4))) (-4 *1 (-1143 *4)) (-4 *4 (-1058)) (-5 *2 (-777)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-950 *4)) (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) (-1830 (*1 *1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-1830 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-1830 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-1830 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-1830 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-950 *3)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3174 (*1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-3610 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3610 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-2589 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-650 (-950 *5)))) (-5 *3 (-650 (-173))) (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058)))) (-2589 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-650 (-173))) (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058)))) (-2589 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112)) (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) (-2589 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-112)) (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 *3)))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-2589 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112)) (-4 *4 (-1058)) (-4 *1 (-1143 *4)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-950 *3)))))) (-4279 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-650 (-777))))))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-650 (-950 *3))))))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-173)))))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-173))))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -3109 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777)))))) (-2875 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-1174 3 *3)))))
-(-13 (-1109) (-10 -8 (-15 -1682 ($)) (-15 -1682 ($ (-1174 3 |t#1|))) (-15 -2457 ((-777) $)) (-15 -3755 ((-777) $)) (-15 -4356 ($ (-650 $))) (-15 -4356 ($ $ $)) (-15 -3363 ($ (-650 $))) (-15 -2006 ((-650 $) $)) (-15 -4021 ((-650 $) $)) (-15 -3064 ($ $)) (-15 -3754 ((-777) $ (-650 (-950 |t#1|)))) (-15 -4073 ($ $ (-777) (-950 |t#1|))) (-15 -1830 ($ $ (-950 |t#1|))) (-15 -1830 ($ $ (-650 |t#1|))) (-15 -1830 ($ $ (-777))) (-15 -1830 ($ (-950 |t#1|))) (-15 -1830 ((-950 |t#1|) $)) (-15 -1769 ((-112) $)) (-15 -3174 ($ $ (-650 (-950 |t#1|)))) (-15 -3174 ($ $ (-650 (-650 |t#1|)))) (-15 -3174 ($ (-650 (-950 |t#1|)))) (-15 -3174 ((-650 (-950 |t#1|)) $)) (-15 -3432 ((-112) $)) (-15 -3610 ($ $ (-650 (-950 |t#1|)))) (-15 -3610 ($ $ (-650 (-650 |t#1|)))) (-15 -3610 ($ (-650 (-950 |t#1|)))) (-15 -3610 ((-650 (-950 |t#1|)) $)) (-15 -3087 ((-112) $)) (-15 -1926 ($ $ (-650 (-950 |t#1|)))) (-15 -1926 ($ $ (-650 (-650 |t#1|)))) (-15 -1926 ($ (-650 (-950 |t#1|)))) (-15 -1926 ((-650 (-950 |t#1|)) $)) (-15 -3724 ((-112) $)) (-15 -2589 ($ $ (-650 (-650 (-950 |t#1|))) (-650 (-173)) (-173))) (-15 -2589 ($ $ (-650 (-650 (-650 |t#1|))) (-650 (-173)) (-173))) (-15 -2589 ($ $ (-650 (-650 (-950 |t#1|))) (-112) (-112))) (-15 -2589 ($ $ (-650 (-650 (-650 |t#1|))) (-112) (-112))) (-15 -2589 ($ (-650 (-650 (-950 |t#1|))))) (-15 -2589 ($ (-650 (-650 (-950 |t#1|))) (-112) (-112))) (-15 -2589 ((-650 (-650 (-950 |t#1|))) $)) (-15 -4279 ((-112) $)) (-15 -3916 ((-650 (-950 |t#1|)) $)) (-15 -3687 ((-650 (-650 (-650 (-777)))) $)) (-15 -4263 ((-650 (-650 (-650 (-950 |t#1|)))) $)) (-15 -1366 ((-650 (-650 (-173))) $)) (-15 -2527 ((-650 (-173)) $)) (-15 -1530 ((-2 (|:| -3109 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777))) $)) (-15 -2875 ($ $)) (-15 -3711 ((-1174 3 |t#1|) $)) (-15 -2869 ((-868) $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 184) (($ (-1191)) NIL) (((-1191) $) 7)) (-1970 (((-112) $ (|[\|\|]| (-530))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-682))) 27) (((-112) $ (|[\|\|]| (-1287))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-612))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1124))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-687))) 55) (((-112) $ (|[\|\|]| (-523))) 59) (((-112) $ (|[\|\|]| (-1075))) 63) (((-112) $ (|[\|\|]| (-1288))) 67) (((-112) $ (|[\|\|]| (-531))) 71) (((-112) $ (|[\|\|]| (-1160))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-677))) 83) (((-112) $ (|[\|\|]| (-315))) 87) (((-112) $ (|[\|\|]| (-1045))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-979))) 99) (((-112) $ (|[\|\|]| (-1082))) 103) (((-112) $ (|[\|\|]| (-1099))) 107) (((-112) $ (|[\|\|]| (-1105))) 111) (((-112) $ (|[\|\|]| (-632))) 115) (((-112) $ (|[\|\|]| (-1176))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-484))) 131) (((-112) $ (|[\|\|]| (-598))) 135) (((-112) $ (|[\|\|]| (-512))) 139) (((-112) $ (|[\|\|]| (-1168))) 143) (((-112) $ (|[\|\|]| (-570))) 147)) (-1344 (((-112) $ $) NIL)) (-3120 (((-530) $) 20) (((-220) $) 24) (((-682) $) 28) (((-1287) $) 32) (((-139) $) 36) (((-612) $) 40) (((-134) $) 44) (((-1124) $) 48) (((-96) $) 52) (((-687) $) 56) (((-523) $) 60) (((-1075) $) 64) (((-1288) $) 68) (((-531) $) 72) (((-1160) $) 76) (((-155) $) 80) (((-677) $) 84) (((-315) $) 88) (((-1045) $) 92) (((-182) $) 96) (((-979) $) 100) (((-1082) $) 104) (((-1099) $) 108) (((-1105) $) 112) (((-632) $) 116) (((-1176) $) 120) (((-157) $) 124) (((-138) $) 128) (((-484) $) 132) (((-598) $) 136) (((-512) $) 140) (((-1168) $) 144) (((-570) $) 148)) (-3892 (((-112) $ $) NIL)))
-(((-1144) (-1146)) (T -1144))
-NIL
-(-1146)
-((-4180 (((-650 (-1191)) (-1168)) 9)))
-(((-1145) (-10 -7 (-15 -4180 ((-650 (-1191)) (-1168))))) (T -1145))
-((-4180 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-1145)))))
-(-10 -7 (-15 -4180 ((-650 (-1191)) (-1168))))
-((-2847 (((-112) $ $) 7)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-1191)) 17) (((-1191) $) 16)) (-1970 (((-112) $ (|[\|\|]| (-530))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-682))) 81) (((-112) $ (|[\|\|]| (-1287))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-612))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1124))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-687))) 67) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-1075))) 63) (((-112) $ (|[\|\|]| (-1288))) 61) (((-112) $ (|[\|\|]| (-531))) 59) (((-112) $ (|[\|\|]| (-1160))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-677))) 53) (((-112) $ (|[\|\|]| (-315))) 51) (((-112) $ (|[\|\|]| (-1045))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-979))) 45) (((-112) $ (|[\|\|]| (-1082))) 43) (((-112) $ (|[\|\|]| (-1099))) 41) (((-112) $ (|[\|\|]| (-1105))) 39) (((-112) $ (|[\|\|]| (-632))) 37) (((-112) $ (|[\|\|]| (-1176))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-484))) 29) (((-112) $ (|[\|\|]| (-598))) 27) (((-112) $ (|[\|\|]| (-512))) 25) (((-112) $ (|[\|\|]| (-1168))) 23) (((-112) $ (|[\|\|]| (-570))) 21)) (-1344 (((-112) $ $) 9)) (-3120 (((-530) $) 84) (((-220) $) 82) (((-682) $) 80) (((-1287) $) 78) (((-139) $) 76) (((-612) $) 74) (((-134) $) 72) (((-1124) $) 70) (((-96) $) 68) (((-687) $) 66) (((-523) $) 64) (((-1075) $) 62) (((-1288) $) 60) (((-531) $) 58) (((-1160) $) 56) (((-155) $) 54) (((-677) $) 52) (((-315) $) 50) (((-1045) $) 48) (((-182) $) 46) (((-979) $) 44) (((-1082) $) 42) (((-1099) $) 40) (((-1105) $) 38) (((-632) $) 36) (((-1176) $) 34) (((-157) $) 32) (((-138) $) 30) (((-484) $) 28) (((-598) $) 26) (((-512) $) 24) (((-1168) $) 22) (((-570) $) 20)) (-3892 (((-112) $ $) 6)))
-(((-1146) (-141)) (T -1146))
-((-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-530)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-220)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-682)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1287))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1287)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-139)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-612)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-134)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1124)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-96)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-687)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-523)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1075)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1288))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1288)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-531)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1160)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-155)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-677)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-315))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-315)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1045)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-182)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-979)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1082)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1099)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1105)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-632))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-632)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1176)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-157)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-138)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-484)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-598))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-598)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-512)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1168)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-570)))))
-(-13 (-1092) (-1272) (-10 -8 (-15 -1970 ((-112) $ (|[\|\|]| (-530)))) (-15 -3120 ((-530) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-220)))) (-15 -3120 ((-220) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-682)))) (-15 -3120 ((-682) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1287)))) (-15 -3120 ((-1287) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-139)))) (-15 -3120 ((-139) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-612)))) (-15 -3120 ((-612) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-134)))) (-15 -3120 ((-134) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1124)))) (-15 -3120 ((-1124) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-96)))) (-15 -3120 ((-96) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-687)))) (-15 -3120 ((-687) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-523)))) (-15 -3120 ((-523) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1075)))) (-15 -3120 ((-1075) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1288)))) (-15 -3120 ((-1288) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-531)))) (-15 -3120 ((-531) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1160)))) (-15 -3120 ((-1160) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-155)))) (-15 -3120 ((-155) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-677)))) (-15 -3120 ((-677) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-315)))) (-15 -3120 ((-315) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1045)))) (-15 -3120 ((-1045) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-182)))) (-15 -3120 ((-182) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-979)))) (-15 -3120 ((-979) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1082)))) (-15 -3120 ((-1082) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1099)))) (-15 -3120 ((-1099) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1105)))) (-15 -3120 ((-1105) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-632)))) (-15 -3120 ((-632) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3120 ((-1176) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-157)))) (-15 -3120 ((-157) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-138)))) (-15 -3120 ((-138) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-484)))) (-15 -3120 ((-484) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-598)))) (-15 -3120 ((-598) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-512)))) (-15 -3120 ((-512) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3120 ((-1168) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-570)))) (-15 -3120 ((-570) $))))
-(((-93) . T) ((-102) . T) ((-622 #0=(-1191)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T) ((-1092) . T) ((-1272) . T))
-((-2131 (((-1282) (-650 (-868))) 22) (((-1282) (-868)) 21)) (-2388 (((-1282) (-650 (-868))) 20) (((-1282) (-868)) 19)) (-2237 (((-1282) (-650 (-868))) 18) (((-1282) (-868)) 10) (((-1282) (-1168) (-868)) 16)))
-(((-1147) (-10 -7 (-15 -2237 ((-1282) (-1168) (-868))) (-15 -2237 ((-1282) (-868))) (-15 -2388 ((-1282) (-868))) (-15 -2131 ((-1282) (-868))) (-15 -2237 ((-1282) (-650 (-868)))) (-15 -2388 ((-1282) (-650 (-868)))) (-15 -2131 ((-1282) (-650 (-868)))))) (T -1147))
-((-2131 (*1 *2 *3) (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1282)) (-5 *1 (-1147)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1282)) (-5 *1 (-1147)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1282)) (-5 *1 (-1147)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147)))))
-(-10 -7 (-15 -2237 ((-1282) (-1168) (-868))) (-15 -2237 ((-1282) (-868))) (-15 -2388 ((-1282) (-868))) (-15 -2131 ((-1282) (-868))) (-15 -2237 ((-1282) (-650 (-868)))) (-15 -2388 ((-1282) (-650 (-868)))) (-15 -2131 ((-1282) (-650 (-868)))))
-((-2133 (($ $ $) 10)) (-2550 (($ $) 9)) (-2742 (($ $ $) 13)) (-3471 (($ $ $) 15)) (-2786 (($ $ $) 12)) (-2413 (($ $ $) 14)) (-3937 (($ $) 17)) (-4386 (($ $) 16)) (-2521 (($ $) 6)) (-4285 (($ $ $) 11) (($ $) 7)) (-4036 (($ $ $) 8)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-2620 ((|#1| $) 45)) (-2938 (((-112) $ (-779)) 8)) (-1586 (($) 7 T CONST)) (-3540 ((|#1| |#1| $) 47)) (-2836 ((|#1| $) 46)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-1533 ((|#1| $) 40)) (-3704 (($ |#1| $) 41)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-4105 ((|#1| $) 42)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-3900 (((-779) $) 44)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) 43)) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1132 |#1|) (-141) (-1229)) (T -1132))
+((-3540 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1132 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4454) (-15 -3540 (|t#1| |t#1| $)) (-15 -2836 (|t#1| $)) (-15 -2620 (|t#1| $)) (-15 -3900 ((-779) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-2055 ((|#3| $) 87)) (-3072 (((-3 (-572) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-1869 (((-572) $) NIL) (((-415 (-572)) $) NIL) ((|#3| $) 47)) (-2245 (((-697 (-572)) (-697 $)) NIL) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL) (((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 $) (-1279 $)) 84) (((-697 |#3|) (-697 $)) 76)) (-3011 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188)) NIL) (($ $ (-779)) NIL) (($ $) NIL)) (-2623 ((|#3| $) 89)) (-4335 ((|#4| $) 43)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ |#3|) 25)) (** (($ $ (-930)) NIL) (($ $ (-779)) 24) (($ $ (-572)) 95)))
+(((-1133 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 -2623 (|#3| |#1|)) (-15 -2055 (|#3| |#1|)) (-15 -4335 (|#4| |#1|)) (-15 -2245 ((-697 |#3|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3491 (|#1| |#3|)) (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3491 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -3491 ((-870) |#1|))) (-1134 |#2| |#3| |#4| |#5|) (-779) (-1060) (-242 |#2| |#3|) (-242 |#2| |#3|)) (T -1133))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-572))) (-15 -2623 (|#3| |#1|)) (-15 -2055 (|#3| |#1|)) (-15 -4335 (|#4| |#1|)) (-15 -2245 ((-697 |#3|) (-697 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 |#3|)) (|:| |vec| (-1279 |#3|))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 |#1|) (-1279 |#1|))) (-15 -2245 ((-697 (-572)) (-697 |#1|))) (-15 -3491 (|#1| |#3|)) (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|) (-779))) (-15 -3011 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3491 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2055 ((|#2| $) 77)) (-2696 (((-112) $) 117)) (-2092 (((-3 $ "failed") $ $) 20)) (-3295 (((-112) $) 115)) (-2938 (((-112) $ (-779)) 107)) (-2420 (($ |#2|) 80)) (-1586 (($) 18 T CONST)) (-1728 (($ $) 134 (|has| |#2| (-313)))) (-2863 ((|#3| $ (-572)) 129)) (-3072 (((-3 (-572) "failed") $) 92 (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) 89 (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) 86)) (-1869 (((-572) $) 91 (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) 88 (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) 87)) (-2245 (((-697 (-572)) (-697 $)) 84 (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 83 (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 82) (((-697 |#2|) (-697 $)) 81)) (-2982 (((-3 $ "failed") $) 37)) (-1526 (((-779) $) 135 (|has| |#2| (-564)))) (-2986 ((|#2| $ (-572) (-572)) 127)) (-1442 (((-652 |#2|) $) 100 (|has| $ (-6 -4454)))) (-4422 (((-112) $) 35)) (-1438 (((-779) $) 136 (|has| |#2| (-564)))) (-1924 (((-652 |#4|) $) 137 (|has| |#2| (-564)))) (-2366 (((-779) $) 123)) (-2378 (((-779) $) 124)) (-2545 (((-112) $ (-779)) 108)) (-4202 ((|#2| $) 72 (|has| |#2| (-6 (-4456 "*"))))) (-3689 (((-572) $) 119)) (-3086 (((-572) $) 121)) (-2396 (((-652 |#2|) $) 99 (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3631 (((-572) $) 120)) (-3652 (((-572) $) 122)) (-1793 (($ (-652 (-652 |#2|))) 114)) (-3049 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1942 (((-652 (-652 |#2|)) $) 125)) (-3818 (((-112) $ (-779)) 109)) (-3618 (((-1170) $) 10)) (-1558 (((-3 $ "failed") $) 71 (|has| |#2| (-370)))) (-2614 (((-1131) $) 11)) (-3453 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-564)))) (-3089 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) 96 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 95 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 93 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) 113)) (-3712 (((-112) $) 110)) (-1321 (($) 111)) (-2679 ((|#2| $ (-572) (-572) |#2|) 128) ((|#2| $ (-572) (-572)) 126)) (-3011 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-779)) 55) (($ $ (-652 (-1188)) (-652 (-779))) 48 (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) 47 (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) 46 (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) 45 (|has| |#2| (-909 (-1188)))) (($ $ (-779)) 43 (|has| |#2| (-237))) (($ $) 41 (|has| |#2| (-237)))) (-2623 ((|#2| $) 76)) (-3502 (($ (-652 |#2|)) 79)) (-3365 (((-112) $) 116)) (-4335 ((|#3| $) 78)) (-3312 ((|#2| $) 73 (|has| |#2| (-6 (-4456 "*"))))) (-1371 (((-779) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4454))) (((-779) |#2| $) 98 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 112)) (-3845 ((|#4| $ (-572)) 130)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 90 (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) 85)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-3776 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4454)))) (-3889 (((-112) $) 118)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-779)) 53) (($ $ (-652 (-1188)) (-652 (-779))) 52 (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) 51 (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) 50 (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) 49 (|has| |#2| (-909 (-1188)))) (($ $ (-779)) 44 (|has| |#2| (-237))) (($ $) 42 (|has| |#2| (-237)))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#2|) 133 (|has| |#2| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 70 (|has| |#2| (-370)))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-3475 (((-779) $) 106 (|has| $ (-6 -4454)))))
+(((-1134 |#1| |#2| |#3| |#4|) (-141) (-779) (-1060) (-242 |t#1| |t#2|) (-242 |t#1| |t#2|)) (T -1134))
+((-2420 (*1 *1 *2) (-12 (-4 *2 (-1060)) (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-652 *4)) (-4 *4 (-1060)) (-4 *1 (-1134 *3 *4 *5 *6)) (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)))) (-4335 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *2 (-242 *3 *4)))) (-2055 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1134 *3 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *2 (-242 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *2 (-242 *3 *4)) (-4 *5 (-242 *3 *4)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2)) (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))) (-1558 (*1 *1 *1) (|partial| -12 (-4 *1 (-1134 *2 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-242 *2 *3)) (-4 *5 (-242 *2 *3)) (-4 *3 (-370)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1134 *3 *4 *5 *6)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)) (-4 *4 (-370)))))
+(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1064 |t#1| |t#1| |t#2| |t#3| |t#4|) (-419 |t#2|) (-384 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-725 |t#2|)) |%noBranch|) (-15 -2420 ($ |t#2|)) (-15 -3502 ($ (-652 |t#2|))) (-15 -4335 (|t#3| $)) (-15 -2055 (|t#2| $)) (-15 -2623 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4456 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3312 (|t#2| $)) (-15 -4202 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-370)) (PROGN (-15 -1558 ((-3 $ "failed") $)) (-15 ** ($ $ (-572)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4456 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 #0=(-415 (-572))) |has| |#2| (-1049 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-233 |#2|) . T) ((-237) |has| |#2| (-237)) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-384 |#2|) . T) ((-419 |#2|) . T) ((-497 |#2|) . T) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-648 |#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-6 (-4456 "*")))) ((-647 (-572)) |has| |#2| (-647 (-572))) ((-647 |#2|) . T) ((-725 |#2|) -3783 (|has| |#2| (-174)) (|has| |#2| (-6 (-4456 "*")))) ((-734) . T) ((-909 (-1188)) |has| |#2| (-909 (-1188))) ((-1064 |#1| |#1| |#2| |#3| |#4|) . T) ((-1049 #0#) |has| |#2| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#2| (-1049 (-572))) ((-1049 |#2|) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T))
+((-3667 ((|#4| |#4|) 81)) (-1450 ((|#4| |#4|) 76)) (-1477 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|))) |#4| |#3|) 91)) (-2732 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2079 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1450 (|#4| |#4|)) (-15 -2079 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3667 (|#4| |#4|)) (-15 -2732 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1477 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|))) |#4| |#3|))) (-313) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -1135))
+((-1477 (*1 *2 *3 *4) (-12 (-4 *5 (-313)) (-4 *6 (-380 *5)) (-4 *4 (-380 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4)))) (-5 *1 (-1135 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))) (-2732 (*1 *2 *3) (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-2079 (*1 *2 *3) (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(-10 -7 (-15 -1450 (|#4| |#4|)) (-15 -2079 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3667 (|#4| |#4|)) (-15 -2732 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1477 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1769 (-652 |#3|))) |#4| |#3|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 18)) (-2220 (((-652 |#2|) $) 174)) (-4063 (((-1184 $) $ |#2|) 60) (((-1184 |#1|) $) 49)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 116 (|has| |#1| (-564)))) (-1697 (($ $) 118 (|has| |#1| (-564)))) (-1774 (((-112) $) 120 (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 |#2|)) 213)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) 167) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 |#2| "failed") $) NIL)) (-1869 ((|#1| $) 165) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) ((|#2| $) NIL)) (-3829 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1874 (($ $) 217)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) 90)) (-2889 (($ $) NIL (|has| |#1| (-460))) (($ $ |#2|) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-539 |#2|) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#1| (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#1| (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-4422 (((-112) $) 20)) (-2348 (((-779) $) 30)) (-3060 (($ (-1184 |#1|) |#2|) 54) (($ (-1184 $) |#2|) 71)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) 38)) (-3042 (($ |#1| (-539 |#2|)) 78) (($ $ |#2| (-779)) 58) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ |#2|) NIL)) (-3808 (((-539 |#2|) $) 205) (((-779) $ |#2|) 206) (((-652 (-779)) $ (-652 |#2|)) 207)) (-2008 (($ (-1 (-539 |#2|) (-539 |#2|)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) 128)) (-4107 (((-3 |#2| "failed") $) 177)) (-1840 (($ $) 216)) (-1853 ((|#1| $) 43)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| |#2|) (|:| -2477 (-779))) "failed") $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) 39)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 148 (|has| |#1| (-460)))) (-1370 (($ (-652 $)) 153 (|has| |#1| (-460))) (($ $ $) 138 (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#1| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-918)))) (-3453 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-564)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-652 |#2|) (-652 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-652 |#2|) (-652 $)) 194)) (-2020 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3011 (($ $ |#2|) 215) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-1497 (((-539 |#2|) $) 201) (((-779) $ |#2|) 196) (((-652 (-779)) $ (-652 |#2|)) 199)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| |#1| (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| |#1| (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| |#1| (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-3262 ((|#1| $) 134 (|has| |#1| (-460))) (($ $ |#2|) 137 (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-3491 (((-870) $) 159) (($ (-572)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-564))) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-1708 (((-652 |#1|) $) 162)) (-4206 ((|#1| $ (-539 |#2|)) 80) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) 87 T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) 123 (|has| |#1| (-564)))) (-2602 (($) 12 T CONST)) (-2619 (($) 14 T CONST)) (-4019 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-3921 (((-112) $ $) 106)) (-4029 (($ $ |#1|) 132 (|has| |#1| (-370)))) (-4018 (($ $) 93) (($ $ $) 104)) (-4005 (($ $ $) 55)) (** (($ $ (-930)) 110) (($ $ (-779)) 109)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 96) (($ $ $) 72) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
+(((-1136 |#1| |#2|) (-958 |#1| (-539 |#2|) |#2|) (-1060) (-858)) (T -1136))
+NIL
+(-958 |#1| (-539 |#2|) |#2|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 |#2|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3915 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 128 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3893 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 124 (|has| |#1| (-38 (-415 (-572)))))) (-3939 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3102 (((-961 |#1|) $ (-779)) NIL) (((-961 |#1|) $ (-779) (-779)) NIL)) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-779) $ |#2|) NIL) (((-779) $ |#2| (-779)) NIL)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3357 (((-112) $) NIL)) (-3042 (($ $ (-652 |#2|) (-652 (-539 |#2|))) NIL) (($ $ |#2| (-539 |#2|)) NIL) (($ |#1| (-539 |#2|)) NIL) (($ $ |#2| (-779)) 63) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4057 (($ $) 122 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-4161 (($ $ |#2|) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-2374 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-415 (-572)))))) (-3103 (($ $ (-779)) 16)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3272 (($ $) 120 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (($ $ |#2| $) 106) (($ $ (-652 |#2|) (-652 $)) 99) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL)) (-3011 (($ $ |#2|) 109) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-1497 (((-539 |#2|) $) NIL)) (-3059 (((-1 (-1168 |#3|) |#3|) (-652 |#2|) (-652 (-1168 |#3|))) 87)) (-2139 (($ $) 158 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 126 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 18)) (-3491 (((-870) $) 198) (($ (-572)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-564))) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#2|) 70) (($ |#3|) 68)) (-4206 ((|#1| $ (-539 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL) ((|#3| $ (-779)) 43)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) 164 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) 160 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 168 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-3120 (($ $) 170 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 166 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 162 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 52 T CONST)) (-2619 (($) 62 T CONST)) (-4019 (($ $ |#2|) NIL) (($ $ (-652 |#2|)) NIL) (($ $ |#2| (-779)) NIL) (($ $ (-652 |#2|) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) 200 (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 66)) (** (($ $ (-930)) NIL) (($ $ (-779)) 77) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 112 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 65) (($ $ (-415 (-572))) 117 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 115 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1137 |#1| |#2| |#3|) (-13 (-748 |#1| |#2|) (-10 -8 (-15 -4206 (|#3| $ (-779))) (-15 -3491 ($ |#2|)) (-15 -3491 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3059 ((-1 (-1168 |#3|) |#3|) (-652 |#2|) (-652 (-1168 |#3|)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $ |#2| |#1|)) (-15 -2374 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1060) (-858) (-958 |#1| (-539 |#2|) |#2|)) (T -1137))
+((-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *2 (-958 *4 (-539 *5) *5)) (-5 *1 (-1137 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-858)))) (-3491 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *2 (-858)) (-5 *1 (-1137 *3 *2 *4)) (-4 *4 (-958 *3 (-539 *2) *2)))) (-3491 (*1 *1 *2) (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2)) (-4 *2 (-958 *3 (-539 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2)) (-4 *2 (-958 *3 (-539 *4) *4)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1168 *7))) (-4 *6 (-858)) (-4 *7 (-958 *5 (-539 *6) *6)) (-4 *5 (-1060)) (-5 *2 (-1 (-1168 *7) *7)) (-5 *1 (-1137 *5 *6 *7)))) (-4161 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-4 *2 (-858)) (-5 *1 (-1137 *3 *2 *4)) (-4 *4 (-958 *3 (-539 *2) *2)))) (-2374 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1137 *4 *3 *5))) (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)) (-4 *3 (-858)) (-5 *1 (-1137 *4 *3 *5)) (-4 *5 (-958 *4 (-539 *3) *3)))))
+(-13 (-748 |#1| |#2|) (-10 -8 (-15 -4206 (|#3| $ (-779))) (-15 -3491 ($ |#2|)) (-15 -3491 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3059 ((-1 (-1168 |#3|) |#3|) (-652 |#2|) (-652 (-1168 |#3|)))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $ |#2| |#1|)) (-15 -2374 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-3464 (((-112) $ $) 7)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) 86)) (-3426 (((-652 $) (-652 |#4|)) 87) (((-652 $) (-652 |#4|) (-112)) 112)) (-2220 (((-652 |#3|) $) 34)) (-2029 (((-112) $) 27)) (-4308 (((-112) $) 18 (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) 102) (((-112) $) 98)) (-2373 ((|#4| |#4| $) 93)) (-1861 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| $) 127)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) 28)) (-2938 (((-112) $ (-779)) 45)) (-1424 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-1586 (($) 46 T CONST)) (-3571 (((-112) $) 23 (|has| |#1| (-564)))) (-3057 (((-112) $ $) 25 (|has| |#1| (-564)))) (-1528 (((-112) $ $) 24 (|has| |#1| (-564)))) (-2690 (((-112) $) 26 (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4400 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) 37)) (-1869 (($ (-652 |#4|)) 36)) (-2581 (((-3 $ "failed") $) 83)) (-3802 ((|#4| |#4| $) 90)) (-3955 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1674 ((|#4| |#4| $) 88)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) 106)) (-3294 (((-112) |#4| $) 137)) (-3342 (((-112) |#4| $) 134)) (-3628 (((-112) |#4| $) 138) (((-112) $) 135)) (-1442 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) 105) (((-112) $) 104)) (-3698 ((|#3| $) 35)) (-2545 (((-112) $ (-779)) 44)) (-2396 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 48)) (-1677 (((-652 |#3|) $) 33)) (-2002 (((-112) |#3| $) 32)) (-3818 (((-112) $ (-779)) 43)) (-3618 (((-1170) $) 10)) (-1618 (((-3 |#4| (-652 $)) |#4| |#4| $) 129)) (-3276 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| |#4| $) 128)) (-4261 (((-3 |#4| "failed") $) 84)) (-3981 (((-652 $) |#4| $) 130)) (-4302 (((-3 (-112) (-652 $)) |#4| $) 133)) (-1457 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3225 (((-652 $) |#4| $) 126) (((-652 $) (-652 |#4|) $) 125) (((-652 $) (-652 |#4|) (-652 $)) 124) (((-652 $) |#4| (-652 $)) 123)) (-1772 (($ |#4| $) 118) (($ (-652 |#4|) $) 117)) (-1706 (((-652 |#4|) $) 108)) (-1338 (((-112) |#4| $) 100) (((-112) $) 96)) (-3113 ((|#4| |#4| $) 91)) (-4398 (((-112) $ $) 111)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) 101) (((-112) $) 97)) (-2041 ((|#4| |#4| $) 92)) (-2614 (((-1131) $) 11)) (-2570 (((-3 |#4| "failed") $) 85)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4236 (((-3 $ "failed") $ |#4|) 79)) (-3103 (($ $ |#4|) 78) (((-652 $) |#4| $) 116) (((-652 $) |#4| (-652 $)) 115) (((-652 $) (-652 |#4|) $) 114) (((-652 $) (-652 |#4|) (-652 $)) 113)) (-3089 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) 39)) (-3712 (((-112) $) 42)) (-1321 (($) 41)) (-1497 (((-779) $) 107)) (-1371 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3679 (($ $) 40)) (-3222 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 61)) (-3399 (($ $ |#3|) 29)) (-3831 (($ $ |#3|) 31)) (-2894 (($ $) 89)) (-1757 (($ $ |#3|) 30)) (-3491 (((-870) $) 12) (((-652 |#4|) $) 38)) (-1935 (((-779) $) 77 (|has| |#3| (-375)))) (-3424 (((-112) $ $) 9)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-2290 (((-652 $) |#4| $) 122) (((-652 $) |#4| (-652 $)) 121) (((-652 $) (-652 |#4|) $) 120) (((-652 $) (-652 |#4|) (-652 $)) 119)) (-3776 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) 82)) (-2777 (((-112) |#4| $) 136)) (-2947 (((-112) |#3| $) 81)) (-3921 (((-112) $ $) 6)) (-3475 (((-779) $) 47 (|has| $ (-6 -4454)))))
+(((-1138 |#1| |#2| |#3| |#4|) (-141) (-460) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1138))
+NIL
+(-13 (-1120 |t#1| |t#2| |t#3| |t#4|) (-792 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-792 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1222 |#1| |#2| |#3| |#4|) . T) ((-1229) . T))
+((-1969 (((-652 |#2|) |#1|) 15)) (-2721 (((-652 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-652 |#2|) |#1|) 61)) (-1939 (((-652 |#2|) |#2| |#2| |#2|) 45) (((-652 |#2|) |#1|) 59)) (-1454 ((|#2| |#1|) 54)) (-2309 (((-2 (|:| |solns| (-652 |#2|)) (|:| |maps| (-652 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3081 (((-652 |#2|) |#2| |#2|) 42) (((-652 |#2|) |#1|) 58)) (-4225 (((-652 |#2|) |#2| |#2| |#2| |#2|) 46) (((-652 |#2|) |#1|) 60)) (-3579 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-4222 ((|#2| |#2| |#2| |#2|) 51)) (-2395 ((|#2| |#2| |#2|) 50)) (-2892 ((|#2| |#2| |#2| |#2| |#2|) 52)))
+(((-1139 |#1| |#2|) (-10 -7 (-15 -1969 ((-652 |#2|) |#1|)) (-15 -1454 (|#2| |#1|)) (-15 -2309 ((-2 (|:| |solns| (-652 |#2|)) (|:| |maps| (-652 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3081 ((-652 |#2|) |#1|)) (-15 -1939 ((-652 |#2|) |#1|)) (-15 -4225 ((-652 |#2|) |#1|)) (-15 -2721 ((-652 |#2|) |#1|)) (-15 -3081 ((-652 |#2|) |#2| |#2|)) (-15 -1939 ((-652 |#2|) |#2| |#2| |#2|)) (-15 -4225 ((-652 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2721 ((-652 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2395 (|#2| |#2| |#2|)) (-15 -4222 (|#2| |#2| |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3579 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1255 |#2|) (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (T -1139))
+((-3579 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-2892 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-4222 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-2395 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-2721 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-4225 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-1939 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-3081 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))) (-2721 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-1939 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-2 (|:| |solns| (-652 *5)) (|:| |maps| (-652 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1139 *3 *5)) (-4 *3 (-1255 *5)))) (-1454 (*1 *2 *3) (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572))))))) (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -1969 ((-652 |#2|) |#1|)) (-15 -1454 (|#2| |#1|)) (-15 -2309 ((-2 (|:| |solns| (-652 |#2|)) (|:| |maps| (-652 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3081 ((-652 |#2|) |#1|)) (-15 -1939 ((-652 |#2|) |#1|)) (-15 -4225 ((-652 |#2|) |#1|)) (-15 -2721 ((-652 |#2|) |#1|)) (-15 -3081 ((-652 |#2|) |#2| |#2|)) (-15 -1939 ((-652 |#2|) |#2| |#2| |#2|)) (-15 -4225 ((-652 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2721 ((-652 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2395 (|#2| |#2| |#2|)) (-15 -4222 (|#2| |#2| |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3579 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3580 (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|))))) 118) (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188))) 117) (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|)))) 115) (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 113) (((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|)))) 97) (((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))) (-1188)) 98) (((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|))) 92) (((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)) (-1188)) 82)) (-2766 (((-652 (-652 (-322 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 111) (((-652 (-322 |#1|)) (-415 (-961 |#1|)) (-1188)) 54)) (-3630 (((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-415 (-961 |#1|)) (-1188)) 122) (((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188)) 121)))
+(((-1140 |#1|) (-10 -7 (-15 -3580 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -3580 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)))) (-15 -3580 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -3580 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -2766 ((-652 (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -2766 ((-652 (-652 (-322 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -3630 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -3630 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-415 (-961 |#1|)) (-1188)))) (-13 (-313) (-148))) (T -1140))
+((-3630 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-322 *5)))) (-5 *1 (-1140 *5)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-322 *5))) (-5 *1 (-1140 *5)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-652 (-300 (-415 (-961 *4))))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *4))))) (-5 *1 (-1140 *4)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-300 (-415 (-961 *5))))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *4))))) (-5 *1 (-1140 *4)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1140 *5)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1140 *5)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1140 *5)))))
+(-10 -7 (-15 -3580 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)) (-1188))) (-15 -3580 ((-652 (-300 (-322 |#1|))) (-415 (-961 |#1|)))) (-15 -3580 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -3580 ((-652 (-300 (-322 |#1|))) (-300 (-415 (-961 |#1|))))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-415 (-961 |#1|))))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -3580 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -2766 ((-652 (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -2766 ((-652 (-652 (-322 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -3630 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -3630 ((-1177 (-652 (-322 |#1|)) (-652 (-300 (-322 |#1|)))) (-415 (-961 |#1|)) (-1188))))
+((-3486 (((-415 (-1184 (-322 |#1|))) (-1279 (-322 |#1|)) (-415 (-1184 (-322 |#1|))) (-572)) 36)) (-3328 (((-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|)))) 48)))
+(((-1141 |#1|) (-10 -7 (-15 -3328 ((-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))))) (-15 -3486 ((-415 (-1184 (-322 |#1|))) (-1279 (-322 |#1|)) (-415 (-1184 (-322 |#1|))) (-572)))) (-564)) (T -1141))
+((-3486 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-415 (-1184 (-322 *5)))) (-5 *3 (-1279 (-322 *5))) (-5 *4 (-572)) (-4 *5 (-564)) (-5 *1 (-1141 *5)))) (-3328 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-415 (-1184 (-322 *3)))) (-4 *3 (-564)) (-5 *1 (-1141 *3)))))
+(-10 -7 (-15 -3328 ((-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))) (-415 (-1184 (-322 |#1|))))) (-15 -3486 ((-415 (-1184 (-322 |#1|))) (-1279 (-322 |#1|)) (-415 (-1184 (-322 |#1|))) (-572))))
+((-1969 (((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-322 |#1|))) (-652 (-1188))) 244) (((-652 (-300 (-322 |#1|))) (-322 |#1|) (-1188)) 23) (((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)) (-1188)) 29) (((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|))) 28) (((-652 (-300 (-322 |#1|))) (-322 |#1|)) 24)))
+(((-1142 |#1|) (-10 -7 (-15 -1969 ((-652 (-300 (-322 |#1|))) (-322 |#1|))) (-15 -1969 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)))) (-15 -1969 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)) (-1188))) (-15 -1969 ((-652 (-300 (-322 |#1|))) (-322 |#1|) (-1188))) (-15 -1969 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-322 |#1|))) (-652 (-1188))))) (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (T -1142))
+((-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1188))) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1142 *5)) (-5 *3 (-652 (-300 (-322 *5)))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5)) (-5 *3 (-322 *5)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5)) (-5 *3 (-300 (-322 *5))))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4)) (-5 *3 (-300 (-322 *4))))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148))) (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4)) (-5 *3 (-322 *4)))))
+(-10 -7 (-15 -1969 ((-652 (-300 (-322 |#1|))) (-322 |#1|))) (-15 -1969 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)))) (-15 -1969 ((-652 (-300 (-322 |#1|))) (-300 (-322 |#1|)) (-1188))) (-15 -1969 ((-652 (-300 (-322 |#1|))) (-322 |#1|) (-1188))) (-15 -1969 ((-652 (-652 (-300 (-322 |#1|)))) (-652 (-300 (-322 |#1|))) (-652 (-1188)))))
+((-3632 ((|#2| |#2|) 28 (|has| |#1| (-858))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1730 ((|#2| |#2|) 27 (|has| |#1| (-858))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1143 |#1| |#2|) (-10 -7 (-15 -1730 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3632 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-858)) (PROGN (-15 -1730 (|#2| |#2|)) (-15 -3632 (|#2| |#2|))) |%noBranch|)) (-1229) (-13 (-612 (-572) |#1|) (-10 -7 (-6 -4454) (-6 -4455)))) (T -1143))
+((-3632 (*1 *2 *2) (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))) (-1730 (*1 *2 *2) (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))) (-3632 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455)))))) (-1730 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2)) (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455)))))))
+(-10 -7 (-15 -1730 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3632 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-858)) (PROGN (-15 -1730 (|#2| |#2|)) (-15 -3632 (|#2| |#2|))) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-1473 (((-1176 3 |#1|) $) 141)) (-1601 (((-112) $) 101)) (-1819 (($ $ (-652 (-952 |#1|))) 44) (($ $ (-652 (-652 |#1|))) 104) (($ (-652 (-952 |#1|))) 103) (((-652 (-952 |#1|)) $) 102)) (-3983 (((-112) $) 72)) (-2460 (($ $ (-952 |#1|)) 76) (($ $ (-652 |#1|)) 81) (($ $ (-779)) 83) (($ (-952 |#1|)) 77) (((-952 |#1|) $) 75)) (-1546 (((-2 (|:| -1571 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779))) $) 139)) (-1834 (((-779) $) 53)) (-3494 (((-779) $) 52)) (-1616 (($ $ (-779) (-952 |#1|)) 67)) (-3166 (((-112) $) 111)) (-2108 (($ $ (-652 (-652 (-952 |#1|))) (-652 (-173)) (-173)) 118) (($ $ (-652 (-652 (-652 |#1|))) (-652 (-173)) (-173)) 120) (($ $ (-652 (-652 (-952 |#1|))) (-112) (-112)) 115) (($ $ (-652 (-652 (-652 |#1|))) (-112) (-112)) 127) (($ (-652 (-652 (-952 |#1|)))) 116) (($ (-652 (-652 (-952 |#1|))) (-112) (-112)) 117) (((-652 (-652 (-952 |#1|))) $) 114)) (-1377 (($ (-652 $)) 56) (($ $ $) 57)) (-2841 (((-652 (-173)) $) 133)) (-1384 (((-652 (-952 |#1|)) $) 130)) (-2233 (((-652 (-652 (-173))) $) 132)) (-3000 (((-652 (-652 (-652 (-952 |#1|)))) $) NIL)) (-2483 (((-652 (-652 (-652 (-779)))) $) 131)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1821 (((-779) $ (-652 (-952 |#1|))) 65)) (-3782 (((-112) $) 84)) (-4164 (($ $ (-652 (-952 |#1|))) 86) (($ $ (-652 (-652 |#1|))) 92) (($ (-652 (-952 |#1|))) 87) (((-652 (-952 |#1|)) $) 85)) (-4319 (($) 48) (($ (-1176 3 |#1|)) 49)) (-3679 (($ $) 63)) (-2338 (((-652 $) $) 62)) (-2404 (($ (-652 $)) 59)) (-4430 (((-652 $) $) 61)) (-3491 (((-870) $) 146)) (-1317 (((-112) $) 94)) (-2987 (($ $ (-652 (-952 |#1|))) 96) (($ $ (-652 (-652 |#1|))) 99) (($ (-652 (-952 |#1|))) 97) (((-652 (-952 |#1|)) $) 95)) (-3127 (($ $) 140)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1144 |#1|) (-1145 |#1|) (-1060)) (T -1144))
+NIL
+(-1145 |#1|)
+((-3464 (((-112) $ $) 7)) (-1473 (((-1176 3 |#1|) $) 14)) (-1601 (((-112) $) 30)) (-1819 (($ $ (-652 (-952 |#1|))) 34) (($ $ (-652 (-652 |#1|))) 33) (($ (-652 (-952 |#1|))) 32) (((-652 (-952 |#1|)) $) 31)) (-3983 (((-112) $) 45)) (-2460 (($ $ (-952 |#1|)) 50) (($ $ (-652 |#1|)) 49) (($ $ (-779)) 48) (($ (-952 |#1|)) 47) (((-952 |#1|) $) 46)) (-1546 (((-2 (|:| -1571 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779))) $) 16)) (-1834 (((-779) $) 59)) (-3494 (((-779) $) 60)) (-1616 (($ $ (-779) (-952 |#1|)) 51)) (-3166 (((-112) $) 22)) (-2108 (($ $ (-652 (-652 (-952 |#1|))) (-652 (-173)) (-173)) 29) (($ $ (-652 (-652 (-652 |#1|))) (-652 (-173)) (-173)) 28) (($ $ (-652 (-652 (-952 |#1|))) (-112) (-112)) 27) (($ $ (-652 (-652 (-652 |#1|))) (-112) (-112)) 26) (($ (-652 (-652 (-952 |#1|)))) 25) (($ (-652 (-652 (-952 |#1|))) (-112) (-112)) 24) (((-652 (-652 (-952 |#1|))) $) 23)) (-1377 (($ (-652 $)) 58) (($ $ $) 57)) (-2841 (((-652 (-173)) $) 17)) (-1384 (((-652 (-952 |#1|)) $) 21)) (-2233 (((-652 (-652 (-173))) $) 18)) (-3000 (((-652 (-652 (-652 (-952 |#1|)))) $) 19)) (-2483 (((-652 (-652 (-652 (-779)))) $) 20)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1821 (((-779) $ (-652 (-952 |#1|))) 52)) (-3782 (((-112) $) 40)) (-4164 (($ $ (-652 (-952 |#1|))) 44) (($ $ (-652 (-652 |#1|))) 43) (($ (-652 (-952 |#1|))) 42) (((-652 (-952 |#1|)) $) 41)) (-4319 (($) 62) (($ (-1176 3 |#1|)) 61)) (-3679 (($ $) 53)) (-2338 (((-652 $) $) 54)) (-2404 (($ (-652 $)) 56)) (-4430 (((-652 $) $) 55)) (-3491 (((-870) $) 12)) (-1317 (((-112) $) 35)) (-2987 (($ $ (-652 (-952 |#1|))) 39) (($ $ (-652 (-652 |#1|))) 38) (($ (-652 (-952 |#1|))) 37) (((-652 (-952 |#1|)) $) 36)) (-3127 (($ $) 15)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-1145 |#1|) (-141) (-1060)) (T -1145))
+((-3491 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-870)))) (-4319 (*1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-4319 (*1 *1 *2) (-12 (-5 *2 (-1176 3 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-3494 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-1377 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-2404 (*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-4430 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))) (-2338 (*1 *2 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))) (-3679 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-1821 (*1 *2 *1 *3) (-12 (-5 *3 (-652 (-952 *4))) (-4 *1 (-1145 *4)) (-4 *4 (-1060)) (-5 *2 (-779)))) (-1616 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-952 *4)) (-4 *1 (-1145 *4)) (-4 *4 (-1060)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-2460 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-952 *3)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-4164 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-4164 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-4164 (*1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-2987 (*1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-1819 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-1819 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-2108 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-652 (-952 *5)))) (-5 *3 (-652 (-173))) (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060)))) (-2108 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-652 (-173))) (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060)))) (-2108 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112)) (-4 *1 (-1145 *4)) (-4 *4 (-1060)))) (-2108 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-112)) (-4 *1 (-1145 *4)) (-4 *4 (-1060)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 *3)))) (-4 *3 (-1060)) (-4 *1 (-1145 *3)))) (-2108 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112)) (-4 *4 (-1060)) (-4 *1 (-1145 *4)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-952 *3)))))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-652 (-779))))))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-652 (-952 *3))))))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-173)))))) (-2841 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-173))))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1571 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779)))))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-1176 3 *3)))))
+(-13 (-1111) (-10 -8 (-15 -4319 ($)) (-15 -4319 ($ (-1176 3 |t#1|))) (-15 -3494 ((-779) $)) (-15 -1834 ((-779) $)) (-15 -1377 ($ (-652 $))) (-15 -1377 ($ $ $)) (-15 -2404 ($ (-652 $))) (-15 -4430 ((-652 $) $)) (-15 -2338 ((-652 $) $)) (-15 -3679 ($ $)) (-15 -1821 ((-779) $ (-652 (-952 |t#1|)))) (-15 -1616 ($ $ (-779) (-952 |t#1|))) (-15 -2460 ($ $ (-952 |t#1|))) (-15 -2460 ($ $ (-652 |t#1|))) (-15 -2460 ($ $ (-779))) (-15 -2460 ($ (-952 |t#1|))) (-15 -2460 ((-952 |t#1|) $)) (-15 -3983 ((-112) $)) (-15 -4164 ($ $ (-652 (-952 |t#1|)))) (-15 -4164 ($ $ (-652 (-652 |t#1|)))) (-15 -4164 ($ (-652 (-952 |t#1|)))) (-15 -4164 ((-652 (-952 |t#1|)) $)) (-15 -3782 ((-112) $)) (-15 -2987 ($ $ (-652 (-952 |t#1|)))) (-15 -2987 ($ $ (-652 (-652 |t#1|)))) (-15 -2987 ($ (-652 (-952 |t#1|)))) (-15 -2987 ((-652 (-952 |t#1|)) $)) (-15 -1317 ((-112) $)) (-15 -1819 ($ $ (-652 (-952 |t#1|)))) (-15 -1819 ($ $ (-652 (-652 |t#1|)))) (-15 -1819 ($ (-652 (-952 |t#1|)))) (-15 -1819 ((-652 (-952 |t#1|)) $)) (-15 -1601 ((-112) $)) (-15 -2108 ($ $ (-652 (-652 (-952 |t#1|))) (-652 (-173)) (-173))) (-15 -2108 ($ $ (-652 (-652 (-652 |t#1|))) (-652 (-173)) (-173))) (-15 -2108 ($ $ (-652 (-652 (-952 |t#1|))) (-112) (-112))) (-15 -2108 ($ $ (-652 (-652 (-652 |t#1|))) (-112) (-112))) (-15 -2108 ($ (-652 (-652 (-952 |t#1|))))) (-15 -2108 ($ (-652 (-652 (-952 |t#1|))) (-112) (-112))) (-15 -2108 ((-652 (-652 (-952 |t#1|))) $)) (-15 -3166 ((-112) $)) (-15 -1384 ((-652 (-952 |t#1|)) $)) (-15 -2483 ((-652 (-652 (-652 (-779)))) $)) (-15 -3000 ((-652 (-652 (-652 (-952 |t#1|)))) $)) (-15 -2233 ((-652 (-652 (-173))) $)) (-15 -2841 ((-652 (-173)) $)) (-15 -1546 ((-2 (|:| -1571 (-779)) (|:| |curves| (-779)) (|:| |polygons| (-779)) (|:| |constructs| (-779))) $)) (-15 -3127 ($ $)) (-15 -1473 ((-1176 3 |t#1|) $)) (-15 -3491 ((-870) $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 184) (($ (-1193)) NIL) (((-1193) $) 7)) (-2591 (((-112) $ (|[\|\|]| (-532))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-684))) 27) (((-112) $ (|[\|\|]| (-1289))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-614))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1126))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-689))) 55) (((-112) $ (|[\|\|]| (-525))) 59) (((-112) $ (|[\|\|]| (-1077))) 63) (((-112) $ (|[\|\|]| (-1290))) 67) (((-112) $ (|[\|\|]| (-533))) 71) (((-112) $ (|[\|\|]| (-1162))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-679))) 83) (((-112) $ (|[\|\|]| (-317))) 87) (((-112) $ (|[\|\|]| (-1047))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-981))) 99) (((-112) $ (|[\|\|]| (-1084))) 103) (((-112) $ (|[\|\|]| (-1101))) 107) (((-112) $ (|[\|\|]| (-1107))) 111) (((-112) $ (|[\|\|]| (-634))) 115) (((-112) $ (|[\|\|]| (-1178))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-486))) 131) (((-112) $ (|[\|\|]| (-600))) 135) (((-112) $ (|[\|\|]| (-514))) 139) (((-112) $ (|[\|\|]| (-1170))) 143) (((-112) $ (|[\|\|]| (-572))) 147)) (-3424 (((-112) $ $) NIL)) (-3726 (((-532) $) 20) (((-220) $) 24) (((-684) $) 28) (((-1289) $) 32) (((-139) $) 36) (((-614) $) 40) (((-134) $) 44) (((-1126) $) 48) (((-96) $) 52) (((-689) $) 56) (((-525) $) 60) (((-1077) $) 64) (((-1290) $) 68) (((-533) $) 72) (((-1162) $) 76) (((-155) $) 80) (((-679) $) 84) (((-317) $) 88) (((-1047) $) 92) (((-182) $) 96) (((-981) $) 100) (((-1084) $) 104) (((-1101) $) 108) (((-1107) $) 112) (((-634) $) 116) (((-1178) $) 120) (((-157) $) 124) (((-138) $) 128) (((-486) $) 132) (((-600) $) 136) (((-514) $) 140) (((-1170) $) 144) (((-572) $) 148)) (-3921 (((-112) $ $) NIL)))
+(((-1146) (-1148)) (T -1146))
+NIL
+(-1148)
+((-1680 (((-652 (-1193)) (-1170)) 9)))
+(((-1147) (-10 -7 (-15 -1680 ((-652 (-1193)) (-1170))))) (T -1147))
+((-1680 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-1147)))))
+(-10 -7 (-15 -1680 ((-652 (-1193)) (-1170))))
+((-3464 (((-112) $ $) 7)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-1193)) 17) (((-1193) $) 16)) (-2591 (((-112) $ (|[\|\|]| (-532))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-684))) 81) (((-112) $ (|[\|\|]| (-1289))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-614))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1126))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-689))) 67) (((-112) $ (|[\|\|]| (-525))) 65) (((-112) $ (|[\|\|]| (-1077))) 63) (((-112) $ (|[\|\|]| (-1290))) 61) (((-112) $ (|[\|\|]| (-533))) 59) (((-112) $ (|[\|\|]| (-1162))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-679))) 53) (((-112) $ (|[\|\|]| (-317))) 51) (((-112) $ (|[\|\|]| (-1047))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-981))) 45) (((-112) $ (|[\|\|]| (-1084))) 43) (((-112) $ (|[\|\|]| (-1101))) 41) (((-112) $ (|[\|\|]| (-1107))) 39) (((-112) $ (|[\|\|]| (-634))) 37) (((-112) $ (|[\|\|]| (-1178))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-486))) 29) (((-112) $ (|[\|\|]| (-600))) 27) (((-112) $ (|[\|\|]| (-514))) 25) (((-112) $ (|[\|\|]| (-1170))) 23) (((-112) $ (|[\|\|]| (-572))) 21)) (-3424 (((-112) $ $) 9)) (-3726 (((-532) $) 84) (((-220) $) 82) (((-684) $) 80) (((-1289) $) 78) (((-139) $) 76) (((-614) $) 74) (((-134) $) 72) (((-1126) $) 70) (((-96) $) 68) (((-689) $) 66) (((-525) $) 64) (((-1077) $) 62) (((-1290) $) 60) (((-533) $) 58) (((-1162) $) 56) (((-155) $) 54) (((-679) $) 52) (((-317) $) 50) (((-1047) $) 48) (((-182) $) 46) (((-981) $) 44) (((-1084) $) 42) (((-1101) $) 40) (((-1107) $) 38) (((-634) $) 36) (((-1178) $) 34) (((-157) $) 32) (((-138) $) 30) (((-486) $) 28) (((-600) $) 26) (((-514) $) 24) (((-1170) $) 22) (((-572) $) 20)) (-3921 (((-112) $ $) 6)))
(((-1148) (-141)) (T -1148))
-((-3937 (*1 *1 *1) (-4 *1 (-1148))) (-4386 (*1 *1 *1) (-4 *1 (-1148))) (-3471 (*1 *1 *1 *1) (-4 *1 (-1148))) (-2413 (*1 *1 *1 *1) (-4 *1 (-1148))) (-2742 (*1 *1 *1 *1) (-4 *1 (-1148))) (-2786 (*1 *1 *1 *1) (-4 *1 (-1148))) (-4285 (*1 *1 *1 *1) (-4 *1 (-1148))) (-2133 (*1 *1 *1 *1) (-4 *1 (-1148))) (-2550 (*1 *1 *1) (-4 *1 (-1148))) (-4036 (*1 *1 *1 *1) (-4 *1 (-1148))) (-4285 (*1 *1 *1) (-4 *1 (-1148))) (-2521 (*1 *1 *1) (-4 *1 (-1148))))
-(-13 (-10 -8 (-15 -2521 ($ $)) (-15 -4285 ($ $)) (-15 -4036 ($ $ $)) (-15 -2550 ($ $)) (-15 -2133 ($ $ $)) (-15 -4285 ($ $ $)) (-15 -2786 ($ $ $)) (-15 -2742 ($ $ $)) (-15 -2413 ($ $ $)) (-15 -3471 ($ $ $)) (-15 -4386 ($ $)) (-15 -3937 ($ $))))
-((-2847 (((-112) $ $) 44)) (-4156 ((|#1| $) 17)) (-4221 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1833 (((-112) $) 19)) (-1416 (($ $ |#1|) 30)) (-4201 (($ $ (-112)) 32)) (-3563 (($ $) 33)) (-4352 (($ $ |#2|) 31)) (-3240 (((-1168) $) NIL)) (-1783 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3891 (((-1129) $) NIL)) (-2171 (((-112) $) 16)) (-1698 (($) 13)) (-3064 (($ $) 29)) (-2881 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4246 |#2|))) 23) (((-650 $) (-650 (-2 (|:| |val| |#1|) (|:| -4246 |#2|)))) 26) (((-650 $) |#1| (-650 |#2|)) 28)) (-3673 ((|#2| $) 18)) (-2869 (((-868) $) 53)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 42)))
-(((-1149 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -1698 ($)) (-15 -2171 ((-112) $)) (-15 -4156 (|#1| $)) (-15 -3673 (|#2| $)) (-15 -1833 ((-112) $)) (-15 -2881 ($ |#1| |#2| (-112))) (-15 -2881 ($ |#1| |#2|)) (-15 -2881 ($ (-2 (|:| |val| |#1|) (|:| -4246 |#2|)))) (-15 -2881 ((-650 $) (-650 (-2 (|:| |val| |#1|) (|:| -4246 |#2|))))) (-15 -2881 ((-650 $) |#1| (-650 |#2|))) (-15 -3064 ($ $)) (-15 -1416 ($ $ |#1|)) (-15 -4352 ($ $ |#2|)) (-15 -4201 ($ $ (-112))) (-15 -3563 ($ $)) (-15 -1783 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4221 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1109) (-34)) (-13 (-1109) (-34))) (T -1149))
-((-1698 (*1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-4156 (*1 *2 *1) (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *2 *3)) (-4 *3 (-13 (-1109) (-34))))) (-3673 (*1 *2 *1) (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-13 (-1109) (-34))))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-2881 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4246 *4))) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1149 *3 *4)))) (-2881 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |val| *4) (|:| -4246 *5)))) (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-650 (-1149 *4 *5))) (-5 *1 (-1149 *4 *5)))) (-2881 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *5)) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-650 (-1149 *3 *5))) (-5 *1 (-1149 *3 *5)) (-4 *3 (-13 (-1109) (-34))))) (-3064 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-1416 (*1 *1 *1 *2) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-4352 (*1 *1 *1 *2) (-12 (-5 *1 (-1149 *3 *2)) (-4 *3 (-13 (-1109) (-34))) (-4 *2 (-13 (-1109) (-34))))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-3563 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-1783 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *5 *6)))) (-4221 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34))))))
-(-13 (-1109) (-10 -8 (-15 -1698 ($)) (-15 -2171 ((-112) $)) (-15 -4156 (|#1| $)) (-15 -3673 (|#2| $)) (-15 -1833 ((-112) $)) (-15 -2881 ($ |#1| |#2| (-112))) (-15 -2881 ($ |#1| |#2|)) (-15 -2881 ($ (-2 (|:| |val| |#1|) (|:| -4246 |#2|)))) (-15 -2881 ((-650 $) (-650 (-2 (|:| |val| |#1|) (|:| -4246 |#2|))))) (-15 -2881 ((-650 $) |#1| (-650 |#2|))) (-15 -3064 ($ $)) (-15 -1416 ($ $ |#1|)) (-15 -4352 ($ $ |#2|)) (-15 -4201 ($ $ (-112))) (-15 -3563 ($ $)) (-15 -1783 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4221 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2847 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-4156 (((-1149 |#1| |#2|) $) 27)) (-2594 (($ $) 91)) (-3923 (((-112) (-1149 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2216 (($ $ $ (-650 (-1149 |#1| |#2|))) 108) (($ $ $ (-650 (-1149 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2855 (((-112) $ (-777)) NIL)) (-2854 (((-1149 |#1| |#2|) $ (-1149 |#1| |#2|)) 46 (|has| $ (-6 -4453)))) (-3040 (((-1149 |#1| |#2|) $ "value" (-1149 |#1| |#2|)) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 44 (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-4219 (((-650 (-2 (|:| |val| |#1|) (|:| -4246 |#2|))) $) 95)) (-3614 (($ (-1149 |#1| |#2|) $) 42)) (-3617 (($ (-1149 |#1| |#2|) $) 34)) (-3976 (((-650 (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 54)) (-3748 (((-112) (-1149 |#1| |#2|) $) 97)) (-1427 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 (-1149 |#1| |#2|)) $) 58 (|has| $ (-6 -4452)))) (-1314 (((-112) (-1149 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-1149 |#1| |#2|) (-1109))))) (-2833 (($ (-1 (-1149 |#1| |#2|) (-1149 |#1| |#2|)) $) 50 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-1149 |#1| |#2|) (-1149 |#1| |#2|)) $) 49)) (-2065 (((-112) $ (-777)) NIL)) (-2466 (((-650 (-1149 |#1| |#2|)) $) 56)) (-2708 (((-112) $) 45)) (-3240 (((-1168) $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-3891 (((-1129) $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-4404 (((-3 $ "failed") $) 89)) (-2231 (((-112) (-1 (-112) (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-1149 |#1| |#2|)))) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109)))) (($ $ (-298 (-1149 |#1| |#2|))) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109)))) (($ $ (-1149 |#1| |#2|) (-1149 |#1| |#2|)) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109)))) (($ $ (-650 (-1149 |#1| |#2|)) (-650 (-1149 |#1| |#2|))) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109))))) (-2914 (((-112) $ $) 53)) (-2171 (((-112) $) 24)) (-1698 (($) 26)) (-2057 (((-1149 |#1| |#2|) $ "value") NIL)) (-2352 (((-570) $ $) NIL)) (-1355 (((-112) $) 47)) (-3901 (((-777) (-1 (-112) (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4452))) (((-777) (-1149 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-1149 |#1| |#2|) (-1109))))) (-3064 (($ $) 52)) (-2881 (($ (-1149 |#1| |#2|)) 10) (($ |#1| |#2| (-650 $)) 13) (($ |#1| |#2| (-650 (-1149 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-650 |#2|)) 18)) (-1595 (((-650 |#2|) $) 96)) (-2869 (((-868) $) 87 (|has| (-1149 |#1| |#2|) (-619 (-868))))) (-2671 (((-650 $) $) 31)) (-3984 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-1344 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-2061 (((-112) (-1 (-112) (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 70 (|has| (-1149 |#1| |#2|) (-1109)))) (-2857 (((-777) $) 64 (|has| $ (-6 -4452)))))
-(((-1150 |#1| |#2|) (-13 (-1019 (-1149 |#1| |#2|)) (-10 -8 (-6 -4453) (-6 -4452) (-15 -4404 ((-3 $ "failed") $)) (-15 -2594 ($ $)) (-15 -2881 ($ (-1149 |#1| |#2|))) (-15 -2881 ($ |#1| |#2| (-650 $))) (-15 -2881 ($ |#1| |#2| (-650 (-1149 |#1| |#2|)))) (-15 -2881 ($ |#1| |#2| |#1| (-650 |#2|))) (-15 -1595 ((-650 |#2|) $)) (-15 -4219 ((-650 (-2 (|:| |val| |#1|) (|:| -4246 |#2|))) $)) (-15 -3748 ((-112) (-1149 |#1| |#2|) $)) (-15 -3923 ((-112) (-1149 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3617 ($ (-1149 |#1| |#2|) $)) (-15 -3614 ($ (-1149 |#1| |#2|) $)) (-15 -2216 ($ $ $ (-650 (-1149 |#1| |#2|)))) (-15 -2216 ($ $ $ (-650 (-1149 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1109) (-34)) (-13 (-1109) (-34))) (T -1150))
-((-4404 (*1 *1 *1) (|partial| -12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2594 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-2881 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-650 (-1150 *2 *3))) (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2881 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-650 (-1149 *2 *3))) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))) (-5 *1 (-1150 *2 *3)))) (-2881 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-13 (-1109) (-34))) (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-650 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4)))) (-5 *1 (-1150 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-3748 (*1 *2 *3 *1) (-12 (-5 *3 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1150 *4 *5)))) (-3923 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1149 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1150 *5 *6)))) (-3617 (*1 *1 *2 *1) (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-3614 (*1 *1 *2 *1) (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-2216 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-650 (-1149 *3 *4))) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-2216 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1149 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) (-5 *1 (-1150 *4 *5)))))
-(-13 (-1019 (-1149 |#1| |#2|)) (-10 -8 (-6 -4453) (-6 -4452) (-15 -4404 ((-3 $ "failed") $)) (-15 -2594 ($ $)) (-15 -2881 ($ (-1149 |#1| |#2|))) (-15 -2881 ($ |#1| |#2| (-650 $))) (-15 -2881 ($ |#1| |#2| (-650 (-1149 |#1| |#2|)))) (-15 -2881 ($ |#1| |#2| |#1| (-650 |#2|))) (-15 -1595 ((-650 |#2|) $)) (-15 -4219 ((-650 (-2 (|:| |val| |#1|) (|:| -4246 |#2|))) $)) (-15 -3748 ((-112) (-1149 |#1| |#2|) $)) (-15 -3923 ((-112) (-1149 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3617 ($ (-1149 |#1| |#2|) $)) (-15 -3614 ($ (-1149 |#1| |#2|) $)) (-15 -2216 ($ $ $ (-650 (-1149 |#1| |#2|)))) (-15 -2216 ($ $ $ (-650 (-1149 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3412 (($ $) NIL)) (-1439 ((|#2| $) NIL)) (-3919 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3304 (($ (-695 |#2|)) 56)) (-3206 (((-112) $) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-1990 (($ |#2|) 14)) (-2333 (($) NIL T CONST)) (-4085 (($ $) 69 (|has| |#2| (-311)))) (-3598 (((-242 |#1| |#2|) $ (-570)) 42)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) 83)) (-4412 (((-777) $) 71 (|has| |#2| (-562)))) (-2774 ((|#2| $ (-570) (-570)) NIL)) (-3976 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2005 (((-112) $) NIL)) (-2020 (((-777) $) 73 (|has| |#2| (-562)))) (-2244 (((-650 (-242 |#1| |#2|)) $) 77 (|has| |#2| (-562)))) (-4218 (((-777) $) NIL)) (-2296 (($ |#2|) 25)) (-4230 (((-777) $) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-2728 ((|#2| $) 67 (|has| |#2| (-6 (-4454 "*"))))) (-1863 (((-570) $) NIL)) (-2554 (((-570) $) NIL)) (-3069 (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2163 (((-570) $) NIL)) (-1448 (((-570) $) NIL)) (-4297 (($ (-650 (-650 |#2|))) 37)) (-2833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2247 (((-650 (-650 |#2|)) $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-4066 (((-3 $ "failed") $) 80 (|has| |#2| (-368)))) (-3891 (((-1129) $) NIL)) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-2231 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ (-570) (-570) |#2|) NIL) ((|#2| $ (-570) (-570)) NIL)) (-2375 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-2186 ((|#2| $) NIL)) (-2776 (($ (-650 |#2|)) 50)) (-2445 (((-112) $) NIL)) (-1992 (((-242 |#1| |#2|) $) NIL)) (-2439 ((|#2| $) 65 (|has| |#2| (-6 (-4454 "*"))))) (-3901 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-3064 (($ $) NIL)) (-2601 (((-542) $) 89 (|has| |#2| (-620 (-542))))) (-4101 (((-242 |#1| |#2|) $ (-570)) 44)) (-2869 (((-868) $) 47) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) NIL) (((-695 |#2|) $) 52)) (-2294 (((-777)) 23 T CONST)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-2074 (((-112) $) NIL)) (-1981 (($) 16 T CONST)) (-1998 (($) 21 T CONST)) (-3414 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) 63) (($ $ (-570)) 82 (|has| |#2| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-242 |#1| |#2|) $ (-242 |#1| |#2|)) 59) (((-242 |#1| |#2|) (-242 |#1| |#2|) $) 61)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1151 |#1| |#2|) (-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-10 -8 (-15 -2296 ($ |#2|)) (-15 -3412 ($ $)) (-15 -3304 ($ (-695 |#2|))) (IF (|has| |#2| (-6 (-4454 "*"))) (-6 -4441) |%noBranch|) (IF (|has| |#2| (-6 (-4454 "*"))) (IF (|has| |#2| (-6 -4449)) (-6 -4449) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|))) (-777) (-1058)) (T -1151))
-((-2296 (*1 *1 *2) (-12 (-5 *1 (-1151 *3 *2)) (-14 *3 (-777)) (-4 *2 (-1058)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-777)) (-4 *3 (-1058)))) (-3304 (*1 *1 *2) (-12 (-5 *2 (-695 *4)) (-4 *4 (-1058)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-777)))))
-(-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-10 -8 (-15 -2296 ($ |#2|)) (-15 -3412 ($ $)) (-15 -3304 ($ (-695 |#2|))) (IF (|has| |#2| (-6 (-4454 "*"))) (-6 -4441) |%noBranch|) (IF (|has| |#2| (-6 (-4454 "*"))) (IF (|has| |#2| (-6 -4449)) (-6 -4449) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|)))
-((-3532 (($ $) 19)) (-2524 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3450 (((-112) $ $) 24)) (-2276 (($ $) 17)) (-2057 (((-145) $ (-570) (-145)) NIL) (((-145) $ (-570)) NIL) (($ $ (-1244 (-570))) NIL) (($ $ $) 31)) (-2869 (($ (-145)) 29) (((-868) $) NIL)))
-(((-1152 |#1|) (-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2524 (|#1| |#1| (-142))) (-15 -2524 (|#1| |#1| (-145))) (-15 -2869 (|#1| (-145))) (-15 -3450 ((-112) |#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -2057 ((-145) |#1| (-570))) (-15 -2057 ((-145) |#1| (-570) (-145)))) (-1153)) (T -1152))
-NIL
-(-10 -8 (-15 -2869 ((-868) |#1|)) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2524 (|#1| |#1| (-142))) (-15 -2524 (|#1| |#1| (-145))) (-15 -2869 (|#1| (-145))) (-15 -3450 ((-112) |#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -2057 ((-145) |#1| (-570))) (-15 -2057 ((-145) |#1| (-570) (-145))))
-((-2847 (((-112) $ $) 19 (|has| (-145) (-1109)))) (-2721 (($ $) 123)) (-3532 (($ $) 124)) (-2524 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-3431 (((-112) $ $) 121)) (-3413 (((-112) $ $ (-570)) 120)) (-3210 (((-650 $) $ (-145)) 113) (((-650 $) $ (-142)) 112)) (-3134 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-856)))) (-2778 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4453))) (($ $) 91 (-12 (|has| (-145) (-856)) (|has| $ (-6 -4453))))) (-2018 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-856)))) (-2855 (((-112) $ (-777)) 8)) (-3040 (((-145) $ (-570) (-145)) 53 (|has| $ (-6 -4453))) (((-145) $ (-1244 (-570)) (-145)) 60 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-3764 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-4125 (($ $) 93 (|has| $ (-6 -4453)))) (-4366 (($ $) 103)) (-3286 (($ $ (-1244 (-570)) $) 117)) (-3153 (($ $) 80 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ (-145) $) 79 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4452)))) (-2295 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4452))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4452)))) (-2845 (((-145) $ (-570) (-145)) 54 (|has| $ (-6 -4453)))) (-2774 (((-145) $ (-570)) 52)) (-3450 (((-112) $ $) 122)) (-2619 (((-570) (-1 (-112) (-145)) $) 100) (((-570) (-145) $) 99 (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) 98 (|has| (-145) (-1109))) (((-570) $ $ (-570)) 116) (((-570) (-142) $ (-570)) 115)) (-3976 (((-650 (-145)) $) 31 (|has| $ (-6 -4452)))) (-2296 (($ (-777) (-145)) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-1908 (($ $ $) 90 (|has| (-145) (-856)))) (-4356 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-856)))) (-3069 (((-650 (-145)) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-1764 (($ $ $) 89 (|has| (-145) (-856)))) (-3114 (((-112) $ $ (-145)) 118)) (-1608 (((-777) $ $ (-145)) 119)) (-2833 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1538 (($ $) 125)) (-2276 (($ $) 126)) (-2065 (((-112) $ (-777)) 10)) (-3773 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3240 (((-1168) $) 22 (|has| (-145) (-1109)))) (-2119 (($ (-145) $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21 (|has| (-145) (-1109)))) (-1948 (((-145) $) 43 (|has| (-570) (-856)))) (-2115 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4222 (($ $ (-145)) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-145)))) 27 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) 26 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) 24 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2856 (((-650 (-145)) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 (((-145) $ (-570) (-145)) 51) (((-145) $ (-570)) 50) (($ $ (-1244 (-570))) 71) (($ $ $) 105)) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3901 (((-777) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4452))) (((-777) (-145) $) 29 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452))))) (-2181 (($ $ $ (-570)) 94 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| (-145) (-620 (-542))))) (-2881 (($ (-650 (-145))) 72)) (-1505 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (($ (-145)) 114) (((-868) $) 18 (|has| (-145) (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| (-145) (-1109)))) (-2061 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) 87 (|has| (-145) (-856)))) (-3933 (((-112) $ $) 86 (|has| (-145) (-856)))) (-3892 (((-112) $ $) 20 (|has| (-145) (-1109)))) (-3945 (((-112) $ $) 88 (|has| (-145) (-856)))) (-3918 (((-112) $ $) 85 (|has| (-145) (-856)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1153) (-141)) (T -1153))
-((-2276 (*1 *1 *1) (-4 *1 (-1153))) (-1538 (*1 *1 *1) (-4 *1 (-1153))) (-3532 (*1 *1 *1) (-4 *1 (-1153))) (-2721 (*1 *1 *1) (-4 *1 (-1153))) (-3450 (*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112)))) (-3431 (*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112)))) (-3413 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-570)) (-5 *2 (-112)))) (-1608 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-777)))) (-3114 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3286 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1244 (-570))))) (-2619 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570)))) (-2619 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570)) (-5 *3 (-142)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1153)))) (-3210 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-650 *1)) (-4 *1 (-1153)))) (-3210 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-650 *1)) (-4 *1 (-1153)))) (-2524 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))) (-2524 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) (-3773 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))) (-3773 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) (-3764 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))) (-3764 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) (-2057 (*1 *1 *1 *1) (-4 *1 (-1153))))
-(-13 (-19 (-145)) (-10 -8 (-15 -2276 ($ $)) (-15 -1538 ($ $)) (-15 -3532 ($ $)) (-15 -2721 ($ $)) (-15 -3450 ((-112) $ $)) (-15 -3431 ((-112) $ $)) (-15 -3413 ((-112) $ $ (-570))) (-15 -1608 ((-777) $ $ (-145))) (-15 -3114 ((-112) $ $ (-145))) (-15 -3286 ($ $ (-1244 (-570)) $)) (-15 -2619 ((-570) $ $ (-570))) (-15 -2619 ((-570) (-142) $ (-570))) (-15 -2869 ($ (-145))) (-15 -3210 ((-650 $) $ (-145))) (-15 -3210 ((-650 $) $ (-142))) (-15 -2524 ($ $ (-145))) (-15 -2524 ($ $ (-142))) (-15 -3773 ($ $ (-145))) (-15 -3773 ($ $ (-142))) (-15 -3764 ($ $ (-145))) (-15 -3764 ($ $ (-142))) (-15 -2057 ($ $ $))))
-(((-34) . T) ((-102) -3749 (|has| (-145) (-1109)) (|has| (-145) (-856))) ((-619 (-868)) -3749 (|has| (-145) (-1109)) (|has| (-145) (-856)) (|has| (-145) (-619 (-868)))) ((-152 #0=(-145)) . T) ((-620 (-542)) |has| (-145) (-620 (-542))) ((-290 #1=(-570) #0#) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #1# #0#) . T) ((-313 #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-378 #0#) . T) ((-495 #0#) . T) ((-610 #1# #0#) . T) ((-520 #0# #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-657 #0#) . T) ((-19 #0#) . T) ((-856) |has| (-145) (-856)) ((-1109) -3749 (|has| (-145) (-1109)) (|has| (-145) (-856))) ((-1227) . T))
-((-2648 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-777)) 112)) (-2859 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777)) 61)) (-2707 (((-1282) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-777)) 97)) (-3666 (((-777) (-650 |#4|) (-650 |#5|)) 30)) (-1511 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777)) 63) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777) (-112)) 65)) (-2182 (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112)) 85)) (-2601 (((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) 90)) (-3202 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|) 60)) (-4020 (((-777) (-650 |#4|) (-650 |#5|)) 21)))
-(((-1154 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4020 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3666 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3202 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2648 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-777))) (-15 -2601 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -2707 ((-1282) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-777)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1118 |#1| |#2| |#3| |#4|)) (T -1154))
-((-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9)))) (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1282)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1118 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168)) (-5 *1 (-1154 *4 *5 *6 *7 *8)))) (-2648 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-650 *11)) (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -4246 *11)))))) (-5 *6 (-777)) (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -4246 *11)))) (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9)) (-4 *11 (-1118 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-5 *1 (-1154 *7 *8 *9 *10 *11)))) (-2182 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-2182 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-1511 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))) (-1511 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3)))) (-1511 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1154 *7 *8 *9 *3 *4)) (-4 *4 (-1118 *7 *8 *9 *3)))) (-2859 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))) (-2859 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3)))) (-3202 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4)))))) (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-4020 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4020 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3666 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3202 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -2859 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5| (-777))) (-15 -1511 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) |#4| |#5|)) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -2182 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2648 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))))) (-777))) (-15 -2601 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|)))) (-15 -2707 ((-1282) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -4246 |#5|))) (-777))))
-((-2847 (((-112) $ $) NIL)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) NIL)) (-1510 (((-650 $) (-650 |#4|)) 124) (((-650 $) (-650 |#4|) (-112)) 125) (((-650 $) (-650 |#4|) (-112) (-112)) 123) (((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1598 (((-650 |#3|) $) NIL)) (-3330 (((-112) $) NIL)) (-2114 (((-112) $) NIL (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3067 ((|#4| |#4| $) NIL)) (-3312 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| $) 97)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3960 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) 75)) (-2333 (($) NIL T CONST)) (-2157 (((-112) $) 29 (|has| |#1| (-562)))) (-3303 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3580 (((-112) $) NIL (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2303 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) NIL)) (-4387 (($ (-650 |#4|)) NIL)) (-1962 (((-3 $ "failed") $) 45)) (-2360 ((|#4| |#4| $) 78)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-3617 (($ |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) NIL)) (-1496 (((-112) |#4| $) NIL)) (-1825 (((-112) |#4| $) NIL)) (-1446 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2680 (((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112)) 139)) (-3976 (((-650 |#4|) $) 18 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2486 ((|#3| $) 38)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#4|) $) 19 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-2833 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 23)) (-3734 (((-650 |#3|) $) NIL)) (-3640 (((-112) |#3| $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3115 (((-3 |#4| (-650 $)) |#4| |#4| $) NIL)) (-3834 (((-650 (-2 (|:| |val| |#4|) (|:| -4246 $))) |#4| |#4| $) 117)) (-3637 (((-3 |#4| "failed") $) 42)) (-3778 (((-650 $) |#4| $) 102)) (-2740 (((-3 (-112) (-650 $)) |#4| $) NIL)) (-4057 (((-650 (-2 (|:| |val| (-112)) (|:| -4246 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3502 (((-650 $) |#4| $) 121) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 122) (((-650 $) |#4| (-650 $)) NIL)) (-2386 (((-650 $) (-650 |#4|) (-112) (-112) (-112)) 134)) (-4399 (($ |#4| $) 88) (($ (-650 |#4|) $) 89) (((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4083 (((-650 |#4|) $) NIL)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1478 ((|#4| |#4| $) NIL)) (-1693 (((-112) $ $) NIL)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2899 ((|#4| |#4| $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-3 |#4| "failed") $) 40)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3484 (((-3 $ "failed") $ |#4|) 59)) (-3308 (($ $ |#4|) NIL) (((-650 $) |#4| $) 104) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 99)) (-2231 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 17)) (-1698 (($) 14)) (-2650 (((-777) $) NIL)) (-3901 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) 13)) (-2601 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 22)) (-1342 (($ $ |#3|) 52)) (-2691 (($ $ |#3|) 54)) (-2990 (($ $) NIL)) (-3130 (($ $ |#3|) NIL)) (-2869 (((-868) $) 35) (((-650 |#4|) $) 46)) (-3982 (((-777) $) NIL (|has| |#3| (-373)))) (-1344 (((-112) $ $) NIL)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-2922 (((-650 $) |#4| $) 66) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) NIL)) (-2061 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) NIL)) (-4242 (((-112) |#4| $) NIL)) (-1600 (((-112) |#3| $) 74)) (-3892 (((-112) $ $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1155 |#1| |#2| |#3| |#4|) (-13 (-1118 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4399 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -2386 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -2680 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112))))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -1155))
-((-4399 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *3))) (-5 *1 (-1155 *5 *6 *7 *3)) (-4 *3 (-1074 *5 *6 *7)))) (-1510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) (-1510 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) (-2386 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) (-2680 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-650 *8)) (|:| |towers| (-650 (-1155 *5 *6 *7 *8))))) (-5 *1 (-1155 *5 *6 *7 *8)) (-5 *3 (-650 *8)))))
-(-13 (-1118 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4399 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -1510 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -2386 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -2680 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112)))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1999 ((|#1| $) 37)) (-1753 (($ (-650 |#1|)) 45)) (-2855 (((-112) $ (-777)) NIL)) (-2333 (($) NIL T CONST)) (-4191 ((|#1| |#1| $) 40)) (-3940 ((|#1| $) 35)) (-3976 (((-650 |#1|) $) 18 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 22)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3398 ((|#1| $) 38)) (-2801 (($ |#1| $) 41)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4126 ((|#1| $) 36)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 32)) (-1698 (($) 43)) (-3307 (((-777) $) 30)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 27)) (-2869 (((-868) $) 14 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4132 (($ (-650 |#1|)) NIL)) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 17 (|has| |#1| (-1109)))) (-2857 (((-777) $) 31 (|has| $ (-6 -4452)))))
-(((-1156 |#1|) (-13 (-1130 |#1|) (-10 -8 (-15 -1753 ($ (-650 |#1|))))) (-1227)) (T -1156))
-((-1753 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-1156 *3)))))
-(-13 (-1130 |#1|) (-10 -8 (-15 -1753 ($ (-650 |#1|)))))
-((-3040 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1244 (-570)) |#2|) 53) ((|#2| $ (-570) |#2|) 50)) (-2836 (((-112) $) 12)) (-2833 (($ (-1 |#2| |#2|) $) 48)) (-1948 ((|#2| $) NIL) (($ $ (-777)) 17)) (-4222 (($ $ |#2|) 49)) (-2655 (((-112) $) 11)) (-2057 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1244 (-570))) 36) ((|#2| $ (-570)) 26) ((|#2| $ (-570) |#2|) NIL)) (-1674 (($ $ $) 56) (($ $ |#2|) NIL)) (-1505 (($ $ $) 38) (($ |#2| $) NIL) (($ (-650 $)) 45) (($ $ |#2|) NIL)))
-(((-1157 |#1| |#2|) (-10 -8 (-15 -2836 ((-112) |#1|)) (-15 -2655 ((-112) |#1|)) (-15 -3040 (|#2| |#1| (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570))) (-15 -4222 (|#1| |#1| |#2|)) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -1505 (|#1| |#1| |#2|)) (-15 -1505 (|#1| (-650 |#1|))) (-15 -3040 (|#2| |#1| (-1244 (-570)) |#2|)) (-15 -3040 (|#2| |#1| "last" |#2|)) (-15 -3040 (|#1| |#1| "rest" |#1|)) (-15 -3040 (|#2| |#1| "first" |#2|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -2057 (|#2| |#1| "last")) (-15 -2057 (|#1| |#1| "rest")) (-15 -1948 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "first")) (-15 -1948 (|#2| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#1|)) (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -2057 (|#2| |#1| "value")) (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|))) (-1158 |#2|) (-1227)) (T -1157))
-NIL
-(-10 -8 (-15 -2836 ((-112) |#1|)) (-15 -2655 ((-112) |#1|)) (-15 -3040 (|#2| |#1| (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570) |#2|)) (-15 -2057 (|#2| |#1| (-570))) (-15 -4222 (|#1| |#1| |#2|)) (-15 -2057 (|#1| |#1| (-1244 (-570)))) (-15 -1505 (|#1| |#1| |#2|)) (-15 -1505 (|#1| (-650 |#1|))) (-15 -3040 (|#2| |#1| (-1244 (-570)) |#2|)) (-15 -3040 (|#2| |#1| "last" |#2|)) (-15 -3040 (|#1| |#1| "rest" |#1|)) (-15 -3040 (|#2| |#1| "first" |#2|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -2057 (|#2| |#1| "last")) (-15 -2057 (|#1| |#1| "rest")) (-15 -1948 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "first")) (-15 -1948 (|#2| |#1|)) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#1|)) (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -2057 (|#2| |#1| "value")) (-15 -2833 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-2975 ((|#1| $) 66)) (-3446 (($ $) 68)) (-2204 (((-1282) $ (-570) (-570)) 99 (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) 53 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-2364 (($ $ $) 57 (|has| $ (-6 -4453)))) (-1639 ((|#1| $ |#1|) 55 (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) 59 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4453))) (($ $ "rest" $) 56 (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 119 (|has| $ (-6 -4453))) ((|#1| $ (-570) |#1|) 88 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4452)))) (-2963 ((|#1| $) 67)) (-2333 (($) 7 T CONST)) (-1962 (($ $) 74) (($ $ (-777)) 72)) (-3153 (($ $) 101 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4452))) (($ |#1| $) 102 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2845 ((|#1| $ (-570) |#1|) 87 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 89)) (-2836 (((-112) $) 85)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2296 (($ (-777) |#1|) 111)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 97 (|has| (-570) (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 96 (|has| (-570) (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2065 (((-112) $ (-777)) 10)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3637 ((|#1| $) 71) (($ $ (-777)) 69)) (-2119 (($ $ $ (-570)) 118) (($ |#1| $ (-570)) 117)) (-4075 (((-650 (-570)) $) 94)) (-4276 (((-112) (-570) $) 93)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 77) (($ $ (-777)) 75)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4222 (($ $ |#1|) 98 (|has| $ (-6 -4453)))) (-2655 (((-112) $) 86)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 92)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1244 (-570))) 110) ((|#1| $ (-570)) 91) ((|#1| $ (-570) |#1|) 90)) (-2352 (((-570) $ $) 45)) (-3225 (($ $ (-1244 (-570))) 116) (($ $ (-570)) 115)) (-1355 (((-112) $) 47)) (-2288 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4453)))) (-2846 (((-777) $) 64)) (-3522 (($ $) 65)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-2601 (((-542) $) 100 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 109)) (-1674 (($ $ $) 62 (|has| $ (-6 -4453))) (($ $ |#1|) 61 (|has| $ (-6 -4453)))) (-1505 (($ $ $) 79) (($ |#1| $) 78) (($ (-650 $)) 113) (($ $ |#1|) 112)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1158 |#1|) (-141) (-1227)) (T -1158))
-((-2655 (*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))))
-(-13 (-1265 |t#1|) (-657 |t#1|) (-10 -8 (-15 -2655 ((-112) $)) (-15 -2836 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1227) . T) ((-1265 |#1|) . T))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2204 (((-1282) $ |#1| |#1|) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#2| $ |#1| |#2|) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) NIL)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) NIL)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) NIL)) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 ((|#1| $) NIL (|has| |#1| (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 ((|#1| $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1988 (((-650 |#1|) $) NIL)) (-2093 (((-112) |#1| $) NIL)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-4075 (((-650 |#1|) $) NIL)) (-4276 (((-112) |#1| $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#2| $) NIL (|has| |#1| (-856)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1159 |#1| |#2| |#3|) (-1203 |#1| |#2|) (-1109) (-1109) |#2|) (T -1159))
-NIL
-(-1203 |#1| |#2|)
-((-2847 (((-112) $ $) NIL)) (-1442 (((-697 (-1144)) $) 27)) (-4081 (((-1144) $) 15)) (-3884 (((-1144) $) 17)) (-3240 (((-1168) $) NIL)) (-2814 (((-512) $) 13)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 37) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1160) (-13 (-1092) (-10 -8 (-15 -2814 ((-512) $)) (-15 -3884 ((-1144) $)) (-15 -1442 ((-697 (-1144)) $)) (-15 -4081 ((-1144) $))))) (T -1160))
-((-2814 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1160)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-697 (-1144))) (-5 *1 (-1160)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160)))))
-(-13 (-1092) (-10 -8 (-15 -2814 ((-512) $)) (-15 -3884 ((-1144) $)) (-15 -1442 ((-697 (-1144)) $)) (-15 -4081 ((-1144) $))))
-((-2847 (((-112) $ $) 7)) (-3525 (((-3 $ "failed") $) 14)) (-3240 (((-1168) $) 10)) (-3458 (($) 15 T CONST)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-3892 (((-112) $ $) 6)))
-(((-1161) (-141)) (T -1161))
-((-3458 (*1 *1) (-4 *1 (-1161))) (-3525 (*1 *1 *1) (|partial| -4 *1 (-1161))))
-(-13 (-1109) (-10 -8 (-15 -3458 ($) -3722) (-15 -3525 ((-3 $ "failed") $))))
-(((-102) . T) ((-619 (-868)) . T) ((-1109) . T))
-((-3506 (((-1166 |#1|) (-1166 |#1|)) 17)) (-3287 (((-1166 |#1|) (-1166 |#1|)) 13)) (-3649 (((-1166 |#1|) (-1166 |#1|) (-570) (-570)) 20)) (-4414 (((-1166 |#1|) (-1166 |#1|)) 15)))
-(((-1162 |#1|) (-10 -7 (-15 -3287 ((-1166 |#1|) (-1166 |#1|))) (-15 -4414 ((-1166 |#1|) (-1166 |#1|))) (-15 -3506 ((-1166 |#1|) (-1166 |#1|))) (-15 -3649 ((-1166 |#1|) (-1166 |#1|) (-570) (-570)))) (-13 (-562) (-148))) (T -1162))
-((-3649 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-1162 *4)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1162 *3)))) (-4414 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1162 *3)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1162 *3)))))
-(-10 -7 (-15 -3287 ((-1166 |#1|) (-1166 |#1|))) (-15 -4414 ((-1166 |#1|) (-1166 |#1|))) (-15 -3506 ((-1166 |#1|) (-1166 |#1|))) (-15 -3649 ((-1166 |#1|) (-1166 |#1|) (-570) (-570))))
-((-1505 (((-1166 |#1|) (-1166 (-1166 |#1|))) 15)))
-(((-1163 |#1|) (-10 -7 (-15 -1505 ((-1166 |#1|) (-1166 (-1166 |#1|))))) (-1227)) (T -1163))
-((-1505 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1163 *4)) (-4 *4 (-1227)))))
-(-10 -7 (-15 -1505 ((-1166 |#1|) (-1166 (-1166 |#1|)))))
-((-3693 (((-1166 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|)) 25)) (-2295 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|)) 26)) (-2536 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 16)))
-(((-1164 |#1| |#2|) (-10 -7 (-15 -2536 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -3693 ((-1166 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|))) (-15 -2295 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|)))) (-1227) (-1227)) (T -1164))
-((-2295 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1227)) (-4 *2 (-1227)) (-5 *1 (-1164 *5 *2)))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1166 *6)) (-4 *6 (-1227)) (-4 *3 (-1227)) (-5 *2 (-1166 *3)) (-5 *1 (-1164 *6 *3)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))))
-(-10 -7 (-15 -2536 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -3693 ((-1166 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|))) (-15 -2295 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|))))
-((-2536 (((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-1166 |#2|)) 21)))
-(((-1165 |#1| |#2| |#3|) (-10 -7 (-15 -2536 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-1166 |#2|)))) (-1227) (-1227) (-1227)) (T -1165))
-((-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-1166 *7)) (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-1166 *8)) (-5 *1 (-1165 *6 *7 *8)))))
-(-10 -7 (-15 -2536 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-1166 |#2|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) NIL)) (-2975 ((|#1| $) NIL)) (-3446 (($ $) 67)) (-2204 (((-1282) $ (-570) (-570)) 99 (|has| $ (-6 -4453)))) (-3257 (($ $ (-570)) 128 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3797 (((-868) $) 56 (|has| |#1| (-1109)))) (-2415 (((-112)) 55 (|has| |#1| (-1109)))) (-2854 ((|#1| $ |#1|) NIL (|has| $ (-6 -4453)))) (-2364 (($ $ $) 115 (|has| $ (-6 -4453))) (($ $ (-570) $) 141)) (-1639 ((|#1| $ |#1|) 125 (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) 120 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4453))) (($ $ "rest" $) 124 (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 112 (|has| $ (-6 -4453))) ((|#1| $ (-570) |#1|) 77 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 80)) (-2963 ((|#1| $) NIL)) (-2333 (($) NIL T CONST)) (-4181 (($ $) 14)) (-1962 (($ $) 40) (($ $ (-777)) 111)) (-4166 (((-112) (-650 |#1|) $) 134 (|has| |#1| (-1109)))) (-2424 (($ (-650 |#1|)) 130)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) 79)) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2836 (((-112) $) NIL)) (-3976 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-3706 (((-1282) (-570) $) 140 (|has| |#1| (-1109)))) (-3777 (((-777) $) 137)) (-3044 (((-650 $) $) NIL)) (-1427 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2065 (((-112) $ (-777)) NIL)) (-2466 (((-650 |#1|) $) NIL)) (-2708 (((-112) $) NIL)) (-3443 (($ $) 113)) (-4367 (((-112) $) 13)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3637 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2119 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) 96)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3881 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-4288 ((|#1| $) 10)) (-1948 ((|#1| $) 39) (($ $ (-777)) 65)) (-2692 (((-2 (|:| |cycle?| (-112)) (|:| -2485 (-777)) (|:| |period| (-777))) (-777) $) 34)) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3934 (($ (-1 (-112) |#1|) $) 145)) (-3947 (($ (-1 (-112) |#1|) $) 146)) (-4222 (($ $ |#1|) 90 (|has| $ (-6 -4453)))) (-3308 (($ $ (-570)) 45)) (-2655 (((-112) $) 94)) (-2361 (((-112) $) 12)) (-3460 (((-112) $) 136)) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 30)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) 20)) (-1698 (($) 60)) (-2057 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1244 (-570))) NIL) ((|#1| $ (-570)) 75) ((|#1| $ (-570) |#1|) NIL)) (-2352 (((-570) $ $) 64)) (-3225 (($ $ (-1244 (-570))) NIL) (($ $ (-570)) NIL)) (-2954 (($ (-1 $)) 63)) (-1355 (((-112) $) 91)) (-2288 (($ $) 92)) (-3277 (($ $) 116 (|has| $ (-6 -4453)))) (-2846 (((-777) $) NIL)) (-3522 (($ $) NIL)) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 59)) (-2601 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 73)) (-2807 (($ |#1| $) 114)) (-1674 (($ $ $) 118 (|has| $ (-6 -4453))) (($ $ |#1|) 119 (|has| $ (-6 -4453)))) (-1505 (($ $ $) 101) (($ |#1| $) 61) (($ (-650 $)) 106) (($ $ |#1|) 100)) (-2161 (($ $) 66)) (-2869 (($ (-650 |#1|)) 129) (((-868) $) 57 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) NIL)) (-3984 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 132 (|has| |#1| (-1109)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1166 |#1|) (-13 (-680 |#1|) (-622 (-650 |#1|)) (-10 -8 (-6 -4453) (-15 -2424 ($ (-650 |#1|))) (IF (|has| |#1| (-1109)) (-15 -4166 ((-112) (-650 |#1|) $)) |%noBranch|) (-15 -2692 ((-2 (|:| |cycle?| (-112)) (|:| -2485 (-777)) (|:| |period| (-777))) (-777) $)) (-15 -2954 ($ (-1 $))) (-15 -2807 ($ |#1| $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -3706 ((-1282) (-570) $)) (-15 -3797 ((-868) $)) (-15 -2415 ((-112)))) |%noBranch|) (-15 -2364 ($ $ (-570) $)) (-15 -3881 ($ (-1 |#1|))) (-15 -3881 ($ (-1 |#1| |#1|) |#1|)) (-15 -3934 ($ (-1 (-112) |#1|) $)) (-15 -3947 ($ (-1 (-112) |#1|) $)))) (-1227)) (T -1166))
-((-2424 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))) (-4166 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-4 *4 (-1227)) (-5 *2 (-112)) (-5 *1 (-1166 *4)))) (-2692 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2485 (-777)) (|:| |period| (-777)))) (-5 *1 (-1166 *4)) (-4 *4 (-1227)) (-5 *3 (-777)))) (-2954 (*1 *1 *2) (-12 (-5 *2 (-1 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1227)))) (-2807 (*1 *1 *2 *1) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1227)))) (-3706 (*1 *2 *3 *1) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1166 *4)) (-4 *4 (-1109)) (-4 *4 (-1227)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1166 *3)) (-4 *3 (-1109)) (-4 *3 (-1227)))) (-2415 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1109)) (-4 *3 (-1227)))) (-2364 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1166 *3)) (-4 *3 (-1227)))) (-3881 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))) (-3947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))))
-(-13 (-680 |#1|) (-622 (-650 |#1|)) (-10 -8 (-6 -4453) (-15 -2424 ($ (-650 |#1|))) (IF (|has| |#1| (-1109)) (-15 -4166 ((-112) (-650 |#1|) $)) |%noBranch|) (-15 -2692 ((-2 (|:| |cycle?| (-112)) (|:| -2485 (-777)) (|:| |period| (-777))) (-777) $)) (-15 -2954 ($ (-1 $))) (-15 -2807 ($ |#1| $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -3706 ((-1282) (-570) $)) (-15 -3797 ((-868) $)) (-15 -2415 ((-112)))) |%noBranch|) (-15 -2364 ($ $ (-570) $)) (-15 -3881 ($ (-1 |#1|))) (-15 -3881 ($ (-1 |#1| |#1|) |#1|)) (-15 -3934 ($ (-1 (-112) |#1|) $)) (-15 -3947 ($ (-1 (-112) |#1|) $))))
-((-2847 (((-112) $ $) 19)) (-2721 (($ $) 123)) (-3532 (($ $) 124)) (-2524 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-3431 (((-112) $ $) 121)) (-3413 (((-112) $ $ (-570)) 120)) (-1643 (($ (-570)) 130)) (-3210 (((-650 $) $ (-145)) 113) (((-650 $) $ (-142)) 112)) (-3134 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-856)))) (-2778 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4453))) (($ $) 91 (-12 (|has| (-145) (-856)) (|has| $ (-6 -4453))))) (-2018 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-856)))) (-2855 (((-112) $ (-777)) 8)) (-3040 (((-145) $ (-570) (-145)) 53 (|has| $ (-6 -4453))) (((-145) $ (-1244 (-570)) (-145)) 60 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-3764 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-4125 (($ $) 93 (|has| $ (-6 -4453)))) (-4366 (($ $) 103)) (-3286 (($ $ (-1244 (-570)) $) 117)) (-3153 (($ $) 80 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ (-145) $) 79 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4452)))) (-2295 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4452))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4452)))) (-2845 (((-145) $ (-570) (-145)) 54 (|has| $ (-6 -4453)))) (-2774 (((-145) $ (-570)) 52)) (-3450 (((-112) $ $) 122)) (-2619 (((-570) (-1 (-112) (-145)) $) 100) (((-570) (-145) $) 99 (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) 98 (|has| (-145) (-1109))) (((-570) $ $ (-570)) 116) (((-570) (-142) $ (-570)) 115)) (-3976 (((-650 (-145)) $) 31 (|has| $ (-6 -4452)))) (-2296 (($ (-777) (-145)) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-1908 (($ $ $) 90 (|has| (-145) (-856)))) (-4356 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-856)))) (-3069 (((-650 (-145)) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-1764 (($ $ $) 89 (|has| (-145) (-856)))) (-3114 (((-112) $ $ (-145)) 118)) (-1608 (((-777) $ $ (-145)) 119)) (-2833 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1538 (($ $) 125)) (-2276 (($ $) 126)) (-2065 (((-112) $ (-777)) 10)) (-3773 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3240 (((-1168) $) 22)) (-2119 (($ (-145) $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21)) (-1948 (((-145) $) 43 (|has| (-570) (-856)))) (-2115 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4222 (($ $ (-145)) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-145)))) 27 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) 26 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) 24 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2856 (((-650 (-145)) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 (((-145) $ (-570) (-145)) 51) (((-145) $ (-570)) 50) (($ $ (-1244 (-570))) 71) (($ $ $) 105)) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3901 (((-777) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4452))) (((-777) (-145) $) 29 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4452))))) (-2181 (($ $ $ (-570)) 94 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| (-145) (-620 (-542))))) (-2881 (($ (-650 (-145))) 72)) (-1505 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (($ (-145)) 114) (((-868) $) 18)) (-1344 (((-112) $ $) 23)) (-2061 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4452)))) (-4245 (((-1168) $) 134) (((-1168) $ (-112)) 133) (((-1282) (-828) $) 132) (((-1282) (-828) $ (-112)) 131)) (-3959 (((-112) $ $) 87 (|has| (-145) (-856)))) (-3933 (((-112) $ $) 86 (|has| (-145) (-856)))) (-3892 (((-112) $ $) 20)) (-3945 (((-112) $ $) 88 (|has| (-145) (-856)))) (-3918 (((-112) $ $) 85 (|has| (-145) (-856)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1167) (-141)) (T -1167))
-((-1643 (*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1167)))))
-(-13 (-1153) (-1109) (-834) (-10 -8 (-15 -1643 ($ (-570)))))
-(((-34) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 #0=(-145)) . T) ((-620 (-542)) |has| (-145) (-620 (-542))) ((-290 #1=(-570) #0#) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #1# #0#) . T) ((-313 #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-378 #0#) . T) ((-495 #0#) . T) ((-610 #1# #0#) . T) ((-520 #0# #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-657 #0#) . T) ((-19 #0#) . T) ((-834) . T) ((-856) |has| (-145) (-856)) ((-1109) . T) ((-1153) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2721 (($ $) NIL)) (-3532 (($ $) NIL)) (-2524 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3431 (((-112) $ $) NIL)) (-3413 (((-112) $ $ (-570)) NIL)) (-1643 (($ (-570)) 8)) (-3210 (((-650 $) $ (-145)) NIL) (((-650 $) $ (-142)) NIL)) (-3134 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-856)))) (-2778 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| (-145) (-856))))) (-2018 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 (((-145) $ (-570) (-145)) NIL (|has| $ (-6 -4453))) (((-145) $ (-1244 (-570)) (-145)) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-3764 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3286 (($ $ (-1244 (-570)) $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-3617 (($ (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4452))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4452)))) (-2845 (((-145) $ (-570) (-145)) NIL (|has| $ (-6 -4453)))) (-2774 (((-145) $ (-570)) NIL)) (-3450 (((-112) $ $) NIL)) (-2619 (((-570) (-1 (-112) (-145)) $) NIL) (((-570) (-145) $) NIL (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) NIL (|has| (-145) (-1109))) (((-570) $ $ (-570)) NIL) (((-570) (-142) $ (-570)) NIL)) (-3976 (((-650 (-145)) $) NIL (|has| $ (-6 -4452)))) (-2296 (($ (-777) (-145)) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| (-145) (-856)))) (-4356 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-856)))) (-3069 (((-650 (-145)) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-1894 (((-570) $) NIL (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| (-145) (-856)))) (-3114 (((-112) $ $ (-145)) NIL)) (-1608 (((-777) $ $ (-145)) NIL)) (-2833 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1538 (($ $) NIL)) (-2276 (($ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3773 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3240 (((-1168) $) NIL)) (-2119 (($ (-145) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-145) $) NIL (|has| (-570) (-856)))) (-2115 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4222 (($ $ (-145)) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-145)))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2856 (((-650 (-145)) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 (((-145) $ (-570) (-145)) NIL) (((-145) $ (-570)) NIL) (($ $ (-1244 (-570))) NIL) (($ $ $) NIL)) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3901 (((-777) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452))) (((-777) (-145) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-145) (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-145) (-620 (-542))))) (-2881 (($ (-650 (-145))) NIL)) (-1505 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (($ (-145)) NIL) (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-2061 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4452)))) (-4245 (((-1168) $) 19) (((-1168) $ (-112)) 21) (((-1282) (-828) $) 22) (((-1282) (-828) $ (-112)) 23)) (-3959 (((-112) $ $) NIL (|has| (-145) (-856)))) (-3933 (((-112) $ $) NIL (|has| (-145) (-856)))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (|has| (-145) (-856)))) (-3918 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1168) (-1167)) (T -1168))
-NIL
-(-1167)
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL)) (-2204 (((-1282) $ (-1168) (-1168)) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-1168) |#1|) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#1| "failed") (-1168) $) NIL)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#1| "failed") (-1168) $) NIL)) (-3617 (($ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-1168) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-1168)) NIL)) (-3976 (((-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-1168) $) NIL (|has| (-1168) (-856)))) (-3069 (((-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-1168) $) NIL (|has| (-1168) (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-1988 (((-650 (-1168)) $) NIL)) (-2093 (((-112) (-1168) $) NIL)) (-3398 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL)) (-4075 (((-650 (-1168)) $) NIL)) (-4276 (((-112) (-1168) $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-1948 ((|#1| $) NIL (|has| (-1168) (-856)))) (-2115 (((-3 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) "failed") (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ $ (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL (-12 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-313 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-1168)) NIL) ((|#1| $ (-1168) |#1|) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-619 (-868))) (|has| |#1| (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 (-1168)) (|:| -3165 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1169 |#1|) (-13 (-1203 (-1168) |#1|) (-10 -7 (-6 -4452))) (-1109)) (T -1169))
-NIL
-(-13 (-1203 (-1168) |#1|) (-10 -7 (-6 -4452)))
-((-1518 (((-1166 |#1|) (-1166 |#1|)) 83)) (-3957 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 39)) (-2989 (((-1166 |#1|) (-413 (-570)) (-1166 |#1|)) 133 (|has| |#1| (-38 (-413 (-570)))))) (-4131 (((-1166 |#1|) |#1| (-1166 |#1|)) 139 (|has| |#1| (-368)))) (-3297 (((-1166 |#1|) (-1166 |#1|)) 97)) (-1484 (((-1166 (-570)) (-570)) 63)) (-1662 (((-1166 |#1|) (-1166 (-1166 |#1|))) 116 (|has| |#1| (-38 (-413 (-570)))))) (-2906 (((-1166 |#1|) (-570) (-570) (-1166 |#1|)) 102)) (-3677 (((-1166 |#1|) |#1| (-570)) 51)) (-2127 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 66)) (-2501 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 136 (|has| |#1| (-368)))) (-3809 (((-1166 |#1|) |#1| (-1 (-1166 |#1|))) 115 (|has| |#1| (-38 (-413 (-570)))))) (-2449 (((-1166 |#1|) (-1 |#1| (-570)) |#1| (-1 (-1166 |#1|))) 137 (|has| |#1| (-368)))) (-4431 (((-1166 |#1|) (-1166 |#1|)) 96)) (-1845 (((-1166 |#1|) (-1166 |#1|)) 82)) (-3841 (((-1166 |#1|) (-570) (-570) (-1166 |#1|)) 103)) (-1363 (((-1166 |#1|) |#1| (-1166 |#1|)) 112 (|has| |#1| (-38 (-413 (-570)))))) (-3636 (((-1166 (-570)) (-570)) 62)) (-2508 (((-1166 |#1|) |#1|) 65)) (-2694 (((-1166 |#1|) (-1166 |#1|) (-570) (-570)) 99)) (-2374 (((-1166 |#1|) (-1 |#1| (-570)) (-1166 |#1|)) 72)) (-2837 (((-3 (-1166 |#1|) "failed") (-1166 |#1|) (-1166 |#1|)) 37)) (-1905 (((-1166 |#1|) (-1166 |#1|)) 98)) (-3034 (((-1166 |#1|) (-1166 |#1|) |#1|) 77)) (-3300 (((-1166 |#1|) (-1166 |#1|)) 68)) (-3538 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 78)) (-2869 (((-1166 |#1|) |#1|) 73)) (-4098 (((-1166 |#1|) (-1166 (-1166 |#1|))) 88)) (-4013 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 38)) (-4003 (((-1166 |#1|) (-1166 |#1|)) 21) (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 23)) (-3992 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 17)) (* (((-1166 |#1|) (-1166 |#1|) |#1|) 29) (((-1166 |#1|) |#1| (-1166 |#1|)) 26) (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 27)))
-(((-1170 |#1|) (-10 -7 (-15 -3992 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -4003 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -4003 ((-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -2837 ((-3 (-1166 |#1|) "failed") (-1166 |#1|) (-1166 |#1|))) (-15 -4013 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3957 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3677 ((-1166 |#1|) |#1| (-570))) (-15 -3636 ((-1166 (-570)) (-570))) (-15 -1484 ((-1166 (-570)) (-570))) (-15 -2508 ((-1166 |#1|) |#1|)) (-15 -2127 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3300 ((-1166 |#1|) (-1166 |#1|))) (-15 -2374 ((-1166 |#1|) (-1 |#1| (-570)) (-1166 |#1|))) (-15 -2869 ((-1166 |#1|) |#1|)) (-15 -3034 ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -3538 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1845 ((-1166 |#1|) (-1166 |#1|))) (-15 -1518 ((-1166 |#1|) (-1166 |#1|))) (-15 -4098 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -4431 ((-1166 |#1|) (-1166 |#1|))) (-15 -3297 ((-1166 |#1|) (-1166 |#1|))) (-15 -1905 ((-1166 |#1|) (-1166 |#1|))) (-15 -2694 ((-1166 |#1|) (-1166 |#1|) (-570) (-570))) (-15 -2906 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (-15 -3841 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 -3809 ((-1166 |#1|) |#1| (-1 (-1166 |#1|)))) (-15 -1662 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -2989 ((-1166 |#1|) (-413 (-570)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -2501 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2449 ((-1166 |#1|) (-1 |#1| (-570)) |#1| (-1 (-1166 |#1|)))) (-15 -4131 ((-1166 |#1|) |#1| (-1166 |#1|)))) |%noBranch|)) (-1058)) (T -1170))
-((-4131 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-570))) (-5 *5 (-1 (-1166 *4))) (-4 *4 (-368)) (-4 *4 (-1058)) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)))) (-2501 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2989 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1058)) (-5 *3 (-413 (-570))) (-5 *1 (-1170 *4)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)) (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1166 *3))) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)))) (-1363 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3841 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-2906 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-2694 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-1905 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3297 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-4431 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)) (-4 *4 (-1058)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3538 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3034 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2869 (*1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))) (-2374 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1 *4 (-570))) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2127 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2508 (*1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))) (-1484 (*1 *2 *3) (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058)) (-5 *3 (-570)))) (-3636 (*1 *2 *3) (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058)) (-5 *3 (-570)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))) (-3957 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-4013 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2837 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-4003 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3992 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))))
-(-10 -7 (-15 -3992 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -4003 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -4003 ((-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -2837 ((-3 (-1166 |#1|) "failed") (-1166 |#1|) (-1166 |#1|))) (-15 -4013 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3957 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3677 ((-1166 |#1|) |#1| (-570))) (-15 -3636 ((-1166 (-570)) (-570))) (-15 -1484 ((-1166 (-570)) (-570))) (-15 -2508 ((-1166 |#1|) |#1|)) (-15 -2127 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3300 ((-1166 |#1|) (-1166 |#1|))) (-15 -2374 ((-1166 |#1|) (-1 |#1| (-570)) (-1166 |#1|))) (-15 -2869 ((-1166 |#1|) |#1|)) (-15 -3034 ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -3538 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1845 ((-1166 |#1|) (-1166 |#1|))) (-15 -1518 ((-1166 |#1|) (-1166 |#1|))) (-15 -4098 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -4431 ((-1166 |#1|) (-1166 |#1|))) (-15 -3297 ((-1166 |#1|) (-1166 |#1|))) (-15 -1905 ((-1166 |#1|) (-1166 |#1|))) (-15 -2694 ((-1166 |#1|) (-1166 |#1|) (-570) (-570))) (-15 -2906 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (-15 -3841 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 -3809 ((-1166 |#1|) |#1| (-1 (-1166 |#1|)))) (-15 -1662 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -2989 ((-1166 |#1|) (-413 (-570)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -2501 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2449 ((-1166 |#1|) (-1 |#1| (-570)) |#1| (-1 (-1166 |#1|)))) (-15 -4131 ((-1166 |#1|) |#1| (-1166 |#1|)))) |%noBranch|))
-((-3900 (((-1166 |#1|) (-1166 |#1|)) 60)) (-3770 (((-1166 |#1|) (-1166 |#1|)) 42)) (-3876 (((-1166 |#1|) (-1166 |#1|)) 56)) (-3745 (((-1166 |#1|) (-1166 |#1|)) 38)) (-1513 (((-1166 |#1|) (-1166 |#1|)) 63)) (-3791 (((-1166 |#1|) (-1166 |#1|)) 45)) (-3447 (((-1166 |#1|) (-1166 |#1|)) 34)) (-2651 (((-1166 |#1|) (-1166 |#1|)) 29)) (-1523 (((-1166 |#1|) (-1166 |#1|)) 64)) (-3801 (((-1166 |#1|) (-1166 |#1|)) 46)) (-3913 (((-1166 |#1|) (-1166 |#1|)) 61)) (-3781 (((-1166 |#1|) (-1166 |#1|)) 43)) (-3887 (((-1166 |#1|) (-1166 |#1|)) 58)) (-3758 (((-1166 |#1|) (-1166 |#1|)) 40)) (-1561 (((-1166 |#1|) (-1166 |#1|)) 68)) (-3833 (((-1166 |#1|) (-1166 |#1|)) 50)) (-1536 (((-1166 |#1|) (-1166 |#1|)) 66)) (-3811 (((-1166 |#1|) (-1166 |#1|)) 48)) (-1585 (((-1166 |#1|) (-1166 |#1|)) 71)) (-3853 (((-1166 |#1|) (-1166 |#1|)) 53)) (-2900 (((-1166 |#1|) (-1166 |#1|)) 72)) (-3864 (((-1166 |#1|) (-1166 |#1|)) 54)) (-1575 (((-1166 |#1|) (-1166 |#1|)) 70)) (-3844 (((-1166 |#1|) (-1166 |#1|)) 52)) (-1546 (((-1166 |#1|) (-1166 |#1|)) 69)) (-3821 (((-1166 |#1|) (-1166 |#1|)) 51)) (** (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 36)))
-(((-1171 |#1|) (-10 -7 (-15 -2651 ((-1166 |#1|) (-1166 |#1|))) (-15 -3447 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3745 ((-1166 |#1|) (-1166 |#1|))) (-15 -3758 ((-1166 |#1|) (-1166 |#1|))) (-15 -3770 ((-1166 |#1|) (-1166 |#1|))) (-15 -3781 ((-1166 |#1|) (-1166 |#1|))) (-15 -3791 ((-1166 |#1|) (-1166 |#1|))) (-15 -3801 ((-1166 |#1|) (-1166 |#1|))) (-15 -3811 ((-1166 |#1|) (-1166 |#1|))) (-15 -3821 ((-1166 |#1|) (-1166 |#1|))) (-15 -3833 ((-1166 |#1|) (-1166 |#1|))) (-15 -3844 ((-1166 |#1|) (-1166 |#1|))) (-15 -3853 ((-1166 |#1|) (-1166 |#1|))) (-15 -3864 ((-1166 |#1|) (-1166 |#1|))) (-15 -3876 ((-1166 |#1|) (-1166 |#1|))) (-15 -3887 ((-1166 |#1|) (-1166 |#1|))) (-15 -3900 ((-1166 |#1|) (-1166 |#1|))) (-15 -3913 ((-1166 |#1|) (-1166 |#1|))) (-15 -1513 ((-1166 |#1|) (-1166 |#1|))) (-15 -1523 ((-1166 |#1|) (-1166 |#1|))) (-15 -1536 ((-1166 |#1|) (-1166 |#1|))) (-15 -1546 ((-1166 |#1|) (-1166 |#1|))) (-15 -1561 ((-1166 |#1|) (-1166 |#1|))) (-15 -1575 ((-1166 |#1|) (-1166 |#1|))) (-15 -1585 ((-1166 |#1|) (-1166 |#1|))) (-15 -2900 ((-1166 |#1|) (-1166 |#1|)))) (-38 (-413 (-570)))) (T -1171))
-((-2900 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-1546 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))))
-(-10 -7 (-15 -2651 ((-1166 |#1|) (-1166 |#1|))) (-15 -3447 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3745 ((-1166 |#1|) (-1166 |#1|))) (-15 -3758 ((-1166 |#1|) (-1166 |#1|))) (-15 -3770 ((-1166 |#1|) (-1166 |#1|))) (-15 -3781 ((-1166 |#1|) (-1166 |#1|))) (-15 -3791 ((-1166 |#1|) (-1166 |#1|))) (-15 -3801 ((-1166 |#1|) (-1166 |#1|))) (-15 -3811 ((-1166 |#1|) (-1166 |#1|))) (-15 -3821 ((-1166 |#1|) (-1166 |#1|))) (-15 -3833 ((-1166 |#1|) (-1166 |#1|))) (-15 -3844 ((-1166 |#1|) (-1166 |#1|))) (-15 -3853 ((-1166 |#1|) (-1166 |#1|))) (-15 -3864 ((-1166 |#1|) (-1166 |#1|))) (-15 -3876 ((-1166 |#1|) (-1166 |#1|))) (-15 -3887 ((-1166 |#1|) (-1166 |#1|))) (-15 -3900 ((-1166 |#1|) (-1166 |#1|))) (-15 -3913 ((-1166 |#1|) (-1166 |#1|))) (-15 -1513 ((-1166 |#1|) (-1166 |#1|))) (-15 -1523 ((-1166 |#1|) (-1166 |#1|))) (-15 -1536 ((-1166 |#1|) (-1166 |#1|))) (-15 -1546 ((-1166 |#1|) (-1166 |#1|))) (-15 -1561 ((-1166 |#1|) (-1166 |#1|))) (-15 -1575 ((-1166 |#1|) (-1166 |#1|))) (-15 -1585 ((-1166 |#1|) (-1166 |#1|))) (-15 -2900 ((-1166 |#1|) (-1166 |#1|))))
-((-3900 (((-1166 |#1|) (-1166 |#1|)) 102)) (-3770 (((-1166 |#1|) (-1166 |#1|)) 61)) (-2327 (((-2 (|:| -3876 (-1166 |#1|)) (|:| -3887 (-1166 |#1|))) (-1166 |#1|)) 98)) (-3876 (((-1166 |#1|) (-1166 |#1|)) 99)) (-2089 (((-2 (|:| -3745 (-1166 |#1|)) (|:| -3758 (-1166 |#1|))) (-1166 |#1|)) 54)) (-3745 (((-1166 |#1|) (-1166 |#1|)) 55)) (-1513 (((-1166 |#1|) (-1166 |#1|)) 104)) (-3791 (((-1166 |#1|) (-1166 |#1|)) 68)) (-3447 (((-1166 |#1|) (-1166 |#1|)) 40)) (-2651 (((-1166 |#1|) (-1166 |#1|)) 37)) (-1523 (((-1166 |#1|) (-1166 |#1|)) 105)) (-3801 (((-1166 |#1|) (-1166 |#1|)) 69)) (-3913 (((-1166 |#1|) (-1166 |#1|)) 103)) (-3781 (((-1166 |#1|) (-1166 |#1|)) 64)) (-3887 (((-1166 |#1|) (-1166 |#1|)) 100)) (-3758 (((-1166 |#1|) (-1166 |#1|)) 56)) (-1561 (((-1166 |#1|) (-1166 |#1|)) 113)) (-3833 (((-1166 |#1|) (-1166 |#1|)) 88)) (-1536 (((-1166 |#1|) (-1166 |#1|)) 107)) (-3811 (((-1166 |#1|) (-1166 |#1|)) 84)) (-1585 (((-1166 |#1|) (-1166 |#1|)) 117)) (-3853 (((-1166 |#1|) (-1166 |#1|)) 92)) (-2900 (((-1166 |#1|) (-1166 |#1|)) 119)) (-3864 (((-1166 |#1|) (-1166 |#1|)) 94)) (-1575 (((-1166 |#1|) (-1166 |#1|)) 115)) (-3844 (((-1166 |#1|) (-1166 |#1|)) 90)) (-1546 (((-1166 |#1|) (-1166 |#1|)) 109)) (-3821 (((-1166 |#1|) (-1166 |#1|)) 86)) (** (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 41)))
-(((-1172 |#1|) (-10 -7 (-15 -2651 ((-1166 |#1|) (-1166 |#1|))) (-15 -3447 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2089 ((-2 (|:| -3745 (-1166 |#1|)) (|:| -3758 (-1166 |#1|))) (-1166 |#1|))) (-15 -3745 ((-1166 |#1|) (-1166 |#1|))) (-15 -3758 ((-1166 |#1|) (-1166 |#1|))) (-15 -3770 ((-1166 |#1|) (-1166 |#1|))) (-15 -3781 ((-1166 |#1|) (-1166 |#1|))) (-15 -3791 ((-1166 |#1|) (-1166 |#1|))) (-15 -3801 ((-1166 |#1|) (-1166 |#1|))) (-15 -3811 ((-1166 |#1|) (-1166 |#1|))) (-15 -3821 ((-1166 |#1|) (-1166 |#1|))) (-15 -3833 ((-1166 |#1|) (-1166 |#1|))) (-15 -3844 ((-1166 |#1|) (-1166 |#1|))) (-15 -3853 ((-1166 |#1|) (-1166 |#1|))) (-15 -3864 ((-1166 |#1|) (-1166 |#1|))) (-15 -2327 ((-2 (|:| -3876 (-1166 |#1|)) (|:| -3887 (-1166 |#1|))) (-1166 |#1|))) (-15 -3876 ((-1166 |#1|) (-1166 |#1|))) (-15 -3887 ((-1166 |#1|) (-1166 |#1|))) (-15 -3900 ((-1166 |#1|) (-1166 |#1|))) (-15 -3913 ((-1166 |#1|) (-1166 |#1|))) (-15 -1513 ((-1166 |#1|) (-1166 |#1|))) (-15 -1523 ((-1166 |#1|) (-1166 |#1|))) (-15 -1536 ((-1166 |#1|) (-1166 |#1|))) (-15 -1546 ((-1166 |#1|) (-1166 |#1|))) (-15 -1561 ((-1166 |#1|) (-1166 |#1|))) (-15 -1575 ((-1166 |#1|) (-1166 |#1|))) (-15 -1585 ((-1166 |#1|) (-1166 |#1|))) (-15 -2900 ((-1166 |#1|) (-1166 |#1|)))) (-38 (-413 (-570)))) (T -1172))
-((-2900 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-1546 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2327 (*1 *2 *3) (-12 (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-2 (|:| -3876 (-1166 *4)) (|:| -3887 (-1166 *4)))) (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2089 (*1 *2 *3) (-12 (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-2 (|:| -3745 (-1166 *4)) (|:| -3758 (-1166 *4)))) (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2651 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))))
-(-10 -7 (-15 -2651 ((-1166 |#1|) (-1166 |#1|))) (-15 -3447 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2089 ((-2 (|:| -3745 (-1166 |#1|)) (|:| -3758 (-1166 |#1|))) (-1166 |#1|))) (-15 -3745 ((-1166 |#1|) (-1166 |#1|))) (-15 -3758 ((-1166 |#1|) (-1166 |#1|))) (-15 -3770 ((-1166 |#1|) (-1166 |#1|))) (-15 -3781 ((-1166 |#1|) (-1166 |#1|))) (-15 -3791 ((-1166 |#1|) (-1166 |#1|))) (-15 -3801 ((-1166 |#1|) (-1166 |#1|))) (-15 -3811 ((-1166 |#1|) (-1166 |#1|))) (-15 -3821 ((-1166 |#1|) (-1166 |#1|))) (-15 -3833 ((-1166 |#1|) (-1166 |#1|))) (-15 -3844 ((-1166 |#1|) (-1166 |#1|))) (-15 -3853 ((-1166 |#1|) (-1166 |#1|))) (-15 -3864 ((-1166 |#1|) (-1166 |#1|))) (-15 -2327 ((-2 (|:| -3876 (-1166 |#1|)) (|:| -3887 (-1166 |#1|))) (-1166 |#1|))) (-15 -3876 ((-1166 |#1|) (-1166 |#1|))) (-15 -3887 ((-1166 |#1|) (-1166 |#1|))) (-15 -3900 ((-1166 |#1|) (-1166 |#1|))) (-15 -3913 ((-1166 |#1|) (-1166 |#1|))) (-15 -1513 ((-1166 |#1|) (-1166 |#1|))) (-15 -1523 ((-1166 |#1|) (-1166 |#1|))) (-15 -1536 ((-1166 |#1|) (-1166 |#1|))) (-15 -1546 ((-1166 |#1|) (-1166 |#1|))) (-15 -1561 ((-1166 |#1|) (-1166 |#1|))) (-15 -1575 ((-1166 |#1|) (-1166 |#1|))) (-15 -1585 ((-1166 |#1|) (-1166 |#1|))) (-15 -2900 ((-1166 |#1|) (-1166 |#1|))))
-((-4416 (((-965 |#2|) |#2| |#2|) 50)) (-2211 ((|#2| |#2| |#1|) 19 (|has| |#1| (-311)))))
-(((-1173 |#1| |#2|) (-10 -7 (-15 -4416 ((-965 |#2|) |#2| |#2|)) (IF (|has| |#1| (-311)) (-15 -2211 (|#2| |#2| |#1|)) |%noBranch|)) (-562) (-1253 |#1|)) (T -1173))
-((-2211 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-4 *3 (-562)) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1253 *3)))) (-4416 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-965 *3)) (-5 *1 (-1173 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -4416 ((-965 |#2|) |#2| |#2|)) (IF (|has| |#1| (-311)) (-15 -2211 (|#2| |#2| |#1|)) |%noBranch|))
-((-2847 (((-112) $ $) NIL)) (-1361 (($ $ (-650 (-777))) 79)) (-3711 (($) 33)) (-4077 (($ $) 51)) (-2169 (((-650 $) $) 60)) (-1641 (((-112) $) 19)) (-1378 (((-650 (-950 |#2|)) $) 86)) (-1354 (($ $) 80)) (-2478 (((-777) $) 47)) (-2296 (($) 32)) (-2831 (($ $ (-650 (-777)) (-950 |#2|)) 72) (($ $ (-650 (-777)) (-777)) 73) (($ $ (-777) (-950 |#2|)) 75)) (-4356 (($ $ $) 57) (($ (-650 $)) 59)) (-2613 (((-777) $) 87)) (-2708 (((-112) $) 15)) (-3240 (((-1168) $) NIL)) (-1823 (((-112) $) 22)) (-3891 (((-1129) $) NIL)) (-3270 (((-173) $) 85)) (-3211 (((-950 |#2|) $) 81)) (-3731 (((-777) $) 82)) (-1749 (((-112) $) 84)) (-1503 (($ $ (-650 (-777)) (-173)) 78)) (-3716 (($ $) 52)) (-2869 (((-868) $) 99)) (-1775 (($ $ (-650 (-777)) (-112)) 77)) (-2671 (((-650 $) $) 11)) (-3160 (($ $ (-777)) 46)) (-4185 (($ $) 43)) (-1344 (((-112) $ $) NIL)) (-3539 (($ $ $ (-950 |#2|) (-777)) 68)) (-4091 (($ $ (-950 |#2|)) 67)) (-3298 (($ $ (-650 (-777)) (-950 |#2|)) 66) (($ $ (-650 (-777)) (-777)) 70) (((-777) $ (-950 |#2|)) 71)) (-3892 (((-112) $ $) 92)))
-(((-1174 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -2708 ((-112) $)) (-15 -1641 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -2296 ($)) (-15 -3711 ($)) (-15 -4185 ($ $)) (-15 -3160 ($ $ (-777))) (-15 -2671 ((-650 $) $)) (-15 -2478 ((-777) $)) (-15 -4077 ($ $)) (-15 -3716 ($ $)) (-15 -4356 ($ $ $)) (-15 -4356 ($ (-650 $))) (-15 -2169 ((-650 $) $)) (-15 -3298 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -4091 ($ $ (-950 |#2|))) (-15 -3539 ($ $ $ (-950 |#2|) (-777))) (-15 -2831 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -3298 ($ $ (-650 (-777)) (-777))) (-15 -2831 ($ $ (-650 (-777)) (-777))) (-15 -3298 ((-777) $ (-950 |#2|))) (-15 -2831 ($ $ (-777) (-950 |#2|))) (-15 -1775 ($ $ (-650 (-777)) (-112))) (-15 -1503 ($ $ (-650 (-777)) (-173))) (-15 -1361 ($ $ (-650 (-777)))) (-15 -3211 ((-950 |#2|) $)) (-15 -3731 ((-777) $)) (-15 -1749 ((-112) $)) (-15 -3270 ((-173) $)) (-15 -2613 ((-777) $)) (-15 -1354 ($ $)) (-15 -1378 ((-650 (-950 |#2|)) $)))) (-928) (-1058)) (T -1174))
-((-2708 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2296 (*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-3711 (*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-4185 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-4077 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-3716 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-4356 (*1 *1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-4356 (*1 *1 *2) (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3298 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-950 *4)) (-4 *4 (-1058)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)))) (-3539 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-950 *5)) (-5 *3 (-777)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-2831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-3298 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-2831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-3298 (*1 *2 *1 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *2 (-777)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-2831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-1775 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-112)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-1503 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-173)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-950 *4)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-1354 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-650 (-950 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))))
-(-13 (-1109) (-10 -8 (-15 -2708 ((-112) $)) (-15 -1641 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -2296 ($)) (-15 -3711 ($)) (-15 -4185 ($ $)) (-15 -3160 ($ $ (-777))) (-15 -2671 ((-650 $) $)) (-15 -2478 ((-777) $)) (-15 -4077 ($ $)) (-15 -3716 ($ $)) (-15 -4356 ($ $ $)) (-15 -4356 ($ (-650 $))) (-15 -2169 ((-650 $) $)) (-15 -3298 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -4091 ($ $ (-950 |#2|))) (-15 -3539 ($ $ $ (-950 |#2|) (-777))) (-15 -2831 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -3298 ($ $ (-650 (-777)) (-777))) (-15 -2831 ($ $ (-650 (-777)) (-777))) (-15 -3298 ((-777) $ (-950 |#2|))) (-15 -2831 ($ $ (-777) (-950 |#2|))) (-15 -1775 ($ $ (-650 (-777)) (-112))) (-15 -1503 ($ $ (-650 (-777)) (-173))) (-15 -1361 ($ $ (-650 (-777)))) (-15 -3211 ((-950 |#2|) $)) (-15 -3731 ((-777) $)) (-15 -1749 ((-112) $)) (-15 -3270 ((-173) $)) (-15 -2613 ((-777) $)) (-15 -1354 ($ $)) (-15 -1378 ((-650 (-950 |#2|)) $))))
-((-2847 (((-112) $ $) NIL)) (-3871 ((|#2| $) 11)) (-3859 ((|#1| $) 10)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2881 (($ |#1| |#2|) 9)) (-2869 (((-868) $) 16)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1175 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -2881 ($ |#1| |#2|)) (-15 -3859 (|#1| $)) (-15 -3871 (|#2| $)))) (-1109) (-1109)) (T -1175))
-((-2881 (*1 *1 *2 *3) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-3859 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-1109)))) (-3871 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-1109)))))
-(-13 (-1109) (-10 -8 (-15 -2881 ($ |#1| |#2|)) (-15 -3859 (|#1| $)) (-15 -3871 (|#2| $))))
-((-2847 (((-112) $ $) NIL)) (-2383 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1176) (-13 (-1092) (-10 -8 (-15 -2383 ((-1144) $))))) (T -1176))
-((-2383 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1176)))))
-(-13 (-1092) (-10 -8 (-15 -2383 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 (((-1184 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 11)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-2046 (($ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3426 (((-112) $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3025 (($ $ (-570)) NIL) (($ $ (-570) (-570)) 75)) (-2972 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) NIL)) (-3321 (((-1184 |#1| |#2| |#3|) $) 42)) (-1632 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 32)) (-4268 (((-1184 |#1| |#2| |#3|) $) 33)) (-3900 (($ $) 116 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 92 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) 112 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 88 (|has| |#1| (-38 (-413 (-570)))))) (-2419 (((-570) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-1866 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) NIL)) (-1513 (($ $) 120 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 96 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1186) "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-570) "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-4387 (((-1184 |#1| |#2| |#3|) $) 140) (((-1186) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-413 (-570)) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-570) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-1557 (($ $) 37) (($ (-570) $) 38)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-1184 |#1| |#2| |#3|)) (-695 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 (-1184 |#1| |#2| |#3|))) (|:| |vec| (-1277 (-1184 |#1| |#2| |#3|)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368))))) (-3957 (((-3 $ "failed") $) 54)) (-2595 (((-413 (-959 |#1|)) $ (-570)) 74 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 76 (|has| |#1| (-562)))) (-2066 (($) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-2811 (((-112) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-3296 (((-112) $) 28)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-893 (-570))) (|has| |#1| (-368))))) (-3995 (((-570) $) NIL) (((-570) $ (-570)) 26)) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL (|has| |#1| (-368)))) (-1587 (((-1184 |#1| |#2| |#3|) $) 44 (|has| |#1| (-368)))) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3525 (((-3 $ "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))))) (-2746 (((-112) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-2529 (($ $ (-928)) NIL)) (-3103 (($ (-1 |#1| (-570)) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-570)) 19) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-1908 (($ $ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-1764 (($ $ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-368)))) (-3447 (($ $) 81 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4280 (($ (-570) (-1184 |#1| |#2| |#3|)) 36)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-1363 (($ $) 79 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212))))) (($ $ (-1273 |#2|)) 80 (|has| |#1| (-38 (-413 (-570)))))) (-3458 (($) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4113 (($ $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-2037 (((-1184 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-570)) 158)) (-2837 (((-3 $ "failed") $ $) 55 (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2651 (($ $) 82 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) (-1184 |#1| |#2| |#3|)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-520 (-1186) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-1184 |#1| |#2| |#3|))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-520 (-1186) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-298 (-1184 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-298 (-1184 |#1| |#2| |#3|))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1184 |#1| |#2| |#3|)) (-650 (-1184 |#1| |#2| |#3|))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-570)) NIL) (($ $ $) 61 (|has| (-570) (-1121))) (($ $ (-1184 |#1| |#2| |#3|)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-290 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1273 |#2|)) 57) (($ $ (-777)) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 56 (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-4424 (($ $) NIL (|has| |#1| (-368)))) (-1599 (((-1184 |#1| |#2| |#3|) $) 46 (|has| |#1| (-368)))) (-2650 (((-570) $) 43)) (-1523 (($ $) 122 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 98 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 118 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 94 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 114 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 90 (|has| |#1| (-38 (-413 (-570)))))) (-2601 (((-542) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-620 (-542))) (|has| |#1| (-368)))) (((-384) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-227) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-899 (-384)) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2161 (($ $) NIL)) (-2869 (((-868) $) 162) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1184 |#1| |#2| |#3|)) 30) (($ (-1273 |#2|)) 25) (($ (-1186)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (($ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562)))) (($ (-413 (-570))) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))) (|has| |#1| (-38 (-413 (-570))))))) (-3481 ((|#1| $ (-570)) 77)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) 12)) (-3850 (((-1184 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) 128 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 104 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-1536 (($ $) 124 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 100 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 108 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-570)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 110 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 106 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 126 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 102 (|has| |#1| (-38 (-413 (-570)))))) (-2521 (($ $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-1981 (($) 21 T CONST)) (-1998 (($) 16 T CONST)) (-3414 (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-3959 (((-112) $ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3933 (((-112) $ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3918 (((-112) $ $) NIL (-3749 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 49 (|has| |#1| (-368))) (($ (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) 50 (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 23)) (** (($ $ (-928)) NIL) (($ $ (-777)) 60) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) 83 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 137 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1184 |#1| |#2| |#3|)) 48 (|has| |#1| (-368))) (($ (-1184 |#1| |#2| |#3|) $) 47 (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1177 |#1| |#2| |#3|) (-13 (-1239 |#1| (-1184 |#1| |#2| |#3|)) (-10 -8 (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1177))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(-13 (-1239 |#1| (-1184 |#1| |#2| |#3|)) (-10 -8 (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|)))
-((-4362 ((|#2| |#2| (-1101 |#2|)) 26) ((|#2| |#2| (-1186)) 28)))
-(((-1178 |#1| |#2|) (-10 -7 (-15 -4362 (|#2| |#2| (-1186))) (-15 -4362 (|#2| |#2| (-1101 |#2|)))) (-13 (-562) (-1047 (-570)) (-645 (-570))) (-13 (-436 |#1|) (-161) (-27) (-1212))) (T -1178))
-((-4362 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1212))) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1178 *4 *2)))) (-4362 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1212))))))
-(-10 -7 (-15 -4362 (|#2| |#2| (-1186))) (-15 -4362 (|#2| |#2| (-1101 |#2|))))
-((-4362 (((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1101 (-413 (-959 |#1|)))) 31) (((-413 (-959 |#1|)) (-959 |#1|) (-1101 (-959 |#1|))) 44) (((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1186)) 33) (((-413 (-959 |#1|)) (-959 |#1|) (-1186)) 36)))
-(((-1179 |#1|) (-10 -7 (-15 -4362 ((-413 (-959 |#1|)) (-959 |#1|) (-1186))) (-15 -4362 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -4362 ((-413 (-959 |#1|)) (-959 |#1|) (-1101 (-959 |#1|)))) (-15 -4362 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1101 (-413 (-959 |#1|)))))) (-13 (-562) (-1047 (-570)))) (T -1179))
-((-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-3 *3 (-320 *5))) (-5 *1 (-1179 *5)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-959 *5))) (-5 *3 (-959 *5)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 *3)) (-5 *1 (-1179 *5)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-3 (-413 (-959 *5)) (-320 *5))) (-5 *1 (-1179 *5)) (-5 *3 (-413 (-959 *5))))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 (-959 *5))) (-5 *1 (-1179 *5)) (-5 *3 (-959 *5)))))
-(-10 -7 (-15 -4362 ((-413 (-959 |#1|)) (-959 |#1|) (-1186))) (-15 -4362 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -4362 ((-413 (-959 |#1|)) (-959 |#1|) (-1101 (-959 |#1|)))) (-15 -4362 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1101 (-413 (-959 |#1|))))))
-((-2536 (((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|)) 13)))
-(((-1180 |#1| |#2|) (-10 -7 (-15 -2536 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|)))) (-1058) (-1058)) (T -1180))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6)))))
-(-10 -7 (-15 -2536 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|))))
-((-2929 (((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|))) 51)) (-2340 (((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|))) 52)))
-(((-1181 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2340 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|)))) (-15 -2929 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|))))) (-799) (-856) (-458) (-956 |#3| |#1| |#2|)) (T -1181))
-((-2929 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7)))) (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7))))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7)))) (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7))))))
-(-10 -7 (-15 -2340 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|)))) (-15 -2929 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|)))))
-((-2847 (((-112) $ $) 171)) (-2564 (((-112) $) 43)) (-2399 (((-1277 |#1|) $ (-777)) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-3860 (($ (-1182 |#1|)) NIL)) (-3449 (((-1182 $) $ (-1091)) 82) (((-1182 |#1|) $) 71)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) 164 (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3862 (($ $ $) 158 (|has| |#1| (-562)))) (-3585 (((-424 (-1182 $)) (-1182 $)) 95 (|has| |#1| (-916)))) (-3312 (($ $) NIL (|has| |#1| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 115 (|has| |#1| (-916)))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-4133 (($ $ (-777)) 61)) (-2180 (($ $ (-777)) 63)) (-2169 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-458)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL)) (-4387 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1091) $) NIL)) (-2067 (($ $ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) 80)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-3671 (($ $ $) 131)) (-1985 (($ $ $) NIL (|has| |#1| (-562)))) (-1504 (((-2 (|:| -1747 |#1|) (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-562)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2211 (($ $) 165 (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-777) $) 69)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-4012 (((-868) $ (-868)) 148)) (-3995 (((-777) $ $) NIL (|has| |#1| (-562)))) (-2005 (((-112) $) 48)) (-2928 (((-777) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-2417 (($ (-1182 |#1|) (-1091)) 73) (($ (-1182 $) (-1091)) 89)) (-2529 (($ $ (-777)) 51)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) 87) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-1091)) NIL) (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 153)) (-2689 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-3989 (($ (-1 (-777) (-777)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3968 (((-1182 |#1|) $) NIL)) (-3168 (((-3 (-1091) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) 76)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3240 (((-1168) $) NIL)) (-2930 (((-2 (|:| -1437 $) (|:| -3357 $)) $ (-777)) 60)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-1091)) (|:| -2940 (-777))) "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3458 (($) NIL (|has| |#1| (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) 50)) (-4337 ((|#1| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 103 (|has| |#1| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) 167 (|has| |#1| (-458)))) (-2829 (($ $ (-777) |#1| $) 123)) (-4187 (((-424 (-1182 $)) (-1182 $)) 101 (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 100 (|has| |#1| (-916)))) (-2340 (((-424 $) $) 108 (|has| |#1| (-916)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-2837 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#1|) NIL) (($ $ (-650 (-1091)) (-650 |#1|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) NIL (|has| |#1| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#1| (-562)))) (-2110 (((-3 $ "failed") $ (-777)) 54)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 172 (|has| |#1| (-368)))) (-2896 (($ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2375 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2650 (((-777) $) 78) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) 162 (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3363 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#1| (-562)))) (-2869 (((-868) $) 149) (($ (-570)) NIL) (($ |#1|) 77) (($ (-1091)) NIL) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) 41 (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) 17 T CONST)) (-1998 (($) 19 T CONST)) (-3414 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3892 (((-112) $ $) 120)) (-4013 (($ $ |#1|) 173 (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 90)) (** (($ $ (-928)) 14) (($ $ (-777)) 12)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 39) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1182 |#1|) (-13 (-1253 |#1|) (-10 -8 (-15 -4012 ((-868) $ (-868))) (-15 -2829 ($ $ (-777) |#1| $)))) (-1058)) (T -1182))
-((-4012 (*1 *2 *1 *2) (-12 (-5 *2 (-868)) (-5 *1 (-1182 *3)) (-4 *3 (-1058)))) (-2829 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1182 *3)) (-4 *3 (-1058)))))
-(-13 (-1253 |#1|) (-10 -8 (-15 -4012 ((-868) $ (-868))) (-15 -2829 ($ $ (-777) |#1| $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 11)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-2972 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-1513 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 36)) (-4387 (((-1177 |#1| |#2| |#3|) $) NIL) (((-1184 |#1| |#2| |#3|) $) NIL)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3756 (((-413 (-570)) $) 59)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-4291 (($ (-413 (-570)) (-1177 |#1| |#2| |#3|)) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) NIL)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-413 (-570))) 20) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3447 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2517 (((-1177 |#1| |#2| |#3|) $) 41)) (-3011 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) NIL)) (-4280 (((-1177 |#1| |#2| |#3|) $) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-1363 (($ $) 39 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212))))) (($ $ (-1273 |#2|)) 40 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-413 (-570))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2651 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $ (-1273 |#2|)) 38)) (-2650 (((-413 (-570)) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) NIL)) (-2869 (((-868) $) 62) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1177 |#1| |#2| |#3|)) 30) (($ (-1184 |#1| |#2| |#3|)) 31) (($ (-1273 |#2|)) 26) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3481 ((|#1| $ (-413 (-570))) NIL)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) 12)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 22 T CONST)) (-1998 (($) 16 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 24)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1183 |#1| |#2| |#3|) (-13 (-1260 |#1| (-1177 |#1| |#2| |#3|)) (-1047 (-1184 |#1| |#2| |#3|)) (-622 (-1273 |#2|)) (-10 -8 (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1183))
-((-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(-13 (-1260 |#1| (-1177 |#1| |#2| |#3|)) (-1047 (-1184 |#1| |#2| |#3|)) (-622 (-1273 |#2|)) (-10 -8 (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 129)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 119)) (-2339 (((-1250 |#2| |#1|) $ (-777)) 69)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-777)) 85) (($ $ (-777) (-777)) 82)) (-2972 (((-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|))) $) 105)) (-3900 (($ $) 173 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3876 (($ $) 169 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|)))) 118) (($ (-1166 |#1|)) 113)) (-1513 (($ $) 177 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) 25)) (-3709 (($ $) 28)) (-2471 (((-959 |#1|) $ (-777)) 81) (((-959 |#1|) $ (-777) (-777)) 83)) (-3296 (((-112) $) 124)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-777) $) 126) (((-777) $ (-777)) 128)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) NIL)) (-3103 (($ (-1 |#1| (-570)) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) 13) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3447 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-1363 (($ $) 133 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212))))) (($ $ (-1273 |#2|)) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-3308 (($ $ (-777)) 15)) (-2837 (((-3 $ "failed") $ $) 26 (|has| |#1| (-562)))) (-2651 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-777)))))) (-2057 ((|#1| $ (-777)) 122) (($ $ $) 132 (|has| (-777) (-1121)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $ (-1273 |#2|)) 31)) (-2650 (((-777) $) NIL)) (-1523 (($ $) 179 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 175 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 171 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) NIL)) (-2869 (((-868) $) 206) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1250 |#2| |#1|)) 55) (($ (-1273 |#2|)) 36)) (-3125 (((-1166 |#1|) $) 101)) (-3481 ((|#1| $ (-777)) 121)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) 58)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) 185 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 161 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) 181 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 157 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 189 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 165 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-777)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-777)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 191 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 167 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 187 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 163 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 183 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 159 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 17 T CONST)) (-1998 (($) 20 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) 198)) (-3992 (($ $ $) 35)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ |#1|) 203 (|has| |#1| (-368))) (($ $ $) 138 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 141 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1184 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-10 -8 (-15 -2869 ($ (-1250 |#2| |#1|))) (-15 -2339 ((-1250 |#2| |#1|) $ (-777))) (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1184))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1250 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-1184 *3 *4 *5)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1250 *5 *4)) (-5 *1 (-1184 *4 *5 *6)) (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(-13 (-1268 |#1|) (-10 -8 (-15 -2869 ($ (-1250 |#2| |#1|))) (-15 -2339 ((-1250 |#2| |#1|) $ (-777))) (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|)))
-((-2869 (((-868) $) 33) (($ (-1186)) 35)) (-3749 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 46)) (-3735 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 39) (($ $) 40)) (-3584 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 41)) (-3575 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 43)) (-3564 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 42)) (-3553 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 44)) (-3079 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 45)))
-(((-1185) (-13 (-619 (-868)) (-10 -8 (-15 -2869 ($ (-1186))) (-15 -3584 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3564 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3575 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3553 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3749 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3079 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3735 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3735 ($ $))))) (T -1185))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3584 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-3564 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-3575 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-3553 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-3749 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-3079 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-3735 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-3735 (*1 *1 *1) (-5 *1 (-1185))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2869 ($ (-1186))) (-15 -3584 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3564 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3575 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3553 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3749 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3079 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3735 ($ (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -3735 ($ $))))
-((-2847 (((-112) $ $) NIL)) (-3205 (($ $ (-650 (-868))) 62)) (-4188 (($ $ (-650 (-868))) 60)) (-1643 (((-1168) $) 101)) (-1844 (((-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868)))) $) 108)) (-3223 (((-112) $) 23)) (-2696 (($ $ (-650 (-650 (-868)))) 59) (($ $ (-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868))))) 99)) (-2333 (($) 163 T CONST)) (-4123 (((-1282)) 135)) (-4429 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 69) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 76)) (-2296 (($) 122) (($ $) 131)) (-1770 (($ $) 100)) (-1908 (($ $ $) NIL)) (-1764 (($ $ $) NIL)) (-1677 (((-650 $) $) 136)) (-3240 (((-1168) $) 114)) (-3891 (((-1129) $) NIL)) (-2057 (($ $ (-650 (-868))) 61)) (-2601 (((-542) $) 48) (((-1186) $) 49) (((-899 (-570)) $) 80) (((-899 (-384)) $) 78)) (-2869 (((-868) $) 55) (($ (-1168)) 50)) (-1344 (((-112) $ $) NIL)) (-4250 (($ $ (-650 (-868))) 63)) (-4245 (((-1168) $) 34) (((-1168) $ (-112)) 35) (((-1282) (-828) $) 36) (((-1282) (-828) $ (-112)) 37)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 51)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) 52)))
-(((-1186) (-13 (-856) (-620 (-542)) (-834) (-620 (-1186)) (-622 (-1168)) (-620 (-899 (-570))) (-620 (-899 (-384))) (-893 (-570)) (-893 (-384)) (-10 -8 (-15 -2296 ($)) (-15 -2296 ($ $)) (-15 -4123 ((-1282))) (-15 -1770 ($ $)) (-15 -3223 ((-112) $)) (-15 -1844 ((-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868)))) $)) (-15 -2696 ($ $ (-650 (-650 (-868))))) (-15 -2696 ($ $ (-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868)))))) (-15 -4188 ($ $ (-650 (-868)))) (-15 -3205 ($ $ (-650 (-868)))) (-15 -4250 ($ $ (-650 (-868)))) (-15 -2057 ($ $ (-650 (-868)))) (-15 -1643 ((-1168) $)) (-15 -1677 ((-650 $) $)) (-15 -2333 ($) -3722)))) (T -1186))
-((-2296 (*1 *1) (-5 *1 (-1186))) (-2296 (*1 *1 *1) (-5 *1 (-1186))) (-4123 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1186)))) (-1770 (*1 *1 *1) (-5 *1 (-1186))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868))))) (-5 *1 (-1186)))) (-2696 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-1186)))) (-2696 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868))))) (-5 *1 (-1186)))) (-4188 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-3205 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-4250 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1186)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1186)))) (-2333 (*1 *1) (-5 *1 (-1186))))
-(-13 (-856) (-620 (-542)) (-834) (-620 (-1186)) (-622 (-1168)) (-620 (-899 (-570))) (-620 (-899 (-384))) (-893 (-570)) (-893 (-384)) (-10 -8 (-15 -2296 ($)) (-15 -2296 ($ $)) (-15 -4123 ((-1282))) (-15 -1770 ($ $)) (-15 -3223 ((-112) $)) (-15 -1844 ((-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868)))) $)) (-15 -2696 ($ $ (-650 (-650 (-868))))) (-15 -2696 ($ $ (-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868))) (|:| |args| (-650 (-868)))))) (-15 -4188 ($ $ (-650 (-868)))) (-15 -3205 ($ $ (-650 (-868)))) (-15 -4250 ($ $ (-650 (-868)))) (-15 -2057 ($ $ (-650 (-868)))) (-15 -1643 ((-1168) $)) (-15 -1677 ((-650 $) $)) (-15 -2333 ($) -3722)))
-((-3061 (((-1277 |#1|) |#1| (-928)) 18) (((-1277 |#1|) (-650 |#1|)) 25)))
-(((-1187 |#1|) (-10 -7 (-15 -3061 ((-1277 |#1|) (-650 |#1|))) (-15 -3061 ((-1277 |#1|) |#1| (-928)))) (-1058)) (T -1187))
-((-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-1277 *3)) (-5 *1 (-1187 *3)) (-4 *3 (-1058)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1058)) (-5 *2 (-1277 *4)) (-5 *1 (-1187 *4)))))
-(-10 -7 (-15 -3061 ((-1277 |#1|) (-650 |#1|))) (-15 -3061 ((-1277 |#1|) |#1| (-928))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-4387 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-458)))) (-2425 (($ $ |#1| (-980) $) NIL)) (-2005 (((-112) $) 17)) (-2928 (((-777) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-980)) NIL)) (-2689 (((-980) $) NIL)) (-3989 (($ (-1 (-980) (-980)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#1| $) NIL)) (-2829 (($ $ (-980) |#1| $) NIL (-12 (|has| (-980) (-132)) (|has| |#1| (-562))))) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-2650 (((-980) $) NIL)) (-2128 ((|#1| $) NIL (|has| |#1| (-458)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) NIL) (($ (-413 (-570))) NIL (-3749 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ (-980)) NIL)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1981 (($) 10 T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 21)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1188 |#1|) (-13 (-330 |#1| (-980)) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| (-980) (-132)) (-15 -2829 ($ $ (-980) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|))) (-1058)) (T -1188))
-((-2829 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-980)) (-4 *2 (-132)) (-5 *1 (-1188 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))))
-(-13 (-330 |#1| (-980)) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| (-980) (-132)) (-15 -2829 ($ $ (-980) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|)))
-((-3606 (((-1190) (-1186) $) 25)) (-2347 (($) 29)) (-3787 (((-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-1186) $) 22)) (-1976 (((-1282) (-1186) (-3 (|:| |fst| (-440)) (|:| -1994 "void")) $) 41) (((-1282) (-1186) (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) 42) (((-1282) (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) 43)) (-1853 (((-1282) (-1186)) 58)) (-2936 (((-1282) (-1186) $) 55) (((-1282) (-1186)) 56) (((-1282)) 57)) (-1993 (((-1282) (-1186)) 37)) (-4086 (((-1186)) 36)) (-1698 (($) 34)) (-4041 (((-443) (-1186) (-443) (-1186) $) 45) (((-443) (-650 (-1186)) (-443) (-1186) $) 49) (((-443) (-1186) (-443)) 46) (((-443) (-1186) (-443) (-1186)) 50)) (-4114 (((-1186)) 35)) (-2869 (((-868) $) 28)) (-2722 (((-1282)) 30) (((-1282) (-1186)) 33)) (-3854 (((-650 (-1186)) (-1186) $) 24)) (-4306 (((-1282) (-1186) (-650 (-1186)) $) 38) (((-1282) (-1186) (-650 (-1186))) 39) (((-1282) (-650 (-1186))) 40)))
-(((-1189) (-13 (-619 (-868)) (-10 -8 (-15 -2347 ($)) (-15 -2722 ((-1282))) (-15 -2722 ((-1282) (-1186))) (-15 -4041 ((-443) (-1186) (-443) (-1186) $)) (-15 -4041 ((-443) (-650 (-1186)) (-443) (-1186) $)) (-15 -4041 ((-443) (-1186) (-443))) (-15 -4041 ((-443) (-1186) (-443) (-1186))) (-15 -1993 ((-1282) (-1186))) (-15 -4114 ((-1186))) (-15 -4086 ((-1186))) (-15 -4306 ((-1282) (-1186) (-650 (-1186)) $)) (-15 -4306 ((-1282) (-1186) (-650 (-1186)))) (-15 -4306 ((-1282) (-650 (-1186)))) (-15 -1976 ((-1282) (-1186) (-3 (|:| |fst| (-440)) (|:| -1994 "void")) $)) (-15 -1976 ((-1282) (-1186) (-3 (|:| |fst| (-440)) (|:| -1994 "void")))) (-15 -1976 ((-1282) (-3 (|:| |fst| (-440)) (|:| -1994 "void")))) (-15 -2936 ((-1282) (-1186) $)) (-15 -2936 ((-1282) (-1186))) (-15 -2936 ((-1282))) (-15 -1853 ((-1282) (-1186))) (-15 -1698 ($)) (-15 -3787 ((-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-1186) $)) (-15 -3854 ((-650 (-1186)) (-1186) $)) (-15 -3606 ((-1190) (-1186) $))))) (T -1189))
-((-2347 (*1 *1) (-5 *1 (-1189))) (-2722 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1189)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-4041 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) (-4041 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *4 (-1186)) (-5 *1 (-1189)))) (-4041 (*1 *2 *3 *2) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) (-4041 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-4114 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189)))) (-4086 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189)))) (-4306 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-4306 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-1976 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1186)) (-5 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-2936 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-2936 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1189)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))) (-1698 (*1 *1) (-5 *1 (-1189))) (-3787 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *1 (-1189)))) (-3854 (*1 *2 *3 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1189)) (-5 *3 (-1186)))) (-3606 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1190)) (-5 *1 (-1189)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2347 ($)) (-15 -2722 ((-1282))) (-15 -2722 ((-1282) (-1186))) (-15 -4041 ((-443) (-1186) (-443) (-1186) $)) (-15 -4041 ((-443) (-650 (-1186)) (-443) (-1186) $)) (-15 -4041 ((-443) (-1186) (-443))) (-15 -4041 ((-443) (-1186) (-443) (-1186))) (-15 -1993 ((-1282) (-1186))) (-15 -4114 ((-1186))) (-15 -4086 ((-1186))) (-15 -4306 ((-1282) (-1186) (-650 (-1186)) $)) (-15 -4306 ((-1282) (-1186) (-650 (-1186)))) (-15 -4306 ((-1282) (-650 (-1186)))) (-15 -1976 ((-1282) (-1186) (-3 (|:| |fst| (-440)) (|:| -1994 "void")) $)) (-15 -1976 ((-1282) (-1186) (-3 (|:| |fst| (-440)) (|:| -1994 "void")))) (-15 -1976 ((-1282) (-3 (|:| |fst| (-440)) (|:| -1994 "void")))) (-15 -2936 ((-1282) (-1186) $)) (-15 -2936 ((-1282) (-1186))) (-15 -2936 ((-1282))) (-15 -1853 ((-1282) (-1186))) (-15 -1698 ($)) (-15 -3787 ((-3 (|:| |fst| (-440)) (|:| -1994 "void")) (-1186) $)) (-15 -3854 ((-650 (-1186)) (-1186) $)) (-15 -3606 ((-1190) (-1186) $))))
-((-3985 (((-650 (-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) $) 66)) (-3855 (((-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))) (-440) $) 47)) (-2193 (($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-443))))) 17)) (-1853 (((-1282) $) 73)) (-2661 (((-650 (-1186)) $) 22)) (-2792 (((-1113) $) 60)) (-2750 (((-443) (-1186) $) 27)) (-1767 (((-650 (-1186)) $) 30)) (-1698 (($) 19)) (-4041 (((-443) (-650 (-1186)) (-443) $) 25) (((-443) (-1186) (-443) $) 24)) (-2869 (((-868) $) 9) (((-1199 (-1186) (-443)) $) 13)))
-(((-1190) (-13 (-619 (-868)) (-10 -8 (-15 -2869 ((-1199 (-1186) (-443)) $)) (-15 -1698 ($)) (-15 -4041 ((-443) (-650 (-1186)) (-443) $)) (-15 -4041 ((-443) (-1186) (-443) $)) (-15 -2750 ((-443) (-1186) $)) (-15 -2661 ((-650 (-1186)) $)) (-15 -3855 ((-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))) (-440) $)) (-15 -1767 ((-650 (-1186)) $)) (-15 -3985 ((-650 (-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) $)) (-15 -2792 ((-1113) $)) (-15 -1853 ((-1282) $)) (-15 -2193 ($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-443))))))))) (T -1190))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-1199 (-1186) (-443))) (-5 *1 (-1190)))) (-1698 (*1 *1) (-5 *1 (-1190))) (-4041 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *1 (-1190)))) (-4041 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1190)))) (-2750 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-443)) (-5 *1 (-1190)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190)))) (-3855 (*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) (-5 *1 (-1190)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))))) (-5 *1 (-1190)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1190)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1190)))) (-2193 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-443))))) (-5 *1 (-1190)))))
-(-13 (-619 (-868)) (-10 -8 (-15 -2869 ((-1199 (-1186) (-443)) $)) (-15 -1698 ($)) (-15 -4041 ((-443) (-650 (-1186)) (-443) $)) (-15 -4041 ((-443) (-1186) (-443) $)) (-15 -2750 ((-443) (-1186) $)) (-15 -2661 ((-650 (-1186)) $)) (-15 -3855 ((-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))) (-440) $)) (-15 -1767 ((-650 (-1186)) $)) (-15 -3985 ((-650 (-650 (-3 (|:| -1770 (-1186)) (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) $)) (-15 -2792 ((-1113) $)) (-15 -1853 ((-1282) $)) (-15 -2193 ($ (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-443))))))))
-((-2847 (((-112) $ $) NIL)) (-2435 (((-3 (-570) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-512) "failed") $) 43) (((-3 (-1168) "failed") $) 47)) (-4387 (((-570) $) 30) (((-227) $) 36) (((-512) $) 40) (((-1168) $) 48)) (-1331 (((-112) $) 53)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2580 (((-3 (-570) (-227) (-512) (-1168) $) $) 55)) (-2353 (((-650 $) $) 57)) (-2601 (((-1113) $) 24) (($ (-1113)) 25)) (-2502 (((-112) $) 56)) (-2869 (((-868) $) 23) (($ (-570)) 26) (($ (-227)) 32) (($ (-512)) 38) (($ (-1168)) 44) (((-542) $) 59) (((-570) $) 31) (((-227) $) 37) (((-512) $) 41) (((-1168) $) 49)) (-1970 (((-112) $ (|[\|\|]| (-570))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-512))) 19) (((-112) $ (|[\|\|]| (-1168))) 16)) (-4247 (($ (-512) (-650 $)) 51) (($ $ (-650 $)) 52)) (-1344 (((-112) $ $) NIL)) (-3120 (((-570) $) 27) (((-227) $) 33) (((-512) $) 39) (((-1168) $) 45)) (-3892 (((-112) $ $) 7)))
-(((-1191) (-13 (-1272) (-1109) (-1047 (-570)) (-1047 (-227)) (-1047 (-512)) (-1047 (-1168)) (-619 (-542)) (-10 -8 (-15 -2601 ((-1113) $)) (-15 -2601 ($ (-1113))) (-15 -2869 ((-570) $)) (-15 -3120 ((-570) $)) (-15 -2869 ((-227) $)) (-15 -3120 ((-227) $)) (-15 -2869 ((-512) $)) (-15 -3120 ((-512) $)) (-15 -2869 ((-1168) $)) (-15 -3120 ((-1168) $)) (-15 -4247 ($ (-512) (-650 $))) (-15 -4247 ($ $ (-650 $))) (-15 -1331 ((-112) $)) (-15 -2580 ((-3 (-570) (-227) (-512) (-1168) $) $)) (-15 -2353 ((-650 $) $)) (-15 -2502 ((-112) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-570)))) (-15 -1970 ((-112) $ (|[\|\|]| (-227)))) (-15 -1970 ((-112) $ (|[\|\|]| (-512)))) (-15 -1970 ((-112) $ (|[\|\|]| (-1168))))))) (T -1191))
-((-2601 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1191)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-1191)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191)))) (-4247 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-1191))) (-5 *1 (-1191)))) (-4247 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-3 (-570) (-227) (-512) (-1168) (-1191))) (-5 *1 (-1191)))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112)) (-5 *1 (-1191)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1191)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-1191)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1191)))))
-(-13 (-1272) (-1109) (-1047 (-570)) (-1047 (-227)) (-1047 (-512)) (-1047 (-1168)) (-619 (-542)) (-10 -8 (-15 -2601 ((-1113) $)) (-15 -2601 ($ (-1113))) (-15 -2869 ((-570) $)) (-15 -3120 ((-570) $)) (-15 -2869 ((-227) $)) (-15 -3120 ((-227) $)) (-15 -2869 ((-512) $)) (-15 -3120 ((-512) $)) (-15 -2869 ((-1168) $)) (-15 -3120 ((-1168) $)) (-15 -4247 ($ (-512) (-650 $))) (-15 -4247 ($ $ (-650 $))) (-15 -1331 ((-112) $)) (-15 -2580 ((-3 (-570) (-227) (-512) (-1168) $) $)) (-15 -2353 ((-650 $) $)) (-15 -2502 ((-112) $)) (-15 -1970 ((-112) $ (|[\|\|]| (-570)))) (-15 -1970 ((-112) $ (|[\|\|]| (-227)))) (-15 -1970 ((-112) $ (|[\|\|]| (-512)))) (-15 -1970 ((-112) $ (|[\|\|]| (-1168))))))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) 22)) (-2333 (($) 12 T CONST)) (-2066 (($) 26)) (-1908 (($ $ $) NIL) (($) 19 T CONST)) (-1764 (($ $ $) NIL) (($) 20 T CONST)) (-1997 (((-928) $) 24)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) 23)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-1192 |#1|) (-13 (-850) (-10 -8 (-15 -2333 ($) -3722))) (-928)) (T -1192))
-((-2333 (*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-928)))))
-(-13 (-850) (-10 -8 (-15 -2333 ($) -3722)))
+((-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-532))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-532)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-220)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-684)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1289))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1289)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-139)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-614)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-134)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1126)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-96)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-689)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-525)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1077)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1290)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-533)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1162)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-155)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-679)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-317))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-317)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1047)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-182)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-981))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-981)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1084)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1101))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1101)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1107)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-634)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1178)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-157)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-138)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-486)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-600))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-600)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-514)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1170)))) (-2591 (*1 *2 *1 *3) (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-572)))))
+(-13 (-1094) (-1274) (-10 -8 (-15 -2591 ((-112) $ (|[\|\|]| (-532)))) (-15 -3726 ((-532) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-220)))) (-15 -3726 ((-220) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-684)))) (-15 -3726 ((-684) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1289)))) (-15 -3726 ((-1289) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-139)))) (-15 -3726 ((-139) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-614)))) (-15 -3726 ((-614) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-134)))) (-15 -3726 ((-134) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1126)))) (-15 -3726 ((-1126) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-96)))) (-15 -3726 ((-96) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-689)))) (-15 -3726 ((-689) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-525)))) (-15 -3726 ((-525) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1077)))) (-15 -3726 ((-1077) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1290)))) (-15 -3726 ((-1290) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-533)))) (-15 -3726 ((-533) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1162)))) (-15 -3726 ((-1162) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-155)))) (-15 -3726 ((-155) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-679)))) (-15 -3726 ((-679) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-317)))) (-15 -3726 ((-317) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1047)))) (-15 -3726 ((-1047) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-182)))) (-15 -3726 ((-182) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-981)))) (-15 -3726 ((-981) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3726 ((-1084) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1101)))) (-15 -3726 ((-1101) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1107)))) (-15 -3726 ((-1107) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-634)))) (-15 -3726 ((-634) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1178)))) (-15 -3726 ((-1178) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-157)))) (-15 -3726 ((-157) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-138)))) (-15 -3726 ((-138) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-486)))) (-15 -3726 ((-486) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-600)))) (-15 -3726 ((-600) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-514)))) (-15 -3726 ((-514) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-1170)))) (-15 -3726 ((-1170) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-572)))) (-15 -3726 ((-572) $))))
+(((-93) . T) ((-102) . T) ((-624 #0=(-1193)) . T) ((-621 (-870)) . T) ((-621 #0#) . T) ((-498 #0#) . T) ((-1111) . T) ((-1094) . T) ((-1274) . T))
+((-3296 (((-1284) (-652 (-870))) 22) (((-1284) (-870)) 21)) (-4072 (((-1284) (-652 (-870))) 20) (((-1284) (-870)) 19)) (-2864 (((-1284) (-652 (-870))) 18) (((-1284) (-870)) 10) (((-1284) (-1170) (-870)) 16)))
+(((-1149) (-10 -7 (-15 -2864 ((-1284) (-1170) (-870))) (-15 -2864 ((-1284) (-870))) (-15 -4072 ((-1284) (-870))) (-15 -3296 ((-1284) (-870))) (-15 -2864 ((-1284) (-652 (-870)))) (-15 -4072 ((-1284) (-652 (-870)))) (-15 -3296 ((-1284) (-652 (-870)))))) (T -1149))
+((-3296 (*1 *2 *3) (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149)))))
+(-10 -7 (-15 -2864 ((-1284) (-1170) (-870))) (-15 -2864 ((-1284) (-870))) (-15 -4072 ((-1284) (-870))) (-15 -3296 ((-1284) (-870))) (-15 -2864 ((-1284) (-652 (-870)))) (-15 -4072 ((-1284) (-652 (-870)))) (-15 -3296 ((-1284) (-652 (-870)))))
+((-3318 (($ $ $) 10)) (-3032 (($ $) 9)) (-4317 (($ $ $) 13)) (-4122 (($ $ $) 15)) (-3582 (($ $ $) 12)) (-4264 (($ $ $) 14)) (-2815 (($ $) 17)) (-1659 (($ $) 16)) (-2775 (($ $) 6)) (-3227 (($ $ $) 11) (($ $) 7)) (-2478 (($ $ $) 8)))
+(((-1150) (-141)) (T -1150))
+((-2815 (*1 *1 *1) (-4 *1 (-1150))) (-1659 (*1 *1 *1) (-4 *1 (-1150))) (-4122 (*1 *1 *1 *1) (-4 *1 (-1150))) (-4264 (*1 *1 *1 *1) (-4 *1 (-1150))) (-4317 (*1 *1 *1 *1) (-4 *1 (-1150))) (-3582 (*1 *1 *1 *1) (-4 *1 (-1150))) (-3227 (*1 *1 *1 *1) (-4 *1 (-1150))) (-3318 (*1 *1 *1 *1) (-4 *1 (-1150))) (-3032 (*1 *1 *1) (-4 *1 (-1150))) (-2478 (*1 *1 *1 *1) (-4 *1 (-1150))) (-3227 (*1 *1 *1) (-4 *1 (-1150))) (-2775 (*1 *1 *1) (-4 *1 (-1150))))
+(-13 (-10 -8 (-15 -2775 ($ $)) (-15 -3227 ($ $)) (-15 -2478 ($ $ $)) (-15 -3032 ($ $)) (-15 -3318 ($ $ $)) (-15 -3227 ($ $ $)) (-15 -3582 ($ $ $)) (-15 -4317 ($ $ $)) (-15 -4264 ($ $ $)) (-15 -4122 ($ $ $)) (-15 -1659 ($ $)) (-15 -2815 ($ $))))
+((-3464 (((-112) $ $) 44)) (-1653 ((|#1| $) 17)) (-3796 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3408 (((-112) $) 19)) (-3853 (($ $ |#1|) 30)) (-3616 (($ $ (-112)) 32)) (-2535 (($ $) 33)) (-1341 (($ $ |#2|) 31)) (-3618 (((-1170) $) NIL)) (-4110 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-2614 (((-1131) $) NIL)) (-3712 (((-112) $) 16)) (-1321 (($) 13)) (-3679 (($ $) 29)) (-3503 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -1746 |#2|))) 23) (((-652 $) (-652 (-2 (|:| |val| |#1|) (|:| -1746 |#2|)))) 26) (((-652 $) |#1| (-652 |#2|)) 28)) (-4296 ((|#2| $) 18)) (-3491 (((-870) $) 53)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 42)))
+(((-1151 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -1321 ($)) (-15 -3712 ((-112) $)) (-15 -1653 (|#1| $)) (-15 -4296 (|#2| $)) (-15 -3408 ((-112) $)) (-15 -3503 ($ |#1| |#2| (-112))) (-15 -3503 ($ |#1| |#2|)) (-15 -3503 ($ (-2 (|:| |val| |#1|) (|:| -1746 |#2|)))) (-15 -3503 ((-652 $) (-652 (-2 (|:| |val| |#1|) (|:| -1746 |#2|))))) (-15 -3503 ((-652 $) |#1| (-652 |#2|))) (-15 -3679 ($ $)) (-15 -3853 ($ $ |#1|)) (-15 -1341 ($ $ |#2|)) (-15 -3616 ($ $ (-112))) (-15 -2535 ($ $)) (-15 -4110 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3796 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1111) (-34)) (-13 (-1111) (-34))) (T -1151))
+((-1321 (*1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-1653 (*1 *2 *1) (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *2 *3)) (-4 *3 (-13 (-1111) (-34))))) (-4296 (*1 *2 *1) (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *3 *2)) (-4 *3 (-13 (-1111) (-34))))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-3503 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-3503 (*1 *1 *2 *3) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1746 *4))) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1151 *3 *4)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-652 (-2 (|:| |val| *4) (|:| -1746 *5)))) (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-652 (-1151 *4 *5))) (-5 *1 (-1151 *4 *5)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *4 (-652 *5)) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-652 (-1151 *3 *5))) (-5 *1 (-1151 *3 *5)) (-4 *3 (-13 (-1111) (-34))))) (-3679 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-3853 (*1 *1 *1 *2) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-1341 (*1 *1 *1 *2) (-12 (-5 *1 (-1151 *3 *2)) (-4 *3 (-13 (-1111) (-34))) (-4 *2 (-13 (-1111) (-34))))) (-3616 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-2535 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-4110 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1151 *5 *6)))) (-3796 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34))))))
+(-13 (-1111) (-10 -8 (-15 -1321 ($)) (-15 -3712 ((-112) $)) (-15 -1653 (|#1| $)) (-15 -4296 (|#2| $)) (-15 -3408 ((-112) $)) (-15 -3503 ($ |#1| |#2| (-112))) (-15 -3503 ($ |#1| |#2|)) (-15 -3503 ($ (-2 (|:| |val| |#1|) (|:| -1746 |#2|)))) (-15 -3503 ((-652 $) (-652 (-2 (|:| |val| |#1|) (|:| -1746 |#2|))))) (-15 -3503 ((-652 $) |#1| (-652 |#2|))) (-15 -3679 ($ $)) (-15 -3853 ($ $ |#1|)) (-15 -1341 ($ $ |#2|)) (-15 -3616 ($ $ (-112))) (-15 -2535 ($ $)) (-15 -4110 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3796 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-3464 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-1653 (((-1151 |#1| |#2|) $) 27)) (-2154 (($ $) 91)) (-2716 (((-112) (-1151 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2937 (($ $ $ (-652 (-1151 |#1| |#2|))) 108) (($ $ $ (-652 (-1151 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2938 (((-112) $ (-779)) NIL)) (-2927 (((-1151 |#1| |#2|) $ (-1151 |#1| |#2|)) 46 (|has| $ (-6 -4455)))) (-3659 (((-1151 |#1| |#2|) $ "value" (-1151 |#1| |#2|)) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 44 (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-1724 (((-652 (-2 (|:| |val| |#1|) (|:| -1746 |#2|))) $) 95)) (-3033 (($ (-1151 |#1| |#2|) $) 42)) (-4243 (($ (-1151 |#1| |#2|) $) 34)) (-1442 (((-652 (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 54)) (-1780 (((-112) (-1151 |#1| |#2|) $) 97)) (-1890 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 (-1151 |#1| |#2|)) $) 58 (|has| $ (-6 -4454)))) (-4211 (((-112) (-1151 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-1151 |#1| |#2|) (-1111))))) (-3049 (($ (-1 (-1151 |#1| |#2|) (-1151 |#1| |#2|)) $) 50 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-1151 |#1| |#2|) (-1151 |#1| |#2|)) $) 49)) (-3818 (((-112) $ (-779)) NIL)) (-3104 (((-652 (-1151 |#1| |#2|)) $) 56)) (-3989 (((-112) $) 45)) (-3618 (((-1170) $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-2614 (((-1131) $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-1823 (((-3 $ "failed") $) 89)) (-3089 (((-112) (-1 (-112) (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-1151 |#1| |#2|)))) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111)))) (($ $ (-300 (-1151 |#1| |#2|))) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111)))) (($ $ (-1151 |#1| |#2|) (-1151 |#1| |#2|)) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111)))) (($ $ (-652 (-1151 |#1| |#2|)) (-652 (-1151 |#1| |#2|))) NIL (-12 (|has| (-1151 |#1| |#2|) (-315 (-1151 |#1| |#2|))) (|has| (-1151 |#1| |#2|) (-1111))))) (-2187 (((-112) $ $) 53)) (-3712 (((-112) $) 24)) (-1321 (($) 26)) (-2679 (((-1151 |#1| |#2|) $ "value") NIL)) (-1762 (((-572) $ $) NIL)) (-3727 (((-112) $) 47)) (-1371 (((-779) (-1 (-112) (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454))) (((-779) (-1151 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-1151 |#1| |#2|) (-1111))))) (-3679 (($ $) 52)) (-3503 (($ (-1151 |#1| |#2|)) 10) (($ |#1| |#2| (-652 $)) 13) (($ |#1| |#2| (-652 (-1151 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-652 |#2|)) 18)) (-2218 (((-652 |#2|) $) 96)) (-3491 (((-870) $) 87 (|has| (-1151 |#1| |#2|) (-621 (-870))))) (-1678 (((-652 $) $) 31)) (-1955 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-3424 (((-112) $ $) NIL (|has| (-1151 |#1| |#2|) (-1111)))) (-3776 (((-112) (-1 (-112) (-1151 |#1| |#2|)) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 70 (|has| (-1151 |#1| |#2|) (-1111)))) (-3475 (((-779) $) 64 (|has| $ (-6 -4454)))))
+(((-1152 |#1| |#2|) (-13 (-1021 (-1151 |#1| |#2|)) (-10 -8 (-6 -4455) (-6 -4454) (-15 -1823 ((-3 $ "failed") $)) (-15 -2154 ($ $)) (-15 -3503 ($ (-1151 |#1| |#2|))) (-15 -3503 ($ |#1| |#2| (-652 $))) (-15 -3503 ($ |#1| |#2| (-652 (-1151 |#1| |#2|)))) (-15 -3503 ($ |#1| |#2| |#1| (-652 |#2|))) (-15 -2218 ((-652 |#2|) $)) (-15 -1724 ((-652 (-2 (|:| |val| |#1|) (|:| -1746 |#2|))) $)) (-15 -1780 ((-112) (-1151 |#1| |#2|) $)) (-15 -2716 ((-112) (-1151 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -4243 ($ (-1151 |#1| |#2|) $)) (-15 -3033 ($ (-1151 |#1| |#2|) $)) (-15 -2937 ($ $ $ (-652 (-1151 |#1| |#2|)))) (-15 -2937 ($ $ $ (-652 (-1151 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1111) (-34)) (-13 (-1111) (-34))) (T -1152))
+((-1823 (*1 *1 *1) (|partial| -12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-3503 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-3503 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-652 (-1152 *2 *3))) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))))) (-3503 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-652 (-1151 *2 *3))) (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34))) (-5 *1 (-1152 *2 *3)))) (-3503 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-652 *3)) (-4 *3 (-13 (-1111) (-34))) (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34))))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-652 *4)) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4)))) (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))) (-1780 (*1 *2 *3 *1) (-12 (-5 *3 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)))) (-2716 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1151 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *5 *6)))) (-4243 (*1 *1 *2 *1) (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-3033 (*1 *1 *2 *1) (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-2937 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-652 (-1151 *3 *4))) (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))) (-2937 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-1151 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34))) (-5 *1 (-1152 *4 *5)))))
+(-13 (-1021 (-1151 |#1| |#2|)) (-10 -8 (-6 -4455) (-6 -4454) (-15 -1823 ((-3 $ "failed") $)) (-15 -2154 ($ $)) (-15 -3503 ($ (-1151 |#1| |#2|))) (-15 -3503 ($ |#1| |#2| (-652 $))) (-15 -3503 ($ |#1| |#2| (-652 (-1151 |#1| |#2|)))) (-15 -3503 ($ |#1| |#2| |#1| (-652 |#2|))) (-15 -2218 ((-652 |#2|) $)) (-15 -1724 ((-652 (-2 (|:| |val| |#1|) (|:| -1746 |#2|))) $)) (-15 -1780 ((-112) (-1151 |#1| |#2|) $)) (-15 -2716 ((-112) (-1151 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -4243 ($ (-1151 |#1| |#2|) $)) (-15 -3033 ($ (-1151 |#1| |#2|) $)) (-15 -2937 ($ $ $ (-652 (-1151 |#1| |#2|)))) (-15 -2937 ($ $ $ (-652 (-1151 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-1652 (($ $) NIL)) (-2055 ((|#2| $) NIL)) (-2696 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3069 (($ (-697 |#2|)) 56)) (-3295 (((-112) $) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-2420 (($ |#2|) 14)) (-1586 (($) NIL T CONST)) (-1728 (($ $) 69 (|has| |#2| (-313)))) (-2863 (((-244 |#1| |#2|) $ (-572)) 42)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 |#2| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) ((|#2| $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) 83)) (-1526 (((-779) $) 71 (|has| |#2| (-564)))) (-2986 ((|#2| $ (-572) (-572)) NIL)) (-1442 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4422 (((-112) $) NIL)) (-1438 (((-779) $) 73 (|has| |#2| (-564)))) (-1924 (((-652 (-244 |#1| |#2|)) $) 77 (|has| |#2| (-564)))) (-2366 (((-779) $) NIL)) (-2924 (($ |#2|) 25)) (-2378 (((-779) $) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-4202 ((|#2| $) 67 (|has| |#2| (-6 (-4456 "*"))))) (-3689 (((-572) $) NIL)) (-3086 (((-572) $) NIL)) (-2396 (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3631 (((-572) $) NIL)) (-3652 (((-572) $) NIL)) (-1793 (($ (-652 (-652 |#2|))) 37)) (-3049 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-652 (-652 |#2|)) $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-1558 (((-3 $ "failed") $) 80 (|has| |#2| (-370)))) (-2614 (((-1131) $) NIL)) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564)))) (-3089 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ (-572) (-572) |#2|) NIL) ((|#2| $ (-572) (-572)) NIL)) (-3011 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-2623 ((|#2| $) NIL)) (-3502 (($ (-652 |#2|)) 50)) (-3365 (((-112) $) NIL)) (-4335 (((-244 |#1| |#2|) $) NIL)) (-3312 ((|#2| $) 65 (|has| |#2| (-6 (-4456 "*"))))) (-1371 (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-3679 (($ $) NIL)) (-3222 (((-544) $) 89 (|has| |#2| (-622 (-544))))) (-3845 (((-244 |#1| |#2|) $ (-572)) 44)) (-3491 (((-870) $) 47) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#2| (-1049 (-415 (-572))))) (($ |#2|) NIL) (((-697 |#2|) $) 52)) (-2455 (((-779)) 23 T CONST)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3889 (((-112) $) NIL)) (-2602 (($) 16 T CONST)) (-2619 (($) 21 T CONST)) (-4019 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-779)) NIL (|has| |#2| (-237))) (($ $) NIL (|has| |#2| (-237)))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) 63) (($ $ (-572)) 82 (|has| |#2| (-370)))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-244 |#1| |#2|) $ (-244 |#1| |#2|)) 59) (((-244 |#1| |#2|) (-244 |#1| |#2|) $) 61)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1153 |#1| |#2|) (-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-10 -8 (-15 -2924 ($ |#2|)) (-15 -1652 ($ $)) (-15 -3069 ($ (-697 |#2|))) (IF (|has| |#2| (-6 (-4456 "*"))) (-6 -4443) |%noBranch|) (IF (|has| |#2| (-6 (-4456 "*"))) (IF (|has| |#2| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|))) (-779) (-1060)) (T -1153))
+((-2924 (*1 *1 *2) (-12 (-5 *1 (-1153 *3 *2)) (-14 *3 (-779)) (-4 *2 (-1060)))) (-1652 (*1 *1 *1) (-12 (-5 *1 (-1153 *2 *3)) (-14 *2 (-779)) (-4 *3 (-1060)))) (-3069 (*1 *1 *2) (-12 (-5 *2 (-697 *4)) (-4 *4 (-1060)) (-5 *1 (-1153 *3 *4)) (-14 *3 (-779)))))
+(-13 (-1134 |#1| |#2| (-244 |#1| |#2|) (-244 |#1| |#2|)) (-621 (-697 |#2|)) (-10 -8 (-15 -2924 ($ |#2|)) (-15 -1652 ($ $)) (-15 -3069 ($ (-697 |#2|))) (IF (|has| |#2| (-6 (-4456 "*"))) (-6 -4443) |%noBranch|) (IF (|has| |#2| (-6 (-4456 "*"))) (IF (|has| |#2| (-6 -4451)) (-6 -4451) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-622 (-544))) (-6 (-622 (-544))) |%noBranch|)))
+((-3480 (($ $) 19)) (-2809 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-4064 (((-112) $ $) 24)) (-2288 (($ $) 17)) (-2679 (((-145) $ (-572) (-145)) NIL) (((-145) $ (-572)) NIL) (($ $ (-1246 (-572))) NIL) (($ $ $) 31)) (-3491 (($ (-145)) 29) (((-870) $) NIL)))
+(((-1154 |#1|) (-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -2679 (|#1| |#1| |#1|)) (-15 -2809 (|#1| |#1| (-142))) (-15 -2809 (|#1| |#1| (-145))) (-15 -3491 (|#1| (-145))) (-15 -4064 ((-112) |#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -2679 ((-145) |#1| (-572))) (-15 -2679 ((-145) |#1| (-572) (-145)))) (-1155)) (T -1154))
+NIL
+(-10 -8 (-15 -3491 ((-870) |#1|)) (-15 -2679 (|#1| |#1| |#1|)) (-15 -2809 (|#1| |#1| (-142))) (-15 -2809 (|#1| |#1| (-145))) (-15 -3491 (|#1| (-145))) (-15 -4064 ((-112) |#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -2679 ((-145) |#1| (-572))) (-15 -2679 ((-145) |#1| (-572) (-145))))
+((-3464 (((-112) $ $) 19 (|has| (-145) (-1111)))) (-4129 (($ $) 123)) (-3480 (($ $) 124)) (-2809 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-4039 (((-112) $ $) 121)) (-4017 (((-112) $ $ (-572)) 120)) (-3339 (((-652 $) $ (-145)) 113) (((-652 $) $ (-142)) 112)) (-3755 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-858)))) (-3519 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| (-145) (-858)) (|has| $ (-6 -4455))))) (-2641 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-858)))) (-2938 (((-112) $ (-779)) 8)) (-3659 (((-145) $ (-572) (-145)) 53 (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) 60 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-4369 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-4095 (($ $) 93 (|has| $ (-6 -4455)))) (-1852 (($ $) 103)) (-2857 (($ $ (-1246 (-572)) $) 117)) (-3955 (($ $) 80 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ (-145) $) 79 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4454)))) (-2925 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4454)))) (-3061 (((-145) $ (-572) (-145)) 54 (|has| $ (-6 -4455)))) (-2986 (((-145) $ (-572)) 52)) (-4064 (((-112) $ $) 122)) (-3239 (((-572) (-1 (-112) (-145)) $) 100) (((-572) (-145) $) 99 (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) 98 (|has| (-145) (-1111))) (((-572) $ $ (-572)) 116) (((-572) (-142) $ (-572)) 115)) (-1442 (((-652 (-145)) $) 31 (|has| $ (-6 -4454)))) (-2924 (($ (-779) (-145)) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2536 (($ $ $) 90 (|has| (-145) (-858)))) (-1377 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-858)))) (-2396 (((-652 (-145)) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3928 (($ $ $) 89 (|has| (-145) (-858)))) (-3720 (((-112) $ $ (-145)) 118)) (-2234 (((-779) $ $ (-145)) 119)) (-3049 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2401 (($ $) 125)) (-2288 (($ $) 126)) (-3818 (((-112) $ (-779)) 10)) (-4379 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3618 (((-1170) $) 22 (|has| (-145) (-1111)))) (-2744 (($ (-145) $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21 (|has| (-145) (-1111)))) (-2570 (((-145) $) 43 (|has| (-572) (-858)))) (-3124 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3803 (($ $ (-145)) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-145)))) 27 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) 26 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) 24 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2950 (((-652 (-145)) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 (((-145) $ (-572) (-145)) 51) (((-145) $ (-572)) 50) (($ $ (-1246 (-572))) 71) (($ $ $) 105)) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-1371 (((-779) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4454))) (((-779) (-145) $) 29 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-2561 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| (-145) (-622 (-544))))) (-3503 (($ (-652 (-145))) 72)) (-2121 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (($ (-145)) 114) (((-870) $) 18 (|has| (-145) (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| (-145) (-1111)))) (-3776 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) 87 (|has| (-145) (-858)))) (-3954 (((-112) $ $) 86 (|has| (-145) (-858)))) (-3921 (((-112) $ $) 20 (|has| (-145) (-1111)))) (-3965 (((-112) $ $) 88 (|has| (-145) (-858)))) (-3943 (((-112) $ $) 85 (|has| (-145) (-858)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1155) (-141)) (T -1155))
+((-2288 (*1 *1 *1) (-4 *1 (-1155))) (-2401 (*1 *1 *1) (-4 *1 (-1155))) (-3480 (*1 *1 *1) (-4 *1 (-1155))) (-4129 (*1 *1 *1) (-4 *1 (-1155))) (-4064 (*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))) (-4039 (*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))) (-4017 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-572)) (-5 *2 (-112)))) (-2234 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-779)))) (-3720 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2857 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1246 (-572))))) (-3239 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)))) (-3239 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)) (-5 *3 (-142)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1155)))) (-3339 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-652 *1)) (-4 *1 (-1155)))) (-3339 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-652 *1)) (-4 *1 (-1155)))) (-2809 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))) (-2809 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142)))) (-4369 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))) (-4369 (*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142)))) (-2679 (*1 *1 *1 *1) (-4 *1 (-1155))))
+(-13 (-19 (-145)) (-10 -8 (-15 -2288 ($ $)) (-15 -2401 ($ $)) (-15 -3480 ($ $)) (-15 -4129 ($ $)) (-15 -4064 ((-112) $ $)) (-15 -4039 ((-112) $ $)) (-15 -4017 ((-112) $ $ (-572))) (-15 -2234 ((-779) $ $ (-145))) (-15 -3720 ((-112) $ $ (-145))) (-15 -2857 ($ $ (-1246 (-572)) $)) (-15 -3239 ((-572) $ $ (-572))) (-15 -3239 ((-572) (-142) $ (-572))) (-15 -3491 ($ (-145))) (-15 -3339 ((-652 $) $ (-145))) (-15 -3339 ((-652 $) $ (-142))) (-15 -2809 ($ $ (-145))) (-15 -2809 ($ $ (-142))) (-15 -4379 ($ $ (-145))) (-15 -4379 ($ $ (-142))) (-15 -4369 ($ $ (-145))) (-15 -4369 ($ $ (-142))) (-15 -2679 ($ $ $))))
+(((-34) . T) ((-102) -3783 (|has| (-145) (-1111)) (|has| (-145) (-858))) ((-621 (-870)) -3783 (|has| (-145) (-1111)) (|has| (-145) (-858)) (|has| (-145) (-621 (-870)))) ((-152 #0=(-145)) . T) ((-622 (-544)) |has| (-145) (-622 (-544))) ((-292 #1=(-572) #0#) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #1# #0#) . T) ((-315 #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-380 #0#) . T) ((-497 #0#) . T) ((-612 #1# #0#) . T) ((-522 #0# #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-659 #0#) . T) ((-19 #0#) . T) ((-858) |has| (-145) (-858)) ((-1111) -3783 (|has| (-145) (-1111)) (|has| (-145) (-858))) ((-1229) . T))
+((-1472 (((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-779)) 112)) (-2971 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779)) 61)) (-3330 (((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-779)) 97)) (-2284 (((-779) (-652 |#4|) (-652 |#5|)) 30)) (-3437 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779)) 63) (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779) (-112)) 65)) (-2572 (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112)) 85)) (-3222 (((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) 90)) (-3251 (((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|) 60)) (-2327 (((-779) (-652 |#4|) (-652 |#5|)) 21)))
+(((-1156 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2327 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -2284 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3251 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1472 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-779))) (-15 -3222 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3330 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-779)))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|) (-1120 |#1| |#2| |#3| |#4|)) (T -1156))
+((-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9)))) (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8))) (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1120 *4 *5 *6 *7)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170)) (-5 *1 (-1156 *4 *5 *6 *7 *8)))) (-1472 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-652 *11)) (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -1746 *11)))))) (-5 *6 (-779)) (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -1746 *11)))) (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9)) (-4 *11 (-1120 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-5 *1 (-1156 *7 *8 *9 *10 *11)))) (-2572 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-2572 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))) (-3437 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3)))) (-3437 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801)) (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1156 *7 *8 *9 *3 *4)) (-4 *4 (-1120 *7 *8 *9 *3)))) (-2971 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))) (-2971 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *3 (-1076 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3)))) (-3251 (*1 *2 *3 *4) (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-652 *4)) (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4)))))) (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2327 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -2284 ((-779) (-652 |#4|) (-652 |#5|))) (-15 -3251 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -2971 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779) (-112))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5| (-779))) (-15 -3437 ((-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) |#4| |#5|)) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112))) (-15 -2572 ((-652 |#5|) (-652 |#4|) (-652 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1472 ((-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-652 |#4|) (-652 |#5|) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-2 (|:| |done| (-652 |#5|)) (|:| |todo| (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))))) (-779))) (-15 -3222 ((-1170) (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|)))) (-15 -3330 ((-1284) (-652 (-2 (|:| |val| (-652 |#4|)) (|:| -1746 |#5|))) (-779))))
+((-3464 (((-112) $ $) NIL)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) NIL)) (-3426 (((-652 $) (-652 |#4|)) 124) (((-652 $) (-652 |#4|) (-112)) 125) (((-652 $) (-652 |#4|) (-112) (-112)) 123) (((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2220 (((-652 |#3|) $) NIL)) (-2029 (((-112) $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2373 ((|#4| |#4| $) NIL)) (-1861 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| $) 97)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-1424 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 75)) (-1586 (($) NIL T CONST)) (-3571 (((-112) $) 29 (|has| |#1| (-564)))) (-3057 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1528 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2690 (((-112) $) NIL (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4400 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) NIL)) (-1869 (($ (-652 |#4|)) NIL)) (-2581 (((-3 $ "failed") $) 45)) (-3802 ((|#4| |#4| $) 78)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-4243 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1674 ((|#4| |#4| $) NIL)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) NIL)) (-3294 (((-112) |#4| $) NIL)) (-3342 (((-112) |#4| $) NIL)) (-3628 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1759 (((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)) 139)) (-1442 (((-652 |#4|) $) 18 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3698 ((|#3| $) 38)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#4|) $) 19 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-3049 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 23)) (-1677 (((-652 |#3|) $) NIL)) (-2002 (((-112) |#3| $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-1618 (((-3 |#4| (-652 $)) |#4| |#4| $) NIL)) (-3276 (((-652 (-2 (|:| |val| |#4|) (|:| -1746 $))) |#4| |#4| $) 117)) (-4261 (((-3 |#4| "failed") $) 42)) (-3981 (((-652 $) |#4| $) 102)) (-4302 (((-3 (-112) (-652 $)) |#4| $) NIL)) (-1457 (((-652 (-2 (|:| |val| (-112)) (|:| -1746 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3225 (((-652 $) |#4| $) 121) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 122) (((-652 $) |#4| (-652 $)) NIL)) (-4048 (((-652 $) (-652 |#4|) (-112) (-112) (-112)) 134)) (-1772 (($ |#4| $) 88) (($ (-652 |#4|) $) 89) (((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1706 (((-652 |#4|) $) NIL)) (-1338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3113 ((|#4| |#4| $) NIL)) (-4398 (((-112) $ $) NIL)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2041 ((|#4| |#4| $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-3 |#4| "failed") $) 40)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4236 (((-3 $ "failed") $ |#4|) 59)) (-3103 (($ $ |#4|) NIL) (((-652 $) |#4| $) 104) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) 99)) (-3089 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 17)) (-1321 (($) 14)) (-1497 (((-779) $) NIL)) (-1371 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) 13)) (-3222 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 22)) (-3399 (($ $ |#3|) 52)) (-3831 (($ $ |#3|) 54)) (-2894 (($ $) NIL)) (-1757 (($ $ |#3|) NIL)) (-3491 (((-870) $) 35) (((-652 |#4|) $) 46)) (-1935 (((-779) $) NIL (|has| |#3| (-375)))) (-3424 (((-112) $ $) NIL)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-2290 (((-652 $) |#4| $) 66) (((-652 $) |#4| (-652 $)) NIL) (((-652 $) (-652 |#4|) $) NIL) (((-652 $) (-652 |#4|) (-652 $)) NIL)) (-3776 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) NIL)) (-2777 (((-112) |#4| $) NIL)) (-2947 (((-112) |#3| $) 74)) (-3921 (((-112) $ $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1157 |#1| |#2| |#3| |#4|) (-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1772 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -4048 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -1759 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112))))) (-460) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -1157))
+((-1772 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *3))) (-5 *1 (-1157 *5 *6 *7 *3)) (-4 *3 (-1076 *5 *6 *7)))) (-3426 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))) (-3426 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))) (-4048 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))) (-1759 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-652 *8)) (|:| |towers| (-652 (-1157 *5 *6 *7 *8))))) (-5 *1 (-1157 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
+(-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1772 ((-652 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112))) (-15 -3426 ((-652 $) (-652 |#4|) (-112) (-112) (-112) (-112))) (-15 -4048 ((-652 $) (-652 |#4|) (-112) (-112) (-112))) (-15 -1759 ((-2 (|:| |val| (-652 |#4|)) (|:| |towers| (-652 $))) (-652 |#4|) (-112) (-112)))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2620 ((|#1| $) 37)) (-2385 (($ (-652 |#1|)) 45)) (-2938 (((-112) $ (-779)) NIL)) (-1586 (($) NIL T CONST)) (-3540 ((|#1| |#1| $) 40)) (-2836 ((|#1| $) 35)) (-1442 (((-652 |#1|) $) 18 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 22)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-1533 ((|#1| $) 38)) (-3704 (($ |#1| $) 41)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-4105 ((|#1| $) 36)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 32)) (-1321 (($) 43)) (-3900 (((-779) $) 30)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 27)) (-3491 (((-870) $) 14 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-4163 (($ (-652 |#1|)) NIL)) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 17 (|has| |#1| (-1111)))) (-3475 (((-779) $) 31 (|has| $ (-6 -4454)))))
+(((-1158 |#1|) (-13 (-1132 |#1|) (-10 -8 (-15 -2385 ($ (-652 |#1|))))) (-1229)) (T -1158))
+((-2385 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1158 *3)))))
+(-13 (-1132 |#1|) (-10 -8 (-15 -2385 ($ (-652 |#1|)))))
+((-3659 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1246 (-572)) |#2|) 53) ((|#2| $ (-572) |#2|) 50)) (-2760 (((-112) $) 12)) (-3049 (($ (-1 |#2| |#2|) $) 48)) (-2570 ((|#2| $) NIL) (($ $ (-779)) 17)) (-3803 (($ $ |#2|) 49)) (-1540 (((-112) $) 11)) (-2679 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1246 (-572))) 36) ((|#2| $ (-572)) 26) ((|#2| $ (-572) |#2|) NIL)) (-2355 (($ $ $) 56) (($ $ |#2|) NIL)) (-2121 (($ $ $) 38) (($ |#2| $) NIL) (($ (-652 $)) 45) (($ $ |#2|) NIL)))
+(((-1159 |#1| |#2|) (-10 -8 (-15 -2760 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -3659 (|#2| |#1| (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -2121 (|#1| |#1| |#2|)) (-15 -2121 (|#1| (-652 |#1|))) (-15 -3659 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -3659 (|#2| |#1| "last" |#2|)) (-15 -3659 (|#1| |#1| "rest" |#1|)) (-15 -3659 (|#2| |#1| "first" |#2|)) (-15 -2355 (|#1| |#1| |#2|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2679 (|#2| |#1| "last")) (-15 -2679 (|#1| |#1| "rest")) (-15 -2570 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "first")) (-15 -2570 (|#2| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -2679 (|#2| |#1| "value")) (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|))) (-1160 |#2|) (-1229)) (T -1159))
+NIL
+(-10 -8 (-15 -2760 ((-112) |#1|)) (-15 -1540 ((-112) |#1|)) (-15 -3659 (|#2| |#1| (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572) |#2|)) (-15 -2679 (|#2| |#1| (-572))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -2679 (|#1| |#1| (-1246 (-572)))) (-15 -2121 (|#1| |#1| |#2|)) (-15 -2121 (|#1| (-652 |#1|))) (-15 -3659 (|#2| |#1| (-1246 (-572)) |#2|)) (-15 -3659 (|#2| |#1| "last" |#2|)) (-15 -3659 (|#1| |#1| "rest" |#1|)) (-15 -3659 (|#2| |#1| "first" |#2|)) (-15 -2355 (|#1| |#1| |#2|)) (-15 -2355 (|#1| |#1| |#1|)) (-15 -2679 (|#2| |#1| "last")) (-15 -2679 (|#1| |#1| "rest")) (-15 -2570 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "first")) (-15 -2570 (|#2| |#1|)) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -2679 (|#2| |#1| "value")) (-15 -3049 (|#1| (-1 |#2| |#2|) |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-3598 ((|#1| $) 66)) (-4058 (($ $) 68)) (-2812 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3835 (($ $ $) 57 (|has| $ (-6 -4455)))) (-1993 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 119 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 88 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4454)))) (-3587 ((|#1| $) 67)) (-1586 (($) 7 T CONST)) (-2581 (($ $) 74) (($ $ (-779)) 72)) (-3955 (($ $) 101 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4454))) (($ |#1| $) 102 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3061 ((|#1| $ (-572) |#1|) 87 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 89)) (-2760 (((-112) $) 85)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-2924 (($ (-779) |#1|) 111)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 97 (|has| (-572) (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 96 (|has| (-572) (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3818 (((-112) $ (-779)) 10)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-4261 ((|#1| $) 71) (($ $ (-779)) 69)) (-2744 (($ $ $ (-572)) 118) (($ |#1| $ (-572)) 117)) (-1634 (((-652 (-572)) $) 94)) (-3132 (((-112) (-572) $) 93)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 77) (($ $ (-779)) 75)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-3803 (($ $ |#1|) 98 (|has| $ (-6 -4455)))) (-1540 (((-112) $) 86)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 92)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1246 (-572))) 110) ((|#1| $ (-572)) 91) ((|#1| $ (-572) |#1|) 90)) (-1762 (((-572) $ $) 45)) (-3817 (($ $ (-1246 (-572))) 116) (($ $ (-572)) 115)) (-3727 (((-112) $) 47)) (-2393 (($ $) 63)) (-2770 (($ $) 60 (|has| $ (-6 -4455)))) (-2847 (((-779) $) 64)) (-3376 (($ $) 65)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-3222 (((-544) $) 100 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 109)) (-2355 (($ $ $) 62 (|has| $ (-6 -4455))) (($ $ |#1|) 61 (|has| $ (-6 -4455)))) (-2121 (($ $ $) 79) (($ |#1| $) 78) (($ (-652 $)) 113) (($ $ |#1|) 112)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1160 |#1|) (-141) (-1229)) (T -1160))
+((-1540 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
+(-13 (-1267 |t#1|) (-659 |t#1|) (-10 -8 (-15 -1540 ((-112) $)) (-15 -2760 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T) ((-1267 |#1|) . T))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2812 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#2| $ |#1| |#2|) NIL)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) NIL)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) NIL)) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 ((|#1| $) NIL (|has| |#1| (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 ((|#1| $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2608 (((-652 |#1|) $) NIL)) (-4096 (((-112) |#1| $) NIL)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1634 (((-652 |#1|) $) NIL)) (-3132 (((-112) |#1| $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#2| $) NIL (|has| |#1| (-858)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1161 |#1| |#2| |#3|) (-1205 |#1| |#2|) (-1111) (-1111) |#2|) (T -1161))
+NIL
+(-1205 |#1| |#2|)
+((-3464 (((-112) $ $) NIL)) (-2626 (((-699 (-1146)) $) 27)) (-1569 (((-1146) $) 15)) (-3714 (((-1146) $) 17)) (-3618 (((-1170) $) NIL)) (-2550 (((-514) $) 13)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 37) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1162) (-13 (-1094) (-10 -8 (-15 -2550 ((-514) $)) (-15 -3714 ((-1146) $)) (-15 -2626 ((-699 (-1146)) $)) (-15 -1569 ((-1146) $))))) (T -1162))
+((-2550 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1162)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-699 (-1146))) (-5 *1 (-1162)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))))
+(-13 (-1094) (-10 -8 (-15 -2550 ((-514) $)) (-15 -3714 ((-1146) $)) (-15 -2626 ((-699 (-1146)) $)) (-15 -1569 ((-1146) $))))
+((-3464 (((-112) $ $) 7)) (-3396 (((-3 $ "failed") $) 14)) (-3618 (((-1170) $) 10)) (-3477 (($) 15 T CONST)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-3921 (((-112) $ $) 6)))
+(((-1163) (-141)) (T -1163))
+((-3477 (*1 *1) (-4 *1 (-1163))) (-3396 (*1 *1 *1) (|partial| -4 *1 (-1163))))
+(-13 (-1111) (-10 -8 (-15 -3477 ($) -4338) (-15 -3396 ((-3 $ "failed") $))))
+(((-102) . T) ((-621 (-870)) . T) ((-1111) . T))
+((-3257 (((-1168 |#1|) (-1168 |#1|)) 17)) (-2869 (((-1168 |#1|) (-1168 |#1|)) 13)) (-2087 (((-1168 |#1|) (-1168 |#1|) (-572) (-572)) 20)) (-1920 (((-1168 |#1|) (-1168 |#1|)) 15)))
+(((-1164 |#1|) (-10 -7 (-15 -2869 ((-1168 |#1|) (-1168 |#1|))) (-15 -1920 ((-1168 |#1|) (-1168 |#1|))) (-15 -3257 ((-1168 |#1|) (-1168 |#1|))) (-15 -2087 ((-1168 |#1|) (-1168 |#1|) (-572) (-572)))) (-13 (-564) (-148))) (T -1164))
+((-2087 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-1164 *4)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1164 *3)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1164 *3)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1164 *3)))))
+(-10 -7 (-15 -2869 ((-1168 |#1|) (-1168 |#1|))) (-15 -1920 ((-1168 |#1|) (-1168 |#1|))) (-15 -3257 ((-1168 |#1|) (-1168 |#1|))) (-15 -2087 ((-1168 |#1|) (-1168 |#1|) (-572) (-572))))
+((-2121 (((-1168 |#1|) (-1168 (-1168 |#1|))) 15)))
+(((-1165 |#1|) (-10 -7 (-15 -2121 ((-1168 |#1|) (-1168 (-1168 |#1|))))) (-1229)) (T -1165))
+((-2121 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1165 *4)) (-4 *4 (-1229)))))
+(-10 -7 (-15 -2121 ((-1168 |#1|) (-1168 (-1168 |#1|)))))
+((-4424 (((-1168 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|)) 25)) (-2925 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|)) 26)) (-3161 (((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|)) 16)))
+(((-1166 |#1| |#2|) (-10 -7 (-15 -3161 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -4424 ((-1168 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|))) (-15 -2925 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|)))) (-1229) (-1229)) (T -1166))
+((-2925 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-1166 *5 *2)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1168 *6)) (-4 *6 (-1229)) (-4 *3 (-1229)) (-5 *2 (-1168 *3)) (-5 *1 (-1166 *6 *3)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1168 *6)) (-5 *1 (-1166 *5 *6)))))
+(-10 -7 (-15 -3161 ((-1168 |#2|) (-1 |#2| |#1|) (-1168 |#1|))) (-15 -4424 ((-1168 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|))) (-15 -2925 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1168 |#1|))))
+((-3161 (((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-1168 |#2|)) 21)))
+(((-1167 |#1| |#2| |#3|) (-10 -7 (-15 -3161 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-1168 |#2|)))) (-1229) (-1229) (-1229)) (T -1167))
+((-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-1168 *7)) (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8)) (-5 *1 (-1167 *6 *7 *8)))))
+(-10 -7 (-15 -3161 ((-1168 |#3|) (-1 |#3| |#1| |#2|) (-1168 |#1|) (-1168 |#2|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) NIL)) (-3598 ((|#1| $) NIL)) (-4058 (($ $) 67)) (-2812 (((-1284) $ (-572) (-572)) 99 (|has| $ (-6 -4455)))) (-2540 (($ $ (-572)) 128 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-4158 (((-870) $) 56 (|has| |#1| (-1111)))) (-4286 (((-112)) 55 (|has| |#1| (-1111)))) (-2927 ((|#1| $ |#1|) NIL (|has| $ (-6 -4455)))) (-3835 (($ $ $) 115 (|has| $ (-6 -4455))) (($ $ (-572) $) 141)) (-1993 ((|#1| $ |#1|) 125 (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) 120 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4455))) (($ $ "rest" $) 124 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 112 (|has| $ (-6 -4455))) ((|#1| $ (-572) |#1|) 77 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 80)) (-3587 ((|#1| $) NIL)) (-1586 (($) NIL T CONST)) (-3435 (($ $) 14)) (-2581 (($ $) 40) (($ $ (-779)) 111)) (-3303 (((-112) (-652 |#1|) $) 134 (|has| |#1| (-1111)))) (-4341 (($ (-652 |#1|)) 130)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) 79)) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-2760 (((-112) $) NIL)) (-1442 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4323 (((-1284) (-572) $) 140 (|has| |#1| (-1111)))) (-3969 (((-779) $) 137)) (-2117 (((-652 $) $) NIL)) (-1890 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3818 (((-112) $ (-779)) NIL)) (-3104 (((-652 |#1|) $) NIL)) (-3989 (((-112) $) NIL)) (-3881 (($ $) 113)) (-1486 (((-112) $) 13)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-4261 ((|#1| $) NIL) (($ $ (-779)) NIL)) (-2744 (($ $ $ (-572)) NIL) (($ |#1| $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) 96)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-1347 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-1960 ((|#1| $) 10)) (-2570 ((|#1| $) 39) (($ $ (-779)) 65)) (-3839 (((-2 (|:| |cycle?| (-112)) (|:| -3114 (-779)) (|:| |period| (-779))) (-779) $) 34)) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1400 (($ (-1 (-112) |#1|) $) 145)) (-1412 (($ (-1 (-112) |#1|) $) 146)) (-3803 (($ $ |#1|) 90 (|has| $ (-6 -4455)))) (-3103 (($ $ (-572)) 45)) (-1540 (((-112) $) 94)) (-3813 (((-112) $) 12)) (-4014 (((-112) $) 136)) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 30)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) 20)) (-1321 (($) 60)) (-2679 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1246 (-572))) NIL) ((|#1| $ (-572)) 75) ((|#1| $ (-572) |#1|) NIL)) (-1762 (((-572) $ $) 64)) (-3817 (($ $ (-1246 (-572))) NIL) (($ $ (-572)) NIL)) (-2522 (($ (-1 $)) 63)) (-3727 (((-112) $) 91)) (-2393 (($ $) 92)) (-2770 (($ $) 116 (|has| $ (-6 -4455)))) (-2847 (((-779) $) NIL)) (-3376 (($ $) NIL)) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 59)) (-3222 (((-544) $) NIL (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 73)) (-3425 (($ |#1| $) 114)) (-2355 (($ $ $) 118 (|has| $ (-6 -4455))) (($ $ |#1|) 119 (|has| $ (-6 -4455)))) (-2121 (($ $ $) 101) (($ |#1| $) 61) (($ (-652 $)) 106) (($ $ |#1|) 100)) (-3610 (($ $) 66)) (-3491 (($ (-652 |#1|)) 129) (((-870) $) 57 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) NIL)) (-1955 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 132 (|has| |#1| (-1111)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1168 |#1|) (-13 (-682 |#1|) (-624 (-652 |#1|)) (-10 -8 (-6 -4455) (-15 -4341 ($ (-652 |#1|))) (IF (|has| |#1| (-1111)) (-15 -3303 ((-112) (-652 |#1|) $)) |%noBranch|) (-15 -3839 ((-2 (|:| |cycle?| (-112)) (|:| -3114 (-779)) (|:| |period| (-779))) (-779) $)) (-15 -2522 ($ (-1 $))) (-15 -3425 ($ |#1| $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -4323 ((-1284) (-572) $)) (-15 -4158 ((-870) $)) (-15 -4286 ((-112)))) |%noBranch|) (-15 -3835 ($ $ (-572) $)) (-15 -1347 ($ (-1 |#1|))) (-15 -1347 ($ (-1 |#1| |#1|) |#1|)) (-15 -1400 ($ (-1 (-112) |#1|) $)) (-15 -1412 ($ (-1 (-112) |#1|) $)))) (-1229)) (T -1168))
+((-4341 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-3303 (*1 *2 *3 *1) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-4 *4 (-1229)) (-5 *2 (-112)) (-5 *1 (-1168 *4)))) (-3839 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3114 (-779)) (|:| |period| (-779)))) (-5 *1 (-1168 *4)) (-4 *4 (-1229)) (-5 *3 (-779)))) (-2522 (*1 *1 *2) (-12 (-5 *2 (-1 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1229)))) (-3425 (*1 *1 *2 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1229)))) (-4323 (*1 *2 *3 *1) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1168 *4)) (-4 *4 (-1111)) (-4 *4 (-1229)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1168 *3)) (-4 *3 (-1111)) (-4 *3 (-1229)))) (-4286 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1111)) (-4 *3 (-1229)))) (-3835 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1168 *3)) (-4 *3 (-1229)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-1347 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-1400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))) (-1412 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
+(-13 (-682 |#1|) (-624 (-652 |#1|)) (-10 -8 (-6 -4455) (-15 -4341 ($ (-652 |#1|))) (IF (|has| |#1| (-1111)) (-15 -3303 ((-112) (-652 |#1|) $)) |%noBranch|) (-15 -3839 ((-2 (|:| |cycle?| (-112)) (|:| -3114 (-779)) (|:| |period| (-779))) (-779) $)) (-15 -2522 ($ (-1 $))) (-15 -3425 ($ |#1| $)) (IF (|has| |#1| (-1111)) (PROGN (-15 -4323 ((-1284) (-572) $)) (-15 -4158 ((-870) $)) (-15 -4286 ((-112)))) |%noBranch|) (-15 -3835 ($ $ (-572) $)) (-15 -1347 ($ (-1 |#1|))) (-15 -1347 ($ (-1 |#1| |#1|) |#1|)) (-15 -1400 ($ (-1 (-112) |#1|) $)) (-15 -1412 ($ (-1 (-112) |#1|) $))))
+((-3464 (((-112) $ $) 19)) (-4129 (($ $) 123)) (-3480 (($ $) 124)) (-2809 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-4039 (((-112) $ $) 121)) (-4017 (((-112) $ $ (-572)) 120)) (-2271 (($ (-572)) 130)) (-3339 (((-652 $) $ (-145)) 113) (((-652 $) $ (-142)) 112)) (-3755 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-858)))) (-3519 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| (-145) (-858)) (|has| $ (-6 -4455))))) (-2641 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-858)))) (-2938 (((-112) $ (-779)) 8)) (-3659 (((-145) $ (-572) (-145)) 53 (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) 60 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-4369 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-4095 (($ $) 93 (|has| $ (-6 -4455)))) (-1852 (($ $) 103)) (-2857 (($ $ (-1246 (-572)) $) 117)) (-3955 (($ $) 80 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ (-145) $) 79 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4454)))) (-2925 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4454)))) (-3061 (((-145) $ (-572) (-145)) 54 (|has| $ (-6 -4455)))) (-2986 (((-145) $ (-572)) 52)) (-4064 (((-112) $ $) 122)) (-3239 (((-572) (-1 (-112) (-145)) $) 100) (((-572) (-145) $) 99 (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) 98 (|has| (-145) (-1111))) (((-572) $ $ (-572)) 116) (((-572) (-142) $ (-572)) 115)) (-1442 (((-652 (-145)) $) 31 (|has| $ (-6 -4454)))) (-2924 (($ (-779) (-145)) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2536 (($ $ $) 90 (|has| (-145) (-858)))) (-1377 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-858)))) (-2396 (((-652 (-145)) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3928 (($ $ $) 89 (|has| (-145) (-858)))) (-3720 (((-112) $ $ (-145)) 118)) (-2234 (((-779) $ $ (-145)) 119)) (-3049 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2401 (($ $) 125)) (-2288 (($ $) 126)) (-3818 (((-112) $ (-779)) 10)) (-4379 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3618 (((-1170) $) 22)) (-2744 (($ (-145) $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21)) (-2570 (((-145) $) 43 (|has| (-572) (-858)))) (-3124 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-3803 (($ $ (-145)) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-145)))) 27 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) 26 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) 24 (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2950 (((-652 (-145)) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 (((-145) $ (-572) (-145)) 51) (((-145) $ (-572)) 50) (($ $ (-1246 (-572))) 71) (($ $ $) 105)) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-1371 (((-779) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4454))) (((-779) (-145) $) 29 (-12 (|has| (-145) (-1111)) (|has| $ (-6 -4454))))) (-2561 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| (-145) (-622 (-544))))) (-3503 (($ (-652 (-145))) 72)) (-2121 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (($ (-145)) 114) (((-870) $) 18)) (-3424 (((-112) $ $) 23)) (-3776 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4454)))) (-2810 (((-1170) $) 134) (((-1170) $ (-112)) 133) (((-1284) (-830) $) 132) (((-1284) (-830) $ (-112)) 131)) (-3976 (((-112) $ $) 87 (|has| (-145) (-858)))) (-3954 (((-112) $ $) 86 (|has| (-145) (-858)))) (-3921 (((-112) $ $) 20)) (-3965 (((-112) $ $) 88 (|has| (-145) (-858)))) (-3943 (((-112) $ $) 85 (|has| (-145) (-858)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1169) (-141)) (T -1169))
+((-2271 (*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1169)))))
+(-13 (-1155) (-1111) (-836) (-10 -8 (-15 -2271 ($ (-572)))))
+(((-34) . T) ((-102) . T) ((-621 (-870)) . T) ((-152 #0=(-145)) . T) ((-622 (-544)) |has| (-145) (-622 (-544))) ((-292 #1=(-572) #0#) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #1# #0#) . T) ((-315 #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-380 #0#) . T) ((-497 #0#) . T) ((-612 #1# #0#) . T) ((-522 #0# #0#) -12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))) ((-659 #0#) . T) ((-19 #0#) . T) ((-836) . T) ((-858) |has| (-145) (-858)) ((-1111) . T) ((-1155) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-4129 (($ $) NIL)) (-3480 (($ $) NIL)) (-2809 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-4039 (((-112) $ $) NIL)) (-4017 (((-112) $ $ (-572)) NIL)) (-2271 (($ (-572)) 8)) (-3339 (((-652 $) $ (-145)) NIL) (((-652 $) $ (-142)) NIL)) (-3755 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-858)))) (-3519 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| (-145) (-858))))) (-2641 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 (((-145) $ (-572) (-145)) NIL (|has| $ (-6 -4455))) (((-145) $ (-1246 (-572)) (-145)) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4369 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-2857 (($ $ (-1246 (-572)) $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-4243 (($ (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4454))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3061 (((-145) $ (-572) (-145)) NIL (|has| $ (-6 -4455)))) (-2986 (((-145) $ (-572)) NIL)) (-4064 (((-112) $ $) NIL)) (-3239 (((-572) (-1 (-112) (-145)) $) NIL) (((-572) (-145) $) NIL (|has| (-145) (-1111))) (((-572) (-145) $ (-572)) NIL (|has| (-145) (-1111))) (((-572) $ $ (-572)) NIL) (((-572) (-142) $ (-572)) NIL)) (-1442 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-2924 (($ (-779) (-145)) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| (-145) (-858)))) (-1377 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-858)))) (-2396 (((-652 (-145)) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2751 (((-572) $) NIL (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| (-145) (-858)))) (-3720 (((-112) $ $ (-145)) NIL)) (-2234 (((-779) $ $ (-145)) NIL)) (-3049 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2401 (($ $) NIL)) (-2288 (($ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-4379 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3618 (((-1170) $) NIL)) (-2744 (($ (-145) $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-145) $) NIL (|has| (-572) (-858)))) (-3124 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3803 (($ $ (-145)) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-145)))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-300 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111)))) (($ $ (-652 (-145)) (-652 (-145))) NIL (-12 (|has| (-145) (-315 (-145))) (|has| (-145) (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2950 (((-652 (-145)) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 (((-145) $ (-572) (-145)) NIL) (((-145) $ (-572)) NIL) (($ $ (-1246 (-572))) NIL) (($ $ $) NIL)) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1371 (((-779) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454))) (((-779) (-145) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-145) (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-145) (-622 (-544))))) (-3503 (($ (-652 (-145))) NIL)) (-2121 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (($ (-145)) NIL) (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3776 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4454)))) (-2810 (((-1170) $) 19) (((-1170) $ (-112)) 21) (((-1284) (-830) $) 22) (((-1284) (-830) $ (-112)) 23)) (-3976 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3954 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3943 (((-112) $ $) NIL (|has| (-145) (-858)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1170) (-1169)) (T -1170))
+NIL
+(-1169)
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL)) (-2812 (((-1284) $ (-1170) (-1170)) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-1170) |#1|) NIL)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#1| "failed") (-1170) $) NIL)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#1| "failed") (-1170) $) NIL)) (-4243 (($ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-1170) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-1170)) NIL)) (-1442 (((-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-1170) $) NIL (|has| (-1170) (-858)))) (-2396 (((-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-1170) $) NIL (|has| (-1170) (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-2608 (((-652 (-1170)) $) NIL)) (-4096 (((-112) (-1170) $) NIL)) (-1533 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL)) (-1634 (((-652 (-1170)) $) NIL)) (-3132 (((-112) (-1170) $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-2570 ((|#1| $) NIL (|has| (-1170) (-858)))) (-3124 (((-3 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) "failed") (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ $ (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL (-12 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-315 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-1170)) NIL) ((|#1| $ (-1170) |#1|) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-621 (-870))) (|has| |#1| (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 (-1170)) (|:| -3762 |#1|)) (-1111)) (|has| |#1| (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1171 |#1|) (-13 (-1205 (-1170) |#1|) (-10 -7 (-6 -4454))) (-1111)) (T -1171))
+NIL
+(-13 (-1205 (-1170) |#1|) (-10 -7 (-6 -4454)))
+((-3510 (((-1168 |#1|) (-1168 |#1|)) 83)) (-2982 (((-3 (-1168 |#1|) "failed") (-1168 |#1|)) 39)) (-2884 (((-1168 |#1|) (-415 (-572)) (-1168 |#1|)) 133 (|has| |#1| (-38 (-415 (-572)))))) (-4154 (((-1168 |#1|) |#1| (-1168 |#1|)) 139 (|has| |#1| (-370)))) (-2979 (((-1168 |#1|) (-1168 |#1|)) 97)) (-3180 (((-1168 (-572)) (-572)) 63)) (-2239 (((-1168 |#1|) (-1168 (-1168 |#1|))) 116 (|has| |#1| (-38 (-415 (-572)))))) (-2114 (((-1168 |#1|) (-572) (-572) (-1168 |#1|)) 102)) (-4298 (((-1168 |#1|) |#1| (-572)) 51)) (-3252 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 66)) (-2579 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 136 (|has| |#1| (-370)))) (-4260 (((-1168 |#1|) |#1| (-1 (-1168 |#1|))) 115 (|has| |#1| (-38 (-415 (-572)))))) (-3397 (((-1168 |#1|) (-1 |#1| (-572)) |#1| (-1 (-1168 |#1|))) 137 (|has| |#1| (-370)))) (-4056 (((-1168 |#1|) (-1168 |#1|)) 96)) (-3526 (((-1168 |#1|) (-1168 |#1|)) 82)) (-3351 (((-1168 |#1|) (-572) (-572) (-1168 |#1|)) 103)) (-4161 (((-1168 |#1|) |#1| (-1168 |#1|)) 112 (|has| |#1| (-38 (-415 (-572)))))) (-1968 (((-1168 (-572)) (-572)) 62)) (-3137 (((-1168 |#1|) |#1|) 65)) (-3860 (((-1168 |#1|) (-1168 |#1|) (-572) (-572)) 99)) (-3941 (((-1168 |#1|) (-1 |#1| (-572)) (-1168 |#1|)) 72)) (-3453 (((-3 (-1168 |#1|) "failed") (-1168 |#1|) (-1168 |#1|)) 37)) (-2874 (((-1168 |#1|) (-1168 |#1|)) 98)) (-3654 (((-1168 |#1|) (-1168 |#1|) |#1|) 77)) (-3014 (((-1168 |#1|) (-1168 |#1|)) 68)) (-3548 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 78)) (-3491 (((-1168 |#1|) |#1|) 73)) (-1862 (((-1168 |#1|) (-1168 (-1168 |#1|))) 88)) (-4029 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 38)) (-4018 (((-1168 |#1|) (-1168 |#1|)) 21) (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 23)) (-4005 (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 17)) (* (((-1168 |#1|) (-1168 |#1|) |#1|) 29) (((-1168 |#1|) |#1| (-1168 |#1|)) 26) (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 27)))
+(((-1172 |#1|) (-10 -7 (-15 -4005 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4018 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4018 ((-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -3453 ((-3 (-1168 |#1|) "failed") (-1168 |#1|) (-1168 |#1|))) (-15 -4029 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2982 ((-3 (-1168 |#1|) "failed") (-1168 |#1|))) (-15 -4298 ((-1168 |#1|) |#1| (-572))) (-15 -1968 ((-1168 (-572)) (-572))) (-15 -3180 ((-1168 (-572)) (-572))) (-15 -3137 ((-1168 |#1|) |#1|)) (-15 -3252 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3014 ((-1168 |#1|) (-1168 |#1|))) (-15 -3941 ((-1168 |#1|) (-1 |#1| (-572)) (-1168 |#1|))) (-15 -3491 ((-1168 |#1|) |#1|)) (-15 -3654 ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -3548 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3526 ((-1168 |#1|) (-1168 |#1|))) (-15 -3510 ((-1168 |#1|) (-1168 |#1|))) (-15 -1862 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -4056 ((-1168 |#1|) (-1168 |#1|))) (-15 -2979 ((-1168 |#1|) (-1168 |#1|))) (-15 -2874 ((-1168 |#1|) (-1168 |#1|))) (-15 -3860 ((-1168 |#1|) (-1168 |#1|) (-572) (-572))) (-15 -2114 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (-15 -3351 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 -4260 ((-1168 |#1|) |#1| (-1 (-1168 |#1|)))) (-15 -2239 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -2884 ((-1168 |#1|) (-415 (-572)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -2579 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3397 ((-1168 |#1|) (-1 |#1| (-572)) |#1| (-1 (-1168 |#1|)))) (-15 -4154 ((-1168 |#1|) |#1| (-1168 |#1|)))) |%noBranch|)) (-1060)) (T -1172))
+((-4154 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-572))) (-5 *5 (-1 (-1168 *4))) (-4 *4 (-370)) (-4 *4 (-1060)) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)))) (-2579 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2884 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1060)) (-5 *3 (-415 (-572))) (-5 *1 (-1172 *4)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))) (-4260 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1168 *3))) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))) (-4161 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3351 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-2114 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-3860 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1060)))) (-3510 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3526 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3548 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3654 (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3491 (*1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))) (-3941 (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1 *4 (-572))) (-4 *4 (-1060)) (-5 *1 (-1172 *4)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3252 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))) (-3180 (*1 *2 *3) (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060)) (-5 *3 (-572)))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060)) (-5 *3 (-572)))) (-4298 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))) (-2982 (*1 *2 *2) (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-3453 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))) (-4005 (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
+(-10 -7 (-15 -4005 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4018 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4018 ((-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 * ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 * ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -3453 ((-3 (-1168 |#1|) "failed") (-1168 |#1|) (-1168 |#1|))) (-15 -4029 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -2982 ((-3 (-1168 |#1|) "failed") (-1168 |#1|))) (-15 -4298 ((-1168 |#1|) |#1| (-572))) (-15 -1968 ((-1168 (-572)) (-572))) (-15 -3180 ((-1168 (-572)) (-572))) (-15 -3137 ((-1168 |#1|) |#1|)) (-15 -3252 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3014 ((-1168 |#1|) (-1168 |#1|))) (-15 -3941 ((-1168 |#1|) (-1 |#1| (-572)) (-1168 |#1|))) (-15 -3491 ((-1168 |#1|) |#1|)) (-15 -3654 ((-1168 |#1|) (-1168 |#1|) |#1|)) (-15 -3548 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3526 ((-1168 |#1|) (-1168 |#1|))) (-15 -3510 ((-1168 |#1|) (-1168 |#1|))) (-15 -1862 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -4056 ((-1168 |#1|) (-1168 |#1|))) (-15 -2979 ((-1168 |#1|) (-1168 |#1|))) (-15 -2874 ((-1168 |#1|) (-1168 |#1|))) (-15 -3860 ((-1168 |#1|) (-1168 |#1|) (-572) (-572))) (-15 -2114 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (-15 -3351 ((-1168 |#1|) (-572) (-572) (-1168 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ((-1168 |#1|) |#1| (-1168 |#1|))) (-15 -4260 ((-1168 |#1|) |#1| (-1 (-1168 |#1|)))) (-15 -2239 ((-1168 |#1|) (-1168 (-1168 |#1|)))) (-15 -2884 ((-1168 |#1|) (-415 (-572)) (-1168 |#1|)))) |%noBranch|) (IF (|has| |#1| (-370)) (PROGN (-15 -2579 ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3397 ((-1168 |#1|) (-1 |#1| (-572)) |#1| (-1 (-1168 |#1|)))) (-15 -4154 ((-1168 |#1|) |#1| (-1168 |#1|)))) |%noBranch|))
+((-3915 (((-1168 |#1|) (-1168 |#1|)) 60)) (-3790 (((-1168 |#1|) (-1168 |#1|)) 42)) (-3893 (((-1168 |#1|) (-1168 |#1|)) 56)) (-3770 (((-1168 |#1|) (-1168 |#1|)) 38)) (-3939 (((-1168 |#1|) (-1168 |#1|)) 63)) (-3811 (((-1168 |#1|) (-1168 |#1|)) 45)) (-4057 (((-1168 |#1|) (-1168 |#1|)) 34)) (-3272 (((-1168 |#1|) (-1168 |#1|)) 29)) (-2139 (((-1168 |#1|) (-1168 |#1|)) 64)) (-3822 (((-1168 |#1|) (-1168 |#1|)) 46)) (-3927 (((-1168 |#1|) (-1168 |#1|)) 61)) (-3800 (((-1168 |#1|) (-1168 |#1|)) 43)) (-3905 (((-1168 |#1|) (-1168 |#1|)) 58)) (-3780 (((-1168 |#1|) (-1168 |#1|)) 40)) (-2176 (((-1168 |#1|) (-1168 |#1|)) 68)) (-3852 (((-1168 |#1|) (-1168 |#1|)) 50)) (-2152 (((-1168 |#1|) (-1168 |#1|)) 66)) (-3833 (((-1168 |#1|) (-1168 |#1|)) 48)) (-2204 (((-1168 |#1|) (-1168 |#1|)) 71)) (-3871 (((-1168 |#1|) (-1168 |#1|)) 53)) (-3120 (((-1168 |#1|) (-1168 |#1|)) 72)) (-3883 (((-1168 |#1|) (-1168 |#1|)) 54)) (-2193 (((-1168 |#1|) (-1168 |#1|)) 70)) (-3861 (((-1168 |#1|) (-1168 |#1|)) 52)) (-2162 (((-1168 |#1|) (-1168 |#1|)) 69)) (-3842 (((-1168 |#1|) (-1168 |#1|)) 51)) (** (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 36)))
+(((-1173 |#1|) (-10 -7 (-15 -3272 ((-1168 |#1|) (-1168 |#1|))) (-15 -4057 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3770 ((-1168 |#1|) (-1168 |#1|))) (-15 -3780 ((-1168 |#1|) (-1168 |#1|))) (-15 -3790 ((-1168 |#1|) (-1168 |#1|))) (-15 -3800 ((-1168 |#1|) (-1168 |#1|))) (-15 -3811 ((-1168 |#1|) (-1168 |#1|))) (-15 -3822 ((-1168 |#1|) (-1168 |#1|))) (-15 -3833 ((-1168 |#1|) (-1168 |#1|))) (-15 -3842 ((-1168 |#1|) (-1168 |#1|))) (-15 -3852 ((-1168 |#1|) (-1168 |#1|))) (-15 -3861 ((-1168 |#1|) (-1168 |#1|))) (-15 -3871 ((-1168 |#1|) (-1168 |#1|))) (-15 -3883 ((-1168 |#1|) (-1168 |#1|))) (-15 -3893 ((-1168 |#1|) (-1168 |#1|))) (-15 -3905 ((-1168 |#1|) (-1168 |#1|))) (-15 -3915 ((-1168 |#1|) (-1168 |#1|))) (-15 -3927 ((-1168 |#1|) (-1168 |#1|))) (-15 -3939 ((-1168 |#1|) (-1168 |#1|))) (-15 -2139 ((-1168 |#1|) (-1168 |#1|))) (-15 -2152 ((-1168 |#1|) (-1168 |#1|))) (-15 -2162 ((-1168 |#1|) (-1168 |#1|))) (-15 -2176 ((-1168 |#1|) (-1168 |#1|))) (-15 -2193 ((-1168 |#1|) (-1168 |#1|))) (-15 -2204 ((-1168 |#1|) (-1168 |#1|))) (-15 -3120 ((-1168 |#1|) (-1168 |#1|)))) (-38 (-415 (-572)))) (T -1173))
+((-3120 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-2139 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1173 *3)))))
+(-10 -7 (-15 -3272 ((-1168 |#1|) (-1168 |#1|))) (-15 -4057 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -3770 ((-1168 |#1|) (-1168 |#1|))) (-15 -3780 ((-1168 |#1|) (-1168 |#1|))) (-15 -3790 ((-1168 |#1|) (-1168 |#1|))) (-15 -3800 ((-1168 |#1|) (-1168 |#1|))) (-15 -3811 ((-1168 |#1|) (-1168 |#1|))) (-15 -3822 ((-1168 |#1|) (-1168 |#1|))) (-15 -3833 ((-1168 |#1|) (-1168 |#1|))) (-15 -3842 ((-1168 |#1|) (-1168 |#1|))) (-15 -3852 ((-1168 |#1|) (-1168 |#1|))) (-15 -3861 ((-1168 |#1|) (-1168 |#1|))) (-15 -3871 ((-1168 |#1|) (-1168 |#1|))) (-15 -3883 ((-1168 |#1|) (-1168 |#1|))) (-15 -3893 ((-1168 |#1|) (-1168 |#1|))) (-15 -3905 ((-1168 |#1|) (-1168 |#1|))) (-15 -3915 ((-1168 |#1|) (-1168 |#1|))) (-15 -3927 ((-1168 |#1|) (-1168 |#1|))) (-15 -3939 ((-1168 |#1|) (-1168 |#1|))) (-15 -2139 ((-1168 |#1|) (-1168 |#1|))) (-15 -2152 ((-1168 |#1|) (-1168 |#1|))) (-15 -2162 ((-1168 |#1|) (-1168 |#1|))) (-15 -2176 ((-1168 |#1|) (-1168 |#1|))) (-15 -2193 ((-1168 |#1|) (-1168 |#1|))) (-15 -2204 ((-1168 |#1|) (-1168 |#1|))) (-15 -3120 ((-1168 |#1|) (-1168 |#1|))))
+((-3915 (((-1168 |#1|) (-1168 |#1|)) 102)) (-3790 (((-1168 |#1|) (-1168 |#1|)) 61)) (-1523 (((-2 (|:| -3893 (-1168 |#1|)) (|:| -3905 (-1168 |#1|))) (-1168 |#1|)) 98)) (-3893 (((-1168 |#1|) (-1168 |#1|)) 99)) (-4052 (((-2 (|:| -3770 (-1168 |#1|)) (|:| -3780 (-1168 |#1|))) (-1168 |#1|)) 54)) (-3770 (((-1168 |#1|) (-1168 |#1|)) 55)) (-3939 (((-1168 |#1|) (-1168 |#1|)) 104)) (-3811 (((-1168 |#1|) (-1168 |#1|)) 68)) (-4057 (((-1168 |#1|) (-1168 |#1|)) 40)) (-3272 (((-1168 |#1|) (-1168 |#1|)) 37)) (-2139 (((-1168 |#1|) (-1168 |#1|)) 105)) (-3822 (((-1168 |#1|) (-1168 |#1|)) 69)) (-3927 (((-1168 |#1|) (-1168 |#1|)) 103)) (-3800 (((-1168 |#1|) (-1168 |#1|)) 64)) (-3905 (((-1168 |#1|) (-1168 |#1|)) 100)) (-3780 (((-1168 |#1|) (-1168 |#1|)) 56)) (-2176 (((-1168 |#1|) (-1168 |#1|)) 113)) (-3852 (((-1168 |#1|) (-1168 |#1|)) 88)) (-2152 (((-1168 |#1|) (-1168 |#1|)) 107)) (-3833 (((-1168 |#1|) (-1168 |#1|)) 84)) (-2204 (((-1168 |#1|) (-1168 |#1|)) 117)) (-3871 (((-1168 |#1|) (-1168 |#1|)) 92)) (-3120 (((-1168 |#1|) (-1168 |#1|)) 119)) (-3883 (((-1168 |#1|) (-1168 |#1|)) 94)) (-2193 (((-1168 |#1|) (-1168 |#1|)) 115)) (-3861 (((-1168 |#1|) (-1168 |#1|)) 90)) (-2162 (((-1168 |#1|) (-1168 |#1|)) 109)) (-3842 (((-1168 |#1|) (-1168 |#1|)) 86)) (** (((-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) 41)))
+(((-1174 |#1|) (-10 -7 (-15 -3272 ((-1168 |#1|) (-1168 |#1|))) (-15 -4057 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4052 ((-2 (|:| -3770 (-1168 |#1|)) (|:| -3780 (-1168 |#1|))) (-1168 |#1|))) (-15 -3770 ((-1168 |#1|) (-1168 |#1|))) (-15 -3780 ((-1168 |#1|) (-1168 |#1|))) (-15 -3790 ((-1168 |#1|) (-1168 |#1|))) (-15 -3800 ((-1168 |#1|) (-1168 |#1|))) (-15 -3811 ((-1168 |#1|) (-1168 |#1|))) (-15 -3822 ((-1168 |#1|) (-1168 |#1|))) (-15 -3833 ((-1168 |#1|) (-1168 |#1|))) (-15 -3842 ((-1168 |#1|) (-1168 |#1|))) (-15 -3852 ((-1168 |#1|) (-1168 |#1|))) (-15 -3861 ((-1168 |#1|) (-1168 |#1|))) (-15 -3871 ((-1168 |#1|) (-1168 |#1|))) (-15 -3883 ((-1168 |#1|) (-1168 |#1|))) (-15 -1523 ((-2 (|:| -3893 (-1168 |#1|)) (|:| -3905 (-1168 |#1|))) (-1168 |#1|))) (-15 -3893 ((-1168 |#1|) (-1168 |#1|))) (-15 -3905 ((-1168 |#1|) (-1168 |#1|))) (-15 -3915 ((-1168 |#1|) (-1168 |#1|))) (-15 -3927 ((-1168 |#1|) (-1168 |#1|))) (-15 -3939 ((-1168 |#1|) (-1168 |#1|))) (-15 -2139 ((-1168 |#1|) (-1168 |#1|))) (-15 -2152 ((-1168 |#1|) (-1168 |#1|))) (-15 -2162 ((-1168 |#1|) (-1168 |#1|))) (-15 -2176 ((-1168 |#1|) (-1168 |#1|))) (-15 -2193 ((-1168 |#1|) (-1168 |#1|))) (-15 -2204 ((-1168 |#1|) (-1168 |#1|))) (-15 -3120 ((-1168 |#1|) (-1168 |#1|)))) (-38 (-415 (-572)))) (T -1174))
+((-3120 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-2139 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-1523 (*1 *2 *3) (-12 (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-2 (|:| -3893 (-1168 *4)) (|:| -3905 (-1168 *4)))) (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-2 (|:| -3770 (-1168 *4)) (|:| -3780 (-1168 *4)))) (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1174 *3)))))
+(-10 -7 (-15 -3272 ((-1168 |#1|) (-1168 |#1|))) (-15 -4057 ((-1168 |#1|) (-1168 |#1|))) (-15 ** ((-1168 |#1|) (-1168 |#1|) (-1168 |#1|))) (-15 -4052 ((-2 (|:| -3770 (-1168 |#1|)) (|:| -3780 (-1168 |#1|))) (-1168 |#1|))) (-15 -3770 ((-1168 |#1|) (-1168 |#1|))) (-15 -3780 ((-1168 |#1|) (-1168 |#1|))) (-15 -3790 ((-1168 |#1|) (-1168 |#1|))) (-15 -3800 ((-1168 |#1|) (-1168 |#1|))) (-15 -3811 ((-1168 |#1|) (-1168 |#1|))) (-15 -3822 ((-1168 |#1|) (-1168 |#1|))) (-15 -3833 ((-1168 |#1|) (-1168 |#1|))) (-15 -3842 ((-1168 |#1|) (-1168 |#1|))) (-15 -3852 ((-1168 |#1|) (-1168 |#1|))) (-15 -3861 ((-1168 |#1|) (-1168 |#1|))) (-15 -3871 ((-1168 |#1|) (-1168 |#1|))) (-15 -3883 ((-1168 |#1|) (-1168 |#1|))) (-15 -1523 ((-2 (|:| -3893 (-1168 |#1|)) (|:| -3905 (-1168 |#1|))) (-1168 |#1|))) (-15 -3893 ((-1168 |#1|) (-1168 |#1|))) (-15 -3905 ((-1168 |#1|) (-1168 |#1|))) (-15 -3915 ((-1168 |#1|) (-1168 |#1|))) (-15 -3927 ((-1168 |#1|) (-1168 |#1|))) (-15 -3939 ((-1168 |#1|) (-1168 |#1|))) (-15 -2139 ((-1168 |#1|) (-1168 |#1|))) (-15 -2152 ((-1168 |#1|) (-1168 |#1|))) (-15 -2162 ((-1168 |#1|) (-1168 |#1|))) (-15 -2176 ((-1168 |#1|) (-1168 |#1|))) (-15 -2193 ((-1168 |#1|) (-1168 |#1|))) (-15 -2204 ((-1168 |#1|) (-1168 |#1|))) (-15 -3120 ((-1168 |#1|) (-1168 |#1|))))
+((-3892 (((-967 |#2|) |#2| |#2|) 50)) (-2889 ((|#2| |#2| |#1|) 19 (|has| |#1| (-313)))))
+(((-1175 |#1| |#2|) (-10 -7 (-15 -3892 ((-967 |#2|) |#2| |#2|)) (IF (|has| |#1| (-313)) (-15 -2889 (|#2| |#2| |#1|)) |%noBranch|)) (-564) (-1255 |#1|)) (T -1175))
+((-2889 (*1 *2 *2 *3) (-12 (-4 *3 (-313)) (-4 *3 (-564)) (-5 *1 (-1175 *3 *2)) (-4 *2 (-1255 *3)))) (-3892 (*1 *2 *3 *3) (-12 (-4 *4 (-564)) (-5 *2 (-967 *3)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -3892 ((-967 |#2|) |#2| |#2|)) (IF (|has| |#1| (-313)) (-15 -2889 (|#2| |#2| |#1|)) |%noBranch|))
+((-3464 (((-112) $ $) NIL)) (-3476 (($ $ (-652 (-779))) 79)) (-1473 (($) 33)) (-1654 (($ $) 51)) (-3694 (((-652 $) $) 60)) (-2005 (((-112) $) 19)) (-2453 (((-652 (-952 |#2|)) $) 86)) (-3716 (($ $) 80)) (-3637 (((-779) $) 47)) (-2924 (($) 32)) (-2717 (($ $ (-652 (-779)) (-952 |#2|)) 72) (($ $ (-652 (-779)) (-779)) 73) (($ $ (-779) (-952 |#2|)) 75)) (-1377 (($ $ $) 57) (($ (-652 $)) 59)) (-3234 (((-779) $) 87)) (-3989 (((-112) $) 15)) (-3618 (((-1170) $) NIL)) (-3321 (((-112) $) 22)) (-2614 (((-1131) $) NIL)) (-2695 (((-173) $) 85)) (-3349 (((-952 |#2|) $) 81)) (-1658 (((-779) $) 82)) (-3791 (((-112) $) 84)) (-3359 (($ $ (-652 (-779)) (-173)) 78)) (-1530 (($ $) 52)) (-3491 (((-870) $) 99)) (-4035 (($ $ (-652 (-779)) (-112)) 77)) (-1678 (((-652 $) $) 11)) (-4031 (($ $ (-779)) 46)) (-3481 (($ $) 43)) (-3424 (((-112) $ $) NIL)) (-3558 (($ $ $ (-952 |#2|) (-779)) 68)) (-1786 (($ $ (-952 |#2|)) 67)) (-2991 (($ $ (-652 (-779)) (-952 |#2|)) 66) (($ $ (-652 (-779)) (-779)) 70) (((-779) $ (-952 |#2|)) 71)) (-3921 (((-112) $ $) 92)))
+(((-1176 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -3989 ((-112) $)) (-15 -2005 ((-112) $)) (-15 -3321 ((-112) $)) (-15 -2924 ($)) (-15 -1473 ($)) (-15 -3481 ($ $)) (-15 -4031 ($ $ (-779))) (-15 -1678 ((-652 $) $)) (-15 -3637 ((-779) $)) (-15 -1654 ($ $)) (-15 -1530 ($ $)) (-15 -1377 ($ $ $)) (-15 -1377 ($ (-652 $))) (-15 -3694 ((-652 $) $)) (-15 -2991 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -1786 ($ $ (-952 |#2|))) (-15 -3558 ($ $ $ (-952 |#2|) (-779))) (-15 -2717 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -2991 ($ $ (-652 (-779)) (-779))) (-15 -2717 ($ $ (-652 (-779)) (-779))) (-15 -2991 ((-779) $ (-952 |#2|))) (-15 -2717 ($ $ (-779) (-952 |#2|))) (-15 -4035 ($ $ (-652 (-779)) (-112))) (-15 -3359 ($ $ (-652 (-779)) (-173))) (-15 -3476 ($ $ (-652 (-779)))) (-15 -3349 ((-952 |#2|) $)) (-15 -1658 ((-779) $)) (-15 -3791 ((-112) $)) (-15 -2695 ((-173) $)) (-15 -3234 ((-779) $)) (-15 -3716 ($ $)) (-15 -2453 ((-652 (-952 |#2|)) $)))) (-930) (-1060)) (T -1176))
+((-3989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2924 (*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1473 (*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-3481 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-4031 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-1654 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1530 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1377 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2991 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-952 *4)) (-4 *4 (-1060)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)))) (-3558 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-952 *5)) (-5 *3 (-779)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-2717 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-2991 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-2717 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-2991 (*1 *2 *1 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *2 (-779)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-2717 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-112)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-3359 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-652 (-779))) (-5 *3 (-173)) (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)) (-4 *5 (-1060)))) (-3476 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-952 *4)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))) (-3716 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-652 (-952 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930)) (-4 *4 (-1060)))))
+(-13 (-1111) (-10 -8 (-15 -3989 ((-112) $)) (-15 -2005 ((-112) $)) (-15 -3321 ((-112) $)) (-15 -2924 ($)) (-15 -1473 ($)) (-15 -3481 ($ $)) (-15 -4031 ($ $ (-779))) (-15 -1678 ((-652 $) $)) (-15 -3637 ((-779) $)) (-15 -1654 ($ $)) (-15 -1530 ($ $)) (-15 -1377 ($ $ $)) (-15 -1377 ($ (-652 $))) (-15 -3694 ((-652 $) $)) (-15 -2991 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -1786 ($ $ (-952 |#2|))) (-15 -3558 ($ $ $ (-952 |#2|) (-779))) (-15 -2717 ($ $ (-652 (-779)) (-952 |#2|))) (-15 -2991 ($ $ (-652 (-779)) (-779))) (-15 -2717 ($ $ (-652 (-779)) (-779))) (-15 -2991 ((-779) $ (-952 |#2|))) (-15 -2717 ($ $ (-779) (-952 |#2|))) (-15 -4035 ($ $ (-652 (-779)) (-112))) (-15 -3359 ($ $ (-652 (-779)) (-173))) (-15 -3476 ($ $ (-652 (-779)))) (-15 -3349 ((-952 |#2|) $)) (-15 -1658 ((-779) $)) (-15 -3791 ((-112) $)) (-15 -2695 ((-173) $)) (-15 -3234 ((-779) $)) (-15 -3716 ($ $)) (-15 -2453 ((-652 (-952 |#2|)) $))))
+((-3464 (((-112) $ $) NIL)) (-1336 ((|#2| $) 11)) (-1325 ((|#1| $) 10)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3503 (($ |#1| |#2|) 9)) (-3491 (((-870) $) 16)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1177 |#1| |#2|) (-13 (-1111) (-10 -8 (-15 -3503 ($ |#1| |#2|)) (-15 -1325 (|#1| $)) (-15 -1336 (|#2| $)))) (-1111) (-1111)) (T -1177))
+((-3503 (*1 *1 *2 *3) (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-1325 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-1111)))) (-1336 (*1 *2 *1) (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1111)))))
+(-13 (-1111) (-10 -8 (-15 -3503 ($ |#1| |#2|)) (-15 -1325 (|#1| $)) (-15 -1336 (|#2| $))))
+((-3464 (((-112) $ $) NIL)) (-3018 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1178) (-13 (-1094) (-10 -8 (-15 -3018 ((-1146) $))))) (T -1178))
+((-3018 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1178)))))
+(-13 (-1094) (-10 -8 (-15 -3018 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 (((-1186 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 11)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1697 (($ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1774 (((-112) $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1957 (($ $ (-572)) NIL) (($ $ (-572) (-572)) 75)) (-2709 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) NIL)) (-1943 (((-1186 |#1| |#2| |#3|) $) 42)) (-1941 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 32)) (-1765 (((-1186 |#1| |#2| |#3|) $) 33)) (-3915 (($ $) 116 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 92 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) 112 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 88 (|has| |#1| (-38 (-415 (-572)))))) (-4304 (((-572) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2493 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) NIL)) (-3939 (($ $) 120 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 96 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1188) "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-572) "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-1869 (((-1186 |#1| |#2| |#3|) $) 140) (((-1188) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-415 (-572)) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-572) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-2569 (($ $) 37) (($ (-572) $) 38)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-1186 |#1| |#2| |#3|)) (-697 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 (-1186 |#1| |#2| |#3|))) (|:| |vec| (-1279 (-1186 |#1| |#2| |#3|)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370))))) (-2982 (((-3 $ "failed") $) 54)) (-2166 (((-415 (-961 |#1|)) $ (-572)) 74 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 76 (|has| |#1| (-564)))) (-2688 (($) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-3778 (((-112) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2969 (((-112) $) 28)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-895 (-572))) (|has| |#1| (-370))))) (-2068 (((-572) $) NIL) (((-572) $ (-572)) 26)) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-370)))) (-2209 (((-1186 |#1| |#2| |#3|) $) 44 (|has| |#1| (-370)))) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3396 (((-3 $ "failed") $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))))) (-4354 (((-112) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2865 (($ $ (-930)) NIL)) (-1506 (($ (-1 |#1| (-572)) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-572)) 19) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-2536 (($ $ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3928 (($ $ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-370)))) (-4057 (($ $) 81 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-1778 (($ (-572) (-1186 |#1| |#2| |#3|)) 36)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-4161 (($ $) 79 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 80 (|has| |#1| (-38 (-415 (-572)))))) (-3477 (($) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3964 (($ $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-1609 (((-1186 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-572)) 158)) (-3453 (((-3 $ "failed") $ $) 55 (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3272 (($ $) 82 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) (-1186 |#1| |#2| |#3|)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-522 (-1188) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-1186 |#1| |#2| |#3|))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-522 (-1188) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-300 (-1186 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-300 (-1186 |#1| |#2| |#3|))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1186 |#1| |#2| |#3|)) (-652 (-1186 |#1| |#2| |#3|))) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-315 (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-572)) NIL) (($ $ $) 61 (|has| (-572) (-1123))) (($ $ (-1186 |#1| |#2| |#3|)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-292 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1275 |#2|)) 57) (($ $ (-779)) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 56 (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3982 (($ $) NIL (|has| |#1| (-370)))) (-2224 (((-1186 |#1| |#2| |#3|) $) 46 (|has| |#1| (-370)))) (-1497 (((-572) $) 43)) (-2139 (($ $) 122 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 98 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 118 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 94 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 114 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 90 (|has| |#1| (-38 (-415 (-572)))))) (-3222 (((-544) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-622 (-544))) (|has| |#1| (-370)))) (((-386) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-227) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-901 (-386)) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-3610 (($ $) NIL)) (-3491 (((-870) $) 162) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1186 |#1| |#2| |#3|)) 30) (($ (-1275 |#2|)) 25) (($ (-1188)) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (($ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564)))) (($ (-415 (-572))) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))) (|has| |#1| (-38 (-415 (-572))))))) (-4206 ((|#1| $ (-572)) 77)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) 12)) (-3441 (((-1186 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) 128 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 104 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-2152 (($ $) 124 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 100 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 108 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-572)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 110 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 106 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 126 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 102 (|has| |#1| (-38 (-415 (-572)))))) (-2775 (($ $) NIL (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2602 (($) 21 T CONST)) (-2619 (($) 16 T CONST)) (-4019 (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3976 (((-112) $ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3954 (((-112) $ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3943 (((-112) $ $) NIL (-3783 (-12 (|has| (-1186 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1186 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 49 (|has| |#1| (-370))) (($ (-1186 |#1| |#2| |#3|) (-1186 |#1| |#2| |#3|)) 50 (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 23)) (** (($ $ (-930)) NIL) (($ $ (-779)) 60) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) 83 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 137 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1186 |#1| |#2| |#3|)) 48 (|has| |#1| (-370))) (($ (-1186 |#1| |#2| |#3|) $) 47 (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1179 |#1| |#2| |#3|) (-13 (-1241 |#1| (-1186 |#1| |#2| |#3|)) (-10 -8 (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1179))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(-13 (-1241 |#1| (-1186 |#1| |#2| |#3|)) (-10 -8 (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|)))
+((-1847 ((|#2| |#2| (-1103 |#2|)) 26) ((|#2| |#2| (-1188)) 28)))
+(((-1180 |#1| |#2|) (-10 -7 (-15 -1847 (|#2| |#2| (-1188))) (-15 -1847 (|#2| |#2| (-1103 |#2|)))) (-13 (-564) (-1049 (-572)) (-647 (-572))) (-13 (-438 |#1|) (-161) (-27) (-1214))) (T -1180))
+((-1847 (*1 *2 *2 *3) (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214))) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1180 *4 *2)))) (-1847 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214))))))
+(-10 -7 (-15 -1847 (|#2| |#2| (-1188))) (-15 -1847 (|#2| |#2| (-1103 |#2|))))
+((-1847 (((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1103 (-415 (-961 |#1|)))) 31) (((-415 (-961 |#1|)) (-961 |#1|) (-1103 (-961 |#1|))) 44) (((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1188)) 33) (((-415 (-961 |#1|)) (-961 |#1|) (-1188)) 36)))
+(((-1181 |#1|) (-10 -7 (-15 -1847 ((-415 (-961 |#1|)) (-961 |#1|) (-1188))) (-15 -1847 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -1847 ((-415 (-961 |#1|)) (-961 |#1|) (-1103 (-961 |#1|)))) (-15 -1847 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1103 (-415 (-961 |#1|)))))) (-13 (-564) (-1049 (-572)))) (T -1181))
+((-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5))) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-3 *3 (-322 *5))) (-5 *1 (-1181 *5)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-961 *5))) (-5 *3 (-961 *5)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 *3)) (-5 *1 (-1181 *5)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-3 (-415 (-961 *5)) (-322 *5))) (-5 *1 (-1181 *5)) (-5 *3 (-415 (-961 *5))))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 (-961 *5))) (-5 *1 (-1181 *5)) (-5 *3 (-961 *5)))))
+(-10 -7 (-15 -1847 ((-415 (-961 |#1|)) (-961 |#1|) (-1188))) (-15 -1847 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1188))) (-15 -1847 ((-415 (-961 |#1|)) (-961 |#1|) (-1103 (-961 |#1|)))) (-15 -1847 ((-3 (-415 (-961 |#1|)) (-322 |#1|)) (-415 (-961 |#1|)) (-1103 (-415 (-961 |#1|))))))
+((-3161 (((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|)) 13)))
+(((-1182 |#1| |#2|) (-10 -7 (-15 -3161 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|)))) (-1060) (-1060)) (T -1182))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-5 *2 (-1184 *6)) (-5 *1 (-1182 *5 *6)))))
+(-10 -7 (-15 -3161 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|))))
+((-2359 (((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|))) 51)) (-2972 (((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|))) 52)))
+(((-1183 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2972 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|)))) (-15 -2359 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|))))) (-801) (-858) (-460) (-958 |#3| |#1| |#2|)) (T -1183))
+((-2359 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7)))) (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7))))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460)) (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7)))) (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7))))))
+(-10 -7 (-15 -2972 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|)))) (-15 -2359 ((-426 (-1184 (-415 |#4|))) (-1184 (-415 |#4|)))))
+((-3464 (((-112) $ $) 171)) (-3143 (((-112) $) 43)) (-4183 (((-1279 |#1|) $ (-779)) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-3524 (($ (-1184 |#1|)) NIL)) (-4063 (((-1184 $) $ (-1093)) 82) (((-1184 |#1|) $) 71)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) 164 (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) 158 (|has| |#1| (-564)))) (-2730 (((-426 (-1184 $)) (-1184 $)) 95 (|has| |#1| (-918)))) (-1861 (($ $) NIL (|has| |#1| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 115 (|has| |#1| (-918)))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-4173 (($ $ (-779)) 61)) (-2549 (($ $ (-779)) 63)) (-3694 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-460)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#1| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL)) (-1869 ((|#1| $) NIL) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-1093) $) NIL)) (-3829 (($ $ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) 80)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) NIL) (((-697 |#1|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-2332 (($ $ $) 131)) (-2397 (($ $ $) NIL (|has| |#1| (-564)))) (-3369 (((-2 (|:| -2379 |#1|) (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-564)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-2889 (($ $) 165 (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-779) $) 69)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2255 (((-870) $ (-870)) 148)) (-2068 (((-779) $ $) NIL (|has| |#1| (-564)))) (-4422 (((-112) $) 48)) (-2348 (((-779) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#1| (-1163)))) (-3060 (($ (-1184 |#1|) (-1093)) 73) (($ (-1184 $) (-1093)) 89)) (-2865 (($ $ (-779)) 51)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) 87) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-1093)) NIL) (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 153)) (-3808 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2008 (($ (-1 (-779) (-779)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3092 (((-1184 |#1|) $) NIL)) (-4107 (((-3 (-1093) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) 76)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) NIL (|has| |#1| (-460)))) (-3618 (((-1170) $) NIL)) (-2371 (((-2 (|:| -1882 $) (|:| -2336 $)) $ (-779)) 60)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-1093)) (|:| -2477 (-779))) "failed") $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3477 (($) NIL (|has| |#1| (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) 50)) (-1829 ((|#1| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 103 (|has| |#1| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-460))) (($ $ $) 167 (|has| |#1| (-460)))) (-2697 (($ $ (-779) |#1| $) 123)) (-3508 (((-426 (-1184 $)) (-1184 $)) 101 (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 100 (|has| |#1| (-918)))) (-2972 (((-426 $) $) 108 (|has| |#1| (-918)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3453 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#1|) NIL) (($ $ (-652 (-1093)) (-652 |#1|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) NIL (|has| |#1| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#1| (-564)))) (-4271 (((-3 $ "failed") $ (-779)) 54)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 172 (|has| |#1| (-370)))) (-2020 (($ $ (-1093)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3011 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1497 (((-779) $) 78) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) 162 (|has| |#1| (-460))) (($ $ (-1093)) NIL (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-918))))) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#1| (-564)))) (-3491 (((-870) $) 149) (($ (-572)) NIL) (($ |#1|) 77) (($ (-1093)) NIL) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) 41 (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) 17 T CONST)) (-2619 (($) 19 T CONST)) (-4019 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3921 (((-112) $ $) 120)) (-4029 (($ $ |#1|) 173 (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 90)) (** (($ $ (-930)) 14) (($ $ (-779)) 12)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 39) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1184 |#1|) (-13 (-1255 |#1|) (-10 -8 (-15 -2255 ((-870) $ (-870))) (-15 -2697 ($ $ (-779) |#1| $)))) (-1060)) (T -1184))
+((-2255 (*1 *2 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1184 *3)) (-4 *3 (-1060)))) (-2697 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1184 *3)) (-4 *3 (-1060)))))
+(-13 (-1255 |#1|) (-10 -8 (-15 -2255 ((-870) $ (-870))) (-15 -2697 ($ $ (-779) |#1| $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 11)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-2709 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-1179 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 36)) (-1869 (((-1179 |#1| |#2| |#3|) $) NIL) (((-1186 |#1| |#2| |#3|) $) NIL)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1844 (((-415 (-572)) $) 59)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-1787 (($ (-415 (-572)) (-1179 |#1| |#2| |#3|)) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) NIL)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-415 (-572))) 20) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4057 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2742 (((-1179 |#1| |#2| |#3|) $) 41)) (-1820 (((-3 (-1179 |#1| |#2| |#3|) "failed") $) NIL)) (-1778 (((-1179 |#1| |#2| |#3|) $) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-4161 (($ $) 39 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 40 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-415 (-572))) NIL)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3272 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $ (-1275 |#2|)) 38)) (-1497 (((-415 (-572)) $) NIL)) (-2139 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) NIL)) (-3491 (((-870) $) 62) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1179 |#1| |#2| |#3|)) 30) (($ (-1186 |#1| |#2| |#3|)) 31) (($ (-1275 |#2|)) 26) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-4206 ((|#1| $ (-415 (-572))) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) 12)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 22 T CONST)) (-2619 (($) 16 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 24)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1185 |#1| |#2| |#3|) (-13 (-1262 |#1| (-1179 |#1| |#2| |#3|)) (-1049 (-1186 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1185))
+((-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(-13 (-1262 |#1| (-1179 |#1| |#2| |#3|)) (-1049 (-1186 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 129)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 119)) (-1643 (((-1252 |#2| |#1|) $ (-779)) 69)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-779)) 85) (($ $ (-779) (-779)) 82)) (-2709 (((-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|))) $) 105)) (-3915 (($ $) 173 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3893 (($ $) 169 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|)))) 118) (($ (-1168 |#1|)) 113)) (-3939 (($ $) 177 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) 25)) (-1452 (($ $) 28)) (-3102 (((-961 |#1|) $ (-779)) 81) (((-961 |#1|) $ (-779) (-779)) 83)) (-2969 (((-112) $) 124)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-779) $) 126) (((-779) $ (-779)) 128)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) NIL)) (-1506 (($ (-1 |#1| (-572)) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) 13) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4057 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-4161 (($ $) 133 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 134 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-3103 (($ $ (-779)) 15)) (-3453 (((-3 $ "failed") $ $) 26 (|has| |#1| (-564)))) (-3272 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-779)))))) (-2679 ((|#1| $ (-779)) 122) (($ $ $) 132 (|has| (-779) (-1123)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $ (-1275 |#2|)) 31)) (-1497 (((-779) $) NIL)) (-2139 (($ $) 179 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 175 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 171 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) NIL)) (-3491 (((-870) $) 206) (($ (-572)) NIL) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1252 |#2| |#1|)) 55) (($ (-1275 |#2|)) 36)) (-1708 (((-1168 |#1|) $) 101)) (-4206 ((|#1| $ (-779)) 121)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) 58)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) 185 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 161 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) 181 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 157 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 189 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 165 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-779)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-779)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 191 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 167 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 187 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 163 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 183 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 159 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 17 T CONST)) (-2619 (($) 20 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) 198)) (-4005 (($ $ $) 35)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ |#1|) 203 (|has| |#1| (-370))) (($ $ $) 138 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 141 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1186 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-10 -8 (-15 -3491 ($ (-1252 |#2| |#1|))) (-15 -1643 ((-1252 |#2| |#1|) $ (-779))) (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1186))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-1186 *3 *4 *5)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1186 *4 *5 *6)) (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(-13 (-1270 |#1|) (-10 -8 (-15 -3491 ($ (-1252 |#2| |#1|))) (-15 -1643 ((-1252 |#2| |#1|) $ (-779))) (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|)))
+((-3491 (((-870) $) 33) (($ (-1188)) 35)) (-3783 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 46)) (-3773 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 39) (($ $) 40)) (-4204 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 41)) (-4193 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 43)) (-4181 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 42)) (-4172 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 44)) (-3074 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $))) 45)))
+(((-1187) (-13 (-621 (-870)) (-10 -8 (-15 -3491 ($ (-1188))) (-15 -4204 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -4181 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -4193 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -4172 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3783 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3074 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3773 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3773 ($ $))))) (T -1187))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1187)))) (-4204 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-4181 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-4193 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-4172 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-3783 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-3074 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-3773 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187)))) (-5 *1 (-1187)))) (-3773 (*1 *1 *1) (-5 *1 (-1187))))
+(-13 (-621 (-870)) (-10 -8 (-15 -3491 ($ (-1188))) (-15 -4204 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -4181 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -4193 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -4172 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3783 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3074 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)) (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3773 ($ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386))) (|:| CF (-322 (-171 (-386)))) (|:| |switch| $)))) (-15 -3773 ($ $))))
+((-3464 (((-112) $ $) NIL)) (-3285 (($ $ (-652 (-870))) 62)) (-3518 (($ $ (-652 (-870))) 60)) (-2271 (((-1170) $) 101)) (-2053 (((-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870)))) $) 108)) (-3461 (((-112) $) 23)) (-3320 (($ $ (-652 (-652 (-870)))) 59) (($ $ (-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870))))) 99)) (-1586 (($) 163 T CONST)) (-4073 (((-1284)) 135)) (-4034 (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 69) (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 76)) (-2924 (($) 122) (($ $) 131)) (-2402 (($ $) 100)) (-2536 (($ $ $) NIL)) (-3928 (($ $ $) NIL)) (-2307 (((-652 $) $) 136)) (-3618 (((-1170) $) 114)) (-2614 (((-1131) $) NIL)) (-2679 (($ $ (-652 (-870))) 61)) (-3222 (((-544) $) 48) (((-1188) $) 49) (((-901 (-572)) $) 80) (((-901 (-386)) $) 78)) (-3491 (((-870) $) 55) (($ (-1170)) 50)) (-3424 (((-112) $ $) NIL)) (-2853 (($ $ (-652 (-870))) 63)) (-2810 (((-1170) $) 34) (((-1170) $ (-112)) 35) (((-1284) (-830) $) 36) (((-1284) (-830) $ (-112)) 37)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 51)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) 52)))
+(((-1188) (-13 (-858) (-622 (-544)) (-836) (-622 (-1188)) (-624 (-1170)) (-622 (-901 (-572))) (-622 (-901 (-386))) (-895 (-572)) (-895 (-386)) (-10 -8 (-15 -2924 ($)) (-15 -2924 ($ $)) (-15 -4073 ((-1284))) (-15 -2402 ($ $)) (-15 -3461 ((-112) $)) (-15 -2053 ((-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870)))) $)) (-15 -3320 ($ $ (-652 (-652 (-870))))) (-15 -3320 ($ $ (-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870)))))) (-15 -3518 ($ $ (-652 (-870)))) (-15 -3285 ($ $ (-652 (-870)))) (-15 -2853 ($ $ (-652 (-870)))) (-15 -2679 ($ $ (-652 (-870)))) (-15 -2271 ((-1170) $)) (-15 -2307 ((-652 $) $)) (-15 -1586 ($) -4338)))) (T -1188))
+((-2924 (*1 *1) (-5 *1 (-1188))) (-2924 (*1 *1 *1) (-5 *1 (-1188))) (-4073 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1188)))) (-2402 (*1 *1 *1) (-5 *1 (-1188))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870))))) (-5 *1 (-1188)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-1188)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870))))) (-5 *1 (-1188)))) (-3518 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-3285 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1188)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1188)))) (-1586 (*1 *1) (-5 *1 (-1188))))
+(-13 (-858) (-622 (-544)) (-836) (-622 (-1188)) (-624 (-1170)) (-622 (-901 (-572))) (-622 (-901 (-386))) (-895 (-572)) (-895 (-386)) (-10 -8 (-15 -2924 ($)) (-15 -2924 ($ $)) (-15 -4073 ((-1284))) (-15 -2402 ($ $)) (-15 -3461 ((-112) $)) (-15 -2053 ((-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870)))) $)) (-15 -3320 ($ $ (-652 (-652 (-870))))) (-15 -3320 ($ $ (-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870))) (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870))) (|:| |args| (-652 (-870)))))) (-15 -3518 ($ $ (-652 (-870)))) (-15 -3285 ($ $ (-652 (-870)))) (-15 -2853 ($ $ (-652 (-870)))) (-15 -2679 ($ $ (-652 (-870)))) (-15 -2271 ((-1170) $)) (-15 -2307 ((-652 $) $)) (-15 -1586 ($) -4338)))
+((-2317 (((-1279 |#1|) |#1| (-930)) 18) (((-1279 |#1|) (-652 |#1|)) 25)))
+(((-1189 |#1|) (-10 -7 (-15 -2317 ((-1279 |#1|) (-652 |#1|))) (-15 -2317 ((-1279 |#1|) |#1| (-930)))) (-1060)) (T -1189))
+((-2317 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-1279 *3)) (-5 *1 (-1189 *3)) (-4 *3 (-1060)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1060)) (-5 *2 (-1279 *4)) (-5 *1 (-1189 *4)))))
+(-10 -7 (-15 -2317 ((-1279 |#1|) (-652 |#1|))) (-15 -2317 ((-1279 |#1|) |#1| (-930))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| |#1| (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#1| (-1049 (-415 (-572))))) (((-3 |#1| "failed") $) NIL)) (-1869 (((-572) $) NIL (|has| |#1| (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| |#1| (-1049 (-415 (-572))))) ((|#1| $) NIL)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-2889 (($ $) NIL (|has| |#1| (-460)))) (-3163 (($ $ |#1| (-982) $) NIL)) (-4422 (((-112) $) 17)) (-2348 (((-779) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-982)) NIL)) (-3808 (((-982) $) NIL)) (-2008 (($ (-1 (-982) (-982)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#1| $) NIL)) (-2697 (($ $ (-982) |#1| $) NIL (-12 (|has| (-982) (-132)) (|has| |#1| (-564))))) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-564)))) (-1497 (((-982) $) NIL)) (-3262 ((|#1| $) NIL (|has| |#1| (-460)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) NIL) (($ (-415 (-572))) NIL (-3783 (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-1049 (-415 (-572))))))) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ (-982)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#1| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2602 (($) 10 T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 21)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1190 |#1|) (-13 (-332 |#1| (-982)) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| (-982) (-132)) (-15 -2697 ($ $ (-982) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|))) (-1060)) (T -1190))
+((-2697 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-982)) (-4 *2 (-132)) (-5 *1 (-1190 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
+(-13 (-332 |#1| (-982)) (-10 -8 (IF (|has| |#1| (-564)) (IF (|has| (-982) (-132)) (-15 -2697 ($ $ (-982) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|)))
+((-2955 (((-1192) (-1188) $) 25)) (-1714 (($) 29)) (-4068 (((-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-1188) $) 22)) (-2303 (((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2613 "void")) $) 41) (((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) 42) (((-1284) (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) 43)) (-3594 (((-1284) (-1188)) 58)) (-2436 (((-1284) (-1188) $) 55) (((-1284) (-1188)) 56) (((-1284)) 57)) (-4345 (((-1284) (-1188)) 37)) (-1737 (((-1188)) 36)) (-1321 (($) 34)) (-1517 (((-445) (-1188) (-445) (-1188) $) 45) (((-445) (-652 (-1188)) (-445) (-1188) $) 49) (((-445) (-1188) (-445)) 46) (((-445) (-1188) (-445) (-1188)) 50)) (-3975 (((-1188)) 35)) (-3491 (((-870) $) 28)) (-4141 (((-1284)) 30) (((-1284) (-1188)) 33)) (-3474 (((-652 (-1188)) (-1188) $) 24)) (-2131 (((-1284) (-1188) (-652 (-1188)) $) 38) (((-1284) (-1188) (-652 (-1188))) 39) (((-1284) (-652 (-1188))) 40)))
+(((-1191) (-13 (-621 (-870)) (-10 -8 (-15 -1714 ($)) (-15 -4141 ((-1284))) (-15 -4141 ((-1284) (-1188))) (-15 -1517 ((-445) (-1188) (-445) (-1188) $)) (-15 -1517 ((-445) (-652 (-1188)) (-445) (-1188) $)) (-15 -1517 ((-445) (-1188) (-445))) (-15 -1517 ((-445) (-1188) (-445) (-1188))) (-15 -4345 ((-1284) (-1188))) (-15 -3975 ((-1188))) (-15 -1737 ((-1188))) (-15 -2131 ((-1284) (-1188) (-652 (-1188)) $)) (-15 -2131 ((-1284) (-1188) (-652 (-1188)))) (-15 -2131 ((-1284) (-652 (-1188)))) (-15 -2303 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2613 "void")) $)) (-15 -2303 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2613 "void")))) (-15 -2303 ((-1284) (-3 (|:| |fst| (-442)) (|:| -2613 "void")))) (-15 -2436 ((-1284) (-1188) $)) (-15 -2436 ((-1284) (-1188))) (-15 -2436 ((-1284))) (-15 -3594 ((-1284) (-1188))) (-15 -1321 ($)) (-15 -4068 ((-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-1188) $)) (-15 -3474 ((-652 (-1188)) (-1188) $)) (-15 -2955 ((-1192) (-1188) $))))) (T -1191))
+((-1714 (*1 *1) (-5 *1 (-1191))) (-4141 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-1517 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191)))) (-1517 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *4 (-1188)) (-5 *1 (-1191)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191)))) (-1517 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191)))) (-4345 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-3975 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))) (-1737 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))) (-2131 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2303 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1188)) (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2436 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-2436 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))) (-1321 (*1 *1) (-5 *1 (-1191))) (-4068 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *1 (-1191)))) (-3474 (*1 *2 *3 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1191)) (-5 *3 (-1188)))) (-2955 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1192)) (-5 *1 (-1191)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -1714 ($)) (-15 -4141 ((-1284))) (-15 -4141 ((-1284) (-1188))) (-15 -1517 ((-445) (-1188) (-445) (-1188) $)) (-15 -1517 ((-445) (-652 (-1188)) (-445) (-1188) $)) (-15 -1517 ((-445) (-1188) (-445))) (-15 -1517 ((-445) (-1188) (-445) (-1188))) (-15 -4345 ((-1284) (-1188))) (-15 -3975 ((-1188))) (-15 -1737 ((-1188))) (-15 -2131 ((-1284) (-1188) (-652 (-1188)) $)) (-15 -2131 ((-1284) (-1188) (-652 (-1188)))) (-15 -2131 ((-1284) (-652 (-1188)))) (-15 -2303 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2613 "void")) $)) (-15 -2303 ((-1284) (-1188) (-3 (|:| |fst| (-442)) (|:| -2613 "void")))) (-15 -2303 ((-1284) (-3 (|:| |fst| (-442)) (|:| -2613 "void")))) (-15 -2436 ((-1284) (-1188) $)) (-15 -2436 ((-1284) (-1188))) (-15 -2436 ((-1284))) (-15 -3594 ((-1284) (-1188))) (-15 -1321 ($)) (-15 -4068 ((-3 (|:| |fst| (-442)) (|:| -2613 "void")) (-1188) $)) (-15 -3474 ((-652 (-1188)) (-1188) $)) (-15 -2955 ((-1192) (-1188) $))))
+((-1965 (((-652 (-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) $) 66)) (-3487 (((-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))) (-442) $) 47)) (-2820 (($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-445))))) 17)) (-3594 (((-1284) $) 73)) (-1602 (((-652 (-1188)) $) 22)) (-3634 (((-1115) $) 60)) (-3220 (((-445) (-1188) $) 27)) (-3961 (((-652 (-1188)) $) 30)) (-1321 (($) 19)) (-1517 (((-445) (-652 (-1188)) (-445) $) 25) (((-445) (-1188) (-445) $) 24)) (-3491 (((-870) $) 9) (((-1201 (-1188) (-445)) $) 13)))
+(((-1192) (-13 (-621 (-870)) (-10 -8 (-15 -3491 ((-1201 (-1188) (-445)) $)) (-15 -1321 ($)) (-15 -1517 ((-445) (-652 (-1188)) (-445) $)) (-15 -1517 ((-445) (-1188) (-445) $)) (-15 -3220 ((-445) (-1188) $)) (-15 -1602 ((-652 (-1188)) $)) (-15 -3487 ((-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))) (-442) $)) (-15 -3961 ((-652 (-1188)) $)) (-15 -1965 ((-652 (-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) $)) (-15 -3634 ((-1115) $)) (-15 -3594 ((-1284) $)) (-15 -2820 ($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-445))))))))) (T -1192))
+((-3491 (*1 *2 *1) (-12 (-5 *2 (-1201 (-1188) (-445))) (-5 *1 (-1192)))) (-1321 (*1 *1) (-5 *1 (-1192))) (-1517 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *1 (-1192)))) (-1517 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1192)))) (-3220 (*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-445)) (-5 *1 (-1192)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))) (-3487 (*1 *2 *3 *1) (-12 (-5 *3 (-442)) (-5 *2 (-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) (-5 *1 (-1192)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))))) (-5 *1 (-1192)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1192)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1192)))) (-2820 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-445))))) (-5 *1 (-1192)))))
+(-13 (-621 (-870)) (-10 -8 (-15 -3491 ((-1201 (-1188) (-445)) $)) (-15 -1321 ($)) (-15 -1517 ((-445) (-652 (-1188)) (-445) $)) (-15 -1517 ((-445) (-1188) (-445) $)) (-15 -3220 ((-445) (-1188) $)) (-15 -1602 ((-652 (-1188)) $)) (-15 -3487 ((-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))) (-442) $)) (-15 -3961 ((-652 (-1188)) $)) (-15 -1965 ((-652 (-652 (-3 (|:| -2402 (-1188)) (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))) $)) (-15 -3634 ((-1115) $)) (-15 -3594 ((-1284) $)) (-15 -2820 ($ (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-445))))))))
+((-3464 (((-112) $ $) NIL)) (-3072 (((-3 (-572) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-514) "failed") $) 43) (((-3 (-1170) "failed") $) 47)) (-1869 (((-572) $) 30) (((-227) $) 36) (((-514) $) 40) (((-1170) $) 48)) (-3281 (((-112) $) 53)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2003 (((-3 (-572) (-227) (-514) (-1170) $) $) 55)) (-1775 (((-652 $) $) 57)) (-3222 (((-1115) $) 24) (($ (-1115)) 25)) (-2590 (((-112) $) 56)) (-3491 (((-870) $) 23) (($ (-572)) 26) (($ (-227)) 32) (($ (-514)) 38) (($ (-1170)) 44) (((-544) $) 59) (((-572) $) 31) (((-227) $) 37) (((-514) $) 41) (((-1170) $) 49)) (-2591 (((-112) $ (|[\|\|]| (-572))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-514))) 19) (((-112) $ (|[\|\|]| (-1170))) 16)) (-2821 (($ (-514) (-652 $)) 51) (($ $ (-652 $)) 52)) (-3424 (((-112) $ $) NIL)) (-3726 (((-572) $) 27) (((-227) $) 33) (((-514) $) 39) (((-1170) $) 45)) (-3921 (((-112) $ $) 7)))
+(((-1193) (-13 (-1274) (-1111) (-1049 (-572)) (-1049 (-227)) (-1049 (-514)) (-1049 (-1170)) (-621 (-544)) (-10 -8 (-15 -3222 ((-1115) $)) (-15 -3222 ($ (-1115))) (-15 -3491 ((-572) $)) (-15 -3726 ((-572) $)) (-15 -3491 ((-227) $)) (-15 -3726 ((-227) $)) (-15 -3491 ((-514) $)) (-15 -3726 ((-514) $)) (-15 -3491 ((-1170) $)) (-15 -3726 ((-1170) $)) (-15 -2821 ($ (-514) (-652 $))) (-15 -2821 ($ $ (-652 $))) (-15 -3281 ((-112) $)) (-15 -2003 ((-3 (-572) (-227) (-514) (-1170) $) $)) (-15 -1775 ((-652 $) $)) (-15 -2590 ((-112) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-572)))) (-15 -2591 ((-112) $ (|[\|\|]| (-227)))) (-15 -2591 ((-112) $ (|[\|\|]| (-514)))) (-15 -2591 ((-112) $ (|[\|\|]| (-1170))))))) (T -1193))
+((-3222 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1193)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-1193)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-652 (-1193))) (-5 *1 (-1193)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193)))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-3 (-572) (-227) (-514) (-1170) (-1193))) (-5 *1 (-1193)))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112)) (-5 *1 (-1193)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1193)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-1193)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-1193)))))
+(-13 (-1274) (-1111) (-1049 (-572)) (-1049 (-227)) (-1049 (-514)) (-1049 (-1170)) (-621 (-544)) (-10 -8 (-15 -3222 ((-1115) $)) (-15 -3222 ($ (-1115))) (-15 -3491 ((-572) $)) (-15 -3726 ((-572) $)) (-15 -3491 ((-227) $)) (-15 -3726 ((-227) $)) (-15 -3491 ((-514) $)) (-15 -3726 ((-514) $)) (-15 -3491 ((-1170) $)) (-15 -3726 ((-1170) $)) (-15 -2821 ($ (-514) (-652 $))) (-15 -2821 ($ $ (-652 $))) (-15 -3281 ((-112) $)) (-15 -2003 ((-3 (-572) (-227) (-514) (-1170) $) $)) (-15 -1775 ((-652 $) $)) (-15 -2590 ((-112) $)) (-15 -2591 ((-112) $ (|[\|\|]| (-572)))) (-15 -2591 ((-112) $ (|[\|\|]| (-227)))) (-15 -2591 ((-112) $ (|[\|\|]| (-514)))) (-15 -2591 ((-112) $ (|[\|\|]| (-1170))))))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) 22)) (-1586 (($) 12 T CONST)) (-2688 (($) 26)) (-2536 (($ $ $) NIL) (($) 19 T CONST)) (-3928 (($ $ $) NIL) (($) 20 T CONST)) (-4370 (((-930) $) 24)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) 23)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-1194 |#1|) (-13 (-852) (-10 -8 (-15 -1586 ($) -4338))) (-930)) (T -1194))
+((-1586 (*1 *1) (-12 (-5 *1 (-1194 *2)) (-14 *2 (-930)))))
+(-13 (-852) (-10 -8 (-15 -1586 ($) -4338)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) 19 T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) 12 T CONST)) (-1764 (($ $ $) NIL) (($) 18 T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1476 (($ $ $) 21)) (-3366 (($ $ $) 20)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-1193 |#1|) (-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722))) (-928)) (T -1193))
-((-3366 (*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))) (-1476 (*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))) (-2333 (*1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))))
-(-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) 19 T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) 12 T CONST)) (-3928 (($ $ $) NIL) (($) 18 T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3978 (($ $ $) 21)) (-3967 (($ $ $) 20)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-1195 |#1|) (-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338))) (-930)) (T -1195))
+((-3967 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930)))) (-3978 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930)))) (-1586 (*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930)))))
+(-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 9)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 7)))
-(((-1194) (-1109)) (T -1194))
-NIL
-(-1109)
-((-2600 (((-650 (-650 (-959 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 69)) (-2577 (((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|)))) 80) (((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|))) 76) (((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186)) 81) (((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186)) 75) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|))))) 106) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|)))) 105) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186))) 107) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 104)))
-(((-1195 |#1|) (-10 -7 (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))))) (-15 -2600 ((-650 (-650 (-959 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186))))) (-562)) (T -1195))
-((-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-959 *5)))) (-5 *1 (-1195 *5)))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4))))) (-5 *1 (-1195 *4)) (-5 *3 (-298 (-413 (-959 *4)))))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4))))) (-5 *1 (-1195 *4)) (-5 *3 (-413 (-959 *4))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5)) (-5 *3 (-298 (-413 (-959 *5)))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5)) (-5 *3 (-413 (-959 *5))))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-1195 *4)) (-5 *3 (-650 (-298 (-413 (-959 *4))))))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-1195 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-1195 *5)) (-5 *3 (-650 (-298 (-413 (-959 *5))))))) (-2577 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-1195 *5)))))
-(-10 -7 (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))))) (-15 -2577 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)))) (-15 -2577 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))))) (-15 -2600 ((-650 (-650 (-959 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))))
-((-4018 (((-1168)) 7)) (-1827 (((-1168)) 11 T CONST)) (-3939 (((-1282) (-1168)) 13)) (-1560 (((-1168)) 8 T CONST)) (-2685 (((-131)) 10 T CONST)))
-(((-1196) (-13 (-1227) (-10 -7 (-15 -4018 ((-1168))) (-15 -1560 ((-1168)) -3722) (-15 -2685 ((-131)) -3722) (-15 -1827 ((-1168)) -3722) (-15 -3939 ((-1282) (-1168)))))) (T -1196))
-((-4018 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))) (-1560 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))) (-2685 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1196)))) (-1827 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1196)))))
-(-13 (-1227) (-10 -7 (-15 -4018 ((-1168))) (-15 -1560 ((-1168)) -3722) (-15 -2685 ((-131)) -3722) (-15 -1827 ((-1168)) -3722) (-15 -3939 ((-1282) (-1168)))))
-((-1811 (((-650 (-650 |#1|)) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|)))) 56)) (-4068 (((-650 (-650 (-650 |#1|))) (-650 (-650 |#1|))) 38)) (-1945 (((-1198 (-650 |#1|)) (-650 |#1|)) 49)) (-3173 (((-650 (-650 |#1|)) (-650 |#1|)) 45)) (-4197 (((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 (-650 (-650 |#1|)))) 53)) (-2143 (((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 |#1|) (-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|)))) 52)) (-2382 (((-650 (-650 |#1|)) (-650 (-650 |#1|))) 43)) (-4066 (((-650 |#1|) (-650 |#1|)) 46)) (-4334 (((-650 (-650 (-650 |#1|))) (-650 |#1|) (-650 (-650 (-650 |#1|)))) 32)) (-1718 (((-650 (-650 (-650 |#1|))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 (-650 |#1|)))) 29)) (-2329 (((-2 (|:| |fs| (-112)) (|:| |sd| (-650 |#1|)) (|:| |td| (-650 (-650 |#1|)))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 |#1|))) 24)) (-4344 (((-650 (-650 |#1|)) (-650 (-650 (-650 |#1|)))) 58)) (-3793 (((-650 (-650 |#1|)) (-1198 (-650 |#1|))) 60)))
-(((-1197 |#1|) (-10 -7 (-15 -2329 ((-2 (|:| |fs| (-112)) (|:| |sd| (-650 |#1|)) (|:| |td| (-650 (-650 |#1|)))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 |#1|)))) (-15 -1718 ((-650 (-650 (-650 |#1|))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -4334 ((-650 (-650 (-650 |#1|))) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -1811 ((-650 (-650 |#1|)) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -4344 ((-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -3793 ((-650 (-650 |#1|)) (-1198 (-650 |#1|)))) (-15 -4068 ((-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)))) (-15 -1945 ((-1198 (-650 |#1|)) (-650 |#1|))) (-15 -2382 ((-650 (-650 |#1|)) (-650 (-650 |#1|)))) (-15 -3173 ((-650 (-650 |#1|)) (-650 |#1|))) (-15 -4066 ((-650 |#1|) (-650 |#1|))) (-15 -2143 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 |#1|) (-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))))) (-15 -4197 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 (-650 (-650 |#1|)))))) (-856)) (T -1197))
-((-4197 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-2 (|:| |f1| (-650 *4)) (|:| |f2| (-650 (-650 (-650 *4)))) (|:| |f3| (-650 (-650 *4))) (|:| |f4| (-650 (-650 (-650 *4)))))) (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 (-650 *4)))))) (-2143 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-856)) (-5 *3 (-650 *6)) (-5 *5 (-650 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-650 *5)) (|:| |f3| *5) (|:| |f4| (-650 *5)))) (-5 *1 (-1197 *6)) (-5 *4 (-650 *5)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-1197 *3)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)) (-5 *3 (-650 *4)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-856)) (-5 *1 (-1197 *3)))) (-1945 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-1198 (-650 *4))) (-5 *1 (-1197 *4)) (-5 *3 (-650 *4)))) (-4068 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 (-650 *4)))) (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 *4))))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-1198 (-650 *4))) (-4 *4 (-856)) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)) (-4 *4 (-856)))) (-1811 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4))) (-4 *4 (-856)) (-5 *1 (-1197 *4)))) (-4334 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-650 *4)) (-4 *4 (-856)) (-5 *1 (-1197 *4)))) (-1718 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-650 *5)) (-4 *5 (-856)) (-5 *1 (-1197 *5)))) (-2329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-856)) (-5 *4 (-650 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-650 *4)))) (-5 *1 (-1197 *6)) (-5 *5 (-650 *4)))))
-(-10 -7 (-15 -2329 ((-2 (|:| |fs| (-112)) (|:| |sd| (-650 |#1|)) (|:| |td| (-650 (-650 |#1|)))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 |#1|)))) (-15 -1718 ((-650 (-650 (-650 |#1|))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -4334 ((-650 (-650 (-650 |#1|))) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -1811 ((-650 (-650 |#1|)) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -4344 ((-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -3793 ((-650 (-650 |#1|)) (-1198 (-650 |#1|)))) (-15 -4068 ((-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)))) (-15 -1945 ((-1198 (-650 |#1|)) (-650 |#1|))) (-15 -2382 ((-650 (-650 |#1|)) (-650 (-650 |#1|)))) (-15 -3173 ((-650 (-650 |#1|)) (-650 |#1|))) (-15 -4066 ((-650 |#1|) (-650 |#1|))) (-15 -2143 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 |#1|) (-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))))) (-15 -4197 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 (-650 (-650 |#1|))))))
-((-3779 (($ (-650 (-650 |#1|))) 10)) (-2247 (((-650 (-650 |#1|)) $) 11)) (-2869 (((-868) $) 33)))
-(((-1198 |#1|) (-10 -8 (-15 -3779 ($ (-650 (-650 |#1|)))) (-15 -2247 ((-650 (-650 |#1|)) $)) (-15 -2869 ((-868) $))) (-1109)) (T -1198))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1198 *3)) (-4 *3 (-1109)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1109)))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-1198 *3)))))
-(-10 -8 (-15 -3779 ($ (-650 (-650 |#1|)))) (-15 -2247 ((-650 (-650 |#1|)) $)) (-15 -2869 ((-868) $)))
-((-2847 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2284 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2204 (((-1282) $ |#1| |#1|) NIL (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#2| $ |#1| |#2|) NIL)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) NIL)) (-2333 (($) NIL T CONST)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) NIL)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) NIL)) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) NIL)) (-4372 ((|#1| $) NIL (|has| |#1| (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-650 |#2|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-1894 ((|#1| $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1988 (((-650 |#1|) $) NIL)) (-2093 (((-112) |#1| $) NIL)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-4075 (((-650 |#1|) $) NIL)) (-4276 (((-112) |#1| $) NIL)) (-3891 (((-1129) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1948 ((|#2| $) NIL (|has| |#1| (-856)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL)) (-4222 (($ $ |#2|) NIL (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2910 (($) NIL) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) NIL (-12 (|has| $ (-6 -4452)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2869 (((-868) $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1344 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) NIL)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) NIL (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) NIL (-3749 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1199 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452))) (-1109) (-1109)) (T -1199))
-NIL
-(-13 (-1203 |#1| |#2|) (-10 -7 (-6 -4452)))
-((-2847 (((-112) $ $) NIL)) (-2558 (($ |#1| (-55)) 10)) (-1770 ((|#1| $) 12)) (-3240 (((-1168) $) NIL)) (-3917 (((-112) $ |#1|) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1344 (((-112) $ $) NIL)) (-4196 (((-55) $) 14)) (-3892 (((-112) $ $) NIL)))
-(((-1200 |#1|) (-13 (-841 |#1|) (-10 -8 (-15 -2558 ($ |#1| (-55))))) (-1109)) (T -1200))
-((-2558 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1200 *2)) (-4 *2 (-1109)))))
-(-13 (-841 |#1|) (-10 -8 (-15 -2558 ($ |#1| (-55)))))
-((-2222 ((|#1| (-650 |#1|)) 46)) (-2509 ((|#1| |#1| (-570)) 24)) (-3589 (((-1182 |#1|) |#1| (-928)) 20)))
-(((-1201 |#1|) (-10 -7 (-15 -2222 (|#1| (-650 |#1|))) (-15 -3589 ((-1182 |#1|) |#1| (-928))) (-15 -2509 (|#1| |#1| (-570)))) (-368)) (T -1201))
-((-2509 (*1 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-1201 *2)) (-4 *2 (-368)))) (-3589 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-1182 *3)) (-5 *1 (-1201 *3)) (-4 *3 (-368)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-1201 *2)) (-4 *2 (-368)))))
-(-10 -7 (-15 -2222 (|#1| (-650 |#1|))) (-15 -3589 ((-1182 |#1|) |#1| (-928))) (-15 -2509 (|#1| |#1| (-570))))
-((-2284 (($) 10) (($ (-650 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)))) 14)) (-3614 (($ (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3976 (((-650 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) 39) (((-650 |#3|) $) 41)) (-2833 (($ (-1 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2536 (($ (-1 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3398 (((-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) $) 60)) (-2801 (($ (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) $) 16)) (-4075 (((-650 |#2|) $) 19)) (-4276 (((-112) |#2| $) 65)) (-2115 (((-3 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) "failed") (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) 64)) (-4126 (((-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) $) 69)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2856 (((-650 |#3|) $) 43)) (-2057 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) NIL) (((-777) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) $) NIL) (((-777) |#3| $) NIL) (((-777) (-1 (-112) |#3|) $) 79)) (-2869 (((-868) $) 27)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3892 (((-112) $ $) 51)))
-(((-1202 |#1| |#2| |#3|) (-10 -8 (-15 -3892 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -2536 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2284 (|#1| (-650 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))))) (-15 -2284 (|#1|)) (-15 -2536 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3901 ((-777) (-1 (-112) |#3|) |#1|)) (-15 -3976 ((-650 |#3|) |#1|)) (-15 -3901 ((-777) |#3| |#1|)) (-15 -2057 (|#3| |#1| |#2| |#3|)) (-15 -2057 (|#3| |#1| |#2|)) (-15 -2856 ((-650 |#3|) |#1|)) (-15 -4276 ((-112) |#2| |#1|)) (-15 -4075 ((-650 |#2|) |#1|)) (-15 -3614 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3614 (|#1| (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -3614 (|#1| (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -2115 ((-3 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) "failed") (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -3398 ((-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -2801 (|#1| (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -4126 ((-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -3901 ((-777) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -3976 ((-650 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -3901 ((-777) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2231 ((-112) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2061 ((-112) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2833 (|#1| (-1 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2536 (|#1| (-1 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|))) (-1203 |#2| |#3|) (-1109) (-1109)) (T -1202))
-NIL
-(-10 -8 (-15 -3892 ((-112) |#1| |#1|)) (-15 -2869 ((-868) |#1|)) (-15 -2536 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2284 (|#1| (-650 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))))) (-15 -2284 (|#1|)) (-15 -2536 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2061 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2231 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3901 ((-777) (-1 (-112) |#3|) |#1|)) (-15 -3976 ((-650 |#3|) |#1|)) (-15 -3901 ((-777) |#3| |#1|)) (-15 -2057 (|#3| |#1| |#2| |#3|)) (-15 -2057 (|#3| |#1| |#2|)) (-15 -2856 ((-650 |#3|) |#1|)) (-15 -4276 ((-112) |#2| |#1|)) (-15 -4075 ((-650 |#2|) |#1|)) (-15 -3614 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3614 (|#1| (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -3614 (|#1| (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -2115 ((-3 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) "failed") (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -3398 ((-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -2801 (|#1| (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -4126 ((-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -3901 ((-777) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) |#1|)) (-15 -3976 ((-650 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -3901 ((-777) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2231 ((-112) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2061 ((-112) (-1 (-112) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2833 (|#1| (-1 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)) (-15 -2536 (|#1| (-1 (-2 (|:| -4144 |#2|) (|:| -3165 |#3|)) (-2 (|:| -4144 |#2|) (|:| -3165 |#3|))) |#1|)))
-((-2847 (((-112) $ $) 19 (-3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-2284 (($) 73) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 72)) (-2204 (((-1282) $ |#1| |#1|) 100 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#2| $ |#1| |#2|) 74)) (-3350 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 46 (|has| $ (-6 -4452)))) (-3960 (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 56 (|has| $ (-6 -4452)))) (-1390 (((-3 |#2| "failed") |#1| $) 62)) (-2333 (($) 7 T CONST)) (-3153 (($ $) 59 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452))))) (-3614 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 48 (|has| $ (-6 -4452))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 47 (|has| $ (-6 -4452))) (((-3 |#2| "failed") |#1| $) 63)) (-3617 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 55 (|has| $ (-6 -4452)))) (-2295 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 57 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 54 (|has| $ (-6 -4452))) (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 53 (|has| $ (-6 -4452)))) (-2845 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4453)))) (-2774 ((|#2| $ |#1|) 89)) (-3976 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 31 (|has| $ (-6 -4452))) (((-650 |#2|) $) 80 (|has| $ (-6 -4452)))) (-2497 (((-112) $ (-777)) 9)) (-4372 ((|#1| $) 97 (|has| |#1| (-856)))) (-3069 (((-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 30 (|has| $ (-6 -4452))) (((-650 |#2|) $) 81 (|has| $ (-6 -4452)))) (-1314 (((-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452))))) (-1894 ((|#1| $) 96 (|has| |#1| (-856)))) (-2833 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 35 (|has| $ (-6 -4453))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4453)))) (-2536 (($ (-1 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2065 (((-112) $ (-777)) 10)) (-3240 (((-1168) $) 22 (-3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-1988 (((-650 |#1|) $) 64)) (-2093 (((-112) |#1| $) 65)) (-3398 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 40)) (-2801 (($ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 41)) (-4075 (((-650 |#1|) $) 94)) (-4276 (((-112) |#1| $) 93)) (-3891 (((-1129) $) 21 (-3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-1948 ((|#2| $) 98 (|has| |#1| (-856)))) (-2115 (((-3 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) "failed") (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 52)) (-4222 (($ $ |#2|) 99 (|has| $ (-6 -4453)))) (-4126 (((-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 42)) (-2231 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 33 (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))))) 27 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 26 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) 25 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 24 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 87 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 85 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) 84 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4452)) (|has| |#2| (-1109))))) (-2856 (((-650 |#2|) $) 92)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2910 (($) 50) (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 49)) (-3901 (((-777) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 32 (|has| $ (-6 -4452))) (((-777) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| $ (-6 -4452)))) (((-777) |#2| $) 82 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4452)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 60 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))))) (-2881 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 51)) (-2869 (((-868) $) 18 (-3749 (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868)))))) (-1344 (((-112) $ $) 23 (-3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-4132 (($ (-650 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) 43)) (-2061 (((-112) (-1 (-112) (-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) $) 34 (|has| $ (-6 -4452))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (-3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1203 |#1| |#2|) (-141) (-1109) (-1109)) (T -1203))
-((-3040 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-2284 (*1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -4144 *3) (|:| -3165 *4)))) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *1 (-1203 *3 *4)))) (-2536 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))))
-(-13 (-616 |t#1| |t#2|) (-610 |t#1| |t#2|) (-10 -8 (-15 -3040 (|t#2| $ |t#1| |t#2|)) (-15 -2284 ($)) (-15 -2284 ($ (-650 (-2 (|:| -4144 |t#1|) (|:| -3165 |t#2|))))) (-15 -2536 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -4144 |#1|) (|:| -3165 |#2|))) . T) ((-102) -3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-619 (-868)) -3749 (|has| |#2| (-1109)) (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-619 (-868)))) ((-152 #0#) . T) ((-620 (-542)) |has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-620 (-542))) ((-231 #0#) . T) ((-237 #0#) . T) ((-290 |#1| |#2|) . T) ((-292 |#1| |#2|) . T) ((-313 #0#) -12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-495 #0#) . T) ((-495 |#2|) . T) ((-610 |#1| |#2|) . T) ((-520 #0# #0#) -12 (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-313 (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)))) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-616 |#1| |#2|) . T) ((-1109) -3749 (|has| |#2| (-1109)) (|has| (-2 (|:| -4144 |#1|) (|:| -3165 |#2|)) (-1109))) ((-1227) . T))
-((-4129 (((-112)) 29)) (-4055 (((-1282) (-1168)) 31)) (-4325 (((-112)) 41)) (-3154 (((-1282)) 39)) (-2988 (((-1282) (-1168) (-1168)) 30)) (-1763 (((-112)) 42)) (-2801 (((-1282) |#1| |#2|) 53)) (-3204 (((-1282)) 26)) (-2458 (((-3 |#2| "failed") |#1|) 51)) (-2504 (((-1282)) 40)))
-(((-1204 |#1| |#2|) (-10 -7 (-15 -3204 ((-1282))) (-15 -2988 ((-1282) (-1168) (-1168))) (-15 -4055 ((-1282) (-1168))) (-15 -3154 ((-1282))) (-15 -2504 ((-1282))) (-15 -4129 ((-112))) (-15 -4325 ((-112))) (-15 -1763 ((-112))) (-15 -2458 ((-3 |#2| "failed") |#1|)) (-15 -2801 ((-1282) |#1| |#2|))) (-1109) (-1109)) (T -1204))
-((-2801 (*1 *2 *3 *4) (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2458 (*1 *2 *3) (|partial| -12 (-4 *2 (-1109)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-1109)))) (-1763 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-4325 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-4129 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2504 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-3154 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1204 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)))) (-2988 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1204 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)))) (-3204 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))))
-(-10 -7 (-15 -3204 ((-1282))) (-15 -2988 ((-1282) (-1168) (-1168))) (-15 -4055 ((-1282) (-1168))) (-15 -3154 ((-1282))) (-15 -2504 ((-1282))) (-15 -4129 ((-112))) (-15 -4325 ((-112))) (-15 -1763 ((-112))) (-15 -2458 ((-3 |#2| "failed") |#1|)) (-15 -2801 ((-1282) |#1| |#2|)))
-((-1774 (((-1168) (-1168)) 22)) (-2943 (((-52) (-1168)) 25)))
-(((-1205) (-10 -7 (-15 -2943 ((-52) (-1168))) (-15 -1774 ((-1168) (-1168))))) (T -1205))
-((-1774 (*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1205)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-1205)))))
-(-10 -7 (-15 -2943 ((-52) (-1168))) (-15 -1774 ((-1168) (-1168))))
-((-2869 (((-1207) |#1|) 11)))
-(((-1206 |#1|) (-10 -7 (-15 -2869 ((-1207) |#1|))) (-1109)) (T -1206))
-((-2869 (*1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *1 (-1206 *3)) (-4 *3 (-1109)))))
-(-10 -7 (-15 -2869 ((-1207) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2729 (((-650 (-1168)) $) 39)) (-1932 (((-650 (-1168)) $ (-650 (-1168))) 42)) (-3488 (((-650 (-1168)) $ (-650 (-1168))) 41)) (-1572 (((-650 (-1168)) $ (-650 (-1168))) 43)) (-3425 (((-650 (-1168)) $) 38)) (-2296 (($) 28)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-1596 (((-650 (-1168)) $) 40)) (-2467 (((-1282) $ (-570)) 35) (((-1282) $) 36)) (-2601 (($ (-868) (-570)) 33) (($ (-868) (-570) (-868)) NIL)) (-2869 (((-868) $) 49) (($ (-868)) 32)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1207) (-13 (-1109) (-622 (-868)) (-10 -8 (-15 -2601 ($ (-868) (-570))) (-15 -2601 ($ (-868) (-570) (-868))) (-15 -2467 ((-1282) $ (-570))) (-15 -2467 ((-1282) $)) (-15 -1596 ((-650 (-1168)) $)) (-15 -2729 ((-650 (-1168)) $)) (-15 -2296 ($)) (-15 -3425 ((-650 (-1168)) $)) (-15 -1572 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -1932 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -3488 ((-650 (-1168)) $ (-650 (-1168))))))) (T -1207))
-((-2601 (*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1207)))) (-2601 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1207)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1207)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1207)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))) (-2296 (*1 *1) (-5 *1 (-1207))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))) (-1572 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))) (-1932 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))) (-3488 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))))
-(-13 (-1109) (-622 (-868)) (-10 -8 (-15 -2601 ($ (-868) (-570))) (-15 -2601 ($ (-868) (-570) (-868))) (-15 -2467 ((-1282) $ (-570))) (-15 -2467 ((-1282) $)) (-15 -1596 ((-650 (-1168)) $)) (-15 -2729 ((-650 (-1168)) $)) (-15 -2296 ($)) (-15 -3425 ((-650 (-1168)) $)) (-15 -1572 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -1932 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -3488 ((-650 (-1168)) $ (-650 (-1168))))))
-((-2847 (((-112) $ $) NIL)) (-1887 (((-1168) $ (-1168)) 17) (((-1168) $) 16)) (-3185 (((-1168) $ (-1168)) 15)) (-2873 (($ $ (-1168)) NIL)) (-3457 (((-3 (-1168) "failed") $) 11)) (-3944 (((-1168) $) 8)) (-1614 (((-3 (-1168) "failed") $) 12)) (-3262 (((-1168) $) 9)) (-2965 (($ (-394)) NIL) (($ (-394) (-1168)) NIL)) (-1770 (((-394) $) NIL)) (-3240 (((-1168) $) NIL)) (-2116 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2952 (((-112) $) 21)) (-2869 (((-868) $) NIL)) (-1740 (($ $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1208) (-13 (-369 (-394) (-1168)) (-10 -8 (-15 -1887 ((-1168) $ (-1168))) (-15 -1887 ((-1168) $)) (-15 -3944 ((-1168) $)) (-15 -3457 ((-3 (-1168) "failed") $)) (-15 -1614 ((-3 (-1168) "failed") $)) (-15 -2952 ((-112) $))))) (T -1208))
-((-1887 (*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1208)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1208)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1208)))) (-3457 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1208)))) (-1614 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1208)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1208)))))
-(-13 (-369 (-394) (-1168)) (-10 -8 (-15 -1887 ((-1168) $ (-1168))) (-15 -1887 ((-1168) $)) (-15 -3944 ((-1168) $)) (-15 -3457 ((-3 (-1168) "failed") $)) (-15 -1614 ((-3 (-1168) "failed") $)) (-15 -2952 ((-112) $))))
-((-2419 (((-3 (-570) "failed") |#1|) 19)) (-3534 (((-3 (-570) "failed") |#1|) 14)) (-3819 (((-570) (-1168)) 33)))
-(((-1209 |#1|) (-10 -7 (-15 -2419 ((-3 (-570) "failed") |#1|)) (-15 -3534 ((-3 (-570) "failed") |#1|)) (-15 -3819 ((-570) (-1168)))) (-1058)) (T -1209))
-((-3819 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-1209 *4)) (-4 *4 (-1058)))) (-3534 (*1 *2 *3) (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1209 *3)) (-4 *3 (-1058)))) (-2419 (*1 *2 *3) (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1209 *3)) (-4 *3 (-1058)))))
-(-10 -7 (-15 -2419 ((-3 (-570) "failed") |#1|)) (-15 -3534 ((-3 (-570) "failed") |#1|)) (-15 -3819 ((-570) (-1168))))
-((-1915 (((-1142 (-227))) 9)))
-(((-1210) (-10 -7 (-15 -1915 ((-1142 (-227)))))) (T -1210))
-((-1915 (*1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1210)))))
-(-10 -7 (-15 -1915 ((-1142 (-227)))))
-((-1625 (($) 12)) (-1561 (($ $) 36)) (-1536 (($ $) 34)) (-3811 (($ $) 26)) (-1585 (($ $) 18)) (-2900 (($ $) 16)) (-1575 (($ $) 20)) (-3844 (($ $) 31)) (-1546 (($ $) 35)) (-3821 (($ $) 30)))
-(((-1211 |#1|) (-10 -8 (-15 -1625 (|#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3821 (|#1| |#1|))) (-1212)) (T -1211))
-NIL
-(-10 -8 (-15 -1625 (|#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)))
-((-3900 (($ $) 26)) (-3770 (($ $) 11)) (-3876 (($ $) 27)) (-3745 (($ $) 10)) (-1513 (($ $) 28)) (-3791 (($ $) 9)) (-1625 (($) 16)) (-3447 (($ $) 19)) (-2651 (($ $) 18)) (-1523 (($ $) 29)) (-3801 (($ $) 8)) (-3913 (($ $) 30)) (-3781 (($ $) 7)) (-3887 (($ $) 31)) (-3758 (($ $) 6)) (-1561 (($ $) 20)) (-3833 (($ $) 32)) (-1536 (($ $) 21)) (-3811 (($ $) 33)) (-1585 (($ $) 22)) (-3853 (($ $) 34)) (-2900 (($ $) 23)) (-3864 (($ $) 35)) (-1575 (($ $) 24)) (-3844 (($ $) 36)) (-1546 (($ $) 25)) (-3821 (($ $) 37)) (** (($ $ $) 17)))
-(((-1212) (-141)) (T -1212))
-((-1625 (*1 *1) (-4 *1 (-1212))))
-(-13 (-1215) (-95) (-499) (-35) (-288) (-10 -8 (-15 -1625 ($))))
-(((-35) . T) ((-95) . T) ((-288) . T) ((-499) . T) ((-1215) . T))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4156 ((|#1| $) 19)) (-1626 (($ |#1| (-650 $)) 28) (($ (-650 |#1|)) 35) (($ |#1|) 30)) (-2855 (((-112) $ (-777)) 72)) (-2854 ((|#1| $ |#1|) 14 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 13 (|has| $ (-6 -4453)))) (-2333 (($) NIL T CONST)) (-3976 (((-650 |#1|) $) 77 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 64)) (-1427 (((-112) $ $) 50 (|has| |#1| (-1109)))) (-2497 (((-112) $ (-777)) 62)) (-3069 (((-650 |#1|) $) 78 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2833 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 27)) (-2065 (((-112) $ (-777)) 60)) (-2466 (((-650 |#1|) $) 55)) (-2708 (((-112) $) 53)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2231 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 107)) (-2171 (((-112) $) 9)) (-1698 (($) 10)) (-2057 ((|#1| $ "value") NIL)) (-2352 (((-570) $ $) 48)) (-1899 (((-650 $) $) 89)) (-2938 (((-112) $ $) 110)) (-3789 (((-650 $) $) 105)) (-3661 (($ $) 106)) (-1355 (((-112) $) 84)) (-3901 (((-777) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4452))) (((-777) |#1| $) 17 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3064 (($ $) 88)) (-2869 (((-868) $) 91 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 12)) (-3984 (((-112) $ $) 39 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 37 (|has| |#1| (-1109)))) (-2857 (((-777) $) 58 (|has| $ (-6 -4452)))))
-(((-1213 |#1|) (-13 (-1019 |#1|) (-10 -8 (-6 -4452) (-6 -4453) (-15 -1626 ($ |#1| (-650 $))) (-15 -1626 ($ (-650 |#1|))) (-15 -1626 ($ |#1|)) (-15 -1355 ((-112) $)) (-15 -3661 ($ $)) (-15 -3789 ((-650 $) $)) (-15 -2938 ((-112) $ $)) (-15 -1899 ((-650 $) $)))) (-1109)) (T -1213))
-((-1355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))) (-1626 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-1213 *2))) (-5 *1 (-1213 *2)) (-4 *2 (-1109)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1213 *3)))) (-1626 (*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1109)))) (-3661 (*1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1109)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-650 (-1213 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))) (-2938 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-650 (-1213 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))))
-(-13 (-1019 |#1|) (-10 -8 (-6 -4452) (-6 -4453) (-15 -1626 ($ |#1| (-650 $))) (-15 -1626 ($ (-650 |#1|))) (-15 -1626 ($ |#1|)) (-15 -1355 ((-112) $)) (-15 -3661 ($ $)) (-15 -3789 ((-650 $) $)) (-15 -2938 ((-112) $ $)) (-15 -1899 ((-650 $) $))))
-((-3770 (($ $) 15)) (-3791 (($ $) 12)) (-3801 (($ $) 10)) (-3781 (($ $) 17)))
-(((-1214 |#1|) (-10 -8 (-15 -3781 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3770 (|#1| |#1|))) (-1215)) (T -1214))
-NIL
-(-10 -8 (-15 -3781 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)))
-((-3770 (($ $) 11)) (-3745 (($ $) 10)) (-3791 (($ $) 9)) (-3801 (($ $) 8)) (-3781 (($ $) 7)) (-3758 (($ $) 6)))
-(((-1215) (-141)) (T -1215))
-((-3770 (*1 *1 *1) (-4 *1 (-1215))) (-3745 (*1 *1 *1) (-4 *1 (-1215))) (-3791 (*1 *1 *1) (-4 *1 (-1215))) (-3801 (*1 *1 *1) (-4 *1 (-1215))) (-3781 (*1 *1 *1) (-4 *1 (-1215))) (-3758 (*1 *1 *1) (-4 *1 (-1215))))
-(-13 (-10 -8 (-15 -3758 ($ $)) (-15 -3781 ($ $)) (-15 -3801 ($ $)) (-15 -3791 ($ $)) (-15 -3745 ($ $)) (-15 -3770 ($ $))))
-((-4264 ((|#2| |#2|) 98)) (-3736 (((-112) |#2|) 29)) (-2473 ((|#2| |#2|) 33)) (-1959 ((|#2| |#2|) 35)) (-3474 ((|#2| |#2| (-1186)) 92) ((|#2| |#2|) 93)) (-3635 (((-171 |#2|) |#2|) 31)) (-1434 ((|#2| |#2| (-1186)) 94) ((|#2| |#2|) 95)))
-(((-1216 |#1| |#2|) (-10 -7 (-15 -3474 (|#2| |#2|)) (-15 -3474 (|#2| |#2| (-1186))) (-15 -1434 (|#2| |#2|)) (-15 -1434 (|#2| |#2| (-1186))) (-15 -4264 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -1959 (|#2| |#2|)) (-15 -3736 ((-112) |#2|)) (-15 -3635 ((-171 |#2|) |#2|))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1212) (-436 |#1|))) (T -1216))
-((-3635 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-171 *3)) (-5 *1 (-1216 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112)) (-5 *1 (-1216 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))) (-1959 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))) (-4264 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))) (-1434 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1216 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))) (-3474 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1216 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))))
-(-10 -7 (-15 -3474 (|#2| |#2|)) (-15 -3474 (|#2| |#2| (-1186))) (-15 -1434 (|#2| |#2|)) (-15 -1434 (|#2| |#2| (-1186))) (-15 -4264 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -1959 (|#2| |#2|)) (-15 -3736 ((-112) |#2|)) (-15 -3635 ((-171 |#2|) |#2|)))
-((-3175 ((|#4| |#4| |#1|) 31)) (-1797 ((|#4| |#4| |#1|) 32)))
-(((-1217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3175 (|#4| |#4| |#1|)) (-15 -1797 (|#4| |#4| |#1|))) (-562) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -1217))
-((-1797 (*1 *2 *2 *3) (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1217 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-3175 (*1 *2 *2 *3) (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1217 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
-(-10 -7 (-15 -3175 (|#4| |#4| |#1|)) (-15 -1797 (|#4| |#4| |#1|)))
-((-3897 ((|#2| |#2|) 148)) (-1397 ((|#2| |#2|) 145)) (-2870 ((|#2| |#2|) 136)) (-2726 ((|#2| |#2|) 133)) (-3536 ((|#2| |#2|) 141)) (-1738 ((|#2| |#2|) 129)) (-3729 ((|#2| |#2|) 44)) (-2184 ((|#2| |#2|) 105)) (-3828 ((|#2| |#2|) 88)) (-4390 ((|#2| |#2|) 143)) (-1910 ((|#2| |#2|) 131)) (-2882 ((|#2| |#2|) 153)) (-3088 ((|#2| |#2|) 151)) (-2312 ((|#2| |#2|) 152)) (-3445 ((|#2| |#2|) 150)) (-3615 ((|#2| |#2|) 163)) (-1950 ((|#2| |#2|) 30 (-12 (|has| |#2| (-620 (-899 |#1|))) (|has| |#2| (-893 |#1|)) (|has| |#1| (-620 (-899 |#1|))) (|has| |#1| (-893 |#1|))))) (-1676 ((|#2| |#2|) 89)) (-3500 ((|#2| |#2|) 154)) (-3920 ((|#2| |#2|) 155)) (-4024 ((|#2| |#2|) 142)) (-3521 ((|#2| |#2|) 130)) (-3899 ((|#2| |#2|) 149)) (-2985 ((|#2| |#2|) 147)) (-1406 ((|#2| |#2|) 137)) (-3936 ((|#2| |#2|) 135)) (-2452 ((|#2| |#2|) 139)) (-3282 ((|#2| |#2|) 127)))
-(((-1218 |#1| |#2|) (-10 -7 (-15 -3920 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -1676 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1910 (|#2| |#2|)) (-15 -4390 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -3536 (|#2| |#2|)) (-15 -2870 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -2726 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -2985 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2882 (|#2| |#2|)) (IF (|has| |#1| (-893 |#1|)) (IF (|has| |#1| (-620 (-899 |#1|))) (IF (|has| |#2| (-620 (-899 |#1|))) (IF (|has| |#2| (-893 |#1|)) (-15 -1950 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-458) (-13 (-436 |#1|) (-1212))) (T -1218))
-((-1950 (*1 *2 *2) (-12 (-4 *3 (-620 (-899 *3))) (-4 *3 (-893 *3)) (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-620 (-899 *3))) (-4 *2 (-893 *3)) (-4 *2 (-13 (-436 *3) (-1212))))) (-2882 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3088 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-2985 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-1397 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-2726 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-2870 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3536 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-4390 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-1910 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-2452 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3282 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3729 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3615 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3828 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-436 *3) (-1212))))))
-(-10 -7 (-15 -3920 (|#2| |#2|)) (-15 -3828 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -3729 (|#2| |#2|)) (-15 -1676 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -2452 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1910 (|#2| |#2|)) (-15 -4390 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -3536 (|#2| |#2|)) (-15 -2870 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -2726 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -2985 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -2882 (|#2| |#2|)) (IF (|has| |#1| (-893 |#1|)) (IF (|has| |#1| (-620 (-899 |#1|))) (IF (|has| |#2| (-620 (-899 |#1|))) (IF (|has| |#2| (-893 |#1|)) (-15 -1950 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2665 (((-112) |#5| $) 68) (((-112) $) 110)) (-3067 ((|#5| |#5| $) 83)) (-3960 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2151 (((-650 |#5|) (-650 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2435 (((-3 $ "failed") (-650 |#5|)) 135)) (-1962 (((-3 $ "failed") $) 120)) (-2360 ((|#5| |#5| $) 102)) (-1429 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4079 ((|#5| |#5| $) 106)) (-2295 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3993 (((-2 (|:| -2442 (-650 |#5|)) (|:| -2965 (-650 |#5|))) $) 63)) (-1623 (((-112) |#5| $) 66) (((-112) $) 111)) (-2486 ((|#4| $) 116)) (-3637 (((-3 |#5| "failed") $) 118)) (-4083 (((-650 |#5|) $) 55)) (-2010 (((-112) |#5| $) 75) (((-112) $) 115)) (-1478 ((|#5| |#5| $) 89)) (-1693 (((-112) $ $) 29)) (-1772 (((-112) |#5| $) 71) (((-112) $) 113)) (-2899 ((|#5| |#5| $) 86)) (-1948 (((-3 |#5| "failed") $) 117)) (-3308 (($ $ |#5|) 136)) (-2650 (((-777) $) 60)) (-2881 (($ (-650 |#5|)) 133)) (-1342 (($ $ |#4|) 131)) (-2691 (($ $ |#4|) 129)) (-2990 (($ $) 128)) (-2869 (((-868) $) NIL) (((-650 |#5|) $) 121)) (-3982 (((-777) $) 140)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3810 (((-112) $ (-1 (-112) |#5| (-650 |#5|))) 108)) (-2273 (((-650 |#4|) $) 123)) (-1600 (((-112) |#4| $) 126)) (-3892 (((-112) $ $) 20)))
-(((-1219 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3982 ((-777) |#1|)) (-15 -3308 (|#1| |#1| |#5|)) (-15 -3960 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1600 ((-112) |#4| |#1|)) (-15 -2273 ((-650 |#4|) |#1|)) (-15 -1962 ((-3 |#1| "failed") |#1|)) (-15 -3637 ((-3 |#5| "failed") |#1|)) (-15 -1948 ((-3 |#5| "failed") |#1|)) (-15 -4079 (|#5| |#5| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -2360 (|#5| |#5| |#1|)) (-15 -1478 (|#5| |#5| |#1|)) (-15 -2899 (|#5| |#5| |#1|)) (-15 -3067 (|#5| |#5| |#1|)) (-15 -2151 ((-650 |#5|) (-650 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2295 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2010 ((-112) |#1|)) (-15 -1772 ((-112) |#1|)) (-15 -2665 ((-112) |#1|)) (-15 -3810 ((-112) |#1| (-1 (-112) |#5| (-650 |#5|)))) (-15 -2010 ((-112) |#5| |#1|)) (-15 -1772 ((-112) |#5| |#1|)) (-15 -2665 ((-112) |#5| |#1|)) (-15 -1429 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1623 ((-112) |#1|)) (-15 -1623 ((-112) |#5| |#1|)) (-15 -3993 ((-2 (|:| -2442 (-650 |#5|)) (|:| -2965 (-650 |#5|))) |#1|)) (-15 -2650 ((-777) |#1|)) (-15 -4083 ((-650 |#5|) |#1|)) (-15 -3774 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3774 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1693 ((-112) |#1| |#1|)) (-15 -1342 (|#1| |#1| |#4|)) (-15 -2691 (|#1| |#1| |#4|)) (-15 -2486 (|#4| |#1|)) (-15 -2435 ((-3 |#1| "failed") (-650 |#5|))) (-15 -2869 ((-650 |#5|) |#1|)) (-15 -2881 (|#1| (-650 |#5|))) (-15 -2295 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2295 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3960 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2295 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|))) (-1220 |#2| |#3| |#4| |#5|) (-562) (-799) (-856) (-1074 |#2| |#3| |#4|)) (T -1219))
-NIL
-(-10 -8 (-15 -3982 ((-777) |#1|)) (-15 -3308 (|#1| |#1| |#5|)) (-15 -3960 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1600 ((-112) |#4| |#1|)) (-15 -2273 ((-650 |#4|) |#1|)) (-15 -1962 ((-3 |#1| "failed") |#1|)) (-15 -3637 ((-3 |#5| "failed") |#1|)) (-15 -1948 ((-3 |#5| "failed") |#1|)) (-15 -4079 (|#5| |#5| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -2360 (|#5| |#5| |#1|)) (-15 -1478 (|#5| |#5| |#1|)) (-15 -2899 (|#5| |#5| |#1|)) (-15 -3067 (|#5| |#5| |#1|)) (-15 -2151 ((-650 |#5|) (-650 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2295 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2010 ((-112) |#1|)) (-15 -1772 ((-112) |#1|)) (-15 -2665 ((-112) |#1|)) (-15 -3810 ((-112) |#1| (-1 (-112) |#5| (-650 |#5|)))) (-15 -2010 ((-112) |#5| |#1|)) (-15 -1772 ((-112) |#5| |#1|)) (-15 -2665 ((-112) |#5| |#1|)) (-15 -1429 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1623 ((-112) |#1|)) (-15 -1623 ((-112) |#5| |#1|)) (-15 -3993 ((-2 (|:| -2442 (-650 |#5|)) (|:| -2965 (-650 |#5|))) |#1|)) (-15 -2650 ((-777) |#1|)) (-15 -4083 ((-650 |#5|) |#1|)) (-15 -3774 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3774 ((-3 (-2 (|:| |bas| |#1|) (|:| -1999 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1693 ((-112) |#1| |#1|)) (-15 -1342 (|#1| |#1| |#4|)) (-15 -2691 (|#1| |#1| |#4|)) (-15 -2486 (|#4| |#1|)) (-15 -2435 ((-3 |#1| "failed") (-650 |#5|))) (-15 -2869 ((-650 |#5|) |#1|)) (-15 -2881 (|#1| (-650 |#5|))) (-15 -2295 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2295 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3960 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2295 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2869 ((-868) |#1|)) (-15 -3892 ((-112) |#1| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) 86)) (-1510 (((-650 $) (-650 |#4|)) 87)) (-1598 (((-650 |#3|) $) 34)) (-3330 (((-112) $) 27)) (-2114 (((-112) $) 18 (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) 102) (((-112) $) 98)) (-3067 ((|#4| |#4| $) 93)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) 28)) (-2855 (((-112) $ (-777)) 45)) (-3960 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) 80)) (-2333 (($) 46 T CONST)) (-2157 (((-112) $) 23 (|has| |#1| (-562)))) (-3303 (((-112) $ $) 25 (|has| |#1| (-562)))) (-3105 (((-112) $ $) 24 (|has| |#1| (-562)))) (-3580 (((-112) $) 26 (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2303 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) 37)) (-4387 (($ (-650 |#4|)) 36)) (-1962 (((-3 $ "failed") $) 83)) (-2360 ((|#4| |#4| $) 90)) (-3153 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4079 ((|#4| |#4| $) 88)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) 106)) (-3976 (((-650 |#4|) $) 53 (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) 105) (((-112) $) 104)) (-2486 ((|#3| $) 35)) (-2497 (((-112) $ (-777)) 44)) (-3069 (((-650 |#4|) $) 54 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) 48)) (-3734 (((-650 |#3|) $) 33)) (-3640 (((-112) |#3| $) 32)) (-2065 (((-112) $ (-777)) 43)) (-3240 (((-1168) $) 10)) (-3637 (((-3 |#4| "failed") $) 84)) (-4083 (((-650 |#4|) $) 108)) (-2010 (((-112) |#4| $) 100) (((-112) $) 96)) (-1478 ((|#4| |#4| $) 91)) (-1693 (((-112) $ $) 111)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) 101) (((-112) $) 97)) (-2899 ((|#4| |#4| $) 92)) (-3891 (((-1129) $) 11)) (-1948 (((-3 |#4| "failed") $) 85)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3484 (((-3 $ "failed") $ |#4|) 79)) (-3308 (($ $ |#4|) 78)) (-2231 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) 39)) (-2171 (((-112) $) 42)) (-1698 (($) 41)) (-2650 (((-777) $) 107)) (-3901 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4452)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4452)))) (-3064 (($ $) 40)) (-2601 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) 61)) (-1342 (($ $ |#3|) 29)) (-2691 (($ $ |#3|) 31)) (-2990 (($ $) 89)) (-3130 (($ $ |#3|) 30)) (-2869 (((-868) $) 12) (((-650 |#4|) $) 38)) (-3982 (((-777) $) 77 (|has| |#3| (-373)))) (-1344 (((-112) $ $) 9)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-2061 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) 82)) (-1600 (((-112) |#3| $) 81)) (-3892 (((-112) $ $) 6)) (-2857 (((-777) $) 47 (|has| $ (-6 -4452)))))
-(((-1220 |#1| |#2| |#3| |#4|) (-141) (-562) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1220))
-((-1693 (*1 *2 *1 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-3774 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-650 *8)))) (-5 *3 (-650 *8)) (-4 *1 (-1220 *5 *6 *7 *8)))) (-3774 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-650 *9)))) (-5 *3 (-650 *9)) (-4 *1 (-1220 *6 *7 *8 *9)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *6)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-777)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-2 (|:| -2442 (-650 *6)) (|:| -2965 (-650 *6)))))) (-1623 (*1 *2 *3 *1) (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-1429 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1220 *5 *6 *7 *3)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)))) (-2665 (*1 *2 *3 *1) (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1772 (*1 *2 *3 *1) (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-2010 (*1 *2 *3 *1) (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-650 *7))) (-4 *1 (-1220 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-2295 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1220 *5 *6 *7 *2)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *2 (-1074 *5 *6 *7)))) (-2151 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1220 *5 *6 *7 *8)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)))) (-3067 (*1 *2 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2899 (*1 *2 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-1478 (*1 *2 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2360 (*1 *2 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2990 (*1 *1 *1) (-12 (-4 *1 (-1220 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4)))) (-4079 (*1 *2 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1220 *4 *5 *6 *7)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| -2442 *1) (|:| -2965 (-650 *7))))) (-5 *3 (-650 *7)) (-4 *1 (-1220 *4 *5 *6 *7)))) (-1948 (*1 *2 *1) (|partial| -12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-3637 (*1 *2 *1) (|partial| -12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-1962 (*1 *1 *1) (|partial| -12 (-4 *1 (-1220 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4)))) (-2273 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))) (-1600 (*1 *2 *3 *1) (-12 (-4 *1 (-1220 *4 *5 *3 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112)))) (-3960 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1220 *4 *5 *3 *2)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *2 (-1074 *4 *5 *3)))) (-3484 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-3308 (*1 *1 *1 *2) (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *5 (-373)) (-5 *2 (-777)))))
-(-13 (-985 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4452) (-6 -4453) (-15 -1693 ((-112) $ $)) (-15 -3774 ((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |t#4|))) "failed") (-650 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3774 ((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |t#4|))) "failed") (-650 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4083 ((-650 |t#4|) $)) (-15 -2650 ((-777) $)) (-15 -3993 ((-2 (|:| -2442 (-650 |t#4|)) (|:| -2965 (-650 |t#4|))) $)) (-15 -1623 ((-112) |t#4| $)) (-15 -1623 ((-112) $)) (-15 -1429 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2665 ((-112) |t#4| $)) (-15 -1772 ((-112) |t#4| $)) (-15 -2010 ((-112) |t#4| $)) (-15 -3810 ((-112) $ (-1 (-112) |t#4| (-650 |t#4|)))) (-15 -2665 ((-112) $)) (-15 -1772 ((-112) $)) (-15 -2010 ((-112) $)) (-15 -2295 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2151 ((-650 |t#4|) (-650 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3067 (|t#4| |t#4| $)) (-15 -2899 (|t#4| |t#4| $)) (-15 -1478 (|t#4| |t#4| $)) (-15 -2360 (|t#4| |t#4| $)) (-15 -2990 ($ $)) (-15 -4079 (|t#4| |t#4| $)) (-15 -1510 ((-650 $) (-650 |t#4|))) (-15 -2444 ((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |t#4|)))) (-650 |t#4|))) (-15 -1948 ((-3 |t#4| "failed") $)) (-15 -3637 ((-3 |t#4| "failed") $)) (-15 -1962 ((-3 $ "failed") $)) (-15 -2273 ((-650 |t#3|) $)) (-15 -1600 ((-112) |t#3| $)) (-15 -3960 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3484 ((-3 $ "failed") $ |t#4|)) (-15 -3308 ($ $ |t#4|)) (IF (|has| |t#3| (-373)) (-15 -3982 ((-777) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1227) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1186)) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2471 (((-959 |#1|) $ (-777)) 17) (((-959 |#1|) $ (-777) (-777)) NIL)) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-777) $ (-1186)) NIL) (((-777) $ (-1186) (-777)) NIL)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1338 (((-112) $) NIL)) (-2402 (($ $ (-650 (-1186)) (-650 (-537 (-1186)))) NIL) (($ $ (-1186) (-537 (-1186))) NIL) (($ |#1| (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3447 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-1363 (($ $ (-1186)) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-1983 (($ (-1 $) (-1186) |#1|) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3308 (($ $ (-777)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-2651 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3034 (($ $ (-1186) $) NIL) (($ $ (-650 (-1186)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL)) (-2375 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-2650 (((-537 (-1186)) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-562))) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-1186)) NIL) (($ (-959 |#1|)) NIL)) (-3481 ((|#1| $ (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (((-959 |#1|) $ (-777)) NIL)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3414 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1221 |#1|) (-13 (-746 |#1| (-1186)) (-10 -8 (-15 -3481 ((-959 |#1|) $ (-777))) (-15 -2869 ($ (-1186))) (-15 -2869 ($ (-959 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $ (-1186) |#1|)) (-15 -1983 ($ (-1 $) (-1186) |#1|))) |%noBranch|))) (-1058)) (T -1221))
-((-3481 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-959 *4)) (-5 *1 (-1221 *4)) (-4 *4 (-1058)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1221 *3)) (-4 *3 (-1058)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-5 *1 (-1221 *3)))) (-1363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-1221 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)))) (-1983 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1221 *4))) (-5 *3 (-1186)) (-5 *1 (-1221 *4)) (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058)))))
-(-13 (-746 |#1| (-1186)) (-10 -8 (-15 -3481 ((-959 |#1|) $ (-777))) (-15 -2869 ($ (-1186))) (-15 -2869 ($ (-959 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $ (-1186) |#1|)) (-15 -1983 ($ (-1 $) (-1186) |#1|))) |%noBranch|)))
-((-2919 (($ |#1| (-650 (-650 (-950 (-227)))) (-112)) 19)) (-3494 (((-112) $ (-112)) 18)) (-3221 (((-112) $) 17)) (-2487 (((-650 (-650 (-950 (-227)))) $) 13)) (-1368 ((|#1| $) 8)) (-2935 (((-112) $) 15)))
-(((-1222 |#1|) (-10 -8 (-15 -1368 (|#1| $)) (-15 -2487 ((-650 (-650 (-950 (-227)))) $)) (-15 -2935 ((-112) $)) (-15 -3221 ((-112) $)) (-15 -3494 ((-112) $ (-112))) (-15 -2919 ($ |#1| (-650 (-650 (-950 (-227)))) (-112)))) (-983)) (T -1222))
-((-2919 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-112)) (-5 *1 (-1222 *2)) (-4 *2 (-983)))) (-3494 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-983)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-983)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-983)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-1222 *3)) (-4 *3 (-983)))) (-1368 (*1 *2 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-983)))))
-(-10 -8 (-15 -1368 (|#1| $)) (-15 -2487 ((-650 (-650 (-950 (-227)))) $)) (-15 -2935 ((-112) $)) (-15 -3221 ((-112) $)) (-15 -3494 ((-112) $ (-112))) (-15 -2919 ($ |#1| (-650 (-650 (-950 (-227)))) (-112))))
-((-3720 (((-950 (-227)) (-950 (-227))) 31)) (-1830 (((-950 (-227)) (-227) (-227) (-227) (-227)) 10)) (-2362 (((-650 (-950 (-227))) (-950 (-227)) (-950 (-227)) (-950 (-227)) (-227) (-650 (-650 (-227)))) 56)) (-3407 (((-227) (-950 (-227)) (-950 (-227))) 27)) (-3775 (((-950 (-227)) (-950 (-227)) (-950 (-227))) 28)) (-1520 (((-650 (-650 (-227))) (-570)) 44)) (-4003 (((-950 (-227)) (-950 (-227)) (-950 (-227))) 26)) (-3992 (((-950 (-227)) (-950 (-227)) (-950 (-227))) 24)) (* (((-950 (-227)) (-227) (-950 (-227))) 22)))
-(((-1223) (-10 -7 (-15 -1830 ((-950 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-950 (-227)) (-227) (-950 (-227)))) (-15 -3992 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -4003 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3407 ((-227) (-950 (-227)) (-950 (-227)))) (-15 -3775 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3720 ((-950 (-227)) (-950 (-227)))) (-15 -1520 ((-650 (-650 (-227))) (-570))) (-15 -2362 ((-650 (-950 (-227))) (-950 (-227)) (-950 (-227)) (-950 (-227)) (-227) (-650 (-650 (-227))))))) (T -1223))
-((-2362 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-650 (-650 (-227)))) (-5 *4 (-227)) (-5 *2 (-650 (-950 *4))) (-5 *1 (-1223)) (-5 *3 (-950 *4)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-570)) (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-1223)))) (-3720 (*1 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223)))) (-3775 (*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223)))) (-3407 (*1 *2 *3 *3) (-12 (-5 *3 (-950 (-227))) (-5 *2 (-227)) (-5 *1 (-1223)))) (-4003 (*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223)))) (-3992 (*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-950 (-227))) (-5 *3 (-227)) (-5 *1 (-1223)))) (-1830 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223)) (-5 *3 (-227)))))
-(-10 -7 (-15 -1830 ((-950 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-950 (-227)) (-227) (-950 (-227)))) (-15 -3992 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -4003 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3407 ((-227) (-950 (-227)) (-950 (-227)))) (-15 -3775 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3720 ((-950 (-227)) (-950 (-227)))) (-15 -1520 ((-650 (-650 (-227))) (-570))) (-15 -2362 ((-650 (-950 (-227))) (-950 (-227)) (-950 (-227)) (-950 (-227)) (-227) (-650 (-650 (-227))))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3960 ((|#1| $ (-777)) 18)) (-1831 (((-777) $) 13)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2869 (((-965 |#1|) $) 12) (($ (-965 |#1|)) 11) (((-868) $) 29 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3892 (((-112) $ $) 22 (|has| |#1| (-1109)))))
-(((-1224 |#1|) (-13 (-496 (-965 |#1|)) (-10 -8 (-15 -3960 (|#1| $ (-777))) (-15 -1831 ((-777) $)) (IF (|has| |#1| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) (-1227)) (T -1224))
-((-3960 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-1224 *2)) (-4 *2 (-1227)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1224 *3)) (-4 *3 (-1227)))))
-(-13 (-496 (-965 |#1|)) (-10 -8 (-15 -3960 (|#1| $ (-777))) (-15 -1831 ((-777) $)) (IF (|has| |#1| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|)))
-((-2058 (((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)) (-570)) 94)) (-3559 (((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|))) 86)) (-4295 (((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|))) 70)))
-(((-1225 |#1|) (-10 -7 (-15 -3559 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -4295 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -2058 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)) (-570)))) (-354)) (T -1225))
-((-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-4 *5 (-354)) (-5 *2 (-424 (-1182 (-1182 *5)))) (-5 *1 (-1225 *5)) (-5 *3 (-1182 (-1182 *5))))) (-4295 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4)))) (-5 *1 (-1225 *4)) (-5 *3 (-1182 (-1182 *4))))) (-3559 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4)))) (-5 *1 (-1225 *4)) (-5 *3 (-1182 (-1182 *4))))))
-(-10 -7 (-15 -3559 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -4295 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -2058 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)) (-570))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 9) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1226) (-1092)) (T -1226))
-NIL
-(-1092)
-NIL
-(((-1227) (-141)) (T -1227))
-NIL
-(-13 (-10 -7 (-6 -3442)))
-((-2495 (((-112)) 18)) (-3963 (((-1282) (-650 |#1|) (-650 |#1|)) 22) (((-1282) (-650 |#1|)) 23)) (-2497 (((-112) |#1| |#1|) 37 (|has| |#1| (-856)))) (-2065 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2325 ((|#1| (-650 |#1|)) 38 (|has| |#1| (-856))) ((|#1| (-650 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3554 (((-2 (|:| -2609 (-650 |#1|)) (|:| -3946 (-650 |#1|)))) 20)))
-(((-1228 |#1|) (-10 -7 (-15 -3963 ((-1282) (-650 |#1|))) (-15 -3963 ((-1282) (-650 |#1|) (-650 |#1|))) (-15 -3554 ((-2 (|:| -2609 (-650 |#1|)) (|:| -3946 (-650 |#1|))))) (-15 -2065 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2065 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2325 (|#1| (-650 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2495 ((-112))) (IF (|has| |#1| (-856)) (PROGN (-15 -2325 (|#1| (-650 |#1|))) (-15 -2497 ((-112) |#1| |#1|))) |%noBranch|)) (-1109)) (T -1228))
-((-2497 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-856)) (-4 *3 (-1109)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-856)) (-5 *1 (-1228 *2)))) (-2495 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1109)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1228 *2)) (-4 *2 (-1109)))) (-2065 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1109)) (-5 *2 (-112)) (-5 *1 (-1228 *3)))) (-2065 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1109)))) (-3554 (*1 *2) (-12 (-5 *2 (-2 (|:| -2609 (-650 *3)) (|:| -3946 (-650 *3)))) (-5 *1 (-1228 *3)) (-4 *3 (-1109)))) (-3963 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1282)) (-5 *1 (-1228 *4)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1282)) (-5 *1 (-1228 *4)))))
-(-10 -7 (-15 -3963 ((-1282) (-650 |#1|))) (-15 -3963 ((-1282) (-650 |#1|) (-650 |#1|))) (-15 -3554 ((-2 (|:| -2609 (-650 |#1|)) (|:| -3946 (-650 |#1|))))) (-15 -2065 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2065 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2325 (|#1| (-650 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2495 ((-112))) (IF (|has| |#1| (-856)) (PROGN (-15 -2325 (|#1| (-650 |#1|))) (-15 -2497 ((-112) |#1| |#1|))) |%noBranch|))
-((-3289 (((-1282) (-650 (-1186)) (-650 (-1186))) 14) (((-1282) (-650 (-1186))) 12)) (-4111 (((-1282)) 16)) (-1422 (((-2 (|:| -3946 (-650 (-1186))) (|:| -2609 (-650 (-1186))))) 20)))
-(((-1229) (-10 -7 (-15 -3289 ((-1282) (-650 (-1186)))) (-15 -3289 ((-1282) (-650 (-1186)) (-650 (-1186)))) (-15 -1422 ((-2 (|:| -3946 (-650 (-1186))) (|:| -2609 (-650 (-1186)))))) (-15 -4111 ((-1282))))) (T -1229))
-((-4111 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1229)))) (-1422 (*1 *2) (-12 (-5 *2 (-2 (|:| -3946 (-650 (-1186))) (|:| -2609 (-650 (-1186))))) (-5 *1 (-1229)))) (-3289 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1282)) (-5 *1 (-1229)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1282)) (-5 *1 (-1229)))))
-(-10 -7 (-15 -3289 ((-1282) (-650 (-1186)))) (-15 -3289 ((-1282) (-650 (-1186)) (-650 (-1186)))) (-15 -1422 ((-2 (|:| -3946 (-650 (-1186))) (|:| -2609 (-650 (-1186)))))) (-15 -4111 ((-1282))))
-((-3312 (($ $) 17)) (-2145 (((-112) $) 28)))
-(((-1230 |#1|) (-10 -8 (-15 -3312 (|#1| |#1|)) (-15 -2145 ((-112) |#1|))) (-1231)) (T -1230))
-NIL
-(-10 -8 (-15 -3312 (|#1| |#1|)) (-15 -2145 ((-112) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 57)) (-2929 (((-424 $) $) 58)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2145 (((-112) $) 59)) (-2005 (((-112) $) 35)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2340 (((-424 $) $) 56)) (-2837 (((-3 $ "failed") $ $) 48)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27)))
-(((-1231) (-141)) (T -1231))
-((-2145 (*1 *2 *1) (-12 (-4 *1 (-1231)) (-5 *2 (-112)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1231)))) (-3312 (*1 *1 *1) (-4 *1 (-1231))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1231)))))
-(-13 (-458) (-10 -8 (-15 -2145 ((-112) $)) (-15 -2929 ((-424 $) $)) (-15 -3312 ($ $)) (-15 -2340 ((-424 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1476 (($ $ $) NIL)) (-3366 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-1232) (-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))) (T -1232))
-((-3366 (*1 *1 *1 *1) (-5 *1 (-1232))) (-1476 (*1 *1 *1 *1) (-5 *1 (-1232))) (-2333 (*1 *1) (-5 *1 (-1232))))
-(-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 9)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 7)))
+(((-1196) (-1111)) (T -1196))
+NIL
+(-1111)
+((-2237 (((-652 (-652 (-961 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 69)) (-1969 (((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|)))) 80) (((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|))) 76) (((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188)) 81) (((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188)) 75) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|))))) 106) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|)))) 105) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188))) 107) (((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))) (-652 (-1188))) 104)))
+(((-1197 |#1|) (-10 -7 (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))))) (-15 -2237 ((-652 (-652 (-961 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188))))) (-564)) (T -1197))
+((-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-961 *5)))) (-5 *1 (-1197 *5)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4))))) (-5 *1 (-1197 *4)) (-5 *3 (-300 (-415 (-961 *4)))))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4))))) (-5 *1 (-1197 *4)) (-5 *3 (-415 (-961 *4))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5)) (-5 *3 (-300 (-415 (-961 *5)))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-1188)) (-4 *5 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5)) (-5 *3 (-415 (-961 *5))))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-1197 *4)) (-5 *3 (-652 (-300 (-415 (-961 *4))))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-1197 *4)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-1197 *5)) (-5 *3 (-652 (-300 (-415 (-961 *5))))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188))) (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-1197 *5)))))
+(-10 -7 (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))) (-652 (-1188)))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-415 (-961 |#1|))))) (-15 -1969 ((-652 (-652 (-300 (-415 (-961 |#1|))))) (-652 (-300 (-415 (-961 |#1|)))))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)) (-1188))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))) (-1188))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-415 (-961 |#1|)))) (-15 -1969 ((-652 (-300 (-415 (-961 |#1|)))) (-300 (-415 (-961 |#1|))))) (-15 -2237 ((-652 (-652 (-961 |#1|))) (-652 (-415 (-961 |#1|))) (-652 (-1188)))))
+((-2301 (((-1170)) 7)) (-3364 (((-1170)) 11 T CONST)) (-3949 (((-1284) (-1170)) 13)) (-2593 (((-1170)) 8 T CONST)) (-1813 (((-131)) 10 T CONST)))
+(((-1198) (-13 (-1229) (-10 -7 (-15 -2301 ((-1170))) (-15 -2593 ((-1170)) -4338) (-15 -1813 ((-131)) -4338) (-15 -3364 ((-1170)) -4338) (-15 -3949 ((-1284) (-1170)))))) (T -1198))
+((-2301 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))) (-2593 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))) (-1813 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1198)))) (-3364 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1198)))))
+(-13 (-1229) (-10 -7 (-15 -2301 ((-1170))) (-15 -2593 ((-1170)) -4338) (-15 -1813 ((-131)) -4338) (-15 -3364 ((-1170)) -4338) (-15 -3949 ((-1284) (-1170)))))
+((-3190 (((-652 (-652 |#1|)) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|)))) 56)) (-1568 (((-652 (-652 (-652 |#1|))) (-652 (-652 |#1|))) 38)) (-2001 (((-1200 (-652 |#1|)) (-652 |#1|)) 49)) (-4156 (((-652 (-652 |#1|)) (-652 |#1|)) 45)) (-1700 (((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 (-652 (-652 |#1|)))) 53)) (-3415 (((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 |#1|) (-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|)))) 52)) (-4015 (((-652 (-652 |#1|)) (-652 (-652 |#1|))) 43)) (-1558 (((-652 |#1|) (-652 |#1|)) 46)) (-2431 (((-652 (-652 (-652 |#1|))) (-652 |#1|) (-652 (-652 (-652 |#1|)))) 32)) (-1555 (((-652 (-652 (-652 |#1|))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 (-652 |#1|)))) 29)) (-1545 (((-2 (|:| |fs| (-112)) (|:| |sd| (-652 |#1|)) (|:| |td| (-652 (-652 |#1|)))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 |#1|))) 24)) (-2515 (((-652 (-652 |#1|)) (-652 (-652 (-652 |#1|)))) 58)) (-4117 (((-652 (-652 |#1|)) (-1200 (-652 |#1|))) 60)))
+(((-1199 |#1|) (-10 -7 (-15 -1545 ((-2 (|:| |fs| (-112)) (|:| |sd| (-652 |#1|)) (|:| |td| (-652 (-652 |#1|)))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 |#1|)))) (-15 -1555 ((-652 (-652 (-652 |#1|))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -2431 ((-652 (-652 (-652 |#1|))) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -3190 ((-652 (-652 |#1|)) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -2515 ((-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -4117 ((-652 (-652 |#1|)) (-1200 (-652 |#1|)))) (-15 -1568 ((-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)))) (-15 -2001 ((-1200 (-652 |#1|)) (-652 |#1|))) (-15 -4015 ((-652 (-652 |#1|)) (-652 (-652 |#1|)))) (-15 -4156 ((-652 (-652 |#1|)) (-652 |#1|))) (-15 -1558 ((-652 |#1|) (-652 |#1|))) (-15 -3415 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 |#1|) (-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))))) (-15 -1700 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 (-652 (-652 |#1|)))))) (-858)) (T -1199))
+((-1700 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-2 (|:| |f1| (-652 *4)) (|:| |f2| (-652 (-652 (-652 *4)))) (|:| |f3| (-652 (-652 *4))) (|:| |f4| (-652 (-652 (-652 *4)))))) (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 (-652 *4)))))) (-3415 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-858)) (-5 *3 (-652 *6)) (-5 *5 (-652 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-652 *5)) (|:| |f3| *5) (|:| |f4| (-652 *5)))) (-5 *1 (-1199 *6)) (-5 *4 (-652 *5)))) (-1558 (*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-1199 *3)))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)) (-5 *3 (-652 *4)))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-858)) (-5 *1 (-1199 *3)))) (-2001 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-1200 (-652 *4))) (-5 *1 (-1199 *4)) (-5 *3 (-652 *4)))) (-1568 (*1 *2 *3) (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 (-652 *4)))) (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 *4))))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-1200 (-652 *4))) (-4 *4 (-858)) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)) (-4 *4 (-858)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4))) (-4 *4 (-858)) (-5 *1 (-1199 *4)))) (-2431 (*1 *2 *3 *2) (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-652 *4)) (-4 *4 (-858)) (-5 *1 (-1199 *4)))) (-1555 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-652 *5)) (-4 *5 (-858)) (-5 *1 (-1199 *5)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-858)) (-5 *4 (-652 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-652 *4)))) (-5 *1 (-1199 *6)) (-5 *5 (-652 *4)))))
+(-10 -7 (-15 -1545 ((-2 (|:| |fs| (-112)) (|:| |sd| (-652 |#1|)) (|:| |td| (-652 (-652 |#1|)))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 |#1|)))) (-15 -1555 ((-652 (-652 (-652 |#1|))) (-1 (-112) |#1| |#1|) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -2431 ((-652 (-652 (-652 |#1|))) (-652 |#1|) (-652 (-652 (-652 |#1|))))) (-15 -3190 ((-652 (-652 |#1|)) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -2515 ((-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))))) (-15 -4117 ((-652 (-652 |#1|)) (-1200 (-652 |#1|)))) (-15 -1568 ((-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)))) (-15 -2001 ((-1200 (-652 |#1|)) (-652 |#1|))) (-15 -4015 ((-652 (-652 |#1|)) (-652 (-652 |#1|)))) (-15 -4156 ((-652 (-652 |#1|)) (-652 |#1|))) (-15 -1558 ((-652 |#1|) (-652 |#1|))) (-15 -3415 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 |#1|) (-652 (-652 (-652 |#1|))) (-652 (-652 |#1|)) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))) (-652 (-652 (-652 |#1|))))) (-15 -1700 ((-2 (|:| |f1| (-652 |#1|)) (|:| |f2| (-652 (-652 (-652 |#1|)))) (|:| |f3| (-652 (-652 |#1|))) (|:| |f4| (-652 (-652 (-652 |#1|))))) (-652 (-652 (-652 |#1|))))))
+((-3990 (($ (-652 (-652 |#1|))) 10)) (-1942 (((-652 (-652 |#1|)) $) 11)) (-3491 (((-870) $) 33)))
+(((-1200 |#1|) (-10 -8 (-15 -3990 ($ (-652 (-652 |#1|)))) (-15 -1942 ((-652 (-652 |#1|)) $)) (-15 -3491 ((-870) $))) (-1111)) (T -1200))
+((-3491 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1200 *3)) (-4 *3 (-1111)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1111)))) (-3990 (*1 *1 *2) (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-1200 *3)))))
+(-10 -8 (-15 -3990 ($ (-652 (-652 |#1|)))) (-15 -1942 ((-652 (-652 |#1|)) $)) (-15 -3491 ((-870) $)))
+((-3464 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2912 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-2812 (((-1284) $ |#1| |#1|) NIL (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#2| $ |#1| |#2|) NIL)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) NIL)) (-1586 (($) NIL T CONST)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) NIL)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) NIL)) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) NIL)) (-1531 ((|#1| $) NIL (|has| |#1| (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-652 |#2|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2751 ((|#1| $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2608 (((-652 |#1|) $) NIL)) (-4096 (((-112) |#1| $) NIL)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-1634 (((-652 |#1|) $) NIL)) (-3132 (((-112) |#1| $) NIL)) (-2614 (((-1131) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-2570 ((|#2| $) NIL (|has| |#1| (-858)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL)) (-3803 (($ $ |#2|) NIL (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2145 (($) NIL) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) NIL (-12 (|has| $ (-6 -4454)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (((-779) |#2| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111)))) (((-779) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3491 (((-870) $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870))) (|has| |#2| (-621 (-870)))))) (-3424 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) NIL)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) NIL (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) NIL (-3783 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| |#2| (-1111))))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1201 |#1| |#2|) (-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454))) (-1111) (-1111)) (T -1201))
+NIL
+(-13 (-1205 |#1| |#2|) (-10 -7 (-6 -4454)))
+((-3464 (((-112) $ $) NIL)) (-3181 (($ |#1| (-55)) 10)) (-2402 ((|#1| $) 12)) (-3618 (((-1170) $) NIL)) (-2685 (((-112) $ |#1|) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3586 (((-55) $) 14)) (-3921 (((-112) $ $) NIL)))
+(((-1202 |#1|) (-13 (-843 |#1|) (-10 -8 (-15 -3181 ($ |#1| (-55))))) (-1111)) (T -1202))
+((-3181 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1202 *2)) (-4 *2 (-1111)))))
+(-13 (-843 |#1|) (-10 -8 (-15 -3181 ($ |#1| (-55)))))
+((-3003 ((|#1| (-652 |#1|)) 46)) (-2665 ((|#1| |#1| (-572)) 24)) (-2776 (((-1184 |#1|) |#1| (-930)) 20)))
+(((-1203 |#1|) (-10 -7 (-15 -3003 (|#1| (-652 |#1|))) (-15 -2776 ((-1184 |#1|) |#1| (-930))) (-15 -2665 (|#1| |#1| (-572)))) (-370)) (T -1203))
+((-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-930)) (-5 *2 (-1184 *3)) (-5 *1 (-1203 *3)) (-4 *3 (-370)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))))
+(-10 -7 (-15 -3003 (|#1| (-652 |#1|))) (-15 -2776 ((-1184 |#1|) |#1| (-930))) (-15 -2665 (|#1| |#1| (-572))))
+((-2912 (($) 10) (($ (-652 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)))) 14)) (-3033 (($ (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1442 (((-652 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) 39) (((-652 |#3|) $) 41)) (-3049 (($ (-1 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3161 (($ (-1 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1533 (((-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) $) 60)) (-3704 (($ (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) $) 16)) (-1634 (((-652 |#2|) $) 19)) (-3132 (((-112) |#2| $) 65)) (-3124 (((-3 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) "failed") (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) 64)) (-4105 (((-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) $) 69)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2950 (((-652 |#3|) $) 43)) (-2679 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) NIL) (((-779) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) $) NIL) (((-779) |#3| $) NIL) (((-779) (-1 (-112) |#3|) $) 79)) (-3491 (((-870) $) 27)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3921 (((-112) $ $) 51)))
+(((-1204 |#1| |#2| |#3|) (-10 -8 (-15 -3921 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3161 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2912 (|#1| (-652 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))))) (-15 -2912 (|#1|)) (-15 -3161 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3049 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1371 ((-779) (-1 (-112) |#3|) |#1|)) (-15 -1442 ((-652 |#3|) |#1|)) (-15 -1371 ((-779) |#3| |#1|)) (-15 -2679 (|#3| |#1| |#2| |#3|)) (-15 -2679 (|#3| |#1| |#2|)) (-15 -2950 ((-652 |#3|) |#1|)) (-15 -3132 ((-112) |#2| |#1|)) (-15 -1634 ((-652 |#2|) |#1|)) (-15 -3033 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3033 (|#1| (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3033 (|#1| (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -3124 ((-3 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) "failed") (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -1533 ((-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -3704 (|#1| (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -4105 ((-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -1371 ((-779) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -1442 ((-652 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -1371 ((-779) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3089 ((-112) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3776 ((-112) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3049 (|#1| (-1 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3161 (|#1| (-1 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|))) (-1205 |#2| |#3|) (-1111) (-1111)) (T -1204))
+NIL
+(-10 -8 (-15 -3921 ((-112) |#1| |#1|)) (-15 -3491 ((-870) |#1|)) (-15 -3161 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2912 (|#1| (-652 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))))) (-15 -2912 (|#1|)) (-15 -3161 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3049 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3776 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3089 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1371 ((-779) (-1 (-112) |#3|) |#1|)) (-15 -1442 ((-652 |#3|) |#1|)) (-15 -1371 ((-779) |#3| |#1|)) (-15 -2679 (|#3| |#1| |#2| |#3|)) (-15 -2679 (|#3| |#1| |#2|)) (-15 -2950 ((-652 |#3|) |#1|)) (-15 -3132 ((-112) |#2| |#1|)) (-15 -1634 ((-652 |#2|) |#1|)) (-15 -3033 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3033 (|#1| (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3033 (|#1| (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -3124 ((-3 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) "failed") (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -1533 ((-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -3704 (|#1| (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -4105 ((-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -1371 ((-779) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) |#1|)) (-15 -1442 ((-652 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -1371 ((-779) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3089 ((-112) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3776 ((-112) (-1 (-112) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3049 (|#1| (-1 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)) (-15 -3161 (|#1| (-1 (-2 (|:| -1640 |#2|) (|:| -3762 |#3|)) (-2 (|:| -1640 |#2|) (|:| -3762 |#3|))) |#1|)))
+((-3464 (((-112) $ $) 19 (-3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2912 (($) 73) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 72)) (-2812 (((-1284) $ |#1| |#1|) 100 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#2| $ |#1| |#2|) 74)) (-2265 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 46 (|has| $ (-6 -4454)))) (-1424 (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 56 (|has| $ (-6 -4454)))) (-1998 (((-3 |#2| "failed") |#1| $) 62)) (-1586 (($) 7 T CONST)) (-3955 (($ $) 59 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454))))) (-3033 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 48 (|has| $ (-6 -4454))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 47 (|has| $ (-6 -4454))) (((-3 |#2| "failed") |#1| $) 63)) (-4243 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 55 (|has| $ (-6 -4454)))) (-2925 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 57 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 54 (|has| $ (-6 -4454))) (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 53 (|has| $ (-6 -4454)))) (-3061 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4455)))) (-2986 ((|#2| $ |#1|) 89)) (-1442 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 31 (|has| $ (-6 -4454))) (((-652 |#2|) $) 80 (|has| $ (-6 -4454)))) (-2545 (((-112) $ (-779)) 9)) (-1531 ((|#1| $) 97 (|has| |#1| (-858)))) (-2396 (((-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 30 (|has| $ (-6 -4454))) (((-652 |#2|) $) 81 (|has| $ (-6 -4454)))) (-4211 (((-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454))))) (-2751 ((|#1| $) 96 (|has| |#1| (-858)))) (-3049 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 35 (|has| $ (-6 -4455))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4455)))) (-3161 (($ (-1 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3818 (((-112) $ (-779)) 10)) (-3618 (((-1170) $) 22 (-3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2608 (((-652 |#1|) $) 64)) (-4096 (((-112) |#1| $) 65)) (-1533 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 40)) (-3704 (($ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 41)) (-1634 (((-652 |#1|) $) 94)) (-3132 (((-112) |#1| $) 93)) (-2614 (((-1131) $) 21 (-3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-2570 ((|#2| $) 98 (|has| |#1| (-858)))) (-3124 (((-3 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) "failed") (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 52)) (-3803 (($ $ |#2|) 99 (|has| $ (-6 -4455)))) (-4105 (((-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 42)) (-3089 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 33 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))))) 27 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-300 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 26 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) 25 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 24 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)))) (($ $ (-652 |#2|) (-652 |#2|)) 87 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-300 |#2|)) 85 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111)))) (($ $ (-652 (-300 |#2|))) 84 (-12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4454)) (|has| |#2| (-1111))))) (-2950 (((-652 |#2|) $) 92)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2145 (($) 50) (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 49)) (-1371 (((-779) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 32 (|has| $ (-6 -4454))) (((-779) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| $ (-6 -4454)))) (((-779) |#2| $) 82 (-12 (|has| |#2| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4454)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 60 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))))) (-3503 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 51)) (-3491 (((-870) $) 18 (-3783 (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870)))))) (-3424 (((-112) $ $) 23 (-3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-4163 (($ (-652 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) 43)) (-3776 (((-112) (-1 (-112) (-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) $) 34 (|has| $ (-6 -4454))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (-3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1205 |#1| |#2|) (-141) (-1111) (-1111)) (T -1205))
+((-3659 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))) (-2912 (*1 *1) (-12 (-4 *1 (-1205 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))) (-2912 (*1 *1 *2) (-12 (-5 *2 (-652 (-2 (|:| -1640 *3) (|:| -3762 *4)))) (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *1 (-1205 *3 *4)))) (-3161 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
+(-13 (-618 |t#1| |t#2|) (-612 |t#1| |t#2|) (-10 -8 (-15 -3659 (|t#2| $ |t#1| |t#2|)) (-15 -2912 ($)) (-15 -2912 ($ (-652 (-2 (|:| -1640 |t#1|) (|:| -3762 |t#2|))))) (-15 -3161 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1640 |#1|) (|:| -3762 |#2|))) . T) ((-102) -3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-621 (-870)) -3783 (|has| |#2| (-1111)) (|has| |#2| (-621 (-870))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-621 (-870)))) ((-152 #0#) . T) ((-622 (-544)) |has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-622 (-544))) ((-231 #0#) . T) ((-239 #0#) . T) ((-292 |#1| |#2|) . T) ((-294 |#1| |#2|) . T) ((-315 #0#) -12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-315 |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-497 #0#) . T) ((-497 |#2|) . T) ((-612 |#1| |#2|) . T) ((-522 #0# #0#) -12 (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-315 (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)))) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-522 |#2| |#2|) -12 (|has| |#2| (-315 |#2|)) (|has| |#2| (-1111))) ((-618 |#1| |#2|) . T) ((-1111) -3783 (|has| |#2| (-1111)) (|has| (-2 (|:| -1640 |#1|) (|:| -3762 |#2|)) (-1111))) ((-1229) . T))
+((-4134 (((-112)) 29)) (-1434 (((-1284) (-1170)) 31)) (-2343 (((-112)) 41)) (-3968 (((-1284)) 39)) (-2873 (((-1284) (-1170) (-1170)) 30)) (-3916 (((-112)) 42)) (-3704 (((-1284) |#1| |#2|) 53)) (-3273 (((-1284)) 26)) (-3505 (((-3 |#2| "failed") |#1|) 51)) (-2618 (((-1284)) 40)))
+(((-1206 |#1| |#2|) (-10 -7 (-15 -3273 ((-1284))) (-15 -2873 ((-1284) (-1170) (-1170))) (-15 -1434 ((-1284) (-1170))) (-15 -3968 ((-1284))) (-15 -2618 ((-1284))) (-15 -4134 ((-112))) (-15 -2343 ((-112))) (-15 -3916 ((-112))) (-15 -3505 ((-3 |#2| "failed") |#1|)) (-15 -3704 ((-1284) |#1| |#2|))) (-1111) (-1111)) (T -1206))
+((-3704 (*1 *2 *3 *4) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-3505 (*1 *2 *3) (|partial| -12 (-4 *2 (-1111)) (-5 *1 (-1206 *3 *2)) (-4 *3 (-1111)))) (-3916 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-2343 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-4134 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-2618 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-3968 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)))) (-2873 (*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111)))) (-3273 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111)))))
+(-10 -7 (-15 -3273 ((-1284))) (-15 -2873 ((-1284) (-1170) (-1170))) (-15 -1434 ((-1284) (-1170))) (-15 -3968 ((-1284))) (-15 -2618 ((-1284))) (-15 -4134 ((-112))) (-15 -2343 ((-112))) (-15 -3916 ((-112))) (-15 -3505 ((-3 |#2| "failed") |#1|)) (-15 -3704 ((-1284) |#1| |#2|)))
+((-4025 (((-1170) (-1170)) 22)) (-2510 (((-52) (-1170)) 25)))
+(((-1207) (-10 -7 (-15 -2510 ((-52) (-1170))) (-15 -4025 ((-1170) (-1170))))) (T -1207))
+((-4025 (*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1207)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-1207)))))
+(-10 -7 (-15 -2510 ((-52) (-1170))) (-15 -4025 ((-1170) (-1170))))
+((-3491 (((-1209) |#1|) 11)))
+(((-1208 |#1|) (-10 -7 (-15 -3491 ((-1209) |#1|))) (-1111)) (T -1208))
+((-3491 (*1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *1 (-1208 *3)) (-4 *3 (-1111)))))
+(-10 -7 (-15 -3491 ((-1209) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3352 (((-652 (-1170)) $) 39)) (-1887 (((-652 (-1170)) $ (-652 (-1170))) 42)) (-4265 (((-652 (-1170)) $ (-652 (-1170))) 41)) (-2703 (((-652 (-1170)) $ (-652 (-1170))) 43)) (-1763 (((-652 (-1170)) $) 38)) (-2924 (($) 28)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2923 (((-652 (-1170)) $) 40)) (-3105 (((-1284) $ (-572)) 35) (((-1284) $) 36)) (-3222 (($ (-870) (-572)) 33) (($ (-870) (-572) (-870)) NIL)) (-3491 (((-870) $) 49) (($ (-870)) 32)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1209) (-13 (-1111) (-624 (-870)) (-10 -8 (-15 -3222 ($ (-870) (-572))) (-15 -3222 ($ (-870) (-572) (-870))) (-15 -3105 ((-1284) $ (-572))) (-15 -3105 ((-1284) $)) (-15 -2923 ((-652 (-1170)) $)) (-15 -3352 ((-652 (-1170)) $)) (-15 -2924 ($)) (-15 -1763 ((-652 (-1170)) $)) (-15 -2703 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -1887 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -4265 ((-652 (-1170)) $ (-652 (-1170))))))) (T -1209))
+((-3222 (*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209)))) (-3222 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209)))) (-3105 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1209)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1209)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-2924 (*1 *1) (-5 *1 (-1209))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-2703 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-1887 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))) (-4265 (*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
+(-13 (-1111) (-624 (-870)) (-10 -8 (-15 -3222 ($ (-870) (-572))) (-15 -3222 ($ (-870) (-572) (-870))) (-15 -3105 ((-1284) $ (-572))) (-15 -3105 ((-1284) $)) (-15 -2923 ((-652 (-1170)) $)) (-15 -3352 ((-652 (-1170)) $)) (-15 -2924 ($)) (-15 -1763 ((-652 (-1170)) $)) (-15 -2703 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -1887 ((-652 (-1170)) $ (-652 (-1170)))) (-15 -4265 ((-652 (-1170)) $ (-652 (-1170))))))
+((-3464 (((-112) $ $) NIL)) (-2675 (((-1170) $ (-1170)) 17) (((-1170) $) 16)) (-4280 (((-1170) $ (-1170)) 15)) (-3098 (($ $ (-1170)) NIL)) (-3994 (((-3 (-1170) "failed") $) 11)) (-2882 (((-1170) $) 8)) (-1783 (((-3 (-1170) "failed") $) 12)) (-2594 (((-1170) $) 9)) (-3589 (($ (-396)) NIL) (($ (-396) (-1170)) NIL)) (-2402 (((-396) $) NIL)) (-3618 (((-1170) $) NIL)) (-3134 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-2503 (((-112) $) 21)) (-3491 (((-870) $) NIL)) (-3725 (($ $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1210) (-13 (-371 (-396) (-1170)) (-10 -8 (-15 -2675 ((-1170) $ (-1170))) (-15 -2675 ((-1170) $)) (-15 -2882 ((-1170) $)) (-15 -3994 ((-3 (-1170) "failed") $)) (-15 -1783 ((-3 (-1170) "failed") $)) (-15 -2503 ((-112) $))))) (T -1210))
+((-2675 (*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-3994 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210)))))
+(-13 (-371 (-396) (-1170)) (-10 -8 (-15 -2675 ((-1170) $ (-1170))) (-15 -2675 ((-1170) $)) (-15 -2882 ((-1170) $)) (-15 -3994 ((-3 (-1170) "failed") $)) (-15 -1783 ((-3 (-1170) "failed") $)) (-15 -2503 ((-112) $))))
+((-4304 (((-3 (-572) "failed") |#1|) 19)) (-3506 (((-3 (-572) "failed") |#1|) 14)) (-4337 (((-572) (-1170)) 33)))
+(((-1211 |#1|) (-10 -7 (-15 -4304 ((-3 (-572) "failed") |#1|)) (-15 -3506 ((-3 (-572) "failed") |#1|)) (-15 -4337 ((-572) (-1170)))) (-1060)) (T -1211))
+((-4337 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-1211 *4)) (-4 *4 (-1060)))) (-3506 (*1 *2 *3) (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))) (-4304 (*1 *2 *3) (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))))
+(-10 -7 (-15 -4304 ((-3 (-572) "failed") |#1|)) (-15 -3506 ((-3 (-572) "failed") |#1|)) (-15 -4337 ((-572) (-1170))))
+((-2974 (((-1144 (-227))) 9)))
+(((-1212) (-10 -7 (-15 -2974 ((-1144 (-227)))))) (T -1212))
+((-2974 (*1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1212)))))
+(-10 -7 (-15 -2974 ((-1144 (-227)))))
+((-2250 (($) 12)) (-2176 (($ $) 36)) (-2152 (($ $) 34)) (-3833 (($ $) 26)) (-2204 (($ $) 18)) (-3120 (($ $) 16)) (-2193 (($ $) 20)) (-3861 (($ $) 31)) (-2162 (($ $) 35)) (-3842 (($ $) 30)))
+(((-1213 |#1|) (-10 -8 (-15 -2250 (|#1|)) (-15 -2176 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3842 (|#1| |#1|))) (-1214)) (T -1213))
+NIL
+(-10 -8 (-15 -2250 (|#1|)) (-15 -2176 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)))
+((-3915 (($ $) 26)) (-3790 (($ $) 11)) (-3893 (($ $) 27)) (-3770 (($ $) 10)) (-3939 (($ $) 28)) (-3811 (($ $) 9)) (-2250 (($) 16)) (-4057 (($ $) 19)) (-3272 (($ $) 18)) (-2139 (($ $) 29)) (-3822 (($ $) 8)) (-3927 (($ $) 30)) (-3800 (($ $) 7)) (-3905 (($ $) 31)) (-3780 (($ $) 6)) (-2176 (($ $) 20)) (-3852 (($ $) 32)) (-2152 (($ $) 21)) (-3833 (($ $) 33)) (-2204 (($ $) 22)) (-3871 (($ $) 34)) (-3120 (($ $) 23)) (-3883 (($ $) 35)) (-2193 (($ $) 24)) (-3861 (($ $) 36)) (-2162 (($ $) 25)) (-3842 (($ $) 37)) (** (($ $ $) 17)))
+(((-1214) (-141)) (T -1214))
+((-2250 (*1 *1) (-4 *1 (-1214))))
+(-13 (-1217) (-95) (-501) (-35) (-290) (-10 -8 (-15 -2250 ($))))
+(((-35) . T) ((-95) . T) ((-290) . T) ((-501) . T) ((-1217) . T))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1653 ((|#1| $) 19)) (-2252 (($ |#1| (-652 $)) 28) (($ (-652 |#1|)) 35) (($ |#1|) 30)) (-2938 (((-112) $ (-779)) 72)) (-2927 ((|#1| $ |#1|) 14 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 13 (|has| $ (-6 -4455)))) (-1586 (($) NIL T CONST)) (-1442 (((-652 |#1|) $) 77 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 64)) (-1890 (((-112) $ $) 50 (|has| |#1| (-1111)))) (-2545 (((-112) $ (-779)) 62)) (-2396 (((-652 |#1|) $) 78 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3049 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 27)) (-3818 (((-112) $ (-779)) 60)) (-3104 (((-652 |#1|) $) 55)) (-3989 (((-112) $) 53)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3089 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 107)) (-3712 (((-112) $) 9)) (-1321 (($) 10)) (-2679 ((|#1| $ "value") NIL)) (-1762 (((-572) $ $) 48)) (-2807 (((-652 $) $) 89)) (-2457 (((-112) $ $) 110)) (-4089 (((-652 $) $) 105)) (-2221 (($ $) 106)) (-3727 (((-112) $) 84)) (-1371 (((-779) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4454))) (((-779) |#1| $) 17 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-3679 (($ $) 88)) (-3491 (((-870) $) 91 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 12)) (-1955 (((-112) $ $) 39 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 37 (|has| |#1| (-1111)))) (-3475 (((-779) $) 58 (|has| $ (-6 -4454)))))
+(((-1215 |#1|) (-13 (-1021 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2252 ($ |#1| (-652 $))) (-15 -2252 ($ (-652 |#1|))) (-15 -2252 ($ |#1|)) (-15 -3727 ((-112) $)) (-15 -2221 ($ $)) (-15 -4089 ((-652 $) $)) (-15 -2457 ((-112) $ $)) (-15 -2807 ((-652 $) $)))) (-1111)) (T -1215))
+((-3727 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))) (-2252 (*1 *1 *2 *3) (-12 (-5 *3 (-652 (-1215 *2))) (-5 *1 (-1215 *2)) (-4 *2 (-1111)))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1215 *3)))) (-2252 (*1 *1 *2) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111)))) (-2221 (*1 *1 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))) (-2457 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
+(-13 (-1021 |#1|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -2252 ($ |#1| (-652 $))) (-15 -2252 ($ (-652 |#1|))) (-15 -2252 ($ |#1|)) (-15 -3727 ((-112) $)) (-15 -2221 ($ $)) (-15 -4089 ((-652 $) $)) (-15 -2457 ((-112) $ $)) (-15 -2807 ((-652 $) $))))
+((-3790 (($ $) 15)) (-3811 (($ $) 12)) (-3822 (($ $) 10)) (-3800 (($ $) 17)))
+(((-1216 |#1|) (-10 -8 (-15 -3800 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3790 (|#1| |#1|))) (-1217)) (T -1216))
+NIL
+(-10 -8 (-15 -3800 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3790 (|#1| |#1|)))
+((-3790 (($ $) 11)) (-3770 (($ $) 10)) (-3811 (($ $) 9)) (-3822 (($ $) 8)) (-3800 (($ $) 7)) (-3780 (($ $) 6)))
+(((-1217) (-141)) (T -1217))
+((-3790 (*1 *1 *1) (-4 *1 (-1217))) (-3770 (*1 *1 *1) (-4 *1 (-1217))) (-3811 (*1 *1 *1) (-4 *1 (-1217))) (-3822 (*1 *1 *1) (-4 *1 (-1217))) (-3800 (*1 *1 *1) (-4 *1 (-1217))) (-3780 (*1 *1 *1) (-4 *1 (-1217))))
+(-13 (-10 -8 (-15 -3780 ($ $)) (-15 -3800 ($ $)) (-15 -3822 ($ $)) (-15 -3811 ($ $)) (-15 -3770 ($ $)) (-15 -3790 ($ $))))
+((-3012 ((|#2| |#2|) 98)) (-1688 (((-112) |#2|) 29)) (-3106 ((|#2| |#2|) 33)) (-2592 ((|#2| |#2|) 35)) (-4144 ((|#2| |#2| (-1188)) 92) ((|#2| |#2|) 93)) (-1959 (((-171 |#2|) |#2|) 31)) (-1830 ((|#2| |#2| (-1188)) 94) ((|#2| |#2|) 95)))
+(((-1218 |#1| |#2|) (-10 -7 (-15 -4144 (|#2| |#2|)) (-15 -4144 (|#2| |#2| (-1188))) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1188))) (-15 -3012 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -1688 ((-112) |#2|)) (-15 -1959 ((-171 |#2|) |#2|))) (-13 (-460) (-1049 (-572)) (-647 (-572))) (-13 (-27) (-1214) (-438 |#1|))) (T -1218))
+((-1959 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-171 *3)) (-5 *1 (-1218 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112)) (-5 *1 (-1218 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-3106 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-1830 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))) (-4144 (*1 *2 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
+(-10 -7 (-15 -4144 (|#2| |#2|)) (-15 -4144 (|#2| |#2| (-1188))) (-15 -1830 (|#2| |#2|)) (-15 -1830 (|#2| |#2| (-1188))) (-15 -3012 (|#2| |#2|)) (-15 -3106 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -1688 ((-112) |#2|)) (-15 -1959 ((-171 |#2|) |#2|)))
+((-4177 ((|#4| |#4| |#1|) 31)) (-4234 ((|#4| |#4| |#1|) 32)))
+(((-1219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4177 (|#4| |#4| |#1|)) (-15 -4234 (|#4| |#4| |#1|))) (-564) (-380 |#1|) (-380 |#1|) (-695 |#1| |#2| |#3|)) (T -1219))
+((-4234 (*1 *2 *2 *3) (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))) (-4177 (*1 *2 *2 *3) (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(-10 -7 (-15 -4177 (|#4| |#4| |#1|)) (-15 -4234 (|#4| |#4| |#1|)))
+((-3789 ((|#2| |#2|) 148)) (-3394 ((|#2| |#2|) 145)) (-3071 ((|#2| |#2|) 136)) (-4179 ((|#2| |#2|) 133)) (-3528 ((|#2| |#2|) 141)) (-3706 ((|#2| |#2|) 129)) (-1638 ((|#2| |#2|) 44)) (-2595 ((|#2| |#2|) 105)) (-3221 ((|#2| |#2|) 88)) (-1690 ((|#2| |#2|) 143)) (-2917 ((|#2| |#2|) 131)) (-3187 ((|#2| |#2|) 153)) (-1327 ((|#2| |#2|) 151)) (-1356 ((|#2| |#2|) 152)) (-3907 ((|#2| |#2|) 150)) (-3050 ((|#2| |#2|) 163)) (-2045 ((|#2| |#2|) 30 (-12 (|has| |#2| (-622 (-901 |#1|))) (|has| |#2| (-895 |#1|)) (|has| |#1| (-622 (-901 |#1|))) (|has| |#1| (-895 |#1|))))) (-2380 ((|#2| |#2|) 89)) (-3203 ((|#2| |#2|) 154)) (-1386 ((|#2| |#2|) 155)) (-2358 ((|#2| |#2|) 142)) (-3366 ((|#2| |#2|) 130)) (-2551 ((|#2| |#2|) 149)) (-2839 ((|#2| |#2|) 147)) (-2780 ((|#2| |#2|) 137)) (-2803 ((|#2| |#2|) 135)) (-3432 ((|#2| |#2|) 139)) (-2813 ((|#2| |#2|) 127)))
+(((-1220 |#1| |#2|) (-10 -7 (-15 -1386 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3050 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -3203 (|#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -3432 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -3071 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -2839 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -1327 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (IF (|has| |#1| (-895 |#1|)) (IF (|has| |#1| (-622 (-901 |#1|))) (IF (|has| |#2| (-622 (-901 |#1|))) (IF (|has| |#2| (-895 |#1|)) (-15 -2045 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-460) (-13 (-438 |#1|) (-1214))) (T -1220))
+((-2045 (*1 *2 *2) (-12 (-4 *3 (-622 (-901 *3))) (-4 *3 (-895 *3)) (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-622 (-901 *3))) (-4 *2 (-895 *3)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1327 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2839 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2803 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-4179 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3071 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3528 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2551 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3432 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2813 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3203 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-2595 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3050 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-3221 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))) (-1386 (*1 *2 *2) (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2)) (-4 *2 (-13 (-438 *3) (-1214))))))
+(-10 -7 (-15 -1386 (|#2| |#2|)) (-15 -3221 (|#2| |#2|)) (-15 -3050 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -3203 (|#2| |#2|)) (-15 -2813 (|#2| |#2|)) (-15 -3432 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -3071 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -4179 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -2803 (|#2| |#2|)) (-15 -2839 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -1327 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (IF (|has| |#1| (-895 |#1|)) (IF (|has| |#1| (-622 (-901 |#1|))) (IF (|has| |#2| (-622 (-901 |#1|))) (IF (|has| |#2| (-895 |#1|)) (-15 -2045 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1629 (((-112) |#5| $) 68) (((-112) $) 110)) (-2373 ((|#5| |#5| $) 83)) (-1424 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3512 (((-652 |#5|) (-652 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3072 (((-3 $ "failed") (-652 |#5|)) 135)) (-2581 (((-3 $ "failed") $) 120)) (-3802 ((|#5| |#5| $) 102)) (-2182 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1674 ((|#5| |#5| $) 106)) (-2925 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2042 (((-2 (|:| -3083 (-652 |#5|)) (|:| -3589 (-652 |#5|))) $) 63)) (-1870 (((-112) |#5| $) 66) (((-112) $) 111)) (-3698 ((|#4| $) 116)) (-4261 (((-3 |#5| "failed") $) 118)) (-1706 (((-652 |#5|) $) 55)) (-1338 (((-112) |#5| $) 75) (((-112) $) 115)) (-3113 ((|#5| |#5| $) 89)) (-4398 (((-112) $ $) 29)) (-4001 (((-112) |#5| $) 71) (((-112) $) 113)) (-2041 ((|#5| |#5| $) 86)) (-2570 (((-3 |#5| "failed") $) 117)) (-3103 (($ $ |#5|) 136)) (-1497 (((-779) $) 60)) (-3503 (($ (-652 |#5|)) 133)) (-3399 (($ $ |#4|) 131)) (-3831 (($ $ |#4|) 129)) (-2894 (($ $) 128)) (-3491 (((-870) $) NIL) (((-652 |#5|) $) 121)) (-1935 (((-779) $) 140)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-4273 (((-112) $ (-1 (-112) |#5| (-652 |#5|))) 108)) (-2254 (((-652 |#4|) $) 123)) (-2947 (((-112) |#4| $) 126)) (-3921 (((-112) $ $) 20)))
+(((-1221 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1935 ((-779) |#1|)) (-15 -3103 (|#1| |#1| |#5|)) (-15 -1424 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2947 ((-112) |#4| |#1|)) (-15 -2254 ((-652 |#4|) |#1|)) (-15 -2581 ((-3 |#1| "failed") |#1|)) (-15 -4261 ((-3 |#5| "failed") |#1|)) (-15 -2570 ((-3 |#5| "failed") |#1|)) (-15 -1674 (|#5| |#5| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3802 (|#5| |#5| |#1|)) (-15 -3113 (|#5| |#5| |#1|)) (-15 -2041 (|#5| |#5| |#1|)) (-15 -2373 (|#5| |#5| |#1|)) (-15 -3512 ((-652 |#5|) (-652 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2925 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1338 ((-112) |#1|)) (-15 -4001 ((-112) |#1|)) (-15 -1629 ((-112) |#1|)) (-15 -4273 ((-112) |#1| (-1 (-112) |#5| (-652 |#5|)))) (-15 -1338 ((-112) |#5| |#1|)) (-15 -4001 ((-112) |#5| |#1|)) (-15 -1629 ((-112) |#5| |#1|)) (-15 -2182 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1870 ((-112) |#1|)) (-15 -1870 ((-112) |#5| |#1|)) (-15 -2042 ((-2 (|:| -3083 (-652 |#5|)) (|:| -3589 (-652 |#5|))) |#1|)) (-15 -1497 ((-779) |#1|)) (-15 -1706 ((-652 |#5|) |#1|)) (-15 -3936 ((-3 (-2 (|:| |bas| |#1|) (|:| -2620 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3936 ((-3 (-2 (|:| |bas| |#1|) (|:| -2620 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4398 ((-112) |#1| |#1|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -3831 (|#1| |#1| |#4|)) (-15 -3698 (|#4| |#1|)) (-15 -3072 ((-3 |#1| "failed") (-652 |#5|))) (-15 -3491 ((-652 |#5|) |#1|)) (-15 -3503 (|#1| (-652 |#5|))) (-15 -2925 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2925 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1424 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2925 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|))) (-1222 |#2| |#3| |#4| |#5|) (-564) (-801) (-858) (-1076 |#2| |#3| |#4|)) (T -1221))
+NIL
+(-10 -8 (-15 -1935 ((-779) |#1|)) (-15 -3103 (|#1| |#1| |#5|)) (-15 -1424 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2947 ((-112) |#4| |#1|)) (-15 -2254 ((-652 |#4|) |#1|)) (-15 -2581 ((-3 |#1| "failed") |#1|)) (-15 -4261 ((-3 |#5| "failed") |#1|)) (-15 -2570 ((-3 |#5| "failed") |#1|)) (-15 -1674 (|#5| |#5| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3802 (|#5| |#5| |#1|)) (-15 -3113 (|#5| |#5| |#1|)) (-15 -2041 (|#5| |#5| |#1|)) (-15 -2373 (|#5| |#5| |#1|)) (-15 -3512 ((-652 |#5|) (-652 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2925 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1338 ((-112) |#1|)) (-15 -4001 ((-112) |#1|)) (-15 -1629 ((-112) |#1|)) (-15 -4273 ((-112) |#1| (-1 (-112) |#5| (-652 |#5|)))) (-15 -1338 ((-112) |#5| |#1|)) (-15 -4001 ((-112) |#5| |#1|)) (-15 -1629 ((-112) |#5| |#1|)) (-15 -2182 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1870 ((-112) |#1|)) (-15 -1870 ((-112) |#5| |#1|)) (-15 -2042 ((-2 (|:| -3083 (-652 |#5|)) (|:| -3589 (-652 |#5|))) |#1|)) (-15 -1497 ((-779) |#1|)) (-15 -1706 ((-652 |#5|) |#1|)) (-15 -3936 ((-3 (-2 (|:| |bas| |#1|) (|:| -2620 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3936 ((-3 (-2 (|:| |bas| |#1|) (|:| -2620 (-652 |#5|))) "failed") (-652 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4398 ((-112) |#1| |#1|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -3831 (|#1| |#1| |#4|)) (-15 -3698 (|#4| |#1|)) (-15 -3072 ((-3 |#1| "failed") (-652 |#5|))) (-15 -3491 ((-652 |#5|) |#1|)) (-15 -3503 (|#1| (-652 |#5|))) (-15 -2925 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2925 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1424 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2925 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3491 ((-870) |#1|)) (-15 -3921 ((-112) |#1| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) 86)) (-3426 (((-652 $) (-652 |#4|)) 87)) (-2220 (((-652 |#3|) $) 34)) (-2029 (((-112) $) 27)) (-4308 (((-112) $) 18 (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) 102) (((-112) $) 98)) (-2373 ((|#4| |#4| $) 93)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) 28)) (-2938 (((-112) $ (-779)) 45)) (-1424 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) 80)) (-1586 (($) 46 T CONST)) (-3571 (((-112) $) 23 (|has| |#1| (-564)))) (-3057 (((-112) $ $) 25 (|has| |#1| (-564)))) (-1528 (((-112) $ $) 24 (|has| |#1| (-564)))) (-2690 (((-112) $) 26 (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4400 (((-652 |#4|) (-652 |#4|) $) 19 (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) 20 (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) 37)) (-1869 (($ (-652 |#4|)) 36)) (-2581 (((-3 $ "failed") $) 83)) (-3802 ((|#4| |#4| $) 90)) (-3955 (($ $) 69 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#4| $) 68 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1674 ((|#4| |#4| $) 88)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) 106)) (-1442 (((-652 |#4|) $) 53 (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) 105) (((-112) $) 104)) (-3698 ((|#3| $) 35)) (-2545 (((-112) $ (-779)) 44)) (-2396 (((-652 |#4|) $) 54 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) 48)) (-1677 (((-652 |#3|) $) 33)) (-2002 (((-112) |#3| $) 32)) (-3818 (((-112) $ (-779)) 43)) (-3618 (((-1170) $) 10)) (-4261 (((-3 |#4| "failed") $) 84)) (-1706 (((-652 |#4|) $) 108)) (-1338 (((-112) |#4| $) 100) (((-112) $) 96)) (-3113 ((|#4| |#4| $) 91)) (-4398 (((-112) $ $) 111)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) 101) (((-112) $) 97)) (-2041 ((|#4| |#4| $) 92)) (-2614 (((-1131) $) 11)) (-2570 (((-3 |#4| "failed") $) 85)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4236 (((-3 $ "failed") $ |#4|) 79)) (-3103 (($ $ |#4|) 78)) (-3089 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) 60 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) 58 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) 57 (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) 39)) (-3712 (((-112) $) 42)) (-1321 (($) 41)) (-1497 (((-779) $) 107)) (-1371 (((-779) |#4| $) 55 (-12 (|has| |#4| (-1111)) (|has| $ (-6 -4454)))) (((-779) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4454)))) (-3679 (($ $) 40)) (-3222 (((-544) $) 70 (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) 61)) (-3399 (($ $ |#3|) 29)) (-3831 (($ $ |#3|) 31)) (-2894 (($ $) 89)) (-1757 (($ $ |#3|) 30)) (-3491 (((-870) $) 12) (((-652 |#4|) $) 38)) (-1935 (((-779) $) 77 (|has| |#3| (-375)))) (-3424 (((-112) $ $) 9)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) 99)) (-3776 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) 82)) (-2947 (((-112) |#3| $) 81)) (-3921 (((-112) $ $) 6)) (-3475 (((-779) $) 47 (|has| $ (-6 -4454)))))
+(((-1222 |#1| |#2| |#3| |#4|) (-141) (-564) (-801) (-858) (-1076 |t#1| |t#2| |t#3|)) (T -1222))
+((-4398 (*1 *2 *1 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-3936 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2620 (-652 *8)))) (-5 *3 (-652 *8)) (-4 *1 (-1222 *5 *6 *7 *8)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2620 (-652 *9)))) (-5 *3 (-652 *9)) (-4 *1 (-1222 *6 *7 *8 *9)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *6)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-779)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-2 (|:| -3083 (-652 *6)) (|:| -3589 (-652 *6)))))) (-1870 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-2182 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1222 *5 *6 *7 *3)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)))) (-1629 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-4001 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-4273 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-652 *7))) (-4 *1 (-1222 *4 *5 *6 *7)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))) (-2925 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1222 *5 *6 *7 *2)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *2 (-1076 *5 *6 *7)))) (-3512 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1222 *5 *6 *7 *8)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)))) (-2373 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-2041 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3113 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3802 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4)))) (-1674 (*1 *2 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1)) (-4 *1 (-1222 *4 *5 *6 *7)))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-652 (-2 (|:| -3083 *1) (|:| -3589 (-652 *7))))) (-5 *3 (-652 *7)) (-4 *1 (-1222 *4 *5 *6 *7)))) (-2570 (*1 *2 *1) (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-4261 (*1 *2 *1) (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-2581 (*1 *1 *1) (|partial| -12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564)) (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4)))) (-2254 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))) (-2947 (*1 *2 *3 *1) (-12 (-4 *1 (-1222 *4 *5 *3 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112)))) (-1424 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1222 *4 *5 *3 *2)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *3 (-858)) (-4 *2 (-1076 *4 *5 *3)))) (-4236 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *5 (-375)) (-5 *2 (-779)))))
+(-13 (-987 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4454) (-6 -4455) (-15 -4398 ((-112) $ $)) (-15 -3936 ((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |t#4|))) "failed") (-652 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3936 ((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |t#4|))) "failed") (-652 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1706 ((-652 |t#4|) $)) (-15 -1497 ((-779) $)) (-15 -2042 ((-2 (|:| -3083 (-652 |t#4|)) (|:| -3589 (-652 |t#4|))) $)) (-15 -1870 ((-112) |t#4| $)) (-15 -1870 ((-112) $)) (-15 -2182 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1629 ((-112) |t#4| $)) (-15 -4001 ((-112) |t#4| $)) (-15 -1338 ((-112) |t#4| $)) (-15 -4273 ((-112) $ (-1 (-112) |t#4| (-652 |t#4|)))) (-15 -1629 ((-112) $)) (-15 -4001 ((-112) $)) (-15 -1338 ((-112) $)) (-15 -2925 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3512 ((-652 |t#4|) (-652 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2373 (|t#4| |t#4| $)) (-15 -2041 (|t#4| |t#4| $)) (-15 -3113 (|t#4| |t#4| $)) (-15 -3802 (|t#4| |t#4| $)) (-15 -2894 ($ $)) (-15 -1674 (|t#4| |t#4| $)) (-15 -3426 ((-652 $) (-652 |t#4|))) (-15 -3355 ((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |t#4|)))) (-652 |t#4|))) (-15 -2570 ((-3 |t#4| "failed") $)) (-15 -4261 ((-3 |t#4| "failed") $)) (-15 -2581 ((-3 $ "failed") $)) (-15 -2254 ((-652 |t#3|) $)) (-15 -2947 ((-112) |t#3| $)) (-15 -1424 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4236 ((-3 $ "failed") $ |t#4|)) (-15 -3103 ($ $ |t#4|)) (IF (|has| |t#3| (-375)) (-15 -1935 ((-779) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-621 (-652 |#4|)) . T) ((-621 (-870)) . T) ((-152 |#4|) . T) ((-622 (-544)) |has| |#4| (-622 (-544))) ((-315 |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-497 |#4|) . T) ((-522 |#4| |#4|) -12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1111) . T) ((-1229) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1188)) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3939 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3102 (((-961 |#1|) $ (-779)) 17) (((-961 |#1|) $ (-779) (-779)) NIL)) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-779) $ (-1188)) NIL) (((-779) $ (-1188) (-779)) NIL)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3357 (((-112) $) NIL)) (-3042 (($ $ (-652 (-1188)) (-652 (-539 (-1188)))) NIL) (($ $ (-1188) (-539 (-1188))) NIL) (($ |#1| (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4057 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-4161 (($ $ (-1188)) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188) |#1|) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-2374 (($ (-1 $) (-1188) |#1|) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3103 (($ $ (-779)) NIL)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3272 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3654 (($ $ (-1188) $) NIL) (($ $ (-652 (-1188)) (-652 $)) NIL) (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL)) (-3011 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-1497 (((-539 (-1188)) $) NIL)) (-2139 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-564))) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-1188)) NIL) (($ (-961 |#1|)) NIL)) (-4206 ((|#1| $ (-539 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (((-961 |#1|) $ (-779)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-4019 (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1223 |#1|) (-13 (-748 |#1| (-1188)) (-10 -8 (-15 -4206 ((-961 |#1|) $ (-779))) (-15 -3491 ($ (-1188))) (-15 -3491 ($ (-961 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $ (-1188) |#1|)) (-15 -2374 ($ (-1 $) (-1188) |#1|))) |%noBranch|))) (-1060)) (T -1223))
+((-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-961 *4)) (-5 *1 (-1223 *4)) (-4 *4 (-1060)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-1060)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-5 *1 (-1223 *3)))) (-4161 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))) (-2374 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1223 *4))) (-5 *3 (-1188)) (-5 *1 (-1223 *4)) (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))))
+(-13 (-748 |#1| (-1188)) (-10 -8 (-15 -4206 ((-961 |#1|) $ (-779))) (-15 -3491 ($ (-1188))) (-15 -3491 ($ (-961 |#1|))) (IF (|has| |#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $ (-1188) |#1|)) (-15 -2374 ($ (-1 $) (-1188) |#1|))) |%noBranch|)))
+((-2256 (($ |#1| (-652 (-652 (-952 (-227)))) (-112)) 19)) (-4321 (((-112) $ (-112)) 18)) (-3438 (((-112) $) 17)) (-3708 (((-652 (-652 (-952 (-227)))) $) 13)) (-4085 ((|#1| $) 8)) (-2428 (((-112) $) 15)))
+(((-1224 |#1|) (-10 -8 (-15 -4085 (|#1| $)) (-15 -3708 ((-652 (-652 (-952 (-227)))) $)) (-15 -2428 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -4321 ((-112) $ (-112))) (-15 -2256 ($ |#1| (-652 (-652 (-952 (-227)))) (-112)))) (-985)) (T -1224))
+((-2256 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-112)) (-5 *1 (-1224 *2)) (-4 *2 (-985)))) (-4321 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-1224 *3)) (-4 *3 (-985)))) (-4085 (*1 *2 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-985)))))
+(-10 -8 (-15 -4085 (|#1| $)) (-15 -3708 ((-652 (-652 (-952 (-227)))) $)) (-15 -2428 ((-112) $)) (-15 -3438 ((-112) $)) (-15 -4321 ((-112) $ (-112))) (-15 -2256 ($ |#1| (-652 (-652 (-952 (-227)))) (-112))))
+((-1572 (((-952 (-227)) (-952 (-227))) 31)) (-2460 (((-952 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3823 (((-652 (-952 (-227))) (-952 (-227)) (-952 (-227)) (-952 (-227)) (-227) (-652 (-652 (-227)))) 56)) (-1606 (((-227) (-952 (-227)) (-952 (-227))) 27)) (-3947 (((-952 (-227)) (-952 (-227)) (-952 (-227))) 28)) (-3531 (((-652 (-652 (-227))) (-572)) 44)) (-4018 (((-952 (-227)) (-952 (-227)) (-952 (-227))) 26)) (-4005 (((-952 (-227)) (-952 (-227)) (-952 (-227))) 24)) (* (((-952 (-227)) (-227) (-952 (-227))) 22)))
+(((-1225) (-10 -7 (-15 -2460 ((-952 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-952 (-227)) (-227) (-952 (-227)))) (-15 -4005 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -4018 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -1606 ((-227) (-952 (-227)) (-952 (-227)))) (-15 -3947 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -1572 ((-952 (-227)) (-952 (-227)))) (-15 -3531 ((-652 (-652 (-227))) (-572))) (-15 -3823 ((-652 (-952 (-227))) (-952 (-227)) (-952 (-227)) (-952 (-227)) (-227) (-652 (-652 (-227))))))) (T -1225))
+((-3823 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-652 (-652 (-227)))) (-5 *4 (-227)) (-5 *2 (-652 (-952 *4))) (-5 *1 (-1225)) (-5 *3 (-952 *4)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-572)) (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-1225)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (-3947 (*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (-1606 (*1 *2 *3 *3) (-12 (-5 *3 (-952 (-227))) (-5 *2 (-227)) (-5 *1 (-1225)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (-4005 (*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-952 (-227))) (-5 *3 (-227)) (-5 *1 (-1225)))) (-2460 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)) (-5 *3 (-227)))))
+(-10 -7 (-15 -2460 ((-952 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-952 (-227)) (-227) (-952 (-227)))) (-15 -4005 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -4018 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -1606 ((-227) (-952 (-227)) (-952 (-227)))) (-15 -3947 ((-952 (-227)) (-952 (-227)) (-952 (-227)))) (-15 -1572 ((-952 (-227)) (-952 (-227)))) (-15 -3531 ((-652 (-652 (-227))) (-572))) (-15 -3823 ((-652 (-952 (-227))) (-952 (-227)) (-952 (-227)) (-952 (-227)) (-227) (-652 (-652 (-227))))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1424 ((|#1| $ (-779)) 18)) (-2040 (((-779) $) 13)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3491 (((-967 |#1|) $) 12) (($ (-967 |#1|)) 11) (((-870) $) 29 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3921 (((-112) $ $) 22 (|has| |#1| (-1111)))))
+(((-1226 |#1|) (-13 (-498 (-967 |#1|)) (-10 -8 (-15 -1424 (|#1| $ (-779))) (-15 -2040 ((-779) $)) (IF (|has| |#1| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|))) (-1229)) (T -1226))
+((-1424 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-1226 *2)) (-4 *2 (-1229)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1226 *3)) (-4 *3 (-1229)))))
+(-13 (-498 (-967 |#1|)) (-10 -8 (-15 -1424 (|#1| $ (-779))) (-15 -2040 ((-779) $)) (IF (|has| |#1| (-621 (-870))) (-6 (-621 (-870))) |%noBranch|) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|)))
+((-3756 (((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)) (-572)) 94)) (-3745 (((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|))) 86)) (-2025 (((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|))) 70)))
+(((-1227 |#1|) (-10 -7 (-15 -3745 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -2025 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -3756 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)) (-572)))) (-356)) (T -1227))
+((-3756 (*1 *2 *3 *4) (-12 (-5 *4 (-572)) (-4 *5 (-356)) (-5 *2 (-426 (-1184 (-1184 *5)))) (-5 *1 (-1227 *5)) (-5 *3 (-1184 (-1184 *5))))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4)))) (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))) (-3745 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4)))) (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))))
+(-10 -7 (-15 -3745 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -2025 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)))) (-15 -3756 ((-426 (-1184 (-1184 |#1|))) (-1184 (-1184 |#1|)) (-572))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 9) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1228) (-1094)) (T -1228))
+NIL
+(-1094)
+NIL
+(((-1229) (-141)) (T -1229))
+NIL
+(-13 (-10 -7 (-6 -4055)))
+((-2524 (((-112)) 18)) (-3028 (((-1284) (-652 |#1|) (-652 |#1|)) 22) (((-1284) (-652 |#1|)) 23)) (-2545 (((-112) |#1| |#1|) 37 (|has| |#1| (-858)))) (-3818 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1501 ((|#1| (-652 |#1|)) 38 (|has| |#1| (-858))) ((|#1| (-652 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3699 (((-2 (|:| -2331 (-652 |#1|)) (|:| -2891 (-652 |#1|)))) 20)))
+(((-1230 |#1|) (-10 -7 (-15 -3028 ((-1284) (-652 |#1|))) (-15 -3028 ((-1284) (-652 |#1|) (-652 |#1|))) (-15 -3699 ((-2 (|:| -2331 (-652 |#1|)) (|:| -2891 (-652 |#1|))))) (-15 -3818 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3818 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1501 (|#1| (-652 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2524 ((-112))) (IF (|has| |#1| (-858)) (PROGN (-15 -1501 (|#1| (-652 |#1|))) (-15 -2545 ((-112) |#1| |#1|))) |%noBranch|)) (-1111)) (T -1230))
+((-2545 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-858)) (-4 *3 (-1111)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-858)) (-5 *1 (-1230 *2)))) (-2524 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1230 *2)) (-4 *2 (-1111)))) (-3818 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1111)) (-5 *2 (-112)) (-5 *1 (-1230 *3)))) (-3818 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))) (-3699 (*1 *2) (-12 (-5 *2 (-2 (|:| -2331 (-652 *3)) (|:| -2891 (-652 *3)))) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))) (-3028 (*1 *2 *3 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284)) (-5 *1 (-1230 *4)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284)) (-5 *1 (-1230 *4)))))
+(-10 -7 (-15 -3028 ((-1284) (-652 |#1|))) (-15 -3028 ((-1284) (-652 |#1|) (-652 |#1|))) (-15 -3699 ((-2 (|:| -2331 (-652 |#1|)) (|:| -2891 (-652 |#1|))))) (-15 -3818 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3818 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1501 (|#1| (-652 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2524 ((-112))) (IF (|has| |#1| (-858)) (PROGN (-15 -1501 (|#1| (-652 |#1|))) (-15 -2545 ((-112) |#1| |#1|))) |%noBranch|))
+((-2890 (((-1284) (-652 (-1188)) (-652 (-1188))) 14) (((-1284) (-652 (-1188))) 12)) (-3942 (((-1284)) 16)) (-3697 (((-2 (|:| -2891 (-652 (-1188))) (|:| -2331 (-652 (-1188))))) 20)))
+(((-1231) (-10 -7 (-15 -2890 ((-1284) (-652 (-1188)))) (-15 -2890 ((-1284) (-652 (-1188)) (-652 (-1188)))) (-15 -3697 ((-2 (|:| -2891 (-652 (-1188))) (|:| -2331 (-652 (-1188)))))) (-15 -3942 ((-1284))))) (T -1231))
+((-3942 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1231)))) (-3697 (*1 *2) (-12 (-5 *2 (-2 (|:| -2891 (-652 (-1188))) (|:| -2331 (-652 (-1188))))) (-5 *1 (-1231)))) (-2890 (*1 *2 *3 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231)))))
+(-10 -7 (-15 -2890 ((-1284) (-652 (-1188)))) (-15 -2890 ((-1284) (-652 (-1188)) (-652 (-1188)))) (-15 -3697 ((-2 (|:| -2891 (-652 (-1188))) (|:| -2331 (-652 (-1188)))))) (-15 -3942 ((-1284))))
+((-1861 (($ $) 17)) (-3439 (((-112) $) 28)))
+(((-1232 |#1|) (-10 -8 (-15 -1861 (|#1| |#1|)) (-15 -3439 ((-112) |#1|))) (-1233)) (T -1232))
+NIL
+(-10 -8 (-15 -1861 (|#1| |#1|)) (-15 -3439 ((-112) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 57)) (-2359 (((-426 $) $) 58)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-3439 (((-112) $) 59)) (-4422 (((-112) $) 35)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-2972 (((-426 $) $) 56)) (-3453 (((-3 $ "failed") $ $) 48)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27)))
+(((-1233) (-141)) (T -1233))
+((-3439 (*1 *2 *1) (-12 (-4 *1 (-1233)) (-5 *2 (-112)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233)))) (-1861 (*1 *1 *1) (-4 *1 (-1233))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233)))))
+(-13 (-460) (-10 -8 (-15 -3439 ((-112) $)) (-15 -2359 ((-426 $) $)) (-15 -1861 ($ $)) (-15 -2972 ((-426 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-296) . T) ((-460) . T) ((-564) . T) ((-654 (-572)) . T) ((-654 $) . T) ((-656 $) . T) ((-648 $) . T) ((-725 $) . T) ((-734) . T) ((-1062 $) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3978 (($ $ $) NIL)) (-3967 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-1234) (-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))) (T -1234))
+((-3967 (*1 *1 *1 *1) (-5 *1 (-1234))) (-3978 (*1 *1 *1 *1) (-5 *1 (-1234))) (-1586 (*1 *1) (-5 *1 (-1234))))
+(-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1476 (($ $ $) NIL)) (-3366 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-1233) (-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))) (T -1233))
-((-3366 (*1 *1 *1 *1) (-5 *1 (-1233))) (-1476 (*1 *1 *1 *1) (-5 *1 (-1233))) (-2333 (*1 *1) (-5 *1 (-1233))))
-(-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3978 (($ $ $) NIL)) (-3967 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-1235) (-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))) (T -1235))
+((-3967 (*1 *1 *1 *1) (-5 *1 (-1235))) (-3978 (*1 *1 *1 *1) (-5 *1 (-1235))) (-1586 (*1 *1) (-5 *1 (-1235))))
+(-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1476 (($ $ $) NIL)) (-3366 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-1234) (-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))) (T -1234))
-((-3366 (*1 *1 *1 *1) (-5 *1 (-1234))) (-1476 (*1 *1 *1 *1) (-5 *1 (-1234))) (-2333 (*1 *1) (-5 *1 (-1234))))
-(-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3978 (($ $ $) NIL)) (-3967 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-1236) (-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))) (T -1236))
+((-3967 (*1 *1 *1 *1) (-5 *1 (-1236))) (-3978 (*1 *1 *1 *1) (-5 *1 (-1236))) (-1586 (*1 *1) (-5 *1 (-1236))))
+(-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2847 (((-112) $ $) NIL)) (-2401 (((-777)) NIL)) (-2333 (($) NIL T CONST)) (-2066 (($) NIL)) (-1908 (($ $ $) NIL) (($) NIL T CONST)) (-1764 (($ $ $) NIL) (($) NIL T CONST)) (-1997 (((-928) $) NIL)) (-3240 (((-1168) $) NIL)) (-4298 (($ (-928)) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) NIL)) (-1476 (($ $ $) NIL)) (-3366 (($ $ $) NIL)) (-1344 (((-112) $ $) NIL)) (-3959 (((-112) $ $) NIL)) (-3933 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL)) (-3918 (((-112) $ $) NIL)))
-(((-1235) (-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))) (T -1235))
-((-3366 (*1 *1 *1 *1) (-5 *1 (-1235))) (-1476 (*1 *1 *1 *1) (-5 *1 (-1235))) (-2333 (*1 *1) (-5 *1 (-1235))))
-(-13 (-850) (-10 -8 (-15 -3366 ($ $ $)) (-15 -1476 ($ $ $)) (-15 -2333 ($) -3722)))
+((-3464 (((-112) $ $) NIL)) (-3037 (((-779)) NIL)) (-1586 (($) NIL T CONST)) (-2688 (($) NIL)) (-2536 (($ $ $) NIL) (($) NIL T CONST)) (-3928 (($ $ $) NIL) (($) NIL T CONST)) (-4370 (((-930) $) NIL)) (-3618 (((-1170) $) NIL)) (-1795 (($ (-930)) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) NIL)) (-3978 (($ $ $) NIL)) (-3967 (($ $ $) NIL)) (-3424 (((-112) $ $) NIL)) (-3976 (((-112) $ $) NIL)) (-3954 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL)) (-3943 (((-112) $ $) NIL)))
+(((-1237) (-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))) (T -1237))
+((-3967 (*1 *1 *1 *1) (-5 *1 (-1237))) (-3978 (*1 *1 *1 *1) (-5 *1 (-1237))) (-1586 (*1 *1) (-5 *1 (-1237))))
+(-13 (-852) (-10 -8 (-15 -3967 ($ $ $)) (-15 -3978 ($ $ $)) (-15 -1586 ($) -4338)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-2536 (((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)) 23)))
-(((-1236 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2536 ((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|)))) (-1058) (-1058) (-1186) (-1186) |#1| |#2|) (T -1236))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5 *7 *9)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1241 *6 *8 *10)) (-5 *1 (-1236 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1186)))))
-(-10 -7 (-15 -2536 ((-1241 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1241 |#1| |#3| |#5|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 (-1091)) $) 86)) (-1433 (((-1186) $) 116)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3025 (($ $ (-570)) 111) (($ $ (-570) (-570)) 110)) (-2972 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 117)) (-3900 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 175 (|has| |#1| (-368)))) (-2929 (((-424 $) $) 176 (|has| |#1| (-368)))) (-2459 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) 166 (|has| |#1| (-368)))) (-3876 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 186)) (-1513 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) 18 T CONST)) (-2788 (($ $ $) 170 (|has| |#1| (-368)))) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-2595 (((-413 (-959 |#1|)) $ (-570)) 184 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 183 (|has| |#1| (-562)))) (-2799 (($ $ $) 169 (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 164 (|has| |#1| (-368)))) (-2145 (((-112) $) 177 (|has| |#1| (-368)))) (-3296 (((-112) $) 85)) (-1625 (($) 158 (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-570) $) 113) (((-570) $ (-570)) 112)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 129 (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) 114)) (-3103 (($ (-1 |#1| (-570)) $) 185)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 173 (|has| |#1| (-368)))) (-1338 (((-112) $) 74)) (-2402 (($ |#1| (-570)) 73) (($ $ (-1091) (-570)) 88) (($ $ (-650 (-1091)) (-650 (-570))) 87)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-3447 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3867 (($ (-650 $)) 162 (|has| |#1| (-368))) (($ $ $) 161 (|has| |#1| (-368)))) (-3240 (((-1168) $) 10)) (-4315 (($ $) 178 (|has| |#1| (-368)))) (-1363 (($ $) 182 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 181 (-3749 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1212)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 163 (|has| |#1| (-368)))) (-3903 (($ (-650 $)) 160 (|has| |#1| (-368))) (($ $ $) 159 (|has| |#1| (-368)))) (-2340 (((-424 $) $) 174 (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 171 (|has| |#1| (-368)))) (-3308 (($ $ (-570)) 108)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 165 (|has| |#1| (-368)))) (-2651 (($ $) 156 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-570)))))) (-2002 (((-777) $) 167 (|has| |#1| (-368)))) (-2057 ((|#1| $ (-570)) 118) (($ $ $) 94 (|has| (-570) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 168 (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186) (-777)) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186))) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186)) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-2650 (((-570) $) 76)) (-1523 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 84)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3481 ((|#1| $ (-570)) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1744 ((|#1| $) 115)) (-1344 (((-112) $ $) 9)) (-1561 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1536 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-570)) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) 106 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186) (-777)) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186))) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186)) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-777)) 98 (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 180 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 179 (|has| |#1| (-368))) (($ $ $) 157 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 128 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-1237 |#1|) (-141) (-1058)) (T -1237))
-((-1866 (*1 *1 *2) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) (-4 *3 (-1058)) (-4 *1 (-1237 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1237 *3)) (-4 *3 (-1058)))) (-2595 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1237 *4)) (-4 *4 (-1058)) (-4 *4 (-562)) (-5 *2 (-413 (-959 *4))))) (-2595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1237 *4)) (-4 *4 (-1058)) (-4 *4 (-562)) (-5 *2 (-413 (-959 *4))))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) (-1363 (*1 *1 *1 *2) (-3749 (-12 (-5 *2 (-1186)) (-4 *1 (-1237 *3)) (-4 *3 (-1058)) (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1212)) (-4 *3 (-38 (-413 (-570)))))) (-12 (-5 *2 (-1186)) (-4 *1 (-1237 *3)) (-4 *3 (-1058)) (-12 (|has| *3 (-15 -1598 ((-650 *2) *3))) (|has| *3 (-15 -1363 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570)))))))))
-(-13 (-1255 |t#1| (-570)) (-10 -8 (-15 -1866 ($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |t#1|))))) (-15 -3103 ($ (-1 |t#1| (-570)) $)) (IF (|has| |t#1| (-562)) (PROGN (-15 -2595 ((-413 (-959 |t#1|)) $ (-570))) (-15 -2595 ((-413 (-959 |t#1|)) $ (-570) (-570)))) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $)) (IF (|has| |t#1| (-15 -1363 (|t#1| |t#1| (-1186)))) (IF (|has| |t#1| (-15 -1598 ((-650 (-1186)) |t#1|))) (-15 -1363 ($ $ (-1186))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1212)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-570))) (-15 -1363 ($ $ (-1186))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1011)) (-6 (-1212))) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-570)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-570) |#1|))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 #0# |#1|) . T) ((-290 $ $) |has| (-570) (-1121)) ((-294) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-368) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-723 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1212) |has| |#1| (-38 (-413 (-570)))) ((-1215) |has| |#1| (-38 (-413 (-570)))) ((-1227) . T) ((-1231) |has| |#1| (-368)) ((-1255 |#1| #0#) . T))
-((-2564 (((-112) $) 12)) (-2435 (((-3 |#3| "failed") $) 17) (((-3 (-1186) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL)) (-4387 ((|#3| $) 14) (((-1186) $) NIL) (((-413 (-570)) $) NIL) (((-570) $) NIL)))
-(((-1238 |#1| |#2| |#3|) (-10 -8 (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-1186) "failed") |#1|)) (-15 -4387 ((-1186) |#1|)) (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -4387 (|#3| |#1|)) (-15 -2564 ((-112) |#1|))) (-1239 |#2| |#3|) (-1058) (-1268 |#2|)) (T -1238))
-NIL
-(-10 -8 (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -2435 ((-3 (-1186) "failed") |#1|)) (-15 -4387 ((-1186) |#1|)) (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -4387 (|#3| |#1|)) (-15 -2564 ((-112) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3150 ((|#2| $) 243 (-3212 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-1598 (((-650 (-1091)) $) 86)) (-1433 (((-1186) $) 116)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3025 (($ $ (-570)) 111) (($ $ (-570) (-570)) 110)) (-2972 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 117)) (-3321 ((|#2| $) 279)) (-1632 (((-3 |#2| "failed") $) 275)) (-4268 ((|#2| $) 276)) (-3900 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) 20)) (-3585 (((-424 (-1182 $)) (-1182 $)) 252 (-3212 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3312 (($ $) 175 (|has| |#1| (-368)))) (-2929 (((-424 $) $) 176 (|has| |#1| (-368)))) (-2459 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 249 (-3212 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-1799 (((-112) $ $) 166 (|has| |#1| (-368)))) (-3876 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-2419 (((-570) $) 261 (-3212 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-1866 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 186)) (-1513 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#2| "failed") $) 282) (((-3 (-570) "failed") $) 272 (-3212 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) 270 (-3212 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-1186) "failed") $) 254 (-3212 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-4387 ((|#2| $) 283) (((-570) $) 271 (-3212 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-413 (-570)) $) 269 (-3212 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-1186) $) 253 (-3212 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-1557 (($ $) 278) (($ (-570) $) 277)) (-2788 (($ $ $) 170 (|has| |#1| (-368)))) (-4394 (($ $) 72)) (-3054 (((-695 |#2|) (-695 $)) 233 (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) 232 (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 231 (-3212 (|has| |#2| (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) 230 (-3212 (|has| |#2| (-645 (-570))) (|has| |#1| (-368))))) (-3957 (((-3 $ "failed") $) 37)) (-2595 (((-413 (-959 |#1|)) $ (-570)) 184 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 183 (|has| |#1| (-562)))) (-2066 (($) 245 (-3212 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-2799 (($ $ $) 169 (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 164 (|has| |#1| (-368)))) (-2145 (((-112) $) 177 (|has| |#1| (-368)))) (-2811 (((-112) $) 259 (-3212 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-3296 (((-112) $) 85)) (-1625 (($) 158 (|has| |#1| (-38 (-413 (-570)))))) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 237 (-3212 (|has| |#2| (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 236 (-3212 (|has| |#2| (-893 (-570))) (|has| |#1| (-368))))) (-3995 (((-570) $) 113) (((-570) $ (-570)) 112)) (-2005 (((-112) $) 35)) (-3249 (($ $) 241 (|has| |#1| (-368)))) (-1587 ((|#2| $) 239 (|has| |#1| (-368)))) (-3035 (($ $ (-570)) 129 (|has| |#1| (-38 (-413 (-570)))))) (-3525 (((-3 $ "failed") $) 273 (-3212 (|has| |#2| (-1161)) (|has| |#1| (-368))))) (-2746 (((-112) $) 260 (-3212 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-2529 (($ $ (-928)) 114)) (-3103 (($ (-1 |#1| (-570)) $) 185)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 173 (|has| |#1| (-368)))) (-1338 (((-112) $) 74)) (-2402 (($ |#1| (-570)) 73) (($ $ (-1091) (-570)) 88) (($ $ (-650 (-1091)) (-650 (-570))) 87)) (-1908 (($ $ $) 263 (-3212 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-1764 (($ $ $) 264 (-3212 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2536 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 225 (|has| |#1| (-368)))) (-3447 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3867 (($ (-650 $)) 162 (|has| |#1| (-368))) (($ $ $) 161 (|has| |#1| (-368)))) (-4280 (($ (-570) |#2|) 280)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 178 (|has| |#1| (-368)))) (-1363 (($ $) 182 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 181 (-3749 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1212)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3458 (($) 274 (-3212 (|has| |#2| (-1161)) (|has| |#1| (-368))) CONST)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 163 (|has| |#1| (-368)))) (-3903 (($ (-650 $)) 160 (|has| |#1| (-368))) (($ $ $) 159 (|has| |#1| (-368)))) (-4113 (($ $) 244 (-3212 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-2037 ((|#2| $) 247 (-3212 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-4187 (((-424 (-1182 $)) (-1182 $)) 250 (-3212 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-2874 (((-424 (-1182 $)) (-1182 $)) 251 (-3212 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-2340 (((-424 $) $) 174 (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 171 (|has| |#1| (-368)))) (-3308 (($ $ (-570)) 108)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 165 (|has| |#1| (-368)))) (-2651 (($ $) 156 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) |#2|) 224 (-3212 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 |#2|)) 223 (-3212 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-298 |#2|))) 222 (-3212 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-298 |#2|)) 221 (-3212 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ |#2| |#2|) 220 (-3212 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-650 |#2|) (-650 |#2|)) 219 (-3212 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368))))) (-2002 (((-777) $) 167 (|has| |#1| (-368)))) (-2057 ((|#1| $ (-570)) 118) (($ $ $) 94 (|has| (-570) (-1121))) (($ $ |#2|) 218 (-3212 (|has| |#2| (-290 |#2| |#2|)) (|has| |#1| (-368))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 168 (|has| |#1| (-368)))) (-2375 (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) 228 (|has| |#1| (-368))) (($ $ (-777)) 97 (-3749 (-3212 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 95 (-3749 (-3212 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) 102 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186) (-777)) 101 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-650 (-1186))) 100 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186)) 99 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))))) (-4424 (($ $) 242 (|has| |#1| (-368)))) (-1599 ((|#2| $) 240 (|has| |#1| (-368)))) (-2650 (((-570) $) 76)) (-1523 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-2601 (((-227) $) 258 (-3212 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-384) $) 257 (-3212 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-542) $) 256 (-3212 (|has| |#2| (-620 (-542))) (|has| |#1| (-368)))) (((-899 (-384)) $) 235 (-3212 (|has| |#2| (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) 234 (-3212 (|has| |#2| (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 248 (-3212 (-3212 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#1| (-368))))) (-2161 (($ $) 84)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 281) (($ (-1186)) 255 (-3212 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368)))) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3481 ((|#1| $ (-570)) 71)) (-1660 (((-3 $ "failed") $) 60 (-3749 (-3212 (-3749 (|has| |#2| (-146)) (-3212 (|has| $ (-146)) (|has| |#2| (-916)))) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2294 (((-777)) 32 T CONST)) (-1744 ((|#1| $) 115)) (-3850 ((|#2| $) 246 (-3212 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-1344 (((-112) $ $) 9)) (-1561 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1536 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-570)) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-2521 (($ $) 262 (-3212 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-1 |#2| |#2|)) 227 (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) 226 (|has| |#1| (-368))) (($ $ (-777)) 98 (-3749 (-3212 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 96 (-3749 (-3212 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) 106 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186) (-777)) 105 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-650 (-1186))) 104 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186)) 103 (-3749 (-3212 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))))) (-3959 (((-112) $ $) 266 (-3212 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3933 (((-112) $ $) 267 (-3212 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3892 (((-112) $ $) 6)) (-3945 (((-112) $ $) 265 (-3212 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3918 (((-112) $ $) 268 (-3212 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 180 (|has| |#1| (-368))) (($ |#2| |#2|) 238 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 179 (|has| |#1| (-368))) (($ $ $) 157 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 128 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 217 (|has| |#1| (-368))) (($ |#2| $) 216 (|has| |#1| (-368))) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-1239 |#1| |#2|) (-141) (-1058) (-1268 |t#1|)) (T -1239))
-((-2650 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1268 *3)) (-5 *2 (-570)))) (-4280 (*1 *1 *2 *3) (-12 (-5 *2 (-570)) (-4 *4 (-1058)) (-4 *1 (-1239 *4 *3)) (-4 *3 (-1268 *4)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1268 *3)))) (-1557 (*1 *1 *1) (-12 (-4 *1 (-1239 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1268 *2)))) (-1557 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1268 *3)))) (-4268 (*1 *2 *1) (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1268 *3)))) (-1632 (*1 *2 *1) (|partial| -12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1268 *3)))))
-(-13 (-1237 |t#1|) (-1047 |t#2|) (-622 |t#2|) (-10 -8 (-15 -4280 ($ (-570) |t#2|)) (-15 -2650 ((-570) $)) (-15 -3321 (|t#2| $)) (-15 -1557 ($ $)) (-15 -1557 ($ (-570) $)) (-15 -4268 (|t#2| $)) (-15 -1632 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-368)) (-6 (-1001 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-570)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-368)) ((-38 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-368)) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3749 (-12 (|has| |#1| (-368)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3749 (-12 (|has| |#1| (-368)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-622 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 #2=(-1186)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) ((-622 |#1|) |has| |#1| (-174)) ((-622 |#2|) . T) ((-622 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-620 (-227)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) ((-620 (-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) ((-620 (-542)) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-570))))) ((-233 |#2|) |has| |#1| (-368)) ((-235) -3749 (-12 (|has| |#1| (-368)) (|has| |#2| (-235))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 #0# |#1|) . T) ((-290 |#2| $) -12 (|has| |#1| (-368)) (|has| |#2| (-290 |#2| |#2|))) ((-290 $ $) |has| (-570) (-1121)) ((-294) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-313 |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|))) ((-368) |has| |#1| (-368)) ((-343 |#2|) |has| |#1| (-368)) ((-382 |#2|) |has| |#1| (-368)) ((-406 |#2|) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-520 (-1186) |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-520 (-1186) |#2|))) ((-520 |#2| |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|))) ((-562) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 |#2|) |has| |#1| (-368)) ((-652 $) . T) ((-654 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 |#2|) |has| |#1| (-368)) ((-654 $) . T) ((-646 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 |#2|) |has| |#1| (-368)) ((-646 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-645 (-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-645 (-570)))) ((-645 |#2|) |has| |#1| (-368)) ((-723 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 |#2|) |has| |#1| (-368)) ((-723 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-797) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-798) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-800) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-801) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-826) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-854) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-856) -3749 (-12 (|has| |#1| (-368)) (|has| |#2| (-856))) (-12 (|has| |#1| (-368)) (|has| |#2| (-826)))) ((-907 (-1186)) -3749 (-12 (|has| |#1| (-368)) (|has| |#2| (-907 (-1186)))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) ((-893 (-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-570)))) ((-891 |#2|) |has| |#1| (-368)) ((-916) -12 (|has| |#1| (-368)) (|has| |#2| (-916))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1001 |#2|) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1031) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) ((-1047 (-413 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570)))) ((-1047 (-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570)))) ((-1047 #2#) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) ((-1047 |#2|) . T) ((-1060 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 |#2|) |has| |#1| (-368)) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 |#2|) |has| |#1| (-368)) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) -12 (|has| |#1| (-368)) (|has| |#2| (-1161))) ((-1212) |has| |#1| (-38 (-413 (-570)))) ((-1215) |has| |#1| (-38 (-413 (-570)))) ((-1227) . T) ((-1231) |has| |#1| (-368)) ((-1237 |#1|) . T) ((-1255 |#1| #0#) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 81)) (-3150 ((|#2| $) NIL (-12 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 100)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-570)) 109) (($ $ (-570) (-570)) 111)) (-2972 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 51)) (-3321 ((|#2| $) 11)) (-1632 (((-3 |#2| "failed") $) 35)) (-4268 ((|#2| $) 36)) (-3900 (($ $) 206 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 182 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) 202 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 178 (|has| |#1| (-38 (-413 (-570)))))) (-2419 (((-570) $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-1866 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 59)) (-1513 (($ $) 210 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 186 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) 157) (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-1186) "failed") $) NIL (-12 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-4387 ((|#2| $) 156) (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-1186) $) NIL (-12 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-1557 (($ $) 65) (($ (-570) $) 28)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3054 (((-695 |#2|) (-695 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#1| (-368))))) (-3957 (((-3 $ "failed") $) 88)) (-2595 (((-413 (-959 |#1|)) $ (-570)) 124 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 126 (|has| |#1| (-562)))) (-2066 (($) NIL (-12 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-2811 (((-112) $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-3296 (((-112) $) 74)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#2| (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#2| (-893 (-570))) (|has| |#1| (-368))))) (-3995 (((-570) $) 105) (((-570) $ (-570)) 107)) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL (|has| |#1| (-368)))) (-1587 ((|#2| $) 165 (|has| |#1| (-368)))) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3525 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1161)) (|has| |#1| (-368))))) (-2746 (((-112) $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-2529 (($ $ (-928)) 148)) (-3103 (($ (-1 |#1| (-570)) $) 144)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-570)) 20) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-1908 (($ $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-1764 (($ $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2536 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-368)))) (-3447 (($ $) 176 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4280 (($ (-570) |#2|) 10)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 159 (|has| |#1| (-368)))) (-1363 (($ $) 228 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 233 (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212)))))) (-3458 (($) NIL (-12 (|has| |#2| (-1161)) (|has| |#1| (-368))) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4113 (($ $) NIL (-12 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-2037 ((|#2| $) NIL (-12 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-570)) 138)) (-2837 (((-3 $ "failed") $ $) 128 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2651 (($ $) 174 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) |#2|) NIL (-12 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 |#2|)) NIL (-12 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-570)) 103) (($ $ $) 90 (|has| (-570) (-1121))) (($ $ |#2|) NIL (-12 (|has| |#2| (-290 |#2| |#2|)) (|has| |#1| (-368))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-3749 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 149 (-3749 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) 153 (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-4424 (($ $) NIL (|has| |#1| (-368)))) (-1599 ((|#2| $) 166 (|has| |#1| (-368)))) (-2650 (((-570) $) 12)) (-1523 (($ $) 212 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 188 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 208 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 184 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 204 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 180 (|has| |#1| (-38 (-413 (-570)))))) (-2601 (((-227) $) NIL (-12 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-384) $) NIL (-12 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-542) $) NIL (-12 (|has| |#2| (-620 (-542))) (|has| |#1| (-368)))) (((-899 (-384)) $) NIL (-12 (|has| |#2| (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) NIL (-12 (|has| |#2| (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916)) (|has| |#1| (-368))))) (-2161 (($ $) 136)) (-2869 (((-868) $) 266) (($ (-570)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1186)) NIL (-12 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368)))) (($ (-413 (-570))) 169 (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3481 ((|#1| $ (-570)) 85)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#2| (-916)) (|has| |#1| (-368))) (-12 (|has| |#2| (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2294 (((-777)) 155 T CONST)) (-1744 ((|#1| $) 102)) (-3850 ((|#2| $) NIL (-12 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) 218 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 194 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) 214 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 190 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 222 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 198 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-570)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 224 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 200 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 220 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 196 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 216 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 192 (|has| |#1| (-38 (-413 (-570)))))) (-2521 (($ $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-1981 (($) 13 T CONST)) (-1998 (($) 18 T CONST)) (-3414 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-3749 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) NIL (-3749 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-3959 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3933 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3892 (((-112) $ $) 72)) (-3945 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3918 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 163 (|has| |#1| (-368))) (($ |#2| |#2|) 164 (|has| |#1| (-368)))) (-4003 (($ $) 227) (($ $ $) 78)) (-3992 (($ $ $) 76)) (** (($ $ (-928)) NIL) (($ $ (-777)) 84) (($ $ (-570)) 160 (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 172 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-368))) (($ |#2| $) 161 (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1240 |#1| |#2|) (-1239 |#1| |#2|) (-1058) (-1268 |#1|)) (T -1240))
-NIL
-(-1239 |#1| |#2|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3150 (((-1269 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 10)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-2046 (($ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3426 (((-112) $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3025 (($ $ (-570)) NIL) (($ $ (-570) (-570)) NIL)) (-2972 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) NIL)) (-3321 (((-1269 |#1| |#2| |#3|) $) NIL)) (-1632 (((-3 (-1269 |#1| |#2| |#3|) "failed") $) NIL)) (-4268 (((-1269 |#1| |#2| |#3|) $) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2419 (((-570) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-1866 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) NIL)) (-1513 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-1269 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-570) "failed") $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-4387 (((-1269 |#1| |#2| |#3|) $) NIL) (((-1186) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-413 (-570)) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-570) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-1557 (($ $) NIL) (($ (-570) $) NIL)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-1269 |#1| |#2| |#3|)) (-695 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 (-1269 |#1| |#2| |#3|))) (|:| |vec| (-1277 (-1269 |#1| |#2| |#3|)))) (-695 $) (-1277 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368))))) (-3957 (((-3 $ "failed") $) NIL)) (-2595 (((-413 (-959 |#1|)) $ (-570)) NIL (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) NIL (|has| |#1| (-562)))) (-2066 (($) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-2811 (((-112) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-893 (-570))) (|has| |#1| (-368))))) (-3995 (((-570) $) NIL) (((-570) $ (-570)) NIL)) (-2005 (((-112) $) NIL)) (-3249 (($ $) NIL (|has| |#1| (-368)))) (-1587 (((-1269 |#1| |#2| |#3|) $) NIL (|has| |#1| (-368)))) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3525 (((-3 $ "failed") $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))))) (-2746 (((-112) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-2529 (($ $ (-928)) NIL)) (-3103 (($ (-1 |#1| (-570)) $) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-570)) 18) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-1908 (($ $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-1764 (($ $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-368)))) (-3447 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4280 (($ (-570) (-1269 |#1| |#2| |#3|)) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-1363 (($ $) 27 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212))))) (($ $ (-1273 |#2|)) 28 (|has| |#1| (-38 (-413 (-570)))))) (-3458 (($) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))) CONST)) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4113 (($ $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-2037 (((-1269 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-570)) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2651 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) (-1269 |#1| |#2| |#3|)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-520 (-1186) (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-1269 |#1| |#2| |#3|))) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-520 (-1186) (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-298 (-1269 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-313 (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-298 (-1269 |#1| |#2| |#3|))) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-313 (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-313 (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1269 |#1| |#2| |#3|)) (-650 (-1269 |#1| |#2| |#3|))) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-313 (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-570)) NIL) (($ $ $) NIL (|has| (-570) (-1121))) (($ $ (-1269 |#1| |#2| |#3|)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-290 (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-1 (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1273 |#2|)) 26) (($ $ (-777)) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 25 (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-4424 (($ $) NIL (|has| |#1| (-368)))) (-1599 (((-1269 |#1| |#2| |#3|) $) NIL (|has| |#1| (-368)))) (-2650 (((-570) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2601 (((-542) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-620 (-542))) (|has| |#1| (-368)))) (((-384) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-227) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-899 (-384)) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2161 (($ $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1269 |#1| |#2| |#3|)) NIL) (($ (-1273 |#2|)) 24) (($ (-1186)) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (($ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562)))) (($ (-413 (-570))) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))) (|has| |#1| (-38 (-413 (-570))))))) (-3481 ((|#1| $ (-570)) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) 11)) (-3850 (((-1269 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-1536 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-570)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2521 (($ $) NIL (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-1981 (($) 20 T CONST)) (-1998 (($) 15 T CONST)) (-3414 (($ $ (-1 (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-3959 (((-112) $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3933 (((-112) $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3892 (((-112) $ $) NIL)) (-3945 (((-112) $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3918 (((-112) $ $) NIL (-3749 (-12 (|has| (-1269 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1269 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368))) (($ (-1269 |#1| |#2| |#3|) (-1269 |#1| |#2| |#3|)) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 22)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1269 |#1| |#2| |#3|)) NIL (|has| |#1| (-368))) (($ (-1269 |#1| |#2| |#3|) $) NIL (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1241 |#1| |#2| |#3|) (-13 (-1239 |#1| (-1269 |#1| |#2| |#3|)) (-10 -8 (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1241))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1241 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1241 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1241 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(-13 (-1239 |#1| (-1269 |#1| |#2| |#3|)) (-10 -8 (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|)))
-((-3441 (((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112)) 13)) (-3644 (((-424 |#1|) |#1|) 26)) (-2340 (((-424 |#1|) |#1|) 24)))
-(((-1242 |#1|) (-10 -7 (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3644 ((-424 |#1|) |#1|)) (-15 -3441 ((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112)))) (-1253 (-570))) (T -1242))
-((-3441 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570))))))) (-5 *1 (-1242 *3)) (-4 *3 (-1253 (-570))))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1242 *3)) (-4 *3 (-1253 (-570))))) (-2340 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1242 *3)) (-4 *3 (-1253 (-570))))))
-(-10 -7 (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3644 ((-424 |#1|) |#1|)) (-15 -3441 ((-2 (|:| |contp| (-570)) (|:| -2660 (-650 (-2 (|:| |irr| |#1|) (|:| -3634 (-570)))))) |#1| (-112))))
-((-2536 (((-1166 |#2|) (-1 |#2| |#1|) (-1244 |#1|)) 23 (|has| |#1| (-854))) (((-1244 |#2|) (-1 |#2| |#1|) (-1244 |#1|)) 17)))
-(((-1243 |#1| |#2|) (-10 -7 (-15 -2536 ((-1244 |#2|) (-1 |#2| |#1|) (-1244 |#1|))) (IF (|has| |#1| (-854)) (-15 -2536 ((-1166 |#2|) (-1 |#2| |#1|) (-1244 |#1|))) |%noBranch|)) (-1227) (-1227)) (T -1243))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-854)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1166 *6)) (-5 *1 (-1243 *5 *6)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1244 *6)) (-5 *1 (-1243 *5 *6)))))
-(-10 -7 (-15 -2536 ((-1244 |#2|) (-1 |#2| |#1|) (-1244 |#1|))) (IF (|has| |#1| (-854)) (-15 -2536 ((-1166 |#2|) (-1 |#2| |#1|) (-1244 |#1|))) |%noBranch|))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4102 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2536 (((-1166 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-854)))) (-2609 ((|#1| $) 15)) (-2060 ((|#1| $) 12)) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3740 (((-570) $) 19)) (-3946 ((|#1| $) 18)) (-3752 ((|#1| $) 13)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3861 (((-112) $) 17)) (-3920 (((-1166 |#1|) $) 41 (|has| |#1| (-854))) (((-1166 |#1|) (-650 $)) 40 (|has| |#1| (-854)))) (-2601 (($ |#1|) 26)) (-2869 (($ (-1103 |#1|)) 25) (((-868) $) 37 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1852 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3668 (($ $ (-570)) 14)) (-3892 (((-112) $ $) 30 (|has| |#1| (-1109)))))
-(((-1244 |#1|) (-13 (-1102 |#1|) (-10 -8 (-15 -1852 ($ |#1|)) (-15 -4102 ($ |#1|)) (-15 -2869 ($ (-1103 |#1|))) (-15 -3861 ((-112) $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-1166 |#1|))) |%noBranch|))) (-1227)) (T -1244))
-((-1852 (*1 *1 *2) (-12 (-5 *1 (-1244 *2)) (-4 *2 (-1227)))) (-4102 (*1 *1 *2) (-12 (-5 *1 (-1244 *2)) (-4 *2 (-1227)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1103 *3)) (-4 *3 (-1227)) (-5 *1 (-1244 *3)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1244 *3)) (-4 *3 (-1227)))))
-(-13 (-1102 |#1|) (-10 -8 (-15 -1852 ($ |#1|)) (-15 -4102 ($ |#1|)) (-15 -2869 ($ (-1103 |#1|))) (-15 -3861 ((-112) $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-1166 |#1|))) |%noBranch|)))
-((-2536 (((-1250 |#3| |#4|) (-1 |#4| |#2|) (-1250 |#1| |#2|)) 15)))
-(((-1245 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 ((-1250 |#3| |#4|) (-1 |#4| |#2|) (-1250 |#1| |#2|)))) (-1186) (-1058) (-1186) (-1058)) (T -1245))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1250 *5 *6)) (-14 *5 (-1186)) (-4 *6 (-1058)) (-4 *8 (-1058)) (-5 *2 (-1250 *7 *8)) (-5 *1 (-1245 *5 *6 *7 *8)) (-14 *7 (-1186)))))
-(-10 -7 (-15 -2536 ((-1250 |#3| |#4|) (-1 |#4| |#2|) (-1250 |#1| |#2|))))
-((-3184 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2223 ((|#1| |#3|) 13)) (-3462 ((|#3| |#3|) 19)))
-(((-1246 |#1| |#2| |#3|) (-10 -7 (-15 -2223 (|#1| |#3|)) (-15 -3462 (|#3| |#3|)) (-15 -3184 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-562) (-1001 |#1|) (-1253 |#2|)) (T -1246))
-((-3184 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1246 *4 *5 *3)) (-4 *3 (-1253 *5)))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-1246 *3 *4 *2)) (-4 *2 (-1253 *4)))) (-2223 (*1 *2 *3) (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-1246 *2 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -2223 (|#1| |#3|)) (-15 -3462 (|#3| |#3|)) (-15 -3184 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1780 (((-3 |#2| "failed") |#2| (-777) |#1|) 35)) (-1911 (((-3 |#2| "failed") |#2| (-777)) 36)) (-3048 (((-3 (-2 (|:| -2403 |#2|) (|:| -2420 |#2|)) "failed") |#2|) 50)) (-3436 (((-650 |#2|) |#2|) 52)) (-3314 (((-3 |#2| "failed") |#2| |#2|) 46)))
-(((-1247 |#1| |#2|) (-10 -7 (-15 -1911 ((-3 |#2| "failed") |#2| (-777))) (-15 -1780 ((-3 |#2| "failed") |#2| (-777) |#1|)) (-15 -3314 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3048 ((-3 (-2 (|:| -2403 |#2|) (|:| -2420 |#2|)) "failed") |#2|)) (-15 -3436 ((-650 |#2|) |#2|))) (-13 (-562) (-148)) (-1253 |#1|)) (T -1247))
-((-3436 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-650 *3)) (-5 *1 (-1247 *4 *3)) (-4 *3 (-1253 *4)))) (-3048 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-2 (|:| -2403 *3) (|:| -2420 *3))) (-5 *1 (-1247 *4 *3)) (-4 *3 (-1253 *4)))) (-3314 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1253 *3)))) (-1780 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-1247 *4 *2)) (-4 *2 (-1253 *4)))) (-1911 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-1247 *4 *2)) (-4 *2 (-1253 *4)))))
-(-10 -7 (-15 -1911 ((-3 |#2| "failed") |#2| (-777))) (-15 -1780 ((-3 |#2| "failed") |#2| (-777) |#1|)) (-15 -3314 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3048 ((-3 (-2 (|:| -2403 |#2|) (|:| -2420 |#2|)) "failed") |#2|)) (-15 -3436 ((-650 |#2|) |#2|)))
-((-1961 (((-3 (-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1248 |#1| |#2|) (-10 -7 (-15 -1961 ((-3 (-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) "failed") |#2| |#2|))) (-562) (-1253 |#1|)) (T -1248))
-((-1961 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-1248 *4 *3)) (-4 *3 (-1253 *4)))))
-(-10 -7 (-15 -1961 ((-3 (-2 (|:| -1437 |#2|) (|:| -3357 |#2|)) "failed") |#2| |#2|)))
-((-2277 ((|#2| |#2| |#2|) 22)) (-3544 ((|#2| |#2| |#2|) 36)) (-3528 ((|#2| |#2| |#2| (-777) (-777)) 44)))
-(((-1249 |#1| |#2|) (-10 -7 (-15 -2277 (|#2| |#2| |#2|)) (-15 -3544 (|#2| |#2| |#2|)) (-15 -3528 (|#2| |#2| |#2| (-777) (-777)))) (-1058) (-1253 |#1|)) (T -1249))
-((-3528 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-1249 *4 *2)) (-4 *2 (-1253 *4)))) (-3544 (*1 *2 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1253 *3)))) (-2277 (*1 *2 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1253 *3)))))
-(-10 -7 (-15 -2277 (|#2| |#2| |#2|)) (-15 -3544 (|#2| |#2| |#2|)) (-15 -3528 (|#2| |#2| |#2| (-777) (-777))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-2399 (((-1277 |#2|) $ (-777)) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-3860 (($ (-1182 |#2|)) NIL)) (-3449 (((-1182 $) $ (-1091)) NIL) (((-1182 |#2|) $) NIL)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2046 (($ $) NIL (|has| |#2| (-562)))) (-3426 (((-112) $) NIL (|has| |#2| (-562)))) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-3862 (($ $ $) NIL (|has| |#2| (-562)))) (-3585 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3312 (($ $) NIL (|has| |#2| (-458)))) (-2929 (((-424 $) $) NIL (|has| |#2| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-1799 (((-112) $ $) NIL (|has| |#2| (-368)))) (-4133 (($ $ (-777)) NIL)) (-2180 (($ $ (-777)) NIL)) (-2169 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-458)))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL)) (-4387 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-1091) $) NIL)) (-2067 (($ $ $ (-1091)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2788 (($ $ $) NIL (|has| |#2| (-368)))) (-4394 (($ $) NIL)) (-3054 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#2|)) (|:| |vec| (-1277 |#2|))) (-695 $) (-1277 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-2799 (($ $ $) NIL (|has| |#2| (-368)))) (-3671 (($ $ $) NIL)) (-1985 (($ $ $) NIL (|has| |#2| (-562)))) (-1504 (((-2 (|:| -1747 |#2|) (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#2| (-562)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#2| (-368)))) (-2211 (($ $) NIL (|has| |#2| (-458))) (($ $ (-1091)) NIL (|has| |#2| (-458)))) (-4381 (((-650 $) $) NIL)) (-2145 (((-112) $) NIL (|has| |#2| (-916)))) (-2425 (($ $ |#2| (-777) $) NIL)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-3995 (((-777) $ $) NIL (|has| |#2| (-562)))) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-3525 (((-3 $ "failed") $) NIL (|has| |#2| (-1161)))) (-2417 (($ (-1182 |#2|) (-1091)) NIL) (($ (-1182 $) (-1091)) NIL)) (-2529 (($ $ (-777)) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-2402 (($ |#2| (-777)) 18) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-1091)) NIL) (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL)) (-2689 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-3989 (($ (-1 (-777) (-777)) $) NIL)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-3968 (((-1182 |#2|) $) NIL)) (-3168 (((-3 (-1091) "failed") $) NIL)) (-4355 (($ $) NIL)) (-4369 ((|#2| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3240 (((-1168) $) NIL)) (-2930 (((-2 (|:| -1437 $) (|:| -3357 $)) $ (-777)) NIL)) (-3235 (((-3 (-650 $) "failed") $) NIL)) (-3055 (((-3 (-650 $) "failed") $) NIL)) (-3353 (((-3 (-2 (|:| |var| (-1091)) (|:| -2940 (-777))) "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#2| (-38 (-413 (-570)))))) (-3458 (($) NIL (|has| |#2| (-1161)) CONST)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 ((|#2| $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-3903 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-2829 (($ $ (-777) |#2| $) NIL)) (-4187 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-2340 (((-424 $) $) NIL (|has| |#2| (-916)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#2| (-368)))) (-2837 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-3034 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#2|) NIL) (($ $ (-650 (-1091)) (-650 |#2|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-2002 (((-777) $) NIL (|has| |#2| (-368)))) (-2057 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#2| (-562))) ((|#2| (-413 $) |#2|) NIL (|has| |#2| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#2| (-562)))) (-2110 (((-3 $ "failed") $ (-777)) NIL)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#2| (-368)))) (-2896 (($ $ (-1091)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2375 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2650 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2601 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-2128 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-1091)) NIL (|has| |#2| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-3363 (((-3 $ "failed") $ $) NIL (|has| |#2| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#2| (-562)))) (-2869 (((-868) $) 13) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-1091)) NIL) (($ (-1273 |#1|)) 20) (($ (-413 (-570))) NIL (-3749 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1660 (((-3 $ "failed") $) NIL (-3749 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1981 (($) NIL T CONST)) (-1998 (($) 14 T CONST)) (-3414 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1250 |#1| |#2|) (-13 (-1253 |#2|) (-622 (-1273 |#1|)) (-10 -8 (-15 -2829 ($ $ (-777) |#2| $)))) (-1186) (-1058)) (T -1250))
-((-2829 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1250 *4 *3)) (-14 *4 (-1186)) (-4 *3 (-1058)))))
-(-13 (-1253 |#2|) (-622 (-1273 |#1|)) (-10 -8 (-15 -2829 ($ $ (-777) |#2| $))))
-((-2536 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|))) (-1058) (-1253 |#1|) (-1058) (-1253 |#3|)) (T -1251))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *2 (-1253 *6)) (-5 *1 (-1251 *5 *4 *6 *2)) (-4 *4 (-1253 *5)))))
-(-10 -7 (-15 -2536 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2399 (((-1277 |#2|) $ (-777)) 129)) (-1598 (((-650 (-1091)) $) 16)) (-3860 (($ (-1182 |#2|)) 80)) (-4205 (((-777) $) NIL) (((-777) $ (-650 (-1091))) 21)) (-3585 (((-424 (-1182 $)) (-1182 $)) 204)) (-3312 (($ $) 194)) (-2929 (((-424 $) $) 192)) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 95)) (-4133 (($ $ (-777)) 84)) (-2180 (($ $ (-777)) 86)) (-2169 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2435 (((-3 |#2| "failed") $) 132) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL)) (-4387 ((|#2| $) 130) (((-413 (-570)) $) NIL) (((-570) $) NIL) (((-1091) $) NIL)) (-1985 (($ $ $) 170)) (-1504 (((-2 (|:| -1747 |#2|) (|:| -1437 $) (|:| -3357 $)) $ $) 172)) (-3995 (((-777) $ $) 189)) (-3525 (((-3 $ "failed") $) 138)) (-2402 (($ |#2| (-777)) NIL) (($ $ (-1091) (-777)) 59) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2689 (((-777) $) NIL) (((-777) $ (-1091)) 54) (((-650 (-777)) $ (-650 (-1091))) 55)) (-3968 (((-1182 |#2|) $) 72)) (-3168 (((-3 (-1091) "failed") $) 52)) (-2930 (((-2 (|:| -1437 $) (|:| -3357 $)) $ (-777)) 83)) (-1363 (($ $) 219)) (-3458 (($) 134)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 201)) (-4187 (((-424 (-1182 $)) (-1182 $)) 101)) (-2874 (((-424 (-1182 $)) (-1182 $)) 99)) (-2340 (((-424 $) $) 120)) (-3034 (($ $ (-650 (-298 $))) 51) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#2|) 39) (($ $ (-650 (-1091)) (-650 |#2|)) 36) (($ $ (-1091) $) 32) (($ $ (-650 (-1091)) (-650 $)) 30)) (-2002 (((-777) $) 207)) (-2057 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) 164) ((|#2| (-413 $) |#2|) 206) (((-413 $) $ (-413 $)) 188)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 212)) (-2375 (($ $ (-1091)) 157) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) 155) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-2650 (((-777) $) NIL) (((-777) $ (-1091)) 17) (((-650 (-777)) $ (-650 (-1091))) 23)) (-2128 ((|#2| $) NIL) (($ $ (-1091)) 140)) (-3363 (((-3 $ "failed") $ $) 180) (((-3 (-413 $) "failed") (-413 $) $) 176)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-1091)) 64) (($ (-413 (-570))) NIL) (($ $) NIL)))
-(((-1252 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -2057 ((-413 |#1|) |#1| (-413 |#1|))) (-15 -2002 ((-777) |#1|)) (-15 -4038 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -2057 (|#2| (-413 |#1|) |#2|)) (-15 -2169 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1504 ((-2 (|:| -1747 |#2|) (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -1985 (|#1| |#1| |#1|)) (-15 -3363 ((-3 (-413 |#1|) "failed") (-413 |#1|) |#1|)) (-15 -3363 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3995 ((-777) |#1| |#1|)) (-15 -2057 ((-413 |#1|) (-413 |#1|) (-413 |#1|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2180 (|#1| |#1| (-777))) (-15 -4133 (|#1| |#1| (-777))) (-15 -2930 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| (-777))) (-15 -3860 (|#1| (-1182 |#2|))) (-15 -3968 ((-1182 |#2|) |#1|)) (-15 -2399 ((-1277 |#2|) |#1| (-777))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2057 (|#2| |#1| |#2|)) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3585 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -2874 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4187 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2128 (|#1| |#1| (-1091))) (-15 -1598 ((-650 (-1091)) |#1|)) (-15 -4205 ((-777) |#1| (-650 (-1091)))) (-15 -4205 ((-777) |#1|)) (-15 -2402 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -2402 (|#1| |#1| (-1091) (-777))) (-15 -2689 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -2689 ((-777) |#1| (-1091))) (-15 -3168 ((-3 (-1091) "failed") |#1|)) (-15 -2650 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -2650 ((-777) |#1| (-1091))) (-15 -2869 (|#1| (-1091))) (-15 -2435 ((-3 (-1091) "failed") |#1|)) (-15 -4387 ((-1091) |#1|)) (-15 -3034 (|#1| |#1| (-650 (-1091)) (-650 |#1|))) (-15 -3034 (|#1| |#1| (-1091) |#1|)) (-15 -3034 (|#1| |#1| (-650 (-1091)) (-650 |#2|))) (-15 -3034 (|#1| |#1| (-1091) |#2|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -2650 ((-777) |#1|)) (-15 -2402 (|#1| |#2| (-777))) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2689 ((-777) |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2375 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1091) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1091)))) (-15 -2375 (|#1| |#1| (-1091))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|))) (-1253 |#2|) (-1058)) (T -1252))
-NIL
-(-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -2942 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2929 ((-424 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -3458 (|#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -2057 ((-413 |#1|) |#1| (-413 |#1|))) (-15 -2002 ((-777) |#1|)) (-15 -4038 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -2057 (|#2| (-413 |#1|) |#2|)) (-15 -2169 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1504 ((-2 (|:| -1747 |#2|) (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| |#1|)) (-15 -1985 (|#1| |#1| |#1|)) (-15 -3363 ((-3 (-413 |#1|) "failed") (-413 |#1|) |#1|)) (-15 -3363 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3995 ((-777) |#1| |#1|)) (-15 -2057 ((-413 |#1|) (-413 |#1|) (-413 |#1|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2180 (|#1| |#1| (-777))) (-15 -4133 (|#1| |#1| (-777))) (-15 -2930 ((-2 (|:| -1437 |#1|) (|:| -3357 |#1|)) |#1| (-777))) (-15 -3860 (|#1| (-1182 |#2|))) (-15 -3968 ((-1182 |#2|) |#1|)) (-15 -2399 ((-1277 |#2|) |#1| (-777))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2375 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1186) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1186)))) (-15 -2375 (|#1| |#1| (-1186))) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| |#1| (-777))) (-15 -2057 (|#1| |#1| |#1|)) (-15 -2057 (|#2| |#1| |#2|)) (-15 -2340 ((-424 |#1|) |#1|)) (-15 -3585 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -2874 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4187 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3208 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2128 (|#1| |#1| (-1091))) (-15 -1598 ((-650 (-1091)) |#1|)) (-15 -4205 ((-777) |#1| (-650 (-1091)))) (-15 -4205 ((-777) |#1|)) (-15 -2402 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -2402 (|#1| |#1| (-1091) (-777))) (-15 -2689 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -2689 ((-777) |#1| (-1091))) (-15 -3168 ((-3 (-1091) "failed") |#1|)) (-15 -2650 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -2650 ((-777) |#1| (-1091))) (-15 -2869 (|#1| (-1091))) (-15 -2435 ((-3 (-1091) "failed") |#1|)) (-15 -4387 ((-1091) |#1|)) (-15 -3034 (|#1| |#1| (-650 (-1091)) (-650 |#1|))) (-15 -3034 (|#1| |#1| (-1091) |#1|)) (-15 -3034 (|#1| |#1| (-650 (-1091)) (-650 |#2|))) (-15 -3034 (|#1| |#1| (-1091) |#2|)) (-15 -3034 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -3034 (|#1| |#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| (-298 |#1|))) (-15 -3034 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -2650 ((-777) |#1|)) (-15 -2402 (|#1| |#2| (-777))) (-15 -2435 ((-3 (-570) "failed") |#1|)) (-15 -4387 ((-570) |#1|)) (-15 -2435 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4387 ((-413 (-570)) |#1|)) (-15 -4387 (|#2| |#1|)) (-15 -2435 ((-3 |#2| "failed") |#1|)) (-15 -2869 (|#1| |#2|)) (-15 -2689 ((-777) |#1|)) (-15 -2128 (|#2| |#1|)) (-15 -2375 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -2375 (|#1| |#1| (-1091) (-777))) (-15 -2375 (|#1| |#1| (-650 (-1091)))) (-15 -2375 (|#1| |#1| (-1091))) (-15 -2869 (|#1| (-570))) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-2399 (((-1277 |#1|) $ (-777)) 240)) (-1598 (((-650 (-1091)) $) 112)) (-3860 (($ (-1182 |#1|)) 238)) (-3449 (((-1182 $) $ (-1091)) 127) (((-1182 |#1|) $) 126)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2046 (($ $) 90 (|has| |#1| (-562)))) (-3426 (((-112) $) 92 (|has| |#1| (-562)))) (-4205 (((-777) $) 114) (((-777) $ (-650 (-1091))) 113)) (-3997 (((-3 $ "failed") $ $) 20)) (-3862 (($ $ $) 225 (|has| |#1| (-562)))) (-3585 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3312 (($ $) 100 (|has| |#1| (-458)))) (-2929 (((-424 $) $) 99 (|has| |#1| (-458)))) (-3208 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-1799 (((-112) $ $) 210 (|has| |#1| (-368)))) (-4133 (($ $ (-777)) 233)) (-2180 (($ $ (-777)) 232)) (-2169 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-458)))) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) 138)) (-4387 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) (((-1091) $) 139)) (-2067 (($ $ $ (-1091)) 110 (|has| |#1| (-174))) ((|#1| $ $) 228 (|has| |#1| (-174)))) (-2788 (($ $ $) 214 (|has| |#1| (-368)))) (-4394 (($ $) 156)) (-3054 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 (-570))) (|:| |vec| (-1277 (-570)))) (-695 $) (-1277 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2565 (-695 |#1|)) (|:| |vec| (-1277 |#1|))) (-695 $) (-1277 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 213 (|has| |#1| (-368)))) (-3671 (($ $ $) 231)) (-1985 (($ $ $) 222 (|has| |#1| (-562)))) (-1504 (((-2 (|:| -1747 |#1|) (|:| -1437 $) (|:| -3357 $)) $ $) 221 (|has| |#1| (-562)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 208 (|has| |#1| (-368)))) (-2211 (($ $) 178 (|has| |#1| (-458))) (($ $ (-1091)) 107 (|has| |#1| (-458)))) (-4381 (((-650 $) $) 111)) (-2145 (((-112) $) 98 (|has| |#1| (-916)))) (-2425 (($ $ |#1| (-777) $) 174)) (-4429 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-3995 (((-777) $ $) 226 (|has| |#1| (-562)))) (-2005 (((-112) $) 35)) (-2928 (((-777) $) 171)) (-3525 (((-3 $ "failed") $) 206 (|has| |#1| (-1161)))) (-2417 (($ (-1182 |#1|) (-1091)) 119) (($ (-1182 $) (-1091)) 118)) (-2529 (($ $ (-777)) 237)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 217 (|has| |#1| (-368)))) (-1739 (((-650 $) $) 128)) (-1338 (((-112) $) 154)) (-2402 (($ |#1| (-777)) 155) (($ $ (-1091) (-777)) 121) (($ $ (-650 (-1091)) (-650 (-777))) 120)) (-2026 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $ (-1091)) 122) (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 235)) (-2689 (((-777) $) 172) (((-777) $ (-1091)) 124) (((-650 (-777)) $ (-650 (-1091))) 123)) (-3989 (($ (-1 (-777) (-777)) $) 173)) (-2536 (($ (-1 |#1| |#1|) $) 153)) (-3968 (((-1182 |#1|) $) 239)) (-3168 (((-3 (-1091) "failed") $) 125)) (-4355 (($ $) 151)) (-4369 ((|#1| $) 150)) (-3867 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-3240 (((-1168) $) 10)) (-2930 (((-2 (|:| -1437 $) (|:| -3357 $)) $ (-777)) 234)) (-3235 (((-3 (-650 $) "failed") $) 116)) (-3055 (((-3 (-650 $) "failed") $) 117)) (-3353 (((-3 (-2 (|:| |var| (-1091)) (|:| -2940 (-777))) "failed") $) 115)) (-1363 (($ $) 218 (|has| |#1| (-38 (-413 (-570)))))) (-3458 (($) 205 (|has| |#1| (-1161)) CONST)) (-3891 (((-1129) $) 11)) (-4326 (((-112) $) 168)) (-4337 ((|#1| $) 169)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-3903 (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-4187 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-2874 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-2340 (((-424 $) $) 101 (|has| |#1| (-916)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 215 (|has| |#1| (-368)))) (-2837 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 209 (|has| |#1| (-368)))) (-3034 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ (-1091) |#1|) 143) (($ $ (-650 (-1091)) (-650 |#1|)) 142) (($ $ (-1091) $) 141) (($ $ (-650 (-1091)) (-650 $)) 140)) (-2002 (((-777) $) 211 (|has| |#1| (-368)))) (-2057 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-413 $) (-413 $) (-413 $)) 227 (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) 219 (|has| |#1| (-368))) (((-413 $) $ (-413 $)) 207 (|has| |#1| (-562)))) (-2110 (((-3 $ "failed") $ (-777)) 236)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 212 (|has| |#1| (-368)))) (-2896 (($ $ (-1091)) 109 (|has| |#1| (-174))) ((|#1| $) 229 (|has| |#1| (-174)))) (-2375 (($ $ (-1091)) 46) (($ $ (-650 (-1091))) 45) (($ $ (-1091) (-777)) 44) (($ $ (-650 (-1091)) (-650 (-777))) 43) (($ $ (-777)) 255) (($ $) 253) (($ $ (-1186)) 252 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 251 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 250 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 249 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-2650 (((-777) $) 152) (((-777) $ (-1091)) 132) (((-650 (-777)) $ (-650 (-1091))) 131)) (-2601 (((-899 (-384)) $) 84 (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-2128 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ (-1091)) 108 (|has| |#1| (-458)))) (-2561 (((-3 (-1277 $) "failed") (-695 $)) 106 (-3212 (|has| $ (-146)) (|has| |#1| (-916))))) (-3363 (((-3 $ "failed") $ $) 224 (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) 223 (|has| |#1| (-562)))) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ (-1091)) 137) (($ (-413 (-570))) 80 (-3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570)))))) (($ $) 87 (|has| |#1| (-562)))) (-3125 (((-650 |#1|) $) 170)) (-3481 ((|#1| $ (-777)) 157) (($ $ (-1091) (-777)) 130) (($ $ (-650 (-1091)) (-650 (-777))) 129)) (-1660 (((-3 $ "failed") $) 81 (-3749 (-3212 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2294 (((-777)) 32 T CONST)) (-2109 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-1091)) 42) (($ $ (-650 (-1091))) 41) (($ $ (-1091) (-777)) 40) (($ $ (-650 (-1091)) (-650 (-777))) 39) (($ $ (-777)) 256) (($ $) 254) (($ $ (-1186)) 248 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 247 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 246 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 245 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1253 |#1|) (-141) (-1058)) (T -1253))
-((-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-1253 *4)) (-4 *4 (-1058)) (-5 *2 (-1277 *4)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1058)) (-5 *2 (-1182 *3)))) (-3860 (*1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1058)) (-4 *1 (-1253 *3)))) (-2529 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))) (-2110 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))) (-2026 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1253 *3)))) (-2930 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1253 *4)))) (-4133 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))) (-3671 (*1 *1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)))) (-2375 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-174)))) (-2067 (*1 *2 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-174)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)) (-4 *3 (-562)))) (-3995 (*1 *2 *1 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1058)) (-4 *3 (-562)) (-5 *2 (-777)))) (-3862 (*1 *1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-3363 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-3363 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-413 *1)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)) (-4 *3 (-562)))) (-1985 (*1 *1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-1504 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1747 *3) (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1253 *3)))) (-2169 (*1 *2 *1 *1) (-12 (-4 *3 (-458)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1253 *3)))) (-2057 (*1 *2 *3 *2) (-12 (-5 *3 (-413 *1)) (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))))
-(-13 (-956 |t#1| (-777) (-1091)) (-290 |t#1| |t#1|) (-290 $ $) (-235) (-233 |t#1|) (-10 -8 (-15 -2399 ((-1277 |t#1|) $ (-777))) (-15 -3968 ((-1182 |t#1|) $)) (-15 -3860 ($ (-1182 |t#1|))) (-15 -2529 ($ $ (-777))) (-15 -2110 ((-3 $ "failed") $ (-777))) (-15 -2026 ((-2 (|:| -1437 $) (|:| -3357 $)) $ $)) (-15 -2930 ((-2 (|:| -1437 $) (|:| -3357 $)) $ (-777))) (-15 -4133 ($ $ (-777))) (-15 -2180 ($ $ (-777))) (-15 -3671 ($ $ $)) (-15 -2375 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1161)) (-6 (-1161)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2896 (|t#1| $)) (-15 -2067 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-6 (-290 (-413 $) (-413 $))) (-15 -2057 ((-413 $) (-413 $) (-413 $))) (-15 -3995 ((-777) $ $)) (-15 -3862 ($ $ $)) (-15 -3363 ((-3 $ "failed") $ $)) (-15 -3363 ((-3 (-413 $) "failed") (-413 $) $)) (-15 -1985 ($ $ $)) (-15 -1504 ((-2 (|:| -1747 |t#1|) (|:| -1437 $) (|:| -3357 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-458)) (-15 -2169 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-6 (-311)) (-6 -4448) (-15 -2057 (|t#1| (-413 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (-15 -1363 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-777)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -3749 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 #2=(-1091)) . T) ((-622 |#1|) . T) ((-622 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570))))) ((-233 |#1|) . T) ((-235) . T) ((-290 (-413 $) (-413 $)) |has| |#1| (-562)) ((-290 |#1| |#1|) . T) ((-290 $ $) . T) ((-294) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-313 $) . T) ((-330 |#1| #0#) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -3749 (|has| |#1| (-916)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-520 #2# |#1|) . T) ((-520 #2# $) . T) ((-520 $ $) . T) ((-562) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-652 #1#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #1#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-732) . T) ((-907 #2#) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-893 (-384)) -12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384)))) ((-893 (-570)) -12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))) ((-956 |#1| #0# #2#) . T) ((-916) |has| |#1| (-916)) ((-927) |has| |#1| (-368)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #2#) . T) ((-1047 |#1|) . T) ((-1060 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-1161)) ((-1227) . T) ((-1231) |has| |#1| (-916)))
-((-1598 (((-650 (-1091)) $) 34)) (-4394 (($ $) 31)) (-2402 (($ |#2| |#3|) NIL) (($ $ (-1091) |#3|) 28) (($ $ (-650 (-1091)) (-650 |#3|)) 27)) (-4355 (($ $) 14)) (-4369 ((|#2| $) 12)) (-2650 ((|#3| $) 10)))
-(((-1254 |#1| |#2| |#3|) (-10 -8 (-15 -1598 ((-650 (-1091)) |#1|)) (-15 -2402 (|#1| |#1| (-650 (-1091)) (-650 |#3|))) (-15 -2402 (|#1| |#1| (-1091) |#3|)) (-15 -4394 (|#1| |#1|)) (-15 -2402 (|#1| |#2| |#3|)) (-15 -2650 (|#3| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -4369 (|#2| |#1|))) (-1255 |#2| |#3|) (-1058) (-798)) (T -1254))
-NIL
-(-10 -8 (-15 -1598 ((-650 (-1091)) |#1|)) (-15 -2402 (|#1| |#1| (-650 (-1091)) (-650 |#3|))) (-15 -2402 (|#1| |#1| (-1091) |#3|)) (-15 -4394 (|#1| |#1|)) (-15 -2402 (|#1| |#2| |#3|)) (-15 -2650 (|#3| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -4369 (|#2| |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 (-1091)) $) 86)) (-1433 (((-1186) $) 116)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3025 (($ $ |#2|) 111) (($ $ |#2| |#2|) 110)) (-2972 (((-1166 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-3296 (((-112) $) 85)) (-3995 ((|#2| $) 113) ((|#2| $ |#2|) 112)) (-2005 (((-112) $) 35)) (-2529 (($ $ (-928)) 114)) (-1338 (((-112) $) 74)) (-2402 (($ |#1| |#2|) 73) (($ $ (-1091) |#2|) 88) (($ $ (-650 (-1091)) (-650 |#2|)) 87)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-3308 (($ $ |#2|) 108)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3034 (((-1166 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2057 ((|#1| $ |#2|) 118) (($ $ $) 94 (|has| |#2| (-1121)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186) (-777)) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-650 (-1186))) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186)) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2650 ((|#2| $) 76)) (-2161 (($ $) 84)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3481 ((|#1| $ |#2|) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1744 ((|#1| $) 115)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3478 ((|#1| $ |#2|) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) 106 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186) (-777)) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-650 (-1186))) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186)) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-777)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-1255 |#1| |#2|) (-141) (-1058) (-798)) (T -1255))
-((-2972 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-1166 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-1186)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1255 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-2529 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3995 (*1 *2 *1 *2) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3025 (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3025 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3478 (*1 *2 *1 *3) (-12 (-4 *1 (-1255 *2 *3)) (-4 *3 (-798)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2869 (*2 (-1186)))) (-4 *2 (-1058)))) (-3308 (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3034 (*1 *2 *1 *3) (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1166 *3)))))
-(-13 (-982 |t#1| |t#2| (-1091)) (-290 |t#2| |t#1|) (-10 -8 (-15 -2972 ((-1166 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1433 ((-1186) $)) (-15 -1744 (|t#1| $)) (-15 -2529 ($ $ (-928))) (-15 -3995 (|t#2| $)) (-15 -3995 (|t#2| $ |t#2|)) (-15 -3025 ($ $ |t#2|)) (-15 -3025 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2869 (|t#1| (-1186)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3478 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3308 ($ $ |t#2|)) (IF (|has| |t#2| (-1121)) (-6 (-290 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-235)) (IF (|has| |t#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3034 ((-1166 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-290 |#2| |#1|) . T) ((-290 $ $) |has| |#2| (-1121)) ((-294) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| |#2| (-1091)) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1227) . T))
-((-3312 ((|#2| |#2|) 12)) (-2929 (((-424 |#2|) |#2|) 14)) (-2703 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570)))) 30)))
-(((-1256 |#1| |#2|) (-10 -7 (-15 -2929 ((-424 |#2|) |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -2703 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570)))))) (-562) (-13 (-1253 |#1|) (-562) (-10 -8 (-15 -3903 ($ $ $))))) (T -1256))
-((-2703 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-570)))) (-4 *4 (-13 (-1253 *3) (-562) (-10 -8 (-15 -3903 ($ $ $))))) (-4 *3 (-562)) (-5 *1 (-1256 *3 *4)))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-1256 *3 *2)) (-4 *2 (-13 (-1253 *3) (-562) (-10 -8 (-15 -3903 ($ $ $))))))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-1256 *4 *3)) (-4 *3 (-13 (-1253 *4) (-562) (-10 -8 (-15 -3903 ($ $ $))))))))
-(-10 -7 (-15 -2929 ((-424 |#2|) |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -2703 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570))))))
-((-2536 (((-1262 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1262 |#1| |#3| |#5|)) 24)))
-(((-1257 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2536 ((-1262 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1262 |#1| |#3| |#5|)))) (-1058) (-1058) (-1186) (-1186) |#1| |#2|) (T -1257))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5 *7 *9)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1262 *6 *8 *10)) (-5 *1 (-1257 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1186)))))
-(-10 -7 (-15 -2536 ((-1262 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1262 |#1| |#3| |#5|))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 (-1091)) $) 86)) (-1433 (((-1186) $) 116)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3025 (($ $ (-413 (-570))) 111) (($ $ (-413 (-570)) (-413 (-570))) 110)) (-2972 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 117)) (-3900 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 175 (|has| |#1| (-368)))) (-2929 (((-424 $) $) 176 (|has| |#1| (-368)))) (-2459 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) 166 (|has| |#1| (-368)))) (-3876 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) 184)) (-1513 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) 18 T CONST)) (-2788 (($ $ $) 170 (|has| |#1| (-368)))) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 169 (|has| |#1| (-368)))) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 164 (|has| |#1| (-368)))) (-2145 (((-112) $) 177 (|has| |#1| (-368)))) (-3296 (((-112) $) 85)) (-1625 (($) 158 (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-413 (-570)) $) 113) (((-413 (-570)) $ (-413 (-570))) 112)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 129 (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) 114) (($ $ (-413 (-570))) 183)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 173 (|has| |#1| (-368)))) (-1338 (((-112) $) 74)) (-2402 (($ |#1| (-413 (-570))) 73) (($ $ (-1091) (-413 (-570))) 88) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) 87)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-3447 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3867 (($ (-650 $)) 162 (|has| |#1| (-368))) (($ $ $) 161 (|has| |#1| (-368)))) (-3240 (((-1168) $) 10)) (-4315 (($ $) 178 (|has| |#1| (-368)))) (-1363 (($ $) 182 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 181 (-3749 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1212)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 163 (|has| |#1| (-368)))) (-3903 (($ (-650 $)) 160 (|has| |#1| (-368))) (($ $ $) 159 (|has| |#1| (-368)))) (-2340 (((-424 $) $) 174 (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 171 (|has| |#1| (-368)))) (-3308 (($ $ (-413 (-570))) 108)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 165 (|has| |#1| (-368)))) (-2651 (($ $) 156 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-2002 (((-777) $) 167 (|has| |#1| (-368)))) (-2057 ((|#1| $ (-413 (-570))) 118) (($ $ $) 94 (|has| (-413 (-570)) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 168 (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2650 (((-413 (-570)) $) 76)) (-1523 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 84)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3481 ((|#1| $ (-413 (-570))) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1744 ((|#1| $) 115)) (-1344 (((-112) $ $) 9)) (-1561 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1536 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-413 (-570))) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) 106 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 98 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 180 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 179 (|has| |#1| (-368))) (($ $ $) 157 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 128 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-1258 |#1|) (-141) (-1058)) (T -1258))
-((-1866 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4)))) (-4 *4 (-1058)) (-4 *1 (-1258 *4)))) (-2529 (*1 *1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1258 *3)) (-4 *3 (-1058)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) (-1363 (*1 *1 *1 *2) (-3749 (-12 (-5 *2 (-1186)) (-4 *1 (-1258 *3)) (-4 *3 (-1058)) (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1212)) (-4 *3 (-38 (-413 (-570)))))) (-12 (-5 *2 (-1186)) (-4 *1 (-1258 *3)) (-4 *3 (-1058)) (-12 (|has| *3 (-15 -1598 ((-650 *2) *3))) (|has| *3 (-15 -1363 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570)))))))))
-(-13 (-1255 |t#1| (-413 (-570))) (-10 -8 (-15 -1866 ($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |t#1|))))) (-15 -2529 ($ $ (-413 (-570)))) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $)) (IF (|has| |t#1| (-15 -1363 (|t#1| |t#1| (-1186)))) (IF (|has| |t#1| (-15 -1598 ((-650 (-1186)) |t#1|))) (-15 -1363 ($ $ (-1186))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1212)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-570))) (-15 -1363 ($ $ (-1186))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1011)) (-6 (-1212))) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-413 (-570))) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 #0# |#1|) . T) ((-290 $ $) |has| (-413 (-570)) (-1121)) ((-294) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-368) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-723 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1212) |has| |#1| (-38 (-413 (-570)))) ((-1215) |has| |#1| (-38 (-413 (-570)))) ((-1227) . T) ((-1231) |has| |#1| (-368)) ((-1255 |#1| #0#) . T))
-((-2564 (((-112) $) 12)) (-2435 (((-3 |#3| "failed") $) 17)) (-4387 ((|#3| $) 14)))
-(((-1259 |#1| |#2| |#3|) (-10 -8 (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -4387 (|#3| |#1|)) (-15 -2564 ((-112) |#1|))) (-1260 |#2| |#3|) (-1058) (-1237 |#2|)) (T -1259))
-NIL
-(-10 -8 (-15 -2435 ((-3 |#3| "failed") |#1|)) (-15 -4387 (|#3| |#1|)) (-15 -2564 ((-112) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 (-1091)) $) 86)) (-1433 (((-1186) $) 116)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3025 (($ $ (-413 (-570))) 111) (($ $ (-413 (-570)) (-413 (-570))) 110)) (-2972 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 117)) (-3900 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 175 (|has| |#1| (-368)))) (-2929 (((-424 $) $) 176 (|has| |#1| (-368)))) (-2459 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) 166 (|has| |#1| (-368)))) (-3876 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) 184)) (-1513 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#2| "failed") $) 195)) (-4387 ((|#2| $) 196)) (-2788 (($ $ $) 170 (|has| |#1| (-368)))) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-3756 (((-413 (-570)) $) 192)) (-2799 (($ $ $) 169 (|has| |#1| (-368)))) (-4291 (($ (-413 (-570)) |#2|) 193)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 164 (|has| |#1| (-368)))) (-2145 (((-112) $) 177 (|has| |#1| (-368)))) (-3296 (((-112) $) 85)) (-1625 (($) 158 (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-413 (-570)) $) 113) (((-413 (-570)) $ (-413 (-570))) 112)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 129 (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) 114) (($ $ (-413 (-570))) 183)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 173 (|has| |#1| (-368)))) (-1338 (((-112) $) 74)) (-2402 (($ |#1| (-413 (-570))) 73) (($ $ (-1091) (-413 (-570))) 88) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) 87)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-3447 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3867 (($ (-650 $)) 162 (|has| |#1| (-368))) (($ $ $) 161 (|has| |#1| (-368)))) (-2517 ((|#2| $) 191)) (-3011 (((-3 |#2| "failed") $) 189)) (-4280 ((|#2| $) 190)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 178 (|has| |#1| (-368)))) (-1363 (($ $) 182 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 181 (-3749 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1212)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 163 (|has| |#1| (-368)))) (-3903 (($ (-650 $)) 160 (|has| |#1| (-368))) (($ $ $) 159 (|has| |#1| (-368)))) (-2340 (((-424 $) $) 174 (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 171 (|has| |#1| (-368)))) (-3308 (($ $ (-413 (-570))) 108)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 165 (|has| |#1| (-368)))) (-2651 (($ $) 156 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-2002 (((-777) $) 167 (|has| |#1| (-368)))) (-2057 ((|#1| $ (-413 (-570))) 118) (($ $ $) 94 (|has| (-413 (-570)) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 168 (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2650 (((-413 (-570)) $) 76)) (-1523 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 84)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 194) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3481 ((|#1| $ (-413 (-570))) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1744 ((|#1| $) 115)) (-1344 (((-112) $ $) 9)) (-1561 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1536 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-413 (-570))) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) 106 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 98 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 180 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 179 (|has| |#1| (-368))) (($ $ $) 157 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 128 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-1260 |#1| |#2|) (-141) (-1058) (-1237 |t#1|)) (T -1260))
-((-2650 (*1 *2 *1) (-12 (-4 *1 (-1260 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1237 *3)) (-5 *2 (-413 (-570))))) (-4291 (*1 *1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-4 *4 (-1058)) (-4 *1 (-1260 *4 *3)) (-4 *3 (-1237 *4)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1260 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1237 *3)) (-5 *2 (-413 (-570))))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1237 *3)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1237 *3)))) (-3011 (*1 *2 *1) (|partial| -12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1237 *3)))))
-(-13 (-1258 |t#1|) (-1047 |t#2|) (-622 |t#2|) (-10 -8 (-15 -4291 ($ (-413 (-570)) |t#2|)) (-15 -3756 ((-413 (-570)) $)) (-15 -2517 (|t#2| $)) (-15 -2650 ((-413 (-570)) $)) (-15 -4280 (|t#2| $)) (-15 -3011 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-413 (-570))) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 |#2|) . T) ((-622 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 #0# |#1|) . T) ((-290 $ $) |has| (-413 (-570)) (-1121)) ((-294) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-368) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-723 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1047 |#2|) . T) ((-1060 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -3749 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1212) |has| |#1| (-38 (-413 (-570)))) ((-1215) |has| |#1| (-38 (-413 (-570)))) ((-1227) . T) ((-1231) |has| |#1| (-368)) ((-1255 |#1| #0#) . T) ((-1258 |#1|) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 104)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-413 (-570))) 116) (($ $ (-413 (-570)) (-413 (-570))) 118)) (-2972 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 54)) (-3900 (($ $) 192 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 168 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) 188 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 164 (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) 65)) (-1513 (($ $) 196 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 172 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) NIL)) (-4387 ((|#2| $) NIL)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) 85)) (-3756 (((-413 (-570)) $) 13)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-4291 (($ (-413 (-570)) |#2|) 11)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-3296 (((-112) $) 74)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-413 (-570)) $) 113) (((-413 (-570)) $ (-413 (-570))) 114)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) 130) (($ $ (-413 (-570))) 128)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-413 (-570))) 33) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) 125)) (-3447 (($ $) 162 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2517 ((|#2| $) 12)) (-3011 (((-3 |#2| "failed") $) 44)) (-4280 ((|#2| $) 45)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) 101 (|has| |#1| (-368)))) (-1363 (($ $) 146 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 151 (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212)))))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-413 (-570))) 122)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2651 (($ $) 160 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-413 (-570))) 108) (($ $ $) 94 (|has| (-413 (-570)) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) 138 (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2650 (((-413 (-570)) $) 16)) (-1523 (($ $) 198 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 174 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 194 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 170 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 190 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 166 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 120)) (-2869 (((-868) $) NIL) (($ (-570)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-413 (-570))) 139 (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3481 ((|#1| $ (-413 (-570))) 107)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) 127 T CONST)) (-1744 ((|#1| $) 106)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) 204 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 180 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) 200 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 176 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 208 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 184 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 210 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 186 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 206 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 182 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 202 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 178 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 21 T CONST)) (-1998 (($) 17 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3892 (((-112) $ $) 72)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 100 (|has| |#1| (-368)))) (-4003 (($ $) 142) (($ $ $) 78)) (-3992 (($ $ $) 76)) (** (($ $ (-928)) NIL) (($ $ (-777)) 82) (($ $ (-570)) 157 (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 158 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1261 |#1| |#2|) (-1260 |#1| |#2|) (-1058) (-1237 |#1|)) (T -1261))
-NIL
-(-1260 |#1| |#2|)
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 11)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) NIL (|has| |#1| (-562)))) (-3025 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-2972 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) NIL)) (-3900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-368)))) (-2929 (((-424 $) $) NIL (|has| |#1| (-368)))) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1799 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3876 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-1513 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-1241 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1269 |#1| |#2| |#3|) "failed") $) 22)) (-4387 (((-1241 |#1| |#2| |#3|) $) NIL) (((-1269 |#1| |#2| |#3|) $) NIL)) (-2788 (($ $ $) NIL (|has| |#1| (-368)))) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3756 (((-413 (-570)) $) 69)) (-2799 (($ $ $) NIL (|has| |#1| (-368)))) (-4291 (($ (-413 (-570)) (-1241 |#1| |#2| |#3|)) NIL)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-2145 (((-112) $) NIL (|has| |#1| (-368)))) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) NIL)) (-2005 (((-112) $) NIL)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-413 (-570))) 30) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3447 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3867 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2517 (((-1241 |#1| |#2| |#3|) $) 72)) (-3011 (((-3 (-1241 |#1| |#2| |#3|) "failed") $) NIL)) (-4280 (((-1241 |#1| |#2| |#3|) $) NIL)) (-3240 (((-1168) $) NIL)) (-4315 (($ $) NIL (|has| |#1| (-368)))) (-1363 (($ $) 39 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212))))) (($ $ (-1273 |#2|)) 40 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-3903 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2340 (((-424 $) $) NIL (|has| |#1| (-368)))) (-1491 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) NIL (|has| |#1| (-368)))) (-3308 (($ $ (-413 (-570))) NIL)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4128 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2651 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-2002 (((-777) $) NIL (|has| |#1| (-368)))) (-2057 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) NIL (|has| |#1| (-368)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $ (-1273 |#2|)) 38)) (-2650 (((-413 (-570)) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) NIL)) (-2869 (((-868) $) 107) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1241 |#1| |#2| |#3|)) 16) (($ (-1269 |#1| |#2| |#3|)) 17) (($ (-1273 |#2|)) 36) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3481 ((|#1| $ (-413 (-570))) NIL)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) 12)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-413 (-570))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 32 T CONST)) (-1998 (($) 26 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 34)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1262 |#1| |#2| |#3|) (-13 (-1260 |#1| (-1241 |#1| |#2| |#3|)) (-1047 (-1269 |#1| |#2| |#3|)) (-622 (-1273 |#2|)) (-10 -8 (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1262))
-((-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(-13 (-1260 |#1| (-1241 |#1| |#2| |#3|)) (-1047 (-1269 |#1| |#2| |#3|)) (-622 (-1273 |#2|)) (-10 -8 (-15 -2375 ($ $ (-1273 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 37)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL)) (-2046 (($ $) NIL)) (-3426 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 (-570) "failed") $) NIL (|has| (-1262 |#2| |#3| |#4|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-1262 |#2| |#3| |#4|) (-1047 (-413 (-570))))) (((-3 (-1262 |#2| |#3| |#4|) "failed") $) 22)) (-4387 (((-570) $) NIL (|has| (-1262 |#2| |#3| |#4|) (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| (-1262 |#2| |#3| |#4|) (-1047 (-413 (-570))))) (((-1262 |#2| |#3| |#4|) $) NIL)) (-4394 (($ $) 41)) (-3957 (((-3 $ "failed") $) 27)) (-2211 (($ $) NIL (|has| (-1262 |#2| |#3| |#4|) (-458)))) (-2425 (($ $ (-1262 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|) $) NIL)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) 11)) (-1338 (((-112) $) NIL)) (-2402 (($ (-1262 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) 25)) (-2689 (((-323 |#2| |#3| |#4|) $) NIL)) (-3989 (($ (-1 (-323 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) $) NIL)) (-2536 (($ (-1 (-1262 |#2| |#3| |#4|) (-1262 |#2| |#3| |#4|)) $) NIL)) (-2555 (((-3 (-849 |#2|) "failed") $) 90)) (-4355 (($ $) NIL)) (-4369 (((-1262 |#2| |#3| |#4|) $) 20)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-4326 (((-112) $) NIL)) (-4337 (((-1262 |#2| |#3| |#4|) $) NIL)) (-2837 (((-3 $ "failed") $ (-1262 |#2| |#3| |#4|)) NIL (|has| (-1262 |#2| |#3| |#4|) (-562))) (((-3 $ "failed") $ $) NIL)) (-2437 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1262 |#2| |#3| |#4|)) (|:| |%expon| (-323 |#2| |#3| |#4|)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#2|)))))) (|:| |%type| (-1168))) "failed") $) 74)) (-2650 (((-323 |#2| |#3| |#4|) $) 17)) (-2128 (((-1262 |#2| |#3| |#4|) $) NIL (|has| (-1262 |#2| |#3| |#4|) (-458)))) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ (-1262 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL (-3749 (|has| (-1262 |#2| |#3| |#4|) (-38 (-413 (-570)))) (|has| (-1262 |#2| |#3| |#4|) (-1047 (-413 (-570))))))) (-3125 (((-650 (-1262 |#2| |#3| |#4|)) $) NIL)) (-3481 (((-1262 |#2| |#3| |#4|) $ (-323 |#2| |#3| |#4|)) NIL)) (-1660 (((-3 $ "failed") $) NIL (|has| (-1262 |#2| |#3| |#4|) (-146)))) (-2294 (((-777)) NIL T CONST)) (-2109 (($ $ $ (-777)) NIL (|has| (-1262 |#2| |#3| |#4|) (-174)))) (-1344 (((-112) $ $) NIL)) (-2939 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ (-1262 |#2| |#3| |#4|)) NIL (|has| (-1262 |#2| |#3| |#4|) (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-1262 |#2| |#3| |#4|)) NIL) (($ (-1262 |#2| |#3| |#4|) $) NIL) (($ (-413 (-570)) $) NIL (|has| (-1262 |#2| |#3| |#4|) (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| (-1262 |#2| |#3| |#4|) (-38 (-413 (-570)))))))
-(((-1263 |#1| |#2| |#3| |#4|) (-13 (-330 (-1262 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) (-562) (-10 -8 (-15 -2555 ((-3 (-849 |#2|) "failed") $)) (-15 -2437 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1262 |#2| |#3| |#4|)) (|:| |%expon| (-323 |#2| |#3| |#4|)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#2|)))))) (|:| |%type| (-1168))) "failed") $)))) (-13 (-1047 (-570)) (-645 (-570)) (-458)) (-13 (-27) (-1212) (-436 |#1|)) (-1186) |#2|) (T -1263))
-((-2555 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *2 (-849 *4)) (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1212) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4))) (-2437 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1262 *4 *5 *6)) (|:| |%expon| (-323 *4 *5 *6)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4)))))) (|:| |%type| (-1168)))) (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1212) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4))))
-(-13 (-330 (-1262 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) (-562) (-10 -8 (-15 -2555 ((-3 (-849 |#2|) "failed") $)) (-15 -2437 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1262 |#2| |#3| |#4|)) (|:| |%expon| (-323 |#2| |#3| |#4|)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#2|)))))) (|:| |%type| (-1168))) "failed") $))))
-((-4156 ((|#2| $) 34)) (-2975 ((|#2| $) 18)) (-3446 (($ $) 53)) (-3257 (($ $ (-570)) 85)) (-2855 (((-112) $ (-777)) 46)) (-2854 ((|#2| $ |#2|) 82)) (-1639 ((|#2| $ |#2|) 78)) (-3040 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1815 (($ $ (-650 $)) 81)) (-2963 ((|#2| $) 17)) (-1962 (($ $) NIL) (($ $ (-777)) 59)) (-3044 (((-650 $) $) 31)) (-1427 (((-112) $ $) 69)) (-2497 (((-112) $ (-777)) 45)) (-2065 (((-112) $ (-777)) 43)) (-2708 (((-112) $) 33)) (-3637 ((|#2| $) 25) (($ $ (-777)) 64)) (-2057 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1355 (((-112) $) 23)) (-2288 (($ $) 56)) (-3277 (($ $) 86)) (-2846 (((-777) $) 58)) (-3522 (($ $) 57)) (-1505 (($ $ $) 77) (($ |#2| $) NIL)) (-2671 (((-650 $) $) 32)) (-3892 (((-112) $ $) 67)) (-2857 (((-777) $) 52)))
-(((-1264 |#1| |#2|) (-10 -8 (-15 -3257 (|#1| |#1| (-570))) (-15 -3040 (|#2| |#1| "last" |#2|)) (-15 -1639 (|#2| |#1| |#2|)) (-15 -3040 (|#1| |#1| "rest" |#1|)) (-15 -3040 (|#2| |#1| "first" |#2|)) (-15 -3277 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2846 ((-777) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -2975 (|#2| |#1|)) (-15 -2963 (|#2| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3637 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "last")) (-15 -3637 (|#2| |#1|)) (-15 -1962 (|#1| |#1| (-777))) (-15 -2057 (|#1| |#1| "rest")) (-15 -1962 (|#1| |#1|)) (-15 -2057 (|#2| |#1| "first")) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#1|)) (-15 -2854 (|#2| |#1| |#2|)) (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -1815 (|#1| |#1| (-650 |#1|))) (-15 -1427 ((-112) |#1| |#1|)) (-15 -1355 ((-112) |#1|)) (-15 -2057 (|#2| |#1| "value")) (-15 -4156 (|#2| |#1|)) (-15 -2708 ((-112) |#1|)) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2671 ((-650 |#1|) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777)))) (-1265 |#2|) (-1227)) (T -1264))
-NIL
-(-10 -8 (-15 -3257 (|#1| |#1| (-570))) (-15 -3040 (|#2| |#1| "last" |#2|)) (-15 -1639 (|#2| |#1| |#2|)) (-15 -3040 (|#1| |#1| "rest" |#1|)) (-15 -3040 (|#2| |#1| "first" |#2|)) (-15 -3277 (|#1| |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -2846 ((-777) |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -2975 (|#2| |#1|)) (-15 -2963 (|#2| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3637 (|#1| |#1| (-777))) (-15 -2057 (|#2| |#1| "last")) (-15 -3637 (|#2| |#1|)) (-15 -1962 (|#1| |#1| (-777))) (-15 -2057 (|#1| |#1| "rest")) (-15 -1962 (|#1| |#1|)) (-15 -2057 (|#2| |#1| "first")) (-15 -1505 (|#1| |#2| |#1|)) (-15 -1505 (|#1| |#1| |#1|)) (-15 -2854 (|#2| |#1| |#2|)) (-15 -3040 (|#2| |#1| "value" |#2|)) (-15 -1815 (|#1| |#1| (-650 |#1|))) (-15 -1427 ((-112) |#1| |#1|)) (-15 -1355 ((-112) |#1|)) (-15 -2057 (|#2| |#1| "value")) (-15 -4156 (|#2| |#1|)) (-15 -2708 ((-112) |#1|)) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2671 ((-650 |#1|) |#1|)) (-15 -3892 ((-112) |#1| |#1|)) (-15 -2857 ((-777) |#1|)) (-15 -2855 ((-112) |#1| (-777))) (-15 -2497 ((-112) |#1| (-777))) (-15 -2065 ((-112) |#1| (-777))))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4156 ((|#1| $) 49)) (-2975 ((|#1| $) 66)) (-3446 (($ $) 68)) (-3257 (($ $ (-570)) 53 (|has| $ (-6 -4453)))) (-2855 (((-112) $ (-777)) 8)) (-2854 ((|#1| $ |#1|) 40 (|has| $ (-6 -4453)))) (-2364 (($ $ $) 57 (|has| $ (-6 -4453)))) (-1639 ((|#1| $ |#1|) 55 (|has| $ (-6 -4453)))) (-1967 ((|#1| $ |#1|) 59 (|has| $ (-6 -4453)))) (-3040 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4453))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4453))) (($ $ "rest" $) 56 (|has| $ (-6 -4453))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4453)))) (-1815 (($ $ (-650 $)) 42 (|has| $ (-6 -4453)))) (-2963 ((|#1| $) 67)) (-2333 (($) 7 T CONST)) (-1962 (($ $) 74) (($ $ (-777)) 72)) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-3044 (((-650 $) $) 51)) (-1427 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2497 (((-112) $ (-777)) 9)) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36)) (-2065 (((-112) $ (-777)) 10)) (-2466 (((-650 |#1|) $) 46)) (-2708 (((-112) $) 50)) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3637 ((|#1| $) 71) (($ $ (-777)) 69)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 77) (($ $ (-777)) 75)) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2352 (((-570) $ $) 45)) (-1355 (((-112) $) 47)) (-2288 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4453)))) (-2846 (((-777) $) 64)) (-3522 (($ $) 65)) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3064 (($ $) 13)) (-1674 (($ $ $) 62 (|has| $ (-6 -4453))) (($ $ |#1|) 61 (|has| $ (-6 -4453)))) (-1505 (($ $ $) 79) (($ |#1| $) 78)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-2671 (((-650 $) $) 52)) (-3984 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1265 |#1|) (-141) (-1227)) (T -1265))
-((-1505 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-1505 (*1 *1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-1948 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1265 *3)) (-4 *3 (-1227)))) (-1962 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1265 *3)) (-4 *3 (-1227)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1265 *3)) (-4 *3 (-1227)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-2057 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-3637 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1265 *3)) (-4 *3 (-1227)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))) (-2288 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-1674 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-1674 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-3277 (*1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-1967 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-3040 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-2364 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-3040 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4453)) (-4 *1 (-1265 *3)) (-4 *3 (-1227)))) (-1639 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-3040 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))) (-3257 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (|has| *1 (-6 -4453)) (-4 *1 (-1265 *3)) (-4 *3 (-1227)))))
-(-13 (-1019 |t#1|) (-10 -8 (-15 -1505 ($ $ $)) (-15 -1505 ($ |t#1| $)) (-15 -1948 (|t#1| $)) (-15 -2057 (|t#1| $ "first")) (-15 -1948 ($ $ (-777))) (-15 -1962 ($ $)) (-15 -2057 ($ $ "rest")) (-15 -1962 ($ $ (-777))) (-15 -3637 (|t#1| $)) (-15 -2057 (|t#1| $ "last")) (-15 -3637 ($ $ (-777))) (-15 -3446 ($ $)) (-15 -2963 (|t#1| $)) (-15 -2975 (|t#1| $)) (-15 -3522 ($ $)) (-15 -2846 ((-777) $)) (-15 -2288 ($ $)) (IF (|has| $ (-6 -4453)) (PROGN (-15 -1674 ($ $ $)) (-15 -1674 ($ $ |t#1|)) (-15 -3277 ($ $)) (-15 -1967 (|t#1| $ |t#1|)) (-15 -3040 (|t#1| $ "first" |t#1|)) (-15 -2364 ($ $ $)) (-15 -3040 ($ $ "rest" $)) (-15 -1639 (|t#1| $ |t#1|)) (-15 -3040 (|t#1| $ "last" |t#1|)) (-15 -3257 ($ $ (-570)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1227) . T))
-((-2536 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 (|#4| (-1 |#2| |#1|) |#3|))) (-1058) (-1058) (-1268 |#1|) (-1268 |#2|)) (T -1266))
-((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *2 (-1268 *6)) (-5 *1 (-1266 *5 *6 *4 *2)) (-4 *4 (-1268 *5)))))
-(-10 -7 (-15 -2536 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2564 (((-112) $) 17)) (-3900 (($ $) 105)) (-3770 (($ $) 81)) (-3876 (($ $) 101)) (-3745 (($ $) 77)) (-1513 (($ $) 109)) (-3791 (($ $) 85)) (-3447 (($ $) 75)) (-2651 (($ $) 73)) (-1523 (($ $) 111)) (-3801 (($ $) 87)) (-3913 (($ $) 107)) (-3781 (($ $) 83)) (-3887 (($ $) 103)) (-3758 (($ $) 79)) (-2869 (((-868) $) 61) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1561 (($ $) 117)) (-3833 (($ $) 93)) (-1536 (($ $) 113)) (-3811 (($ $) 89)) (-1585 (($ $) 121)) (-3853 (($ $) 97)) (-2900 (($ $) 123)) (-3864 (($ $) 99)) (-1575 (($ $) 119)) (-3844 (($ $) 95)) (-1546 (($ $) 115)) (-3821 (($ $) 91)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-413 (-570))) 71)))
-(((-1267 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3770 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -2564 ((-112) |#1|)) (-15 -2869 ((-868) |#1|))) (-1268 |#2|) (-1058)) (T -1267))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3770 (|#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3821 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3887 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1523 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -3876 (|#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -1546 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2869 (|#1| |#2|)) (-15 -2869 (|#1| |#1|)) (-15 -2869 (|#1| (-413 (-570)))) (-15 -2869 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -2564 ((-112) |#1|)) (-15 -2869 ((-868) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1598 (((-650 (-1091)) $) 86)) (-1433 (((-1186) $) 116)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2046 (($ $) 64 (|has| |#1| (-562)))) (-3426 (((-112) $) 66 (|has| |#1| (-562)))) (-3025 (($ $ (-777)) 111) (($ $ (-777) (-777)) 110)) (-2972 (((-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|))) $) 117)) (-3900 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) 20)) (-2459 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-3876 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|)))) 168) (($ (-1166 |#1|)) 166)) (-1513 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) 18 T CONST)) (-4394 (($ $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-3709 (($ $) 165)) (-2471 (((-959 |#1|) $ (-777)) 163) (((-959 |#1|) $ (-777) (-777)) 162)) (-3296 (((-112) $) 85)) (-1625 (($) 158 (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-777) $) 113) (((-777) $ (-777)) 112)) (-2005 (((-112) $) 35)) (-3035 (($ $ (-570)) 129 (|has| |#1| (-38 (-413 (-570)))))) (-2529 (($ $ (-928)) 114)) (-3103 (($ (-1 |#1| (-570)) $) 164)) (-1338 (((-112) $) 74)) (-2402 (($ |#1| (-777)) 73) (($ $ (-1091) (-777)) 88) (($ $ (-650 (-1091)) (-650 (-777))) 87)) (-2536 (($ (-1 |#1| |#1|) $) 75)) (-3447 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) 77)) (-4369 ((|#1| $) 78)) (-3240 (((-1168) $) 10)) (-1363 (($ $) 160 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 159 (-3749 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1212)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3891 (((-1129) $) 11)) (-3308 (($ $ (-777)) 108)) (-2837 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-2651 (($ $) 156 (|has| |#1| (-38 (-413 (-570)))))) (-3034 (((-1166 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-777)))))) (-2057 ((|#1| $ (-777)) 118) (($ $ $) 94 (|has| (-777) (-1121)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186) (-777)) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-650 (-1186))) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186)) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-2650 (((-777) $) 76)) (-1523 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 84)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3125 (((-1166 |#1|) $) 167)) (-3481 ((|#1| $ (-777)) 71)) (-1660 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2294 (((-777)) 32 T CONST)) (-1744 ((|#1| $) 115)) (-1344 (((-112) $ $) 9)) (-1561 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1536 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-777)) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-777)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) 106 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186) (-777)) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-650 (-1186))) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186)) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-777)) 98 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ |#1|) 161 (|has| |#1| (-368))) (($ $ $) 157 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 128 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570)))))))
-(((-1268 |#1|) (-141) (-1058)) (T -1268))
-((-1866 (*1 *1 *2) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-777)) (|:| |c| *3)))) (-4 *3 (-1058)) (-4 *1 (-1268 *3)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1058)) (-5 *2 (-1166 *3)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-4 *1 (-1268 *3)))) (-3709 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1058)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1268 *3)) (-4 *3 (-1058)))) (-2471 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-1268 *4)) (-4 *4 (-1058)) (-5 *2 (-959 *4)))) (-2471 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-4 *1 (-1268 *4)) (-4 *4 (-1058)) (-5 *2 (-959 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) (-1363 (*1 *1 *1 *2) (-3749 (-12 (-5 *2 (-1186)) (-4 *1 (-1268 *3)) (-4 *3 (-1058)) (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1212)) (-4 *3 (-38 (-413 (-570)))))) (-12 (-5 *2 (-1186)) (-4 *1 (-1268 *3)) (-4 *3 (-1058)) (-12 (|has| *3 (-15 -1598 ((-650 *2) *3))) (|has| *3 (-15 -1363 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570)))))))))
-(-13 (-1255 |t#1| (-777)) (-10 -8 (-15 -1866 ($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |t#1|))))) (-15 -3125 ((-1166 |t#1|) $)) (-15 -1866 ($ (-1166 |t#1|))) (-15 -3709 ($ $)) (-15 -3103 ($ (-1 |t#1| (-570)) $)) (-15 -2471 ((-959 |t#1|) $ (-777))) (-15 -2471 ((-959 |t#1|) $ (-777) (-777))) (IF (|has| |t#1| (-368)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1363 ($ $)) (IF (|has| |t#1| (-15 -1363 (|t#1| |t#1| (-1186)))) (IF (|has| |t#1| (-15 -1598 ((-650 (-1186)) |t#1|))) (-15 -1363 ($ $ (-1186))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1212)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-570))) (-15 -1363 ($ $ (-1186))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1011)) (-6 (-1212))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-777)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-777) |#1|))) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 #0# |#1|) . T) ((-290 $ $) |has| (-777) (-1121)) ((-294) |has| |#1| (-562)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) |has| |#1| (-562)) ((-652 #1#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #1#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -3749 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1212) |has| |#1| (-38 (-413 (-570)))) ((-1215) |has| |#1| (-38 (-413 (-570)))) ((-1227) . T) ((-1255 |#1| #0#) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-1598 (((-650 (-1091)) $) NIL)) (-1433 (((-1186) $) 90)) (-2339 (((-1250 |#2| |#1|) $ (-777)) 73)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2046 (($ $) NIL (|has| |#1| (-562)))) (-3426 (((-112) $) 142 (|has| |#1| (-562)))) (-3025 (($ $ (-777)) 127) (($ $ (-777) (-777)) 130)) (-2972 (((-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|))) $) 43)) (-3900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3997 (((-3 $ "failed") $ $) NIL)) (-2459 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3876 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3745 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1866 (($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|)))) 52) (($ (-1166 |#1|)) NIL)) (-1513 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2333 (($) NIL T CONST)) (-1518 (($ $) 134)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-3709 (($ $) 140)) (-2471 (((-959 |#1|) $ (-777)) 63) (((-959 |#1|) $ (-777) (-777)) 65)) (-3296 (((-112) $) NIL)) (-1625 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3995 (((-777) $) NIL) (((-777) $ (-777)) NIL)) (-2005 (((-112) $) NIL)) (-3297 (($ $) 117)) (-3035 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2906 (($ (-570) (-570) $) 136)) (-2529 (($ $ (-928)) 139)) (-3103 (($ (-1 |#1| (-570)) $) 111)) (-1338 (((-112) $) NIL)) (-2402 (($ |#1| (-777)) 16) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2536 (($ (-1 |#1| |#1|) $) 98)) (-3447 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4355 (($ $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-4431 (($ $) 115)) (-1845 (($ $) 113)) (-3841 (($ (-570) (-570) $) 138)) (-1363 (($ $) 150 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 156 (-3749 (-12 (|has| |#1| (-15 -1363 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1598 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1212))))) (($ $ (-1273 |#2|)) 151 (|has| |#1| (-38 (-413 (-570)))))) (-3891 (((-1129) $) NIL)) (-2694 (($ $ (-570) (-570)) 121)) (-3308 (($ $ (-777)) 123)) (-2837 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-2651 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1905 (($ $) 119)) (-3034 (((-1166 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-777)))))) (-2057 ((|#1| $ (-777)) 95) (($ $ $) 132 (|has| (-777) (-1121)))) (-2375 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) 108 (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $ (-1273 |#2|)) 103)) (-2650 (((-777) $) NIL)) (-1523 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3801 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3887 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3758 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2161 (($ $) 125)) (-2869 (((-868) $) NIL) (($ (-570)) 26) (($ (-413 (-570))) 148 (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1250 |#2| |#1|)) 81) (($ (-1273 |#2|)) 22)) (-3125 (((-1166 |#1|) $) NIL)) (-3481 ((|#1| $ (-777)) 94)) (-1660 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2294 (((-777)) NIL T CONST)) (-1744 ((|#1| $) 91)) (-1344 (((-112) $ $) NIL)) (-1561 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2939 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1536 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1585 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3478 ((|#1| $ (-777)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-777)))) (|has| |#1| (-15 -2869 (|#1| (-1186))))))) (-2900 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3864 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1546 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3821 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1981 (($) 18 T CONST)) (-1998 (($) 13 T CONST)) (-3414 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-3892 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) 107)) (-3992 (($ $ $) 20)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ |#1|) 145 (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))))
-(((-1269 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-10 -8 (-15 -2869 ($ (-1250 |#2| |#1|))) (-15 -2339 ((-1250 |#2| |#1|) $ (-777))) (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (-15 -1845 ($ $)) (-15 -4431 ($ $)) (-15 -3297 ($ $)) (-15 -1905 ($ $)) (-15 -2694 ($ $ (-570) (-570))) (-15 -1518 ($ $)) (-15 -2906 ($ (-570) (-570) $)) (-15 -3841 ($ (-570) (-570) $)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1269))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-1250 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-1269 *3 *4 *5)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1250 *5 *4)) (-5 *1 (-1269 *4 *5 *6)) (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1845 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-4431 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-3297 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-1905 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-2694 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3))) (-1518 (*1 *1 *1) (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-2906 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3))) (-3841 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(-13 (-1268 |#1|) (-10 -8 (-15 -2869 ($ (-1250 |#2| |#1|))) (-15 -2339 ((-1250 |#2| |#1|) $ (-777))) (-15 -2869 ($ (-1273 |#2|))) (-15 -2375 ($ $ (-1273 |#2|))) (-15 -1845 ($ $)) (-15 -4431 ($ $)) (-15 -3297 ($ $)) (-15 -1905 ($ $)) (-15 -2694 ($ $ (-570) (-570))) (-15 -1518 ($ $)) (-15 -2906 ($ (-570) (-570) $)) (-15 -3841 ($ (-570) (-570) $)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1363 ($ $ (-1273 |#2|))) |%noBranch|)))
-((-3200 (((-1 (-1166 |#1|) (-650 (-1166 |#1|))) (-1 |#2| (-650 |#2|))) 24)) (-3708 (((-1 (-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2658 (((-1 (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2|)) 13)) (-4354 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2835 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1459 ((|#2| (-1 |#2| (-650 |#2|)) (-650 |#1|)) 60)) (-2207 (((-650 |#2|) (-650 |#1|) (-650 (-1 |#2| (-650 |#2|)))) 66)) (-2937 ((|#2| |#2| |#2|) 43)))
-(((-1270 |#1| |#2|) (-10 -7 (-15 -2658 ((-1 (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2|))) (-15 -3708 ((-1 (-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3200 ((-1 (-1166 |#1|) (-650 (-1166 |#1|))) (-1 |#2| (-650 |#2|)))) (-15 -2937 (|#2| |#2| |#2|)) (-15 -2835 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1459 (|#2| (-1 |#2| (-650 |#2|)) (-650 |#1|))) (-15 -2207 ((-650 |#2|) (-650 |#1|) (-650 (-1 |#2| (-650 |#2|)))))) (-38 (-413 (-570))) (-1268 |#1|)) (T -1270))
-((-2207 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 (-1 *6 (-650 *6)))) (-4 *5 (-38 (-413 (-570)))) (-4 *6 (-1268 *5)) (-5 *2 (-650 *6)) (-5 *1 (-1270 *5 *6)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-650 *2))) (-5 *4 (-650 *5)) (-4 *5 (-38 (-413 (-570)))) (-4 *2 (-1268 *5)) (-5 *1 (-1270 *5 *2)))) (-4354 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-1270 *4 *2)) (-4 *4 (-38 (-413 (-570)))))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-1270 *4 *2)) (-4 *4 (-38 (-413 (-570)))))) (-2937 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1270 *3 *2)) (-4 *2 (-1268 *3)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-650 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-650 (-1166 *4)))) (-5 *1 (-1270 *4 *5)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-1166 *4) (-1166 *4))) (-5 *1 (-1270 *4 *5)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-1166 *4))) (-5 *1 (-1270 *4 *5)))))
-(-10 -7 (-15 -2658 ((-1 (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2|))) (-15 -3708 ((-1 (-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3200 ((-1 (-1166 |#1|) (-650 (-1166 |#1|))) (-1 |#2| (-650 |#2|)))) (-15 -2937 (|#2| |#2| |#2|)) (-15 -2835 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4354 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1459 (|#2| (-1 |#2| (-650 |#2|)) (-650 |#1|))) (-15 -2207 ((-650 |#2|) (-650 |#1|) (-650 (-1 |#2| (-650 |#2|))))))
-((-3341 ((|#2| |#4| (-777)) 31)) (-2201 ((|#4| |#2|) 26)) (-4022 ((|#4| (-413 |#2|)) 49 (|has| |#1| (-562)))) (-2298 (((-1 |#4| (-650 |#4|)) |#3|) 43)))
-(((-1271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2201 (|#4| |#2|)) (-15 -3341 (|#2| |#4| (-777))) (-15 -2298 ((-1 |#4| (-650 |#4|)) |#3|)) (IF (|has| |#1| (-562)) (-15 -4022 (|#4| (-413 |#2|))) |%noBranch|)) (-1058) (-1253 |#1|) (-662 |#2|) (-1268 |#1|)) (T -1271))
-((-4022 (*1 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-562)) (-4 *4 (-1058)) (-4 *2 (-1268 *4)) (-5 *1 (-1271 *4 *5 *6 *2)) (-4 *6 (-662 *5)))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-1253 *4)) (-5 *2 (-1 *6 (-650 *6))) (-5 *1 (-1271 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-1268 *4)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-4 *2 (-1253 *5)) (-5 *1 (-1271 *5 *2 *6 *3)) (-4 *6 (-662 *2)) (-4 *3 (-1268 *5)))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *3 (-1253 *4)) (-4 *2 (-1268 *4)) (-5 *1 (-1271 *4 *3 *5 *2)) (-4 *5 (-662 *3)))))
-(-10 -7 (-15 -2201 (|#4| |#2|)) (-15 -3341 (|#2| |#4| (-777))) (-15 -2298 ((-1 |#4| (-650 |#4|)) |#3|)) (IF (|has| |#1| (-562)) (-15 -4022 (|#4| (-413 |#2|))) |%noBranch|))
-NIL
-(((-1272) (-141)) (T -1272))
-NIL
-(-13 (-10 -7 (-6 -3442)))
-((-2847 (((-112) $ $) NIL)) (-1433 (((-1186)) 12)) (-3240 (((-1168) $) 18)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 11) (((-1186) $) 8)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 15)))
-(((-1273 |#1|) (-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -2869 ((-1186) $)) (-15 -1433 ((-1186))))) (-1186)) (T -1273))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1273 *3)) (-14 *3 *2))) (-1433 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1273 *3)) (-14 *3 *2))))
-(-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -2869 ((-1186) $)) (-15 -1433 ((-1186)))))
-((-2866 (($ (-777)) 19)) (-4031 (((-695 |#2|) $ $) 41)) (-4234 ((|#2| $) 51)) (-1831 ((|#2| $) 50)) (-3407 ((|#2| $ $) 36)) (-3775 (($ $ $) 47)) (-4003 (($ $) 23) (($ $ $) 29)) (-3992 (($ $ $) 15)) (* (($ (-570) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1274 |#1| |#2|) (-10 -8 (-15 -4234 (|#2| |#1|)) (-15 -1831 (|#2| |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -4031 ((-695 |#2|) |#1| |#1|)) (-15 -3407 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -2866 (|#1| (-777))) (-15 -3992 (|#1| |#1| |#1|))) (-1275 |#2|) (-1227)) (T -1274))
-NIL
-(-10 -8 (-15 -4234 (|#2| |#1|)) (-15 -1831 (|#2| |#1|)) (-15 -3775 (|#1| |#1| |#1|)) (-15 -4031 ((-695 |#2|) |#1| |#1|)) (-15 -3407 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -4003 (|#1| |#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -2866 (|#1| (-777))) (-15 -3992 (|#1| |#1| |#1|)))
-((-2847 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2866 (($ (-777)) 115 (|has| |#1| (-23)))) (-2204 (((-1282) $ (-570) (-570)) 41 (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4453))) (($ $) 91 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4453))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) 8)) (-3040 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) 60 (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4452)))) (-2333 (($) 7 T CONST)) (-4125 (($ $) 93 (|has| $ (-6 -4453)))) (-4366 (($ $) 103)) (-3153 (($ $) 80 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-3617 (($ |#1| $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) 52)) (-2619 (((-570) (-1 (-112) |#1|) $) 100) (((-570) |#1| $) 99 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 98 (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) 31 (|has| $ (-6 -4452)))) (-4031 (((-695 |#1|) $ $) 108 (|has| |#1| (-1058)))) (-2296 (($ (-777) |#1|) 70)) (-2497 (((-112) $ (-777)) 9)) (-4372 (((-570) $) 44 (|has| (-570) (-856)))) (-1908 (($ $ $) 90 (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) 30 (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-1894 (((-570) $) 45 (|has| (-570) (-856)))) (-1764 (($ $ $) 89 (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4234 ((|#1| $) 105 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-2065 (((-112) $ (-777)) 10)) (-1831 ((|#1| $) 106 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-3240 (((-1168) $) 22 (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) 62) (($ $ $ (-570)) 61)) (-4075 (((-650 (-570)) $) 47)) (-4276 (((-112) (-570) $) 48)) (-3891 (((-1129) $) 21 (|has| |#1| (-1109)))) (-1948 ((|#1| $) 43 (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4222 (($ $ |#1|) 42 (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) 14)) (-1552 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) 49)) (-2171 (((-112) $) 11)) (-1698 (($) 12)) (-2057 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1244 (-570))) 71)) (-3407 ((|#1| $ $) 109 (|has| |#1| (-1058)))) (-3225 (($ $ (-570)) 64) (($ $ (-1244 (-570))) 63)) (-3775 (($ $ $) 107 (|has| |#1| (-1058)))) (-3901 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4452))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4452))))) (-2181 (($ $ $ (-570)) 94 (|has| $ (-6 -4453)))) (-3064 (($ $) 13)) (-2601 (((-542) $) 81 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 72)) (-1505 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-2869 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) 87 (|has| |#1| (-856)))) (-3933 (((-112) $ $) 86 (|has| |#1| (-856)))) (-3892 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-3945 (((-112) $ $) 88 (|has| |#1| (-856)))) (-3918 (((-112) $ $) 85 (|has| |#1| (-856)))) (-4003 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3992 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-570) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-732))) (($ $ |#1|) 110 (|has| |#1| (-732)))) (-2857 (((-777) $) 6 (|has| $ (-6 -4452)))))
-(((-1275 |#1|) (-141) (-1227)) (T -1275))
-((-3992 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-25)))) (-2866 (*1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1275 *3)) (-4 *3 (-23)) (-4 *3 (-1227)))) (-4003 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-21)))) (-4003 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-1275 *3)) (-4 *3 (-1227)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-732)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-732)))) (-3407 (*1 *2 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1058)))) (-4031 (*1 *2 *1 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1227)) (-4 *3 (-1058)) (-5 *2 (-695 *3)))) (-3775 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1058)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1011)) (-4 *2 (-1058)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1011)) (-4 *2 (-1058)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3992 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2866 ($ (-777))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4003 ($ $)) (-15 -4003 ($ $ $)) (-15 * ($ (-570) $))) |%noBranch|) (IF (|has| |t#1| (-732)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1058)) (PROGN (-15 -3407 (|t#1| $ $)) (-15 -4031 ((-695 |t#1|) $ $)) (-15 -3775 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1011)) (IF (|has| |t#1| (-1058)) (PROGN (-15 -1831 (|t#1| $)) (-15 -4234 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-290 (-1244 (-570)) $) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-19 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -3749 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1227) . T))
-((-3693 (((-1277 |#2|) (-1 |#2| |#1| |#2|) (-1277 |#1|) |#2|) 13)) (-2295 ((|#2| (-1 |#2| |#1| |#2|) (-1277 |#1|) |#2|) 15)) (-2536 (((-3 (-1277 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1277 |#1|)) 30) (((-1277 |#2|) (-1 |#2| |#1|) (-1277 |#1|)) 18)))
-(((-1276 |#1| |#2|) (-10 -7 (-15 -3693 ((-1277 |#2|) (-1 |#2| |#1| |#2|) (-1277 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-1277 |#1|) |#2|)) (-15 -2536 ((-1277 |#2|) (-1 |#2| |#1|) (-1277 |#1|))) (-15 -2536 ((-3 (-1277 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1277 |#1|)))) (-1227) (-1227)) (T -1276))
-((-2536 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1277 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1277 *6)) (-5 *1 (-1276 *5 *6)))) (-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1277 *5)) (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1277 *6)) (-5 *1 (-1276 *5 *6)))) (-2295 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1277 *5)) (-4 *5 (-1227)) (-4 *2 (-1227)) (-5 *1 (-1276 *5 *2)))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1277 *6)) (-4 *6 (-1227)) (-4 *5 (-1227)) (-5 *2 (-1277 *5)) (-5 *1 (-1276 *6 *5)))))
-(-10 -7 (-15 -3693 ((-1277 |#2|) (-1 |#2| |#1| |#2|) (-1277 |#1|) |#2|)) (-15 -2295 (|#2| (-1 |#2| |#1| |#2|) (-1277 |#1|) |#2|)) (-15 -2536 ((-1277 |#2|) (-1 |#2| |#1|) (-1277 |#1|))) (-15 -2536 ((-3 (-1277 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1277 |#1|))))
-((-2847 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2866 (($ (-777)) NIL (|has| |#1| (-23)))) (-2363 (($ (-650 |#1|)) 11)) (-2204 (((-1282) $ (-570) (-570)) NIL (|has| $ (-6 -4453)))) (-3134 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2778 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4453))) (($ $) NIL (-12 (|has| $ (-6 -4453)) (|has| |#1| (-856))))) (-2018 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-2855 (((-112) $ (-777)) NIL)) (-3040 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453))) ((|#1| $ (-1244 (-570)) |#1|) NIL (|has| $ (-6 -4453)))) (-3960 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2333 (($) NIL T CONST)) (-4125 (($ $) NIL (|has| $ (-6 -4453)))) (-4366 (($ $) NIL)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-3617 (($ |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-2295 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4452))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4452)))) (-2845 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4453)))) (-2774 ((|#1| $ (-570)) NIL)) (-2619 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-3976 (((-650 |#1|) $) 16 (|has| $ (-6 -4452)))) (-4031 (((-695 |#1|) $ $) NIL (|has| |#1| (-1058)))) (-2296 (($ (-777) |#1|) NIL)) (-2497 (((-112) $ (-777)) NIL)) (-4372 (((-570) $) NIL (|has| (-570) (-856)))) (-1908 (($ $ $) NIL (|has| |#1| (-856)))) (-4356 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-3069 (((-650 |#1|) $) NIL (|has| $ (-6 -4452)))) (-1314 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-1894 (((-570) $) 12 (|has| (-570) (-856)))) (-1764 (($ $ $) NIL (|has| |#1| (-856)))) (-2833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4234 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-2065 (((-112) $ (-777)) NIL)) (-1831 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-3240 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2119 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4075 (((-650 (-570)) $) NIL)) (-4276 (((-112) (-570) $) NIL)) (-3891 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1948 ((|#1| $) NIL (|has| (-570) (-856)))) (-2115 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4222 (($ $ |#1|) NIL (|has| $ (-6 -4453)))) (-2231 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-2914 (((-112) $ $) NIL)) (-1552 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2856 (((-650 |#1|) $) NIL)) (-2171 (((-112) $) NIL)) (-1698 (($) NIL)) (-2057 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3407 ((|#1| $ $) NIL (|has| |#1| (-1058)))) (-3225 (($ $ (-570)) NIL) (($ $ (-1244 (-570))) NIL)) (-3775 (($ $ $) NIL (|has| |#1| (-1058)))) (-3901 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#1| (-1109))))) (-2181 (($ $ $ (-570)) NIL (|has| $ (-6 -4453)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) 20 (|has| |#1| (-620 (-542))))) (-2881 (($ (-650 |#1|)) 10)) (-1505 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-2869 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1344 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2061 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4452)))) (-3959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3933 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3892 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3945 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3918 (((-112) $ $) NIL (|has| |#1| (-856)))) (-4003 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3992 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-570) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-732))) (($ $ |#1|) NIL (|has| |#1| (-732)))) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1277 |#1|) (-13 (-1275 |#1|) (-10 -8 (-15 -2363 ($ (-650 |#1|))))) (-1227)) (T -1277))
-((-2363 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-1277 *3)))))
-(-13 (-1275 |#1|) (-10 -8 (-15 -2363 ($ (-650 |#1|)))))
-((-2847 (((-112) $ $) NIL)) (-3029 (((-1168) $ (-1168)) 107) (((-1168) $ (-1168) (-1168)) 105) (((-1168) $ (-1168) (-650 (-1168))) 104)) (-2841 (($) 69)) (-2556 (((-1282) $ (-474) (-928)) 54)) (-2482 (((-1282) $ (-928) (-1168)) 89) (((-1282) $ (-928) (-880)) 90)) (-3517 (((-1282) $ (-928) (-384) (-384)) 57)) (-2474 (((-1282) $ (-1168)) 84)) (-1419 (((-1282) $ (-928) (-1168)) 94)) (-2768 (((-1282) $ (-928) (-384) (-384)) 58)) (-3603 (((-1282) $ (-928) (-928)) 55)) (-3003 (((-1282) $) 85)) (-4134 (((-1282) $ (-928) (-1168)) 93)) (-1655 (((-1282) $ (-474) (-928)) 41)) (-3109 (((-1282) $ (-928) (-1168)) 92)) (-1609 (((-650 (-266)) $) 29) (($ $ (-650 (-266))) 30)) (-1481 (((-1282) $ (-777) (-777)) 52)) (-2716 (($ $) 70) (($ (-474) (-650 (-266))) 71)) (-3240 (((-1168) $) NIL)) (-4144 (((-570) $) 48)) (-3891 (((-1129) $) NIL)) (-2022 (((-1277 (-3 (-474) "undefined")) $) 47)) (-2190 (((-1277 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3109 (-570)) (|:| -2571 (-570)) (|:| |spline| (-570)) (|:| -2593 (-570)) (|:| |axesColor| (-880)) (|:| -2482 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570)))) $) 46)) (-2195 (((-1282) $ (-928) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-880) (-570) (-880) (-570)) 83)) (-3152 (((-650 (-950 (-227))) $) NIL)) (-2441 (((-474) $ (-928)) 43)) (-2453 (((-1282) $ (-777) (-777) (-928) (-928)) 50)) (-3851 (((-1282) $ (-1168)) 95)) (-2571 (((-1282) $ (-928) (-1168)) 91)) (-2869 (((-868) $) 102)) (-2442 (((-1282) $) 96)) (-1344 (((-112) $ $) NIL)) (-2593 (((-1282) $ (-928) (-1168)) 87) (((-1282) $ (-928) (-880)) 88)) (-3892 (((-112) $ $) NIL)))
-(((-1278) (-13 (-1109) (-10 -8 (-15 -3152 ((-650 (-950 (-227))) $)) (-15 -2841 ($)) (-15 -2716 ($ $)) (-15 -1609 ((-650 (-266)) $)) (-15 -1609 ($ $ (-650 (-266)))) (-15 -2716 ($ (-474) (-650 (-266)))) (-15 -2195 ((-1282) $ (-928) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-880) (-570) (-880) (-570))) (-15 -2190 ((-1277 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3109 (-570)) (|:| -2571 (-570)) (|:| |spline| (-570)) (|:| -2593 (-570)) (|:| |axesColor| (-880)) (|:| -2482 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570)))) $)) (-15 -2022 ((-1277 (-3 (-474) "undefined")) $)) (-15 -2474 ((-1282) $ (-1168))) (-15 -1655 ((-1282) $ (-474) (-928))) (-15 -2441 ((-474) $ (-928))) (-15 -2593 ((-1282) $ (-928) (-1168))) (-15 -2593 ((-1282) $ (-928) (-880))) (-15 -2482 ((-1282) $ (-928) (-1168))) (-15 -2482 ((-1282) $ (-928) (-880))) (-15 -3109 ((-1282) $ (-928) (-1168))) (-15 -4134 ((-1282) $ (-928) (-1168))) (-15 -2571 ((-1282) $ (-928) (-1168))) (-15 -3851 ((-1282) $ (-1168))) (-15 -2442 ((-1282) $)) (-15 -2453 ((-1282) $ (-777) (-777) (-928) (-928))) (-15 -2768 ((-1282) $ (-928) (-384) (-384))) (-15 -3517 ((-1282) $ (-928) (-384) (-384))) (-15 -1419 ((-1282) $ (-928) (-1168))) (-15 -1481 ((-1282) $ (-777) (-777))) (-15 -2556 ((-1282) $ (-474) (-928))) (-15 -3603 ((-1282) $ (-928) (-928))) (-15 -3029 ((-1168) $ (-1168))) (-15 -3029 ((-1168) $ (-1168) (-1168))) (-15 -3029 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -3003 ((-1282) $)) (-15 -4144 ((-570) $)) (-15 -2869 ((-868) $))))) (T -1278))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1278)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-650 (-950 (-227)))) (-5 *1 (-1278)))) (-2841 (*1 *1) (-5 *1 (-1278))) (-2716 (*1 *1 *1) (-5 *1 (-1278))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278)))) (-2716 (*1 *1 *2 *3) (-12 (-5 *2 (-474)) (-5 *3 (-650 (-266))) (-5 *1 (-1278)))) (-2195 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-928)) (-5 *4 (-227)) (-5 *5 (-570)) (-5 *6 (-880)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1277 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3109 (-570)) (|:| -2571 (-570)) (|:| |spline| (-570)) (|:| -2593 (-570)) (|:| |axesColor| (-880)) (|:| -2482 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570))))) (-5 *1 (-1278)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-1277 (-3 (-474) "undefined"))) (-5 *1 (-1278)))) (-2474 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-1655 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2441 (*1 *2 *1 *3) (-12 (-5 *3 (-928)) (-5 *2 (-474)) (-5 *1 (-1278)))) (-2593 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2593 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2482 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2482 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-3109 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-4134 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2571 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2453 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2768 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-3517 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-1419 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-1481 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-2556 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-3603 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278)))) (-3029 (*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278)))) (-3029 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278)))) (-3029 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1278)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1278)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1278)))))
-(-13 (-1109) (-10 -8 (-15 -3152 ((-650 (-950 (-227))) $)) (-15 -2841 ($)) (-15 -2716 ($ $)) (-15 -1609 ((-650 (-266)) $)) (-15 -1609 ($ $ (-650 (-266)))) (-15 -2716 ($ (-474) (-650 (-266)))) (-15 -2195 ((-1282) $ (-928) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-880) (-570) (-880) (-570))) (-15 -2190 ((-1277 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3109 (-570)) (|:| -2571 (-570)) (|:| |spline| (-570)) (|:| -2593 (-570)) (|:| |axesColor| (-880)) (|:| -2482 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570)))) $)) (-15 -2022 ((-1277 (-3 (-474) "undefined")) $)) (-15 -2474 ((-1282) $ (-1168))) (-15 -1655 ((-1282) $ (-474) (-928))) (-15 -2441 ((-474) $ (-928))) (-15 -2593 ((-1282) $ (-928) (-1168))) (-15 -2593 ((-1282) $ (-928) (-880))) (-15 -2482 ((-1282) $ (-928) (-1168))) (-15 -2482 ((-1282) $ (-928) (-880))) (-15 -3109 ((-1282) $ (-928) (-1168))) (-15 -4134 ((-1282) $ (-928) (-1168))) (-15 -2571 ((-1282) $ (-928) (-1168))) (-15 -3851 ((-1282) $ (-1168))) (-15 -2442 ((-1282) $)) (-15 -2453 ((-1282) $ (-777) (-777) (-928) (-928))) (-15 -2768 ((-1282) $ (-928) (-384) (-384))) (-15 -3517 ((-1282) $ (-928) (-384) (-384))) (-15 -1419 ((-1282) $ (-928) (-1168))) (-15 -1481 ((-1282) $ (-777) (-777))) (-15 -2556 ((-1282) $ (-474) (-928))) (-15 -3603 ((-1282) $ (-928) (-928))) (-15 -3029 ((-1168) $ (-1168))) (-15 -3029 ((-1168) $ (-1168) (-1168))) (-15 -3029 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -3003 ((-1282) $)) (-15 -4144 ((-570) $)) (-15 -2869 ((-868) $))))
-((-2847 (((-112) $ $) NIL)) (-4322 (((-1282) $ (-384)) 169) (((-1282) $ (-384) (-384) (-384)) 170)) (-3029 (((-1168) $ (-1168)) 179) (((-1168) $ (-1168) (-1168)) 177) (((-1168) $ (-1168) (-650 (-1168))) 176)) (-2676 (($) 67)) (-1461 (((-1282) $ (-384) (-384) (-384) (-384) (-384)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1282) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1282) $ (-570) (-570) (-384) (-384) (-384)) 144) (((-1282) $ (-384) (-384)) 145) (((-1282) $ (-384) (-384) (-384)) 152)) (-2129 (((-384)) 122) (((-384) (-384)) 123)) (-2659 (((-384)) 117) (((-384) (-384)) 119)) (-1850 (((-384)) 120) (((-384) (-384)) 121)) (-2566 (((-384)) 126) (((-384) (-384)) 127)) (-2088 (((-384)) 124) (((-384) (-384)) 125)) (-3517 (((-1282) $ (-384) (-384)) 171)) (-2474 (((-1282) $ (-1168)) 153)) (-3711 (((-1142 (-227)) $) 68) (($ $ (-1142 (-227))) 69)) (-1671 (((-1282) $ (-1168)) 187)) (-2686 (((-1282) $ (-1168)) 188)) (-4165 (((-1282) $ (-384) (-384)) 151) (((-1282) $ (-570) (-570)) 168)) (-3603 (((-1282) $ (-928) (-928)) 160)) (-3003 (((-1282) $) 137)) (-3656 (((-1282) $ (-1168)) 186)) (-4157 (((-1282) $ (-1168)) 134)) (-1609 (((-650 (-266)) $) 70) (($ $ (-650 (-266))) 71)) (-1481 (((-1282) $ (-777) (-777)) 159)) (-4073 (((-1282) $ (-777) (-950 (-227))) 193)) (-3594 (($ $) 73) (($ (-1142 (-227)) (-1168)) 74) (($ (-1142 (-227)) (-650 (-266))) 75)) (-4204 (((-1282) $ (-384) (-384) (-384)) 131)) (-3240 (((-1168) $) NIL)) (-4144 (((-570) $) 128)) (-2620 (((-1282) $ (-384)) 174)) (-3721 (((-1282) $ (-384)) 191)) (-3891 (((-1129) $) NIL)) (-2637 (((-1282) $ (-384)) 190)) (-1737 (((-1282) $ (-1168)) 136)) (-2453 (((-1282) $ (-777) (-777) (-928) (-928)) 158)) (-2411 (((-1282) $ (-1168)) 133)) (-3851 (((-1282) $ (-1168)) 135)) (-1922 (((-1282) $ (-158) (-158)) 157)) (-2869 (((-868) $) 166)) (-2442 (((-1282) $) 138)) (-2904 (((-1282) $ (-1168)) 189)) (-1344 (((-112) $ $) NIL)) (-2593 (((-1282) $ (-1168)) 132)) (-3892 (((-112) $ $) NIL)))
-(((-1279) (-13 (-1109) (-10 -8 (-15 -2659 ((-384))) (-15 -2659 ((-384) (-384))) (-15 -1850 ((-384))) (-15 -1850 ((-384) (-384))) (-15 -2129 ((-384))) (-15 -2129 ((-384) (-384))) (-15 -2088 ((-384))) (-15 -2088 ((-384) (-384))) (-15 -2566 ((-384))) (-15 -2566 ((-384) (-384))) (-15 -2676 ($)) (-15 -3594 ($ $)) (-15 -3594 ($ (-1142 (-227)) (-1168))) (-15 -3594 ($ (-1142 (-227)) (-650 (-266)))) (-15 -3711 ((-1142 (-227)) $)) (-15 -3711 ($ $ (-1142 (-227)))) (-15 -4073 ((-1282) $ (-777) (-950 (-227)))) (-15 -1609 ((-650 (-266)) $)) (-15 -1609 ($ $ (-650 (-266)))) (-15 -1481 ((-1282) $ (-777) (-777))) (-15 -3603 ((-1282) $ (-928) (-928))) (-15 -2474 ((-1282) $ (-1168))) (-15 -2453 ((-1282) $ (-777) (-777) (-928) (-928))) (-15 -1461 ((-1282) $ (-384) (-384) (-384) (-384) (-384))) (-15 -1461 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1461 ((-1282) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1461 ((-1282) $ (-570) (-570) (-384) (-384) (-384))) (-15 -1461 ((-1282) $ (-384) (-384))) (-15 -1461 ((-1282) $ (-384) (-384) (-384))) (-15 -3851 ((-1282) $ (-1168))) (-15 -2593 ((-1282) $ (-1168))) (-15 -2411 ((-1282) $ (-1168))) (-15 -4157 ((-1282) $ (-1168))) (-15 -1737 ((-1282) $ (-1168))) (-15 -4165 ((-1282) $ (-384) (-384))) (-15 -4165 ((-1282) $ (-570) (-570))) (-15 -4322 ((-1282) $ (-384))) (-15 -4322 ((-1282) $ (-384) (-384) (-384))) (-15 -3517 ((-1282) $ (-384) (-384))) (-15 -3656 ((-1282) $ (-1168))) (-15 -2637 ((-1282) $ (-384))) (-15 -3721 ((-1282) $ (-384))) (-15 -1671 ((-1282) $ (-1168))) (-15 -2686 ((-1282) $ (-1168))) (-15 -2904 ((-1282) $ (-1168))) (-15 -4204 ((-1282) $ (-384) (-384) (-384))) (-15 -2620 ((-1282) $ (-384))) (-15 -3003 ((-1282) $)) (-15 -1922 ((-1282) $ (-158) (-158))) (-15 -3029 ((-1168) $ (-1168))) (-15 -3029 ((-1168) $ (-1168) (-1168))) (-15 -3029 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -2442 ((-1282) $)) (-15 -4144 ((-570) $))))) (T -1279))
-((-2659 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2659 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-1850 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2129 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2088 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2566 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))) (-2676 (*1 *1) (-5 *1 (-1279))) (-3594 (*1 *1 *1) (-5 *1 (-1279))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1168)) (-5 *1 (-1279)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-650 (-266))) (-5 *1 (-1279)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1279)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1279)))) (-4073 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-950 (-227))) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1279)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1279)))) (-1481 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-3603 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2474 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2453 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1461 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1279)))) (-1461 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1461 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-570)) (-5 *4 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1461 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1461 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2593 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2411 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-4165 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-4165 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-4322 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-4322 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-3517 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-3656 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2637 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1671 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2686 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2904 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-4204 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-2620 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1279)))) (-1922 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1282)) (-5 *1 (-1279)))) (-3029 (*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1279)))) (-3029 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1279)))) (-3029 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1279)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1279)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1279)))))
-(-13 (-1109) (-10 -8 (-15 -2659 ((-384))) (-15 -2659 ((-384) (-384))) (-15 -1850 ((-384))) (-15 -1850 ((-384) (-384))) (-15 -2129 ((-384))) (-15 -2129 ((-384) (-384))) (-15 -2088 ((-384))) (-15 -2088 ((-384) (-384))) (-15 -2566 ((-384))) (-15 -2566 ((-384) (-384))) (-15 -2676 ($)) (-15 -3594 ($ $)) (-15 -3594 ($ (-1142 (-227)) (-1168))) (-15 -3594 ($ (-1142 (-227)) (-650 (-266)))) (-15 -3711 ((-1142 (-227)) $)) (-15 -3711 ($ $ (-1142 (-227)))) (-15 -4073 ((-1282) $ (-777) (-950 (-227)))) (-15 -1609 ((-650 (-266)) $)) (-15 -1609 ($ $ (-650 (-266)))) (-15 -1481 ((-1282) $ (-777) (-777))) (-15 -3603 ((-1282) $ (-928) (-928))) (-15 -2474 ((-1282) $ (-1168))) (-15 -2453 ((-1282) $ (-777) (-777) (-928) (-928))) (-15 -1461 ((-1282) $ (-384) (-384) (-384) (-384) (-384))) (-15 -1461 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1461 ((-1282) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1461 ((-1282) $ (-570) (-570) (-384) (-384) (-384))) (-15 -1461 ((-1282) $ (-384) (-384))) (-15 -1461 ((-1282) $ (-384) (-384) (-384))) (-15 -3851 ((-1282) $ (-1168))) (-15 -2593 ((-1282) $ (-1168))) (-15 -2411 ((-1282) $ (-1168))) (-15 -4157 ((-1282) $ (-1168))) (-15 -1737 ((-1282) $ (-1168))) (-15 -4165 ((-1282) $ (-384) (-384))) (-15 -4165 ((-1282) $ (-570) (-570))) (-15 -4322 ((-1282) $ (-384))) (-15 -4322 ((-1282) $ (-384) (-384) (-384))) (-15 -3517 ((-1282) $ (-384) (-384))) (-15 -3656 ((-1282) $ (-1168))) (-15 -2637 ((-1282) $ (-384))) (-15 -3721 ((-1282) $ (-384))) (-15 -1671 ((-1282) $ (-1168))) (-15 -2686 ((-1282) $ (-1168))) (-15 -2904 ((-1282) $ (-1168))) (-15 -4204 ((-1282) $ (-384) (-384) (-384))) (-15 -2620 ((-1282) $ (-384))) (-15 -3003 ((-1282) $)) (-15 -1922 ((-1282) $ (-158) (-158))) (-15 -3029 ((-1168) $ (-1168))) (-15 -3029 ((-1168) $ (-1168) (-1168))) (-15 -3029 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -2442 ((-1282) $)) (-15 -4144 ((-570) $))))
-((-1795 (((-650 (-1168)) (-650 (-1168))) 104) (((-650 (-1168))) 96)) (-1410 (((-650 (-1168))) 94)) (-1964 (((-650 (-928)) (-650 (-928))) 69) (((-650 (-928))) 64)) (-3550 (((-650 (-777)) (-650 (-777))) 61) (((-650 (-777))) 55)) (-3086 (((-1282)) 71)) (-1688 (((-928) (-928)) 87) (((-928)) 86)) (-2205 (((-928) (-928)) 85) (((-928)) 84)) (-4087 (((-880) (-880)) 81) (((-880)) 80)) (-3255 (((-227)) 91) (((-227) (-384)) 93)) (-3817 (((-928)) 88) (((-928) (-928)) 89)) (-1325 (((-928) (-928)) 83) (((-928)) 82)) (-3970 (((-880) (-880)) 75) (((-880)) 73)) (-3938 (((-880) (-880)) 77) (((-880)) 76)) (-1978 (((-880) (-880)) 79) (((-880)) 78)))
-(((-1280) (-10 -7 (-15 -3970 ((-880))) (-15 -3970 ((-880) (-880))) (-15 -3938 ((-880))) (-15 -3938 ((-880) (-880))) (-15 -1978 ((-880))) (-15 -1978 ((-880) (-880))) (-15 -4087 ((-880))) (-15 -4087 ((-880) (-880))) (-15 -1325 ((-928))) (-15 -1325 ((-928) (-928))) (-15 -3550 ((-650 (-777)))) (-15 -3550 ((-650 (-777)) (-650 (-777)))) (-15 -1964 ((-650 (-928)))) (-15 -1964 ((-650 (-928)) (-650 (-928)))) (-15 -3086 ((-1282))) (-15 -1795 ((-650 (-1168)))) (-15 -1795 ((-650 (-1168)) (-650 (-1168)))) (-15 -1410 ((-650 (-1168)))) (-15 -2205 ((-928))) (-15 -1688 ((-928))) (-15 -2205 ((-928) (-928))) (-15 -1688 ((-928) (-928))) (-15 -3817 ((-928) (-928))) (-15 -3817 ((-928))) (-15 -3255 ((-227) (-384))) (-15 -3255 ((-227))))) (T -1280))
-((-3255 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1280)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-1280)))) (-3817 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-1688 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-1688 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-2205 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-1410 (*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1280)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1280)))) (-1795 (*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1280)))) (-3086 (*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1280)))) (-1964 (*1 *2 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1280)))) (-1964 (*1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1280)))) (-3550 (*1 *2 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1280)))) (-3550 (*1 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1280)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-1325 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))) (-4087 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))) (-4087 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))) (-1978 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))) (-3938 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))) (-3970 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))))
-(-10 -7 (-15 -3970 ((-880))) (-15 -3970 ((-880) (-880))) (-15 -3938 ((-880))) (-15 -3938 ((-880) (-880))) (-15 -1978 ((-880))) (-15 -1978 ((-880) (-880))) (-15 -4087 ((-880))) (-15 -4087 ((-880) (-880))) (-15 -1325 ((-928))) (-15 -1325 ((-928) (-928))) (-15 -3550 ((-650 (-777)))) (-15 -3550 ((-650 (-777)) (-650 (-777)))) (-15 -1964 ((-650 (-928)))) (-15 -1964 ((-650 (-928)) (-650 (-928)))) (-15 -3086 ((-1282))) (-15 -1795 ((-650 (-1168)))) (-15 -1795 ((-650 (-1168)) (-650 (-1168)))) (-15 -1410 ((-650 (-1168)))) (-15 -2205 ((-928))) (-15 -1688 ((-928))) (-15 -2205 ((-928) (-928))) (-15 -1688 ((-928) (-928))) (-15 -3817 ((-928) (-928))) (-15 -3817 ((-928))) (-15 -3255 ((-227) (-384))) (-15 -3255 ((-227))))
-((-4100 (((-474) (-650 (-650 (-950 (-227)))) (-650 (-266))) 22) (((-474) (-650 (-650 (-950 (-227))))) 21) (((-474) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266))) 20)) (-4217 (((-1278) (-650 (-650 (-950 (-227)))) (-650 (-266))) 30) (((-1278) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266))) 29)) (-2869 (((-1278) (-474)) 46)))
-(((-1281) (-10 -7 (-15 -4100 ((-474) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -4100 ((-474) (-650 (-650 (-950 (-227)))))) (-15 -4100 ((-474) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -4217 ((-1278) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -4217 ((-1278) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -2869 ((-1278) (-474))))) (T -1281))
-((-2869 (*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *2 (-1278)) (-5 *1 (-1281)))) (-4217 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-1281)))) (-4217 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-1281)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266))) (-5 *2 (-474)) (-5 *1 (-1281)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-474)) (-5 *1 (-1281)))) (-4100 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-474)) (-5 *1 (-1281)))))
-(-10 -7 (-15 -4100 ((-474) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -4100 ((-474) (-650 (-650 (-950 (-227)))))) (-15 -4100 ((-474) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -4217 ((-1278) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -4217 ((-1278) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -2869 ((-1278) (-474))))
-((-1994 (($) 6)) (-2869 (((-868) $) 9)))
-(((-1282) (-13 (-619 (-868)) (-10 -8 (-15 -1994 ($))))) (T -1282))
-((-1994 (*1 *1) (-5 *1 (-1282))))
-(-13 (-619 (-868)) (-10 -8 (-15 -1994 ($))))
-((-4013 (($ $ |#2|) 10)))
-(((-1283 |#1| |#2|) (-10 -8 (-15 -4013 (|#1| |#1| |#2|))) (-1284 |#2|) (-368)) (T -1283))
-NIL
-(-10 -8 (-15 -4013 (|#1| |#1| |#2|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-4388 (((-135)) 33)) (-2869 (((-868) $) 12)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-3892 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 34)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-1284 |#1|) (-141) (-368)) (T -1284))
-((-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-368)))) (-4388 (*1 *2) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-368)) (-5 *2 (-135)))))
-(-13 (-723 |t#1|) (-10 -8 (-15 -4013 ($ $ |t#1|)) (-15 -4388 ((-135)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T))
-((-4070 (((-650 (-1221 |#1|)) (-1186) (-1221 |#1|)) 83)) (-3438 (((-1166 (-1166 (-959 |#1|))) (-1186) (-1166 (-959 |#1|))) 63)) (-3310 (((-1 (-1166 (-1221 |#1|)) (-1166 (-1221 |#1|))) (-777) (-1221 |#1|) (-1166 (-1221 |#1|))) 74)) (-3616 (((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777)) 65)) (-2621 (((-1 (-1182 (-959 |#1|)) (-959 |#1|)) (-1186)) 32)) (-4317 (((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777)) 64)))
-(((-1285 |#1|) (-10 -7 (-15 -3616 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -4317 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -3438 ((-1166 (-1166 (-959 |#1|))) (-1186) (-1166 (-959 |#1|)))) (-15 -2621 ((-1 (-1182 (-959 |#1|)) (-959 |#1|)) (-1186))) (-15 -4070 ((-650 (-1221 |#1|)) (-1186) (-1221 |#1|))) (-15 -3310 ((-1 (-1166 (-1221 |#1|)) (-1166 (-1221 |#1|))) (-777) (-1221 |#1|) (-1166 (-1221 |#1|))))) (-368)) (T -1285))
-((-3310 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-777)) (-4 *6 (-368)) (-5 *4 (-1221 *6)) (-5 *2 (-1 (-1166 *4) (-1166 *4))) (-5 *1 (-1285 *6)) (-5 *5 (-1166 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-650 (-1221 *5))) (-5 *1 (-1285 *5)) (-5 *4 (-1221 *5)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1 (-1182 (-959 *4)) (-959 *4))) (-5 *1 (-1285 *4)) (-4 *4 (-368)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-1166 (-1166 (-959 *5)))) (-5 *1 (-1285 *5)) (-5 *4 (-1166 (-959 *5))))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4)))) (-5 *1 (-1285 *4)) (-4 *4 (-368)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4)))) (-5 *1 (-1285 *4)) (-4 *4 (-368)))))
-(-10 -7 (-15 -3616 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -4317 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -3438 ((-1166 (-1166 (-959 |#1|))) (-1186) (-1166 (-959 |#1|)))) (-15 -2621 ((-1 (-1182 (-959 |#1|)) (-959 |#1|)) (-1186))) (-15 -4070 ((-650 (-1221 |#1|)) (-1186) (-1221 |#1|))) (-15 -3310 ((-1 (-1166 (-1221 |#1|)) (-1166 (-1221 |#1|))) (-777) (-1221 |#1|) (-1166 (-1221 |#1|)))))
-((-4053 (((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|) 80)) (-1868 (((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) 79)))
-(((-1286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -4053 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|))) (-354) (-1253 |#1|) (-1253 |#2|) (-415 |#2| |#3|)) (T -1286))
-((-4053 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 *3)) (-5 *2 (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-1286 *4 *3 *5 *6)) (-4 *6 (-415 *3 *5)))) (-1868 (*1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 *4)) (-5 *2 (-2 (|:| -2681 (-695 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-695 *4)))) (-5 *1 (-1286 *3 *4 *5 *6)) (-4 *6 (-415 *4 *5)))))
-(-10 -7 (-15 -1868 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -4053 ((-2 (|:| -2681 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|)))
-((-2847 (((-112) $ $) NIL)) (-2719 (((-1144) $) 11)) (-2240 (((-1144) $) 9)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1287) (-13 (-1092) (-10 -8 (-15 -2240 ((-1144) $)) (-15 -2719 ((-1144) $))))) (T -1287))
-((-2240 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1287)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1287)))))
-(-13 (-1092) (-10 -8 (-15 -2240 ((-1144) $)) (-15 -2719 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3673 (((-1144) $) 9)) (-2869 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) NIL)))
-(((-1288) (-13 (-1092) (-10 -8 (-15 -3673 ((-1144) $))))) (T -1288))
-((-3673 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1288)))))
-(-13 (-1092) (-10 -8 (-15 -3673 ((-1144) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 58)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) NIL)) (-2005 (((-112) $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 81) (($ (-570)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-2294 (((-777)) NIL T CONST)) (-1658 (((-1282) (-777)) 16)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 37 T CONST)) (-1998 (($) 84 T CONST)) (-3892 (((-112) $ $) 87)) (-4013 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-4003 (($ $) 89) (($ $ $) NIL)) (-3992 (($ $ $) 63)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-1289 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1058) (-496 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1658 ((-1282) (-777))))) (-1058) (-856) (-799) (-956 |#1| |#3| |#2|) (-650 |#2|) (-650 (-777)) (-777)) (T -1289))
-((-4013 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-368)) (-4 *2 (-1058)) (-4 *3 (-856)) (-4 *4 (-799)) (-14 *6 (-650 *3)) (-5 *1 (-1289 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-956 *2 *4 *3)) (-14 *7 (-650 (-777))) (-14 *8 (-777)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) (-14 *8 (-650 *5)) (-5 *2 (-1282)) (-5 *1 (-1289 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-956 *4 *6 *5)) (-14 *9 (-650 *3)) (-14 *10 *3))))
-(-13 (-1058) (-496 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1658 ((-1282) (-777)))))
-((-2847 (((-112) $ $) NIL)) (-2444 (((-650 (-2 (|:| -2442 $) (|:| -2965 (-650 |#4|)))) (-650 |#4|)) NIL)) (-1510 (((-650 $) (-650 |#4|)) 96)) (-1598 (((-650 |#3|) $) NIL)) (-3330 (((-112) $) NIL)) (-2114 (((-112) $) NIL (|has| |#1| (-562)))) (-2665 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3067 ((|#4| |#4| $) NIL)) (-2018 (((-2 (|:| |under| $) (|:| -2037 $) (|:| |upper| $)) $ |#3|) NIL)) (-2855 (((-112) $ (-777)) NIL)) (-3960 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2333 (($) NIL T CONST)) (-2157 (((-112) $) NIL (|has| |#1| (-562)))) (-3303 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3105 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3580 (((-112) $) NIL (|has| |#1| (-562)))) (-2151 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2303 (((-650 |#4|) (-650 |#4|) $) 28 (|has| |#1| (-562)))) (-3541 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-2435 (((-3 $ "failed") (-650 |#4|)) NIL)) (-4387 (($ (-650 |#4|)) NIL)) (-1962 (((-3 $ "failed") $) 78)) (-2360 ((|#4| |#4| $) 83)) (-3153 (($ $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-3617 (($ |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3357 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1429 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4079 ((|#4| |#4| $) NIL)) (-2295 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4452))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4452))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3993 (((-2 (|:| -2442 (-650 |#4|)) (|:| -2965 (-650 |#4|))) $) NIL)) (-3976 (((-650 |#4|) $) NIL (|has| $ (-6 -4452)))) (-1623 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2486 ((|#3| $) 84)) (-2497 (((-112) $ (-777)) NIL)) (-3069 (((-650 |#4|) $) 32 (|has| $ (-6 -4452)))) (-1314 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109))))) (-2220 (((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-650 |#4|)) 38)) (-2833 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4453)))) (-2536 (($ (-1 |#4| |#4|) $) NIL)) (-3734 (((-650 |#3|) $) NIL)) (-3640 (((-112) |#3| $) NIL)) (-2065 (((-112) $ (-777)) NIL)) (-3240 (((-1168) $) NIL)) (-3637 (((-3 |#4| "failed") $) NIL)) (-4083 (((-650 |#4|) $) 54)) (-2010 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1478 ((|#4| |#4| $) 82)) (-1693 (((-112) $ $) 93)) (-4092 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1772 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2899 ((|#4| |#4| $) NIL)) (-3891 (((-1129) $) NIL)) (-1948 (((-3 |#4| "failed") $) 77)) (-2115 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3484 (((-3 $ "failed") $ |#4|) NIL)) (-3308 (($ $ |#4|) NIL)) (-2231 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3034 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-2914 (((-112) $ $) NIL)) (-2171 (((-112) $) 75)) (-1698 (($) 46)) (-2650 (((-777) $) NIL)) (-3901 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4452)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-3064 (($ $) NIL)) (-2601 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-2881 (($ (-650 |#4|)) NIL)) (-1342 (($ $ |#3|) NIL)) (-2691 (($ $ |#3|) NIL)) (-2990 (($ $) NIL)) (-3130 (($ $ |#3|) NIL)) (-2869 (((-868) $) NIL) (((-650 |#4|) $) 63)) (-3982 (((-777) $) NIL (|has| |#3| (-373)))) (-4243 (((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-650 |#4|)) 45)) (-1533 (((-650 $) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-650 $) (-650 |#4|)) 74)) (-1344 (((-112) $ $) NIL)) (-3774 (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1999 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3810 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-2061 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4452)))) (-2273 (((-650 |#3|) $) NIL)) (-1600 (((-112) |#3| $) NIL)) (-3892 (((-112) $ $) NIL)) (-2857 (((-777) $) NIL (|has| $ (-6 -4452)))))
-(((-1290 |#1| |#2| |#3| |#4|) (-13 (-1220 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2220 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2220 ((-3 $ "failed") (-650 |#4|))) (-15 -4243 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4243 ((-3 $ "failed") (-650 |#4|))) (-15 -1533 ((-650 $) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1533 ((-650 $) (-650 |#4|))))) (-562) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -1290))
-((-2220 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1290 *5 *6 *7 *8)))) (-2220 (*1 *1 *2) (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1290 *3 *4 *5 *6)))) (-4243 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1290 *5 *6 *7 *8)))) (-4243 (*1 *1 *2) (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1290 *3 *4 *5 *6)))) (-1533 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-650 (-1290 *6 *7 *8 *9))) (-5 *1 (-1290 *6 *7 *8 *9)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-1290 *4 *5 *6 *7))) (-5 *1 (-1290 *4 *5 *6 *7)))))
-(-13 (-1220 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2220 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2220 ((-3 $ "failed") (-650 |#4|))) (-15 -4243 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4243 ((-3 $ "failed") (-650 |#4|))) (-15 -1533 ((-650 $) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1533 ((-650 $) (-650 |#4|)))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3997 (((-3 $ "failed") $ $) 20)) (-2333 (($) 18 T CONST)) (-3957 (((-3 $ "failed") $) 37)) (-2005 (((-112) $) 35)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 45)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-1291 |#1|) (-141) (-1058)) (T -1291))
-NIL
-(-13 (-1058) (-111 |t#1| |t#1|) (-622 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T))
-((-2847 (((-112) $ $) 67)) (-2564 (((-112) $) NIL)) (-3473 (((-650 |#1|) $) 52)) (-3768 (($ $ (-777)) 46)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1603 (($ $ (-777)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-2333 (($) NIL T CONST)) (-2720 (($ $ $) 70) (($ $ (-825 |#1|)) 56) (($ $ |#1|) 60)) (-2435 (((-3 (-825 |#1|) "failed") $) NIL)) (-4387 (((-825 |#1|) $) NIL)) (-4394 (($ $) 39)) (-3957 (((-3 $ "failed") $) NIL)) (-4115 (((-112) $) NIL)) (-1452 (($ $) NIL)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-3677 (($ (-825 |#1|) |#2|) 38)) (-3222 (($ $) 40)) (-1733 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) 12)) (-3547 (((-825 |#1|) $) NIL)) (-1352 (((-825 |#1|) $) 41)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-2787 (($ $ $) 69) (($ $ (-825 |#1|)) 58) (($ $ |#1|) 62)) (-3498 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4355 (((-825 |#1|) $) 35)) (-4369 ((|#2| $) 37)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2650 (((-777) $) 43)) (-3839 (((-112) $) 47)) (-3722 ((|#2| $) NIL)) (-2869 (((-868) $) NIL) (($ (-825 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-570)) NIL)) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-825 |#1|)) NIL)) (-1747 ((|#2| $ $) 76) ((|#2| $ (-825 |#1|)) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 13 T CONST)) (-1998 (($) 19 T CONST)) (-2255 (((-650 (-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3892 (((-112) $ $) 44)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 28)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-825 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1292 |#1| |#2|) (-13 (-387 |#2| (-825 |#1|)) (-1298 |#1| |#2|)) (-856) (-1058)) (T -1292))
-NIL
-(-13 (-387 |#2| (-825 |#1|)) (-1298 |#1| |#2|))
-((-3447 ((|#3| |#3| (-777)) 28)) (-2651 ((|#3| |#3| (-777)) 34)) (-2090 ((|#3| |#3| |#3| (-777)) 35)))
-(((-1293 |#1| |#2| |#3|) (-10 -7 (-15 -2651 (|#3| |#3| (-777))) (-15 -3447 (|#3| |#3| (-777))) (-15 -2090 (|#3| |#3| |#3| (-777)))) (-13 (-1058) (-723 (-413 (-570)))) (-856) (-1298 |#2| |#1|)) (T -1293))
-((-2090 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) (-4 *5 (-856)) (-5 *1 (-1293 *4 *5 *2)) (-4 *2 (-1298 *5 *4)))) (-3447 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) (-4 *5 (-856)) (-5 *1 (-1293 *4 *5 *2)) (-4 *2 (-1298 *5 *4)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) (-4 *5 (-856)) (-5 *1 (-1293 *4 *5 *2)) (-4 *2 (-1298 *5 *4)))))
-(-10 -7 (-15 -2651 (|#3| |#3| (-777))) (-15 -3447 (|#3| |#3| (-777))) (-15 -2090 (|#3| |#3| |#3| (-777))))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3473 (((-650 |#1|) $) 47)) (-3997 (((-3 $ "failed") $ $) 20)) (-1603 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-777)) 49 (|has| |#2| (-174)))) (-2333 (($) 18 T CONST)) (-2720 (($ $ |#1|) 61) (($ $ (-825 |#1|)) 60) (($ $ $) 59)) (-2435 (((-3 (-825 |#1|) "failed") $) 71)) (-4387 (((-825 |#1|) $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-4115 (((-112) $) 52)) (-1452 (($ $) 51)) (-2005 (((-112) $) 35)) (-1338 (((-112) $) 57)) (-3677 (($ (-825 |#1|) |#2|) 58)) (-3222 (($ $) 56)) (-1733 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) 67)) (-3547 (((-825 |#1|) $) 68)) (-2536 (($ (-1 |#2| |#2|) $) 48)) (-2787 (($ $ |#1|) 64) (($ $ (-825 |#1|)) 63) (($ $ $) 62)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-3839 (((-112) $) 54)) (-3722 ((|#2| $) 53)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#2|) 75) (($ (-825 |#1|)) 70) (($ |#1|) 55)) (-1747 ((|#2| $ (-825 |#1|)) 66) ((|#2| $ $) 65)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1294 |#1| |#2|) (-141) (-856) (-1058)) (T -1294))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1294 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-825 *3)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-2 (|:| |k| (-825 *3)) (|:| |c| *4))))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-825 *4)) (-4 *1 (-1294 *4 *2)) (-4 *4 (-856)) (-4 *2 (-1058)))) (-1747 (*1 *2 *1 *1) (-12 (-4 *1 (-1294 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) (-2787 (*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2787 (*1 *1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-2787 (*1 *1 *1 *1) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2720 (*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-2720 (*1 *1 *1 *1) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-3677 (*1 *1 *2 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-856)) (-4 *1 (-1294 *4 *3)) (-4 *3 (-1058)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-112)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2869 (*1 *1 *2) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-112)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-112)))) (-1452 (*1 *1 *1) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-1603 (*1 *1 *1 *1) (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)) (-4 *3 (-174)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-4 *4 (-174)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-650 *3)))))
-(-13 (-1058) (-1291 |t#2|) (-1047 (-825 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3547 ((-825 |t#1|) $)) (-15 -1733 ((-2 (|:| |k| (-825 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1747 (|t#2| $ (-825 |t#1|))) (-15 -1747 (|t#2| $ $)) (-15 -2787 ($ $ |t#1|)) (-15 -2787 ($ $ (-825 |t#1|))) (-15 -2787 ($ $ $)) (-15 -2720 ($ $ |t#1|)) (-15 -2720 ($ $ (-825 |t#1|))) (-15 -2720 ($ $ $)) (-15 -3677 ($ (-825 |t#1|) |t#2|)) (-15 -1338 ((-112) $)) (-15 -3222 ($ $)) (-15 -2869 ($ |t#1|)) (-15 -3839 ((-112) $)) (-15 -3722 (|t#2| $)) (-15 -4115 ((-112) $)) (-15 -1452 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -1603 ($ $ $)) (-15 -1603 ($ $ (-777)))) |%noBranch|) (-15 -2536 ($ (-1 |t#2| |t#2|) $)) (-15 -3473 ((-650 |t#1|) $)) (IF (|has| |t#2| (-6 -4445)) (-6 -4445) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 #0=(-825 |#1|)) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-652 $) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-646 |#2|) |has| |#2| (-174)) ((-723 |#2|) |has| |#2| (-174)) ((-732) . T) ((-1047 #0#) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1291 |#2|) . T))
-((-1516 (((-112) $) 15)) (-1600 (((-112) $) 14)) (-4257 (($ $) 19) (($ $ (-777)) 21)))
-(((-1295 |#1| |#2|) (-10 -8 (-15 -4257 (|#1| |#1| (-777))) (-15 -4257 (|#1| |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -1600 ((-112) |#1|))) (-1296 |#2|) (-368)) (T -1295))
-NIL
-(-10 -8 (-15 -4257 (|#1| |#1| (-777))) (-15 -4257 (|#1| |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -1600 ((-112) |#1|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-1558 (((-2 (|:| -1347 $) (|:| -4439 $) (|:| |associate| $)) $) 47)) (-2046 (($ $) 46)) (-3426 (((-112) $) 44)) (-1516 (((-112) $) 104)) (-1521 (((-777)) 100)) (-3997 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-2929 (((-424 $) $) 80)) (-1799 (((-112) $ $) 65)) (-2333 (($) 18 T CONST)) (-2435 (((-3 |#1| "failed") $) 111)) (-4387 ((|#1| $) 112)) (-2788 (($ $ $) 61)) (-3957 (((-3 $ "failed") $) 37)) (-2799 (($ $ $) 62)) (-2762 (((-2 (|:| -1747 (-650 $)) (|:| -3643 $)) (-650 $)) 57)) (-2118 (($ $ (-777)) 97 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) 96 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2145 (((-112) $) 79)) (-3995 (((-839 (-928)) $) 94 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2005 (((-112) $) 35)) (-1928 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3867 (($ $ $) 52) (($ (-650 $)) 51)) (-3240 (((-1168) $) 10)) (-4315 (($ $) 78)) (-3031 (((-112) $) 103)) (-3891 (((-1129) $) 11)) (-2942 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-3903 (($ $ $) 54) (($ (-650 $)) 53)) (-2340 (((-424 $) $) 82)) (-3172 (((-839 (-928))) 101)) (-1491 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3643 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2837 (((-3 $ "failed") $ $) 48)) (-4128 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-2002 (((-777) $) 64)) (-4038 (((-2 (|:| -1437 $) (|:| -3357 $)) $ $) 63)) (-4058 (((-3 (-777) "failed") $ $) 95 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-4388 (((-135)) 109)) (-2650 (((-839 (-928)) $) 102)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ |#1|) 110)) (-1660 (((-3 $ "failed") $) 93 (-3749 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-2939 (((-112) $ $) 45)) (-1600 (((-112) $) 105)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-4257 (($ $) 99 (|has| |#1| (-373))) (($ $ (-777)) 98 (|has| |#1| (-373)))) (-3892 (((-112) $ $) 6)) (-4013 (($ $ $) 73) (($ $ |#1|) 108)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1296 |#1|) (-141) (-368)) (T -1296))
-((-1600 (*1 *2 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-112)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-112)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-112)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928))))) (-3172 (*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928))))) (-1521 (*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-777)))) (-4257 (*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-368)) (-4 *2 (-373)))) (-4257 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-4 *3 (-373)))))
-(-13 (-368) (-1047 |t#1|) (-1284 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-408)) |%noBranch|) (-15 -1600 ((-112) $)) (-15 -1516 ((-112) $)) (-15 -3031 ((-112) $)) (-15 -2650 ((-839 (-928)) $)) (-15 -3172 ((-839 (-928)))) (-15 -1521 ((-777))) (IF (|has| |t#1| (-373)) (PROGN (-6 (-408)) (-15 -4257 ($ $)) (-15 -4257 ($ $ (-777)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3749 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-408) -3749 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 |#1|) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1231) . T) ((-1284 |#1|) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3473 (((-650 |#1|) $) 98)) (-3768 (($ $ (-777)) 102)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1603 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-777)) NIL (|has| |#2| (-174)))) (-2333 (($) NIL T CONST)) (-2720 (($ $ |#1|) NIL) (($ $ (-825 |#1|)) NIL) (($ $ $) NIL)) (-2435 (((-3 (-825 |#1|) "failed") $) NIL) (((-3 (-900 |#1|) "failed") $) NIL)) (-4387 (((-825 |#1|) $) NIL) (((-900 |#1|) $) NIL)) (-4394 (($ $) 101)) (-3957 (((-3 $ "failed") $) NIL)) (-4115 (((-112) $) 90)) (-1452 (($ $) 93)) (-2584 (($ $ $ (-777)) 103)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-3677 (($ (-825 |#1|) |#2|) NIL) (($ (-900 |#1|) |#2|) 29)) (-3222 (($ $) 119)) (-1733 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3547 (((-825 |#1|) $) NIL)) (-1352 (((-825 |#1|) $) NIL)) (-2536 (($ (-1 |#2| |#2|) $) NIL)) (-2787 (($ $ |#1|) NIL) (($ $ (-825 |#1|)) NIL) (($ $ $) NIL)) (-3447 (($ $ (-777)) 112 (|has| |#2| (-723 (-413 (-570)))))) (-3498 (((-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4355 (((-900 |#1|) $) 83)) (-4369 ((|#2| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2651 (($ $ (-777)) 109 (|has| |#2| (-723 (-413 (-570)))))) (-2650 (((-777) $) 99)) (-3839 (((-112) $) 84)) (-3722 ((|#2| $) 88)) (-2869 (((-868) $) 69) (($ (-570)) NIL) (($ |#2|) 60) (($ (-825 |#1|)) NIL) (($ |#1|) 71) (($ (-900 |#1|)) NIL) (($ (-670 |#1| |#2|)) 48) (((-1292 |#1| |#2|) $) 76) (((-1301 |#1| |#2|) $) 81)) (-3125 (((-650 |#2|) $) NIL)) (-3481 ((|#2| $ (-900 |#1|)) NIL)) (-1747 ((|#2| $ (-825 |#1|)) NIL) ((|#2| $ $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 21 T CONST)) (-1998 (($) 28 T CONST)) (-2255 (((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3288 (((-3 (-670 |#1| |#2|) "failed") $) 118)) (-3892 (((-112) $ $) 77)) (-4003 (($ $) 111) (($ $ $) 110)) (-3992 (($ $ $) 20)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-900 |#1|)) NIL)))
-(((-1297 |#1| |#2|) (-13 (-1298 |#1| |#2|) (-387 |#2| (-900 |#1|)) (-10 -8 (-15 -2869 ($ (-670 |#1| |#2|))) (-15 -2869 ((-1292 |#1| |#2|) $)) (-15 -2869 ((-1301 |#1| |#2|) $)) (-15 -3288 ((-3 (-670 |#1| |#2|) "failed") $)) (-15 -2584 ($ $ $ (-777))) (IF (|has| |#2| (-723 (-413 (-570)))) (PROGN (-15 -2651 ($ $ (-777))) (-15 -3447 ($ $ (-777)))) |%noBranch|))) (-856) (-174)) (T -1297))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *1 (-1297 *3 *4)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-3288 (*1 *2 *1) (|partial| -12 (-5 *2 (-670 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-2584 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1297 *3 *4)) (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174)))) (-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1297 *3 *4)) (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174)))))
-(-13 (-1298 |#1| |#2|) (-387 |#2| (-900 |#1|)) (-10 -8 (-15 -2869 ($ (-670 |#1| |#2|))) (-15 -2869 ((-1292 |#1| |#2|) $)) (-15 -2869 ((-1301 |#1| |#2|) $)) (-15 -3288 ((-3 (-670 |#1| |#2|) "failed") $)) (-15 -2584 ($ $ $ (-777))) (IF (|has| |#2| (-723 (-413 (-570)))) (PROGN (-15 -2651 ($ $ (-777))) (-15 -3447 ($ $ (-777)))) |%noBranch|)))
-((-2847 (((-112) $ $) 7)) (-2564 (((-112) $) 17)) (-3473 (((-650 |#1|) $) 47)) (-3768 (($ $ (-777)) 80)) (-3997 (((-3 $ "failed") $ $) 20)) (-1603 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-777)) 49 (|has| |#2| (-174)))) (-2333 (($) 18 T CONST)) (-2720 (($ $ |#1|) 61) (($ $ (-825 |#1|)) 60) (($ $ $) 59)) (-2435 (((-3 (-825 |#1|) "failed") $) 71)) (-4387 (((-825 |#1|) $) 72)) (-3957 (((-3 $ "failed") $) 37)) (-4115 (((-112) $) 52)) (-1452 (($ $) 51)) (-2005 (((-112) $) 35)) (-1338 (((-112) $) 57)) (-3677 (($ (-825 |#1|) |#2|) 58)) (-3222 (($ $) 56)) (-1733 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) 67)) (-3547 (((-825 |#1|) $) 68)) (-1352 (((-825 |#1|) $) 82)) (-2536 (($ (-1 |#2| |#2|) $) 48)) (-2787 (($ $ |#1|) 64) (($ $ (-825 |#1|)) 63) (($ $ $) 62)) (-3240 (((-1168) $) 10)) (-3891 (((-1129) $) 11)) (-2650 (((-777) $) 81)) (-3839 (((-112) $) 54)) (-3722 ((|#2| $) 53)) (-2869 (((-868) $) 12) (($ (-570)) 33) (($ |#2|) 75) (($ (-825 |#1|)) 70) (($ |#1|) 55)) (-1747 ((|#2| $ (-825 |#1|)) 66) ((|#2| $ $) 65)) (-2294 (((-777)) 32 T CONST)) (-1344 (((-112) $ $) 9)) (-1981 (($) 19 T CONST)) (-1998 (($) 34 T CONST)) (-3892 (((-112) $ $) 6)) (-4003 (($ $) 23) (($ $ $) 22)) (-3992 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1298 |#1| |#2|) (-141) (-856) (-1058)) (T -1298))
-((-1352 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-825 *3)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-777)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))))
-(-13 (-1294 |t#1| |t#2|) (-10 -8 (-15 -1352 ((-825 |t#1|) $)) (-15 -2650 ((-777) $)) (-15 -3768 ($ $ (-777)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 #0=(-825 |#1|)) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-652 $) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-646 |#2|) |has| |#2| (-174)) ((-723 |#2|) |has| |#2| (-174)) ((-732) . T) ((-1047 #0#) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1291 |#2|) . T) ((-1294 |#1| |#2|) . T))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3473 (((-650 (-1186)) $) NIL)) (-4135 (($ (-1292 (-1186) |#1|)) NIL)) (-3768 (($ $ (-777)) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1603 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-777)) NIL (|has| |#1| (-174)))) (-2333 (($) NIL T CONST)) (-2720 (($ $ (-1186)) NIL) (($ $ (-825 (-1186))) NIL) (($ $ $) NIL)) (-2435 (((-3 (-825 (-1186)) "failed") $) NIL)) (-4387 (((-825 (-1186)) $) NIL)) (-3957 (((-3 $ "failed") $) NIL)) (-4115 (((-112) $) NIL)) (-1452 (($ $) NIL)) (-2005 (((-112) $) NIL)) (-1338 (((-112) $) NIL)) (-3677 (($ (-825 (-1186)) |#1|) NIL)) (-3222 (($ $) NIL)) (-1733 (((-2 (|:| |k| (-825 (-1186))) (|:| |c| |#1|)) $) NIL)) (-3547 (((-825 (-1186)) $) NIL)) (-1352 (((-825 (-1186)) $) NIL)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-2787 (($ $ (-1186)) NIL) (($ $ (-825 (-1186))) NIL) (($ $ $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3920 (((-1292 (-1186) |#1|) $) NIL)) (-2650 (((-777) $) NIL)) (-3839 (((-112) $) NIL)) (-3722 ((|#1| $) NIL)) (-2869 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-825 (-1186))) NIL) (($ (-1186)) NIL)) (-1747 ((|#1| $ (-825 (-1186))) NIL) ((|#1| $ $) NIL)) (-2294 (((-777)) NIL T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) NIL T CONST)) (-3195 (((-650 (-2 (|:| |k| (-1186)) (|:| |c| $))) $) NIL)) (-1998 (($) NIL T CONST)) (-3892 (((-112) $ $) NIL)) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1186) $) NIL)))
-(((-1299 |#1|) (-13 (-1298 (-1186) |#1|) (-10 -8 (-15 -3920 ((-1292 (-1186) |#1|) $)) (-15 -4135 ($ (-1292 (-1186) |#1|))) (-15 -3195 ((-650 (-2 (|:| |k| (-1186)) (|:| |c| $))) $)))) (-1058)) (T -1299))
-((-3920 (*1 *2 *1) (-12 (-5 *2 (-1292 (-1186) *3)) (-5 *1 (-1299 *3)) (-4 *3 (-1058)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-1292 (-1186) *3)) (-4 *3 (-1058)) (-5 *1 (-1299 *3)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| (-1186)) (|:| |c| (-1299 *3))))) (-5 *1 (-1299 *3)) (-4 *3 (-1058)))))
-(-13 (-1298 (-1186) |#1|) (-10 -8 (-15 -3920 ((-1292 (-1186) |#1|) $)) (-15 -4135 ($ (-1292 (-1186) |#1|))) (-15 -3195 ((-650 (-2 (|:| |k| (-1186)) (|:| |c| $))) $))))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) NIL)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2333 (($) NIL T CONST)) (-2435 (((-3 |#2| "failed") $) NIL)) (-4387 ((|#2| $) NIL)) (-4394 (($ $) NIL)) (-3957 (((-3 $ "failed") $) 42)) (-4115 (((-112) $) 35)) (-1452 (($ $) 37)) (-2005 (((-112) $) NIL)) (-2928 (((-777) $) NIL)) (-1739 (((-650 $) $) NIL)) (-1338 (((-112) $) NIL)) (-3677 (($ |#2| |#1|) NIL)) (-3547 ((|#2| $) 24)) (-1352 ((|#2| $) 22)) (-2536 (($ (-1 |#1| |#1|) $) NIL)) (-3498 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4355 ((|#2| $) NIL)) (-4369 ((|#1| $) NIL)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3839 (((-112) $) 32)) (-3722 ((|#1| $) 33)) (-2869 (((-868) $) 65) (($ (-570)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3125 (((-650 |#1|) $) NIL)) (-3481 ((|#1| $ |#2|) NIL)) (-1747 ((|#1| $ |#2|) 28)) (-2294 (((-777)) 14 T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 29 T CONST)) (-1998 (($) 11 T CONST)) (-2255 (((-650 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3892 (((-112) $ $) 30)) (-4013 (($ $ |#1|) 67 (|has| |#1| (-368)))) (-4003 (($ $) NIL) (($ $ $) NIL)) (-3992 (($ $ $) 50)) (** (($ $ (-928)) NIL) (($ $ (-777)) 52)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2857 (((-777) $) 16)))
-(((-1300 |#1| |#2|) (-13 (-1058) (-1291 |#1|) (-387 |#1| |#2|) (-622 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2857 ((-777) $)) (-15 -1352 (|#2| $)) (-15 -3547 (|#2| $)) (-15 -4394 ($ $)) (-15 -1747 (|#1| $ |#2|)) (-15 -3839 ((-112) $)) (-15 -3722 (|#1| $)) (-15 -4115 ((-112) $)) (-15 -1452 ($ $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-368)) (-15 -4013 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|))) (-1058) (-852)) (T -1300))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))) (-4394 (*1 *1 *1) (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-1300 *3 *4)) (-4 *4 (-852)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-852)))) (-1352 (*1 *2 *1) (-12 (-4 *2 (-852)) (-5 *1 (-1300 *3 *2)) (-4 *3 (-1058)))) (-3547 (*1 *2 *1) (-12 (-4 *2 (-852)) (-5 *1 (-1300 *3 *2)) (-4 *3 (-1058)))) (-1747 (*1 *2 *1 *3) (-12 (-4 *2 (-1058)) (-5 *1 (-1300 *2 *3)) (-4 *3 (-852)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-852)))) (-3722 (*1 *2 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-1300 *2 *3)) (-4 *3 (-852)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-852)))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-368)) (-4 *2 (-1058)) (-4 *3 (-852)))))
-(-13 (-1058) (-1291 |#1|) (-387 |#1| |#2|) (-622 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2857 ((-777) $)) (-15 -1352 (|#2| $)) (-15 -3547 (|#2| $)) (-15 -4394 ($ $)) (-15 -1747 (|#1| $ |#2|)) (-15 -3839 ((-112) $)) (-15 -3722 (|#1| $)) (-15 -4115 ((-112) $)) (-15 -1452 ($ $)) (-15 -2536 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-368)) (-15 -4013 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) (IF (|has| |#1| (-6 -4450)) (-6 -4450) |%noBranch|)))
-((-2847 (((-112) $ $) 27)) (-2564 (((-112) $) NIL)) (-3473 (((-650 |#1|) $) 132)) (-4135 (($ (-1292 |#1| |#2|)) 50)) (-3768 (($ $ (-777)) 38)) (-3997 (((-3 $ "failed") $ $) NIL)) (-1603 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-777)) 52 (|has| |#2| (-174)))) (-2333 (($) NIL T CONST)) (-2720 (($ $ |#1|) 114) (($ $ (-825 |#1|)) 115) (($ $ $) 26)) (-2435 (((-3 (-825 |#1|) "failed") $) NIL)) (-4387 (((-825 |#1|) $) NIL)) (-3957 (((-3 $ "failed") $) 122)) (-4115 (((-112) $) 117)) (-1452 (($ $) 118)) (-2005 (((-112) $) NIL)) (-1338 (((-112) $) NIL)) (-3677 (($ (-825 |#1|) |#2|) 20)) (-3222 (($ $) NIL)) (-1733 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3547 (((-825 |#1|) $) 123)) (-1352 (((-825 |#1|) $) 126)) (-2536 (($ (-1 |#2| |#2|) $) 131)) (-2787 (($ $ |#1|) 112) (($ $ (-825 |#1|)) 113) (($ $ $) 62)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-3920 (((-1292 |#1| |#2|) $) 94)) (-2650 (((-777) $) 129)) (-3839 (((-112) $) 81)) (-3722 ((|#2| $) 32)) (-2869 (((-868) $) 73) (($ (-570)) 87) (($ |#2|) 85) (($ (-825 |#1|)) 18) (($ |#1|) 84)) (-1747 ((|#2| $ (-825 |#1|)) 116) ((|#2| $ $) 28)) (-2294 (((-777)) 120 T CONST)) (-1344 (((-112) $ $) NIL)) (-1981 (($) 15 T CONST)) (-3195 (((-650 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1998 (($) 33 T CONST)) (-3892 (((-112) $ $) 14)) (-4003 (($ $) 98) (($ $ $) 101)) (-3992 (($ $ $) 61)) (** (($ $ (-928)) NIL) (($ $ (-777)) 55)) (* (($ (-928) $) NIL) (($ (-777) $) 53) (($ (-570) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1301 |#1| |#2|) (-13 (-1298 |#1| |#2|) (-10 -8 (-15 -3920 ((-1292 |#1| |#2|) $)) (-15 -4135 ($ (-1292 |#1| |#2|))) (-15 -3195 ((-650 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-856) (-1058)) (T -1301))
-((-3920 (*1 *2 *1) (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-1292 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *1 (-1301 *3 *4)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| *3) (|:| |c| (-1301 *3 *4))))) (-5 *1 (-1301 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))))
-(-13 (-1298 |#1| |#2|) (-10 -8 (-15 -3920 ((-1292 |#1| |#2|) $)) (-15 -4135 ($ (-1292 |#1| |#2|))) (-15 -3195 ((-650 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2847 (((-112) $ $) NIL)) (-2697 (($ (-650 (-928))) 10)) (-3492 (((-980) $) 12)) (-3240 (((-1168) $) NIL)) (-3891 (((-1129) $) NIL)) (-2869 (((-868) $) 25) (($ (-980)) 14) (((-980) $) 13)) (-1344 (((-112) $ $) NIL)) (-3892 (((-112) $ $) 17)))
-(((-1302) (-13 (-1109) (-496 (-980)) (-10 -8 (-15 -2697 ($ (-650 (-928)))) (-15 -3492 ((-980) $))))) (T -1302))
-((-2697 (*1 *1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1302)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-980)) (-5 *1 (-1302)))))
-(-13 (-1109) (-496 (-980)) (-10 -8 (-15 -2697 ($ (-650 (-928)))) (-15 -3492 ((-980) $))))
-((-2246 (((-650 (-1166 |#1|)) (-1 (-650 (-1166 |#1|)) (-650 (-1166 |#1|))) (-570)) 16) (((-1166 |#1|) (-1 (-1166 |#1|) (-1166 |#1|))) 13)))
-(((-1303 |#1|) (-10 -7 (-15 -2246 ((-1166 |#1|) (-1 (-1166 |#1|) (-1166 |#1|)))) (-15 -2246 ((-650 (-1166 |#1|)) (-1 (-650 (-1166 |#1|)) (-650 (-1166 |#1|))) (-570)))) (-1227)) (T -1303))
-((-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-650 (-1166 *5)) (-650 (-1166 *5)))) (-5 *4 (-570)) (-5 *2 (-650 (-1166 *5))) (-5 *1 (-1303 *5)) (-4 *5 (-1227)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-1 (-1166 *4) (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1303 *4)) (-4 *4 (-1227)))))
-(-10 -7 (-15 -2246 ((-1166 |#1|) (-1 (-1166 |#1|) (-1166 |#1|)))) (-15 -2246 ((-650 (-1166 |#1|)) (-1 (-650 (-1166 |#1|)) (-650 (-1166 |#1|))) (-570))))
-((-2100 (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|))) 174) (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112)) 173) (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112)) 172) (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112) (-112)) 171) (((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-1055 |#1| |#2|)) 156)) (-2012 (((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|))) 85) (((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112)) 84) (((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112) (-112)) 83)) (-2929 (((-650 (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) (-1055 |#1| |#2|)) 73)) (-1597 (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|))) 140) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112)) 139) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112)) 138) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112) (-112)) 137) (((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|)) 132)) (-3979 (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|))) 145) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112)) 144) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112)) 143) (((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|)) 142)) (-2601 (((-650 (-786 |#1| (-870 |#3|))) (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) 111) (((-1182 (-1033 (-413 |#1|))) (-1182 |#1|)) 102) (((-959 (-1033 (-413 |#1|))) (-786 |#1| (-870 |#3|))) 109) (((-959 (-1033 (-413 |#1|))) (-959 |#1|)) 107) (((-786 |#1| (-870 |#3|)) (-786 |#1| (-870 |#2|))) 33)))
-(((-1304 |#1| |#2| |#3|) (-10 -7 (-15 -2012 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112) (-112))) (-15 -2012 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112))) (-15 -2012 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-1055 |#1| |#2|))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -2929 ((-650 (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) (-1055 |#1| |#2|))) (-15 -2601 ((-786 |#1| (-870 |#3|)) (-786 |#1| (-870 |#2|)))) (-15 -2601 ((-959 (-1033 (-413 |#1|))) (-959 |#1|))) (-15 -2601 ((-959 (-1033 (-413 |#1|))) (-786 |#1| (-870 |#3|)))) (-15 -2601 ((-1182 (-1033 (-413 |#1|))) (-1182 |#1|))) (-15 -2601 ((-650 (-786 |#1| (-870 |#3|))) (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))))) (-13 (-854) (-311) (-148) (-1031)) (-650 (-1186)) (-650 (-1186))) (T -1304))
-((-2601 (*1 *2 *3) (-12 (-5 *3 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6)))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-786 *4 (-870 *6)))) (-5 *1 (-1304 *4 *5 *6)) (-14 *5 (-650 (-1186))))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-1182 (-1033 (-413 *4)))) (-5 *1 (-1304 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-786 *4 (-870 *6))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186))) (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1304 *4 *5 *6)) (-14 *5 (-650 (-1186))))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1304 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-786 *4 (-870 *5))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-786 *4 (-870 *6))) (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6))))) (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1304 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-3979 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1304 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-1597 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-1597 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-1597 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *4)) (|:| -2987 (-650 (-959 *4)))))) (-5 *1 (-1304 *4 *5 *6)) (-5 *3 (-650 (-959 *4))) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5)))))) (-5 *1 (-1304 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-2100 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5)))))) (-5 *1 (-1304 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-2100 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5)))))) (-5 *1 (-1304 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-2 (|:| -3744 (-1182 *4)) (|:| -2987 (-650 (-959 *4)))))) (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-1055 *4 *5))) (-5 *1 (-1304 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1304 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-2012 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1304 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))))
-(-10 -7 (-15 -2012 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112) (-112))) (-15 -2012 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112))) (-15 -2012 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-1055 |#1| |#2|))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -2100 ((-650 (-2 (|:| -3744 (-1182 |#1|)) (|:| -2987 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -1597 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -3979 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -2929 ((-650 (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) (-1055 |#1| |#2|))) (-15 -2601 ((-786 |#1| (-870 |#3|)) (-786 |#1| (-870 |#2|)))) (-15 -2601 ((-959 (-1033 (-413 |#1|))) (-959 |#1|))) (-15 -2601 ((-959 (-1033 (-413 |#1|))) (-786 |#1| (-870 |#3|)))) (-15 -2601 ((-1182 (-1033 (-413 |#1|))) (-1182 |#1|))) (-15 -2601 ((-650 (-786 |#1| (-870 |#3|))) (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|))))))
-((-3151 (((-3 (-1277 (-413 (-570))) "failed") (-1277 |#1|) |#1|) 21)) (-1375 (((-112) (-1277 |#1|)) 12)) (-2167 (((-3 (-1277 (-570)) "failed") (-1277 |#1|)) 16)))
-(((-1305 |#1|) (-10 -7 (-15 -1375 ((-112) (-1277 |#1|))) (-15 -2167 ((-3 (-1277 (-570)) "failed") (-1277 |#1|))) (-15 -3151 ((-3 (-1277 (-413 (-570))) "failed") (-1277 |#1|) |#1|))) (-645 (-570))) (T -1305))
-((-3151 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-1277 (-413 (-570)))) (-5 *1 (-1305 *4)))) (-2167 (*1 *2 *3) (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-1277 (-570))) (-5 *1 (-1305 *4)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-1277 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-112)) (-5 *1 (-1305 *4)))))
-(-10 -7 (-15 -1375 ((-112) (-1277 |#1|))) (-15 -2167 ((-3 (-1277 (-570)) "failed") (-1277 |#1|))) (-15 -3151 ((-3 (-1277 (-413 (-570))) "failed") (-1277 |#1|) |#1|)))
-((-2847 (((-112) $ $) NIL)) (-2564 (((-112) $) 11)) (-3997 (((-3 $ "failed") $ $) NIL)) (-2401 (((-777)) 8)) (-2333 (($) NIL T CONST)) (-3957 (((-3 $ "failed") $) 58)) (-2066 (($) 49)) (-2005 (((-112) $) 57)) (-3525 (((-3 $ "failed") $) 40)) (-1997 (((-928) $) 15)) (-3240 (((-1168) $) NIL)) (-3458 (($) 32 T CONST)) (-4298 (($ (-928)) 50)) (-3891 (((-1129) $) NIL)) (-2601 (((-570) $) 13)) (-2869 (((-868) $) 27) (($ (-570)) 24)) (-2294 (((-777)) 9 T CONST)) (-1344 (((-112) $ $) 60)) (-1981 (($) 29 T CONST)) (-1998 (($) 31 T CONST)) (-3892 (((-112) $ $) 38)) (-4003 (($ $) 52) (($ $ $) 47)) (-3992 (($ $ $) 35)) (** (($ $ (-928)) NIL) (($ $ (-777)) 54)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 44) (($ $ $) 43)))
-(((-1306 |#1|) (-13 (-174) (-373) (-620 (-570)) (-1161)) (-928)) (T -1306))
-NIL
-(-13 (-174) (-373) (-620 (-570)) (-1161))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3228419 3228424 3228429 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3228404 3228409 3228414 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3228389 3228394 3228399 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3228374 3228379 3228384 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1306 3227517 3228249 3228326 "ZMOD" 3228331 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1305 3226627 3226791 3227000 "ZLINDEP" 3227349 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1304 3215927 3217695 3219667 "ZDSOLVE" 3224757 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1303 3215173 3215314 3215503 "YSTREAM" 3215773 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1302 3214601 3214847 3214960 "YDIAGRAM" 3215082 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1301 3212375 3213902 3214106 "XRPOLY" 3214444 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1300 3208928 3210246 3210821 "XPR" 3211847 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1299 3206649 3208259 3208463 "XPOLY" 3208759 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1298 3204302 3205670 3205725 "XPOLYC" 3206013 NIL XPOLYC (NIL T T) -9 NIL 3206126 NIL) (-1297 3200678 3202819 3203207 "XPBWPOLY" 3203960 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1296 3196373 3198668 3198710 "XF" 3199331 NIL XF (NIL T) -9 NIL 3199731 NIL) (-1295 3195994 3196082 3196251 "XF-" 3196256 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1294 3191190 3192479 3192534 "XFALG" 3194706 NIL XFALG (NIL T T) -9 NIL 3195495 NIL) (-1293 3190323 3190427 3190632 "XEXPPKG" 3191082 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1292 3188432 3190173 3190269 "XDPOLY" 3190274 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1291 3187239 3187839 3187882 "XALG" 3187887 NIL XALG (NIL T) -9 NIL 3187998 NIL) (-1290 3180681 3185216 3185710 "WUTSET" 3186831 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1289 3178937 3179733 3180056 "WP" 3180492 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1288 3178539 3178759 3178829 "WHILEAST" 3178889 T WHILEAST (NIL) -8 NIL NIL NIL) (-1287 3178011 3178256 3178350 "WHEREAST" 3178467 T WHEREAST (NIL) -8 NIL NIL NIL) (-1286 3176897 3177095 3177390 "WFFINTBS" 3177808 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1285 3174801 3175228 3175690 "WEIER" 3176469 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1284 3173847 3174297 3174339 "VSPACE" 3174475 NIL VSPACE (NIL T) -9 NIL 3174549 NIL) (-1283 3173685 3173712 3173803 "VSPACE-" 3173808 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1282 3173494 3173536 3173604 "VOID" 3173639 T VOID (NIL) -8 NIL NIL NIL) (-1281 3171630 3171989 3172395 "VIEW" 3173110 T VIEW (NIL) -7 NIL NIL NIL) (-1280 3168054 3168693 3169430 "VIEWDEF" 3170915 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1279 3157358 3159602 3161775 "VIEW3D" 3165903 T VIEW3D (NIL) -8 NIL NIL NIL) (-1278 3149609 3151269 3152848 "VIEW2D" 3155801 T VIEW2D (NIL) -8 NIL NIL NIL) (-1277 3144962 3149379 3149471 "VECTOR" 3149552 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1276 3143539 3143798 3144116 "VECTOR2" 3144692 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1275 3136981 3141290 3141333 "VECTCAT" 3142328 NIL VECTCAT (NIL T) -9 NIL 3142915 NIL) (-1274 3135995 3136249 3136639 "VECTCAT-" 3136644 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1273 3135449 3135646 3135766 "VARIABLE" 3135910 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1272 3135382 3135387 3135417 "UTYPE" 3135422 T UTYPE (NIL) -9 NIL NIL NIL) (-1271 3134212 3134366 3134628 "UTSODETL" 3135208 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1270 3131652 3132112 3132636 "UTSODE" 3133753 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1269 3123490 3129278 3129767 "UTS" 3131221 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1268 3114327 3119695 3119738 "UTSCAT" 3120850 NIL UTSCAT (NIL T) -9 NIL 3121608 NIL) (-1267 3111675 3112397 3113386 "UTSCAT-" 3113391 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1266 3111302 3111345 3111478 "UTS2" 3111626 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1265 3105528 3108140 3108183 "URAGG" 3110253 NIL URAGG (NIL T) -9 NIL 3110976 NIL) (-1264 3102467 3103330 3104453 "URAGG-" 3104458 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1263 3098176 3101102 3101567 "UPXSSING" 3102131 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1262 3090242 3097423 3097696 "UPXS" 3097961 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1261 3083315 3090146 3090218 "UPXSCONS" 3090223 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1260 3073023 3079817 3079879 "UPXSCCA" 3080453 NIL UPXSCCA (NIL T T) -9 NIL 3080686 NIL) (-1259 3072661 3072746 3072920 "UPXSCCA-" 3072925 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1258 3062221 3068788 3068831 "UPXSCAT" 3069479 NIL UPXSCAT (NIL T) -9 NIL 3070088 NIL) (-1257 3061651 3061730 3061909 "UPXS2" 3062136 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1256 3060305 3060558 3060909 "UPSQFREE" 3061394 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1255 3053778 3056836 3056891 "UPSCAT" 3057971 NIL UPSCAT (NIL T T) -9 NIL 3058736 NIL) (-1254 3052982 3053189 3053516 "UPSCAT-" 3053521 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1253 3038623 3046391 3046434 "UPOLYC" 3048535 NIL UPOLYC (NIL T) -9 NIL 3049756 NIL) (-1252 3029951 3032377 3035524 "UPOLYC-" 3035529 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1251 3029578 3029621 3029754 "UPOLYC2" 3029902 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1250 3021389 3029261 3029390 "UP" 3029497 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1249 3020728 3020835 3020999 "UPMP" 3021278 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1248 3020281 3020362 3020501 "UPDIVP" 3020641 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1247 3018849 3019098 3019414 "UPDECOMP" 3020030 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1246 3018080 3018192 3018378 "UPCDEN" 3018733 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1245 3017599 3017668 3017817 "UP2" 3018005 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1244 3016066 3016803 3017080 "UNISEG" 3017357 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1243 3015281 3015408 3015613 "UNISEG2" 3015909 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1242 3014341 3014521 3014747 "UNIFACT" 3015097 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1241 2998273 3013518 3013769 "ULS" 3014148 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1240 2986271 2998177 2998249 "ULSCONS" 2998254 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1239 2968279 2980265 2980327 "ULSCCAT" 2980965 NIL ULSCCAT (NIL T T) -9 NIL 2981254 NIL) (-1238 2967329 2967574 2967962 "ULSCCAT-" 2967967 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1237 2956666 2963147 2963190 "ULSCAT" 2964053 NIL ULSCAT (NIL T) -9 NIL 2964784 NIL) (-1236 2956096 2956175 2956354 "ULS2" 2956581 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1235 2955215 2955725 2955832 "UINT8" 2955943 T UINT8 (NIL) -8 NIL NIL 2956028) (-1234 2954333 2954843 2954950 "UINT64" 2955061 T UINT64 (NIL) -8 NIL NIL 2955146) (-1233 2953451 2953961 2954068 "UINT32" 2954179 T UINT32 (NIL) -8 NIL NIL 2954264) (-1232 2952569 2953079 2953186 "UINT16" 2953297 T UINT16 (NIL) -8 NIL NIL 2953382) (-1231 2950872 2951829 2951859 "UFD" 2952071 T UFD (NIL) -9 NIL 2952185 NIL) (-1230 2950666 2950712 2950807 "UFD-" 2950812 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1229 2949748 2949931 2950147 "UDVO" 2950472 T UDVO (NIL) -7 NIL NIL NIL) (-1228 2947564 2947973 2948444 "UDPO" 2949312 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1227 2947497 2947502 2947532 "TYPE" 2947537 T TYPE (NIL) -9 NIL NIL NIL) (-1226 2947257 2947452 2947483 "TYPEAST" 2947488 T TYPEAST (NIL) -8 NIL NIL NIL) (-1225 2946228 2946430 2946670 "TWOFACT" 2947051 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1224 2945251 2945637 2945872 "TUPLE" 2946028 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1223 2942942 2943461 2944000 "TUBETOOL" 2944734 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1222 2941791 2941996 2942237 "TUBE" 2942735 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1221 2936520 2940763 2941046 "TS" 2941543 NIL TS (NIL T) -8 NIL NIL NIL) (-1220 2925160 2929279 2929376 "TSETCAT" 2934645 NIL TSETCAT (NIL T T T T) -9 NIL 2936176 NIL) (-1219 2919892 2921492 2923383 "TSETCAT-" 2923388 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1218 2914531 2915378 2916307 "TRMANIP" 2919028 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1217 2913972 2914035 2914198 "TRIMAT" 2914463 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1216 2911838 2912075 2912432 "TRIGMNIP" 2913721 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1215 2911358 2911471 2911501 "TRIGCAT" 2911714 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1214 2911027 2911106 2911247 "TRIGCAT-" 2911252 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1213 2907872 2909885 2910166 "TREE" 2910781 NIL TREE (NIL T) -8 NIL NIL NIL) (-1212 2907146 2907674 2907704 "TRANFUN" 2907739 T TRANFUN (NIL) -9 NIL 2907805 NIL) (-1211 2906425 2906616 2906896 "TRANFUN-" 2906901 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1210 2906229 2906261 2906322 "TOPSP" 2906386 T TOPSP (NIL) -7 NIL NIL NIL) (-1209 2905577 2905692 2905846 "TOOLSIGN" 2906110 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1208 2904211 2904754 2904993 "TEXTFILE" 2905360 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1207 2902123 2902664 2903093 "TEX" 2903804 T TEX (NIL) -8 NIL NIL NIL) (-1206 2901904 2901935 2902007 "TEX1" 2902086 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1205 2901552 2901615 2901705 "TEMUTL" 2901836 T TEMUTL (NIL) -7 NIL NIL NIL) (-1204 2899706 2899986 2900311 "TBCMPPK" 2901275 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1203 2891483 2897866 2897922 "TBAGG" 2898322 NIL TBAGG (NIL T T) -9 NIL 2898533 NIL) (-1202 2886553 2888041 2889795 "TBAGG-" 2889800 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1201 2885937 2886044 2886189 "TANEXP" 2886442 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1200 2885448 2885712 2885802 "TALGOP" 2885882 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1199 2878838 2885305 2885398 "TABLE" 2885403 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1198 2878250 2878349 2878487 "TABLEAU" 2878735 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1197 2872858 2874078 2875326 "TABLBUMP" 2877036 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1196 2872080 2872227 2872408 "SYSTEM" 2872699 T SYSTEM (NIL) -8 NIL NIL NIL) (-1195 2868539 2869238 2870021 "SYSSOLP" 2871331 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1194 2868337 2868494 2868525 "SYSPTR" 2868530 T SYSPTR (NIL) -8 NIL NIL NIL) (-1193 2867373 2867878 2867997 "SYSNNI" 2868183 NIL SYSNNI (NIL NIL) -8 NIL NIL 2868268) (-1192 2866672 2867131 2867210 "SYSINT" 2867270 NIL SYSINT (NIL NIL) -8 NIL NIL 2867315) (-1191 2863004 2863950 2864660 "SYNTAX" 2865984 T SYNTAX (NIL) -8 NIL NIL NIL) (-1190 2860162 2860764 2861396 "SYMTAB" 2862394 T SYMTAB (NIL) -8 NIL NIL NIL) (-1189 2855411 2856313 2857296 "SYMS" 2859201 T SYMS (NIL) -8 NIL NIL NIL) (-1188 2852646 2854869 2855099 "SYMPOLY" 2855216 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1187 2852163 2852238 2852361 "SYMFUNC" 2852558 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1186 2848183 2849475 2850288 "SYMBOL" 2851372 T SYMBOL (NIL) -8 NIL NIL NIL) (-1185 2841722 2843411 2845131 "SWITCH" 2846485 T SWITCH (NIL) -8 NIL NIL NIL) (-1184 2834956 2840543 2840846 "SUTS" 2841477 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1183 2827022 2834203 2834476 "SUPXS" 2834741 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1182 2818781 2826640 2826766 "SUP" 2826931 NIL SUP (NIL T) -8 NIL NIL NIL) (-1181 2817940 2818067 2818284 "SUPFRACF" 2818649 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1180 2817561 2817620 2817733 "SUP2" 2817875 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1179 2816009 2816283 2816639 "SUMRF" 2817260 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1178 2815344 2815410 2815602 "SUMFS" 2815930 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1177 2799311 2814521 2814772 "SULS" 2815151 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1176 2798913 2799133 2799203 "SUCHTAST" 2799263 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1175 2798208 2798438 2798578 "SUCH" 2798821 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1174 2792075 2793114 2794073 "SUBSPACE" 2797296 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1173 2791505 2791595 2791759 "SUBRESP" 2791963 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1172 2784873 2786170 2787481 "STTF" 2790241 NIL STTF (NIL T) -7 NIL NIL NIL) (-1171 2779046 2780166 2781313 "STTFNC" 2783773 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1170 2770359 2772228 2774022 "STTAYLOR" 2777287 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1169 2763489 2770223 2770306 "STRTBL" 2770311 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1168 2758853 2763444 2763475 "STRING" 2763480 T STRING (NIL) -8 NIL NIL NIL) (-1167 2753682 2758196 2758226 "STRICAT" 2758285 T STRICAT (NIL) -9 NIL 2758347 NIL) (-1166 2746435 2751301 2751912 "STREAM" 2753106 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1165 2745945 2746022 2746166 "STREAM3" 2746352 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1164 2744927 2745110 2745345 "STREAM2" 2745758 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1163 2744615 2744667 2744760 "STREAM1" 2744869 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1162 2743631 2743812 2744043 "STINPROD" 2744431 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1161 2743183 2743393 2743423 "STEP" 2743503 T STEP (NIL) -9 NIL 2743581 NIL) (-1160 2742370 2742672 2742820 "STEPAST" 2743057 T STEPAST (NIL) -8 NIL NIL NIL) (-1159 2735802 2742269 2742346 "STBL" 2742351 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1158 2730897 2734993 2735036 "STAGG" 2735189 NIL STAGG (NIL T) -9 NIL 2735278 NIL) (-1157 2728599 2729201 2730073 "STAGG-" 2730078 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1156 2726746 2728369 2728461 "STACK" 2728542 NIL STACK (NIL T) -8 NIL NIL NIL) (-1155 2719441 2724887 2725343 "SREGSET" 2726376 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1154 2711866 2713235 2714748 "SRDCMPK" 2718047 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1153 2704751 2709276 2709306 "SRAGG" 2710609 T SRAGG (NIL) -9 NIL 2711217 NIL) (-1152 2703768 2704023 2704402 "SRAGG-" 2704407 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1151 2698228 2702715 2703136 "SQMATRIX" 2703394 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1150 2691913 2694946 2695673 "SPLTREE" 2697573 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1149 2687876 2688569 2689215 "SPLNODE" 2691339 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1148 2686923 2687156 2687186 "SPFCAT" 2687630 T SPFCAT (NIL) -9 NIL NIL NIL) (-1147 2685660 2685870 2686134 "SPECOUT" 2686681 T SPECOUT (NIL) -7 NIL NIL NIL) (-1146 2676770 2678642 2678672 "SPADXPT" 2683348 T SPADXPT (NIL) -9 NIL 2685512 NIL) (-1145 2676531 2676571 2676640 "SPADPRSR" 2676723 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1144 2674580 2676486 2676517 "SPADAST" 2676522 T SPADAST (NIL) -8 NIL NIL NIL) (-1143 2666525 2668298 2668341 "SPACEC" 2672714 NIL SPACEC (NIL T) -9 NIL 2674530 NIL) (-1142 2664655 2666457 2666506 "SPACE3" 2666511 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1141 2663407 2663578 2663869 "SORTPAK" 2664460 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1140 2661499 2661802 2662214 "SOLVETRA" 2663071 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1139 2660549 2660771 2661032 "SOLVESER" 2661272 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1138 2655853 2656741 2657736 "SOLVERAD" 2659601 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1137 2651668 2652277 2653006 "SOLVEFOR" 2655220 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1136 2645938 2651017 2651114 "SNTSCAT" 2651119 NIL SNTSCAT (NIL T T T T) -9 NIL 2651189 NIL) (-1135 2640044 2644261 2644652 "SMTS" 2645628 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1134 2634729 2639932 2640009 "SMP" 2640014 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1133 2632888 2633189 2633587 "SMITH" 2634426 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1132 2625601 2629797 2629900 "SMATCAT" 2631251 NIL SMATCAT (NIL NIL T T T) -9 NIL 2631801 NIL) (-1131 2622541 2623364 2624542 "SMATCAT-" 2624547 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1130 2620207 2621777 2621820 "SKAGG" 2622081 NIL SKAGG (NIL T) -9 NIL 2622216 NIL) (-1129 2616533 2619680 2619864 "SINT" 2620016 T SINT (NIL) -8 NIL NIL 2620178) (-1128 2616305 2616343 2616409 "SIMPAN" 2616489 T SIMPAN (NIL) -7 NIL NIL NIL) (-1127 2615584 2615840 2615980 "SIG" 2616187 T SIG (NIL) -8 NIL NIL NIL) (-1126 2614422 2614643 2614918 "SIGNRF" 2615343 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1125 2613255 2613406 2613690 "SIGNEF" 2614251 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1124 2612561 2612838 2612962 "SIGAST" 2613153 T SIGAST (NIL) -8 NIL NIL NIL) (-1123 2610251 2610705 2611211 "SHP" 2612102 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1122 2604103 2610152 2610228 "SHDP" 2610233 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1121 2603676 2603868 2603898 "SGROUP" 2603991 T SGROUP (NIL) -9 NIL 2604053 NIL) (-1120 2603534 2603560 2603633 "SGROUP-" 2603638 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1119 2600325 2601023 2601746 "SGCF" 2602833 T SGCF (NIL) -7 NIL NIL NIL) (-1118 2594693 2599772 2599869 "SFRTCAT" 2599874 NIL SFRTCAT (NIL T T T T) -9 NIL 2599913 NIL) (-1117 2588114 2589132 2590268 "SFRGCD" 2593676 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1116 2581240 2582313 2583499 "SFQCMPK" 2587047 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1115 2580860 2580949 2581060 "SFORT" 2581181 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1114 2579978 2580700 2580821 "SEXOF" 2580826 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1113 2579085 2579859 2579927 "SEX" 2579932 T SEX (NIL) -8 NIL NIL NIL) (-1112 2574866 2575581 2575676 "SEXCAT" 2578298 NIL SEXCAT (NIL T T T T T) -9 NIL 2578858 NIL) (-1111 2572019 2574800 2574848 "SET" 2574853 NIL SET (NIL T) -8 NIL NIL NIL) (-1110 2570243 2570732 2571037 "SETMN" 2571760 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1109 2569739 2569891 2569921 "SETCAT" 2570097 T SETCAT (NIL) -9 NIL 2570207 NIL) (-1108 2569431 2569509 2569639 "SETCAT-" 2569644 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1107 2565792 2567892 2567935 "SETAGG" 2568805 NIL SETAGG (NIL T) -9 NIL 2569145 NIL) (-1106 2565250 2565366 2565603 "SETAGG-" 2565608 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1105 2564693 2564946 2565047 "SEQAST" 2565171 T SEQAST (NIL) -8 NIL NIL NIL) (-1104 2563892 2564186 2564247 "SEGXCAT" 2564533 NIL SEGXCAT (NIL T T) -9 NIL 2564653 NIL) (-1103 2562898 2563558 2563740 "SEG" 2563745 NIL SEG (NIL T) -8 NIL NIL NIL) (-1102 2561877 2562091 2562134 "SEGCAT" 2562656 NIL SEGCAT (NIL T) -9 NIL 2562877 NIL) (-1101 2560809 2561240 2561448 "SEGBIND" 2561704 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1100 2560430 2560489 2560602 "SEGBIND2" 2560744 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1099 2560003 2560231 2560308 "SEGAST" 2560375 T SEGAST (NIL) -8 NIL NIL NIL) (-1098 2559222 2559348 2559552 "SEG2" 2559847 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1097 2558632 2559157 2559204 "SDVAR" 2559209 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1096 2551159 2558402 2558532 "SDPOL" 2558537 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1095 2549752 2550018 2550337 "SCPKG" 2550874 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1094 2548916 2549088 2549280 "SCOPE" 2549582 T SCOPE (NIL) -8 NIL NIL NIL) (-1093 2548136 2548270 2548449 "SCACHE" 2548771 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1092 2547782 2547968 2547998 "SASTCAT" 2548003 T SASTCAT (NIL) -9 NIL 2548016 NIL) (-1091 2547269 2547617 2547693 "SAOS" 2547728 T SAOS (NIL) -8 NIL NIL NIL) (-1090 2546834 2546869 2547042 "SAERFFC" 2547228 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1089 2540773 2546731 2546811 "SAE" 2546816 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1088 2540366 2540401 2540560 "SAEFACT" 2540732 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1087 2538687 2539001 2539402 "RURPK" 2540032 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1086 2537324 2537630 2537935 "RULESET" 2538521 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1085 2534547 2535077 2535535 "RULE" 2537005 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1084 2534159 2534341 2534424 "RULECOLD" 2534499 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1083 2533949 2533977 2534048 "RTVALUE" 2534110 T RTVALUE (NIL) -8 NIL NIL NIL) (-1082 2533420 2533666 2533760 "RSTRCAST" 2533877 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1081 2528268 2529063 2529983 "RSETGCD" 2532619 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1080 2517498 2522577 2522674 "RSETCAT" 2526793 NIL RSETCAT (NIL T T T T) -9 NIL 2527890 NIL) (-1079 2515425 2515964 2516788 "RSETCAT-" 2516793 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1078 2507811 2509187 2510707 "RSDCMPK" 2514024 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1077 2505790 2506257 2506331 "RRCC" 2507417 NIL RRCC (NIL T T) -9 NIL 2507761 NIL) (-1076 2505141 2505315 2505594 "RRCC-" 2505599 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1075 2504584 2504837 2504938 "RPTAST" 2505062 T RPTAST (NIL) -8 NIL NIL NIL) (-1074 2478430 2487789 2487856 "RPOLCAT" 2498522 NIL RPOLCAT (NIL T T T) -9 NIL 2501682 NIL) (-1073 2469928 2472268 2475390 "RPOLCAT-" 2475395 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1072 2460859 2468139 2468621 "ROUTINE" 2469468 T ROUTINE (NIL) -8 NIL NIL NIL) (-1071 2457657 2460485 2460625 "ROMAN" 2460741 T ROMAN (NIL) -8 NIL NIL NIL) (-1070 2455901 2456517 2456777 "ROIRC" 2457462 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1069 2452133 2454417 2454447 "RNS" 2454751 T RNS (NIL) -9 NIL 2455025 NIL) (-1068 2450642 2451025 2451559 "RNS-" 2451634 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1067 2450045 2450453 2450483 "RNG" 2450488 T RNG (NIL) -9 NIL 2450509 NIL) (-1066 2449048 2449410 2449612 "RNGBIND" 2449896 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1065 2448447 2448835 2448878 "RMODULE" 2448883 NIL RMODULE (NIL T) -9 NIL 2448910 NIL) (-1064 2447283 2447377 2447713 "RMCAT2" 2448348 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1063 2444133 2446629 2446926 "RMATRIX" 2447045 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1062 2436960 2439220 2439335 "RMATCAT" 2442694 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2443676 NIL) (-1061 2436335 2436482 2436789 "RMATCAT-" 2436794 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1060 2435736 2435957 2436000 "RLINSET" 2436194 NIL RLINSET (NIL T) -9 NIL 2436285 NIL) (-1059 2435303 2435378 2435506 "RINTERP" 2435655 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1058 2434361 2434915 2434945 "RING" 2435001 T RING (NIL) -9 NIL 2435093 NIL) (-1057 2434153 2434197 2434294 "RING-" 2434299 NIL RING- (NIL T) -8 NIL NIL NIL) (-1056 2432994 2433231 2433489 "RIDIST" 2433917 T RIDIST (NIL) -7 NIL NIL NIL) (-1055 2424283 2432462 2432668 "RGCHAIN" 2432842 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1054 2423633 2424039 2424080 "RGBCSPC" 2424138 NIL RGBCSPC (NIL T) -9 NIL 2424190 NIL) (-1053 2422791 2423172 2423213 "RGBCMDL" 2423445 NIL RGBCMDL (NIL T) -9 NIL 2423559 NIL) (-1052 2419785 2420399 2421069 "RF" 2422155 NIL RF (NIL T) -7 NIL NIL NIL) (-1051 2419431 2419494 2419597 "RFFACTOR" 2419716 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1050 2419156 2419191 2419288 "RFFACT" 2419390 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1049 2417273 2417637 2418019 "RFDIST" 2418796 T RFDIST (NIL) -7 NIL NIL NIL) (-1048 2416726 2416818 2416981 "RETSOL" 2417175 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1047 2416362 2416442 2416485 "RETRACT" 2416618 NIL RETRACT (NIL T) -9 NIL 2416705 NIL) (-1046 2416211 2416236 2416323 "RETRACT-" 2416328 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1045 2415813 2416033 2416103 "RETAST" 2416163 T RETAST (NIL) -8 NIL NIL NIL) (-1044 2408551 2415466 2415593 "RESULT" 2415708 T RESULT (NIL) -8 NIL NIL NIL) (-1043 2407142 2407820 2408019 "RESRING" 2408454 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1042 2406778 2406827 2406925 "RESLATC" 2407079 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1041 2406483 2406518 2406625 "REPSQ" 2406737 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1040 2403905 2404485 2405087 "REP" 2405903 T REP (NIL) -7 NIL NIL NIL) (-1039 2403602 2403637 2403748 "REPDB" 2403864 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1038 2397502 2398891 2400114 "REP2" 2402414 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1037 2393879 2394560 2395368 "REP1" 2396729 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1036 2386575 2392020 2392476 "REGSET" 2393509 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1035 2385340 2385723 2385973 "REF" 2386360 NIL REF (NIL T) -8 NIL NIL NIL) (-1034 2384717 2384820 2384987 "REDORDER" 2385224 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1033 2380685 2383930 2384157 "RECLOS" 2384545 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1032 2379737 2379918 2380133 "REALSOLV" 2380492 T REALSOLV (NIL) -7 NIL NIL NIL) (-1031 2379583 2379624 2379654 "REAL" 2379659 T REAL (NIL) -9 NIL 2379694 NIL) (-1030 2376066 2376868 2377752 "REAL0Q" 2378748 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1029 2371667 2372655 2373716 "REAL0" 2375047 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1028 2371138 2371384 2371478 "RDUCEAST" 2371595 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1027 2370543 2370615 2370822 "RDIV" 2371060 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1026 2369611 2369785 2369998 "RDIST" 2370365 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1025 2368208 2368495 2368867 "RDETRS" 2369319 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1024 2366020 2366474 2367012 "RDETR" 2367750 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1023 2364645 2364923 2365320 "RDEEFS" 2365736 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1022 2363154 2363460 2363885 "RDEEF" 2364333 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1021 2357215 2360135 2360165 "RCFIELD" 2361460 T RCFIELD (NIL) -9 NIL 2362191 NIL) (-1020 2355279 2355783 2356479 "RCFIELD-" 2356554 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1019 2351548 2353380 2353423 "RCAGG" 2354507 NIL RCAGG (NIL T) -9 NIL 2354972 NIL) (-1018 2351176 2351270 2351433 "RCAGG-" 2351438 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1017 2350511 2350623 2350788 "RATRET" 2351060 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1016 2350064 2350131 2350252 "RATFACT" 2350439 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1015 2349372 2349492 2349644 "RANDSRC" 2349934 T RANDSRC (NIL) -7 NIL NIL NIL) (-1014 2349106 2349150 2349223 "RADUTIL" 2349321 T RADUTIL (NIL) -7 NIL NIL NIL) (-1013 2342220 2347937 2348248 "RADIX" 2348829 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1012 2333839 2342062 2342192 "RADFF" 2342197 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1011 2333486 2333561 2333591 "RADCAT" 2333751 T RADCAT (NIL) -9 NIL NIL NIL) (-1010 2333268 2333316 2333416 "RADCAT-" 2333421 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1009 2331366 2333038 2333130 "QUEUE" 2333211 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1008 2327903 2331299 2331347 "QUAT" 2331352 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1007 2327534 2327577 2327708 "QUATCT2" 2327854 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1006 2320945 2324290 2324332 "QUATCAT" 2325123 NIL QUATCAT (NIL T) -9 NIL 2325889 NIL) (-1005 2317084 2318121 2319511 "QUATCAT-" 2319607 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1004 2314549 2316160 2316203 "QUAGG" 2316584 NIL QUAGG (NIL T) -9 NIL 2316759 NIL) (-1003 2314151 2314371 2314441 "QQUTAST" 2314501 T QQUTAST (NIL) -8 NIL NIL NIL) (-1002 2313164 2313664 2313829 "QFORM" 2314032 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1001 2304157 2309396 2309438 "QFCAT" 2310106 NIL QFCAT (NIL T) -9 NIL 2311107 NIL) (-1000 2299724 2300925 2302519 "QFCAT-" 2302615 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-999 2299358 2299401 2299530 "QFCAT2" 2299675 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-998 2298818 2298928 2299058 "QEQUAT" 2299248 T QEQUAT (NIL) -8 NIL NIL NIL) (-997 2291964 2293037 2294221 "QCMPACK" 2297751 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-996 2289513 2289961 2290389 "QALGSET" 2291619 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-995 2288758 2288932 2289164 "QALGSET2" 2289333 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-994 2287448 2287672 2287989 "PWFFINTB" 2288531 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-993 2285630 2285798 2286152 "PUSHVAR" 2287262 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-992 2281548 2282602 2282643 "PTRANFN" 2284527 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-991 2279950 2280241 2280563 "PTPACK" 2281259 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-990 2279582 2279639 2279748 "PTFUNC2" 2279887 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-989 2274027 2278424 2278465 "PTCAT" 2278761 NIL PTCAT (NIL T) -9 NIL 2278914 NIL) (-988 2273685 2273720 2273844 "PSQFR" 2273986 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-987 2272280 2272578 2272912 "PSEUDLIN" 2273383 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-986 2259043 2261414 2263738 "PSETPK" 2270040 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-985 2252061 2254801 2254897 "PSETCAT" 2257918 NIL PSETCAT (NIL T T T T) -9 NIL 2258732 NIL) (-984 2249897 2250531 2251352 "PSETCAT-" 2251357 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-983 2249246 2249411 2249439 "PSCURVE" 2249707 T PSCURVE (NIL) -9 NIL 2249874 NIL) (-982 2245244 2246760 2246825 "PSCAT" 2247669 NIL PSCAT (NIL T T T) -9 NIL 2247909 NIL) (-981 2244307 2244523 2244923 "PSCAT-" 2244928 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-980 2242666 2243376 2243639 "PRTITION" 2244064 T PRTITION (NIL) -8 NIL NIL NIL) (-979 2242141 2242387 2242479 "PRTDAST" 2242594 T PRTDAST (NIL) -8 NIL NIL NIL) (-978 2231231 2233445 2235633 "PRS" 2240003 NIL PRS (NIL T T) -7 NIL NIL NIL) (-977 2229042 2230581 2230621 "PRQAGG" 2230804 NIL PRQAGG (NIL T) -9 NIL 2230906 NIL) (-976 2228378 2228683 2228711 "PROPLOG" 2228850 T PROPLOG (NIL) -9 NIL 2228965 NIL) (-975 2227982 2228039 2228162 "PROPFUN2" 2228301 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-974 2227297 2227418 2227590 "PROPFUN1" 2227843 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-973 2225478 2226044 2226341 "PROPFRML" 2227033 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-972 2224947 2225054 2225182 "PROPERTY" 2225370 T PROPERTY (NIL) -8 NIL NIL NIL) (-971 2219005 2223113 2223933 "PRODUCT" 2224173 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-970 2216283 2218463 2218697 "PR" 2218816 NIL PR (NIL T T) -8 NIL NIL NIL) (-969 2216079 2216111 2216170 "PRINT" 2216244 T PRINT (NIL) -7 NIL NIL NIL) (-968 2215419 2215536 2215688 "PRIMES" 2215959 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-967 2213484 2213885 2214351 "PRIMELT" 2214998 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-966 2213213 2213262 2213290 "PRIMCAT" 2213414 T PRIMCAT (NIL) -9 NIL NIL NIL) (-965 2209328 2213151 2213196 "PRIMARR" 2213201 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-964 2208335 2208513 2208741 "PRIMARR2" 2209146 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-963 2207978 2208034 2208145 "PREASSOC" 2208273 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-962 2207453 2207586 2207614 "PPCURVE" 2207819 T PPCURVE (NIL) -9 NIL 2207955 NIL) (-961 2207048 2207248 2207331 "PORTNUM" 2207390 T PORTNUM (NIL) -8 NIL NIL NIL) (-960 2204407 2204806 2205398 "POLYROOT" 2206629 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-959 2198589 2204011 2204171 "POLY" 2204280 NIL POLY (NIL T) -8 NIL NIL NIL) (-958 2197972 2198030 2198264 "POLYLIFT" 2198525 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-957 2194247 2194696 2195325 "POLYCATQ" 2197517 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-956 2180959 2186087 2186152 "POLYCAT" 2189666 NIL POLYCAT (NIL T T T) -9 NIL 2191544 NIL) (-955 2174408 2176270 2178654 "POLYCAT-" 2178659 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-954 2173995 2174063 2174183 "POLY2UP" 2174334 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-953 2173627 2173684 2173793 "POLY2" 2173932 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-952 2172312 2172551 2172827 "POLUTIL" 2173401 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-951 2170667 2170944 2171275 "POLTOPOL" 2172034 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-950 2166132 2170603 2170649 "POINT" 2170654 NIL POINT (NIL T) -8 NIL NIL NIL) (-949 2164319 2164676 2165051 "PNTHEORY" 2165777 T PNTHEORY (NIL) -7 NIL NIL NIL) (-948 2162777 2163074 2163473 "PMTOOLS" 2164017 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-947 2162370 2162448 2162565 "PMSYM" 2162693 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-946 2161878 2161947 2162122 "PMQFCAT" 2162295 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-945 2161233 2161343 2161499 "PMPRED" 2161755 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-944 2160626 2160712 2160874 "PMPREDFS" 2161134 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-943 2159290 2159498 2159876 "PMPLCAT" 2160388 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-942 2158822 2158901 2159053 "PMLSAGG" 2159205 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-941 2158295 2158371 2158553 "PMKERNEL" 2158740 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-940 2157912 2157987 2158100 "PMINS" 2158214 NIL PMINS (NIL T) -7 NIL NIL NIL) (-939 2157354 2157423 2157632 "PMFS" 2157837 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-938 2156582 2156700 2156905 "PMDOWN" 2157231 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-937 2155749 2155907 2156088 "PMASS" 2156421 T PMASS (NIL) -7 NIL NIL NIL) (-936 2155022 2155132 2155295 "PMASSFS" 2155636 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-935 2154677 2154745 2154839 "PLOTTOOL" 2154948 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-934 2149284 2150488 2151636 "PLOT" 2153549 T PLOT (NIL) -8 NIL NIL NIL) (-933 2145088 2146132 2147053 "PLOT3D" 2148383 T PLOT3D (NIL) -8 NIL NIL NIL) (-932 2144000 2144177 2144412 "PLOT1" 2144892 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-931 2119391 2124066 2128917 "PLEQN" 2139266 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-930 2118709 2118831 2119011 "PINTERP" 2119256 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-929 2118402 2118449 2118552 "PINTERPA" 2118656 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-928 2117618 2118166 2118253 "PI" 2118293 T PI (NIL) -8 NIL NIL 2118360) (-927 2115915 2116890 2116918 "PID" 2117100 T PID (NIL) -9 NIL 2117234 NIL) (-926 2115666 2115703 2115778 "PICOERCE" 2115872 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-925 2114986 2115125 2115301 "PGROEB" 2115522 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-924 2110573 2111387 2112292 "PGE" 2114101 T PGE (NIL) -7 NIL NIL NIL) (-923 2108696 2108943 2109309 "PGCD" 2110290 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-922 2108034 2108137 2108298 "PFRPAC" 2108580 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-921 2104674 2106582 2106935 "PFR" 2107713 NIL PFR (NIL T) -8 NIL NIL NIL) (-920 2103063 2103307 2103632 "PFOTOOLS" 2104421 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-919 2101596 2101835 2102186 "PFOQ" 2102820 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-918 2100097 2100309 2100665 "PFO" 2101380 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-917 2096650 2099986 2100055 "PF" 2100060 NIL PF (NIL NIL) -8 NIL NIL NIL) (-916 2093984 2095255 2095283 "PFECAT" 2095868 T PFECAT (NIL) -9 NIL 2096252 NIL) (-915 2093429 2093583 2093797 "PFECAT-" 2093802 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-914 2092032 2092284 2092585 "PFBRU" 2093178 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-913 2089898 2090250 2090682 "PFBR" 2091683 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-912 2085944 2087410 2088057 "PERM" 2089284 NIL PERM (NIL T) -8 NIL NIL NIL) (-911 2081178 2082151 2083021 "PERMGRP" 2085107 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-910 2079297 2080257 2080298 "PERMCAT" 2080698 NIL PERMCAT (NIL T) -9 NIL 2080996 NIL) (-909 2078950 2078991 2079115 "PERMAN" 2079250 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-908 2076438 2078615 2078737 "PENDTREE" 2078861 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-907 2074462 2075230 2075271 "PDRING" 2075928 NIL PDRING (NIL T) -9 NIL 2076214 NIL) (-906 2073565 2073783 2074145 "PDRING-" 2074150 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-905 2070780 2071558 2072226 "PDEPROB" 2072917 T PDEPROB (NIL) -8 NIL NIL NIL) (-904 2068325 2068829 2069384 "PDEPACK" 2070245 T PDEPACK (NIL) -7 NIL NIL NIL) (-903 2067237 2067427 2067678 "PDECOMP" 2068124 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-902 2064816 2065659 2065687 "PDECAT" 2066474 T PDECAT (NIL) -9 NIL 2067187 NIL) (-901 2064567 2064600 2064690 "PCOMP" 2064777 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-900 2062745 2063368 2063665 "PBWLB" 2064296 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-899 2055218 2056818 2058156 "PATTERN" 2061428 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-898 2054850 2054907 2055016 "PATTERN2" 2055155 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-897 2052607 2052995 2053452 "PATTERN1" 2054439 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-896 2049975 2050556 2051037 "PATRES" 2052172 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-895 2049539 2049606 2049738 "PATRES2" 2049902 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-894 2047422 2047827 2048234 "PATMATCH" 2049206 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-893 2046932 2047141 2047182 "PATMAB" 2047289 NIL PATMAB (NIL T) -9 NIL 2047372 NIL) (-892 2045450 2045786 2046044 "PATLRES" 2046737 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-891 2044996 2045119 2045160 "PATAB" 2045165 NIL PATAB (NIL T) -9 NIL 2045337 NIL) (-890 2043178 2043573 2043996 "PARTPERM" 2044593 T PARTPERM (NIL) -7 NIL NIL NIL) (-889 2042799 2042862 2042964 "PARSURF" 2043109 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-888 2042431 2042488 2042597 "PARSU2" 2042736 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-887 2042195 2042235 2042302 "PARSER" 2042384 T PARSER (NIL) -7 NIL NIL NIL) (-886 2041816 2041879 2041981 "PARSCURV" 2042126 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-885 2041448 2041505 2041614 "PARSC2" 2041753 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-884 2041087 2041145 2041242 "PARPCURV" 2041384 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-883 2040719 2040776 2040885 "PARPC2" 2041024 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-882 2039780 2040092 2040274 "PARAMAST" 2040557 T PARAMAST (NIL) -8 NIL NIL NIL) (-881 2039300 2039386 2039505 "PAN2EXPR" 2039681 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-880 2038077 2038421 2038649 "PALETTE" 2039092 T PALETTE (NIL) -8 NIL NIL NIL) (-879 2036470 2037082 2037442 "PAIR" 2037763 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-878 2030338 2035727 2035922 "PADICRC" 2036324 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-877 2023565 2029682 2029867 "PADICRAT" 2030185 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-876 2021880 2023502 2023547 "PADIC" 2023552 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-875 2018990 2020554 2020594 "PADICCT" 2021175 NIL PADICCT (NIL NIL) -9 NIL 2021457 NIL) (-874 2017947 2018147 2018415 "PADEPAC" 2018777 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-873 2017159 2017292 2017498 "PADE" 2017809 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-872 2015546 2016367 2016647 "OWP" 2016963 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-871 2015039 2015252 2015349 "OVERSET" 2015469 T OVERSET (NIL) -8 NIL NIL NIL) (-870 2014085 2014644 2014816 "OVAR" 2014907 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-869 2013349 2013470 2013631 "OUT" 2013944 T OUT (NIL) -7 NIL NIL NIL) (-868 2002221 2004458 2006658 "OUTFORM" 2011169 T OUTFORM (NIL) -8 NIL NIL NIL) (-867 2001557 2001818 2001945 "OUTBFILE" 2002114 T OUTBFILE (NIL) -8 NIL NIL NIL) (-866 2000864 2001029 2001057 "OUTBCON" 2001375 T OUTBCON (NIL) -9 NIL 2001541 NIL) (-865 2000465 2000577 2000734 "OUTBCON-" 2000739 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-864 1999845 2000194 2000283 "OSI" 2000396 T OSI (NIL) -8 NIL NIL NIL) (-863 1999375 1999713 1999741 "OSGROUP" 1999746 T OSGROUP (NIL) -9 NIL 1999768 NIL) (-862 1998120 1998347 1998632 "ORTHPOL" 1999122 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-861 1995671 1997955 1998076 "OREUP" 1998081 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-860 1993074 1995362 1995489 "ORESUP" 1995613 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-859 1990602 1991102 1991663 "OREPCTO" 1992563 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-858 1984288 1986489 1986530 "OREPCAT" 1988878 NIL OREPCAT (NIL T) -9 NIL 1989982 NIL) (-857 1981435 1982217 1983275 "OREPCAT-" 1983280 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-856 1980586 1980884 1980912 "ORDSET" 1981221 T ORDSET (NIL) -9 NIL 1981385 NIL) (-855 1980017 1980165 1980389 "ORDSET-" 1980394 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-854 1978582 1979373 1979401 "ORDRING" 1979603 T ORDRING (NIL) -9 NIL 1979728 NIL) (-853 1978227 1978321 1978465 "ORDRING-" 1978470 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-852 1977607 1978070 1978098 "ORDMON" 1978103 T ORDMON (NIL) -9 NIL 1978124 NIL) (-851 1976769 1976916 1977111 "ORDFUNS" 1977456 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-850 1976107 1976526 1976554 "ORDFIN" 1976619 T ORDFIN (NIL) -9 NIL 1976693 NIL) (-849 1972666 1974693 1975102 "ORDCOMP" 1975731 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-848 1971932 1972059 1972245 "ORDCOMP2" 1972526 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-847 1968513 1969423 1970237 "OPTPROB" 1971138 T OPTPROB (NIL) -8 NIL NIL NIL) (-846 1965315 1965954 1966658 "OPTPACK" 1967829 T OPTPACK (NIL) -7 NIL NIL NIL) (-845 1963002 1963768 1963796 "OPTCAT" 1964615 T OPTCAT (NIL) -9 NIL 1965265 NIL) (-844 1962386 1962679 1962784 "OPSIG" 1962917 T OPSIG (NIL) -8 NIL NIL NIL) (-843 1962154 1962193 1962259 "OPQUERY" 1962340 T OPQUERY (NIL) -7 NIL NIL NIL) (-842 1959285 1960465 1960969 "OP" 1961683 NIL OP (NIL T) -8 NIL NIL NIL) (-841 1958659 1958885 1958926 "OPERCAT" 1959138 NIL OPERCAT (NIL T) -9 NIL 1959235 NIL) (-840 1958414 1958470 1958587 "OPERCAT-" 1958592 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-839 1955227 1957211 1957580 "ONECOMP" 1958078 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-838 1954532 1954647 1954821 "ONECOMP2" 1955099 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1953951 1954057 1954187 "OMSERVER" 1954422 T OMSERVER (NIL) -7 NIL NIL NIL) (-836 1950813 1953391 1953431 "OMSAGG" 1953492 NIL OMSAGG (NIL T) -9 NIL 1953556 NIL) (-835 1949436 1949699 1949981 "OMPKG" 1950551 T OMPKG (NIL) -7 NIL NIL NIL) (-834 1948866 1948969 1948997 "OM" 1949296 T OM (NIL) -9 NIL NIL NIL) (-833 1947413 1948415 1948584 "OMLO" 1948747 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-832 1946373 1946520 1946740 "OMEXPR" 1947239 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-831 1945664 1945919 1946055 "OMERR" 1946257 T OMERR (NIL) -8 NIL NIL NIL) (-830 1944815 1945085 1945245 "OMERRK" 1945524 T OMERRK (NIL) -8 NIL NIL NIL) (-829 1944266 1944492 1944600 "OMENC" 1944727 T OMENC (NIL) -8 NIL NIL NIL) (-828 1938161 1939346 1940517 "OMDEV" 1943115 T OMDEV (NIL) -8 NIL NIL NIL) (-827 1937230 1937401 1937595 "OMCONN" 1937987 T OMCONN (NIL) -8 NIL NIL NIL) (-826 1935751 1936727 1936755 "OINTDOM" 1936760 T OINTDOM (NIL) -9 NIL 1936781 NIL) (-825 1933089 1934439 1934776 "OFMONOID" 1935446 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-824 1932500 1933026 1933071 "ODVAR" 1933076 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-823 1929923 1932245 1932400 "ODR" 1932405 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-822 1922504 1929699 1929825 "ODPOL" 1929830 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-821 1916326 1922376 1922481 "ODP" 1922486 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-820 1915092 1915307 1915582 "ODETOOLS" 1916100 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-819 1912059 1912717 1913433 "ODESYS" 1914425 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-818 1906941 1907849 1908874 "ODERTRIC" 1911134 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-817 1906367 1906449 1906643 "ODERED" 1906853 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-816 1903255 1903803 1904480 "ODERAT" 1905790 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-815 1900214 1900679 1901276 "ODEPRRIC" 1902784 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-814 1898157 1898753 1899239 "ODEPROB" 1899748 T ODEPROB (NIL) -8 NIL NIL NIL) (-813 1894677 1895162 1895809 "ODEPRIM" 1897636 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-812 1893926 1894028 1894288 "ODEPAL" 1894569 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-811 1890088 1890879 1891743 "ODEPACK" 1893082 T ODEPACK (NIL) -7 NIL NIL NIL) (-810 1889149 1889256 1889478 "ODEINT" 1889977 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-809 1883250 1884675 1886122 "ODEIFTBL" 1887722 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-808 1878648 1879434 1880386 "ODEEF" 1882409 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-807 1877997 1878086 1878309 "ODECONST" 1878553 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-806 1876122 1876783 1876811 "ODECAT" 1877416 T ODECAT (NIL) -9 NIL 1877947 NIL) (-805 1872977 1875827 1875949 "OCT" 1876032 NIL OCT (NIL T) -8 NIL NIL NIL) (-804 1872615 1872658 1872785 "OCTCT2" 1872928 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-803 1867226 1869661 1869701 "OC" 1870798 NIL OC (NIL T) -9 NIL 1871656 NIL) (-802 1864453 1865201 1866191 "OC-" 1866285 NIL OC- (NIL T T) -8 NIL NIL NIL) (-801 1863805 1864273 1864301 "OCAMON" 1864306 T OCAMON (NIL) -9 NIL 1864327 NIL) (-800 1863336 1863677 1863705 "OASGP" 1863710 T OASGP (NIL) -9 NIL 1863730 NIL) (-799 1862597 1863086 1863114 "OAMONS" 1863154 T OAMONS (NIL) -9 NIL 1863197 NIL) (-798 1862011 1862444 1862472 "OAMON" 1862477 T OAMON (NIL) -9 NIL 1862497 NIL) (-797 1861269 1861787 1861815 "OAGROUP" 1861820 T OAGROUP (NIL) -9 NIL 1861840 NIL) (-796 1860959 1861009 1861097 "NUMTUBE" 1861213 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-795 1854532 1856050 1857586 "NUMQUAD" 1859443 T NUMQUAD (NIL) -7 NIL NIL NIL) (-794 1850288 1851276 1852301 "NUMODE" 1853527 T NUMODE (NIL) -7 NIL NIL NIL) (-793 1847643 1848523 1848551 "NUMINT" 1849474 T NUMINT (NIL) -9 NIL 1850238 NIL) (-792 1846591 1846788 1847006 "NUMFMT" 1847445 T NUMFMT (NIL) -7 NIL NIL NIL) (-791 1832950 1835895 1838427 "NUMERIC" 1844098 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-790 1827320 1832399 1832494 "NTSCAT" 1832499 NIL NTSCAT (NIL T T T T) -9 NIL 1832538 NIL) (-789 1826514 1826679 1826872 "NTPOLFN" 1827159 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-788 1814591 1823339 1824151 "NSUP" 1825735 NIL NSUP (NIL T) -8 NIL NIL NIL) (-787 1814223 1814280 1814389 "NSUP2" 1814528 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-786 1804449 1813997 1814130 "NSMP" 1814135 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-785 1802881 1803182 1803539 "NREP" 1804137 NIL NREP (NIL T) -7 NIL NIL NIL) (-784 1801472 1801724 1802082 "NPCOEF" 1802624 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-783 1800538 1800653 1800869 "NORMRETR" 1801353 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-782 1798579 1798869 1799278 "NORMPK" 1800246 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-781 1798264 1798292 1798416 "NORMMA" 1798545 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-780 1798064 1798221 1798250 "NONE" 1798255 T NONE (NIL) -8 NIL NIL NIL) (-779 1797853 1797882 1797951 "NONE1" 1798028 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-778 1797350 1797412 1797591 "NODE1" 1797785 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-777 1795631 1796482 1796737 "NNI" 1797084 T NNI (NIL) -8 NIL NIL 1797319) (-776 1794051 1794364 1794728 "NLINSOL" 1795299 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-775 1790292 1791287 1792186 "NIPROB" 1793172 T NIPROB (NIL) -8 NIL NIL NIL) (-774 1789049 1789283 1789585 "NFINTBAS" 1790054 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-773 1788223 1788699 1788740 "NETCLT" 1788912 NIL NETCLT (NIL T) -9 NIL 1788994 NIL) (-772 1786931 1787162 1787443 "NCODIV" 1787991 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-771 1786693 1786730 1786805 "NCNTFRAC" 1786888 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-770 1784873 1785237 1785657 "NCEP" 1786318 NIL NCEP (NIL T) -7 NIL NIL NIL) (-769 1783724 1784497 1784525 "NASRING" 1784635 T NASRING (NIL) -9 NIL 1784715 NIL) (-768 1783519 1783563 1783657 "NASRING-" 1783662 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-767 1782626 1783151 1783179 "NARNG" 1783296 T NARNG (NIL) -9 NIL 1783387 NIL) (-766 1782318 1782385 1782519 "NARNG-" 1782524 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-765 1781197 1781404 1781639 "NAGSP" 1782103 T NAGSP (NIL) -7 NIL NIL NIL) (-764 1772469 1774153 1775826 "NAGS" 1779544 T NAGS (NIL) -7 NIL NIL NIL) (-763 1771017 1771325 1771656 "NAGF07" 1772158 T NAGF07 (NIL) -7 NIL NIL NIL) (-762 1765555 1766846 1768153 "NAGF04" 1769730 T NAGF04 (NIL) -7 NIL NIL NIL) (-761 1758523 1760137 1761770 "NAGF02" 1763942 T NAGF02 (NIL) -7 NIL NIL NIL) (-760 1753747 1754847 1755964 "NAGF01" 1757426 T NAGF01 (NIL) -7 NIL NIL NIL) (-759 1747375 1748941 1750526 "NAGE04" 1752182 T NAGE04 (NIL) -7 NIL NIL NIL) (-758 1738544 1740665 1742795 "NAGE02" 1745265 T NAGE02 (NIL) -7 NIL NIL NIL) (-757 1734497 1735444 1736408 "NAGE01" 1737600 T NAGE01 (NIL) -7 NIL NIL NIL) (-756 1732292 1732826 1733384 "NAGD03" 1733959 T NAGD03 (NIL) -7 NIL NIL NIL) (-755 1724042 1725970 1727924 "NAGD02" 1730358 T NAGD02 (NIL) -7 NIL NIL NIL) (-754 1717853 1719278 1720718 "NAGD01" 1722622 T NAGD01 (NIL) -7 NIL NIL NIL) (-753 1714062 1714884 1715721 "NAGC06" 1717036 T NAGC06 (NIL) -7 NIL NIL NIL) (-752 1712527 1712859 1713215 "NAGC05" 1713726 T NAGC05 (NIL) -7 NIL NIL NIL) (-751 1711903 1712022 1712166 "NAGC02" 1712403 T NAGC02 (NIL) -7 NIL NIL NIL) (-750 1710862 1711445 1711485 "NAALG" 1711564 NIL NAALG (NIL T) -9 NIL 1711625 NIL) (-749 1710697 1710726 1710816 "NAALG-" 1710821 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-748 1704647 1705755 1706942 "MULTSQFR" 1709593 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-747 1703966 1704041 1704225 "MULTFACT" 1704559 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-746 1696690 1700603 1700656 "MTSCAT" 1701726 NIL MTSCAT (NIL T T) -9 NIL 1702241 NIL) (-745 1696402 1696456 1696548 "MTHING" 1696630 NIL MTHING (NIL T) -7 NIL NIL NIL) (-744 1696194 1696227 1696287 "MSYSCMD" 1696362 T MSYSCMD (NIL) -7 NIL NIL NIL) (-743 1692276 1694949 1695269 "MSET" 1695907 NIL MSET (NIL T) -8 NIL NIL NIL) (-742 1689345 1691837 1691878 "MSETAGG" 1691883 NIL MSETAGG (NIL T) -9 NIL 1691917 NIL) (-741 1685187 1686724 1687469 "MRING" 1688645 NIL MRING (NIL T T) -8 NIL NIL NIL) (-740 1684753 1684820 1684951 "MRF2" 1685114 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-739 1684371 1684406 1684550 "MRATFAC" 1684712 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-738 1681983 1682278 1682709 "MPRFF" 1684076 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-737 1676280 1681837 1681934 "MPOLY" 1681939 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-736 1675770 1675805 1676013 "MPCPF" 1676239 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-735 1675284 1675327 1675511 "MPC3" 1675721 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-734 1674479 1674560 1674781 "MPC2" 1675199 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-733 1672780 1673117 1673507 "MONOTOOL" 1674139 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-732 1672005 1672322 1672350 "MONOID" 1672569 T MONOID (NIL) -9 NIL 1672716 NIL) (-731 1671551 1671670 1671851 "MONOID-" 1671856 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-730 1662026 1667977 1668036 "MONOGEN" 1668710 NIL MONOGEN (NIL T T) -9 NIL 1669166 NIL) (-729 1659244 1659979 1660979 "MONOGEN-" 1661098 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-728 1658077 1658523 1658551 "MONADWU" 1658943 T MONADWU (NIL) -9 NIL 1659181 NIL) (-727 1657449 1657608 1657856 "MONADWU-" 1657861 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-726 1656808 1657052 1657080 "MONAD" 1657287 T MONAD (NIL) -9 NIL 1657399 NIL) (-725 1656493 1656571 1656703 "MONAD-" 1656708 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-724 1654782 1655406 1655685 "MOEBIUS" 1656246 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-723 1654060 1654464 1654504 "MODULE" 1654509 NIL MODULE (NIL T) -9 NIL 1654548 NIL) (-722 1653628 1653724 1653914 "MODULE-" 1653919 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-721 1651308 1651992 1652319 "MODRING" 1653452 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1648252 1649413 1649934 "MODOP" 1650837 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-719 1646840 1647319 1647596 "MODMONOM" 1648115 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-718 1636884 1645131 1645545 "MODMON" 1646477 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-717 1634040 1635728 1636004 "MODFIELD" 1636759 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-716 1633017 1633321 1633511 "MMLFORM" 1633870 T MMLFORM (NIL) -8 NIL NIL NIL) (-715 1632543 1632586 1632765 "MMAP" 1632968 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-714 1630622 1631389 1631430 "MLO" 1631853 NIL MLO (NIL T) -9 NIL 1632095 NIL) (-713 1627988 1628504 1629106 "MLIFT" 1630103 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-712 1627379 1627463 1627617 "MKUCFUNC" 1627899 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-711 1626978 1627048 1627171 "MKRECORD" 1627302 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-710 1626025 1626187 1626415 "MKFUNC" 1626789 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-709 1625413 1625517 1625673 "MKFLCFN" 1625908 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-708 1624690 1624792 1624977 "MKBCFUNC" 1625306 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-707 1621397 1624244 1624380 "MINT" 1624574 T MINT (NIL) -8 NIL NIL NIL) (-706 1620209 1620452 1620729 "MHROWRED" 1621152 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-705 1615589 1618744 1619149 "MFLOAT" 1619824 T MFLOAT (NIL) -8 NIL NIL NIL) (-704 1614946 1615022 1615193 "MFINFACT" 1615501 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-703 1611261 1612109 1612993 "MESH" 1614082 T MESH (NIL) -7 NIL NIL NIL) (-702 1609651 1609963 1610316 "MDDFACT" 1610948 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-701 1606446 1608810 1608851 "MDAGG" 1609106 NIL MDAGG (NIL T) -9 NIL 1609249 NIL) (-700 1596186 1605739 1605946 "MCMPLX" 1606259 T MCMPLX (NIL) -8 NIL NIL NIL) (-699 1595323 1595469 1595670 "MCDEN" 1596035 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-698 1593213 1593483 1593863 "MCALCFN" 1595053 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-697 1592138 1592378 1592611 "MAYBE" 1593019 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-696 1589750 1590273 1590835 "MATSTOR" 1591609 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-695 1585707 1589122 1589370 "MATRIX" 1589535 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-694 1581473 1582180 1582916 "MATLIN" 1585064 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-693 1571579 1574765 1574842 "MATCAT" 1579722 NIL MATCAT (NIL T T T) -9 NIL 1581139 NIL) (-692 1567935 1568956 1570312 "MATCAT-" 1570317 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-691 1566529 1566682 1567015 "MATCAT2" 1567770 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-690 1564641 1564965 1565349 "MAPPKG3" 1566204 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-689 1563622 1563795 1564017 "MAPPKG2" 1564465 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-688 1562121 1562405 1562732 "MAPPKG1" 1563328 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-687 1561200 1561527 1561704 "MAPPAST" 1561964 T MAPPAST (NIL) -8 NIL NIL NIL) (-686 1560811 1560869 1560992 "MAPHACK3" 1561136 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-685 1560403 1560464 1560578 "MAPHACK2" 1560743 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-684 1559841 1559944 1560086 "MAPHACK1" 1560294 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-683 1557920 1558541 1558845 "MAGMA" 1559569 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-682 1557399 1557644 1557735 "MACROAST" 1557849 T MACROAST (NIL) -8 NIL NIL NIL) (-681 1553817 1555638 1556099 "M3D" 1556971 NIL M3D (NIL T) -8 NIL NIL NIL) (-680 1547892 1552156 1552197 "LZSTAGG" 1552979 NIL LZSTAGG (NIL T) -9 NIL 1553274 NIL) (-679 1543850 1545023 1546480 "LZSTAGG-" 1546485 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-678 1540937 1541741 1542228 "LWORD" 1543395 NIL LWORD (NIL T) -8 NIL NIL NIL) (-677 1540513 1540741 1540816 "LSTAST" 1540882 T LSTAST (NIL) -8 NIL NIL NIL) (-676 1533679 1540284 1540418 "LSQM" 1540423 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-675 1532903 1533042 1533270 "LSPP" 1533534 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-674 1530715 1531016 1531472 "LSMP" 1532592 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-673 1527494 1528168 1528898 "LSMP1" 1530017 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-672 1521340 1526631 1526672 "LSAGG" 1526734 NIL LSAGG (NIL T) -9 NIL 1526812 NIL) (-671 1518035 1518959 1520172 "LSAGG-" 1520177 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-670 1515634 1517179 1517428 "LPOLY" 1517830 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-669 1515216 1515301 1515424 "LPEFRAC" 1515543 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-668 1513537 1514310 1514563 "LO" 1515048 NIL LO (NIL T T T) -8 NIL NIL NIL) (-667 1513189 1513301 1513329 "LOGIC" 1513440 T LOGIC (NIL) -9 NIL 1513521 NIL) (-666 1513051 1513074 1513145 "LOGIC-" 1513150 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-665 1512244 1512384 1512577 "LODOOPS" 1512907 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-664 1509667 1512160 1512226 "LODO" 1512231 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-663 1508205 1508440 1508793 "LODOF" 1509414 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-662 1504409 1506840 1506881 "LODOCAT" 1507319 NIL LODOCAT (NIL T) -9 NIL 1507530 NIL) (-661 1504142 1504200 1504327 "LODOCAT-" 1504332 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-660 1501462 1503983 1504101 "LODO2" 1504106 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-659 1498897 1501399 1501444 "LODO1" 1501449 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-658 1497778 1497943 1498248 "LODEEF" 1498720 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-657 1493081 1495972 1496013 "LNAGG" 1496875 NIL LNAGG (NIL T) -9 NIL 1497310 NIL) (-656 1492228 1492442 1492784 "LNAGG-" 1492789 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-655 1488364 1489153 1489792 "LMOPS" 1491643 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-654 1487767 1488155 1488196 "LMODULE" 1488201 NIL LMODULE (NIL T) -9 NIL 1488227 NIL) (-653 1484965 1487412 1487535 "LMDICT" 1487677 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-652 1484371 1484592 1484633 "LLINSET" 1484824 NIL LLINSET (NIL T) -9 NIL 1484915 NIL) (-651 1484070 1484279 1484339 "LITERAL" 1484344 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-650 1477233 1483004 1483308 "LIST" 1483799 NIL LIST (NIL T) -8 NIL NIL NIL) (-649 1476758 1476832 1476971 "LIST3" 1477153 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-648 1475765 1475943 1476171 "LIST2" 1476576 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-647 1473899 1474211 1474610 "LIST2MAP" 1475412 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-646 1473495 1473732 1473773 "LINSET" 1473778 NIL LINSET (NIL T) -9 NIL 1473812 NIL) (-645 1472156 1472826 1472867 "LINEXP" 1473122 NIL LINEXP (NIL T) -9 NIL 1473271 NIL) (-644 1470803 1471063 1471360 "LINDEP" 1471908 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-643 1467570 1468289 1469066 "LIMITRF" 1470058 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-642 1465873 1466169 1466578 "LIMITPS" 1467265 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-641 1460301 1465384 1465612 "LIE" 1465694 NIL LIE (NIL T T) -8 NIL NIL NIL) (-640 1459249 1459718 1459758 "LIECAT" 1459898 NIL LIECAT (NIL T) -9 NIL 1460049 NIL) (-639 1459090 1459117 1459205 "LIECAT-" 1459210 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-638 1451677 1458630 1458786 "LIB" 1458954 T LIB (NIL) -8 NIL NIL NIL) (-637 1447312 1448195 1449130 "LGROBP" 1450794 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-636 1445310 1445584 1445934 "LF" 1447033 NIL LF (NIL T T) -7 NIL NIL NIL) (-635 1444150 1444842 1444870 "LFCAT" 1445077 T LFCAT (NIL) -9 NIL 1445216 NIL) (-634 1441052 1441682 1442370 "LEXTRIPK" 1443514 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-633 1437796 1438622 1439125 "LEXP" 1440632 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-632 1437272 1437517 1437609 "LETAST" 1437724 T LETAST (NIL) -8 NIL NIL NIL) (-631 1435670 1435983 1436384 "LEADCDET" 1436954 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-630 1434860 1434934 1435163 "LAZM3PK" 1435591 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-629 1429777 1432937 1433475 "LAUPOL" 1434372 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-628 1429356 1429400 1429561 "LAPLACE" 1429727 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-627 1427295 1428457 1428708 "LA" 1429189 NIL LA (NIL T T T) -8 NIL NIL NIL) (-626 1426289 1426873 1426914 "LALG" 1426976 NIL LALG (NIL T) -9 NIL 1427035 NIL) (-625 1426003 1426062 1426198 "LALG-" 1426203 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-624 1425838 1425862 1425903 "KVTFROM" 1425965 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-623 1424761 1425205 1425390 "KTVLOGIC" 1425673 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-622 1424596 1424620 1424661 "KRCFROM" 1424723 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-621 1423500 1423687 1423986 "KOVACIC" 1424396 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-620 1423335 1423359 1423400 "KONVERT" 1423462 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-619 1423170 1423194 1423235 "KOERCE" 1423297 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-618 1421001 1421763 1422140 "KERNEL" 1422826 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-617 1420497 1420578 1420710 "KERNEL2" 1420915 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-616 1414267 1419036 1419090 "KDAGG" 1419467 NIL KDAGG (NIL T T) -9 NIL 1419673 NIL) (-615 1413796 1413920 1414125 "KDAGG-" 1414130 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1406944 1413457 1413612 "KAFILE" 1413674 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-613 1401372 1406455 1406683 "JORDAN" 1406765 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-612 1400751 1401021 1401142 "JOINAST" 1401271 T JOINAST (NIL) -8 NIL NIL NIL) (-611 1400597 1400656 1400711 "JAVACODE" 1400716 T JAVACODE (NIL) -8 NIL NIL NIL) (-610 1396849 1398802 1398856 "IXAGG" 1399785 NIL IXAGG (NIL T T) -9 NIL 1400244 NIL) (-609 1395768 1396074 1396493 "IXAGG-" 1396498 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-608 1391298 1395690 1395749 "IVECTOR" 1395754 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-607 1390064 1390301 1390567 "ITUPLE" 1391065 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-606 1388566 1388743 1389038 "ITRIGMNP" 1389886 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-605 1387311 1387515 1387798 "ITFUN3" 1388342 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-604 1386943 1387000 1387109 "ITFUN2" 1387248 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-603 1386102 1386423 1386597 "ITFORM" 1386789 T ITFORM (NIL) -8 NIL NIL NIL) (-602 1384063 1385122 1385400 "ITAYLOR" 1385857 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-601 1373008 1378200 1379363 "ISUPS" 1382933 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-600 1372112 1372252 1372488 "ISUMP" 1372855 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-599 1367487 1372057 1372098 "ISTRING" 1372103 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-598 1366963 1367208 1367300 "ISAST" 1367415 T ISAST (NIL) -8 NIL NIL NIL) (-597 1366172 1366254 1366470 "IRURPK" 1366877 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-596 1365108 1365309 1365549 "IRSN" 1365952 T IRSN (NIL) -7 NIL NIL NIL) (-595 1363179 1363534 1363963 "IRRF2F" 1364746 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-594 1362926 1362964 1363040 "IRREDFFX" 1363135 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-593 1361541 1361800 1362099 "IROOT" 1362659 NIL IROOT (NIL T) -7 NIL NIL NIL) (-592 1358145 1359225 1359917 "IR" 1360881 NIL IR (NIL T) -8 NIL NIL NIL) (-591 1357350 1357638 1357789 "IRFORM" 1358014 T IRFORM (NIL) -8 NIL NIL NIL) (-590 1354963 1355458 1356024 "IR2" 1356828 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-589 1354063 1354176 1354390 "IR2F" 1354846 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-588 1353854 1353888 1353948 "IPRNTPK" 1354023 T IPRNTPK (NIL) -7 NIL NIL NIL) (-587 1350435 1353743 1353812 "IPF" 1353817 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-586 1348762 1350360 1350417 "IPADIC" 1350422 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-585 1348074 1348322 1348452 "IP4ADDR" 1348652 T IP4ADDR (NIL) -8 NIL NIL NIL) (-584 1347448 1347703 1347835 "IOMODE" 1347962 T IOMODE (NIL) -8 NIL NIL NIL) (-583 1346521 1347045 1347172 "IOBFILE" 1347341 T IOBFILE (NIL) -8 NIL NIL NIL) (-582 1346009 1346425 1346453 "IOBCON" 1346458 T IOBCON (NIL) -9 NIL 1346479 NIL) (-581 1345520 1345578 1345761 "INVLAPLA" 1345945 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-580 1335168 1337522 1339908 "INTTR" 1343184 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-579 1331503 1332245 1333110 "INTTOOLS" 1334353 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-578 1331089 1331180 1331297 "INTSLPE" 1331406 T INTSLPE (NIL) -7 NIL NIL NIL) (-577 1329042 1331012 1331071 "INTRVL" 1331076 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-576 1326644 1327156 1327731 "INTRF" 1328527 NIL INTRF (NIL T) -7 NIL NIL NIL) (-575 1326055 1326152 1326294 "INTRET" 1326542 NIL INTRET (NIL T) -7 NIL NIL NIL) (-574 1324052 1324441 1324911 "INTRAT" 1325663 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-573 1321315 1321898 1322517 "INTPM" 1323537 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-572 1318060 1318659 1319397 "INTPAF" 1320701 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-571 1313239 1314201 1315252 "INTPACK" 1317029 T INTPACK (NIL) -7 NIL NIL NIL) (-570 1310187 1313036 1313145 "INT" 1313150 T INT (NIL) -8 NIL NIL NIL) (-569 1309439 1309591 1309799 "INTHERTR" 1310029 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-568 1308878 1308958 1309146 "INTHERAL" 1309353 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-567 1306724 1307167 1307624 "INTHEORY" 1308441 T INTHEORY (NIL) -7 NIL NIL NIL) (-566 1298130 1299751 1301523 "INTG0" 1305076 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-565 1278703 1283493 1288303 "INTFTBL" 1293340 T INTFTBL (NIL) -8 NIL NIL NIL) (-564 1277952 1278090 1278263 "INTFACT" 1278562 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-563 1275379 1275825 1276382 "INTEF" 1277506 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-562 1273746 1274485 1274513 "INTDOM" 1274814 T INTDOM (NIL) -9 NIL 1275021 NIL) (-561 1273115 1273289 1273531 "INTDOM-" 1273536 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-560 1269503 1271431 1271485 "INTCAT" 1272284 NIL INTCAT (NIL T) -9 NIL 1272605 NIL) (-559 1268975 1269078 1269206 "INTBIT" 1269395 T INTBIT (NIL) -7 NIL NIL NIL) (-558 1267674 1267828 1268135 "INTALG" 1268820 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-557 1267157 1267247 1267404 "INTAF" 1267578 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-556 1260500 1266967 1267107 "INTABL" 1267112 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-555 1259833 1260299 1260364 "INT8" 1260398 T INT8 (NIL) -8 NIL NIL 1260443) (-554 1259165 1259631 1259696 "INT64" 1259730 T INT64 (NIL) -8 NIL NIL 1259775) (-553 1258497 1258963 1259028 "INT32" 1259062 T INT32 (NIL) -8 NIL NIL 1259107) (-552 1257829 1258295 1258360 "INT16" 1258394 T INT16 (NIL) -8 NIL NIL 1258439) (-551 1252739 1255452 1255480 "INS" 1256414 T INS (NIL) -9 NIL 1257079 NIL) (-550 1249979 1250750 1251724 "INS-" 1251797 NIL INS- (NIL T) -8 NIL NIL NIL) (-549 1248754 1248981 1249279 "INPSIGN" 1249732 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-548 1247872 1247989 1248186 "INPRODPF" 1248634 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-547 1246766 1246883 1247120 "INPRODFF" 1247752 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-546 1245766 1245918 1246178 "INNMFACT" 1246602 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-545 1244963 1245060 1245248 "INMODGCD" 1245665 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-544 1243471 1243716 1244040 "INFSP" 1244708 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-543 1242655 1242772 1242955 "INFPROD0" 1243351 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-542 1239510 1240720 1241235 "INFORM" 1242148 T INFORM (NIL) -8 NIL NIL NIL) (-541 1239120 1239180 1239278 "INFORM1" 1239445 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-540 1238643 1238732 1238846 "INFINITY" 1239026 T INFINITY (NIL) -7 NIL NIL NIL) (-539 1237819 1238363 1238464 "INETCLTS" 1238562 T INETCLTS (NIL) -8 NIL NIL NIL) (-538 1236435 1236685 1237006 "INEP" 1237567 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-537 1235684 1236332 1236397 "INDE" 1236402 NIL INDE (NIL T) -8 NIL NIL NIL) (-536 1235248 1235316 1235433 "INCRMAPS" 1235611 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-535 1234066 1234517 1234723 "INBFILE" 1235062 T INBFILE (NIL) -8 NIL NIL NIL) (-534 1229365 1230302 1231246 "INBFF" 1233154 NIL INBFF (NIL T) -7 NIL NIL NIL) (-533 1228273 1228542 1228570 "INBCON" 1229083 T INBCON (NIL) -9 NIL 1229349 NIL) (-532 1227525 1227748 1228024 "INBCON-" 1228029 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-531 1227004 1227249 1227340 "INAST" 1227454 T INAST (NIL) -8 NIL NIL NIL) (-530 1226431 1226683 1226789 "IMPTAST" 1226918 T IMPTAST (NIL) -8 NIL NIL NIL) (-529 1222877 1226275 1226379 "IMATRIX" 1226384 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-528 1221585 1221708 1222024 "IMATQF" 1222733 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-527 1219805 1220032 1220369 "IMATLIN" 1221341 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-526 1214383 1219729 1219787 "ILIST" 1219792 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-525 1212288 1214243 1214356 "IIARRAY2" 1214361 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-524 1207686 1212199 1212263 "IFF" 1212268 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-523 1207033 1207303 1207419 "IFAST" 1207590 T IFAST (NIL) -8 NIL NIL NIL) (-522 1202028 1206325 1206513 "IFARRAY" 1206890 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-521 1201208 1201932 1202005 "IFAMON" 1202010 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-520 1200792 1200857 1200911 "IEVALAB" 1201118 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-519 1200467 1200535 1200695 "IEVALAB-" 1200700 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-518 1200098 1200381 1200444 "IDPO" 1200449 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-517 1199348 1199987 1200062 "IDPOAMS" 1200067 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-516 1198655 1199237 1199312 "IDPOAM" 1199317 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-515 1197714 1197990 1198043 "IDPC" 1198456 NIL IDPC (NIL T T) -9 NIL 1198605 NIL) (-514 1197183 1197606 1197679 "IDPAM" 1197684 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-513 1196559 1197075 1197148 "IDPAG" 1197153 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-512 1196204 1196395 1196470 "IDENT" 1196504 T IDENT (NIL) -8 NIL NIL NIL) (-511 1192459 1193307 1194202 "IDECOMP" 1195361 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-510 1185296 1186382 1187429 "IDEAL" 1191495 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-509 1184456 1184568 1184768 "ICDEN" 1185180 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-508 1183527 1183936 1184083 "ICARD" 1184329 T ICARD (NIL) -8 NIL NIL NIL) (-507 1181587 1181900 1182305 "IBPTOOLS" 1183204 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-506 1177194 1181207 1181320 "IBITS" 1181506 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-505 1173917 1174493 1175188 "IBATOOL" 1176611 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-504 1171696 1172158 1172691 "IBACHIN" 1173452 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-503 1169525 1171542 1171645 "IARRAY2" 1171650 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-502 1165631 1169451 1169508 "IARRAY1" 1169513 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-501 1159740 1164043 1164524 "IAN" 1165170 T IAN (NIL) -8 NIL NIL NIL) (-500 1159251 1159308 1159481 "IALGFACT" 1159677 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-499 1158779 1158892 1158920 "HYPCAT" 1159127 T HYPCAT (NIL) -9 NIL NIL NIL) (-498 1158317 1158434 1158620 "HYPCAT-" 1158625 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-497 1157912 1158112 1158195 "HOSTNAME" 1158254 T HOSTNAME (NIL) -8 NIL NIL NIL) (-496 1157757 1157794 1157835 "HOMOTOP" 1157840 NIL HOMOTOP (NIL T) -9 NIL 1157873 NIL) (-495 1154389 1155767 1155808 "HOAGG" 1156789 NIL HOAGG (NIL T) -9 NIL 1157468 NIL) (-494 1152983 1153382 1153908 "HOAGG-" 1153913 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-493 1146985 1152576 1152726 "HEXADEC" 1152853 T HEXADEC (NIL) -8 NIL NIL NIL) (-492 1145733 1145955 1146218 "HEUGCD" 1146762 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-491 1144809 1145570 1145700 "HELLFDIV" 1145705 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-490 1142988 1144586 1144674 "HEAP" 1144753 NIL HEAP (NIL T) -8 NIL NIL NIL) (-489 1142251 1142540 1142674 "HEADAST" 1142874 T HEADAST (NIL) -8 NIL NIL NIL) (-488 1136117 1142166 1142228 "HDP" 1142233 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-487 1130105 1135752 1135904 "HDMP" 1136018 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-486 1129429 1129569 1129733 "HB" 1129961 T HB (NIL) -7 NIL NIL NIL) (-485 1122815 1129275 1129379 "HASHTBL" 1129384 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-484 1122291 1122536 1122628 "HASAST" 1122743 T HASAST (NIL) -8 NIL NIL NIL) (-483 1120069 1121913 1122095 "HACKPI" 1122129 T HACKPI (NIL) -8 NIL NIL NIL) (-482 1115737 1119922 1120035 "GTSET" 1120040 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-481 1109152 1115615 1115713 "GSTBL" 1115718 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-480 1101430 1108183 1108448 "GSERIES" 1108943 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-479 1100571 1100988 1101016 "GROUP" 1101219 T GROUP (NIL) -9 NIL 1101353 NIL) (-478 1099937 1100096 1100347 "GROUP-" 1100352 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-477 1098304 1098625 1099012 "GROEBSOL" 1099614 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-476 1097218 1097506 1097557 "GRMOD" 1098086 NIL GRMOD (NIL T T) -9 NIL 1098254 NIL) (-475 1096986 1097022 1097150 "GRMOD-" 1097155 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-474 1092276 1093340 1094340 "GRIMAGE" 1096006 T GRIMAGE (NIL) -8 NIL NIL NIL) (-473 1090742 1091003 1091327 "GRDEF" 1091972 T GRDEF (NIL) -7 NIL NIL NIL) (-472 1090186 1090302 1090443 "GRAY" 1090621 T GRAY (NIL) -7 NIL NIL NIL) (-471 1089373 1089779 1089830 "GRALG" 1089983 NIL GRALG (NIL T T) -9 NIL 1090076 NIL) (-470 1089034 1089107 1089270 "GRALG-" 1089275 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-469 1085811 1088619 1088797 "GPOLSET" 1088941 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-468 1085165 1085222 1085480 "GOSPER" 1085748 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-467 1080897 1081603 1082129 "GMODPOL" 1084864 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-466 1079902 1080086 1080324 "GHENSEL" 1080709 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-465 1074058 1074901 1075921 "GENUPS" 1078986 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-464 1073755 1073806 1073895 "GENUFACT" 1074001 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-463 1073167 1073244 1073409 "GENPGCD" 1073673 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-462 1072641 1072676 1072889 "GENMFACT" 1073126 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-461 1071207 1071464 1071771 "GENEEZ" 1072384 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-460 1065355 1070818 1070980 "GDMP" 1071130 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-459 1054698 1059126 1060232 "GCNAALG" 1064338 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-458 1053025 1053887 1053915 "GCDDOM" 1054170 T GCDDOM (NIL) -9 NIL 1054327 NIL) (-457 1052495 1052622 1052837 "GCDDOM-" 1052842 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-456 1051167 1051352 1051656 "GB" 1052274 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-455 1039783 1042113 1044505 "GBINTERN" 1048858 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-454 1037620 1037912 1038333 "GBF" 1039458 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-453 1036401 1036566 1036833 "GBEUCLID" 1037436 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-452 1035750 1035875 1036024 "GAUSSFAC" 1036272 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-451 1034117 1034419 1034733 "GALUTIL" 1035469 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-450 1032425 1032699 1033023 "GALPOLYU" 1033844 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-449 1029790 1030080 1030487 "GALFACTU" 1032122 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-448 1021596 1023095 1024703 "GALFACT" 1028222 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-447 1018984 1019642 1019670 "FVFUN" 1020826 T FVFUN (NIL) -9 NIL 1021546 NIL) (-446 1018250 1018432 1018460 "FVC" 1018751 T FVC (NIL) -9 NIL 1018934 NIL) (-445 1017893 1018075 1018143 "FUNDESC" 1018202 T FUNDESC (NIL) -8 NIL NIL NIL) (-444 1017508 1017690 1017771 "FUNCTION" 1017845 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-443 1015252 1015830 1016296 "FT" 1017062 T FT (NIL) -8 NIL NIL NIL) (-442 1014043 1014553 1014756 "FTEM" 1015069 T FTEM (NIL) -8 NIL NIL NIL) (-441 1012334 1012623 1013020 "FSUPFACT" 1013734 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-440 1010731 1011020 1011352 "FST" 1012022 T FST (NIL) -8 NIL NIL NIL) (-439 1009930 1010036 1010224 "FSRED" 1010613 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-438 1008629 1008885 1009232 "FSPRMELT" 1009645 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-437 1005935 1006373 1006859 "FSPECF" 1008192 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-436 987573 995904 995945 "FS" 999829 NIL FS (NIL T) -9 NIL 1002118 NIL) (-435 976216 979209 983266 "FS-" 983566 NIL FS- (NIL T T) -8 NIL NIL NIL) (-434 975744 975798 975968 "FSINT" 976157 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-433 974036 974737 975040 "FSERIES" 975523 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-432 973078 973194 973418 "FSCINT" 973916 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-431 969286 972022 972063 "FSAGG" 972433 NIL FSAGG (NIL T) -9 NIL 972692 NIL) (-430 967048 967649 968445 "FSAGG-" 968540 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-429 966090 966233 966460 "FSAGG2" 966901 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-428 963772 964052 964599 "FS2UPS" 965808 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-427 963406 963449 963578 "FS2" 963723 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-426 962284 962455 962757 "FS2EXPXP" 963231 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-425 961710 961825 961977 "FRUTIL" 962164 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-424 953123 957205 958563 "FR" 960384 NIL FR (NIL T) -8 NIL NIL NIL) (-423 948137 950812 950852 "FRNAALG" 952172 NIL FRNAALG (NIL T) -9 NIL 952770 NIL) (-422 943810 944886 946161 "FRNAALG-" 946911 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-421 943448 943491 943618 "FRNAAF2" 943761 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-420 941823 942297 942593 "FRMOD" 943260 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-419 939566 940198 940516 "FRIDEAL" 941614 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-418 938757 938844 939135 "FRIDEAL2" 939473 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-417 937890 938304 938345 "FRETRCT" 938350 NIL FRETRCT (NIL T) -9 NIL 938526 NIL) (-416 937002 937233 937584 "FRETRCT-" 937589 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-415 934090 935300 935359 "FRAMALG" 936241 NIL FRAMALG (NIL T T) -9 NIL 936533 NIL) (-414 932224 932679 933309 "FRAMALG-" 933532 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-413 926143 931697 931974 "FRAC" 931979 NIL FRAC (NIL T) -8 NIL NIL NIL) (-412 925779 925836 925943 "FRAC2" 926080 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-411 925415 925472 925579 "FR2" 925716 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-410 919928 922821 922849 "FPS" 923968 T FPS (NIL) -9 NIL 924525 NIL) (-409 919377 919486 919650 "FPS-" 919796 NIL FPS- (NIL T) -8 NIL NIL NIL) (-408 916679 918348 918376 "FPC" 918601 T FPC (NIL) -9 NIL 918743 NIL) (-407 916472 916512 916609 "FPC-" 916614 NIL FPC- (NIL T) -8 NIL NIL NIL) (-406 915262 915960 916001 "FPATMAB" 916006 NIL FPATMAB (NIL T) -9 NIL 916158 NIL) (-405 912935 913438 913864 "FPARFRAC" 914899 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-404 908329 908827 909509 "FORTRAN" 912367 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-403 906045 906545 907084 "FORT" 907810 T FORT (NIL) -7 NIL NIL NIL) (-402 903721 904283 904311 "FORTFN" 905371 T FORTFN (NIL) -9 NIL 905995 NIL) (-401 903485 903535 903563 "FORTCAT" 903622 T FORTCAT (NIL) -9 NIL 903684 NIL) (-400 901591 902101 902491 "FORMULA" 903115 T FORMULA (NIL) -8 NIL NIL NIL) (-399 901379 901409 901478 "FORMULA1" 901555 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-398 900902 900954 901127 "FORDER" 901321 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-397 899998 900162 900355 "FOP" 900729 T FOP (NIL) -7 NIL NIL NIL) (-396 898579 899278 899452 "FNLA" 899880 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-395 897308 897723 897751 "FNCAT" 898211 T FNCAT (NIL) -9 NIL 898471 NIL) (-394 896847 897267 897295 "FNAME" 897300 T FNAME (NIL) -8 NIL NIL NIL) (-393 895410 896373 896401 "FMTC" 896406 T FMTC (NIL) -9 NIL 896442 NIL) (-392 894156 895346 895392 "FMONOID" 895397 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-391 890984 892152 892193 "FMONCAT" 893410 NIL FMONCAT (NIL T) -9 NIL 894015 NIL) (-390 890176 890726 890875 "FM" 890880 NIL FM (NIL T T) -8 NIL NIL NIL) (-389 887600 888246 888274 "FMFUN" 889418 T FMFUN (NIL) -9 NIL 890126 NIL) (-388 886869 887050 887078 "FMC" 887368 T FMC (NIL) -9 NIL 887550 NIL) (-387 883948 884808 884862 "FMCAT" 886057 NIL FMCAT (NIL T T) -9 NIL 886552 NIL) (-386 882814 883714 883814 "FM1" 883893 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-385 880588 881004 881498 "FLOATRP" 882365 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-384 874166 878317 878938 "FLOAT" 879987 T FLOAT (NIL) -8 NIL NIL NIL) (-383 871604 872104 872682 "FLOATCP" 873633 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-382 870344 871182 871223 "FLINEXP" 871228 NIL FLINEXP (NIL T) -9 NIL 871321 NIL) (-381 869498 869733 870061 "FLINEXP-" 870066 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-380 868574 868718 868942 "FLASORT" 869350 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-379 865690 866558 866610 "FLALG" 867837 NIL FLALG (NIL T T) -9 NIL 868304 NIL) (-378 859394 863146 863187 "FLAGG" 864449 NIL FLAGG (NIL T) -9 NIL 865101 NIL) (-377 858120 858459 858949 "FLAGG-" 858954 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-376 857162 857305 857532 "FLAGG2" 857973 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-375 854013 855021 855080 "FINRALG" 856208 NIL FINRALG (NIL T T) -9 NIL 856716 NIL) (-374 853173 853402 853741 "FINRALG-" 853746 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-373 852553 852792 852820 "FINITE" 853016 T FINITE (NIL) -9 NIL 853123 NIL) (-372 844910 847097 847137 "FINAALG" 850804 NIL FINAALG (NIL T) -9 NIL 852257 NIL) (-371 840242 841292 842436 "FINAALG-" 843815 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-370 839610 839997 840100 "FILE" 840172 NIL FILE (NIL T) -8 NIL NIL NIL) (-369 838268 838606 838660 "FILECAT" 839344 NIL FILECAT (NIL T T) -9 NIL 839560 NIL) (-368 835984 837512 837540 "FIELD" 837580 T FIELD (NIL) -9 NIL 837660 NIL) (-367 834604 834989 835500 "FIELD-" 835505 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-366 832454 833239 833586 "FGROUP" 834290 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-365 831544 831708 831928 "FGLMICPK" 832286 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-364 827376 831469 831526 "FFX" 831531 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-363 826977 827038 827173 "FFSLPE" 827309 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-362 822967 823749 824545 "FFPOLY" 826213 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-361 822471 822507 822716 "FFPOLY2" 822925 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-360 818317 822390 822453 "FFP" 822458 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-359 813715 818228 818292 "FF" 818297 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-358 808841 813058 813248 "FFNBX" 813569 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-357 803769 807976 808234 "FFNBP" 808695 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-356 798402 803053 803264 "FFNB" 803602 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-355 797234 797432 797747 "FFINTBAS" 798199 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-354 793303 795523 795551 "FFIELDC" 796171 T FFIELDC (NIL) -9 NIL 796547 NIL) (-353 791965 792336 792833 "FFIELDC-" 792838 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-352 791534 791580 791704 "FFHOM" 791907 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-351 789229 789716 790233 "FFF" 791049 NIL FFF (NIL T) -7 NIL NIL NIL) (-350 784847 788971 789072 "FFCGX" 789172 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-349 780469 784579 784686 "FFCGP" 784790 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-348 775652 780196 780304 "FFCG" 780405 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-347 757048 766129 766215 "FFCAT" 771380 NIL FFCAT (NIL T T T) -9 NIL 772831 NIL) (-346 752245 753293 754607 "FFCAT-" 755837 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-345 751656 751699 751934 "FFCAT2" 752196 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 740979 744628 745848 "FEXPR" 750508 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-343 739941 740376 740417 "FEVALAB" 740501 NIL FEVALAB (NIL T) -9 NIL 740762 NIL) (-342 739100 739310 739648 "FEVALAB-" 739653 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-341 737666 738483 738686 "FDIV" 738999 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-340 734686 735427 735542 "FDIVCAT" 737110 NIL FDIVCAT (NIL T T T T) -9 NIL 737547 NIL) (-339 734448 734475 734645 "FDIVCAT-" 734650 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-338 733668 733755 734032 "FDIV2" 734355 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-337 732642 732963 733165 "FCTRDATA" 733486 T FCTRDATA (NIL) -8 NIL NIL NIL) (-336 731328 731587 731876 "FCPAK1" 732373 T FCPAK1 (NIL) -7 NIL NIL NIL) (-335 730427 730828 730969 "FCOMP" 731219 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-334 714132 717577 721115 "FC" 726909 T FC (NIL) -8 NIL NIL NIL) (-333 706495 710523 710563 "FAXF" 712365 NIL FAXF (NIL T) -9 NIL 713057 NIL) (-332 703772 704429 705254 "FAXF-" 705719 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-331 698824 703148 703324 "FARRAY" 703629 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-330 693718 695785 695838 "FAMR" 696861 NIL FAMR (NIL T T) -9 NIL 697321 NIL) (-329 692608 692910 693345 "FAMR-" 693350 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-328 691777 692530 692583 "FAMONOID" 692588 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-327 689563 690273 690326 "FAMONC" 691267 NIL FAMONC (NIL T T) -9 NIL 691653 NIL) (-326 688227 689317 689454 "FAGROUP" 689459 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-325 686022 686341 686744 "FACUTIL" 687908 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-324 685121 685306 685528 "FACTFUNC" 685832 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-323 677543 684424 684623 "EXPUPXS" 684977 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-322 675026 675566 676152 "EXPRTUBE" 676977 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-321 671297 671889 672619 "EXPRODE" 674365 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-320 656782 669946 670375 "EXPR" 670901 NIL EXPR (NIL T) -8 NIL NIL NIL) (-319 651336 651923 652729 "EXPR2UPS" 656080 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-318 650968 651025 651134 "EXPR2" 651273 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-317 642356 650119 650410 "EXPEXPAN" 650804 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-316 642156 642313 642342 "EXIT" 642347 T EXIT (NIL) -8 NIL NIL NIL) (-315 641636 641880 641971 "EXITAST" 642085 T EXITAST (NIL) -8 NIL NIL NIL) (-314 641263 641325 641438 "EVALCYC" 641568 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-313 640804 640922 640963 "EVALAB" 641133 NIL EVALAB (NIL T) -9 NIL 641237 NIL) (-312 640285 640407 640628 "EVALAB-" 640633 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-311 637653 638955 638983 "EUCDOM" 639538 T EUCDOM (NIL) -9 NIL 639888 NIL) (-310 636058 636500 637090 "EUCDOM-" 637095 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-309 623597 626356 629106 "ESTOOLS" 633328 T ESTOOLS (NIL) -7 NIL NIL NIL) (-308 623229 623286 623395 "ESTOOLS2" 623534 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-307 622980 623022 623102 "ESTOOLS1" 623181 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-306 617017 618625 618653 "ES" 621421 T ES (NIL) -9 NIL 622831 NIL) (-305 611964 613251 615068 "ES-" 615232 NIL ES- (NIL T) -8 NIL NIL NIL) (-304 608338 609099 609879 "ESCONT" 611204 T ESCONT (NIL) -7 NIL NIL NIL) (-303 608083 608115 608197 "ESCONT1" 608300 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-302 607758 607808 607908 "ES2" 608027 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-301 607388 607446 607555 "ES1" 607694 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-300 606604 606733 606909 "ERROR" 607232 T ERROR (NIL) -7 NIL NIL NIL) (-299 599996 606463 606554 "EQTBL" 606559 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-298 592499 595310 596759 "EQ" 598580 NIL -3079 (NIL T) -8 NIL NIL NIL) (-297 592131 592188 592297 "EQ2" 592436 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-296 587422 588469 589562 "EP" 591070 NIL EP (NIL T) -7 NIL NIL NIL) (-295 586022 586313 586619 "ENV" 587136 T ENV (NIL) -8 NIL NIL NIL) (-294 585116 585670 585698 "ENTIRER" 585703 T ENTIRER (NIL) -9 NIL 585749 NIL) (-293 581810 583298 583659 "EMR" 584924 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-292 580940 581125 581179 "ELTAGG" 581559 NIL ELTAGG (NIL T T) -9 NIL 581770 NIL) (-291 580659 580721 580862 "ELTAGG-" 580867 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-290 580423 580452 580506 "ELTAB" 580590 NIL ELTAB (NIL T T) -9 NIL 580642 NIL) (-289 579549 579695 579894 "ELFUTS" 580274 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-288 579291 579347 579375 "ELEMFUN" 579480 T ELEMFUN (NIL) -9 NIL NIL NIL) (-287 579161 579182 579250 "ELEMFUN-" 579255 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-286 573975 577231 577272 "ELAGG" 578212 NIL ELAGG (NIL T) -9 NIL 578675 NIL) (-285 572260 572694 573357 "ELAGG-" 573362 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-284 571572 571709 571865 "ELABOR" 572124 T ELABOR (NIL) -8 NIL NIL NIL) (-283 570233 570512 570806 "ELABEXPR" 571298 T ELABEXPR (NIL) -8 NIL NIL NIL) (-282 563097 564900 565727 "EFUPXS" 569509 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-281 556547 558348 559158 "EFULS" 562373 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-280 554032 554390 554862 "EFSTRUC" 556179 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-279 543823 545389 546937 "EF" 552547 NIL EF (NIL T T) -7 NIL NIL NIL) (-278 542897 543308 543457 "EAB" 543694 T EAB (NIL) -8 NIL NIL NIL) (-277 542079 542856 542884 "E04UCFA" 542889 T E04UCFA (NIL) -8 NIL NIL NIL) (-276 541261 542038 542066 "E04NAFA" 542071 T E04NAFA (NIL) -8 NIL NIL NIL) (-275 540443 541220 541248 "E04MBFA" 541253 T E04MBFA (NIL) -8 NIL NIL NIL) (-274 539625 540402 540430 "E04JAFA" 540435 T E04JAFA (NIL) -8 NIL NIL NIL) (-273 538809 539584 539612 "E04GCFA" 539617 T E04GCFA (NIL) -8 NIL NIL NIL) (-272 537993 538768 538796 "E04FDFA" 538801 T E04FDFA (NIL) -8 NIL NIL NIL) (-271 537175 537952 537980 "E04DGFA" 537985 T E04DGFA (NIL) -8 NIL NIL NIL) (-270 531348 532700 534064 "E04AGNT" 535831 T E04AGNT (NIL) -7 NIL NIL NIL) (-269 530028 530534 530574 "DVARCAT" 531049 NIL DVARCAT (NIL T) -9 NIL 531248 NIL) (-268 529232 529444 529758 "DVARCAT-" 529763 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-267 522369 529031 529160 "DSMP" 529165 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-266 517150 518314 519382 "DROPT" 521321 T DROPT (NIL) -8 NIL NIL NIL) (-265 516815 516874 516972 "DROPT1" 517085 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-264 511930 513056 514193 "DROPT0" 515698 T DROPT0 (NIL) -7 NIL NIL NIL) (-263 510275 510600 510986 "DRAWPT" 511564 T DRAWPT (NIL) -7 NIL NIL NIL) (-262 504862 505785 506864 "DRAW" 509249 NIL DRAW (NIL T) -7 NIL NIL NIL) (-261 504495 504548 504666 "DRAWHACK" 504803 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-260 503226 503495 503786 "DRAWCX" 504224 T DRAWCX (NIL) -7 NIL NIL NIL) (-259 502741 502810 502961 "DRAWCURV" 503152 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-258 493209 495171 497286 "DRAWCFUN" 500646 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-257 489973 491902 491943 "DQAGG" 492572 NIL DQAGG (NIL T) -9 NIL 492846 NIL) (-256 478097 484566 484649 "DPOLCAT" 486501 NIL DPOLCAT (NIL T T T T) -9 NIL 487046 NIL) (-255 472934 474282 476240 "DPOLCAT-" 476245 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-254 466056 472795 472893 "DPMO" 472898 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-253 459081 465836 466003 "DPMM" 466008 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-252 458651 458865 458954 "DOMTMPLT" 459012 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-251 458084 458453 458533 "DOMCTOR" 458591 T DOMCTOR (NIL) -8 NIL NIL NIL) (-250 457296 457564 457715 "DOMAIN" 457953 T DOMAIN (NIL) -8 NIL NIL NIL) (-249 451284 456931 457083 "DMP" 457197 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-248 450884 450940 451084 "DLP" 451222 NIL DLP (NIL T) -7 NIL NIL NIL) (-247 444706 450211 450401 "DLIST" 450726 NIL DLIST (NIL T) -8 NIL NIL NIL) (-246 441503 443559 443600 "DLAGG" 444150 NIL DLAGG (NIL T) -9 NIL 444380 NIL) (-245 440179 440843 440871 "DIVRING" 440963 T DIVRING (NIL) -9 NIL 441046 NIL) (-244 439416 439606 439906 "DIVRING-" 439911 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-243 437518 437875 438281 "DISPLAY" 439030 T DISPLAY (NIL) -7 NIL NIL NIL) (-242 431404 437432 437495 "DIRPROD" 437500 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-241 430252 430455 430720 "DIRPROD2" 431197 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-240 419027 425033 425086 "DIRPCAT" 425496 NIL DIRPCAT (NIL NIL T) -9 NIL 426336 NIL) (-239 416353 416995 417876 "DIRPCAT-" 418213 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-238 415640 415800 415986 "DIOSP" 416187 T DIOSP (NIL) -7 NIL NIL NIL) (-237 412295 414552 414593 "DIOPS" 415027 NIL DIOPS (NIL T) -9 NIL 415256 NIL) (-236 411844 411958 412149 "DIOPS-" 412154 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-235 410667 411295 411323 "DIFRING" 411510 T DIFRING (NIL) -9 NIL 411620 NIL) (-234 410313 410390 410542 "DIFRING-" 410547 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-233 408049 409321 409362 "DIFEXT" 409725 NIL DIFEXT (NIL T) -9 NIL 410019 NIL) (-232 406334 406762 407428 "DIFEXT-" 407433 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 403609 405866 405907 "DIAGG" 405912 NIL DIAGG (NIL T) -9 NIL 405932 NIL) (-230 402993 403150 403402 "DIAGG-" 403407 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 398410 401952 402229 "DHMATRIX" 402762 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 394022 394931 395941 "DFSFUN" 397420 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 389102 392953 393265 "DFLOAT" 393730 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 387365 387646 388035 "DFINTTLS" 388810 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 384394 385386 385786 "DERHAM" 387031 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 382195 384169 384258 "DEQUEUE" 384338 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 381449 381582 381765 "DEGRED" 382057 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 377879 378624 379470 "DEFINTRF" 380677 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 375434 375903 376495 "DEFINTEF" 377398 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 374784 375054 375169 "DEFAST" 375339 T DEFAST (NIL) -8 NIL NIL NIL) (-219 368786 374377 374527 "DECIMAL" 374654 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 366298 366756 367262 "DDFACT" 368330 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 365894 365937 366088 "DBLRESP" 366249 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 363766 364127 364487 "DBASE" 365661 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 363008 363246 363392 "DATAARY" 363665 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 362114 362967 362995 "D03FAFA" 363000 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 361221 362073 362101 "D03EEFA" 362106 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 359171 359637 360126 "D03AGNT" 360752 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 358460 359130 359158 "D02EJFA" 359163 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 357749 358419 358447 "D02CJFA" 358452 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 357038 357708 357736 "D02BHFA" 357741 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 356327 356997 357025 "D02BBFA" 357030 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 349524 351113 352719 "D02AGNT" 354741 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 347292 347815 348361 "D01WGTS" 348998 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 346359 347251 347279 "D01TRNS" 347284 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 345427 346318 346346 "D01GBFA" 346351 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 344495 345386 345414 "D01FCFA" 345419 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 343563 344454 344482 "D01ASFA" 344487 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 342631 343522 343550 "D01AQFA" 343555 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 341699 342590 342618 "D01APFA" 342623 T D01APFA (NIL) -8 NIL NIL NIL) (-199 340767 341658 341686 "D01ANFA" 341691 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 339835 340726 340754 "D01AMFA" 340759 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 338903 339794 339822 "D01ALFA" 339827 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 337971 338862 338890 "D01AKFA" 338895 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 337039 337930 337958 "D01AJFA" 337963 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 330334 331887 333448 "D01AGNT" 335498 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 329671 329799 329951 "CYCLOTOM" 330202 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 326404 327119 327846 "CYCLES" 328964 T CYCLES (NIL) -7 NIL NIL NIL) (-191 325716 325850 326021 "CVMP" 326265 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 323557 323815 324184 "CTRIGMNP" 325444 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 322993 323351 323424 "CTOR" 323504 T CTOR (NIL) -8 NIL NIL NIL) (-188 322502 322724 322825 "CTORKIND" 322912 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 321793 322109 322137 "CTORCAT" 322319 T CTORCAT (NIL) -9 NIL 322432 NIL) (-186 321391 321502 321661 "CTORCAT-" 321666 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 320853 321065 321173 "CTORCALL" 321315 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 320227 320326 320479 "CSTTOOLS" 320750 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 316026 316683 317441 "CRFP" 319539 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 315501 315747 315839 "CRCEAST" 315954 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 314548 314733 314961 "CRAPACK" 315305 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 313932 314033 314237 "CPMATCH" 314424 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 313657 313685 313791 "CPIMA" 313898 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 310005 310677 311396 "COORDSYS" 312992 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 309417 309538 309680 "CONTOUR" 309883 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 305308 307420 307912 "CONTFRAC" 308957 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 305188 305209 305237 "CONDUIT" 305274 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 304276 304830 304858 "COMRING" 304863 T COMRING (NIL) -9 NIL 304915 NIL) (-173 303330 303634 303818 "COMPPROP" 304112 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 302991 303026 303154 "COMPLPAT" 303289 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 293282 302800 302909 "COMPLEX" 302914 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 292918 292975 293082 "COMPLEX2" 293219 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 292257 292378 292538 "COMPILER" 292778 T COMPILER (NIL) -8 NIL NIL NIL) (-168 291975 292010 292108 "COMPFACT" 292216 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276055 286049 286089 "COMPCAT" 287093 NIL COMPCAT (NIL T) -9 NIL 288441 NIL) (-166 265567 268494 272121 "COMPCAT-" 272477 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265296 265324 265427 "COMMUPC" 265533 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265090 265124 265183 "COMMONOP" 265257 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 264646 264841 264928 "COMM" 265023 T COMM (NIL) -8 NIL NIL NIL) (-162 264222 264450 264525 "COMMAAST" 264591 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 263471 263665 263693 "COMBOPC" 264031 T COMBOPC (NIL) -9 NIL 264206 NIL) (-160 262367 262577 262819 "COMBINAT" 263261 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 258824 259398 260025 "COMBF" 261789 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 257582 257940 258175 "COLOR" 258609 T COLOR (NIL) -8 NIL NIL NIL) (-157 257058 257303 257395 "COLONAST" 257510 T COLONAST (NIL) -8 NIL NIL NIL) (-156 256698 256745 256870 "CMPLXRT" 257005 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256146 256398 256497 "CLLCTAST" 256619 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 251648 252676 253756 "CLIP" 255086 T CLIP (NIL) -7 NIL NIL NIL) (-153 249989 250749 250989 "CLIF" 251475 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246164 248135 248176 "CLAGG" 249105 NIL CLAGG (NIL T) -9 NIL 249641 NIL) (-151 244586 245043 245626 "CLAGG-" 245631 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244130 244215 244355 "CINTSLPE" 244495 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 241631 242102 242650 "CHVAR" 243658 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 240805 241359 241387 "CHARZ" 241392 T CHARZ (NIL) -9 NIL 241407 NIL) (-147 240559 240599 240677 "CHARPOL" 240759 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 239617 240204 240232 "CHARNZ" 240279 T CHARNZ (NIL) -9 NIL 240335 NIL) (-145 237523 238271 238624 "CHAR" 239284 T CHAR (NIL) -8 NIL NIL NIL) (-144 237249 237310 237338 "CFCAT" 237449 T CFCAT (NIL) -9 NIL NIL NIL) (-143 236490 236601 236784 "CDEN" 237133 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 232455 235643 235923 "CCLASS" 236230 T CCLASS (NIL) -8 NIL NIL NIL) (-141 231706 231863 232040 "CATEGORY" 232298 T -10 (NIL) -8 NIL NIL NIL) (-140 231279 231625 231673 "CATCTOR" 231678 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 230730 230982 231080 "CATAST" 231201 T CATAST (NIL) -8 NIL NIL NIL) (-138 230206 230451 230543 "CASEAST" 230658 T CASEAST (NIL) -8 NIL NIL NIL) (-137 225344 226363 227107 "CARTEN" 229518 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 224452 224600 224821 "CARTEN2" 225191 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 222768 223602 223859 "CARD" 224215 T CARD (NIL) -8 NIL NIL NIL) (-134 222344 222572 222647 "CAPSLAST" 222713 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 221848 222056 222084 "CACHSET" 222216 T CACHSET (NIL) -9 NIL 222294 NIL) (-132 221318 221640 221668 "CABMON" 221718 T CABMON (NIL) -9 NIL 221774 NIL) (-131 220791 221022 221132 "BYTEORD" 221228 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 219768 220320 220462 "BYTE" 220625 T BYTE (NIL) -8 NIL NIL 220747) (-129 215118 219273 219445 "BYTEBUF" 219616 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 212627 214810 214917 "BTREE" 215044 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210076 212275 212397 "BTOURN" 212537 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 207446 209546 209587 "BTCAT" 209655 NIL BTCAT (NIL T) -9 NIL 209732 NIL) (-125 207113 207193 207342 "BTCAT-" 207347 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 202492 206372 206400 "BTAGG" 206514 T BTAGG (NIL) -9 NIL 206624 NIL) (-123 201982 202107 202313 "BTAGG-" 202318 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 198977 201260 201475 "BSTREE" 201799 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198115 198241 198425 "BRILL" 198833 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 194767 196841 196882 "BRAGG" 197531 NIL BRAGG (NIL T) -9 NIL 197789 NIL) (-119 193296 193702 194257 "BRAGG-" 194262 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 186523 192640 192825 "BPADICRT" 193143 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 184838 186460 186505 "BPADIC" 186510 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 184536 184566 184680 "BOUNDZRO" 184802 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 179764 180962 181874 "BOP" 183644 T BOP (NIL) -8 NIL NIL NIL) (-114 177545 177949 178424 "BOP1" 179322 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177246 177307 177335 "BOOLE" 177446 T BOOLE (NIL) -9 NIL 177528 NIL) (-112 176071 176820 176969 "BOOLEAN" 177117 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175350 175754 175808 "BMODULE" 175813 NIL BMODULE (NIL T T) -9 NIL 175878 NIL) (-110 171151 175148 175221 "BITS" 175297 T BITS (NIL) -8 NIL NIL NIL) (-109 170572 170691 170831 "BINDING" 171031 T BINDING (NIL) -8 NIL NIL NIL) (-108 164577 170167 170316 "BINARY" 170443 T BINARY (NIL) -8 NIL NIL NIL) (-107 162357 163832 163873 "BGAGG" 164133 NIL BGAGG (NIL T) -9 NIL 164270 NIL) (-106 162188 162220 162311 "BGAGG-" 162316 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161259 161572 161777 "BFUNCT" 162003 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159949 160127 160415 "BEZOUT" 161083 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156418 158801 159131 "BBTREE" 159652 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156152 156205 156233 "BASTYPE" 156352 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156004 156033 156106 "BASTYPE-" 156111 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155438 155514 155666 "BALFACT" 155915 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154294 154853 155039 "AUTOMOR" 155283 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154020 154025 154051 "ATTREG" 154056 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152272 152717 153069 "ATTRBUT" 153686 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151880 152100 152166 "ATTRAST" 152224 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151416 151529 151555 "ATRIG" 151756 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151225 151266 151353 "ATRIG-" 151358 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150870 151056 151082 "ASTCAT" 151087 T ASTCAT (NIL) -9 NIL 151117 NIL) (-92 150597 150656 150775 "ASTCAT-" 150780 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148746 150373 150461 "ASTACK" 150540 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147251 147548 147913 "ASSOCEQ" 148428 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146283 146910 147034 "ASP9" 147158 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146046 146231 146270 "ASP8" 146275 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144914 145651 145793 "ASP80" 145935 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143812 144549 144681 "ASP7" 144813 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142766 143489 143607 "ASP78" 143725 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141735 142446 142563 "ASP77" 142680 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140647 141373 141504 "ASP74" 141635 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139547 140282 140414 "ASP73" 140546 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138651 139373 139473 "ASP6" 139478 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137598 138328 138446 "ASP55" 138564 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136547 137272 137391 "ASP50" 137510 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135635 136248 136358 "ASP4" 136468 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134723 135336 135446 "ASP49" 135556 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133507 134262 134430 "ASP42" 134612 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132284 133040 133210 "ASP41" 133394 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131234 131961 132079 "ASP35" 132197 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130999 131182 131221 "ASP34" 131226 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130736 130803 130879 "ASP33" 130954 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129630 130371 130503 "ASP31" 130635 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129395 129578 129617 "ASP30" 129622 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129130 129199 129275 "ASP29" 129350 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128895 129078 129117 "ASP28" 129122 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128660 128843 128882 "ASP27" 128887 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127744 128358 128469 "ASP24" 128580 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126821 127546 127658 "ASP20" 127663 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125909 126522 126632 "ASP1" 126742 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124852 125583 125702 "ASP19" 125821 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124589 124656 124732 "ASP12" 124807 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123441 124188 124332 "ASP10" 124476 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121292 123285 123376 "ARRAY2" 123381 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117057 120940 121054 "ARRAY1" 121209 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116089 116262 116483 "ARRAY12" 116880 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110401 112319 112394 "ARR2CAT" 115024 NIL ARR2CAT (NIL T T T) -9 NIL 115782 NIL) (-56 107835 108579 109533 "ARR2CAT-" 109538 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107152 107462 107587 "ARITY" 107728 T ARITY (NIL) -8 NIL NIL NIL) (-54 105928 106080 106379 "APPRULE" 106988 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105579 105627 105746 "APPLYORE" 105874 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104933 105172 105292 "ANY" 105477 T ANY (NIL) -8 NIL NIL NIL) (-51 104211 104334 104491 "ANY1" 104807 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101741 102648 102975 "ANTISYM" 103935 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101233 101448 101544 "ANON" 101663 T ANON (NIL) -8 NIL NIL NIL) (-48 95482 99772 100226 "AN" 100797 T AN (NIL) -8 NIL NIL NIL) (-47 91380 92768 92819 "AMR" 93567 NIL AMR (NIL T T) -9 NIL 94167 NIL) (-46 90492 90713 91076 "AMR-" 91081 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74931 90409 90470 "ALIST" 90475 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71736 74525 74694 "ALGSC" 74849 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68292 68846 69453 "ALGPKG" 71176 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67569 67670 67854 "ALGMFACT" 68178 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63604 64183 64777 "ALGMANIP" 67153 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54974 63230 63380 "ALGFF" 63537 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54170 54301 54480 "ALGFACT" 54832 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53111 53711 53749 "ALGEBRA" 53754 NIL ALGEBRA (NIL T) -9 NIL 53795 NIL) (-37 52829 52888 53020 "ALGEBRA-" 53025 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34892 50801 50853 "ALAGG" 50989 NIL ALAGG (NIL T T) -9 NIL 51150 NIL) (-35 34428 34541 34567 "AHYP" 34768 T AHYP (NIL) -9 NIL NIL NIL) (-34 33359 33607 33633 "AGG" 34132 T AGG (NIL) -9 NIL 34411 NIL) (-33 32793 32955 33169 "AGG-" 33174 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30599 31022 31427 "AF" 32435 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30079 30324 30414 "ADDAST" 30527 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29347 29606 29762 "ACPLOT" 29941 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26474 26512 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-3161 (((-1243 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1243 |#1| |#3| |#5|)) 23)))
+(((-1238 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3161 ((-1243 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1243 |#1| |#3| |#5|)))) (-1060) (-1060) (-1188) (-1188) |#1| |#2|) (T -1238))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5 *7 *9)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1243 *6 *8 *10)) (-5 *1 (-1238 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1188)))))
+(-10 -7 (-15 -3161 ((-1243 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1243 |#1| |#3| |#5|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 (-1093)) $) 86)) (-2043 (((-1188) $) 116)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-1957 (($ $ (-572)) 111) (($ $ (-572) (-572)) 110)) (-2709 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 175 (|has| |#1| (-370)))) (-2359 (((-426 $) $) 176 (|has| |#1| (-370)))) (-3093 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) 166 (|has| |#1| (-370)))) (-3893 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 186)) (-3939 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) 18 T CONST)) (-3407 (($ $ $) 170 (|has| |#1| (-370)))) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-2166 (((-415 (-961 |#1|)) $ (-572)) 184 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 183 (|has| |#1| (-564)))) (-3418 (($ $ $) 169 (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 164 (|has| |#1| (-370)))) (-3439 (((-112) $) 177 (|has| |#1| (-370)))) (-2969 (((-112) $) 85)) (-2250 (($) 158 (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-572) $) 113) (((-572) $ (-572)) 112)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 129 (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) 114)) (-1506 (($ (-1 |#1| (-572)) $) 185)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 173 (|has| |#1| (-370)))) (-3357 (((-112) $) 74)) (-3042 (($ |#1| (-572)) 73) (($ $ (-1093) (-572)) 88) (($ $ (-652 (-1093)) (-652 (-572))) 87)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-4057 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-1335 (($ (-652 $)) 162 (|has| |#1| (-370))) (($ $ $) 161 (|has| |#1| (-370)))) (-3618 (((-1170) $) 10)) (-1809 (($ $) 178 (|has| |#1| (-370)))) (-4161 (($ $) 182 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 181 (-3783 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 163 (|has| |#1| (-370)))) (-1370 (($ (-652 $)) 160 (|has| |#1| (-370))) (($ $ $) 159 (|has| |#1| (-370)))) (-2972 (((-426 $) $) 174 (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 171 (|has| |#1| (-370)))) (-3103 (($ $ (-572)) 108)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 165 (|has| |#1| (-370)))) (-3272 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-572)))))) (-4395 (((-779) $) 167 (|has| |#1| (-370)))) (-2679 ((|#1| $ (-572)) 118) (($ $ $) 94 (|has| (-572) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 168 (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188) (-779)) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188))) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188)) 99 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-779)) 97 (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-1497 (((-572) $) 76)) (-2139 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 84)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-4206 ((|#1| $ (-572)) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-2376 ((|#1| $) 115)) (-3424 (((-112) $ $) 9)) (-2176 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2152 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-572)) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188) (-779)) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188))) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-1188)) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-572) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 180 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 179 (|has| |#1| (-370))) (($ $ $) 157 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 128 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-1239 |#1|) (-141) (-1060)) (T -1239))
+((-2493 (*1 *1 *2) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3)))) (-4 *3 (-1060)) (-4 *1 (-1239 *3)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1239 *3)) (-4 *3 (-1060)))) (-2166 (*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564)) (-5 *2 (-415 (-961 *4))))) (-2166 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564)) (-5 *2 (-415 (-961 *4))))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))) (-4161 (*1 *1 *1 *2) (-3783 (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060)) (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214)) (-4 *3 (-38 (-415 (-572)))))) (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060)) (-12 (|has| *3 (-15 -2220 ((-652 *2) *3))) (|has| *3 (-15 -4161 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572)))))))))
+(-13 (-1257 |t#1| (-572)) (-10 -8 (-15 -2493 ($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |t#1|))))) (-15 -1506 ($ (-1 |t#1| (-572)) $)) (IF (|has| |t#1| (-564)) (PROGN (-15 -2166 ((-415 (-961 |t#1|)) $ (-572))) (-15 -2166 ((-415 (-961 |t#1|)) $ (-572) (-572)))) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $)) (IF (|has| |t#1| (-15 -4161 (|t#1| |t#1| (-1188)))) (IF (|has| |t#1| (-15 -2220 ((-652 (-1188)) |t#1|))) (-15 -4161 ($ $ (-1188))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1214)) (IF (|has| |t#1| (-968)) (IF (|has| |t#1| (-29 (-572))) (-15 -4161 ($ $ (-1188))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1013)) (-6 (-1214))) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-572)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-237) |has| |#1| (-15 * (|#1| (-572) |#1|))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-572) (-1123)) ((-296) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-370) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-725 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1257 |#1| #0#) . T))
+((-3143 (((-112) $) 12)) (-3072 (((-3 |#3| "failed") $) 17) (((-3 (-1188) "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL)) (-1869 ((|#3| $) 14) (((-1188) $) NIL) (((-415 (-572)) $) NIL) (((-572) $) NIL)))
+(((-1240 |#1| |#2| |#3|) (-10 -8 (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-1188) "failed") |#1|)) (-15 -1869 ((-1188) |#1|)) (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -3143 ((-112) |#1|))) (-1241 |#2| |#3|) (-1060) (-1270 |#2|)) (T -1240))
+NIL
+(-10 -8 (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -3072 ((-3 (-1188) "failed") |#1|)) (-15 -1869 ((-1188) |#1|)) (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -3143 ((-112) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-3923 ((|#2| $) 243 (-3804 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-2220 (((-652 (-1093)) $) 86)) (-2043 (((-1188) $) 116)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-1957 (($ $ (-572)) 111) (($ $ (-572) (-572)) 110)) (-2709 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 117)) (-1943 ((|#2| $) 279)) (-1941 (((-3 |#2| "failed") $) 275)) (-1765 ((|#2| $) 276)) (-3915 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) 20)) (-2730 (((-426 (-1184 $)) (-1184 $)) 252 (-3804 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-1861 (($ $) 175 (|has| |#1| (-370)))) (-2359 (((-426 $) $) 176 (|has| |#1| (-370)))) (-3093 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 249 (-3804 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-4252 (((-112) $ $) 166 (|has| |#1| (-370)))) (-3893 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-4304 (((-572) $) 261 (-3804 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2493 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 186)) (-3939 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#2| "failed") $) 282) (((-3 (-572) "failed") $) 272 (-3804 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) 270 (-3804 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-1188) "failed") $) 254 (-3804 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-1869 ((|#2| $) 283) (((-572) $) 271 (-3804 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-415 (-572)) $) 269 (-3804 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-1188) $) 253 (-3804 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-2569 (($ $) 278) (($ (-572) $) 277)) (-3407 (($ $ $) 170 (|has| |#1| (-370)))) (-1874 (($ $) 72)) (-2245 (((-697 |#2|) (-697 $)) 233 (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) 232 (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 231 (-3804 (|has| |#2| (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) 230 (-3804 (|has| |#2| (-647 (-572))) (|has| |#1| (-370))))) (-2982 (((-3 $ "failed") $) 37)) (-2166 (((-415 (-961 |#1|)) $ (-572)) 184 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 183 (|has| |#1| (-564)))) (-2688 (($) 245 (-3804 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-3418 (($ $ $) 169 (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 164 (|has| |#1| (-370)))) (-3439 (((-112) $) 177 (|has| |#1| (-370)))) (-3778 (((-112) $) 259 (-3804 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2969 (((-112) $) 85)) (-2250 (($) 158 (|has| |#1| (-38 (-415 (-572)))))) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 237 (-3804 (|has| |#2| (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 236 (-3804 (|has| |#2| (-895 (-572))) (|has| |#1| (-370))))) (-2068 (((-572) $) 113) (((-572) $ (-572)) 112)) (-4422 (((-112) $) 35)) (-3710 (($ $) 241 (|has| |#1| (-370)))) (-2209 ((|#2| $) 239 (|has| |#1| (-370)))) (-2033 (($ $ (-572)) 129 (|has| |#1| (-38 (-415 (-572)))))) (-3396 (((-3 $ "failed") $) 273 (-3804 (|has| |#2| (-1163)) (|has| |#1| (-370))))) (-4354 (((-112) $) 260 (-3804 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2865 (($ $ (-930)) 114)) (-1506 (($ (-1 |#1| (-572)) $) 185)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 173 (|has| |#1| (-370)))) (-3357 (((-112) $) 74)) (-3042 (($ |#1| (-572)) 73) (($ $ (-1093) (-572)) 88) (($ $ (-652 (-1093)) (-652 (-572))) 87)) (-2536 (($ $ $) 263 (-3804 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3928 (($ $ $) 264 (-3804 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3161 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 225 (|has| |#1| (-370)))) (-4057 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-1335 (($ (-652 $)) 162 (|has| |#1| (-370))) (($ $ $) 161 (|has| |#1| (-370)))) (-1778 (($ (-572) |#2|) 280)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 178 (|has| |#1| (-370)))) (-4161 (($ $) 182 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 181 (-3783 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-3477 (($) 274 (-3804 (|has| |#2| (-1163)) (|has| |#1| (-370))) CONST)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 163 (|has| |#1| (-370)))) (-1370 (($ (-652 $)) 160 (|has| |#1| (-370))) (($ $ $) 159 (|has| |#1| (-370)))) (-3964 (($ $) 244 (-3804 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-1609 ((|#2| $) 247 (-3804 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-3508 (((-426 (-1184 $)) (-1184 $)) 250 (-3804 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-3115 (((-426 (-1184 $)) (-1184 $)) 251 (-3804 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-2972 (((-426 $) $) 174 (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 171 (|has| |#1| (-370)))) (-3103 (($ $ (-572)) 108)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 165 (|has| |#1| (-370)))) (-3272 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) |#2|) 224 (-3804 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 |#2|)) 223 (-3804 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-300 |#2|))) 222 (-3804 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-300 |#2|)) 221 (-3804 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ |#2| |#2|) 220 (-3804 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-652 |#2|) (-652 |#2|)) 219 (-3804 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370))))) (-4395 (((-779) $) 167 (|has| |#1| (-370)))) (-2679 ((|#1| $ (-572)) 118) (($ $ $) 94 (|has| (-572) (-1123))) (($ $ |#2|) 218 (-3804 (|has| |#2| (-292 |#2| |#2|)) (|has| |#1| (-370))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 168 (|has| |#1| (-370)))) (-3011 (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) 228 (|has| |#1| (-370))) (($ $ (-779)) 97 (-3783 (-3804 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 95 (-3783 (-3804 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) 102 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188) (-779)) 101 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-652 (-1188))) 100 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188)) 99 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))))) (-3982 (($ $) 242 (|has| |#1| (-370)))) (-2224 ((|#2| $) 240 (|has| |#1| (-370)))) (-1497 (((-572) $) 76)) (-2139 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-3222 (((-227) $) 258 (-3804 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-386) $) 257 (-3804 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-544) $) 256 (-3804 (|has| |#2| (-622 (-544))) (|has| |#1| (-370)))) (((-901 (-386)) $) 235 (-3804 (|has| |#2| (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) 234 (-3804 (|has| |#2| (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 248 (-3804 (-3804 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#1| (-370))))) (-3610 (($ $) 84)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 281) (($ (-1188)) 255 (-3804 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370)))) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-4206 ((|#1| $ (-572)) 71)) (-2210 (((-3 $ "failed") $) 60 (-3783 (-3804 (-3783 (|has| |#2| (-146)) (-3804 (|has| $ (-146)) (|has| |#2| (-918)))) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-2455 (((-779)) 32 T CONST)) (-2376 ((|#1| $) 115)) (-3441 ((|#2| $) 246 (-3804 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-3424 (((-112) $ $) 9)) (-2176 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2152 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-572)) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2775 (($ $) 262 (-3804 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-1 |#2| |#2|)) 227 (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) 226 (|has| |#1| (-370))) (($ $ (-779)) 98 (-3783 (-3804 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 96 (-3783 (-3804 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) 106 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188) (-779)) 105 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-652 (-1188))) 104 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))))) (($ $ (-1188)) 103 (-3783 (-3804 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))))) (-3976 (((-112) $ $) 266 (-3804 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3954 (((-112) $ $) 267 (-3804 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3921 (((-112) $ $) 6)) (-3965 (((-112) $ $) 265 (-3804 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3943 (((-112) $ $) 268 (-3804 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 180 (|has| |#1| (-370))) (($ |#2| |#2|) 238 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 179 (|has| |#1| (-370))) (($ $ $) 157 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 128 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 217 (|has| |#1| (-370))) (($ |#2| $) 216 (|has| |#1| (-370))) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-1241 |#1| |#2|) (-141) (-1060) (-1270 |t#1|)) (T -1241))
+((-1497 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1270 *3)) (-5 *2 (-572)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *2 (-572)) (-4 *4 (-1060)) (-4 *1 (-1241 *4 *3)) (-4 *3 (-1270 *4)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))) (-2569 (*1 *1 *1) (-12 (-4 *1 (-1241 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1270 *2)))) (-2569 (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1270 *3)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))) (-1941 (*1 *2 *1) (|partial| -12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))))
+(-13 (-1239 |t#1|) (-1049 |t#2|) (-624 |t#2|) (-10 -8 (-15 -1778 ($ (-572) |t#2|)) (-15 -1497 ((-572) $)) (-15 -1943 (|t#2| $)) (-15 -2569 ($ $)) (-15 -2569 ($ (-572) $)) (-15 -1765 (|t#2| $)) (-15 -1941 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-370)) (-6 (-1003 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-572)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-370)) ((-38 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-370)) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3783 (-12 (|has| |#1| (-370)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3783 (-12 (|has| |#1| (-370)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-624 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 #2=(-1188)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) ((-624 |#1|) |has| |#1| (-174)) ((-624 |#2|) . T) ((-624 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-622 (-227)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) ((-622 (-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) ((-622 (-544)) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-622 (-901 (-572))))) ((-233 |#2|) |has| |#1| (-370)) ((-237) -3783 (-12 (|has| |#1| (-370)) (|has| |#2| (-237))) (|has| |#1| (-15 * (|#1| (-572) |#1|)))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 |#2| $) -12 (|has| |#1| (-370)) (|has| |#2| (-292 |#2| |#2|))) ((-292 $ $) |has| (-572) (-1123)) ((-296) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-315 |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))) ((-370) |has| |#1| (-370)) ((-345 |#2|) |has| |#1| (-370)) ((-384 |#2|) |has| |#1| (-370)) ((-408 |#2|) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-522 (-1188) |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-522 (-1188) |#2|))) ((-522 |#2| |#2|) -12 (|has| |#1| (-370)) (|has| |#2| (-315 |#2|))) ((-564) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 |#2|) |has| |#1| (-370)) ((-654 $) . T) ((-656 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 |#1|) . T) ((-656 |#2|) |has| |#1| (-370)) ((-656 $) . T) ((-648 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 |#2|) |has| |#1| (-370)) ((-648 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-647 (-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-647 (-572)))) ((-647 |#2|) |has| |#1| (-370)) ((-725 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 |#2|) |has| |#1| (-370)) ((-725 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-799) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-800) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-802) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-803) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-828) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-856) -12 (|has| |#1| (-370)) (|has| |#2| (-828))) ((-858) -3783 (-12 (|has| |#1| (-370)) (|has| |#2| (-858))) (-12 (|has| |#1| (-370)) (|has| |#2| (-828)))) ((-909 (-1188)) -3783 (-12 (|has| |#1| (-370)) (|has| |#2| (-909 (-1188)))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))) ((-895 (-386)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-386)))) ((-895 (-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-895 (-572)))) ((-893 |#2|) |has| |#1| (-370)) ((-918) -12 (|has| |#1| (-370)) (|has| |#2| (-918))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1003 |#2|) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1033) -12 (|has| |#1| (-370)) (|has| |#2| (-1033))) ((-1049 (-415 (-572))) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))) ((-1049 (-572)) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-572)))) ((-1049 #2#) -12 (|has| |#1| (-370)) (|has| |#2| (-1049 (-1188)))) ((-1049 |#2|) . T) ((-1062 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 |#2|) |has| |#1| (-370)) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 |#2|) |has| |#1| (-370)) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) -12 (|has| |#1| (-370)) (|has| |#2| (-1163))) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1239 |#1|) . T) ((-1257 |#1| #0#) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 81)) (-3923 ((|#2| $) NIL (-12 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 100)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-572)) 109) (($ $ (-572) (-572)) 111)) (-2709 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) 51)) (-1943 ((|#2| $) 11)) (-1941 (((-3 |#2| "failed") $) 35)) (-1765 ((|#2| $) 36)) (-3915 (($ $) 206 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 182 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) 202 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 178 (|has| |#1| (-38 (-415 (-572)))))) (-4304 (((-572) $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2493 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) 59)) (-3939 (($ $) 210 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 186 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) 157) (((-3 (-572) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-1188) "failed") $) NIL (-12 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-1869 ((|#2| $) 156) (((-572) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-415 (-572)) $) NIL (-12 (|has| |#2| (-1049 (-572))) (|has| |#1| (-370)))) (((-1188) $) NIL (-12 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370))))) (-2569 (($ $) 65) (($ (-572) $) 28)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2245 (((-697 |#2|) (-697 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| |#2| (-647 (-572))) (|has| |#1| (-370))))) (-2982 (((-3 $ "failed") $) 88)) (-2166 (((-415 (-961 |#1|)) $ (-572)) 124 (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) 126 (|has| |#1| (-564)))) (-2688 (($) NIL (-12 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-3778 (((-112) $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2969 (((-112) $) 74)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| |#2| (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| |#2| (-895 (-572))) (|has| |#1| (-370))))) (-2068 (((-572) $) 105) (((-572) $ (-572)) 107)) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-370)))) (-2209 ((|#2| $) 165 (|has| |#1| (-370)))) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3396 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1163)) (|has| |#1| (-370))))) (-4354 (((-112) $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2865 (($ $ (-930)) 148)) (-1506 (($ (-1 |#1| (-572)) $) 144)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-572)) 20) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-2536 (($ $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3928 (($ $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3161 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-370)))) (-4057 (($ $) 176 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-1778 (($ (-572) |#2|) 10)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 159 (|has| |#1| (-370)))) (-4161 (($ $) 228 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 233 (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214)))))) (-3477 (($) NIL (-12 (|has| |#2| (-1163)) (|has| |#1| (-370))) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3964 (($ $) NIL (-12 (|has| |#2| (-313)) (|has| |#1| (-370))))) (-1609 ((|#2| $) NIL (-12 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| |#2| (-918)) (|has| |#1| (-370))))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-572)) 138)) (-3453 (((-3 $ "failed") $ $) 128 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3272 (($ $) 174 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) |#2|) NIL (-12 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 |#2|)) NIL (-12 (|has| |#2| (-522 (-1188) |#2|)) (|has| |#1| (-370)))) (($ $ (-652 (-300 |#2|))) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-300 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370)))) (($ $ (-652 |#2|) (-652 |#2|)) NIL (-12 (|has| |#2| (-315 |#2|)) (|has| |#1| (-370))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-572)) 103) (($ $ $) 90 (|has| (-572) (-1123))) (($ $ |#2|) NIL (-12 (|has| |#2| (-292 |#2| |#2|)) (|has| |#1| (-370))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-3783 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 149 (-3783 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) 153 (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3982 (($ $) NIL (|has| |#1| (-370)))) (-2224 ((|#2| $) 166 (|has| |#1| (-370)))) (-1497 (((-572) $) 12)) (-2139 (($ $) 212 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 188 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 208 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 184 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 204 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 180 (|has| |#1| (-38 (-415 (-572)))))) (-3222 (((-227) $) NIL (-12 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-386) $) NIL (-12 (|has| |#2| (-1033)) (|has| |#1| (-370)))) (((-544) $) NIL (-12 (|has| |#2| (-622 (-544))) (|has| |#1| (-370)))) (((-901 (-386)) $) NIL (-12 (|has| |#2| (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) NIL (-12 (|has| |#2| (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918)) (|has| |#1| (-370))))) (-3610 (($ $) 136)) (-3491 (((-870) $) 266) (($ (-572)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1188)) NIL (-12 (|has| |#2| (-1049 (-1188))) (|has| |#1| (-370)))) (($ (-415 (-572))) 169 (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-4206 ((|#1| $ (-572)) 85)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#2| (-918)) (|has| |#1| (-370))) (-12 (|has| |#2| (-146)) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-2455 (((-779)) 155 T CONST)) (-2376 ((|#1| $) 102)) (-3441 ((|#2| $) NIL (-12 (|has| |#2| (-553)) (|has| |#1| (-370))))) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) 218 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 194 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) 214 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 190 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 222 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 198 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-572)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 224 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 200 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 220 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 196 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 216 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 192 (|has| |#1| (-38 (-415 (-572)))))) (-2775 (($ $) NIL (-12 (|has| |#2| (-828)) (|has| |#1| (-370))))) (-2602 (($) 13 T CONST)) (-2619 (($) 18 T CONST)) (-4019 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-370))) (($ $ (-1 |#2| |#2|) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-3783 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) NIL (-3783 (-12 (|has| |#2| (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| |#2| (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3976 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3954 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3921 (((-112) $ $) 72)) (-3965 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-3943 (((-112) $ $) NIL (-12 (|has| |#2| (-858)) (|has| |#1| (-370))))) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 163 (|has| |#1| (-370))) (($ |#2| |#2|) 164 (|has| |#1| (-370)))) (-4018 (($ $) 227) (($ $ $) 78)) (-4005 (($ $ $) 76)) (** (($ $ (-930)) NIL) (($ $ (-779)) 84) (($ $ (-572)) 160 (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 172 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-370))) (($ |#2| $) 161 (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1242 |#1| |#2|) (-1241 |#1| |#2|) (-1060) (-1270 |#1|)) (T -1242))
+NIL
+(-1241 |#1| |#2|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-3923 (((-1271 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 10)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1697 (($ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1774 (((-112) $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-1957 (($ $ (-572)) NIL) (($ $ (-572) (-572)) NIL)) (-2709 (((-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|))) $) NIL)) (-1943 (((-1271 |#1| |#2| |#3|) $) NIL)) (-1941 (((-3 (-1271 |#1| |#2| |#3|) "failed") $) NIL)) (-1765 (((-1271 |#1| |#2| |#3|) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4304 (((-572) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2493 (($ (-1168 (-2 (|:| |k| (-572)) (|:| |c| |#1|)))) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-1271 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1188) "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-3 (-415 (-572)) "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-3 (-572) "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-1869 (((-1271 |#1| |#2| |#3|) $) NIL) (((-1188) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (((-415 (-572)) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370)))) (((-572) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))))) (-2569 (($ $) NIL) (($ (-572) $) NIL)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-1271 |#1| |#2| |#3|)) (-697 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 (-1271 |#1| |#2| |#3|))) (|:| |vec| (-1279 (-1271 |#1| |#2| |#3|)))) (-697 $) (-1279 $)) NIL (|has| |#1| (-370))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370)))) (((-697 (-572)) (-697 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-647 (-572))) (|has| |#1| (-370))))) (-2982 (((-3 $ "failed") $) NIL)) (-2166 (((-415 (-961 |#1|)) $ (-572)) NIL (|has| |#1| (-564))) (((-415 (-961 |#1|)) $ (-572) (-572)) NIL (|has| |#1| (-564)))) (-2688 (($) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-3778 (((-112) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-895 (-386))) (|has| |#1| (-370)))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-895 (-572))) (|has| |#1| (-370))))) (-2068 (((-572) $) NIL) (((-572) $ (-572)) NIL)) (-4422 (((-112) $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-370)))) (-2209 (((-1271 |#1| |#2| |#3|) $) NIL (|has| |#1| (-370)))) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3396 (((-3 $ "failed") $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))))) (-4354 (((-112) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2865 (($ $ (-930)) NIL)) (-1506 (($ (-1 |#1| (-572)) $) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-572)) 18) (($ $ (-1093) (-572)) NIL) (($ $ (-652 (-1093)) (-652 (-572))) NIL)) (-2536 (($ $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3928 (($ $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-370)))) (-4057 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-1778 (($ (-572) (-1271 |#1| |#2| |#3|)) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-4161 (($ $) 27 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 28 (|has| |#1| (-38 (-415 (-572)))))) (-3477 (($) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1163)) (|has| |#1| (-370))) CONST)) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-3964 (($ $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-313)) (|has| |#1| (-370))))) (-1609 (((-1271 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-572)) NIL)) (-3453 (((-3 $ "failed") $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3272 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-572))))) (($ $ (-1188) (-1271 |#1| |#2| |#3|)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-522 (-1188) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1188)) (-652 (-1271 |#1| |#2| |#3|))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-522 (-1188) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-300 (-1271 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-300 (-1271 |#1| |#2| |#3|))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370)))) (($ $ (-652 (-1271 |#1| |#2| |#3|)) (-652 (-1271 |#1| |#2| |#3|))) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-315 (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-572)) NIL) (($ $ $) NIL (|has| (-572) (-1123))) (($ $ (-1271 |#1| |#2| |#3|)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-292 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) (|has| |#1| (-370))))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-1275 |#2|)) 26) (($ $ (-779)) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) 25 (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3982 (($ $) NIL (|has| |#1| (-370)))) (-2224 (((-1271 |#1| |#2| |#3|) $) NIL (|has| |#1| (-370)))) (-1497 (((-572) $) NIL)) (-2139 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3222 (((-544) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-622 (-544))) (|has| |#1| (-370)))) (((-386) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-227) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1033)) (|has| |#1| (-370)))) (((-901 (-386)) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-622 (-901 (-386)))) (|has| |#1| (-370)))) (((-901 (-572)) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-622 (-901 (-572)))) (|has| |#1| (-370))))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))))) (-3610 (($ $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1271 |#1| |#2| |#3|)) NIL) (($ (-1275 |#2|)) 24) (($ (-1188)) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-1188))) (|has| |#1| (-370)))) (($ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564)))) (($ (-415 (-572))) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-1049 (-572))) (|has| |#1| (-370))) (|has| |#1| (-38 (-415 (-572))))))) (-4206 ((|#1| $ (-572)) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-146)) (|has| |#1| (-370))) (|has| |#1| (-146))))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) 11)) (-3441 (((-1271 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-553)) (|has| |#1| (-370))))) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-918)) (|has| |#1| (-370))) (|has| |#1| (-564))))) (-2152 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-572)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-572)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2775 (($ $) NIL (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))))) (-2602 (($) 20 T CONST)) (-2619 (($) 15 T CONST)) (-4019 (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|))) NIL (|has| |#1| (-370))) (($ $ (-1 (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) (-779)) NIL (|has| |#1| (-370))) (($ $ (-779)) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-237)) (|has| |#1| (-370))) (|has| |#1| (-15 * (|#1| (-572) |#1|))))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188) (-779)) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-652 (-1188))) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188)))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-909 (-1188))) (|has| |#1| (-370))) (-12 (|has| |#1| (-15 * (|#1| (-572) |#1|))) (|has| |#1| (-909 (-1188))))))) (-3976 (((-112) $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3954 (((-112) $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3921 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-3943 (((-112) $ $) NIL (-3783 (-12 (|has| (-1271 |#1| |#2| |#3|) (-828)) (|has| |#1| (-370))) (-12 (|has| (-1271 |#1| |#2| |#3|) (-858)) (|has| |#1| (-370)))))) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370))) (($ (-1271 |#1| |#2| |#3|) (-1271 |#1| |#2| |#3|)) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 22)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1271 |#1| |#2| |#3|)) NIL (|has| |#1| (-370))) (($ (-1271 |#1| |#2| |#3|) $) NIL (|has| |#1| (-370))) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1243 |#1| |#2| |#3|) (-13 (-1241 |#1| (-1271 |#1| |#2| |#3|)) (-10 -8 (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1243))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(-13 (-1241 |#1| (-1271 |#1| |#2| |#3|)) (-10 -8 (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|)))
+((-3874 (((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112)) 13)) (-2035 (((-426 |#1|) |#1|) 26)) (-2972 (((-426 |#1|) |#1|) 24)))
+(((-1244 |#1|) (-10 -7 (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2035 ((-426 |#1|) |#1|)) (-15 -3874 ((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112)))) (-1255 (-572))) (T -1244))
+((-3874 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572))))))) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))) (-2035 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))) (-2972 (*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
+(-10 -7 (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2035 ((-426 |#1|) |#1|)) (-15 -3874 ((-2 (|:| |contp| (-572)) (|:| -1591 (-652 (-2 (|:| |irr| |#1|) (|:| -1948 (-572)))))) |#1| (-112))))
+((-3161 (((-1168 |#2|) (-1 |#2| |#1|) (-1246 |#1|)) 23 (|has| |#1| (-856))) (((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|)) 17)))
+(((-1245 |#1| |#2|) (-10 -7 (-15 -3161 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (IF (|has| |#1| (-856)) (-15 -3161 ((-1168 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) |%noBranch|)) (-1229) (-1229)) (T -1245))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-856)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1168 *6)) (-5 *1 (-1245 *5 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6)))))
+(-10 -7 (-15 -3161 ((-1246 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) (IF (|has| |#1| (-856)) (-15 -3161 ((-1168 |#2|) (-1 |#2| |#1|) (-1246 |#1|))) |%noBranch|))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-1590 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3161 (((-1168 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-856)))) (-2331 ((|#1| $) 15)) (-2680 ((|#1| $) 12)) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-4350 (((-572) $) 19)) (-2891 ((|#1| $) 18)) (-4360 ((|#1| $) 13)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-3535 (((-112) $) 17)) (-1386 (((-1168 |#1|) $) 41 (|has| |#1| (-856))) (((-1168 |#1|) (-652 $)) 40 (|has| |#1| (-856)))) (-3222 (($ |#1|) 26)) (-3491 (($ (-1105 |#1|)) 25) (((-870) $) 37 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-2479 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3711 (($ $ (-572)) 14)) (-3921 (((-112) $ $) 30 (|has| |#1| (-1111)))))
+(((-1246 |#1|) (-13 (-1104 |#1|) (-10 -8 (-15 -2479 ($ |#1|)) (-15 -1590 ($ |#1|)) (-15 -3491 ($ (-1105 |#1|))) (-15 -3535 ((-112) $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-1168 |#1|))) |%noBranch|))) (-1229)) (T -1246))
+((-2479 (*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))) (-1590 (*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1105 *3)) (-4 *3 (-1229)) (-5 *1 (-1246 *3)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1246 *3)) (-4 *3 (-1229)))))
+(-13 (-1104 |#1|) (-10 -8 (-15 -2479 ($ |#1|)) (-15 -1590 ($ |#1|)) (-15 -3491 ($ (-1105 |#1|))) (-15 -3535 ((-112) $)) (IF (|has| |#1| (-1111)) (-6 (-1111)) |%noBranch|) (IF (|has| |#1| (-856)) (-6 (-1106 |#1| (-1168 |#1|))) |%noBranch|)))
+((-3161 (((-1252 |#3| |#4|) (-1 |#4| |#2|) (-1252 |#1| |#2|)) 15)))
+(((-1247 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 ((-1252 |#3| |#4|) (-1 |#4| |#2|) (-1252 |#1| |#2|)))) (-1188) (-1060) (-1188) (-1060)) (T -1247))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1252 *5 *6)) (-14 *5 (-1188)) (-4 *6 (-1060)) (-4 *8 (-1060)) (-5 *2 (-1252 *7 *8)) (-5 *1 (-1247 *5 *6 *7 *8)) (-14 *7 (-1188)))))
+(-10 -7 (-15 -3161 ((-1252 |#3| |#4|) (-1 |#4| |#2|) (-1252 |#1| |#2|))))
+((-4270 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3015 ((|#1| |#3|) 13)) (-4037 ((|#3| |#3|) 19)))
+(((-1248 |#1| |#2| |#3|) (-10 -7 (-15 -3015 (|#1| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4270 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-564) (-1003 |#1|) (-1255 |#2|)) (T -1248))
+((-4270 (*1 *2 *3) (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1248 *4 *5 *3)) (-4 *3 (-1255 *5)))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-1248 *3 *4 *2)) (-4 *2 (-1255 *4)))) (-3015 (*1 *2 *3) (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-1248 *2 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -3015 (|#1| |#3|)) (-15 -4037 (|#3| |#3|)) (-15 -4270 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4092 (((-3 |#2| "failed") |#2| (-779) |#1|) 35)) (-2930 (((-3 |#2| "failed") |#2| (-779)) 36)) (-2164 (((-3 (-2 (|:| -3041 |#2|) (|:| -3058 |#2|)) "failed") |#2|) 50)) (-3824 (((-652 |#2|) |#2|) 52)) (-1883 (((-3 |#2| "failed") |#2| |#2|) 46)))
+(((-1249 |#1| |#2|) (-10 -7 (-15 -2930 ((-3 |#2| "failed") |#2| (-779))) (-15 -4092 ((-3 |#2| "failed") |#2| (-779) |#1|)) (-15 -1883 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2164 ((-3 (-2 (|:| -3041 |#2|) (|:| -3058 |#2|)) "failed") |#2|)) (-15 -3824 ((-652 |#2|) |#2|))) (-13 (-564) (-148)) (-1255 |#1|)) (T -1249))
+((-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-652 *3)) (-5 *1 (-1249 *4 *3)) (-4 *3 (-1255 *4)))) (-2164 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-2 (|:| -3041 *3) (|:| -3058 *3))) (-5 *1 (-1249 *4 *3)) (-4 *3 (-1255 *4)))) (-1883 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1255 *3)))) (-4092 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))) (-2930 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))))
+(-10 -7 (-15 -2930 ((-3 |#2| "failed") |#2| (-779))) (-15 -4092 ((-3 |#2| "failed") |#2| (-779) |#1|)) (-15 -1883 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2164 ((-3 (-2 (|:| -3041 |#2|) (|:| -3058 |#2|)) "failed") |#2|)) (-15 -3824 ((-652 |#2|) |#2|)))
+((-2153 (((-3 (-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1250 |#1| |#2|) (-10 -7 (-15 -2153 ((-3 (-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) "failed") |#2| |#2|))) (-564) (-1255 |#1|)) (T -1250))
+((-2153 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-1250 *4 *3)) (-4 *3 (-1255 *4)))))
+(-10 -7 (-15 -2153 ((-3 (-2 (|:| -1882 |#2|) (|:| -2336 |#2|)) "failed") |#2| |#2|)))
+((-2299 ((|#2| |#2| |#2|) 22)) (-3606 ((|#2| |#2| |#2|) 36)) (-3433 ((|#2| |#2| |#2| (-779) (-779)) 44)))
+(((-1251 |#1| |#2|) (-10 -7 (-15 -2299 (|#2| |#2| |#2|)) (-15 -3606 (|#2| |#2| |#2|)) (-15 -3433 (|#2| |#2| |#2| (-779) (-779)))) (-1060) (-1255 |#1|)) (T -1251))
+((-3433 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-1251 *4 *2)) (-4 *2 (-1255 *4)))) (-3606 (*1 *2 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))) (-2299 (*1 *2 *2 *2) (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))))
+(-10 -7 (-15 -2299 (|#2| |#2| |#2|)) (-15 -3606 (|#2| |#2| |#2|)) (-15 -3433 (|#2| |#2| |#2| (-779) (-779))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-4183 (((-1279 |#2|) $ (-779)) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-3524 (($ (-1184 |#2|)) NIL)) (-4063 (((-1184 $) $ (-1093)) NIL) (((-1184 |#2|) $) NIL)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#2| (-564)))) (-1697 (($ $) NIL (|has| |#2| (-564)))) (-1774 (((-112) $) NIL (|has| |#2| (-564)))) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-1093))) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3545 (($ $ $) NIL (|has| |#2| (-564)))) (-2730 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-1861 (($ $) NIL (|has| |#2| (-460)))) (-2359 (((-426 $) $) NIL (|has| |#2| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-4252 (((-112) $ $) NIL (|has| |#2| (-370)))) (-4173 (($ $ (-779)) NIL)) (-2549 (($ $ (-779)) NIL)) (-3694 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-460)))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) NIL) (((-3 (-415 (-572)) "failed") $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) NIL (|has| |#2| (-1049 (-572)))) (((-3 (-1093) "failed") $) NIL)) (-1869 ((|#2| $) NIL) (((-415 (-572)) $) NIL (|has| |#2| (-1049 (-415 (-572))))) (((-572) $) NIL (|has| |#2| (-1049 (-572)))) (((-1093) $) NIL)) (-3829 (($ $ $ (-1093)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3407 (($ $ $) NIL (|has| |#2| (-370)))) (-1874 (($ $) NIL)) (-2245 (((-697 (-572)) (-697 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) NIL (|has| |#2| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#2|)) (|:| |vec| (-1279 |#2|))) (-697 $) (-1279 $)) NIL) (((-697 |#2|) (-697 $)) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3418 (($ $ $) NIL (|has| |#2| (-370)))) (-2332 (($ $ $) NIL)) (-2397 (($ $ $) NIL (|has| |#2| (-564)))) (-3369 (((-2 (|:| -2379 |#2|) (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#2| (-564)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#2| (-370)))) (-2889 (($ $) NIL (|has| |#2| (-460))) (($ $ (-1093)) NIL (|has| |#2| (-460)))) (-1863 (((-652 $) $) NIL)) (-3439 (((-112) $) NIL (|has| |#2| (-918)))) (-3163 (($ $ |#2| (-779) $) NIL)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) NIL (-12 (|has| (-1093) (-895 (-386))) (|has| |#2| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) NIL (-12 (|has| (-1093) (-895 (-572))) (|has| |#2| (-895 (-572)))))) (-2068 (((-779) $ $) NIL (|has| |#2| (-564)))) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3396 (((-3 $ "failed") $) NIL (|has| |#2| (-1163)))) (-3060 (($ (-1184 |#2|) (-1093)) NIL) (($ (-1184 $) (-1093)) NIL)) (-2865 (($ $ (-779)) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-3042 (($ |#2| (-779)) 18) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-1093)) NIL) (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL)) (-3808 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-2008 (($ (-1 (-779) (-779)) $) NIL)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-3092 (((-1184 |#2|) $) NIL)) (-4107 (((-3 (-1093) "failed") $) NIL)) (-1840 (($ $) NIL)) (-1853 ((|#2| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-3618 (((-1170) $) NIL)) (-2371 (((-2 (|:| -1882 $) (|:| -2336 $)) $ (-779)) NIL)) (-3570 (((-3 (-652 $) "failed") $) NIL)) (-2257 (((-3 (-652 $) "failed") $) NIL)) (-2298 (((-3 (-2 (|:| |var| (-1093)) (|:| -2477 (-779))) "failed") $) NIL)) (-4161 (($ $) NIL (|has| |#2| (-38 (-415 (-572)))))) (-3477 (($) NIL (|has| |#2| (-1163)) CONST)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 ((|#2| $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#2| (-460)))) (-1370 (($ (-652 $)) NIL (|has| |#2| (-460))) (($ $ $) NIL (|has| |#2| (-460)))) (-2697 (($ $ (-779) |#2| $) NIL)) (-3508 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) NIL (|has| |#2| (-918)))) (-2972 (((-426 $) $) NIL (|has| |#2| (-918)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#2| (-370)))) (-3453 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-564))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#2| (-370)))) (-3654 (($ $ (-652 (-300 $))) NIL) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#2|) NIL) (($ $ (-652 (-1093)) (-652 |#2|)) NIL) (($ $ (-1093) $) NIL) (($ $ (-652 (-1093)) (-652 $)) NIL)) (-4395 (((-779) $) NIL (|has| |#2| (-370)))) (-2679 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) NIL (|has| |#2| (-564))) ((|#2| (-415 $) |#2|) NIL (|has| |#2| (-370))) (((-415 $) $ (-415 $)) NIL (|has| |#2| (-564)))) (-4271 (((-3 $ "failed") $ (-779)) NIL)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#2| (-370)))) (-2020 (($ $ (-1093)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3011 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1497 (((-779) $) NIL) (((-779) $ (-1093)) NIL) (((-652 (-779)) $ (-652 (-1093))) NIL)) (-3222 (((-901 (-386)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#2| (-622 (-901 (-386)))))) (((-901 (-572)) $) NIL (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#2| (-622 (-901 (-572)))))) (((-544) $) NIL (-12 (|has| (-1093) (-622 (-544))) (|has| |#2| (-622 (-544)))))) (-3262 ((|#2| $) NIL (|has| |#2| (-460))) (($ $ (-1093)) NIL (|has| |#2| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-918))))) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#2| (-564))) (((-3 (-415 $) "failed") (-415 $) $) NIL (|has| |#2| (-564)))) (-3491 (((-870) $) 13) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-1093)) NIL) (($ (-1275 |#1|)) 20) (($ (-415 (-572))) NIL (-3783 (|has| |#2| (-38 (-415 (-572)))) (|has| |#2| (-1049 (-415 (-572)))))) (($ $) NIL (|has| |#2| (-564)))) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-779)) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-2210 (((-3 $ "failed") $) NIL (-3783 (-12 (|has| $ (-146)) (|has| |#2| (-918))) (|has| |#2| (-146))))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| |#2| (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL (|has| |#2| (-564)))) (-2602 (($) NIL T CONST)) (-2619 (($) 14 T CONST)) (-4019 (($ $ (-1093)) NIL) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) NIL) (($ $ (-1188)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1188) (-779)) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) NIL (|has| |#2| (-909 (-1188)))) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#2|) NIL (|has| |#2| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-415 (-572))) NIL (|has| |#2| (-38 (-415 (-572))))) (($ (-415 (-572)) $) NIL (|has| |#2| (-38 (-415 (-572))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1252 |#1| |#2|) (-13 (-1255 |#2|) (-624 (-1275 |#1|)) (-10 -8 (-15 -2697 ($ $ (-779) |#2| $)))) (-1188) (-1060)) (T -1252))
+((-2697 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1252 *4 *3)) (-14 *4 (-1188)) (-4 *3 (-1060)))))
+(-13 (-1255 |#2|) (-624 (-1275 |#1|)) (-10 -8 (-15 -2697 ($ $ (-779) |#2| $))))
+((-3161 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|))) (-1060) (-1255 |#1|) (-1060) (-1255 |#3|)) (T -1253))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *4 *6 *2)) (-4 *4 (-1255 *5)))))
+(-10 -7 (-15 -3161 (|#4| (-1 |#3| |#1|) |#2|)))
+((-4183 (((-1279 |#2|) $ (-779)) 129)) (-2220 (((-652 (-1093)) $) 16)) (-3524 (($ (-1184 |#2|)) 80)) (-3664 (((-779) $) NIL) (((-779) $ (-652 (-1093))) 21)) (-2730 (((-426 (-1184 $)) (-1184 $)) 204)) (-1861 (($ $) 194)) (-2359 (((-426 $) $) 192)) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 95)) (-4173 (($ $ (-779)) 84)) (-2549 (($ $ (-779)) 86)) (-3694 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3072 (((-3 |#2| "failed") $) 132) (((-3 (-415 (-572)) "failed") $) NIL) (((-3 (-572) "failed") $) NIL) (((-3 (-1093) "failed") $) NIL)) (-1869 ((|#2| $) 130) (((-415 (-572)) $) NIL) (((-572) $) NIL) (((-1093) $) NIL)) (-2397 (($ $ $) 170)) (-3369 (((-2 (|:| -2379 |#2|) (|:| -1882 $) (|:| -2336 $)) $ $) 172)) (-2068 (((-779) $ $) 189)) (-3396 (((-3 $ "failed") $) 138)) (-3042 (($ |#2| (-779)) NIL) (($ $ (-1093) (-779)) 59) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-3808 (((-779) $) NIL) (((-779) $ (-1093)) 54) (((-652 (-779)) $ (-652 (-1093))) 55)) (-3092 (((-1184 |#2|) $) 72)) (-4107 (((-3 (-1093) "failed") $) 52)) (-2371 (((-2 (|:| -1882 $) (|:| -2336 $)) $ (-779)) 83)) (-4161 (($ $) 219)) (-3477 (($) 134)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 201)) (-3508 (((-426 (-1184 $)) (-1184 $)) 101)) (-3115 (((-426 (-1184 $)) (-1184 $)) 99)) (-2972 (((-426 $) $) 120)) (-3654 (($ $ (-652 (-300 $))) 51) (($ $ (-300 $)) NIL) (($ $ $ $) NIL) (($ $ (-652 $) (-652 $)) NIL) (($ $ (-1093) |#2|) 39) (($ $ (-652 (-1093)) (-652 |#2|)) 36) (($ $ (-1093) $) 32) (($ $ (-652 (-1093)) (-652 $)) 30)) (-4395 (((-779) $) 207)) (-2679 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-415 $) (-415 $) (-415 $)) 164) ((|#2| (-415 $) |#2|) 206) (((-415 $) $ (-415 $)) 188)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 212)) (-3011 (($ $ (-1093)) 157) (($ $ (-652 (-1093))) NIL) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL) (($ $ (-779)) NIL) (($ $) 155) (($ $ (-1188)) NIL) (($ $ (-652 (-1188))) NIL) (($ $ (-1188) (-779)) NIL) (($ $ (-652 (-1188)) (-652 (-779))) NIL) (($ $ (-1 |#2| |#2|) (-779)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-1497 (((-779) $) NIL) (((-779) $ (-1093)) 17) (((-652 (-779)) $ (-652 (-1093))) 23)) (-3262 ((|#2| $) NIL) (($ $ (-1093)) 140)) (-2404 (((-3 $ "failed") $ $) 180) (((-3 (-415 $) "failed") (-415 $) $) 176)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#2|) NIL) (($ (-1093)) 64) (($ (-415 (-572))) NIL) (($ $) NIL)))
+(((-1254 |#1| |#2|) (-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -2679 ((-415 |#1|) |#1| (-415 |#1|))) (-15 -4395 ((-779) |#1|)) (-15 -2501 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2679 (|#2| (-415 |#1|) |#2|)) (-15 -3694 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3369 ((-2 (|:| -2379 |#2|) (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#1|)) (-15 -2404 ((-3 (-415 |#1|) "failed") (-415 |#1|) |#1|)) (-15 -2404 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2068 ((-779) |#1| |#1|)) (-15 -2679 ((-415 |#1|) (-415 |#1|) (-415 |#1|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2549 (|#1| |#1| (-779))) (-15 -4173 (|#1| |#1| (-779))) (-15 -2371 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| (-779))) (-15 -3524 (|#1| (-1184 |#2|))) (-15 -3092 ((-1184 |#2|) |#1|)) (-15 -4183 ((-1279 |#2|) |#1| (-779))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -2679 (|#1| |#1| |#1|)) (-15 -2679 (|#2| |#1| |#2|)) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2730 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3115 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3508 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3262 (|#1| |#1| (-1093))) (-15 -2220 ((-652 (-1093)) |#1|)) (-15 -3664 ((-779) |#1| (-652 (-1093)))) (-15 -3664 ((-779) |#1|)) (-15 -3042 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -3042 (|#1| |#1| (-1093) (-779))) (-15 -3808 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -3808 ((-779) |#1| (-1093))) (-15 -4107 ((-3 (-1093) "failed") |#1|)) (-15 -1497 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -1497 ((-779) |#1| (-1093))) (-15 -3491 (|#1| (-1093))) (-15 -3072 ((-3 (-1093) "failed") |#1|)) (-15 -1869 ((-1093) |#1|)) (-15 -3654 (|#1| |#1| (-652 (-1093)) (-652 |#1|))) (-15 -3654 (|#1| |#1| (-1093) |#1|)) (-15 -3654 (|#1| |#1| (-652 (-1093)) (-652 |#2|))) (-15 -3654 (|#1| |#1| (-1093) |#2|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1497 ((-779) |#1|)) (-15 -3042 (|#1| |#2| (-779))) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3808 ((-779) |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -3011 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1093) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1093)))) (-15 -3011 (|#1| |#1| (-1093))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|))) (-1255 |#2|) (-1060)) (T -1254))
+NIL
+(-10 -8 (-15 -3491 (|#1| |#1|)) (-15 -2500 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2359 ((-426 |#1|) |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3477 (|#1|)) (-15 -3396 ((-3 |#1| "failed") |#1|)) (-15 -2679 ((-415 |#1|) |#1| (-415 |#1|))) (-15 -4395 ((-779) |#1|)) (-15 -2501 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2679 (|#2| (-415 |#1|) |#2|)) (-15 -3694 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3369 ((-2 (|:| -2379 |#2|) (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| |#1|)) (-15 -2397 (|#1| |#1| |#1|)) (-15 -2404 ((-3 (-415 |#1|) "failed") (-415 |#1|) |#1|)) (-15 -2404 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2068 ((-779) |#1| |#1|)) (-15 -2679 ((-415 |#1|) (-415 |#1|) (-415 |#1|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2549 (|#1| |#1| (-779))) (-15 -4173 (|#1| |#1| (-779))) (-15 -2371 ((-2 (|:| -1882 |#1|) (|:| -2336 |#1|)) |#1| (-779))) (-15 -3524 (|#1| (-1184 |#2|))) (-15 -3092 ((-1184 |#2|) |#1|)) (-15 -4183 ((-1279 |#2|) |#1| (-779))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3011 (|#1| |#1| (-1 |#2| |#2|) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1188) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1188)))) (-15 -3011 (|#1| |#1| (-1188))) (-15 -3011 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-779))) (-15 -2679 (|#1| |#1| |#1|)) (-15 -2679 (|#2| |#1| |#2|)) (-15 -2972 ((-426 |#1|) |#1|)) (-15 -2730 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3115 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3508 ((-426 (-1184 |#1|)) (-1184 |#1|))) (-15 -3317 ((-3 (-652 (-1184 |#1|)) "failed") (-652 (-1184 |#1|)) (-1184 |#1|))) (-15 -3262 (|#1| |#1| (-1093))) (-15 -2220 ((-652 (-1093)) |#1|)) (-15 -3664 ((-779) |#1| (-652 (-1093)))) (-15 -3664 ((-779) |#1|)) (-15 -3042 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -3042 (|#1| |#1| (-1093) (-779))) (-15 -3808 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -3808 ((-779) |#1| (-1093))) (-15 -4107 ((-3 (-1093) "failed") |#1|)) (-15 -1497 ((-652 (-779)) |#1| (-652 (-1093)))) (-15 -1497 ((-779) |#1| (-1093))) (-15 -3491 (|#1| (-1093))) (-15 -3072 ((-3 (-1093) "failed") |#1|)) (-15 -1869 ((-1093) |#1|)) (-15 -3654 (|#1| |#1| (-652 (-1093)) (-652 |#1|))) (-15 -3654 (|#1| |#1| (-1093) |#1|)) (-15 -3654 (|#1| |#1| (-652 (-1093)) (-652 |#2|))) (-15 -3654 (|#1| |#1| (-1093) |#2|)) (-15 -3654 (|#1| |#1| (-652 |#1|) (-652 |#1|))) (-15 -3654 (|#1| |#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| (-300 |#1|))) (-15 -3654 (|#1| |#1| (-652 (-300 |#1|)))) (-15 -1497 ((-779) |#1|)) (-15 -3042 (|#1| |#2| (-779))) (-15 -3072 ((-3 (-572) "failed") |#1|)) (-15 -1869 ((-572) |#1|)) (-15 -3072 ((-3 (-415 (-572)) "failed") |#1|)) (-15 -1869 ((-415 (-572)) |#1|)) (-15 -1869 (|#2| |#1|)) (-15 -3072 ((-3 |#2| "failed") |#1|)) (-15 -3491 (|#1| |#2|)) (-15 -3808 ((-779) |#1|)) (-15 -3262 (|#2| |#1|)) (-15 -3011 (|#1| |#1| (-652 (-1093)) (-652 (-779)))) (-15 -3011 (|#1| |#1| (-1093) (-779))) (-15 -3011 (|#1| |#1| (-652 (-1093)))) (-15 -3011 (|#1| |#1| (-1093))) (-15 -3491 (|#1| (-572))) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-4183 (((-1279 |#1|) $ (-779)) 240)) (-2220 (((-652 (-1093)) $) 112)) (-3524 (($ (-1184 |#1|)) 238)) (-4063 (((-1184 $) $ (-1093)) 127) (((-1184 |#1|) $) 126)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 89 (|has| |#1| (-564)))) (-1697 (($ $) 90 (|has| |#1| (-564)))) (-1774 (((-112) $) 92 (|has| |#1| (-564)))) (-3664 (((-779) $) 114) (((-779) $ (-652 (-1093))) 113)) (-2092 (((-3 $ "failed") $ $) 20)) (-3545 (($ $ $) 225 (|has| |#1| (-564)))) (-2730 (((-426 (-1184 $)) (-1184 $)) 102 (|has| |#1| (-918)))) (-1861 (($ $) 100 (|has| |#1| (-460)))) (-2359 (((-426 $) $) 99 (|has| |#1| (-460)))) (-3317 (((-3 (-652 (-1184 $)) "failed") (-652 (-1184 $)) (-1184 $)) 105 (|has| |#1| (-918)))) (-4252 (((-112) $ $) 210 (|has| |#1| (-370)))) (-4173 (($ $ (-779)) 233)) (-2549 (($ $ (-779)) 232)) (-3694 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-460)))) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 166) (((-3 (-415 (-572)) "failed") $) 163 (|has| |#1| (-1049 (-415 (-572))))) (((-3 (-572) "failed") $) 161 (|has| |#1| (-1049 (-572)))) (((-3 (-1093) "failed") $) 138)) (-1869 ((|#1| $) 165) (((-415 (-572)) $) 164 (|has| |#1| (-1049 (-415 (-572))))) (((-572) $) 162 (|has| |#1| (-1049 (-572)))) (((-1093) $) 139)) (-3829 (($ $ $ (-1093)) 110 (|has| |#1| (-174))) ((|#1| $ $) 228 (|has| |#1| (-174)))) (-3407 (($ $ $) 214 (|has| |#1| (-370)))) (-1874 (($ $) 156)) (-2245 (((-697 (-572)) (-697 $)) 136 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 (-572))) (|:| |vec| (-1279 (-572)))) (-697 $) (-1279 $)) 135 (|has| |#1| (-647 (-572)))) (((-2 (|:| -1866 (-697 |#1|)) (|:| |vec| (-1279 |#1|))) (-697 $) (-1279 $)) 134) (((-697 |#1|) (-697 $)) 133)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 213 (|has| |#1| (-370)))) (-2332 (($ $ $) 231)) (-2397 (($ $ $) 222 (|has| |#1| (-564)))) (-3369 (((-2 (|:| -2379 |#1|) (|:| -1882 $) (|:| -2336 $)) $ $) 221 (|has| |#1| (-564)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 208 (|has| |#1| (-370)))) (-2889 (($ $) 178 (|has| |#1| (-460))) (($ $ (-1093)) 107 (|has| |#1| (-460)))) (-1863 (((-652 $) $) 111)) (-3439 (((-112) $) 98 (|has| |#1| (-918)))) (-3163 (($ $ |#1| (-779) $) 174)) (-4034 (((-898 (-386) $) $ (-901 (-386)) (-898 (-386) $)) 86 (-12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386))))) (((-898 (-572) $) $ (-901 (-572)) (-898 (-572) $)) 85 (-12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))))) (-2068 (((-779) $ $) 226 (|has| |#1| (-564)))) (-4422 (((-112) $) 35)) (-2348 (((-779) $) 171)) (-3396 (((-3 $ "failed") $) 206 (|has| |#1| (-1163)))) (-3060 (($ (-1184 |#1|) (-1093)) 119) (($ (-1184 $) (-1093)) 118)) (-2865 (($ $ (-779)) 237)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 217 (|has| |#1| (-370)))) (-3715 (((-652 $) $) 128)) (-3357 (((-112) $) 154)) (-3042 (($ |#1| (-779)) 155) (($ $ (-1093) (-779)) 121) (($ $ (-652 (-1093)) (-652 (-779))) 120)) (-1505 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $ (-1093)) 122) (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 235)) (-3808 (((-779) $) 172) (((-779) $ (-1093)) 124) (((-652 (-779)) $ (-652 (-1093))) 123)) (-2008 (($ (-1 (-779) (-779)) $) 173)) (-3161 (($ (-1 |#1| |#1|) $) 153)) (-3092 (((-1184 |#1|) $) 239)) (-4107 (((-3 (-1093) "failed") $) 125)) (-1840 (($ $) 151)) (-1853 ((|#1| $) 150)) (-1335 (($ (-652 $)) 96 (|has| |#1| (-460))) (($ $ $) 95 (|has| |#1| (-460)))) (-3618 (((-1170) $) 10)) (-2371 (((-2 (|:| -1882 $) (|:| -2336 $)) $ (-779)) 234)) (-3570 (((-3 (-652 $) "failed") $) 116)) (-2257 (((-3 (-652 $) "failed") $) 117)) (-2298 (((-3 (-2 (|:| |var| (-1093)) (|:| -2477 (-779))) "failed") $) 115)) (-4161 (($ $) 218 (|has| |#1| (-38 (-415 (-572)))))) (-3477 (($) 205 (|has| |#1| (-1163)) CONST)) (-2614 (((-1131) $) 11)) (-1817 (((-112) $) 168)) (-1829 ((|#1| $) 169)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 97 (|has| |#1| (-460)))) (-1370 (($ (-652 $)) 94 (|has| |#1| (-460))) (($ $ $) 93 (|has| |#1| (-460)))) (-3508 (((-426 (-1184 $)) (-1184 $)) 104 (|has| |#1| (-918)))) (-3115 (((-426 (-1184 $)) (-1184 $)) 103 (|has| |#1| (-918)))) (-2972 (((-426 $) $) 101 (|has| |#1| (-918)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 215 (|has| |#1| (-370)))) (-3453 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-564))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 209 (|has| |#1| (-370)))) (-3654 (($ $ (-652 (-300 $))) 147) (($ $ (-300 $)) 146) (($ $ $ $) 145) (($ $ (-652 $) (-652 $)) 144) (($ $ (-1093) |#1|) 143) (($ $ (-652 (-1093)) (-652 |#1|)) 142) (($ $ (-1093) $) 141) (($ $ (-652 (-1093)) (-652 $)) 140)) (-4395 (((-779) $) 211 (|has| |#1| (-370)))) (-2679 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-415 $) (-415 $) (-415 $)) 227 (|has| |#1| (-564))) ((|#1| (-415 $) |#1|) 219 (|has| |#1| (-370))) (((-415 $) $ (-415 $)) 207 (|has| |#1| (-564)))) (-4271 (((-3 $ "failed") $ (-779)) 236)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 212 (|has| |#1| (-370)))) (-2020 (($ $ (-1093)) 109 (|has| |#1| (-174))) ((|#1| $) 229 (|has| |#1| (-174)))) (-3011 (($ $ (-1093)) 46) (($ $ (-652 (-1093))) 45) (($ $ (-1093) (-779)) 44) (($ $ (-652 (-1093)) (-652 (-779))) 43) (($ $ (-779)) 255) (($ $) 253) (($ $ (-1188)) 252 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 251 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 250 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 249 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-1497 (((-779) $) 152) (((-779) $ (-1093)) 132) (((-652 (-779)) $ (-652 (-1093))) 131)) (-3222 (((-901 (-386)) $) 84 (-12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386)))))) (((-901 (-572)) $) 83 (-12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572)))))) (((-544) $) 82 (-12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))))) (-3262 ((|#1| $) 177 (|has| |#1| (-460))) (($ $ (-1093)) 108 (|has| |#1| (-460)))) (-3130 (((-3 (-1279 $) "failed") (-697 $)) 106 (-3804 (|has| $ (-146)) (|has| |#1| (-918))))) (-2404 (((-3 $ "failed") $ $) 224 (|has| |#1| (-564))) (((-3 (-415 $) "failed") (-415 $) $) 223 (|has| |#1| (-564)))) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 167) (($ (-1093)) 137) (($ (-415 (-572))) 80 (-3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572)))))) (($ $) 87 (|has| |#1| (-564)))) (-1708 (((-652 |#1|) $) 170)) (-4206 ((|#1| $ (-779)) 157) (($ $ (-1093) (-779)) 130) (($ $ (-652 (-1093)) (-652 (-779))) 129)) (-2210 (((-3 $ "failed") $) 81 (-3783 (-3804 (|has| $ (-146)) (|has| |#1| (-918))) (|has| |#1| (-146))))) (-2455 (((-779)) 32 T CONST)) (-4257 (($ $ $ (-779)) 175 (|has| |#1| (-174)))) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 91 (|has| |#1| (-564)))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-1093)) 42) (($ $ (-652 (-1093))) 41) (($ $ (-1093) (-779)) 40) (($ $ (-652 (-1093)) (-652 (-779))) 39) (($ $ (-779)) 256) (($ $) 254) (($ $ (-1188)) 248 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188))) 247 (|has| |#1| (-909 (-1188)))) (($ $ (-1188) (-779)) 246 (|has| |#1| (-909 (-1188)))) (($ $ (-652 (-1188)) (-652 (-779))) 245 (|has| |#1| (-909 (-1188)))) (($ $ (-1 |#1| |#1|) (-779)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 158 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 160 (|has| |#1| (-38 (-415 (-572))))) (($ (-415 (-572)) $) 159 (|has| |#1| (-38 (-415 (-572))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1255 |#1|) (-141) (-1060)) (T -1255))
+((-4183 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-1255 *4)) (-4 *4 (-1060)) (-5 *2 (-1279 *4)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-5 *2 (-1184 *3)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1060)) (-4 *1 (-1255 *3)))) (-2865 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-4271 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-1505 (*1 *2 *1 *1) (-12 (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1255 *3)))) (-2371 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1255 *4)))) (-4173 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-2332 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)))) (-3011 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))) (-3829 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))) (-2679 (*1 *2 *2 *2) (-12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564)))) (-2068 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564)) (-5 *2 (-779)))) (-3545 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-2404 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564)))) (-2397 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))) (-3369 (*1 *2 *1 *1) (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| -2379 *3) (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1255 *3)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *3 (-460)) (-4 *3 (-1060)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1255 *3)))) (-2679 (*1 *2 *3 *2) (-12 (-5 *3 (-415 *1)) (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))))
+(-13 (-958 |t#1| (-779) (-1093)) (-292 |t#1| |t#1|) (-292 $ $) (-237) (-233 |t#1|) (-10 -8 (-15 -4183 ((-1279 |t#1|) $ (-779))) (-15 -3092 ((-1184 |t#1|) $)) (-15 -3524 ($ (-1184 |t#1|))) (-15 -2865 ($ $ (-779))) (-15 -4271 ((-3 $ "failed") $ (-779))) (-15 -1505 ((-2 (|:| -1882 $) (|:| -2336 $)) $ $)) (-15 -2371 ((-2 (|:| -1882 $) (|:| -2336 $)) $ (-779))) (-15 -4173 ($ $ (-779))) (-15 -2549 ($ $ (-779))) (-15 -2332 ($ $ $)) (-15 -3011 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1163)) (-6 (-1163)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2020 (|t#1| $)) (-15 -3829 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-564)) (PROGN (-6 (-292 (-415 $) (-415 $))) (-15 -2679 ((-415 $) (-415 $) (-415 $))) (-15 -2068 ((-779) $ $)) (-15 -3545 ($ $ $)) (-15 -2404 ((-3 $ "failed") $ $)) (-15 -2404 ((-3 (-415 $) "failed") (-415 $) $)) (-15 -2397 ($ $ $)) (-15 -3369 ((-2 (|:| -2379 |t#1|) (|:| -1882 $) (|:| -2336 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-460)) (-15 -3694 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-370)) (PROGN (-6 (-313)) (-6 -4450) (-15 -2679 (|t#1| (-415 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (-15 -4161 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-779)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -3783 (|has| |#1| (-1049 (-415 (-572)))) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 #2=(-1093)) . T) ((-624 |#1|) . T) ((-624 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-622 (-544)) -12 (|has| (-1093) (-622 (-544))) (|has| |#1| (-622 (-544)))) ((-622 (-901 (-386))) -12 (|has| (-1093) (-622 (-901 (-386)))) (|has| |#1| (-622 (-901 (-386))))) ((-622 (-901 (-572))) -12 (|has| (-1093) (-622 (-901 (-572)))) (|has| |#1| (-622 (-901 (-572))))) ((-233 |#1|) . T) ((-237) . T) ((-292 (-415 $) (-415 $)) |has| |#1| (-564)) ((-292 |#1| |#1|) . T) ((-292 $ $) . T) ((-296) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-315 $) . T) ((-332 |#1| #0#) . T) ((-384 |#1|) . T) ((-419 |#1|) . T) ((-460) -3783 (|has| |#1| (-918)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-522 #2# |#1|) . T) ((-522 #2# $) . T) ((-522 $ $) . T) ((-564) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-654 #1#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-647 (-572)) |has| |#1| (-647 (-572))) ((-647 |#1|) . T) ((-725 #1#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370))) ((-734) . T) ((-909 #2#) . T) ((-909 (-1188)) |has| |#1| (-909 (-1188))) ((-895 (-386)) -12 (|has| (-1093) (-895 (-386))) (|has| |#1| (-895 (-386)))) ((-895 (-572)) -12 (|has| (-1093) (-895 (-572))) (|has| |#1| (-895 (-572)))) ((-958 |#1| #0# #2#) . T) ((-918) |has| |#1| (-918)) ((-929) |has| |#1| (-370)) ((-1049 (-415 (-572))) |has| |#1| (-1049 (-415 (-572)))) ((-1049 (-572)) |has| |#1| (-1049 (-572))) ((-1049 #2#) . T) ((-1049 |#1|) . T) ((-1062 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-918)) (|has| |#1| (-564)) (|has| |#1| (-460)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1163) |has| |#1| (-1163)) ((-1229) . T) ((-1233) |has| |#1| (-918)))
+((-2220 (((-652 (-1093)) $) 34)) (-1874 (($ $) 31)) (-3042 (($ |#2| |#3|) NIL) (($ $ (-1093) |#3|) 28) (($ $ (-652 (-1093)) (-652 |#3|)) 27)) (-1840 (($ $) 14)) (-1853 ((|#2| $) 12)) (-1497 ((|#3| $) 10)))
+(((-1256 |#1| |#2| |#3|) (-10 -8 (-15 -2220 ((-652 (-1093)) |#1|)) (-15 -3042 (|#1| |#1| (-652 (-1093)) (-652 |#3|))) (-15 -3042 (|#1| |#1| (-1093) |#3|)) (-15 -1874 (|#1| |#1|)) (-15 -3042 (|#1| |#2| |#3|)) (-15 -1497 (|#3| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -1853 (|#2| |#1|))) (-1257 |#2| |#3|) (-1060) (-800)) (T -1256))
+NIL
+(-10 -8 (-15 -2220 ((-652 (-1093)) |#1|)) (-15 -3042 (|#1| |#1| (-652 (-1093)) (-652 |#3|))) (-15 -3042 (|#1| |#1| (-1093) |#3|)) (-15 -1874 (|#1| |#1|)) (-15 -3042 (|#1| |#2| |#3|)) (-15 -1497 (|#3| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -1853 (|#2| |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 (-1093)) $) 86)) (-2043 (((-1188) $) 116)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-1957 (($ $ |#2|) 111) (($ $ |#2| |#2|) 110)) (-2709 (((-1168 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-2969 (((-112) $) 85)) (-2068 ((|#2| $) 113) ((|#2| $ |#2|) 112)) (-4422 (((-112) $) 35)) (-2865 (($ $ (-930)) 114)) (-3357 (((-112) $) 74)) (-3042 (($ |#1| |#2|) 73) (($ $ (-1093) |#2|) 88) (($ $ (-652 (-1093)) (-652 |#2|)) 87)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3103 (($ $ |#2|) 108)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-3654 (((-1168 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2679 ((|#1| $ |#2|) 118) (($ $ $) 94 (|has| |#2| (-1123)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188) (-779)) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-652 (-1188))) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188)) 99 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-779)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1497 ((|#2| $) 76)) (-3610 (($ $) 84)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4206 ((|#1| $ |#2|) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-2376 ((|#1| $) 115)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-4090 ((|#1| $ |#2|) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188) (-779)) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-652 (-1188))) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1188)) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-1257 |#1| |#2|) (-141) (-1060) (-800)) (T -1257))
+((-2709 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-1168 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (-5 *2 (-1188)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))) (-2865 (*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-2068 (*1 *2 *1 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-1957 (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-1957 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-4090 (*1 *2 *1 *3) (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3491 (*2 (-1188)))) (-4 *2 (-1060)))) (-3103 (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))) (-3654 (*1 *2 *1 *3) (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1168 *3)))))
+(-13 (-984 |t#1| |t#2| (-1093)) (-292 |t#2| |t#1|) (-10 -8 (-15 -2709 ((-1168 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2043 ((-1188) $)) (-15 -2376 (|t#1| $)) (-15 -2865 ($ $ (-930))) (-15 -2068 (|t#2| $)) (-15 -2068 (|t#2| $ |t#2|)) (-15 -1957 ($ $ |t#2|)) (-15 -1957 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3491 (|t#1| (-1188)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4090 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3103 ($ $ |t#2|)) (IF (|has| |t#2| (-1123)) (-6 (-292 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-237)) (IF (|has| |t#1| (-909 (-1188))) (-6 (-909 (-1188))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3654 ((-1168 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #0#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-292 |#2| |#1|) . T) ((-292 $ $) |has| |#2| (-1123)) ((-296) |has| |#1| (-564)) ((-564) |has| |#1| (-564)) ((-654 #0#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #0#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| |#2| (-1093)) . T) ((-1062 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #0#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1229) . T))
+((-1861 ((|#2| |#2|) 12)) (-2359 (((-426 |#2|) |#2|) 14)) (-3946 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572)))) 30)))
+(((-1258 |#1| |#2|) (-10 -7 (-15 -2359 ((-426 |#2|) |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -3946 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572)))))) (-564) (-13 (-1255 |#1|) (-564) (-10 -8 (-15 -1370 ($ $ $))))) (T -1258))
+((-3946 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-572)))) (-4 *4 (-13 (-1255 *3) (-564) (-10 -8 (-15 -1370 ($ $ $))))) (-4 *3 (-564)) (-5 *1 (-1258 *3 *4)))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-564)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-13 (-1255 *3) (-564) (-10 -8 (-15 -1370 ($ $ $))))))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-1258 *4 *3)) (-4 *3 (-13 (-1255 *4) (-564) (-10 -8 (-15 -1370 ($ $ $))))))))
+(-10 -7 (-15 -2359 ((-426 |#2|) |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -3946 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-572))))))
+((-3161 (((-1264 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1264 |#1| |#3| |#5|)) 24)))
+(((-1259 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3161 ((-1264 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1264 |#1| |#3| |#5|)))) (-1060) (-1060) (-1188) (-1188) |#1| |#2|) (T -1259))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5 *7 *9)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1264 *6 *8 *10)) (-5 *1 (-1259 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1188)))))
+(-10 -7 (-15 -3161 ((-1264 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1264 |#1| |#3| |#5|))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 (-1093)) $) 86)) (-2043 (((-1188) $) 116)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-1957 (($ $ (-415 (-572))) 111) (($ $ (-415 (-572)) (-415 (-572))) 110)) (-2709 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 175 (|has| |#1| (-370)))) (-2359 (((-426 $) $) 176 (|has| |#1| (-370)))) (-3093 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) 166 (|has| |#1| (-370)))) (-3893 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) 184)) (-3939 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) 18 T CONST)) (-3407 (($ $ $) 170 (|has| |#1| (-370)))) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 169 (|has| |#1| (-370)))) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 164 (|has| |#1| (-370)))) (-3439 (((-112) $) 177 (|has| |#1| (-370)))) (-2969 (((-112) $) 85)) (-2250 (($) 158 (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-415 (-572)) $) 113) (((-415 (-572)) $ (-415 (-572))) 112)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 129 (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) 114) (($ $ (-415 (-572))) 183)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 173 (|has| |#1| (-370)))) (-3357 (((-112) $) 74)) (-3042 (($ |#1| (-415 (-572))) 73) (($ $ (-1093) (-415 (-572))) 88) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) 87)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-4057 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-1335 (($ (-652 $)) 162 (|has| |#1| (-370))) (($ $ $) 161 (|has| |#1| (-370)))) (-3618 (((-1170) $) 10)) (-1809 (($ $) 178 (|has| |#1| (-370)))) (-4161 (($ $) 182 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 181 (-3783 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 163 (|has| |#1| (-370)))) (-1370 (($ (-652 $)) 160 (|has| |#1| (-370))) (($ $ $) 159 (|has| |#1| (-370)))) (-2972 (((-426 $) $) 174 (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 171 (|has| |#1| (-370)))) (-3103 (($ $ (-415 (-572))) 108)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 165 (|has| |#1| (-370)))) (-3272 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-4395 (((-779) $) 167 (|has| |#1| (-370)))) (-2679 ((|#1| $ (-415 (-572))) 118) (($ $ $) 94 (|has| (-415 (-572)) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 168 (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 99 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 97 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-1497 (((-415 (-572)) $) 76)) (-2139 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 84)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-4206 ((|#1| $ (-415 (-572))) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-2376 ((|#1| $) 115)) (-3424 (((-112) $ $) 9)) (-2176 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2152 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-415 (-572))) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 180 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 179 (|has| |#1| (-370))) (($ $ $) 157 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 128 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-1260 |#1|) (-141) (-1060)) (T -1260))
+((-2493 (*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4)))) (-4 *4 (-1060)) (-4 *1 (-1260 *4)))) (-2865 (*1 *1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1260 *3)) (-4 *3 (-1060)))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))) (-4161 (*1 *1 *1 *2) (-3783 (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060)) (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214)) (-4 *3 (-38 (-415 (-572)))))) (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060)) (-12 (|has| *3 (-15 -2220 ((-652 *2) *3))) (|has| *3 (-15 -4161 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572)))))))))
+(-13 (-1257 |t#1| (-415 (-572))) (-10 -8 (-15 -2493 ($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |t#1|))))) (-15 -2865 ($ $ (-415 (-572)))) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $)) (IF (|has| |t#1| (-15 -4161 (|t#1| |t#1| (-1188)))) (IF (|has| |t#1| (-15 -2220 ((-652 (-1188)) |t#1|))) (-15 -4161 ($ $ (-1188))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1214)) (IF (|has| |t#1| (-968)) (IF (|has| |t#1| (-29 (-572))) (-15 -4161 ($ $ (-1188))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1013)) (-6 (-1214))) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-415 (-572))) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-237) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-415 (-572)) (-1123)) ((-296) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-370) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-725 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1257 |#1| #0#) . T))
+((-3143 (((-112) $) 12)) (-3072 (((-3 |#3| "failed") $) 17)) (-1869 ((|#3| $) 14)))
+(((-1261 |#1| |#2| |#3|) (-10 -8 (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -3143 ((-112) |#1|))) (-1262 |#2| |#3|) (-1060) (-1239 |#2|)) (T -1261))
+NIL
+(-10 -8 (-15 -3072 ((-3 |#3| "failed") |#1|)) (-15 -1869 (|#3| |#1|)) (-15 -3143 ((-112) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 (-1093)) $) 86)) (-2043 (((-1188) $) 116)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-1957 (($ $ (-415 (-572))) 111) (($ $ (-415 (-572)) (-415 (-572))) 110)) (-2709 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 175 (|has| |#1| (-370)))) (-2359 (((-426 $) $) 176 (|has| |#1| (-370)))) (-3093 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) 166 (|has| |#1| (-370)))) (-3893 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) 184)) (-3939 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#2| "failed") $) 195)) (-1869 ((|#2| $) 196)) (-3407 (($ $ $) 170 (|has| |#1| (-370)))) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-1844 (((-415 (-572)) $) 192)) (-3418 (($ $ $) 169 (|has| |#1| (-370)))) (-1787 (($ (-415 (-572)) |#2|) 193)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 164 (|has| |#1| (-370)))) (-3439 (((-112) $) 177 (|has| |#1| (-370)))) (-2969 (((-112) $) 85)) (-2250 (($) 158 (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-415 (-572)) $) 113) (((-415 (-572)) $ (-415 (-572))) 112)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 129 (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) 114) (($ $ (-415 (-572))) 183)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 173 (|has| |#1| (-370)))) (-3357 (((-112) $) 74)) (-3042 (($ |#1| (-415 (-572))) 73) (($ $ (-1093) (-415 (-572))) 88) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) 87)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-4057 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-1335 (($ (-652 $)) 162 (|has| |#1| (-370))) (($ $ $) 161 (|has| |#1| (-370)))) (-2742 ((|#2| $) 191)) (-1820 (((-3 |#2| "failed") $) 189)) (-1778 ((|#2| $) 190)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 178 (|has| |#1| (-370)))) (-4161 (($ $) 182 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 181 (-3783 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 163 (|has| |#1| (-370)))) (-1370 (($ (-652 $)) 160 (|has| |#1| (-370))) (($ $ $) 159 (|has| |#1| (-370)))) (-2972 (((-426 $) $) 174 (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 172 (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 171 (|has| |#1| (-370)))) (-3103 (($ $ (-415 (-572))) 108)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 165 (|has| |#1| (-370)))) (-3272 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-4395 (((-779) $) 167 (|has| |#1| (-370)))) (-2679 ((|#1| $ (-415 (-572))) 118) (($ $ $) 94 (|has| (-415 (-572)) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 168 (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 99 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 97 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-1497 (((-415 (-572)) $) 76)) (-2139 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 84)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 194) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564)))) (-4206 ((|#1| $ (-415 (-572))) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-2376 ((|#1| $) 115)) (-3424 (((-112) $ $) 9)) (-2176 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2152 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-415 (-572))) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188) (-779)) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-652 (-1188))) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-1188)) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370))) (($ $ $) 180 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 179 (|has| |#1| (-370))) (($ $ $) 157 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 128 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-1262 |#1| |#2|) (-141) (-1060) (-1239 |t#1|)) (T -1262))
+((-1497 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3)) (-5 *2 (-415 (-572))))) (-1787 (*1 *1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-4 *4 (-1060)) (-4 *1 (-1262 *4 *3)) (-4 *3 (-1239 *4)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3)) (-5 *2 (-415 (-572))))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))) (-1820 (*1 *2 *1) (|partial| -12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))))
+(-13 (-1260 |t#1|) (-1049 |t#2|) (-624 |t#2|) (-10 -8 (-15 -1787 ($ (-415 (-572)) |t#2|)) (-15 -1844 ((-415 (-572)) $)) (-15 -2742 (|t#2| $)) (-15 -1497 ((-415 (-572)) $)) (-15 -1778 (|t#2| $)) (-15 -1820 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-415 (-572))) . T) ((-25) . T) ((-38 #1=(-415 (-572))) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 |#2|) . T) ((-624 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-237) |has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) ((-247) |has| |#1| (-370)) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-415 (-572)) (-1123)) ((-296) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-313) |has| |#1| (-370)) ((-370) |has| |#1| (-370)) ((-460) |has| |#1| (-370)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-654 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-725 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370))) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-929) |has| |#1| (-370)) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1049 |#2|) . T) ((-1062 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1067 #1#) -3783 (|has| |#1| (-370)) (|has| |#1| (-38 (-415 (-572))))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-370)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1233) |has| |#1| (-370)) ((-1257 |#1| #0#) . T) ((-1260 |#1|) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 104)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-415 (-572))) 116) (($ $ (-415 (-572)) (-415 (-572))) 118)) (-2709 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) 54)) (-3915 (($ $) 192 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 168 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) 188 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 164 (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) 65)) (-3939 (($ $) 196 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 172 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) NIL)) (-1869 ((|#2| $) NIL)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) 85)) (-1844 (((-415 (-572)) $) 13)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-1787 (($ (-415 (-572)) |#2|) 11)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-2969 (((-112) $) 74)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-415 (-572)) $) 113) (((-415 (-572)) $ (-415 (-572))) 114)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) 130) (($ $ (-415 (-572))) 128)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-415 (-572))) 33) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) 125)) (-4057 (($ $) 162 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2742 ((|#2| $) 12)) (-1820 (((-3 |#2| "failed") $) 44)) (-1778 ((|#2| $) 45)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) 101 (|has| |#1| (-370)))) (-4161 (($ $) 146 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 151 (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214)))))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-415 (-572))) 122)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3272 (($ $) 160 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-415 (-572))) 108) (($ $ $) 94 (|has| (-415 (-572)) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) 138 (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-1497 (((-415 (-572)) $) 16)) (-2139 (($ $) 198 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 174 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 194 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 170 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 190 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 166 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 120)) (-3491 (((-870) $) NIL) (($ (-572)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-415 (-572))) 139 (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-4206 ((|#1| $ (-415 (-572))) 107)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) 127 T CONST)) (-2376 ((|#1| $) 106)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) 204 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 180 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) 200 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 176 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 208 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 184 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-415 (-572))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 210 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 186 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 206 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 182 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 202 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 178 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 21 T CONST)) (-2619 (($) 17 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3921 (((-112) $ $) 72)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) 100 (|has| |#1| (-370)))) (-4018 (($ $) 142) (($ $ $) 78)) (-4005 (($ $ $) 76)) (** (($ $ (-930)) NIL) (($ $ (-779)) 82) (($ $ (-572)) 157 (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 158 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1263 |#1| |#2|) (-1262 |#1| |#2|) (-1060) (-1239 |#1|)) (T -1263))
+NIL
+(-1262 |#1| |#2|)
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 11)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) NIL (|has| |#1| (-564)))) (-1957 (($ $ (-415 (-572))) NIL) (($ $ (-415 (-572)) (-415 (-572))) NIL)) (-2709 (((-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-370)))) (-2359 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4252 (((-112) $ $) NIL (|has| |#1| (-370)))) (-3893 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-779) (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#1|)))) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-1243 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1271 |#1| |#2| |#3|) "failed") $) 22)) (-1869 (((-1243 |#1| |#2| |#3|) $) NIL) (((-1271 |#1| |#2| |#3|) $) NIL)) (-3407 (($ $ $) NIL (|has| |#1| (-370)))) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1844 (((-415 (-572)) $) 69)) (-3418 (($ $ $) NIL (|has| |#1| (-370)))) (-1787 (($ (-415 (-572)) (-1243 |#1| |#2| |#3|)) NIL)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) NIL (|has| |#1| (-370)))) (-3439 (((-112) $) NIL (|has| |#1| (-370)))) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-415 (-572)) $) NIL) (((-415 (-572)) $ (-415 (-572))) NIL)) (-4422 (((-112) $) NIL)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) NIL) (($ $ (-415 (-572))) NIL)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-415 (-572))) 30) (($ $ (-1093) (-415 (-572))) NIL) (($ $ (-652 (-1093)) (-652 (-415 (-572)))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-4057 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-1335 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2742 (((-1243 |#1| |#2| |#3|) $) 72)) (-1820 (((-3 (-1243 |#1| |#2| |#3|) "failed") $) NIL)) (-1778 (((-1243 |#1| |#2| |#3|) $) NIL)) (-3618 (((-1170) $) NIL)) (-1809 (($ $) NIL (|has| |#1| (-370)))) (-4161 (($ $) 39 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) NIL (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 40 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) NIL (|has| |#1| (-370)))) (-1370 (($ (-652 $)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-2972 (((-426 $) $) NIL (|has| |#1| (-370)))) (-3260 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-370))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) NIL (|has| |#1| (-370)))) (-3103 (($ $ (-415 (-572))) NIL)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-4123 (((-3 (-652 $) "failed") (-652 $) $) NIL (|has| |#1| (-370)))) (-3272 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))))) (-4395 (((-779) $) NIL (|has| |#1| (-370)))) (-2679 ((|#1| $ (-415 (-572))) NIL) (($ $ $) NIL (|has| (-415 (-572)) (-1123)))) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) NIL (|has| |#1| (-370)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $ (-1275 |#2|)) 38)) (-1497 (((-415 (-572)) $) NIL)) (-2139 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) NIL)) (-3491 (((-870) $) 107) (($ (-572)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1243 |#1| |#2| |#3|)) 16) (($ (-1271 |#1| |#2| |#3|)) 17) (($ (-1275 |#2|)) 36) (($ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564)))) (-4206 ((|#1| $ (-415 (-572))) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) 12)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-415 (-572))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-415 (-572))))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 32 T CONST)) (-2619 (($) 26 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-415 (-572)) |#1|))))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 34)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ (-572)) NIL (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1264 |#1| |#2| |#3|) (-13 (-1262 |#1| (-1243 |#1| |#2| |#3|)) (-1049 (-1271 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1264))
+((-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(-13 (-1262 |#1| (-1243 |#1| |#2| |#3|)) (-1049 (-1271 |#1| |#2| |#3|)) (-624 (-1275 |#2|)) (-10 -8 (-15 -3011 ($ $ (-1275 |#2|))) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 37)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL)) (-1697 (($ $) NIL)) (-1774 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 (-572) "failed") $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-572)))) (((-3 (-415 (-572)) "failed") $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-415 (-572))))) (((-3 (-1264 |#2| |#3| |#4|) "failed") $) 22)) (-1869 (((-572) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-572)))) (((-415 (-572)) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-1049 (-415 (-572))))) (((-1264 |#2| |#3| |#4|) $) NIL)) (-1874 (($ $) 41)) (-2982 (((-3 $ "failed") $) 27)) (-2889 (($ $) NIL (|has| (-1264 |#2| |#3| |#4|) (-460)))) (-3163 (($ $ (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|) $) NIL)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) 11)) (-3357 (((-112) $) NIL)) (-3042 (($ (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) 25)) (-3808 (((-325 |#2| |#3| |#4|) $) NIL)) (-2008 (($ (-1 (-325 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) $) NIL)) (-3161 (($ (-1 (-1264 |#2| |#3| |#4|) (-1264 |#2| |#3| |#4|)) $) NIL)) (-3096 (((-3 (-851 |#2|) "failed") $) 90)) (-1840 (($ $) NIL)) (-1853 (((-1264 |#2| |#3| |#4|) $) 20)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1817 (((-112) $) NIL)) (-1829 (((-1264 |#2| |#3| |#4|) $) NIL)) (-3453 (((-3 $ "failed") $ (-1264 |#2| |#3| |#4|)) NIL (|has| (-1264 |#2| |#3| |#4|) (-564))) (((-3 $ "failed") $ $) NIL)) (-3291 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 |#2| |#3| |#4|)) (|:| |%expon| (-325 |#2| |#3| |#4|)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#2|)))))) (|:| |%type| (-1170))) "failed") $) 74)) (-1497 (((-325 |#2| |#3| |#4|) $) 17)) (-3262 (((-1264 |#2| |#3| |#4|) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-460)))) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ (-1264 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-415 (-572))) NIL (-3783 (|has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572)))) (|has| (-1264 |#2| |#3| |#4|) (-1049 (-415 (-572))))))) (-1708 (((-652 (-1264 |#2| |#3| |#4|)) $) NIL)) (-4206 (((-1264 |#2| |#3| |#4|) $ (-325 |#2| |#3| |#4|)) NIL)) (-2210 (((-3 $ "failed") $) NIL (|has| (-1264 |#2| |#3| |#4|) (-146)))) (-2455 (((-779)) NIL T CONST)) (-4257 (($ $ $ (-779)) NIL (|has| (-1264 |#2| |#3| |#4|) (-174)))) (-3424 (((-112) $ $) NIL)) (-2466 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ (-1264 |#2| |#3| |#4|)) NIL (|has| (-1264 |#2| |#3| |#4|) (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ (-1264 |#2| |#3| |#4|)) NIL) (($ (-1264 |#2| |#3| |#4|) $) NIL) (($ (-415 (-572)) $) NIL (|has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| (-1264 |#2| |#3| |#4|) (-38 (-415 (-572)))))))
+(((-1265 |#1| |#2| |#3| |#4|) (-13 (-332 (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) (-564) (-10 -8 (-15 -3096 ((-3 (-851 |#2|) "failed") $)) (-15 -3291 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 |#2| |#3| |#4|)) (|:| |%expon| (-325 |#2| |#3| |#4|)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#2|)))))) (|:| |%type| (-1170))) "failed") $)))) (-13 (-1049 (-572)) (-647 (-572)) (-460)) (-13 (-27) (-1214) (-438 |#1|)) (-1188) |#2|) (T -1265))
+((-3096 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *2 (-851 *4)) (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4))) (-3291 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 *4 *5 *6)) (|:| |%expon| (-325 *4 *5 *6)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4)))))) (|:| |%type| (-1170)))) (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188)) (-14 *6 *4))))
+(-13 (-332 (-1264 |#2| |#3| |#4|) (-325 |#2| |#3| |#4|)) (-564) (-10 -8 (-15 -3096 ((-3 (-851 |#2|) "failed") $)) (-15 -3291 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1264 |#2| |#3| |#4|)) (|:| |%expon| (-325 |#2| |#3| |#4|)) (|:| |%expTerms| (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| |#2|)))))) (|:| |%type| (-1170))) "failed") $))))
+((-1653 ((|#2| $) 34)) (-3598 ((|#2| $) 18)) (-4058 (($ $) 53)) (-2540 (($ $ (-572)) 85)) (-2938 (((-112) $ (-779)) 46)) (-2927 ((|#2| $ |#2|) 82)) (-1993 ((|#2| $ |#2|) 78)) (-3659 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3235 (($ $ (-652 $)) 81)) (-3587 ((|#2| $) 17)) (-2581 (($ $) NIL) (($ $ (-779)) 59)) (-2117 (((-652 $) $) 31)) (-1890 (((-112) $ $) 69)) (-2545 (((-112) $ (-779)) 45)) (-3818 (((-112) $ (-779)) 43)) (-3989 (((-112) $) 33)) (-4261 ((|#2| $) 25) (($ $ (-779)) 64)) (-2679 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3727 (((-112) $) 23)) (-2393 (($ $) 56)) (-2770 (($ $) 86)) (-2847 (((-779) $) 58)) (-3376 (($ $) 57)) (-2121 (($ $ $) 77) (($ |#2| $) NIL)) (-1678 (((-652 $) $) 32)) (-3921 (((-112) $ $) 67)) (-3475 (((-779) $) 52)))
+(((-1266 |#1| |#2|) (-10 -8 (-15 -2540 (|#1| |#1| (-572))) (-15 -3659 (|#2| |#1| "last" |#2|)) (-15 -1993 (|#2| |#1| |#2|)) (-15 -3659 (|#1| |#1| "rest" |#1|)) (-15 -3659 (|#2| |#1| "first" |#2|)) (-15 -2770 (|#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2847 ((-779) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3598 (|#2| |#1|)) (-15 -3587 (|#2| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4261 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "last")) (-15 -4261 (|#2| |#1|)) (-15 -2581 (|#1| |#1| (-779))) (-15 -2679 (|#1| |#1| "rest")) (-15 -2581 (|#1| |#1|)) (-15 -2679 (|#2| |#1| "first")) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2927 (|#2| |#1| |#2|)) (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -3235 (|#1| |#1| (-652 |#1|))) (-15 -1890 ((-112) |#1| |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -2679 (|#2| |#1| "value")) (-15 -1653 (|#2| |#1|)) (-15 -3989 ((-112) |#1|)) (-15 -2117 ((-652 |#1|) |#1|)) (-15 -1678 ((-652 |#1|) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779)))) (-1267 |#2|) (-1229)) (T -1266))
+NIL
+(-10 -8 (-15 -2540 (|#1| |#1| (-572))) (-15 -3659 (|#2| |#1| "last" |#2|)) (-15 -1993 (|#2| |#1| |#2|)) (-15 -3659 (|#1| |#1| "rest" |#1|)) (-15 -3659 (|#2| |#1| "first" |#2|)) (-15 -2770 (|#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2847 ((-779) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3598 (|#2| |#1|)) (-15 -3587 (|#2| |#1|)) (-15 -4058 (|#1| |#1|)) (-15 -4261 (|#1| |#1| (-779))) (-15 -2679 (|#2| |#1| "last")) (-15 -4261 (|#2| |#1|)) (-15 -2581 (|#1| |#1| (-779))) (-15 -2679 (|#1| |#1| "rest")) (-15 -2581 (|#1| |#1|)) (-15 -2679 (|#2| |#1| "first")) (-15 -2121 (|#1| |#2| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -2927 (|#2| |#1| |#2|)) (-15 -3659 (|#2| |#1| "value" |#2|)) (-15 -3235 (|#1| |#1| (-652 |#1|))) (-15 -1890 ((-112) |#1| |#1|)) (-15 -3727 ((-112) |#1|)) (-15 -2679 (|#2| |#1| "value")) (-15 -1653 (|#2| |#1|)) (-15 -3989 ((-112) |#1|)) (-15 -2117 ((-652 |#1|) |#1|)) (-15 -1678 ((-652 |#1|) |#1|)) (-15 -3921 ((-112) |#1| |#1|)) (-15 -3475 ((-779) |#1|)) (-15 -2938 ((-112) |#1| (-779))) (-15 -2545 ((-112) |#1| (-779))) (-15 -3818 ((-112) |#1| (-779))))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-1653 ((|#1| $) 49)) (-3598 ((|#1| $) 66)) (-4058 (($ $) 68)) (-2540 (($ $ (-572)) 53 (|has| $ (-6 -4455)))) (-2938 (((-112) $ (-779)) 8)) (-2927 ((|#1| $ |#1|) 40 (|has| $ (-6 -4455)))) (-3835 (($ $ $) 57 (|has| $ (-6 -4455)))) (-1993 ((|#1| $ |#1|) 55 (|has| $ (-6 -4455)))) (-2219 ((|#1| $ |#1|) 59 (|has| $ (-6 -4455)))) (-3659 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4455))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4455))) (($ $ "rest" $) 56 (|has| $ (-6 -4455))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4455)))) (-3235 (($ $ (-652 $)) 42 (|has| $ (-6 -4455)))) (-3587 ((|#1| $) 67)) (-1586 (($) 7 T CONST)) (-2581 (($ $) 74) (($ $ (-779)) 72)) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-2117 (((-652 $) $) 51)) (-1890 (((-112) $ $) 43 (|has| |#1| (-1111)))) (-2545 (((-112) $ (-779)) 9)) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36)) (-3818 (((-112) $ (-779)) 10)) (-3104 (((-652 |#1|) $) 46)) (-3989 (((-112) $) 50)) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-4261 ((|#1| $) 71) (($ $ (-779)) 69)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 77) (($ $ (-779)) 75)) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1762 (((-572) $ $) 45)) (-3727 (((-112) $) 47)) (-2393 (($ $) 63)) (-2770 (($ $) 60 (|has| $ (-6 -4455)))) (-2847 (((-779) $) 64)) (-3376 (($ $) 65)) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-3679 (($ $) 13)) (-2355 (($ $ $) 62 (|has| $ (-6 -4455))) (($ $ |#1|) 61 (|has| $ (-6 -4455)))) (-2121 (($ $ $) 79) (($ |#1| $) 78)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-1678 (((-652 $) $) 52)) (-1955 (((-112) $ $) 44 (|has| |#1| (-1111)))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1267 |#1|) (-141) (-1229)) (T -1267))
+((-2121 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2121 (*1 *1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2679 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2570 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2679 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2679 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-4261 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-4058 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3376 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2355 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2355 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2770 (*1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2219 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3659 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3835 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3659 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))) (-1993 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-3659 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))) (-2540 (*1 *1 *1 *2) (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3)) (-4 *3 (-1229)))))
+(-13 (-1021 |t#1|) (-10 -8 (-15 -2121 ($ $ $)) (-15 -2121 ($ |t#1| $)) (-15 -2570 (|t#1| $)) (-15 -2679 (|t#1| $ "first")) (-15 -2570 ($ $ (-779))) (-15 -2581 ($ $)) (-15 -2679 ($ $ "rest")) (-15 -2581 ($ $ (-779))) (-15 -4261 (|t#1| $)) (-15 -2679 (|t#1| $ "last")) (-15 -4261 ($ $ (-779))) (-15 -4058 ($ $)) (-15 -3587 (|t#1| $)) (-15 -3598 (|t#1| $)) (-15 -3376 ($ $)) (-15 -2847 ((-779) $)) (-15 -2393 ($ $)) (IF (|has| $ (-6 -4455)) (PROGN (-15 -2355 ($ $ $)) (-15 -2355 ($ $ |t#1|)) (-15 -2770 ($ $)) (-15 -2219 (|t#1| $ |t#1|)) (-15 -3659 (|t#1| $ "first" |t#1|)) (-15 -3835 ($ $ $)) (-15 -3659 ($ $ "rest" $)) (-15 -1993 (|t#1| $ |t#1|)) (-15 -3659 (|t#1| $ "last" |t#1|)) (-15 -2540 ($ $ (-572)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1111)) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-621 (-870)))) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-497 |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-1021 |#1|) . T) ((-1111) |has| |#1| (-1111)) ((-1229) . T))
+((-3161 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3161 (|#4| (-1 |#2| |#1|) |#3|))) (-1060) (-1060) (-1270 |#1|) (-1270 |#2|)) (T -1268))
+((-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060)) (-4 *2 (-1270 *6)) (-5 *1 (-1268 *5 *6 *4 *2)) (-4 *4 (-1270 *5)))))
+(-10 -7 (-15 -3161 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3143 (((-112) $) 17)) (-3915 (($ $) 105)) (-3790 (($ $) 81)) (-3893 (($ $) 101)) (-3770 (($ $) 77)) (-3939 (($ $) 109)) (-3811 (($ $) 85)) (-4057 (($ $) 75)) (-3272 (($ $) 73)) (-2139 (($ $) 111)) (-3822 (($ $) 87)) (-3927 (($ $) 107)) (-3800 (($ $) 83)) (-3905 (($ $) 103)) (-3780 (($ $) 79)) (-3491 (((-870) $) 61) (($ (-572)) NIL) (($ (-415 (-572))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2176 (($ $) 117)) (-3852 (($ $) 93)) (-2152 (($ $) 113)) (-3833 (($ $) 89)) (-2204 (($ $) 121)) (-3871 (($ $) 97)) (-3120 (($ $) 123)) (-3883 (($ $) 99)) (-2193 (($ $) 119)) (-3861 (($ $) 95)) (-2162 (($ $) 115)) (-3842 (($ $) 91)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-415 (-572))) 71)))
+(((-1269 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -3790 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -2139 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -3143 ((-112) |#1|)) (-15 -3491 ((-870) |#1|))) (-1270 |#2|) (-1060)) (T -1269))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-415 (-572)))) (-15 -3790 (|#1| |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3822 (|#1| |#1|)) (-15 -3800 (|#1| |#1|)) (-15 -3780 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3927 (|#1| |#1|)) (-15 -2139 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -3120 (|#1| |#1|)) (-15 -2204 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3491 (|#1| |#2|)) (-15 -3491 (|#1| |#1|)) (-15 -3491 (|#1| (-415 (-572)))) (-15 -3491 (|#1| (-572))) (-15 ** (|#1| |#1| (-779))) (-15 ** (|#1| |#1| (-930))) (-15 -3143 ((-112) |#1|)) (-15 -3491 ((-870) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2220 (((-652 (-1093)) $) 86)) (-2043 (((-1188) $) 116)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 63 (|has| |#1| (-564)))) (-1697 (($ $) 64 (|has| |#1| (-564)))) (-1774 (((-112) $) 66 (|has| |#1| (-564)))) (-1957 (($ $ (-779)) 111) (($ $ (-779) (-779)) 110)) (-2709 (((-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 148 (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) 131 (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) 20)) (-3093 (($ $) 130 (|has| |#1| (-38 (-415 (-572)))))) (-3893 (($ $) 147 (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) 132 (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|)))) 168) (($ (-1168 |#1|)) 166)) (-3939 (($ $) 146 (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) 133 (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) 18 T CONST)) (-1874 (($ $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-1452 (($ $) 165)) (-3102 (((-961 |#1|) $ (-779)) 163) (((-961 |#1|) $ (-779) (-779)) 162)) (-2969 (((-112) $) 85)) (-2250 (($) 158 (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-779) $) 113) (((-779) $ (-779)) 112)) (-4422 (((-112) $) 35)) (-2033 (($ $ (-572)) 129 (|has| |#1| (-38 (-415 (-572)))))) (-2865 (($ $ (-930)) 114)) (-1506 (($ (-1 |#1| (-572)) $) 164)) (-3357 (((-112) $) 74)) (-3042 (($ |#1| (-779)) 73) (($ $ (-1093) (-779)) 88) (($ $ (-652 (-1093)) (-652 (-779))) 87)) (-3161 (($ (-1 |#1| |#1|) $) 75)) (-4057 (($ $) 155 (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) 77)) (-1853 ((|#1| $) 78)) (-3618 (((-1170) $) 10)) (-4161 (($ $) 160 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 159 (-3783 (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-968)) (|has| |#1| (-1214)) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-38 (-415 (-572)))))))) (-2614 (((-1131) $) 11)) (-3103 (($ $ (-779)) 108)) (-3453 (((-3 $ "failed") $ $) 62 (|has| |#1| (-564)))) (-3272 (($ $) 156 (|has| |#1| (-38 (-415 (-572)))))) (-3654 (((-1168 |#1|) $ |#1|) 107 (|has| |#1| (-15 ** (|#1| |#1| (-779)))))) (-2679 ((|#1| $ (-779)) 118) (($ $ $) 94 (|has| (-779) (-1123)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) 102 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188) (-779)) 101 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-652 (-1188))) 100 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188)) 99 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-779)) 97 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-1497 (((-779) $) 76)) (-2139 (($ $) 145 (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) 134 (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) 144 (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) 135 (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) 143 (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) 136 (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 84)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ (-415 (-572))) 69 (|has| |#1| (-38 (-415 (-572))))) (($ $) 61 (|has| |#1| (-564))) (($ |#1|) 59 (|has| |#1| (-174)))) (-1708 (((-1168 |#1|) $) 167)) (-4206 ((|#1| $ (-779)) 71)) (-2210 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2455 (((-779)) 32 T CONST)) (-2376 ((|#1| $) 115)) (-3424 (((-112) $ $) 9)) (-2176 (($ $) 154 (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) 65 (|has| |#1| (-564)))) (-2152 (($ $) 153 (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) 141 (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) 152 (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) 140 (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-779)) 109 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-779)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) 151 (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) 139 (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) 150 (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) 138 (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) 149 (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) 137 (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) 106 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188) (-779)) 105 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-652 (-1188))) 104 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-1188)) 103 (-12 (|has| |#1| (-909 (-1188))) (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (($ $ (-779)) 98 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 70 (|has| |#1| (-370)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ |#1|) 161 (|has| |#1| (-370))) (($ $ $) 157 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 128 (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-415 (-572)) $) 68 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) 67 (|has| |#1| (-38 (-415 (-572)))))))
+(((-1270 |#1|) (-141) (-1060)) (T -1270))
+((-2493 (*1 *1 *2) (-12 (-5 *2 (-1168 (-2 (|:| |k| (-779)) (|:| |c| *3)))) (-4 *3 (-1060)) (-4 *1 (-1270 *3)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-5 *2 (-1168 *3)))) (-2493 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-4 *1 (-1270 *3)))) (-1452 (*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1270 *3)) (-4 *3 (-1060)))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060)) (-5 *2 (-961 *4)))) (-3102 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060)) (-5 *2 (-961 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))) (-4161 (*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572)))))) (-4161 (*1 *1 *1 *2) (-3783 (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214)) (-4 *3 (-38 (-415 (-572)))))) (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-12 (|has| *3 (-15 -2220 ((-652 *2) *3))) (|has| *3 (-15 -4161 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572)))))))))
+(-13 (-1257 |t#1| (-779)) (-10 -8 (-15 -2493 ($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |t#1|))))) (-15 -1708 ((-1168 |t#1|) $)) (-15 -2493 ($ (-1168 |t#1|))) (-15 -1452 ($ $)) (-15 -1506 ($ (-1 |t#1| (-572)) $)) (-15 -3102 ((-961 |t#1|) $ (-779))) (-15 -3102 ((-961 |t#1|) $ (-779) (-779))) (IF (|has| |t#1| (-370)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-415 (-572)))) (PROGN (-15 -4161 ($ $)) (IF (|has| |t#1| (-15 -4161 (|t#1| |t#1| (-1188)))) (IF (|has| |t#1| (-15 -2220 ((-652 (-1188)) |t#1|))) (-15 -4161 ($ $ (-1188))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1214)) (IF (|has| |t#1| (-968)) (IF (|has| |t#1| (-29 (-572))) (-15 -4161 ($ $ (-1188))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1013)) (-6 (-1214))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-779)) . T) ((-25) . T) ((-38 #1=(-415 (-572))) |has| |#1| (-38 (-415 (-572)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-564)) ((-35) |has| |#1| (-38 (-415 (-572)))) ((-95) |has| |#1| (-38 (-415 (-572)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-415 (-572)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-624 #1#) |has| |#1| (-38 (-415 (-572)))) ((-624 (-572)) . T) ((-624 |#1|) |has| |#1| (-174)) ((-624 $) |has| |#1| (-564)) ((-621 (-870)) . T) ((-174) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-237) |has| |#1| (-15 * (|#1| (-779) |#1|))) ((-290) |has| |#1| (-38 (-415 (-572)))) ((-292 #0# |#1|) . T) ((-292 $ $) |has| (-779) (-1123)) ((-296) |has| |#1| (-564)) ((-501) |has| |#1| (-38 (-415 (-572)))) ((-564) |has| |#1| (-564)) ((-654 #1#) |has| |#1| (-38 (-415 (-572)))) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #1#) |has| |#1| (-38 (-415 (-572)))) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #1#) |has| |#1| (-38 (-415 (-572)))) ((-648 |#1|) |has| |#1| (-174)) ((-648 $) |has| |#1| (-564)) ((-725 #1#) |has| |#1| (-38 (-415 (-572)))) ((-725 |#1|) |has| |#1| (-174)) ((-725 $) |has| |#1| (-564)) ((-734) . T) ((-909 (-1188)) -12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188)))) ((-984 |#1| #0# (-1093)) . T) ((-1013) |has| |#1| (-38 (-415 (-572)))) ((-1062 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1062 |#1|) . T) ((-1062 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1067 #1#) |has| |#1| (-38 (-415 (-572)))) ((-1067 |#1|) . T) ((-1067 $) -3783 (|has| |#1| (-564)) (|has| |#1| (-174))) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1214) |has| |#1| (-38 (-415 (-572)))) ((-1217) |has| |#1| (-38 (-415 (-572)))) ((-1229) . T) ((-1257 |#1| #0#) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2220 (((-652 (-1093)) $) NIL)) (-2043 (((-1188) $) 90)) (-1643 (((-1252 |#2| |#1|) $ (-779)) 73)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) NIL (|has| |#1| (-564)))) (-1697 (($ $) NIL (|has| |#1| (-564)))) (-1774 (((-112) $) 142 (|has| |#1| (-564)))) (-1957 (($ $ (-779)) 127) (($ $ (-779) (-779)) 130)) (-2709 (((-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|))) $) 43)) (-3915 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3790 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2092 (((-3 $ "failed") $ $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3893 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3770 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2493 (($ (-1168 (-2 (|:| |k| (-779)) (|:| |c| |#1|)))) 52) (($ (-1168 |#1|)) NIL)) (-3939 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3811 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1586 (($) NIL T CONST)) (-3510 (($ $) 134)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-1452 (($ $) 140)) (-3102 (((-961 |#1|) $ (-779)) 63) (((-961 |#1|) $ (-779) (-779)) 65)) (-2969 (((-112) $) NIL)) (-2250 (($) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2068 (((-779) $) NIL) (((-779) $ (-779)) NIL)) (-4422 (((-112) $) NIL)) (-2979 (($ $) 117)) (-2033 (($ $ (-572)) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2114 (($ (-572) (-572) $) 136)) (-2865 (($ $ (-930)) 139)) (-1506 (($ (-1 |#1| (-572)) $) 111)) (-3357 (((-112) $) NIL)) (-3042 (($ |#1| (-779)) 16) (($ $ (-1093) (-779)) NIL) (($ $ (-652 (-1093)) (-652 (-779))) NIL)) (-3161 (($ (-1 |#1| |#1|) $) 98)) (-4057 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-1840 (($ $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-4056 (($ $) 115)) (-3526 (($ $) 113)) (-3351 (($ (-572) (-572) $) 138)) (-4161 (($ $) 150 (|has| |#1| (-38 (-415 (-572))))) (($ $ (-1188)) 156 (-3783 (-12 (|has| |#1| (-15 -4161 (|#1| |#1| (-1188)))) (|has| |#1| (-15 -2220 ((-652 (-1188)) |#1|))) (|has| |#1| (-38 (-415 (-572))))) (-12 (|has| |#1| (-29 (-572))) (|has| |#1| (-38 (-415 (-572)))) (|has| |#1| (-968)) (|has| |#1| (-1214))))) (($ $ (-1275 |#2|)) 151 (|has| |#1| (-38 (-415 (-572)))))) (-2614 (((-1131) $) NIL)) (-3860 (($ $ (-572) (-572)) 121)) (-3103 (($ $ (-779)) 123)) (-3453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-564)))) (-3272 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2874 (($ $) 119)) (-3654 (((-1168 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-779)))))) (-2679 ((|#1| $ (-779)) 95) (($ $ $) 132 (|has| (-779) (-1123)))) (-3011 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) 108 (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $ (-1275 |#2|)) 103)) (-1497 (((-779) $) NIL)) (-2139 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3822 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3927 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3800 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3780 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3610 (($ $) 125)) (-3491 (((-870) $) NIL) (($ (-572)) 26) (($ (-415 (-572))) 148 (|has| |#1| (-38 (-415 (-572))))) (($ $) NIL (|has| |#1| (-564))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1252 |#2| |#1|)) 81) (($ (-1275 |#2|)) 22)) (-1708 (((-1168 |#1|) $) NIL)) (-4206 ((|#1| $ (-779)) 94)) (-2210 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2455 (((-779)) NIL T CONST)) (-2376 ((|#1| $) 91)) (-3424 (((-112) $ $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2466 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2152 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2204 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-4090 ((|#1| $ (-779)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-779)))) (|has| |#1| (-15 -3491 (|#1| (-1188))))))) (-3120 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2193 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-415 (-572)))))) (-2602 (($) 18 T CONST)) (-2619 (($) 13 T CONST)) (-4019 (($ $ (-652 (-1188)) (-652 (-779))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188) (-779)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-652 (-1188))) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-1188)) NIL (-12 (|has| |#1| (-15 * (|#1| (-779) |#1|))) (|has| |#1| (-909 (-1188))))) (($ $ (-779)) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-779) |#1|))))) (-3921 (((-112) $ $) NIL)) (-4029 (($ $ |#1|) NIL (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) 107)) (-4005 (($ $ $) 20)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL) (($ $ |#1|) 145 (|has| |#1| (-370))) (($ $ $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-415 (-572)) $) NIL (|has| |#1| (-38 (-415 (-572))))) (($ $ (-415 (-572))) NIL (|has| |#1| (-38 (-415 (-572)))))))
+(((-1271 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-10 -8 (-15 -3491 ($ (-1252 |#2| |#1|))) (-15 -1643 ((-1252 |#2| |#1|) $ (-779))) (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (-15 -3526 ($ $)) (-15 -4056 ($ $)) (-15 -2979 ($ $)) (-15 -2874 ($ $)) (-15 -3860 ($ $ (-572) (-572))) (-15 -3510 ($ $)) (-15 -2114 ($ (-572) (-572) $)) (-15 -3351 ($ (-572) (-572) $)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|))) (-1060) (-1188) |#1|) (T -1271))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3) (-5 *1 (-1271 *3 *4 *5)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1271 *4 *5 *6)) (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *5 *3))) (-3526 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-4056 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-2979 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-2874 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-3860 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3))) (-3510 (*1 *1 *1) (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188)) (-14 *4 *2))) (-2114 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3))) (-3351 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188)) (-14 *5 *3))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(-13 (-1270 |#1|) (-10 -8 (-15 -3491 ($ (-1252 |#2| |#1|))) (-15 -1643 ((-1252 |#2| |#1|) $ (-779))) (-15 -3491 ($ (-1275 |#2|))) (-15 -3011 ($ $ (-1275 |#2|))) (-15 -3526 ($ $)) (-15 -4056 ($ $)) (-15 -2979 ($ $)) (-15 -2874 ($ $)) (-15 -3860 ($ $ (-572) (-572))) (-15 -3510 ($ $)) (-15 -2114 ($ (-572) (-572) $)) (-15 -3351 ($ (-572) (-572) $)) (IF (|has| |#1| (-38 (-415 (-572)))) (-15 -4161 ($ $ (-1275 |#2|))) |%noBranch|)))
+((-3242 (((-1 (-1168 |#1|) (-652 (-1168 |#1|))) (-1 |#2| (-652 |#2|))) 24)) (-1440 (((-1 (-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1573 (((-1 (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2|)) 13)) (-1365 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2749 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1469 ((|#2| (-1 |#2| (-652 |#2|)) (-652 |#1|)) 60)) (-2845 (((-652 |#2|) (-652 |#1|) (-652 (-1 |#2| (-652 |#2|)))) 66)) (-2446 ((|#2| |#2| |#2|) 43)))
+(((-1272 |#1| |#2|) (-10 -7 (-15 -1573 ((-1 (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2|))) (-15 -1440 ((-1 (-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3242 ((-1 (-1168 |#1|) (-652 (-1168 |#1|))) (-1 |#2| (-652 |#2|)))) (-15 -2446 (|#2| |#2| |#2|)) (-15 -2749 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1365 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1469 (|#2| (-1 |#2| (-652 |#2|)) (-652 |#1|))) (-15 -2845 ((-652 |#2|) (-652 |#1|) (-652 (-1 |#2| (-652 |#2|)))))) (-38 (-415 (-572))) (-1270 |#1|)) (T -1272))
+((-2845 (*1 *2 *3 *4) (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 (-1 *6 (-652 *6)))) (-4 *5 (-38 (-415 (-572)))) (-4 *6 (-1270 *5)) (-5 *2 (-652 *6)) (-5 *1 (-1272 *5 *6)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-652 *2))) (-5 *4 (-652 *5)) (-4 *5 (-38 (-415 (-572)))) (-4 *2 (-1270 *5)) (-5 *1 (-1272 *5 *2)))) (-1365 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2)) (-4 *4 (-38 (-415 (-572)))))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2)) (-4 *4 (-38 (-415 (-572)))))) (-2446 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1272 *3 *2)) (-4 *2 (-1270 *3)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-652 *5))) (-4 *5 (-1270 *4)) (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-652 (-1168 *4)))) (-5 *1 (-1272 *4 *5)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1270 *4)) (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-1168 *4) (-1168 *4))) (-5 *1 (-1272 *4 *5)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1270 *4)) (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-1168 *4))) (-5 *1 (-1272 *4 *5)))))
+(-10 -7 (-15 -1573 ((-1 (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2|))) (-15 -1440 ((-1 (-1168 |#1|) (-1168 |#1|) (-1168 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3242 ((-1 (-1168 |#1|) (-652 (-1168 |#1|))) (-1 |#2| (-652 |#2|)))) (-15 -2446 (|#2| |#2| |#2|)) (-15 -2749 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1365 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1469 (|#2| (-1 |#2| (-652 |#2|)) (-652 |#1|))) (-15 -2845 ((-652 |#2|) (-652 |#1|) (-652 (-1 |#2| (-652 |#2|))))))
+((-2148 ((|#2| |#4| (-779)) 31)) (-2781 ((|#4| |#2|) 26)) (-2349 ((|#4| (-415 |#2|)) 49 (|has| |#1| (-564)))) (-4367 (((-1 |#4| (-652 |#4|)) |#3|) 43)))
+(((-1273 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2781 (|#4| |#2|)) (-15 -2148 (|#2| |#4| (-779))) (-15 -4367 ((-1 |#4| (-652 |#4|)) |#3|)) (IF (|has| |#1| (-564)) (-15 -2349 (|#4| (-415 |#2|))) |%noBranch|)) (-1060) (-1255 |#1|) (-664 |#2|) (-1270 |#1|)) (T -1273))
+((-2349 (*1 *2 *3) (-12 (-5 *3 (-415 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-564)) (-4 *4 (-1060)) (-4 *2 (-1270 *4)) (-5 *1 (-1273 *4 *5 *6 *2)) (-4 *6 (-664 *5)))) (-4367 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *5 (-1255 *4)) (-5 *2 (-1 *6 (-652 *6))) (-5 *1 (-1273 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-1270 *4)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-1273 *5 *2 *6 *3)) (-4 *6 (-664 *2)) (-4 *3 (-1270 *5)))) (-2781 (*1 *2 *3) (-12 (-4 *4 (-1060)) (-4 *3 (-1255 *4)) (-4 *2 (-1270 *4)) (-5 *1 (-1273 *4 *3 *5 *2)) (-4 *5 (-664 *3)))))
+(-10 -7 (-15 -2781 (|#4| |#2|)) (-15 -2148 (|#2| |#4| (-779))) (-15 -4367 ((-1 |#4| (-652 |#4|)) |#3|)) (IF (|has| |#1| (-564)) (-15 -2349 (|#4| (-415 |#2|))) |%noBranch|))
+NIL
+(((-1274) (-141)) (T -1274))
+NIL
+(-13 (-10 -7 (-6 -4055)))
+((-3464 (((-112) $ $) NIL)) (-2043 (((-1188)) 12)) (-3618 (((-1170) $) 18)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 11) (((-1188) $) 8)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 15)))
+(((-1275 |#1|) (-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -3491 ((-1188) $)) (-15 -2043 ((-1188))))) (-1188)) (T -1275))
+((-3491 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2))) (-2043 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2))))
+(-13 (-1111) (-621 (-1188)) (-10 -8 (-15 -3491 ((-1188) $)) (-15 -2043 ((-1188)))))
+((-3488 (($ (-779)) 19)) (-1504 (((-697 |#2|) $ $) 41)) (-2691 ((|#2| $) 51)) (-2040 ((|#2| $) 50)) (-1606 ((|#2| $ $) 36)) (-3947 (($ $ $) 47)) (-4018 (($ $) 23) (($ $ $) 29)) (-4005 (($ $ $) 15)) (* (($ (-572) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1276 |#1| |#2|) (-10 -8 (-15 -2691 (|#2| |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -3947 (|#1| |#1| |#1|)) (-15 -1504 ((-697 |#2|) |#1| |#1|)) (-15 -1606 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -3488 (|#1| (-779))) (-15 -4005 (|#1| |#1| |#1|))) (-1277 |#2|) (-1229)) (T -1276))
+NIL
+(-10 -8 (-15 -2691 (|#2| |#1|)) (-15 -2040 (|#2| |#1|)) (-15 -3947 (|#1| |#1| |#1|)) (-15 -1504 ((-697 |#2|) |#1| |#1|)) (-15 -1606 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-572) |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -3488 (|#1| (-779))) (-15 -4005 (|#1| |#1| |#1|)))
+((-3464 (((-112) $ $) 19 (|has| |#1| (-1111)))) (-3488 (($ (-779)) 115 (|has| |#1| (-23)))) (-2812 (((-1284) $ (-572) (-572)) 41 (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4455))) (($ $) 91 (-12 (|has| |#1| (-858)) (|has| $ (-6 -4455))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) 8)) (-3659 ((|#1| $ (-572) |#1|) 53 (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) 60 (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4454)))) (-1586 (($) 7 T CONST)) (-4095 (($ $) 93 (|has| $ (-6 -4455)))) (-1852 (($ $) 103)) (-3955 (($ $) 80 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-4243 (($ |#1| $) 79 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) 54 (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) 52)) (-3239 (((-572) (-1 (-112) |#1|) $) 100) (((-572) |#1| $) 99 (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) 98 (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) 31 (|has| $ (-6 -4454)))) (-1504 (((-697 |#1|) $ $) 108 (|has| |#1| (-1060)))) (-2924 (($ (-779) |#1|) 70)) (-2545 (((-112) $ (-779)) 9)) (-1531 (((-572) $) 44 (|has| (-572) (-858)))) (-2536 (($ $ $) 90 (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) 30 (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2751 (((-572) $) 45 (|has| (-572) (-858)))) (-3928 (($ $ $) 89 (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2691 ((|#1| $) 105 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-3818 (((-112) $ (-779)) 10)) (-2040 ((|#1| $) 106 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1013))))) (-3618 (((-1170) $) 22 (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) 62) (($ $ $ (-572)) 61)) (-1634 (((-652 (-572)) $) 47)) (-3132 (((-112) (-572) $) 48)) (-2614 (((-1131) $) 21 (|has| |#1| (-1111)))) (-2570 ((|#1| $) 43 (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-3803 (($ $ |#1|) 42 (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) 27 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) 26 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) 24 (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) 14)) (-2516 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) 49)) (-3712 (((-112) $) 11)) (-1321 (($) 12)) (-2679 ((|#1| $ (-572) |#1|) 51) ((|#1| $ (-572)) 50) (($ $ (-1246 (-572))) 71)) (-1606 ((|#1| $ $) 109 (|has| |#1| (-1060)))) (-3817 (($ $ (-572)) 64) (($ $ (-1246 (-572))) 63)) (-3947 (($ $ $) 107 (|has| |#1| (-1060)))) (-1371 (((-779) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4454))) (((-779) |#1| $) 29 (-12 (|has| |#1| (-1111)) (|has| $ (-6 -4454))))) (-2561 (($ $ $ (-572)) 94 (|has| $ (-6 -4455)))) (-3679 (($ $) 13)) (-3222 (((-544) $) 81 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 72)) (-2121 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-652 $)) 66)) (-3491 (((-870) $) 18 (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) 23 (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) 87 (|has| |#1| (-858)))) (-3954 (((-112) $ $) 86 (|has| |#1| (-858)))) (-3921 (((-112) $ $) 20 (|has| |#1| (-1111)))) (-3965 (((-112) $ $) 88 (|has| |#1| (-858)))) (-3943 (((-112) $ $) 85 (|has| |#1| (-858)))) (-4018 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4005 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-572) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-734))) (($ $ |#1|) 110 (|has| |#1| (-734)))) (-3475 (((-779) $) 6 (|has| $ (-6 -4454)))))
+(((-1277 |#1|) (-141) (-1229)) (T -1277))
+((-4005 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-25)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1277 *3)) (-4 *3 (-23)) (-4 *3 (-1229)))) (-4018 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))) (-1504 (*1 *2 *1 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-1060)) (-5 *2 (-697 *3)))) (-3947 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013)) (-4 *2 (-1060)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013)) (-4 *2 (-1060)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4005 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3488 ($ (-779))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4018 ($ $)) (-15 -4018 ($ $ $)) (-15 * ($ (-572) $))) |%noBranch|) (IF (|has| |t#1| (-734)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1060)) (PROGN (-15 -1606 (|t#1| $ $)) (-15 -1504 ((-697 |t#1|) $ $)) (-15 -3947 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-1060)) (PROGN (-15 -2040 (|t#1| $)) (-15 -2691 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-621 (-870)) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858)) (|has| |#1| (-621 (-870)))) ((-152 |#1|) . T) ((-622 (-544)) |has| |#1| (-622 (-544))) ((-292 #0=(-572) |#1|) . T) ((-292 (-1246 (-572)) $) . T) ((-294 #0# |#1|) . T) ((-315 |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-380 |#1|) . T) ((-497 |#1|) . T) ((-612 #0# |#1|) . T) ((-522 |#1| |#1|) -12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))) ((-659 |#1|) . T) ((-19 |#1|) . T) ((-858) |has| |#1| (-858)) ((-1111) -3783 (|has| |#1| (-1111)) (|has| |#1| (-858))) ((-1229) . T))
+((-4424 (((-1279 |#2|) (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|) 13)) (-2925 ((|#2| (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|) 15)) (-3161 (((-3 (-1279 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1279 |#1|)) 30) (((-1279 |#2|) (-1 |#2| |#1|) (-1279 |#1|)) 18)))
+(((-1278 |#1| |#2|) (-10 -7 (-15 -4424 ((-1279 |#2|) (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -3161 ((-1279 |#2|) (-1 |#2| |#1|) (-1279 |#1|))) (-15 -3161 ((-3 (-1279 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1279 |#1|)))) (-1229) (-1229)) (T -1278))
+((-3161 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1279 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1279 *6)) (-5 *1 (-1278 *5 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1279 *6)) (-5 *1 (-1278 *5 *6)))) (-2925 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1279 *5)) (-4 *5 (-1229)) (-4 *2 (-1229)) (-5 *1 (-1278 *5 *2)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1279 *6)) (-4 *6 (-1229)) (-4 *5 (-1229)) (-5 *2 (-1279 *5)) (-5 *1 (-1278 *6 *5)))))
+(-10 -7 (-15 -4424 ((-1279 |#2|) (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -2925 (|#2| (-1 |#2| |#1| |#2|) (-1279 |#1|) |#2|)) (-15 -3161 ((-1279 |#2|) (-1 |#2| |#1|) (-1279 |#1|))) (-15 -3161 ((-3 (-1279 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1279 |#1|))))
+((-3464 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3488 (($ (-779)) NIL (|has| |#1| (-23)))) (-2999 (($ (-652 |#1|)) 11)) (-2812 (((-1284) $ (-572) (-572)) NIL (|has| $ (-6 -4455)))) (-3755 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-858)))) (-3519 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4455))) (($ $) NIL (-12 (|has| $ (-6 -4455)) (|has| |#1| (-858))))) (-2641 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-858)))) (-2938 (((-112) $ (-779)) NIL)) (-3659 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455))) ((|#1| $ (-1246 (-572)) |#1|) NIL (|has| $ (-6 -4455)))) (-1424 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-1586 (($) NIL T CONST)) (-4095 (($ $) NIL (|has| $ (-6 -4455)))) (-1852 (($ $) NIL)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-4243 (($ |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-2925 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4454))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4454)))) (-3061 ((|#1| $ (-572) |#1|) NIL (|has| $ (-6 -4455)))) (-2986 ((|#1| $ (-572)) NIL)) (-3239 (((-572) (-1 (-112) |#1|) $) NIL) (((-572) |#1| $) NIL (|has| |#1| (-1111))) (((-572) |#1| $ (-572)) NIL (|has| |#1| (-1111)))) (-1442 (((-652 |#1|) $) 16 (|has| $ (-6 -4454)))) (-1504 (((-697 |#1|) $ $) NIL (|has| |#1| (-1060)))) (-2924 (($ (-779) |#1|) NIL)) (-2545 (((-112) $ (-779)) NIL)) (-1531 (((-572) $) NIL (|has| (-572) (-858)))) (-2536 (($ $ $) NIL (|has| |#1| (-858)))) (-1377 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-858)))) (-2396 (((-652 |#1|) $) NIL (|has| $ (-6 -4454)))) (-4211 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2751 (((-572) $) 12 (|has| (-572) (-858)))) (-3928 (($ $ $) NIL (|has| |#1| (-858)))) (-3049 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2691 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-3818 (((-112) $ (-779)) NIL)) (-2040 ((|#1| $) NIL (-12 (|has| |#1| (-1013)) (|has| |#1| (-1060))))) (-3618 (((-1170) $) NIL (|has| |#1| (-1111)))) (-2744 (($ |#1| $ (-572)) NIL) (($ $ $ (-572)) NIL)) (-1634 (((-652 (-572)) $) NIL)) (-3132 (((-112) (-572) $) NIL)) (-2614 (((-1131) $) NIL (|has| |#1| (-1111)))) (-2570 ((|#1| $) NIL (|has| (-572) (-858)))) (-3124 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3803 (($ $ |#1|) NIL (|has| $ (-6 -4455)))) (-3089 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 (-300 |#1|))) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-300 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111)))) (($ $ (-652 |#1|) (-652 |#1|)) NIL (-12 (|has| |#1| (-315 |#1|)) (|has| |#1| (-1111))))) (-2187 (((-112) $ $) NIL)) (-2516 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2950 (((-652 |#1|) $) NIL)) (-3712 (((-112) $) NIL)) (-1321 (($) NIL)) (-2679 ((|#1| $ (-572) |#1|) NIL) ((|#1| $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-1606 ((|#1| $ $) NIL (|has| |#1| (-1060)))) (-3817 (($ $ (-572)) NIL) (($ $ (-1246 (-572))) NIL)) (-3947 (($ $ $) NIL (|has| |#1| (-1060)))) (-1371 (((-779) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454))) (((-779) |#1| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#1| (-1111))))) (-2561 (($ $ $ (-572)) NIL (|has| $ (-6 -4455)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) 20 (|has| |#1| (-622 (-544))))) (-3503 (($ (-652 |#1|)) 10)) (-2121 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-652 $)) NIL)) (-3491 (((-870) $) NIL (|has| |#1| (-621 (-870))))) (-3424 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3776 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4454)))) (-3976 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3954 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3921 (((-112) $ $) NIL (|has| |#1| (-1111)))) (-3965 (((-112) $ $) NIL (|has| |#1| (-858)))) (-3943 (((-112) $ $) NIL (|has| |#1| (-858)))) (-4018 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4005 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-572) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-734))) (($ $ |#1|) NIL (|has| |#1| (-734)))) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1279 |#1|) (-13 (-1277 |#1|) (-10 -8 (-15 -2999 ($ (-652 |#1|))))) (-1229)) (T -1279))
+((-2999 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1279 *3)))))
+(-13 (-1277 |#1|) (-10 -8 (-15 -2999 ($ (-652 |#1|)))))
+((-3464 (((-112) $ $) NIL)) (-3649 (((-1170) $ (-1170)) 107) (((-1170) $ (-1170) (-1170)) 105) (((-1170) $ (-1170) (-652 (-1170))) 104)) (-2804 (($) 69)) (-3178 (((-1284) $ (-476) (-930)) 54)) (-4309 (((-1284) $ (-930) (-1170)) 89) (((-1284) $ (-930) (-882)) 90)) (-4131 (((-1284) $ (-930) (-386) (-386)) 57)) (-3108 (((-1284) $ (-1170)) 84)) (-2031 (((-1284) $ (-930) (-1170)) 94)) (-3417 (((-1284) $ (-930) (-386) (-386)) 58)) (-2919 (((-1284) $ (-930) (-930)) 55)) (-3625 (((-1284) $) 85)) (-4184 (((-1284) $ (-930) (-1170)) 93)) (-2146 (((-1284) $ (-476) (-930)) 41)) (-1571 (((-1284) $ (-930) (-1170)) 92)) (-2235 (((-652 (-268)) $) 29) (($ $ (-652 (-268))) 30)) (-3146 (((-1284) $ (-779) (-779)) 52)) (-4078 (($ $) 70) (($ (-476) (-652 (-268))) 71)) (-3618 (((-1170) $) NIL)) (-1640 (((-572) $) 48)) (-2614 (((-1131) $) NIL)) (-1460 (((-1279 (-3 (-476) "undefined")) $) 47)) (-2671 (((-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1571 (-572)) (|:| -1930 (-572)) (|:| |spline| (-572)) (|:| -2142 (-572)) (|:| |axesColor| (-882)) (|:| -4309 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572)))) $) 46)) (-2715 (((-1284) $ (-930) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-882) (-572) (-882) (-572)) 83)) (-3945 (((-652 (-952 (-227))) $) NIL)) (-3334 (((-476) $ (-930)) 43)) (-3445 (((-1284) $ (-779) (-779) (-930) (-930)) 50)) (-3452 (((-1284) $ (-1170)) 95)) (-1930 (((-1284) $ (-930) (-1170)) 91)) (-3491 (((-870) $) 102)) (-3083 (((-1284) $) 96)) (-3424 (((-112) $ $) NIL)) (-2142 (((-1284) $ (-930) (-1170)) 87) (((-1284) $ (-930) (-882)) 88)) (-3921 (((-112) $ $) NIL)))
+(((-1280) (-13 (-1111) (-10 -8 (-15 -3945 ((-652 (-952 (-227))) $)) (-15 -2804 ($)) (-15 -4078 ($ $)) (-15 -2235 ((-652 (-268)) $)) (-15 -2235 ($ $ (-652 (-268)))) (-15 -4078 ($ (-476) (-652 (-268)))) (-15 -2715 ((-1284) $ (-930) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-882) (-572) (-882) (-572))) (-15 -2671 ((-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1571 (-572)) (|:| -1930 (-572)) (|:| |spline| (-572)) (|:| -2142 (-572)) (|:| |axesColor| (-882)) (|:| -4309 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572)))) $)) (-15 -1460 ((-1279 (-3 (-476) "undefined")) $)) (-15 -3108 ((-1284) $ (-1170))) (-15 -2146 ((-1284) $ (-476) (-930))) (-15 -3334 ((-476) $ (-930))) (-15 -2142 ((-1284) $ (-930) (-1170))) (-15 -2142 ((-1284) $ (-930) (-882))) (-15 -4309 ((-1284) $ (-930) (-1170))) (-15 -4309 ((-1284) $ (-930) (-882))) (-15 -1571 ((-1284) $ (-930) (-1170))) (-15 -4184 ((-1284) $ (-930) (-1170))) (-15 -1930 ((-1284) $ (-930) (-1170))) (-15 -3452 ((-1284) $ (-1170))) (-15 -3083 ((-1284) $)) (-15 -3445 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -3417 ((-1284) $ (-930) (-386) (-386))) (-15 -4131 ((-1284) $ (-930) (-386) (-386))) (-15 -2031 ((-1284) $ (-930) (-1170))) (-15 -3146 ((-1284) $ (-779) (-779))) (-15 -3178 ((-1284) $ (-476) (-930))) (-15 -2919 ((-1284) $ (-930) (-930))) (-15 -3649 ((-1170) $ (-1170))) (-15 -3649 ((-1170) $ (-1170) (-1170))) (-15 -3649 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -3625 ((-1284) $)) (-15 -1640 ((-572) $)) (-15 -3491 ((-870) $))))) (T -1280))
+((-3491 (*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1280)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-652 (-952 (-227)))) (-5 *1 (-1280)))) (-2804 (*1 *1) (-5 *1 (-1280))) (-4078 (*1 *1 *1) (-5 *1 (-1280))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280)))) (-2235 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280)))) (-4078 (*1 *1 *2 *3) (-12 (-5 *2 (-476)) (-5 *3 (-652 (-268))) (-5 *1 (-1280)))) (-2715 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-930)) (-5 *4 (-227)) (-5 *5 (-572)) (-5 *6 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1571 (-572)) (|:| -1930 (-572)) (|:| |spline| (-572)) (|:| -2142 (-572)) (|:| |axesColor| (-882)) (|:| -4309 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572))))) (-5 *1 (-1280)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-1279 (-3 (-476) "undefined"))) (-5 *1 (-1280)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2146 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3334 (*1 *2 *1 *3) (-12 (-5 *3 (-930)) (-5 *2 (-476)) (-5 *1 (-1280)))) (-2142 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2142 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-4309 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-4309 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1571 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-4184 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1930 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3452 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3445 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3417 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-4131 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2031 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3146 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3178 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-2919 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))) (-3649 (*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280)))) (-3649 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280)))) (-3649 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1280)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1280)))))
+(-13 (-1111) (-10 -8 (-15 -3945 ((-652 (-952 (-227))) $)) (-15 -2804 ($)) (-15 -4078 ($ $)) (-15 -2235 ((-652 (-268)) $)) (-15 -2235 ($ $ (-652 (-268)))) (-15 -4078 ($ (-476) (-652 (-268)))) (-15 -2715 ((-1284) $ (-930) (-227) (-227) (-227) (-227) (-572) (-572) (-572) (-572) (-882) (-572) (-882) (-572))) (-15 -2671 ((-1279 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1571 (-572)) (|:| -1930 (-572)) (|:| |spline| (-572)) (|:| -2142 (-572)) (|:| |axesColor| (-882)) (|:| -4309 (-572)) (|:| |unitsColor| (-882)) (|:| |showing| (-572)))) $)) (-15 -1460 ((-1279 (-3 (-476) "undefined")) $)) (-15 -3108 ((-1284) $ (-1170))) (-15 -2146 ((-1284) $ (-476) (-930))) (-15 -3334 ((-476) $ (-930))) (-15 -2142 ((-1284) $ (-930) (-1170))) (-15 -2142 ((-1284) $ (-930) (-882))) (-15 -4309 ((-1284) $ (-930) (-1170))) (-15 -4309 ((-1284) $ (-930) (-882))) (-15 -1571 ((-1284) $ (-930) (-1170))) (-15 -4184 ((-1284) $ (-930) (-1170))) (-15 -1930 ((-1284) $ (-930) (-1170))) (-15 -3452 ((-1284) $ (-1170))) (-15 -3083 ((-1284) $)) (-15 -3445 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -3417 ((-1284) $ (-930) (-386) (-386))) (-15 -4131 ((-1284) $ (-930) (-386) (-386))) (-15 -2031 ((-1284) $ (-930) (-1170))) (-15 -3146 ((-1284) $ (-779) (-779))) (-15 -3178 ((-1284) $ (-476) (-930))) (-15 -2919 ((-1284) $ (-930) (-930))) (-15 -3649 ((-1170) $ (-1170))) (-15 -3649 ((-1170) $ (-1170) (-1170))) (-15 -3649 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -3625 ((-1284) $)) (-15 -1640 ((-572) $)) (-15 -3491 ((-870) $))))
+((-3464 (((-112) $ $) NIL)) (-2306 (((-1284) $ (-386)) 169) (((-1284) $ (-386) (-386) (-386)) 170)) (-3649 (((-1170) $ (-1170)) 179) (((-1170) $ (-1170) (-1170)) 177) (((-1170) $ (-1170) (-652 (-1170))) 176)) (-1720 (($) 67)) (-1492 (((-1284) $ (-386) (-386) (-386) (-386) (-386)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1284) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1284) $ (-572) (-572) (-386) (-386) (-386)) 144) (((-1284) $ (-386) (-386)) 145) (((-1284) $ (-386) (-386) (-386)) 152)) (-3274 (((-386)) 122) (((-386) (-386)) 123)) (-1582 (((-386)) 117) (((-386) (-386)) 119)) (-3574 (((-386)) 120) (((-386) (-386)) 121)) (-1878 (((-386)) 126) (((-386) (-386)) 127)) (-4042 (((-386)) 124) (((-386) (-386)) 125)) (-4131 (((-1284) $ (-386) (-386)) 171)) (-3108 (((-1284) $ (-1170)) 153)) (-1473 (((-1144 (-227)) $) 68) (($ $ (-1144 (-227))) 69)) (-2323 (((-1284) $ (-1170)) 187)) (-1822 (((-1284) $ (-1170)) 188)) (-3293 (((-1284) $ (-386) (-386)) 151) (((-1284) $ (-572) (-572)) 168)) (-2919 (((-1284) $ (-930) (-930)) 160)) (-3625 (((-1284) $) 137)) (-2155 (((-1284) $ (-1170)) 186)) (-4385 (((-1284) $ (-1170)) 134)) (-2235 (((-652 (-268)) $) 70) (($ $ (-652 (-268))) 71)) (-3146 (((-1284) $ (-779) (-779)) 159)) (-1616 (((-1284) $ (-779) (-952 (-227))) 193)) (-2830 (($ $) 73) (($ (-1144 (-227)) (-1170)) 74) (($ (-1144 (-227)) (-652 (-268))) 75)) (-3650 (((-1284) $ (-386) (-386) (-386)) 131)) (-3618 (((-1170) $) NIL)) (-1640 (((-572) $) 128)) (-2422 (((-1284) $ (-386)) 174)) (-1581 (((-1284) $ (-386)) 191)) (-2614 (((-1131) $) NIL)) (-1351 (((-1284) $ (-386)) 190)) (-1734 (((-1284) $ (-1170)) 136)) (-3445 (((-1284) $ (-779) (-779) (-930) (-930)) 158)) (-4246 (((-1284) $ (-1170)) 133)) (-3452 (((-1284) $ (-1170)) 135)) (-3063 (((-1284) $ (-158) (-158)) 157)) (-3491 (((-870) $) 166)) (-3083 (((-1284) $) 138)) (-2093 (((-1284) $ (-1170)) 189)) (-3424 (((-112) $ $) NIL)) (-2142 (((-1284) $ (-1170)) 132)) (-3921 (((-112) $ $) NIL)))
+(((-1281) (-13 (-1111) (-10 -8 (-15 -1582 ((-386))) (-15 -1582 ((-386) (-386))) (-15 -3574 ((-386))) (-15 -3574 ((-386) (-386))) (-15 -3274 ((-386))) (-15 -3274 ((-386) (-386))) (-15 -4042 ((-386))) (-15 -4042 ((-386) (-386))) (-15 -1878 ((-386))) (-15 -1878 ((-386) (-386))) (-15 -1720 ($)) (-15 -2830 ($ $)) (-15 -2830 ($ (-1144 (-227)) (-1170))) (-15 -2830 ($ (-1144 (-227)) (-652 (-268)))) (-15 -1473 ((-1144 (-227)) $)) (-15 -1473 ($ $ (-1144 (-227)))) (-15 -1616 ((-1284) $ (-779) (-952 (-227)))) (-15 -2235 ((-652 (-268)) $)) (-15 -2235 ($ $ (-652 (-268)))) (-15 -3146 ((-1284) $ (-779) (-779))) (-15 -2919 ((-1284) $ (-930) (-930))) (-15 -3108 ((-1284) $ (-1170))) (-15 -3445 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -1492 ((-1284) $ (-386) (-386) (-386) (-386) (-386))) (-15 -1492 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1492 ((-1284) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1492 ((-1284) $ (-572) (-572) (-386) (-386) (-386))) (-15 -1492 ((-1284) $ (-386) (-386))) (-15 -1492 ((-1284) $ (-386) (-386) (-386))) (-15 -3452 ((-1284) $ (-1170))) (-15 -2142 ((-1284) $ (-1170))) (-15 -4246 ((-1284) $ (-1170))) (-15 -4385 ((-1284) $ (-1170))) (-15 -1734 ((-1284) $ (-1170))) (-15 -3293 ((-1284) $ (-386) (-386))) (-15 -3293 ((-1284) $ (-572) (-572))) (-15 -2306 ((-1284) $ (-386))) (-15 -2306 ((-1284) $ (-386) (-386) (-386))) (-15 -4131 ((-1284) $ (-386) (-386))) (-15 -2155 ((-1284) $ (-1170))) (-15 -1351 ((-1284) $ (-386))) (-15 -1581 ((-1284) $ (-386))) (-15 -2323 ((-1284) $ (-1170))) (-15 -1822 ((-1284) $ (-1170))) (-15 -2093 ((-1284) $ (-1170))) (-15 -3650 ((-1284) $ (-386) (-386) (-386))) (-15 -2422 ((-1284) $ (-386))) (-15 -3625 ((-1284) $)) (-15 -3063 ((-1284) $ (-158) (-158))) (-15 -3649 ((-1170) $ (-1170))) (-15 -3649 ((-1170) $ (-1170) (-1170))) (-15 -3649 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -3083 ((-1284) $)) (-15 -1640 ((-572) $))))) (T -1281))
+((-1582 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3574 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3274 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-4042 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-1878 (*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))) (-1720 (*1 *1) (-5 *1 (-1281))) (-2830 (*1 *1 *1) (-5 *1 (-1281))) (-2830 (*1 *1 *2 *3) (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1170)) (-5 *1 (-1281)))) (-2830 (*1 *1 *2 *3) (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-652 (-268))) (-5 *1 (-1281)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281)))) (-1473 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281)))) (-1616 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-779)) (-5 *4 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281)))) (-2235 (*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281)))) (-3146 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2919 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3445 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1492 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1281)))) (-1492 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1492 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-572)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1492 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1492 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3452 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2142 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-4385 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1734 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3293 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3293 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2306 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2306 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-4131 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2155 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1351 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1581 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2323 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1822 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2093 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3650 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-2422 (*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3063 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1284)) (-5 *1 (-1281)))) (-3649 (*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281)))) (-3649 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281)))) (-3649 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1281)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1281)))))
+(-13 (-1111) (-10 -8 (-15 -1582 ((-386))) (-15 -1582 ((-386) (-386))) (-15 -3574 ((-386))) (-15 -3574 ((-386) (-386))) (-15 -3274 ((-386))) (-15 -3274 ((-386) (-386))) (-15 -4042 ((-386))) (-15 -4042 ((-386) (-386))) (-15 -1878 ((-386))) (-15 -1878 ((-386) (-386))) (-15 -1720 ($)) (-15 -2830 ($ $)) (-15 -2830 ($ (-1144 (-227)) (-1170))) (-15 -2830 ($ (-1144 (-227)) (-652 (-268)))) (-15 -1473 ((-1144 (-227)) $)) (-15 -1473 ($ $ (-1144 (-227)))) (-15 -1616 ((-1284) $ (-779) (-952 (-227)))) (-15 -2235 ((-652 (-268)) $)) (-15 -2235 ($ $ (-652 (-268)))) (-15 -3146 ((-1284) $ (-779) (-779))) (-15 -2919 ((-1284) $ (-930) (-930))) (-15 -3108 ((-1284) $ (-1170))) (-15 -3445 ((-1284) $ (-779) (-779) (-930) (-930))) (-15 -1492 ((-1284) $ (-386) (-386) (-386) (-386) (-386))) (-15 -1492 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1492 ((-1284) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1492 ((-1284) $ (-572) (-572) (-386) (-386) (-386))) (-15 -1492 ((-1284) $ (-386) (-386))) (-15 -1492 ((-1284) $ (-386) (-386) (-386))) (-15 -3452 ((-1284) $ (-1170))) (-15 -2142 ((-1284) $ (-1170))) (-15 -4246 ((-1284) $ (-1170))) (-15 -4385 ((-1284) $ (-1170))) (-15 -1734 ((-1284) $ (-1170))) (-15 -3293 ((-1284) $ (-386) (-386))) (-15 -3293 ((-1284) $ (-572) (-572))) (-15 -2306 ((-1284) $ (-386))) (-15 -2306 ((-1284) $ (-386) (-386) (-386))) (-15 -4131 ((-1284) $ (-386) (-386))) (-15 -2155 ((-1284) $ (-1170))) (-15 -1351 ((-1284) $ (-386))) (-15 -1581 ((-1284) $ (-386))) (-15 -2323 ((-1284) $ (-1170))) (-15 -1822 ((-1284) $ (-1170))) (-15 -2093 ((-1284) $ (-1170))) (-15 -3650 ((-1284) $ (-386) (-386) (-386))) (-15 -2422 ((-1284) $ (-386))) (-15 -3625 ((-1284) $)) (-15 -3063 ((-1284) $ (-158) (-158))) (-15 -3649 ((-1170) $ (-1170))) (-15 -3649 ((-1170) $ (-1170) (-1170))) (-15 -3649 ((-1170) $ (-1170) (-652 (-1170)))) (-15 -3083 ((-1284) $)) (-15 -1640 ((-572) $))))
+((-4213 (((-652 (-1170)) (-652 (-1170))) 104) (((-652 (-1170))) 96)) (-2178 (((-652 (-1170))) 94)) (-2177 (((-652 (-930)) (-652 (-930))) 69) (((-652 (-930))) 64)) (-3672 (((-652 (-779)) (-652 (-779))) 61) (((-652 (-779))) 55)) (-4431 (((-1284)) 71)) (-4365 (((-930) (-930)) 87) (((-930)) 86)) (-2824 (((-930) (-930)) 85) (((-930)) 84)) (-1745 (((-882) (-882)) 81) (((-882)) 80)) (-2518 (((-227)) 91) (((-227) (-386)) 93)) (-4318 (((-930)) 88) (((-930) (-930)) 89)) (-3215 (((-930) (-930)) 83) (((-930)) 82)) (-3116 (((-882) (-882)) 75) (((-882)) 73)) (-2826 (((-882) (-882)) 77) (((-882)) 76)) (-2330 (((-882) (-882)) 79) (((-882)) 78)))
+(((-1282) (-10 -7 (-15 -3116 ((-882))) (-15 -3116 ((-882) (-882))) (-15 -2826 ((-882))) (-15 -2826 ((-882) (-882))) (-15 -2330 ((-882))) (-15 -2330 ((-882) (-882))) (-15 -1745 ((-882))) (-15 -1745 ((-882) (-882))) (-15 -3215 ((-930))) (-15 -3215 ((-930) (-930))) (-15 -3672 ((-652 (-779)))) (-15 -3672 ((-652 (-779)) (-652 (-779)))) (-15 -2177 ((-652 (-930)))) (-15 -2177 ((-652 (-930)) (-652 (-930)))) (-15 -4431 ((-1284))) (-15 -4213 ((-652 (-1170)))) (-15 -4213 ((-652 (-1170)) (-652 (-1170)))) (-15 -2178 ((-652 (-1170)))) (-15 -2824 ((-930))) (-15 -4365 ((-930))) (-15 -2824 ((-930) (-930))) (-15 -4365 ((-930) (-930))) (-15 -4318 ((-930) (-930))) (-15 -4318 ((-930))) (-15 -2518 ((-227) (-386))) (-15 -2518 ((-227))))) (T -1282))
+((-2518 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1282)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-1282)))) (-4318 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-4318 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-4365 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-2824 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-4365 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-2824 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-2178 (*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))) (-4213 (*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))) (-4431 (*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1282)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282)))) (-2177 (*1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282)))) (-3672 (*1 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282)))) (-3215 (*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-3215 (*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-1745 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-2330 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-2826 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-2826 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3116 (*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))) (-3116 (*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
+(-10 -7 (-15 -3116 ((-882))) (-15 -3116 ((-882) (-882))) (-15 -2826 ((-882))) (-15 -2826 ((-882) (-882))) (-15 -2330 ((-882))) (-15 -2330 ((-882) (-882))) (-15 -1745 ((-882))) (-15 -1745 ((-882) (-882))) (-15 -3215 ((-930))) (-15 -3215 ((-930) (-930))) (-15 -3672 ((-652 (-779)))) (-15 -3672 ((-652 (-779)) (-652 (-779)))) (-15 -2177 ((-652 (-930)))) (-15 -2177 ((-652 (-930)) (-652 (-930)))) (-15 -4431 ((-1284))) (-15 -4213 ((-652 (-1170)))) (-15 -4213 ((-652 (-1170)) (-652 (-1170)))) (-15 -2178 ((-652 (-1170)))) (-15 -2824 ((-930))) (-15 -4365 ((-930))) (-15 -2824 ((-930) (-930))) (-15 -4365 ((-930) (-930))) (-15 -4318 ((-930) (-930))) (-15 -4318 ((-930))) (-15 -2518 ((-227) (-386))) (-15 -2518 ((-227))))
+((-1885 (((-476) (-652 (-652 (-952 (-227)))) (-652 (-268))) 22) (((-476) (-652 (-652 (-952 (-227))))) 21) (((-476) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268))) 20)) (-3774 (((-1280) (-652 (-652 (-952 (-227)))) (-652 (-268))) 30) (((-1280) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268))) 29)) (-3491 (((-1280) (-476)) 46)))
+(((-1283) (-10 -7 (-15 -1885 ((-476) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -1885 ((-476) (-652 (-652 (-952 (-227)))))) (-15 -1885 ((-476) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -3774 ((-1280) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -3774 ((-1280) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -3491 ((-1280) (-476))))) (T -1283))
+((-3491 (*1 *2 *3) (-12 (-5 *3 (-476)) (-5 *2 (-1280)) (-5 *1 (-1283)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-1283)))) (-3774 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-1283)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268))) (-5 *2 (-476)) (-5 *1 (-1283)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-476)) (-5 *1 (-1283)))) (-1885 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882)) (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-476)) (-5 *1 (-1283)))))
+(-10 -7 (-15 -1885 ((-476) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -1885 ((-476) (-652 (-652 (-952 (-227)))))) (-15 -1885 ((-476) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -3774 ((-1280) (-652 (-652 (-952 (-227)))) (-882) (-882) (-930) (-652 (-268)))) (-15 -3774 ((-1280) (-652 (-652 (-952 (-227)))) (-652 (-268)))) (-15 -3491 ((-1280) (-476))))
+((-2613 (($) 6)) (-3491 (((-870) $) 9)))
+(((-1284) (-13 (-621 (-870)) (-10 -8 (-15 -2613 ($))))) (T -1284))
+((-2613 (*1 *1) (-5 *1 (-1284))))
+(-13 (-621 (-870)) (-10 -8 (-15 -2613 ($))))
+((-4029 (($ $ |#2|) 10)))
+(((-1285 |#1| |#2|) (-10 -8 (-15 -4029 (|#1| |#1| |#2|))) (-1286 |#2|) (-370)) (T -1285))
+NIL
+(-10 -8 (-15 -4029 (|#1| |#1| |#2|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1670 (((-135)) 33)) (-3491 (((-870) $) 12)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-3921 (((-112) $ $) 6)) (-4029 (($ $ |#1|) 34)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1286 |#1|) (-141) (-370)) (T -1286))
+((-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-370)))) (-1670 (*1 *2) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-370)) (-5 *2 (-135)))))
+(-13 (-725 |t#1|) (-10 -8 (-15 -4029 ($ $ |t#1|)) (-15 -1670 ((-135)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-656 |#1|) . T) ((-648 |#1|) . T) ((-725 |#1|) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1111) . T))
+((-1587 (((-652 (-1223 |#1|)) (-1188) (-1223 |#1|)) 83)) (-3844 (((-1168 (-1168 (-961 |#1|))) (-1188) (-1168 (-961 |#1|))) 63)) (-1838 (((-1 (-1168 (-1223 |#1|)) (-1168 (-1223 |#1|))) (-779) (-1223 |#1|) (-1168 (-1223 |#1|))) 74)) (-3065 (((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779)) 65)) (-2430 (((-1 (-1184 (-961 |#1|)) (-961 |#1|)) (-1188)) 32)) (-2249 (((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779)) 64)))
+(((-1287 |#1|) (-10 -7 (-15 -3065 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -2249 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -3844 ((-1168 (-1168 (-961 |#1|))) (-1188) (-1168 (-961 |#1|)))) (-15 -2430 ((-1 (-1184 (-961 |#1|)) (-961 |#1|)) (-1188))) (-15 -1587 ((-652 (-1223 |#1|)) (-1188) (-1223 |#1|))) (-15 -1838 ((-1 (-1168 (-1223 |#1|)) (-1168 (-1223 |#1|))) (-779) (-1223 |#1|) (-1168 (-1223 |#1|))))) (-370)) (T -1287))
+((-1838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-779)) (-4 *6 (-370)) (-5 *4 (-1223 *6)) (-5 *2 (-1 (-1168 *4) (-1168 *4))) (-5 *1 (-1287 *6)) (-5 *5 (-1168 *4)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-652 (-1223 *5))) (-5 *1 (-1287 *5)) (-5 *4 (-1223 *5)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1 (-1184 (-961 *4)) (-961 *4))) (-5 *1 (-1287 *4)) (-4 *4 (-370)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-1168 (-1168 (-961 *5)))) (-5 *1 (-1287 *5)) (-5 *4 (-1168 (-961 *5))))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4)))) (-5 *1 (-1287 *4)) (-4 *4 (-370)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4)))) (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
+(-10 -7 (-15 -3065 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -2249 ((-1 (-1168 (-961 |#1|)) (-1168 (-961 |#1|))) (-779))) (-15 -3844 ((-1168 (-1168 (-961 |#1|))) (-1188) (-1168 (-961 |#1|)))) (-15 -2430 ((-1 (-1184 (-961 |#1|)) (-961 |#1|)) (-1188))) (-15 -1587 ((-652 (-1223 |#1|)) (-1188) (-1223 |#1|))) (-15 -1838 ((-1 (-1168 (-1223 |#1|)) (-1168 (-1223 |#1|))) (-779) (-1223 |#1|) (-1168 (-1223 |#1|)))))
+((-1409 (((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|) 80)) (-2469 (((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|)))) 79)))
+(((-1288 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2469 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1409 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|))) (-356) (-1255 |#1|) (-1255 |#2|) (-417 |#2| |#3|)) (T -1288))
+((-1409 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3)) (-5 *2 (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-697 *3)))) (-5 *1 (-1288 *4 *3 *5 *6)) (-4 *6 (-417 *3 *5)))) (-2469 (*1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4)) (-5 *2 (-2 (|:| -1769 (-697 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-697 *4)))) (-5 *1 (-1288 *3 *4 *5 *6)) (-4 *6 (-417 *4 *5)))))
+(-10 -7 (-15 -2469 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))))) (-15 -1409 ((-2 (|:| -1769 (-697 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-697 |#2|))) |#2|)))
+((-3464 (((-112) $ $) NIL)) (-4109 (((-1146) $) 11)) (-1884 (((-1146) $) 9)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 17) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1289) (-13 (-1094) (-10 -8 (-15 -1884 ((-1146) $)) (-15 -4109 ((-1146) $))))) (T -1289))
+((-1884 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))))
+(-13 (-1094) (-10 -8 (-15 -1884 ((-1146) $)) (-15 -4109 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-4296 (((-1146) $) 9)) (-3491 (((-870) $) 15) (($ (-1193)) NIL) (((-1193) $) NIL)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) NIL)))
+(((-1290) (-13 (-1094) (-10 -8 (-15 -4296 ((-1146) $))))) (T -1290))
+((-4296 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1290)))))
+(-13 (-1094) (-10 -8 (-15 -4296 ((-1146) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 58)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) NIL)) (-4422 (((-112) $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 81) (($ (-572)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-2455 (((-779)) NIL T CONST)) (-2184 (((-1284) (-779)) 16)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 37 T CONST)) (-2619 (($) 84 T CONST)) (-3921 (((-112) $ $) 87)) (-4029 (((-3 $ "failed") $ $) NIL (|has| |#1| (-370)))) (-4018 (($ $) 89) (($ $ $) NIL)) (-4005 (($ $ $) 63)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-1291 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1060) (-498 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -4029 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2184 ((-1284) (-779))))) (-1060) (-858) (-801) (-958 |#1| |#3| |#2|) (-652 |#2|) (-652 (-779)) (-779)) (T -1291))
+((-4029 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-370)) (-4 *2 (-1060)) (-4 *3 (-858)) (-4 *4 (-801)) (-14 *6 (-652 *3)) (-5 *1 (-1291 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-958 *2 *4 *3)) (-14 *7 (-652 (-779))) (-14 *8 (-779)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-4 *5 (-858)) (-4 *6 (-801)) (-14 *8 (-652 *5)) (-5 *2 (-1284)) (-5 *1 (-1291 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-958 *4 *6 *5)) (-14 *9 (-652 *3)) (-14 *10 *3))))
+(-13 (-1060) (-498 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (-15 -4029 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2184 ((-1284) (-779)))))
+((-3464 (((-112) $ $) NIL)) (-3355 (((-652 (-2 (|:| -3083 $) (|:| -3589 (-652 |#4|)))) (-652 |#4|)) NIL)) (-3426 (((-652 $) (-652 |#4|)) 96)) (-2220 (((-652 |#3|) $) NIL)) (-2029 (((-112) $) NIL)) (-4308 (((-112) $) NIL (|has| |#1| (-564)))) (-1629 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2373 ((|#4| |#4| $) NIL)) (-2641 (((-2 (|:| |under| $) (|:| -1609 $) (|:| |upper| $)) $ |#3|) NIL)) (-2938 (((-112) $ (-779)) NIL)) (-1424 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1586 (($) NIL T CONST)) (-3571 (((-112) $) NIL (|has| |#1| (-564)))) (-3057 (((-112) $ $) NIL (|has| |#1| (-564)))) (-1528 (((-112) $ $) NIL (|has| |#1| (-564)))) (-2690 (((-112) $) NIL (|has| |#1| (-564)))) (-3512 (((-652 |#4|) (-652 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-4400 (((-652 |#4|) (-652 |#4|) $) 28 (|has| |#1| (-564)))) (-3575 (((-652 |#4|) (-652 |#4|) $) NIL (|has| |#1| (-564)))) (-3072 (((-3 $ "failed") (-652 |#4|)) NIL)) (-1869 (($ (-652 |#4|)) NIL)) (-2581 (((-3 $ "failed") $) 78)) (-3802 ((|#4| |#4| $) 83)) (-3955 (($ $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-4243 (($ |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2336 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-2182 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1674 ((|#4| |#4| $) NIL)) (-2925 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4454))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4454))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2042 (((-2 (|:| -3083 (-652 |#4|)) (|:| -3589 (-652 |#4|))) $) NIL)) (-1442 (((-652 |#4|) $) NIL (|has| $ (-6 -4454)))) (-1870 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3698 ((|#3| $) 84)) (-2545 (((-112) $ (-779)) NIL)) (-2396 (((-652 |#4|) $) 32 (|has| $ (-6 -4454)))) (-4211 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111))))) (-2980 (((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-652 |#4|)) 38)) (-3049 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4455)))) (-3161 (($ (-1 |#4| |#4|) $) NIL)) (-1677 (((-652 |#3|) $) NIL)) (-2002 (((-112) |#3| $) NIL)) (-3818 (((-112) $ (-779)) NIL)) (-3618 (((-1170) $) NIL)) (-4261 (((-3 |#4| "failed") $) NIL)) (-1706 (((-652 |#4|) $) 54)) (-1338 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3113 ((|#4| |#4| $) 82)) (-4398 (((-112) $ $) 93)) (-1798 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-564)))) (-4001 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2041 ((|#4| |#4| $) NIL)) (-2614 (((-1131) $) NIL)) (-2570 (((-3 |#4| "failed") $) 77)) (-3124 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4236 (((-3 $ "failed") $ |#4|) NIL)) (-3103 (($ $ |#4|) NIL)) (-3089 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3654 (($ $ (-652 |#4|) (-652 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-300 |#4|)) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111)))) (($ $ (-652 (-300 |#4|))) NIL (-12 (|has| |#4| (-315 |#4|)) (|has| |#4| (-1111))))) (-2187 (((-112) $ $) NIL)) (-3712 (((-112) $) 75)) (-1321 (($) 46)) (-1497 (((-779) $) NIL)) (-1371 (((-779) |#4| $) NIL (-12 (|has| $ (-6 -4454)) (|has| |#4| (-1111)))) (((-779) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-3679 (($ $) NIL)) (-3222 (((-544) $) NIL (|has| |#4| (-622 (-544))))) (-3503 (($ (-652 |#4|)) NIL)) (-3399 (($ $ |#3|) NIL)) (-3831 (($ $ |#3|) NIL)) (-2894 (($ $) NIL)) (-1757 (($ $ |#3|) NIL)) (-3491 (((-870) $) NIL) (((-652 |#4|) $) 63)) (-1935 (((-779) $) NIL (|has| |#3| (-375)))) (-2788 (((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-652 |#4|)) 45)) (-3617 (((-652 $) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-652 $) (-652 |#4|)) 74)) (-3424 (((-112) $ $) NIL)) (-3936 (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2620 (-652 |#4|))) "failed") (-652 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4273 (((-112) $ (-1 (-112) |#4| (-652 |#4|))) NIL)) (-3776 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4454)))) (-2254 (((-652 |#3|) $) NIL)) (-2947 (((-112) |#3| $) NIL)) (-3921 (((-112) $ $) NIL)) (-3475 (((-779) $) NIL (|has| $ (-6 -4454)))))
+(((-1292 |#1| |#2| |#3| |#4|) (-13 (-1222 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2980 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2980 ((-3 $ "failed") (-652 |#4|))) (-15 -2788 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2788 ((-3 $ "failed") (-652 |#4|))) (-15 -3617 ((-652 $) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3617 ((-652 $) (-652 |#4|))))) (-564) (-801) (-858) (-1076 |#1| |#2| |#3|)) (T -1292))
+((-2980 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))) (-2980 (*1 *1 *2) (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1292 *3 *4 *5 *6)))) (-2788 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))) (-2788 (*1 *1 *2) (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1292 *3 *4 *5 *6)))) (-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-652 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-652 (-1292 *6 *7 *8 *9))) (-5 *1 (-1292 *6 *7 *8 *9)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-1292 *4 *5 *6 *7))) (-5 *1 (-1292 *4 *5 *6 *7)))))
+(-13 (-1222 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2980 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2980 ((-3 $ "failed") (-652 |#4|))) (-15 -2788 ((-3 $ "failed") (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2788 ((-3 $ "failed") (-652 |#4|))) (-15 -3617 ((-652 $) (-652 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3617 ((-652 $) (-652 |#4|)))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2092 (((-3 $ "failed") $ $) 20)) (-1586 (($) 18 T CONST)) (-2982 (((-3 $ "failed") $) 37)) (-4422 (((-112) $) 35)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#1|) 45)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1293 |#1|) (-141) (-1060)) (T -1293))
+NIL
+(-13 (-1060) (-111 |t#1| |t#1|) (-624 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 |#1|) |has| |#1| (-174)) ((-725 |#1|) |has| |#1| (-174)) ((-734) . T) ((-1062 |#1|) . T) ((-1067 |#1|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T))
+((-3464 (((-112) $ $) 67)) (-3143 (((-112) $) NIL)) (-4084 (((-652 |#1|) $) 52)) (-3891 (($ $ (-779)) 46)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2978 (($ $ (-779)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-1586 (($) NIL T CONST)) (-4118 (($ $ $) 70) (($ $ (-827 |#1|)) 56) (($ $ |#1|) 60)) (-3072 (((-3 (-827 |#1|) "failed") $) NIL)) (-1869 (((-827 |#1|) $) NIL)) (-1874 (($ $) 39)) (-2982 (((-3 $ "failed") $) NIL)) (-3986 (((-112) $) NIL)) (-1410 (($ $) NIL)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-4298 (($ (-827 |#1|) |#2|) 38)) (-3450 (($ $) 40)) (-1703 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) 12)) (-3638 (((-827 |#1|) $) NIL)) (-1344 (((-827 |#1|) $) 41)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-3593 (($ $ $) 69) (($ $ (-827 |#1|)) 58) (($ $ |#1|) 62)) (-3176 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1840 (((-827 |#1|) $) 35)) (-1853 ((|#2| $) 37)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1497 (((-779) $) 43)) (-3331 (((-112) $) 47)) (-4338 ((|#2| $) NIL)) (-3491 (((-870) $) NIL) (($ (-827 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-572)) NIL)) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-827 |#1|)) NIL)) (-2379 ((|#2| $ $) 76) ((|#2| $ (-827 |#1|)) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 13 T CONST)) (-2619 (($) 19 T CONST)) (-2028 (((-652 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3921 (((-112) $ $) 44)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 28)) (** (($ $ (-779)) NIL) (($ $ (-930)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-827 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1294 |#1| |#2|) (-13 (-389 |#2| (-827 |#1|)) (-1300 |#1| |#2|)) (-858) (-1060)) (T -1294))
+NIL
+(-13 (-389 |#2| (-827 |#1|)) (-1300 |#1| |#2|))
+((-4057 ((|#3| |#3| (-779)) 28)) (-3272 ((|#3| |#3| (-779)) 34)) (-4066 ((|#3| |#3| |#3| (-779)) 35)))
+(((-1295 |#1| |#2| |#3|) (-10 -7 (-15 -3272 (|#3| |#3| (-779))) (-15 -4057 (|#3| |#3| (-779))) (-15 -4066 (|#3| |#3| |#3| (-779)))) (-13 (-1060) (-725 (-415 (-572)))) (-858) (-1300 |#2| |#1|)) (T -1295))
+((-4066 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572))))) (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))) (-4057 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572))))) (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572))))) (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))))
+(-10 -7 (-15 -3272 (|#3| |#3| (-779))) (-15 -4057 (|#3| |#3| (-779))) (-15 -4066 (|#3| |#3| |#3| (-779))))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-4084 (((-652 |#1|) $) 47)) (-2092 (((-3 $ "failed") $ $) 20)) (-2978 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-779)) 49 (|has| |#2| (-174)))) (-1586 (($) 18 T CONST)) (-4118 (($ $ |#1|) 61) (($ $ (-827 |#1|)) 60) (($ $ $) 59)) (-3072 (((-3 (-827 |#1|) "failed") $) 71)) (-1869 (((-827 |#1|) $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-3986 (((-112) $) 52)) (-1410 (($ $) 51)) (-4422 (((-112) $) 35)) (-3357 (((-112) $) 57)) (-4298 (($ (-827 |#1|) |#2|) 58)) (-3450 (($ $) 56)) (-1703 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) 67)) (-3638 (((-827 |#1|) $) 68)) (-3161 (($ (-1 |#2| |#2|) $) 48)) (-3593 (($ $ |#1|) 64) (($ $ (-827 |#1|)) 63) (($ $ $) 62)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-3331 (((-112) $) 54)) (-4338 ((|#2| $) 53)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#2|) 75) (($ (-827 |#1|)) 70) (($ |#1|) 55)) (-2379 ((|#2| $ (-827 |#1|)) 66) ((|#2| $ $) 65)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1296 |#1| |#2|) (-141) (-858) (-1060)) (T -1296))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-827 *3)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-2 (|:| |k| (-827 *3)) (|:| |c| *4))))) (-2379 (*1 *2 *1 *3) (-12 (-5 *3 (-827 *4)) (-4 *1 (-1296 *4 *2)) (-4 *4 (-858)) (-4 *2 (-1060)))) (-2379 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060)))) (-3593 (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3593 (*1 *1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-3593 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-4118 (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-4298 (*1 *1 *2 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-858)) (-4 *1 (-1296 *4 *3)) (-4 *3 (-1060)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-112)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3491 (*1 *1 *2) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-112)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-112)))) (-1410 (*1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))) (-2978 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)) (-4 *3 (-174)))) (-2978 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-4 *4 (-174)))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-652 *3)))))
+(-13 (-1060) (-1293 |t#2|) (-1049 (-827 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3638 ((-827 |t#1|) $)) (-15 -1703 ((-2 (|:| |k| (-827 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2379 (|t#2| $ (-827 |t#1|))) (-15 -2379 (|t#2| $ $)) (-15 -3593 ($ $ |t#1|)) (-15 -3593 ($ $ (-827 |t#1|))) (-15 -3593 ($ $ $)) (-15 -4118 ($ $ |t#1|)) (-15 -4118 ($ $ (-827 |t#1|))) (-15 -4118 ($ $ $)) (-15 -4298 ($ (-827 |t#1|) |t#2|)) (-15 -3357 ((-112) $)) (-15 -3450 ($ $)) (-15 -3491 ($ |t#1|)) (-15 -3331 ((-112) $)) (-15 -4338 (|t#2| $)) (-15 -3986 ((-112) $)) (-15 -1410 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2978 ($ $ $)) (-15 -2978 ($ $ (-779)))) |%noBranch|) (-15 -3161 ($ (-1 |t#2| |t#2|) $)) (-15 -4084 ((-652 |t#1|) $)) (IF (|has| |t#2| (-6 -4447)) (-6 -4447) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 #0=(-827 |#1|)) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-648 |#2|) |has| |#2| (-174)) ((-725 |#2|) |has| |#2| (-174)) ((-734) . T) ((-1049 #0#) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1293 |#2|) . T))
+((-3484 (((-112) $) 15)) (-2947 (((-112) $) 14)) (-2933 (($ $) 19) (($ $ (-779)) 21)))
+(((-1297 |#1| |#2|) (-10 -8 (-15 -2933 (|#1| |#1| (-779))) (-15 -2933 (|#1| |#1|)) (-15 -3484 ((-112) |#1|)) (-15 -2947 ((-112) |#1|))) (-1298 |#2|) (-370)) (T -1297))
+NIL
+(-10 -8 (-15 -2933 (|#1| |#1| (-779))) (-15 -2933 (|#1| |#1|)) (-15 -3484 ((-112) |#1|)) (-15 -2947 ((-112) |#1|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-2580 (((-2 (|:| -3457 $) (|:| -4441 $) (|:| |associate| $)) $) 47)) (-1697 (($ $) 46)) (-1774 (((-112) $) 44)) (-3484 (((-112) $) 104)) (-3541 (((-779)) 100)) (-2092 (((-3 $ "failed") $ $) 20)) (-1861 (($ $) 81)) (-2359 (((-426 $) $) 80)) (-4252 (((-112) $ $) 65)) (-1586 (($) 18 T CONST)) (-3072 (((-3 |#1| "failed") $) 111)) (-1869 ((|#1| $) 112)) (-3407 (($ $ $) 61)) (-2982 (((-3 $ "failed") $) 37)) (-3418 (($ $ $) 62)) (-3350 (((-2 (|:| -2379 (-652 $)) (|:| -4267 $)) (-652 $)) 57)) (-3156 (($ $ (-779)) 97 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375)))) (($ $) 96 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-3439 (((-112) $) 79)) (-2068 (((-841 (-930)) $) 94 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-4422 (((-112) $) 35)) (-1841 (((-3 (-652 $) "failed") (-652 $) $) 58)) (-1335 (($ $ $) 52) (($ (-652 $)) 51)) (-3618 (((-1170) $) 10)) (-1809 (($ $) 78)) (-2011 (((-112) $) 103)) (-2614 (((-1131) $) 11)) (-2500 (((-1184 $) (-1184 $) (-1184 $)) 50)) (-1370 (($ $ $) 54) (($ (-652 $)) 53)) (-2972 (((-426 $) $) 82)) (-4148 (((-841 (-930))) 101)) (-3260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4267 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3453 (((-3 $ "failed") $ $) 48)) (-4123 (((-3 (-652 $) "failed") (-652 $) $) 56)) (-4395 (((-779) $) 64)) (-2501 (((-2 (|:| -1882 $) (|:| -2336 $)) $ $) 63)) (-1468 (((-3 (-779) "failed") $ $) 95 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-1670 (((-135)) 109)) (-1497 (((-841 (-930)) $) 102)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ $) 49) (($ (-415 (-572))) 74) (($ |#1|) 110)) (-2210 (((-3 $ "failed") $) 93 (-3783 (|has| |#1| (-146)) (|has| |#1| (-375))))) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2466 (((-112) $ $) 45)) (-2947 (((-112) $) 105)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-2933 (($ $) 99 (|has| |#1| (-375))) (($ $ (-779)) 98 (|has| |#1| (-375)))) (-3921 (((-112) $ $) 6)) (-4029 (($ $ $) 73) (($ $ |#1|) 108)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36) (($ $ (-572)) 77)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ $ (-415 (-572))) 76) (($ (-415 (-572)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1298 |#1|) (-141) (-370)) (T -1298))
+((-2947 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930))))) (-4148 (*1 *2) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930))))) (-3541 (*1 *2) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-779)))) (-2933 (*1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-370)) (-4 *2 (-375)))) (-2933 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-4 *3 (-375)))))
+(-13 (-370) (-1049 |t#1|) (-1286 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-410)) |%noBranch|) (-15 -2947 ((-112) $)) (-15 -3484 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -1497 ((-841 (-930)) $)) (-15 -4148 ((-841 (-930)))) (-15 -3541 ((-779))) (IF (|has| |t#1| (-375)) (PROGN (-6 (-410)) (-15 -2933 ($ $)) (-15 -2933 ($ $ (-779)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-415 (-572))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3783 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-624 #0#) . T) ((-624 (-572)) . T) ((-624 |#1|) . T) ((-624 $) . T) ((-621 (-870)) . T) ((-174) . T) ((-247) . T) ((-296) . T) ((-313) . T) ((-370) . T) ((-410) -3783 (|has| |#1| (-375)) (|has| |#1| (-146))) ((-460) . T) ((-564) . T) ((-654 #0#) . T) ((-654 (-572)) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-725 #0#) . T) ((-725 |#1|) . T) ((-725 $) . T) ((-734) . T) ((-929) . T) ((-1049 |#1|) . T) ((-1062 #0#) . T) ((-1062 |#1|) . T) ((-1062 $) . T) ((-1067 #0#) . T) ((-1067 |#1|) . T) ((-1067 $) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1233) . T) ((-1286 |#1|) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-4084 (((-652 |#1|) $) 98)) (-3891 (($ $ (-779)) 102)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2978 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-779)) NIL (|has| |#2| (-174)))) (-1586 (($) NIL T CONST)) (-4118 (($ $ |#1|) NIL) (($ $ (-827 |#1|)) NIL) (($ $ $) NIL)) (-3072 (((-3 (-827 |#1|) "failed") $) NIL) (((-3 (-902 |#1|) "failed") $) NIL)) (-1869 (((-827 |#1|) $) NIL) (((-902 |#1|) $) NIL)) (-1874 (($ $) 101)) (-2982 (((-3 $ "failed") $) NIL)) (-3986 (((-112) $) 90)) (-1410 (($ $) 93)) (-2047 (($ $ $ (-779)) 103)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-4298 (($ (-827 |#1|) |#2|) NIL) (($ (-902 |#1|) |#2|) 29)) (-3450 (($ $) 119)) (-1703 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3638 (((-827 |#1|) $) NIL)) (-1344 (((-827 |#1|) $) NIL)) (-3161 (($ (-1 |#2| |#2|) $) NIL)) (-3593 (($ $ |#1|) NIL) (($ $ (-827 |#1|)) NIL) (($ $ $) NIL)) (-4057 (($ $ (-779)) 112 (|has| |#2| (-725 (-415 (-572)))))) (-3176 (((-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1840 (((-902 |#1|) $) 83)) (-1853 ((|#2| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3272 (($ $ (-779)) 109 (|has| |#2| (-725 (-415 (-572)))))) (-1497 (((-779) $) 99)) (-3331 (((-112) $) 84)) (-4338 ((|#2| $) 88)) (-3491 (((-870) $) 69) (($ (-572)) NIL) (($ |#2|) 60) (($ (-827 |#1|)) NIL) (($ |#1|) 71) (($ (-902 |#1|)) NIL) (($ (-672 |#1| |#2|)) 48) (((-1294 |#1| |#2|) $) 76) (((-1303 |#1| |#2|) $) 81)) (-1708 (((-652 |#2|) $) NIL)) (-4206 ((|#2| $ (-902 |#1|)) NIL)) (-2379 ((|#2| $ (-827 |#1|)) NIL) ((|#2| $ $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 21 T CONST)) (-2619 (($) 28 T CONST)) (-2028 (((-652 (-2 (|:| |k| (-902 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2880 (((-3 (-672 |#1| |#2|) "failed") $) 118)) (-3921 (((-112) $ $) 77)) (-4018 (($ $) 111) (($ $ $) 110)) (-4005 (($ $ $) 20)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-902 |#1|)) NIL)))
+(((-1299 |#1| |#2|) (-13 (-1300 |#1| |#2|) (-389 |#2| (-902 |#1|)) (-10 -8 (-15 -3491 ($ (-672 |#1| |#2|))) (-15 -3491 ((-1294 |#1| |#2|) $)) (-15 -3491 ((-1303 |#1| |#2|) $)) (-15 -2880 ((-3 (-672 |#1| |#2|) "failed") $)) (-15 -2047 ($ $ $ (-779))) (IF (|has| |#2| (-725 (-415 (-572)))) (PROGN (-15 -3272 ($ $ (-779))) (-15 -4057 ($ $ (-779)))) |%noBranch|))) (-858) (-174)) (T -1299))
+((-3491 (*1 *1 *2) (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)) (-5 *1 (-1299 *3 *4)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-2880 (*1 *2 *1) (|partial| -12 (-5 *2 (-672 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-2047 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174)))) (-3272 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))) (-4057 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))))
+(-13 (-1300 |#1| |#2|) (-389 |#2| (-902 |#1|)) (-10 -8 (-15 -3491 ($ (-672 |#1| |#2|))) (-15 -3491 ((-1294 |#1| |#2|) $)) (-15 -3491 ((-1303 |#1| |#2|) $)) (-15 -2880 ((-3 (-672 |#1| |#2|) "failed") $)) (-15 -2047 ($ $ $ (-779))) (IF (|has| |#2| (-725 (-415 (-572)))) (PROGN (-15 -3272 ($ $ (-779))) (-15 -4057 ($ $ (-779)))) |%noBranch|)))
+((-3464 (((-112) $ $) 7)) (-3143 (((-112) $) 17)) (-4084 (((-652 |#1|) $) 47)) (-3891 (($ $ (-779)) 80)) (-2092 (((-3 $ "failed") $ $) 20)) (-2978 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-779)) 49 (|has| |#2| (-174)))) (-1586 (($) 18 T CONST)) (-4118 (($ $ |#1|) 61) (($ $ (-827 |#1|)) 60) (($ $ $) 59)) (-3072 (((-3 (-827 |#1|) "failed") $) 71)) (-1869 (((-827 |#1|) $) 72)) (-2982 (((-3 $ "failed") $) 37)) (-3986 (((-112) $) 52)) (-1410 (($ $) 51)) (-4422 (((-112) $) 35)) (-3357 (((-112) $) 57)) (-4298 (($ (-827 |#1|) |#2|) 58)) (-3450 (($ $) 56)) (-1703 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) 67)) (-3638 (((-827 |#1|) $) 68)) (-1344 (((-827 |#1|) $) 82)) (-3161 (($ (-1 |#2| |#2|) $) 48)) (-3593 (($ $ |#1|) 64) (($ $ (-827 |#1|)) 63) (($ $ $) 62)) (-3618 (((-1170) $) 10)) (-2614 (((-1131) $) 11)) (-1497 (((-779) $) 81)) (-3331 (((-112) $) 54)) (-4338 ((|#2| $) 53)) (-3491 (((-870) $) 12) (($ (-572)) 33) (($ |#2|) 75) (($ (-827 |#1|)) 70) (($ |#1|) 55)) (-2379 ((|#2| $ (-827 |#1|)) 66) ((|#2| $ $) 65)) (-2455 (((-779)) 32 T CONST)) (-3424 (((-112) $ $) 9)) (-2602 (($) 19 T CONST)) (-2619 (($) 34 T CONST)) (-3921 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4005 (($ $ $) 15)) (** (($ $ (-930)) 28) (($ $ (-779)) 36)) (* (($ (-930) $) 14) (($ (-779) $) 16) (($ (-572) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1300 |#1| |#2|) (-141) (-858) (-1060)) (T -1300))
+((-1344 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-827 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *2 (-779)))) (-3891 (*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))))
+(-13 (-1296 |t#1| |t#2|) (-10 -8 (-15 -1344 ((-827 |t#1|) $)) (-15 -1497 ((-779) $)) (-15 -3891 ($ $ (-779)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 (-572)) . T) ((-624 #0=(-827 |#1|)) . T) ((-624 |#2|) . T) ((-621 (-870)) . T) ((-654 (-572)) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-656 |#2|) . T) ((-656 $) . T) ((-648 |#2|) |has| |#2| (-174)) ((-725 |#2|) |has| |#2| (-174)) ((-734) . T) ((-1049 #0#) . T) ((-1062 |#2|) . T) ((-1067 |#2|) . T) ((-1060) . T) ((-1069) . T) ((-1123) . T) ((-1111) . T) ((-1293 |#2|) . T) ((-1296 |#1| |#2|) . T))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-4084 (((-652 (-1188)) $) NIL)) (-4196 (($ (-1294 (-1188) |#1|)) NIL)) (-3891 (($ $ (-779)) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2978 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-779)) NIL (|has| |#1| (-174)))) (-1586 (($) NIL T CONST)) (-4118 (($ $ (-1188)) NIL) (($ $ (-827 (-1188))) NIL) (($ $ $) NIL)) (-3072 (((-3 (-827 (-1188)) "failed") $) NIL)) (-1869 (((-827 (-1188)) $) NIL)) (-2982 (((-3 $ "failed") $) NIL)) (-3986 (((-112) $) NIL)) (-1410 (($ $) NIL)) (-4422 (((-112) $) NIL)) (-3357 (((-112) $) NIL)) (-4298 (($ (-827 (-1188)) |#1|) NIL)) (-3450 (($ $) NIL)) (-1703 (((-2 (|:| |k| (-827 (-1188))) (|:| |c| |#1|)) $) NIL)) (-3638 (((-827 (-1188)) $) NIL)) (-1344 (((-827 (-1188)) $) NIL)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3593 (($ $ (-1188)) NIL) (($ $ (-827 (-1188))) NIL) (($ $ $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1386 (((-1294 (-1188) |#1|) $) NIL)) (-1497 (((-779) $) NIL)) (-3331 (((-112) $) NIL)) (-4338 ((|#1| $) NIL)) (-3491 (((-870) $) NIL) (($ (-572)) NIL) (($ |#1|) NIL) (($ (-827 (-1188))) NIL) (($ (-1188)) NIL)) (-2379 ((|#1| $ (-827 (-1188))) NIL) ((|#1| $ $) NIL)) (-2455 (((-779)) NIL T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) NIL T CONST)) (-3183 (((-652 (-2 (|:| |k| (-1188)) (|:| |c| $))) $) NIL)) (-2619 (($) NIL T CONST)) (-3921 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) NIL)) (** (($ $ (-930)) NIL) (($ $ (-779)) NIL)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1188) $) NIL)))
+(((-1301 |#1|) (-13 (-1300 (-1188) |#1|) (-10 -8 (-15 -1386 ((-1294 (-1188) |#1|) $)) (-15 -4196 ($ (-1294 (-1188) |#1|))) (-15 -3183 ((-652 (-2 (|:| |k| (-1188)) (|:| |c| $))) $)))) (-1060)) (T -1301))
+((-1386 (*1 *2 *1) (-12 (-5 *2 (-1294 (-1188) *3)) (-5 *1 (-1301 *3)) (-4 *3 (-1060)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-1294 (-1188) *3)) (-4 *3 (-1060)) (-5 *1 (-1301 *3)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| (-1188)) (|:| |c| (-1301 *3))))) (-5 *1 (-1301 *3)) (-4 *3 (-1060)))))
+(-13 (-1300 (-1188) |#1|) (-10 -8 (-15 -1386 ((-1294 (-1188) |#1|) $)) (-15 -4196 ($ (-1294 (-1188) |#1|))) (-15 -3183 ((-652 (-2 (|:| |k| (-1188)) (|:| |c| $))) $))))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) NIL)) (-2092 (((-3 $ "failed") $ $) NIL)) (-1586 (($) NIL T CONST)) (-3072 (((-3 |#2| "failed") $) NIL)) (-1869 ((|#2| $) NIL)) (-1874 (($ $) NIL)) (-2982 (((-3 $ "failed") $) 42)) (-3986 (((-112) $) 35)) (-1410 (($ $) 37)) (-4422 (((-112) $) NIL)) (-2348 (((-779) $) NIL)) (-3715 (((-652 $) $) NIL)) (-3357 (((-112) $) NIL)) (-4298 (($ |#2| |#1|) NIL)) (-3638 ((|#2| $) 24)) (-1344 ((|#2| $) 22)) (-3161 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1840 ((|#2| $) NIL)) (-1853 ((|#1| $) NIL)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3331 (((-112) $) 32)) (-4338 ((|#1| $) 33)) (-3491 (((-870) $) 65) (($ (-572)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1708 (((-652 |#1|) $) NIL)) (-4206 ((|#1| $ |#2|) NIL)) (-2379 ((|#1| $ |#2|) 28)) (-2455 (((-779)) 14 T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 29 T CONST)) (-2619 (($) 11 T CONST)) (-2028 (((-652 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3921 (((-112) $ $) 30)) (-4029 (($ $ |#1|) 67 (|has| |#1| (-370)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4005 (($ $ $) 50)) (** (($ $ (-930)) NIL) (($ $ (-779)) 52)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3475 (((-779) $) 16)))
+(((-1302 |#1| |#2|) (-13 (-1060) (-1293 |#1|) (-389 |#1| |#2|) (-624 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3475 ((-779) $)) (-15 -1344 (|#2| $)) (-15 -3638 (|#2| $)) (-15 -1874 ($ $)) (-15 -2379 (|#1| $ |#2|)) (-15 -3331 ((-112) $)) (-15 -4338 (|#1| $)) (-15 -3986 ((-112) $)) (-15 -1410 ($ $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-370)) (-15 -4029 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|))) (-1060) (-854)) (T -1302))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))) (-3161 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-1302 *3 *4)) (-4 *4 (-854)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-854)))) (-1344 (*1 *2 *1) (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))) (-3638 (*1 *2 *1) (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))) (-2379 (*1 *2 *1 *3) (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-854)))) (-4338 (*1 *2 *1) (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-854)))) (-1410 (*1 *1 *1) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))) (-4029 (*1 *1 *1 *2) (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-370)) (-4 *2 (-1060)) (-4 *3 (-854)))))
+(-13 (-1060) (-1293 |#1|) (-389 |#1| |#2|) (-624 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3475 ((-779) $)) (-15 -1344 (|#2| $)) (-15 -3638 (|#2| $)) (-15 -1874 ($ $)) (-15 -2379 (|#1| $ |#2|)) (-15 -3331 ((-112) $)) (-15 -4338 (|#1| $)) (-15 -3986 ((-112) $)) (-15 -1410 ($ $)) (-15 -3161 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-370)) (-15 -4029 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) (IF (|has| |#1| (-6 -4451)) (-6 -4451) |%noBranch|) (IF (|has| |#1| (-6 -4452)) (-6 -4452) |%noBranch|)))
+((-3464 (((-112) $ $) 27)) (-3143 (((-112) $) NIL)) (-4084 (((-652 |#1|) $) 132)) (-4196 (($ (-1294 |#1| |#2|)) 50)) (-3891 (($ $ (-779)) 38)) (-2092 (((-3 $ "failed") $ $) NIL)) (-2978 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-779)) 52 (|has| |#2| (-174)))) (-1586 (($) NIL T CONST)) (-4118 (($ $ |#1|) 114) (($ $ (-827 |#1|)) 115) (($ $ $) 26)) (-3072 (((-3 (-827 |#1|) "failed") $) NIL)) (-1869 (((-827 |#1|) $) NIL)) (-2982 (((-3 $ "failed") $) 122)) (-3986 (((-112) $) 117)) (-1410 (($ $) 118)) (-4422 (((-112) $) NIL)) (-3357 (((-112) $) NIL)) (-4298 (($ (-827 |#1|) |#2|) 20)) (-3450 (($ $) NIL)) (-1703 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3638 (((-827 |#1|) $) 123)) (-1344 (((-827 |#1|) $) 126)) (-3161 (($ (-1 |#2| |#2|) $) 131)) (-3593 (($ $ |#1|) 112) (($ $ (-827 |#1|)) 113) (($ $ $) 62)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-1386 (((-1294 |#1| |#2|) $) 94)) (-1497 (((-779) $) 129)) (-3331 (((-112) $) 81)) (-4338 ((|#2| $) 32)) (-3491 (((-870) $) 73) (($ (-572)) 87) (($ |#2|) 85) (($ (-827 |#1|)) 18) (($ |#1|) 84)) (-2379 ((|#2| $ (-827 |#1|)) 116) ((|#2| $ $) 28)) (-2455 (((-779)) 120 T CONST)) (-3424 (((-112) $ $) NIL)) (-2602 (($) 15 T CONST)) (-3183 (((-652 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2619 (($) 33 T CONST)) (-3921 (((-112) $ $) 14)) (-4018 (($ $) 98) (($ $ $) 101)) (-4005 (($ $ $) 61)) (** (($ $ (-930)) NIL) (($ $ (-779)) 55)) (* (($ (-930) $) NIL) (($ (-779) $) 53) (($ (-572) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1303 |#1| |#2|) (-13 (-1300 |#1| |#2|) (-10 -8 (-15 -1386 ((-1294 |#1| |#2|) $)) (-15 -4196 ($ (-1294 |#1| |#2|))) (-15 -3183 ((-652 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-858) (-1060)) (T -1303))
+((-1386 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)) (-5 *1 (-1303 *3 *4)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-652 (-2 (|:| |k| *3) (|:| |c| (-1303 *3 *4))))) (-5 *1 (-1303 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))))
+(-13 (-1300 |#1| |#2|) (-10 -8 (-15 -1386 ((-1294 |#1| |#2|) $)) (-15 -4196 ($ (-1294 |#1| |#2|))) (-15 -3183 ((-652 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-3464 (((-112) $ $) NIL)) (-3879 (($ (-652 (-930))) 10)) (-4305 (((-982) $) 12)) (-3618 (((-1170) $) NIL)) (-2614 (((-1131) $) NIL)) (-3491 (((-870) $) 25) (($ (-982)) 14) (((-982) $) 13)) (-3424 (((-112) $ $) NIL)) (-3921 (((-112) $ $) 17)))
+(((-1304) (-13 (-1111) (-498 (-982)) (-10 -8 (-15 -3879 ($ (-652 (-930)))) (-15 -4305 ((-982) $))))) (T -1304))
+((-3879 (*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1304)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-1304)))))
+(-13 (-1111) (-498 (-982)) (-10 -8 (-15 -3879 ($ (-652 (-930)))) (-15 -4305 ((-982) $))))
+((-2872 (((-652 (-1168 |#1|)) (-1 (-652 (-1168 |#1|)) (-652 (-1168 |#1|))) (-572)) 16) (((-1168 |#1|) (-1 (-1168 |#1|) (-1168 |#1|))) 13)))
+(((-1305 |#1|) (-10 -7 (-15 -2872 ((-1168 |#1|) (-1 (-1168 |#1|) (-1168 |#1|)))) (-15 -2872 ((-652 (-1168 |#1|)) (-1 (-652 (-1168 |#1|)) (-652 (-1168 |#1|))) (-572)))) (-1229)) (T -1305))
+((-2872 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-652 (-1168 *5)) (-652 (-1168 *5)))) (-5 *4 (-572)) (-5 *2 (-652 (-1168 *5))) (-5 *1 (-1305 *5)) (-4 *5 (-1229)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-1 (-1168 *4) (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1305 *4)) (-4 *4 (-1229)))))
+(-10 -7 (-15 -2872 ((-1168 |#1|) (-1 (-1168 |#1|) (-1168 |#1|)))) (-15 -2872 ((-652 (-1168 |#1|)) (-1 (-652 (-1168 |#1|)) (-652 (-1168 |#1|))) (-572))))
+((-4165 (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|))) 174) (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112)) 173) (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112)) 172) (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112) (-112)) 171) (((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-1057 |#1| |#2|)) 156)) (-1361 (((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|))) 85) (((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112)) 84) (((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112) (-112)) 83)) (-2359 (((-652 (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) (-1057 |#1| |#2|)) 73)) (-2935 (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|))) 140) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112)) 139) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112)) 138) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112) (-112)) 137) (((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|)) 132)) (-1905 (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|))) 145) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112)) 144) (((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112)) 143) (((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|)) 142)) (-3222 (((-652 (-788 |#1| (-872 |#3|))) (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) 111) (((-1184 (-1035 (-415 |#1|))) (-1184 |#1|)) 102) (((-961 (-1035 (-415 |#1|))) (-788 |#1| (-872 |#3|))) 109) (((-961 (-1035 (-415 |#1|))) (-961 |#1|)) 107) (((-788 |#1| (-872 |#3|)) (-788 |#1| (-872 |#2|))) 33)))
+(((-1306 |#1| |#2| |#3|) (-10 -7 (-15 -1361 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112) (-112))) (-15 -1361 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112))) (-15 -1361 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-1057 |#1| |#2|))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -2359 ((-652 (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) (-1057 |#1| |#2|))) (-15 -3222 ((-788 |#1| (-872 |#3|)) (-788 |#1| (-872 |#2|)))) (-15 -3222 ((-961 (-1035 (-415 |#1|))) (-961 |#1|))) (-15 -3222 ((-961 (-1035 (-415 |#1|))) (-788 |#1| (-872 |#3|)))) (-15 -3222 ((-1184 (-1035 (-415 |#1|))) (-1184 |#1|))) (-15 -3222 ((-652 (-788 |#1| (-872 |#3|))) (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))))) (-13 (-856) (-313) (-148) (-1033)) (-652 (-1188)) (-652 (-1188))) (T -1306))
+((-3222 (*1 *2 *3) (-12 (-5 *3 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6)))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-788 *4 (-872 *6)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-1184 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-788 *4 (-872 *6))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188))) (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-3222 (*1 *2 *3) (-12 (-5 *3 (-788 *4 (-872 *5))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-788 *4 (-872 *6))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-1905 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2935 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2935 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-4165 (*1 *2 *3) (-12 (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *4)) (|:| -2862 (-652 (-961 *4)))))) (-5 *1 (-1306 *4 *5 *6)) (-5 *3 (-652 (-961 *4))) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5)))))) (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-4165 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5)))))) (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-4165 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5)))))) (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5))) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-2 (|:| -1758 (-1184 *4)) (|:| -2862 (-652 (-961 *4)))))) (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-1057 *4 *5))) (-5 *1 (-1306 *4 *5 *6)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))) (-1361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033))) (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7)) (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188))))))
+(-10 -7 (-15 -1361 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112) (-112))) (-15 -1361 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)) (-112))) (-15 -1361 ((-652 (-1057 |#1| |#2|)) (-652 (-961 |#1|)))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-1057 |#1| |#2|))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)) (-112))) (-15 -4165 ((-652 (-2 (|:| -1758 (-1184 |#1|)) (|:| -2862 (-652 (-961 |#1|))))) (-652 (-961 |#1|)))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112) (-112))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -2935 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-1057 |#1| |#2|))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112) (-112))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)) (-112))) (-15 -1905 ((-652 (-652 (-1035 (-415 |#1|)))) (-652 (-961 |#1|)))) (-15 -2359 ((-652 (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|)))) (-1057 |#1| |#2|))) (-15 -3222 ((-788 |#1| (-872 |#3|)) (-788 |#1| (-872 |#2|)))) (-15 -3222 ((-961 (-1035 (-415 |#1|))) (-961 |#1|))) (-15 -3222 ((-961 (-1035 (-415 |#1|))) (-788 |#1| (-872 |#3|)))) (-15 -3222 ((-1184 (-1035 (-415 |#1|))) (-1184 |#1|))) (-15 -3222 ((-652 (-788 |#1| (-872 |#3|))) (-1157 |#1| (-539 (-872 |#3|)) (-872 |#3|) (-788 |#1| (-872 |#3|))))))
+((-3934 (((-3 (-1279 (-415 (-572))) "failed") (-1279 |#1|) |#1|) 21)) (-2144 (((-112) (-1279 |#1|)) 12)) (-3676 (((-3 (-1279 (-572)) "failed") (-1279 |#1|)) 16)))
+(((-1307 |#1|) (-10 -7 (-15 -2144 ((-112) (-1279 |#1|))) (-15 -3676 ((-3 (-1279 (-572)) "failed") (-1279 |#1|))) (-15 -3934 ((-3 (-1279 (-415 (-572))) "failed") (-1279 |#1|) |#1|))) (-647 (-572))) (T -1307))
+((-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 (-572))) (-5 *2 (-1279 (-415 (-572)))) (-5 *1 (-1307 *4)))) (-3676 (*1 *2 *3) (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 (-572))) (-5 *2 (-1279 (-572))) (-5 *1 (-1307 *4)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-1279 *4)) (-4 *4 (-647 (-572))) (-5 *2 (-112)) (-5 *1 (-1307 *4)))))
+(-10 -7 (-15 -2144 ((-112) (-1279 |#1|))) (-15 -3676 ((-3 (-1279 (-572)) "failed") (-1279 |#1|))) (-15 -3934 ((-3 (-1279 (-415 (-572))) "failed") (-1279 |#1|) |#1|)))
+((-3464 (((-112) $ $) NIL)) (-3143 (((-112) $) 11)) (-2092 (((-3 $ "failed") $ $) NIL)) (-3037 (((-779)) 8)) (-1586 (($) NIL T CONST)) (-2982 (((-3 $ "failed") $) 58)) (-2688 (($) 49)) (-4422 (((-112) $) 57)) (-3396 (((-3 $ "failed") $) 40)) (-4370 (((-930) $) 15)) (-3618 (((-1170) $) NIL)) (-3477 (($) 32 T CONST)) (-1795 (($ (-930)) 50)) (-2614 (((-1131) $) NIL)) (-3222 (((-572) $) 13)) (-3491 (((-870) $) 27) (($ (-572)) 24)) (-2455 (((-779)) 9 T CONST)) (-3424 (((-112) $ $) 60)) (-2602 (($) 29 T CONST)) (-2619 (($) 31 T CONST)) (-3921 (((-112) $ $) 38)) (-4018 (($ $) 52) (($ $ $) 47)) (-4005 (($ $ $) 35)) (** (($ $ (-930)) NIL) (($ $ (-779)) 54)) (* (($ (-930) $) NIL) (($ (-779) $) NIL) (($ (-572) $) 44) (($ $ $) 43)))
+(((-1308 |#1|) (-13 (-174) (-375) (-622 (-572)) (-1163)) (-930)) (T -1308))
+NIL
+(-13 (-174) (-375) (-622 (-572)) (-1163))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3228870 3228875 3228880 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3228855 3228860 3228865 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3228840 3228845 3228850 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3228825 3228830 3228835 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1308 3227968 3228700 3228777 "ZMOD" 3228782 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1307 3227078 3227242 3227451 "ZLINDEP" 3227800 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1306 3216378 3218146 3220118 "ZDSOLVE" 3225208 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1305 3215624 3215765 3215954 "YSTREAM" 3216224 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1304 3215052 3215298 3215411 "YDIAGRAM" 3215533 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1303 3212826 3214353 3214557 "XRPOLY" 3214895 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3209379 3210697 3211272 "XPR" 3212298 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1301 3207100 3208710 3208914 "XPOLY" 3209210 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1300 3204753 3206121 3206176 "XPOLYC" 3206464 NIL XPOLYC (NIL T T) -9 NIL 3206577 NIL) (-1299 3201129 3203270 3203658 "XPBWPOLY" 3204411 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1298 3196824 3199119 3199161 "XF" 3199782 NIL XF (NIL T) -9 NIL 3200182 NIL) (-1297 3196445 3196533 3196702 "XF-" 3196707 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1296 3191641 3192930 3192985 "XFALG" 3195157 NIL XFALG (NIL T T) -9 NIL 3195946 NIL) (-1295 3190774 3190878 3191083 "XEXPPKG" 3191533 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1294 3188883 3190624 3190720 "XDPOLY" 3190725 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1293 3187690 3188290 3188333 "XALG" 3188338 NIL XALG (NIL T) -9 NIL 3188449 NIL) (-1292 3181132 3185667 3186161 "WUTSET" 3187282 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1291 3179388 3180184 3180507 "WP" 3180943 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1290 3178990 3179210 3179280 "WHILEAST" 3179340 T WHILEAST (NIL) -8 NIL NIL NIL) (-1289 3178462 3178707 3178801 "WHEREAST" 3178918 T WHEREAST (NIL) -8 NIL NIL NIL) (-1288 3177348 3177546 3177841 "WFFINTBS" 3178259 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1287 3175252 3175679 3176141 "WEIER" 3176920 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1286 3174298 3174748 3174790 "VSPACE" 3174926 NIL VSPACE (NIL T) -9 NIL 3175000 NIL) (-1285 3174136 3174163 3174254 "VSPACE-" 3174259 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1284 3173945 3173987 3174055 "VOID" 3174090 T VOID (NIL) -8 NIL NIL NIL) (-1283 3172081 3172440 3172846 "VIEW" 3173561 T VIEW (NIL) -7 NIL NIL NIL) (-1282 3168505 3169144 3169881 "VIEWDEF" 3171366 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1281 3157809 3160053 3162226 "VIEW3D" 3166354 T VIEW3D (NIL) -8 NIL NIL NIL) (-1280 3150060 3151720 3153299 "VIEW2D" 3156252 T VIEW2D (NIL) -8 NIL NIL NIL) (-1279 3145413 3149830 3149922 "VECTOR" 3150003 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1278 3143990 3144249 3144567 "VECTOR2" 3145143 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1277 3137432 3141741 3141784 "VECTCAT" 3142779 NIL VECTCAT (NIL T) -9 NIL 3143366 NIL) (-1276 3136446 3136700 3137090 "VECTCAT-" 3137095 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1275 3135900 3136097 3136217 "VARIABLE" 3136361 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1274 3135833 3135838 3135868 "UTYPE" 3135873 T UTYPE (NIL) -9 NIL NIL NIL) (-1273 3134663 3134817 3135079 "UTSODETL" 3135659 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1272 3132103 3132563 3133087 "UTSODE" 3134204 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1271 3123941 3129729 3130218 "UTS" 3131672 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1270 3114778 3120146 3120189 "UTSCAT" 3121301 NIL UTSCAT (NIL T) -9 NIL 3122059 NIL) (-1269 3112126 3112848 3113837 "UTSCAT-" 3113842 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1268 3111753 3111796 3111929 "UTS2" 3112077 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1267 3105979 3108591 3108634 "URAGG" 3110704 NIL URAGG (NIL T) -9 NIL 3111427 NIL) (-1266 3102918 3103781 3104904 "URAGG-" 3104909 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1265 3098627 3101553 3102018 "UPXSSING" 3102582 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1264 3090693 3097874 3098147 "UPXS" 3098412 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1263 3083766 3090597 3090669 "UPXSCONS" 3090674 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1262 3073474 3080268 3080330 "UPXSCCA" 3080904 NIL UPXSCCA (NIL T T) -9 NIL 3081137 NIL) (-1261 3073112 3073197 3073371 "UPXSCCA-" 3073376 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1260 3062672 3069239 3069282 "UPXSCAT" 3069930 NIL UPXSCAT (NIL T) -9 NIL 3070539 NIL) (-1259 3062102 3062181 3062360 "UPXS2" 3062587 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1258 3060756 3061009 3061360 "UPSQFREE" 3061845 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1257 3054229 3057287 3057342 "UPSCAT" 3058422 NIL UPSCAT (NIL T T) -9 NIL 3059187 NIL) (-1256 3053433 3053640 3053967 "UPSCAT-" 3053972 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1255 3039074 3046842 3046885 "UPOLYC" 3048986 NIL UPOLYC (NIL T) -9 NIL 3050207 NIL) (-1254 3030402 3032828 3035975 "UPOLYC-" 3035980 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1253 3030029 3030072 3030205 "UPOLYC2" 3030353 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1252 3021840 3029712 3029841 "UP" 3029948 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1251 3021179 3021286 3021450 "UPMP" 3021729 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1250 3020732 3020813 3020952 "UPDIVP" 3021092 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1249 3019300 3019549 3019865 "UPDECOMP" 3020481 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1248 3018531 3018643 3018829 "UPCDEN" 3019184 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1247 3018050 3018119 3018268 "UP2" 3018456 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1246 3016517 3017254 3017531 "UNISEG" 3017808 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1245 3015732 3015859 3016064 "UNISEG2" 3016360 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1244 3014792 3014972 3015198 "UNIFACT" 3015548 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1243 2998724 3013969 3014220 "ULS" 3014599 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1242 2986722 2998628 2998700 "ULSCONS" 2998705 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1241 2968730 2980716 2980778 "ULSCCAT" 2981416 NIL ULSCCAT (NIL T T) -9 NIL 2981705 NIL) (-1240 2967780 2968025 2968413 "ULSCCAT-" 2968418 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1239 2957117 2963598 2963641 "ULSCAT" 2964504 NIL ULSCAT (NIL T) -9 NIL 2965235 NIL) (-1238 2956547 2956626 2956805 "ULS2" 2957032 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1237 2955666 2956176 2956283 "UINT8" 2956394 T UINT8 (NIL) -8 NIL NIL 2956479) (-1236 2954784 2955294 2955401 "UINT64" 2955512 T UINT64 (NIL) -8 NIL NIL 2955597) (-1235 2953902 2954412 2954519 "UINT32" 2954630 T UINT32 (NIL) -8 NIL NIL 2954715) (-1234 2953020 2953530 2953637 "UINT16" 2953748 T UINT16 (NIL) -8 NIL NIL 2953833) (-1233 2951323 2952280 2952310 "UFD" 2952522 T UFD (NIL) -9 NIL 2952636 NIL) (-1232 2951117 2951163 2951258 "UFD-" 2951263 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1231 2950199 2950382 2950598 "UDVO" 2950923 T UDVO (NIL) -7 NIL NIL NIL) (-1230 2948015 2948424 2948895 "UDPO" 2949763 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1229 2947948 2947953 2947983 "TYPE" 2947988 T TYPE (NIL) -9 NIL NIL NIL) (-1228 2947708 2947903 2947934 "TYPEAST" 2947939 T TYPEAST (NIL) -8 NIL NIL NIL) (-1227 2946679 2946881 2947121 "TWOFACT" 2947502 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1226 2945702 2946088 2946323 "TUPLE" 2946479 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1225 2943393 2943912 2944451 "TUBETOOL" 2945185 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1224 2942242 2942447 2942688 "TUBE" 2943186 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1223 2936971 2941214 2941497 "TS" 2941994 NIL TS (NIL T) -8 NIL NIL NIL) (-1222 2925611 2929730 2929827 "TSETCAT" 2935096 NIL TSETCAT (NIL T T T T) -9 NIL 2936627 NIL) (-1221 2920343 2921943 2923834 "TSETCAT-" 2923839 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1220 2914982 2915829 2916758 "TRMANIP" 2919479 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1219 2914423 2914486 2914649 "TRIMAT" 2914914 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1218 2912289 2912526 2912883 "TRIGMNIP" 2914172 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1217 2911809 2911922 2911952 "TRIGCAT" 2912165 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1216 2911478 2911557 2911698 "TRIGCAT-" 2911703 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1215 2908323 2910336 2910617 "TREE" 2911232 NIL TREE (NIL T) -8 NIL NIL NIL) (-1214 2907597 2908125 2908155 "TRANFUN" 2908190 T TRANFUN (NIL) -9 NIL 2908256 NIL) (-1213 2906876 2907067 2907347 "TRANFUN-" 2907352 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1212 2906680 2906712 2906773 "TOPSP" 2906837 T TOPSP (NIL) -7 NIL NIL NIL) (-1211 2906028 2906143 2906297 "TOOLSIGN" 2906561 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1210 2904662 2905205 2905444 "TEXTFILE" 2905811 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1209 2902574 2903115 2903544 "TEX" 2904255 T TEX (NIL) -8 NIL NIL NIL) (-1208 2902355 2902386 2902458 "TEX1" 2902537 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1207 2902003 2902066 2902156 "TEMUTL" 2902287 T TEMUTL (NIL) -7 NIL NIL NIL) (-1206 2900157 2900437 2900762 "TBCMPPK" 2901726 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1205 2891934 2898317 2898373 "TBAGG" 2898773 NIL TBAGG (NIL T T) -9 NIL 2898984 NIL) (-1204 2887004 2888492 2890246 "TBAGG-" 2890251 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1203 2886388 2886495 2886640 "TANEXP" 2886893 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1202 2885899 2886163 2886253 "TALGOP" 2886333 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1201 2879289 2885756 2885849 "TABLE" 2885854 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1200 2878701 2878800 2878938 "TABLEAU" 2879186 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1199 2873309 2874529 2875777 "TABLBUMP" 2877487 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1198 2872531 2872678 2872859 "SYSTEM" 2873150 T SYSTEM (NIL) -8 NIL NIL NIL) (-1197 2868990 2869689 2870472 "SYSSOLP" 2871782 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1196 2868788 2868945 2868976 "SYSPTR" 2868981 T SYSPTR (NIL) -8 NIL NIL NIL) (-1195 2867824 2868329 2868448 "SYSNNI" 2868634 NIL SYSNNI (NIL NIL) -8 NIL NIL 2868719) (-1194 2867123 2867582 2867661 "SYSINT" 2867721 NIL SYSINT (NIL NIL) -8 NIL NIL 2867766) (-1193 2863455 2864401 2865111 "SYNTAX" 2866435 T SYNTAX (NIL) -8 NIL NIL NIL) (-1192 2860613 2861215 2861847 "SYMTAB" 2862845 T SYMTAB (NIL) -8 NIL NIL NIL) (-1191 2855862 2856764 2857747 "SYMS" 2859652 T SYMS (NIL) -8 NIL NIL NIL) (-1190 2853097 2855320 2855550 "SYMPOLY" 2855667 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1189 2852614 2852689 2852812 "SYMFUNC" 2853009 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1188 2848634 2849926 2850739 "SYMBOL" 2851823 T SYMBOL (NIL) -8 NIL NIL NIL) (-1187 2842173 2843862 2845582 "SWITCH" 2846936 T SWITCH (NIL) -8 NIL NIL NIL) (-1186 2835407 2840994 2841297 "SUTS" 2841928 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1185 2827473 2834654 2834927 "SUPXS" 2835192 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1184 2819232 2827091 2827217 "SUP" 2827382 NIL SUP (NIL T) -8 NIL NIL NIL) (-1183 2818391 2818518 2818735 "SUPFRACF" 2819100 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1182 2818012 2818071 2818184 "SUP2" 2818326 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1181 2816460 2816734 2817090 "SUMRF" 2817711 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1180 2815795 2815861 2816053 "SUMFS" 2816381 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1179 2799762 2814972 2815223 "SULS" 2815602 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1178 2799364 2799584 2799654 "SUCHTAST" 2799714 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1177 2798659 2798889 2799029 "SUCH" 2799272 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1176 2792526 2793565 2794524 "SUBSPACE" 2797747 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1175 2791956 2792046 2792210 "SUBRESP" 2792414 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1174 2785324 2786621 2787932 "STTF" 2790692 NIL STTF (NIL T) -7 NIL NIL NIL) (-1173 2779497 2780617 2781764 "STTFNC" 2784224 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1172 2770810 2772679 2774473 "STTAYLOR" 2777738 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1171 2763940 2770674 2770757 "STRTBL" 2770762 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1170 2759304 2763895 2763926 "STRING" 2763931 T STRING (NIL) -8 NIL NIL NIL) (-1169 2754133 2758647 2758677 "STRICAT" 2758736 T STRICAT (NIL) -9 NIL 2758798 NIL) (-1168 2746886 2751752 2752363 "STREAM" 2753557 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1167 2746396 2746473 2746617 "STREAM3" 2746803 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1166 2745378 2745561 2745796 "STREAM2" 2746209 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1165 2745066 2745118 2745211 "STREAM1" 2745320 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1164 2744082 2744263 2744494 "STINPROD" 2744882 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1163 2743634 2743844 2743874 "STEP" 2743954 T STEP (NIL) -9 NIL 2744032 NIL) (-1162 2742821 2743123 2743271 "STEPAST" 2743508 T STEPAST (NIL) -8 NIL NIL NIL) (-1161 2736253 2742720 2742797 "STBL" 2742802 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1160 2731348 2735444 2735487 "STAGG" 2735640 NIL STAGG (NIL T) -9 NIL 2735729 NIL) (-1159 2729050 2729652 2730524 "STAGG-" 2730529 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1158 2727197 2728820 2728912 "STACK" 2728993 NIL STACK (NIL T) -8 NIL NIL NIL) (-1157 2719892 2725338 2725794 "SREGSET" 2726827 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1156 2712317 2713686 2715199 "SRDCMPK" 2718498 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1155 2705202 2709727 2709757 "SRAGG" 2711060 T SRAGG (NIL) -9 NIL 2711668 NIL) (-1154 2704219 2704474 2704853 "SRAGG-" 2704858 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1153 2698679 2703166 2703587 "SQMATRIX" 2703845 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1152 2692364 2695397 2696124 "SPLTREE" 2698024 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1151 2688327 2689020 2689666 "SPLNODE" 2691790 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1150 2687374 2687607 2687637 "SPFCAT" 2688081 T SPFCAT (NIL) -9 NIL NIL NIL) (-1149 2686111 2686321 2686585 "SPECOUT" 2687132 T SPECOUT (NIL) -7 NIL NIL NIL) (-1148 2677221 2679093 2679123 "SPADXPT" 2683799 T SPADXPT (NIL) -9 NIL 2685963 NIL) (-1147 2676982 2677022 2677091 "SPADPRSR" 2677174 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1146 2675031 2676937 2676968 "SPADAST" 2676973 T SPADAST (NIL) -8 NIL NIL NIL) (-1145 2666976 2668749 2668792 "SPACEC" 2673165 NIL SPACEC (NIL T) -9 NIL 2674981 NIL) (-1144 2665106 2666908 2666957 "SPACE3" 2666962 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1143 2663858 2664029 2664320 "SORTPAK" 2664911 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1142 2661950 2662253 2662665 "SOLVETRA" 2663522 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1141 2661000 2661222 2661483 "SOLVESER" 2661723 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1140 2656304 2657192 2658187 "SOLVERAD" 2660052 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1139 2652119 2652728 2653457 "SOLVEFOR" 2655671 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1138 2646389 2651468 2651565 "SNTSCAT" 2651570 NIL SNTSCAT (NIL T T T T) -9 NIL 2651640 NIL) (-1137 2640495 2644712 2645103 "SMTS" 2646079 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1136 2635180 2640383 2640460 "SMP" 2640465 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1135 2633339 2633640 2634038 "SMITH" 2634877 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1134 2626052 2630248 2630351 "SMATCAT" 2631702 NIL SMATCAT (NIL NIL T T T) -9 NIL 2632252 NIL) (-1133 2622992 2623815 2624993 "SMATCAT-" 2624998 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1132 2620658 2622228 2622271 "SKAGG" 2622532 NIL SKAGG (NIL T) -9 NIL 2622667 NIL) (-1131 2616984 2620131 2620315 "SINT" 2620467 T SINT (NIL) -8 NIL NIL 2620629) (-1130 2616756 2616794 2616860 "SIMPAN" 2616940 T SIMPAN (NIL) -7 NIL NIL NIL) (-1129 2616035 2616291 2616431 "SIG" 2616638 T SIG (NIL) -8 NIL NIL NIL) (-1128 2614873 2615094 2615369 "SIGNRF" 2615794 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1127 2613706 2613857 2614141 "SIGNEF" 2614702 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1126 2613012 2613289 2613413 "SIGAST" 2613604 T SIGAST (NIL) -8 NIL NIL NIL) (-1125 2610702 2611156 2611662 "SHP" 2612553 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1124 2604554 2610603 2610679 "SHDP" 2610684 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1123 2604127 2604319 2604349 "SGROUP" 2604442 T SGROUP (NIL) -9 NIL 2604504 NIL) (-1122 2603985 2604011 2604084 "SGROUP-" 2604089 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1121 2600776 2601474 2602197 "SGCF" 2603284 T SGCF (NIL) -7 NIL NIL NIL) (-1120 2595144 2600223 2600320 "SFRTCAT" 2600325 NIL SFRTCAT (NIL T T T T) -9 NIL 2600364 NIL) (-1119 2588565 2589583 2590719 "SFRGCD" 2594127 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1118 2581691 2582764 2583950 "SFQCMPK" 2587498 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1117 2581311 2581400 2581511 "SFORT" 2581632 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1116 2580429 2581151 2581272 "SEXOF" 2581277 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1115 2579536 2580310 2580378 "SEX" 2580383 T SEX (NIL) -8 NIL NIL NIL) (-1114 2575317 2576032 2576127 "SEXCAT" 2578749 NIL SEXCAT (NIL T T T T T) -9 NIL 2579309 NIL) (-1113 2572470 2575251 2575299 "SET" 2575304 NIL SET (NIL T) -8 NIL NIL NIL) (-1112 2570694 2571183 2571488 "SETMN" 2572211 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1111 2570190 2570342 2570372 "SETCAT" 2570548 T SETCAT (NIL) -9 NIL 2570658 NIL) (-1110 2569882 2569960 2570090 "SETCAT-" 2570095 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1109 2566243 2568343 2568386 "SETAGG" 2569256 NIL SETAGG (NIL T) -9 NIL 2569596 NIL) (-1108 2565701 2565817 2566054 "SETAGG-" 2566059 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1107 2565144 2565397 2565498 "SEQAST" 2565622 T SEQAST (NIL) -8 NIL NIL NIL) (-1106 2564343 2564637 2564698 "SEGXCAT" 2564984 NIL SEGXCAT (NIL T T) -9 NIL 2565104 NIL) (-1105 2563349 2564009 2564191 "SEG" 2564196 NIL SEG (NIL T) -8 NIL NIL NIL) (-1104 2562328 2562542 2562585 "SEGCAT" 2563107 NIL SEGCAT (NIL T) -9 NIL 2563328 NIL) (-1103 2561260 2561691 2561899 "SEGBIND" 2562155 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1102 2560881 2560940 2561053 "SEGBIND2" 2561195 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1101 2560454 2560682 2560759 "SEGAST" 2560826 T SEGAST (NIL) -8 NIL NIL NIL) (-1100 2559673 2559799 2560003 "SEG2" 2560298 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1099 2559083 2559608 2559655 "SDVAR" 2559660 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1098 2551610 2558853 2558983 "SDPOL" 2558988 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1097 2550203 2550469 2550788 "SCPKG" 2551325 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1096 2549367 2549539 2549731 "SCOPE" 2550033 T SCOPE (NIL) -8 NIL NIL NIL) (-1095 2548587 2548721 2548900 "SCACHE" 2549222 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1094 2548233 2548419 2548449 "SASTCAT" 2548454 T SASTCAT (NIL) -9 NIL 2548467 NIL) (-1093 2547720 2548068 2548144 "SAOS" 2548179 T SAOS (NIL) -8 NIL NIL NIL) (-1092 2547285 2547320 2547493 "SAERFFC" 2547679 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1091 2541224 2547182 2547262 "SAE" 2547267 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1090 2540817 2540852 2541011 "SAEFACT" 2541183 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1089 2539138 2539452 2539853 "RURPK" 2540483 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1088 2537775 2538081 2538386 "RULESET" 2538972 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1087 2534998 2535528 2535986 "RULE" 2537456 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1086 2534610 2534792 2534875 "RULECOLD" 2534950 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1085 2534400 2534428 2534499 "RTVALUE" 2534561 T RTVALUE (NIL) -8 NIL NIL NIL) (-1084 2533871 2534117 2534211 "RSTRCAST" 2534328 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1083 2528719 2529514 2530434 "RSETGCD" 2533070 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1082 2517949 2523028 2523125 "RSETCAT" 2527244 NIL RSETCAT (NIL T T T T) -9 NIL 2528341 NIL) (-1081 2515876 2516415 2517239 "RSETCAT-" 2517244 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1080 2508262 2509638 2511158 "RSDCMPK" 2514475 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1079 2506241 2506708 2506782 "RRCC" 2507868 NIL RRCC (NIL T T) -9 NIL 2508212 NIL) (-1078 2505592 2505766 2506045 "RRCC-" 2506050 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1077 2505035 2505288 2505389 "RPTAST" 2505513 T RPTAST (NIL) -8 NIL NIL NIL) (-1076 2478881 2488240 2488307 "RPOLCAT" 2498973 NIL RPOLCAT (NIL T T T) -9 NIL 2502133 NIL) (-1075 2470379 2472719 2475841 "RPOLCAT-" 2475846 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1074 2461310 2468590 2469072 "ROUTINE" 2469919 T ROUTINE (NIL) -8 NIL NIL NIL) (-1073 2458108 2460936 2461076 "ROMAN" 2461192 T ROMAN (NIL) -8 NIL NIL NIL) (-1072 2456352 2456968 2457228 "ROIRC" 2457913 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1071 2452584 2454868 2454898 "RNS" 2455202 T RNS (NIL) -9 NIL 2455476 NIL) (-1070 2451093 2451476 2452010 "RNS-" 2452085 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1069 2450496 2450904 2450934 "RNG" 2450939 T RNG (NIL) -9 NIL 2450960 NIL) (-1068 2449499 2449861 2450063 "RNGBIND" 2450347 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1067 2448898 2449286 2449329 "RMODULE" 2449334 NIL RMODULE (NIL T) -9 NIL 2449361 NIL) (-1066 2447734 2447828 2448164 "RMCAT2" 2448799 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1065 2444584 2447080 2447377 "RMATRIX" 2447496 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1064 2437411 2439671 2439786 "RMATCAT" 2443145 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2444127 NIL) (-1063 2436786 2436933 2437240 "RMATCAT-" 2437245 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1062 2436187 2436408 2436451 "RLINSET" 2436645 NIL RLINSET (NIL T) -9 NIL 2436736 NIL) (-1061 2435754 2435829 2435957 "RINTERP" 2436106 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1060 2434812 2435366 2435396 "RING" 2435452 T RING (NIL) -9 NIL 2435544 NIL) (-1059 2434604 2434648 2434745 "RING-" 2434750 NIL RING- (NIL T) -8 NIL NIL NIL) (-1058 2433445 2433682 2433940 "RIDIST" 2434368 T RIDIST (NIL) -7 NIL NIL NIL) (-1057 2424734 2432913 2433119 "RGCHAIN" 2433293 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1056 2424084 2424490 2424531 "RGBCSPC" 2424589 NIL RGBCSPC (NIL T) -9 NIL 2424641 NIL) (-1055 2423242 2423623 2423664 "RGBCMDL" 2423896 NIL RGBCMDL (NIL T) -9 NIL 2424010 NIL) (-1054 2420236 2420850 2421520 "RF" 2422606 NIL RF (NIL T) -7 NIL NIL NIL) (-1053 2419882 2419945 2420048 "RFFACTOR" 2420167 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1052 2419607 2419642 2419739 "RFFACT" 2419841 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1051 2417724 2418088 2418470 "RFDIST" 2419247 T RFDIST (NIL) -7 NIL NIL NIL) (-1050 2417177 2417269 2417432 "RETSOL" 2417626 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1049 2416813 2416893 2416936 "RETRACT" 2417069 NIL RETRACT (NIL T) -9 NIL 2417156 NIL) (-1048 2416662 2416687 2416774 "RETRACT-" 2416779 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1047 2416264 2416484 2416554 "RETAST" 2416614 T RETAST (NIL) -8 NIL NIL NIL) (-1046 2409002 2415917 2416044 "RESULT" 2416159 T RESULT (NIL) -8 NIL NIL NIL) (-1045 2407593 2408271 2408470 "RESRING" 2408905 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1044 2407229 2407278 2407376 "RESLATC" 2407530 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1043 2406934 2406969 2407076 "REPSQ" 2407188 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1042 2404356 2404936 2405538 "REP" 2406354 T REP (NIL) -7 NIL NIL NIL) (-1041 2404053 2404088 2404199 "REPDB" 2404315 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1040 2397953 2399342 2400565 "REP2" 2402865 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1039 2394330 2395011 2395819 "REP1" 2397180 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1038 2387026 2392471 2392927 "REGSET" 2393960 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1037 2385791 2386174 2386424 "REF" 2386811 NIL REF (NIL T) -8 NIL NIL NIL) (-1036 2385168 2385271 2385438 "REDORDER" 2385675 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1035 2381136 2384381 2384608 "RECLOS" 2384996 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1034 2380188 2380369 2380584 "REALSOLV" 2380943 T REALSOLV (NIL) -7 NIL NIL NIL) (-1033 2380034 2380075 2380105 "REAL" 2380110 T REAL (NIL) -9 NIL 2380145 NIL) (-1032 2376517 2377319 2378203 "REAL0Q" 2379199 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1031 2372118 2373106 2374167 "REAL0" 2375498 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1030 2371589 2371835 2371929 "RDUCEAST" 2372046 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1029 2370994 2371066 2371273 "RDIV" 2371511 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1028 2370062 2370236 2370449 "RDIST" 2370816 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1027 2368659 2368946 2369318 "RDETRS" 2369770 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1026 2366471 2366925 2367463 "RDETR" 2368201 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1025 2365096 2365374 2365771 "RDEEFS" 2366187 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1024 2363605 2363911 2364336 "RDEEF" 2364784 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1023 2357666 2360586 2360616 "RCFIELD" 2361911 T RCFIELD (NIL) -9 NIL 2362642 NIL) (-1022 2355730 2356234 2356930 "RCFIELD-" 2357005 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1021 2351999 2353831 2353874 "RCAGG" 2354958 NIL RCAGG (NIL T) -9 NIL 2355423 NIL) (-1020 2351627 2351721 2351884 "RCAGG-" 2351889 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1019 2350962 2351074 2351239 "RATRET" 2351511 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1018 2350515 2350582 2350703 "RATFACT" 2350890 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1017 2349823 2349943 2350095 "RANDSRC" 2350385 T RANDSRC (NIL) -7 NIL NIL NIL) (-1016 2349557 2349601 2349674 "RADUTIL" 2349772 T RADUTIL (NIL) -7 NIL NIL NIL) (-1015 2342671 2348388 2348699 "RADIX" 2349280 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1014 2334290 2342513 2342643 "RADFF" 2342648 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1013 2333937 2334012 2334042 "RADCAT" 2334202 T RADCAT (NIL) -9 NIL NIL NIL) (-1012 2333719 2333767 2333867 "RADCAT-" 2333872 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1011 2331817 2333489 2333581 "QUEUE" 2333662 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1010 2328354 2331750 2331798 "QUAT" 2331803 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1009 2327985 2328028 2328159 "QUATCT2" 2328305 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1008 2321396 2324741 2324783 "QUATCAT" 2325574 NIL QUATCAT (NIL T) -9 NIL 2326340 NIL) (-1007 2317535 2318572 2319962 "QUATCAT-" 2320058 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1006 2315000 2316611 2316654 "QUAGG" 2317035 NIL QUAGG (NIL T) -9 NIL 2317210 NIL) (-1005 2314602 2314822 2314892 "QQUTAST" 2314952 T QQUTAST (NIL) -8 NIL NIL NIL) (-1004 2313615 2314115 2314280 "QFORM" 2314483 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1003 2304608 2309847 2309889 "QFCAT" 2310557 NIL QFCAT (NIL T) -9 NIL 2311558 NIL) (-1002 2300175 2301376 2302970 "QFCAT-" 2303066 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1001 2299806 2299849 2299980 "QFCAT2" 2300126 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1000 2299261 2299371 2299503 "QEQUAT" 2299696 T QEQUAT (NIL) -8 NIL NIL NIL) (-999 2292407 2293480 2294664 "QCMPACK" 2298194 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-998 2289956 2290404 2290832 "QALGSET" 2292062 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-997 2289201 2289375 2289607 "QALGSET2" 2289776 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-996 2287891 2288115 2288432 "PWFFINTB" 2288974 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-995 2286073 2286241 2286595 "PUSHVAR" 2287705 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-994 2281991 2283045 2283086 "PTRANFN" 2284970 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-993 2280393 2280684 2281006 "PTPACK" 2281702 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-992 2280025 2280082 2280191 "PTFUNC2" 2280330 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-991 2274470 2278867 2278908 "PTCAT" 2279204 NIL PTCAT (NIL T) -9 NIL 2279357 NIL) (-990 2274128 2274163 2274287 "PSQFR" 2274429 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-989 2272723 2273021 2273355 "PSEUDLIN" 2273826 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-988 2259486 2261857 2264181 "PSETPK" 2270483 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-987 2252504 2255244 2255340 "PSETCAT" 2258361 NIL PSETCAT (NIL T T T T) -9 NIL 2259175 NIL) (-986 2250340 2250974 2251795 "PSETCAT-" 2251800 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-985 2249689 2249854 2249882 "PSCURVE" 2250150 T PSCURVE (NIL) -9 NIL 2250317 NIL) (-984 2245687 2247203 2247268 "PSCAT" 2248112 NIL PSCAT (NIL T T T) -9 NIL 2248352 NIL) (-983 2244750 2244966 2245366 "PSCAT-" 2245371 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-982 2243109 2243819 2244082 "PRTITION" 2244507 T PRTITION (NIL) -8 NIL NIL NIL) (-981 2242584 2242830 2242922 "PRTDAST" 2243037 T PRTDAST (NIL) -8 NIL NIL NIL) (-980 2231674 2233888 2236076 "PRS" 2240446 NIL PRS (NIL T T) -7 NIL NIL NIL) (-979 2229485 2231024 2231064 "PRQAGG" 2231247 NIL PRQAGG (NIL T) -9 NIL 2231349 NIL) (-978 2228821 2229126 2229154 "PROPLOG" 2229293 T PROPLOG (NIL) -9 NIL 2229408 NIL) (-977 2228425 2228482 2228605 "PROPFUN2" 2228744 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-976 2227740 2227861 2228033 "PROPFUN1" 2228286 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-975 2225921 2226487 2226784 "PROPFRML" 2227476 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-974 2225390 2225497 2225625 "PROPERTY" 2225813 T PROPERTY (NIL) -8 NIL NIL NIL) (-973 2219448 2223556 2224376 "PRODUCT" 2224616 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-972 2216726 2218906 2219140 "PR" 2219259 NIL PR (NIL T T) -8 NIL NIL NIL) (-971 2216522 2216554 2216613 "PRINT" 2216687 T PRINT (NIL) -7 NIL NIL NIL) (-970 2215862 2215979 2216131 "PRIMES" 2216402 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-969 2213927 2214328 2214794 "PRIMELT" 2215441 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-968 2213656 2213705 2213733 "PRIMCAT" 2213857 T PRIMCAT (NIL) -9 NIL NIL NIL) (-967 2209771 2213594 2213639 "PRIMARR" 2213644 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-966 2208778 2208956 2209184 "PRIMARR2" 2209589 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-965 2208421 2208477 2208588 "PREASSOC" 2208716 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-964 2207896 2208029 2208057 "PPCURVE" 2208262 T PPCURVE (NIL) -9 NIL 2208398 NIL) (-963 2207491 2207691 2207774 "PORTNUM" 2207833 T PORTNUM (NIL) -8 NIL NIL NIL) (-962 2204850 2205249 2205841 "POLYROOT" 2207072 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-961 2199032 2204454 2204614 "POLY" 2204723 NIL POLY (NIL T) -8 NIL NIL NIL) (-960 2198415 2198473 2198707 "POLYLIFT" 2198968 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-959 2194690 2195139 2195768 "POLYCATQ" 2197960 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-958 2181402 2186530 2186595 "POLYCAT" 2190109 NIL POLYCAT (NIL T T T) -9 NIL 2191987 NIL) (-957 2174851 2176713 2179097 "POLYCAT-" 2179102 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-956 2174438 2174506 2174626 "POLY2UP" 2174777 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-955 2174070 2174127 2174236 "POLY2" 2174375 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-954 2172755 2172994 2173270 "POLUTIL" 2173844 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-953 2171110 2171387 2171718 "POLTOPOL" 2172477 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-952 2166575 2171046 2171092 "POINT" 2171097 NIL POINT (NIL T) -8 NIL NIL NIL) (-951 2164762 2165119 2165494 "PNTHEORY" 2166220 T PNTHEORY (NIL) -7 NIL NIL NIL) (-950 2163220 2163517 2163916 "PMTOOLS" 2164460 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-949 2162813 2162891 2163008 "PMSYM" 2163136 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-948 2162321 2162390 2162565 "PMQFCAT" 2162738 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-947 2161676 2161786 2161942 "PMPRED" 2162198 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-946 2161069 2161155 2161317 "PMPREDFS" 2161577 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-945 2159733 2159941 2160319 "PMPLCAT" 2160831 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-944 2159265 2159344 2159496 "PMLSAGG" 2159648 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-943 2158738 2158814 2158996 "PMKERNEL" 2159183 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-942 2158355 2158430 2158543 "PMINS" 2158657 NIL PMINS (NIL T) -7 NIL NIL NIL) (-941 2157797 2157866 2158075 "PMFS" 2158280 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-940 2157025 2157143 2157348 "PMDOWN" 2157674 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-939 2156192 2156350 2156531 "PMASS" 2156864 T PMASS (NIL) -7 NIL NIL NIL) (-938 2155465 2155575 2155738 "PMASSFS" 2156079 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-937 2155120 2155188 2155282 "PLOTTOOL" 2155391 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-936 2149727 2150931 2152079 "PLOT" 2153992 T PLOT (NIL) -8 NIL NIL NIL) (-935 2145531 2146575 2147496 "PLOT3D" 2148826 T PLOT3D (NIL) -8 NIL NIL NIL) (-934 2144443 2144620 2144855 "PLOT1" 2145335 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-933 2119834 2124509 2129360 "PLEQN" 2139709 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-932 2119152 2119274 2119454 "PINTERP" 2119699 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-931 2118845 2118892 2118995 "PINTERPA" 2119099 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-930 2118061 2118609 2118696 "PI" 2118736 T PI (NIL) -8 NIL NIL 2118803) (-929 2116358 2117333 2117361 "PID" 2117543 T PID (NIL) -9 NIL 2117677 NIL) (-928 2116109 2116146 2116221 "PICOERCE" 2116315 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-927 2115429 2115568 2115744 "PGROEB" 2115965 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-926 2111016 2111830 2112735 "PGE" 2114544 T PGE (NIL) -7 NIL NIL NIL) (-925 2109139 2109386 2109752 "PGCD" 2110733 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-924 2108477 2108580 2108741 "PFRPAC" 2109023 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-923 2105117 2107025 2107378 "PFR" 2108156 NIL PFR (NIL T) -8 NIL NIL NIL) (-922 2103506 2103750 2104075 "PFOTOOLS" 2104864 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-921 2102039 2102278 2102629 "PFOQ" 2103263 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-920 2100540 2100752 2101108 "PFO" 2101823 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-919 2097093 2100429 2100498 "PF" 2100503 NIL PF (NIL NIL) -8 NIL NIL NIL) (-918 2094427 2095698 2095726 "PFECAT" 2096311 T PFECAT (NIL) -9 NIL 2096695 NIL) (-917 2093872 2094026 2094240 "PFECAT-" 2094245 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-916 2092475 2092727 2093028 "PFBRU" 2093621 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-915 2090341 2090693 2091125 "PFBR" 2092126 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-914 2086387 2087853 2088500 "PERM" 2089727 NIL PERM (NIL T) -8 NIL NIL NIL) (-913 2081621 2082594 2083464 "PERMGRP" 2085550 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-912 2079740 2080700 2080741 "PERMCAT" 2081141 NIL PERMCAT (NIL T) -9 NIL 2081439 NIL) (-911 2079393 2079434 2079558 "PERMAN" 2079693 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-910 2076881 2079058 2079180 "PENDTREE" 2079304 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-909 2074905 2075673 2075714 "PDRING" 2076371 NIL PDRING (NIL T) -9 NIL 2076657 NIL) (-908 2074008 2074226 2074588 "PDRING-" 2074593 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-907 2071223 2072001 2072669 "PDEPROB" 2073360 T PDEPROB (NIL) -8 NIL NIL NIL) (-906 2068768 2069272 2069827 "PDEPACK" 2070688 T PDEPACK (NIL) -7 NIL NIL NIL) (-905 2067680 2067870 2068121 "PDECOMP" 2068567 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-904 2065259 2066102 2066130 "PDECAT" 2066917 T PDECAT (NIL) -9 NIL 2067630 NIL) (-903 2065010 2065043 2065133 "PCOMP" 2065220 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-902 2063188 2063811 2064108 "PBWLB" 2064739 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-901 2055661 2057261 2058599 "PATTERN" 2061871 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-900 2055293 2055350 2055459 "PATTERN2" 2055598 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-899 2053050 2053438 2053895 "PATTERN1" 2054882 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-898 2050418 2050999 2051480 "PATRES" 2052615 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-897 2049982 2050049 2050181 "PATRES2" 2050345 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-896 2047865 2048270 2048677 "PATMATCH" 2049649 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-895 2047375 2047584 2047625 "PATMAB" 2047732 NIL PATMAB (NIL T) -9 NIL 2047815 NIL) (-894 2045893 2046229 2046487 "PATLRES" 2047180 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-893 2045439 2045562 2045603 "PATAB" 2045608 NIL PATAB (NIL T) -9 NIL 2045780 NIL) (-892 2043621 2044016 2044439 "PARTPERM" 2045036 T PARTPERM (NIL) -7 NIL NIL NIL) (-891 2043242 2043305 2043407 "PARSURF" 2043552 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-890 2042874 2042931 2043040 "PARSU2" 2043179 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-889 2042638 2042678 2042745 "PARSER" 2042827 T PARSER (NIL) -7 NIL NIL NIL) (-888 2042259 2042322 2042424 "PARSCURV" 2042569 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-887 2041891 2041948 2042057 "PARSC2" 2042196 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-886 2041530 2041588 2041685 "PARPCURV" 2041827 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-885 2041162 2041219 2041328 "PARPC2" 2041467 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-884 2040223 2040535 2040717 "PARAMAST" 2041000 T PARAMAST (NIL) -8 NIL NIL NIL) (-883 2039743 2039829 2039948 "PAN2EXPR" 2040124 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-882 2038520 2038864 2039092 "PALETTE" 2039535 T PALETTE (NIL) -8 NIL NIL NIL) (-881 2036913 2037525 2037885 "PAIR" 2038206 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-880 2030781 2036170 2036365 "PADICRC" 2036767 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-879 2024008 2030125 2030310 "PADICRAT" 2030628 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-878 2022323 2023945 2023990 "PADIC" 2023995 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-877 2019433 2020997 2021037 "PADICCT" 2021618 NIL PADICCT (NIL NIL) -9 NIL 2021900 NIL) (-876 2018390 2018590 2018858 "PADEPAC" 2019220 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-875 2017602 2017735 2017941 "PADE" 2018252 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-874 2015989 2016810 2017090 "OWP" 2017406 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-873 2015482 2015695 2015792 "OVERSET" 2015912 T OVERSET (NIL) -8 NIL NIL NIL) (-872 2014528 2015087 2015259 "OVAR" 2015350 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-871 2013792 2013913 2014074 "OUT" 2014387 T OUT (NIL) -7 NIL NIL NIL) (-870 2002664 2004901 2007101 "OUTFORM" 2011612 T OUTFORM (NIL) -8 NIL NIL NIL) (-869 2002000 2002261 2002388 "OUTBFILE" 2002557 T OUTBFILE (NIL) -8 NIL NIL NIL) (-868 2001307 2001472 2001500 "OUTBCON" 2001818 T OUTBCON (NIL) -9 NIL 2001984 NIL) (-867 2000908 2001020 2001177 "OUTBCON-" 2001182 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-866 2000288 2000637 2000726 "OSI" 2000839 T OSI (NIL) -8 NIL NIL NIL) (-865 1999818 2000156 2000184 "OSGROUP" 2000189 T OSGROUP (NIL) -9 NIL 2000211 NIL) (-864 1998563 1998790 1999075 "ORTHPOL" 1999565 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-863 1996114 1998398 1998519 "OREUP" 1998524 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-862 1993517 1995805 1995932 "ORESUP" 1996056 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-861 1991045 1991545 1992106 "OREPCTO" 1993006 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-860 1984731 1986932 1986973 "OREPCAT" 1989321 NIL OREPCAT (NIL T) -9 NIL 1990425 NIL) (-859 1981878 1982660 1983718 "OREPCAT-" 1983723 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-858 1981029 1981327 1981355 "ORDSET" 1981664 T ORDSET (NIL) -9 NIL 1981828 NIL) (-857 1980460 1980608 1980832 "ORDSET-" 1980837 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-856 1979025 1979816 1979844 "ORDRING" 1980046 T ORDRING (NIL) -9 NIL 1980171 NIL) (-855 1978670 1978764 1978908 "ORDRING-" 1978913 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-854 1978050 1978513 1978541 "ORDMON" 1978546 T ORDMON (NIL) -9 NIL 1978567 NIL) (-853 1977212 1977359 1977554 "ORDFUNS" 1977899 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-852 1976550 1976969 1976997 "ORDFIN" 1977062 T ORDFIN (NIL) -9 NIL 1977136 NIL) (-851 1973109 1975136 1975545 "ORDCOMP" 1976174 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-850 1972375 1972502 1972688 "ORDCOMP2" 1972969 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-849 1968956 1969866 1970680 "OPTPROB" 1971581 T OPTPROB (NIL) -8 NIL NIL NIL) (-848 1965758 1966397 1967101 "OPTPACK" 1968272 T OPTPACK (NIL) -7 NIL NIL NIL) (-847 1963445 1964211 1964239 "OPTCAT" 1965058 T OPTCAT (NIL) -9 NIL 1965708 NIL) (-846 1962829 1963122 1963227 "OPSIG" 1963360 T OPSIG (NIL) -8 NIL NIL NIL) (-845 1962597 1962636 1962702 "OPQUERY" 1962783 T OPQUERY (NIL) -7 NIL NIL NIL) (-844 1959728 1960908 1961412 "OP" 1962126 NIL OP (NIL T) -8 NIL NIL NIL) (-843 1959102 1959328 1959369 "OPERCAT" 1959581 NIL OPERCAT (NIL T) -9 NIL 1959678 NIL) (-842 1958857 1958913 1959030 "OPERCAT-" 1959035 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-841 1955670 1957654 1958023 "ONECOMP" 1958521 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-840 1954975 1955090 1955264 "ONECOMP2" 1955542 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-839 1954394 1954500 1954630 "OMSERVER" 1954865 T OMSERVER (NIL) -7 NIL NIL NIL) (-838 1951256 1953834 1953874 "OMSAGG" 1953935 NIL OMSAGG (NIL T) -9 NIL 1953999 NIL) (-837 1949879 1950142 1950424 "OMPKG" 1950994 T OMPKG (NIL) -7 NIL NIL NIL) (-836 1949309 1949412 1949440 "OM" 1949739 T OM (NIL) -9 NIL NIL NIL) (-835 1947856 1948858 1949027 "OMLO" 1949190 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-834 1946816 1946963 1947183 "OMEXPR" 1947682 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-833 1946107 1946362 1946498 "OMERR" 1946700 T OMERR (NIL) -8 NIL NIL NIL) (-832 1945258 1945528 1945688 "OMERRK" 1945967 T OMERRK (NIL) -8 NIL NIL NIL) (-831 1944709 1944935 1945043 "OMENC" 1945170 T OMENC (NIL) -8 NIL NIL NIL) (-830 1938604 1939789 1940960 "OMDEV" 1943558 T OMDEV (NIL) -8 NIL NIL NIL) (-829 1937673 1937844 1938038 "OMCONN" 1938430 T OMCONN (NIL) -8 NIL NIL NIL) (-828 1936194 1937170 1937198 "OINTDOM" 1937203 T OINTDOM (NIL) -9 NIL 1937224 NIL) (-827 1933532 1934882 1935219 "OFMONOID" 1935889 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-826 1932943 1933469 1933514 "ODVAR" 1933519 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-825 1930366 1932688 1932843 "ODR" 1932848 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-824 1922947 1930142 1930268 "ODPOL" 1930273 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-823 1916769 1922819 1922924 "ODP" 1922929 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-822 1915535 1915750 1916025 "ODETOOLS" 1916543 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-821 1912502 1913160 1913876 "ODESYS" 1914868 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-820 1907384 1908292 1909317 "ODERTRIC" 1911577 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-819 1906810 1906892 1907086 "ODERED" 1907296 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-818 1903698 1904246 1904923 "ODERAT" 1906233 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-817 1900657 1901122 1901719 "ODEPRRIC" 1903227 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-816 1898600 1899196 1899682 "ODEPROB" 1900191 T ODEPROB (NIL) -8 NIL NIL NIL) (-815 1895120 1895605 1896252 "ODEPRIM" 1898079 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-814 1894369 1894471 1894731 "ODEPAL" 1895012 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-813 1890531 1891322 1892186 "ODEPACK" 1893525 T ODEPACK (NIL) -7 NIL NIL NIL) (-812 1889592 1889699 1889921 "ODEINT" 1890420 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-811 1883693 1885118 1886565 "ODEIFTBL" 1888165 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-810 1879091 1879877 1880829 "ODEEF" 1882852 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-809 1878440 1878529 1878752 "ODECONST" 1878996 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-808 1876565 1877226 1877254 "ODECAT" 1877859 T ODECAT (NIL) -9 NIL 1878390 NIL) (-807 1873420 1876270 1876392 "OCT" 1876475 NIL OCT (NIL T) -8 NIL NIL NIL) (-806 1873058 1873101 1873228 "OCTCT2" 1873371 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-805 1867669 1870104 1870144 "OC" 1871241 NIL OC (NIL T) -9 NIL 1872099 NIL) (-804 1864896 1865644 1866634 "OC-" 1866728 NIL OC- (NIL T T) -8 NIL NIL NIL) (-803 1864248 1864716 1864744 "OCAMON" 1864749 T OCAMON (NIL) -9 NIL 1864770 NIL) (-802 1863779 1864120 1864148 "OASGP" 1864153 T OASGP (NIL) -9 NIL 1864173 NIL) (-801 1863040 1863529 1863557 "OAMONS" 1863597 T OAMONS (NIL) -9 NIL 1863640 NIL) (-800 1862454 1862887 1862915 "OAMON" 1862920 T OAMON (NIL) -9 NIL 1862940 NIL) (-799 1861712 1862230 1862258 "OAGROUP" 1862263 T OAGROUP (NIL) -9 NIL 1862283 NIL) (-798 1861402 1861452 1861540 "NUMTUBE" 1861656 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-797 1854975 1856493 1858029 "NUMQUAD" 1859886 T NUMQUAD (NIL) -7 NIL NIL NIL) (-796 1850731 1851719 1852744 "NUMODE" 1853970 T NUMODE (NIL) -7 NIL NIL NIL) (-795 1848086 1848966 1848994 "NUMINT" 1849917 T NUMINT (NIL) -9 NIL 1850681 NIL) (-794 1847034 1847231 1847449 "NUMFMT" 1847888 T NUMFMT (NIL) -7 NIL NIL NIL) (-793 1833393 1836338 1838870 "NUMERIC" 1844541 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-792 1827763 1832842 1832937 "NTSCAT" 1832942 NIL NTSCAT (NIL T T T T) -9 NIL 1832981 NIL) (-791 1826957 1827122 1827315 "NTPOLFN" 1827602 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-790 1815034 1823782 1824594 "NSUP" 1826178 NIL NSUP (NIL T) -8 NIL NIL NIL) (-789 1814666 1814723 1814832 "NSUP2" 1814971 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-788 1804892 1814440 1814573 "NSMP" 1814578 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-787 1803324 1803625 1803982 "NREP" 1804580 NIL NREP (NIL T) -7 NIL NIL NIL) (-786 1801915 1802167 1802525 "NPCOEF" 1803067 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-785 1800981 1801096 1801312 "NORMRETR" 1801796 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-784 1799022 1799312 1799721 "NORMPK" 1800689 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-783 1798707 1798735 1798859 "NORMMA" 1798988 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-782 1798507 1798664 1798693 "NONE" 1798698 T NONE (NIL) -8 NIL NIL NIL) (-781 1798296 1798325 1798394 "NONE1" 1798471 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-780 1797793 1797855 1798034 "NODE1" 1798228 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-779 1796074 1796925 1797180 "NNI" 1797527 T NNI (NIL) -8 NIL NIL 1797762) (-778 1794494 1794807 1795171 "NLINSOL" 1795742 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-777 1790735 1791730 1792629 "NIPROB" 1793615 T NIPROB (NIL) -8 NIL NIL NIL) (-776 1789492 1789726 1790028 "NFINTBAS" 1790497 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-775 1788666 1789142 1789183 "NETCLT" 1789355 NIL NETCLT (NIL T) -9 NIL 1789437 NIL) (-774 1787374 1787605 1787886 "NCODIV" 1788434 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-773 1787136 1787173 1787248 "NCNTFRAC" 1787331 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-772 1785316 1785680 1786100 "NCEP" 1786761 NIL NCEP (NIL T) -7 NIL NIL NIL) (-771 1784167 1784940 1784968 "NASRING" 1785078 T NASRING (NIL) -9 NIL 1785158 NIL) (-770 1783962 1784006 1784100 "NASRING-" 1784105 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-769 1783069 1783594 1783622 "NARNG" 1783739 T NARNG (NIL) -9 NIL 1783830 NIL) (-768 1782761 1782828 1782962 "NARNG-" 1782967 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-767 1781640 1781847 1782082 "NAGSP" 1782546 T NAGSP (NIL) -7 NIL NIL NIL) (-766 1772912 1774596 1776269 "NAGS" 1779987 T NAGS (NIL) -7 NIL NIL NIL) (-765 1771460 1771768 1772099 "NAGF07" 1772601 T NAGF07 (NIL) -7 NIL NIL NIL) (-764 1765998 1767289 1768596 "NAGF04" 1770173 T NAGF04 (NIL) -7 NIL NIL NIL) (-763 1758966 1760580 1762213 "NAGF02" 1764385 T NAGF02 (NIL) -7 NIL NIL NIL) (-762 1754190 1755290 1756407 "NAGF01" 1757869 T NAGF01 (NIL) -7 NIL NIL NIL) (-761 1747818 1749384 1750969 "NAGE04" 1752625 T NAGE04 (NIL) -7 NIL NIL NIL) (-760 1738987 1741108 1743238 "NAGE02" 1745708 T NAGE02 (NIL) -7 NIL NIL NIL) (-759 1734940 1735887 1736851 "NAGE01" 1738043 T NAGE01 (NIL) -7 NIL NIL NIL) (-758 1732735 1733269 1733827 "NAGD03" 1734402 T NAGD03 (NIL) -7 NIL NIL NIL) (-757 1724485 1726413 1728367 "NAGD02" 1730801 T NAGD02 (NIL) -7 NIL NIL NIL) (-756 1718296 1719721 1721161 "NAGD01" 1723065 T NAGD01 (NIL) -7 NIL NIL NIL) (-755 1714505 1715327 1716164 "NAGC06" 1717479 T NAGC06 (NIL) -7 NIL NIL NIL) (-754 1712970 1713302 1713658 "NAGC05" 1714169 T NAGC05 (NIL) -7 NIL NIL NIL) (-753 1712346 1712465 1712609 "NAGC02" 1712846 T NAGC02 (NIL) -7 NIL NIL NIL) (-752 1711305 1711888 1711928 "NAALG" 1712007 NIL NAALG (NIL T) -9 NIL 1712068 NIL) (-751 1711140 1711169 1711259 "NAALG-" 1711264 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-750 1705090 1706198 1707385 "MULTSQFR" 1710036 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-749 1704409 1704484 1704668 "MULTFACT" 1705002 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-748 1697133 1701046 1701099 "MTSCAT" 1702169 NIL MTSCAT (NIL T T) -9 NIL 1702684 NIL) (-747 1696845 1696899 1696991 "MTHING" 1697073 NIL MTHING (NIL T) -7 NIL NIL NIL) (-746 1696637 1696670 1696730 "MSYSCMD" 1696805 T MSYSCMD (NIL) -7 NIL NIL NIL) (-745 1692719 1695392 1695712 "MSET" 1696350 NIL MSET (NIL T) -8 NIL NIL NIL) (-744 1689788 1692280 1692321 "MSETAGG" 1692326 NIL MSETAGG (NIL T) -9 NIL 1692360 NIL) (-743 1685630 1687167 1687912 "MRING" 1689088 NIL MRING (NIL T T) -8 NIL NIL NIL) (-742 1685196 1685263 1685394 "MRF2" 1685557 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-741 1684814 1684849 1684993 "MRATFAC" 1685155 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-740 1682426 1682721 1683152 "MPRFF" 1684519 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-739 1676723 1682280 1682377 "MPOLY" 1682382 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-738 1676213 1676248 1676456 "MPCPF" 1676682 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-737 1675727 1675770 1675954 "MPC3" 1676164 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-736 1674922 1675003 1675224 "MPC2" 1675642 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-735 1673223 1673560 1673950 "MONOTOOL" 1674582 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-734 1672448 1672765 1672793 "MONOID" 1673012 T MONOID (NIL) -9 NIL 1673159 NIL) (-733 1671994 1672113 1672294 "MONOID-" 1672299 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-732 1662469 1668420 1668479 "MONOGEN" 1669153 NIL MONOGEN (NIL T T) -9 NIL 1669609 NIL) (-731 1659687 1660422 1661422 "MONOGEN-" 1661541 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-730 1658520 1658966 1658994 "MONADWU" 1659386 T MONADWU (NIL) -9 NIL 1659624 NIL) (-729 1657892 1658051 1658299 "MONADWU-" 1658304 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-728 1657251 1657495 1657523 "MONAD" 1657730 T MONAD (NIL) -9 NIL 1657842 NIL) (-727 1656936 1657014 1657146 "MONAD-" 1657151 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-726 1655225 1655849 1656128 "MOEBIUS" 1656689 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-725 1654503 1654907 1654947 "MODULE" 1654952 NIL MODULE (NIL T) -9 NIL 1654991 NIL) (-724 1654071 1654167 1654357 "MODULE-" 1654362 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-723 1651751 1652435 1652762 "MODRING" 1653895 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1648695 1649856 1650377 "MODOP" 1651280 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-721 1647283 1647762 1648039 "MODMONOM" 1648558 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-720 1637327 1645574 1645988 "MODMON" 1646920 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-719 1634483 1636171 1636447 "MODFIELD" 1637202 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-718 1633460 1633764 1633954 "MMLFORM" 1634313 T MMLFORM (NIL) -8 NIL NIL NIL) (-717 1632986 1633029 1633208 "MMAP" 1633411 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-716 1631065 1631832 1631873 "MLO" 1632296 NIL MLO (NIL T) -9 NIL 1632538 NIL) (-715 1628431 1628947 1629549 "MLIFT" 1630546 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-714 1627822 1627906 1628060 "MKUCFUNC" 1628342 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-713 1627421 1627491 1627614 "MKRECORD" 1627745 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-712 1626468 1626630 1626858 "MKFUNC" 1627232 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-711 1625856 1625960 1626116 "MKFLCFN" 1626351 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-710 1625133 1625235 1625420 "MKBCFUNC" 1625749 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-709 1621840 1624687 1624823 "MINT" 1625017 T MINT (NIL) -8 NIL NIL NIL) (-708 1620652 1620895 1621172 "MHROWRED" 1621595 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-707 1616032 1619187 1619592 "MFLOAT" 1620267 T MFLOAT (NIL) -8 NIL NIL NIL) (-706 1615389 1615465 1615636 "MFINFACT" 1615944 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-705 1611704 1612552 1613436 "MESH" 1614525 T MESH (NIL) -7 NIL NIL NIL) (-704 1610094 1610406 1610759 "MDDFACT" 1611391 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-703 1606889 1609253 1609294 "MDAGG" 1609549 NIL MDAGG (NIL T) -9 NIL 1609692 NIL) (-702 1596629 1606182 1606389 "MCMPLX" 1606702 T MCMPLX (NIL) -8 NIL NIL NIL) (-701 1595766 1595912 1596113 "MCDEN" 1596478 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-700 1593656 1593926 1594306 "MCALCFN" 1595496 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-699 1592581 1592821 1593054 "MAYBE" 1593462 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-698 1590193 1590716 1591278 "MATSTOR" 1592052 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-697 1586150 1589565 1589813 "MATRIX" 1589978 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-696 1581916 1582623 1583359 "MATLIN" 1585507 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-695 1572022 1575208 1575285 "MATCAT" 1580165 NIL MATCAT (NIL T T T) -9 NIL 1581582 NIL) (-694 1568378 1569399 1570755 "MATCAT-" 1570760 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-693 1566972 1567125 1567458 "MATCAT2" 1568213 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-692 1565084 1565408 1565792 "MAPPKG3" 1566647 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-691 1564065 1564238 1564460 "MAPPKG2" 1564908 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-690 1562564 1562848 1563175 "MAPPKG1" 1563771 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-689 1561643 1561970 1562147 "MAPPAST" 1562407 T MAPPAST (NIL) -8 NIL NIL NIL) (-688 1561254 1561312 1561435 "MAPHACK3" 1561579 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-687 1560846 1560907 1561021 "MAPHACK2" 1561186 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-686 1560284 1560387 1560529 "MAPHACK1" 1560737 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-685 1558363 1558984 1559288 "MAGMA" 1560012 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-684 1557842 1558087 1558178 "MACROAST" 1558292 T MACROAST (NIL) -8 NIL NIL NIL) (-683 1554260 1556081 1556542 "M3D" 1557414 NIL M3D (NIL T) -8 NIL NIL NIL) (-682 1548335 1552599 1552640 "LZSTAGG" 1553422 NIL LZSTAGG (NIL T) -9 NIL 1553717 NIL) (-681 1544293 1545466 1546923 "LZSTAGG-" 1546928 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-680 1541380 1542184 1542671 "LWORD" 1543838 NIL LWORD (NIL T) -8 NIL NIL NIL) (-679 1540956 1541184 1541259 "LSTAST" 1541325 T LSTAST (NIL) -8 NIL NIL NIL) (-678 1534122 1540727 1540861 "LSQM" 1540866 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-677 1533346 1533485 1533713 "LSPP" 1533977 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-676 1531158 1531459 1531915 "LSMP" 1533035 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-675 1527937 1528611 1529341 "LSMP1" 1530460 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-674 1521783 1527074 1527115 "LSAGG" 1527177 NIL LSAGG (NIL T) -9 NIL 1527255 NIL) (-673 1518478 1519402 1520615 "LSAGG-" 1520620 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-672 1516077 1517622 1517871 "LPOLY" 1518273 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-671 1515659 1515744 1515867 "LPEFRAC" 1515986 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-670 1513980 1514753 1515006 "LO" 1515491 NIL LO (NIL T T T) -8 NIL NIL NIL) (-669 1513632 1513744 1513772 "LOGIC" 1513883 T LOGIC (NIL) -9 NIL 1513964 NIL) (-668 1513494 1513517 1513588 "LOGIC-" 1513593 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-667 1512687 1512827 1513020 "LODOOPS" 1513350 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-666 1510110 1512603 1512669 "LODO" 1512674 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-665 1508648 1508883 1509236 "LODOF" 1509857 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-664 1504852 1507283 1507324 "LODOCAT" 1507762 NIL LODOCAT (NIL T) -9 NIL 1507973 NIL) (-663 1504585 1504643 1504770 "LODOCAT-" 1504775 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-662 1501905 1504426 1504544 "LODO2" 1504549 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-661 1499340 1501842 1501887 "LODO1" 1501892 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-660 1498221 1498386 1498691 "LODEEF" 1499163 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-659 1493524 1496415 1496456 "LNAGG" 1497318 NIL LNAGG (NIL T) -9 NIL 1497753 NIL) (-658 1492671 1492885 1493227 "LNAGG-" 1493232 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-657 1488807 1489596 1490235 "LMOPS" 1492086 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-656 1488210 1488598 1488639 "LMODULE" 1488644 NIL LMODULE (NIL T) -9 NIL 1488670 NIL) (-655 1485408 1487855 1487978 "LMDICT" 1488120 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-654 1484814 1485035 1485076 "LLINSET" 1485267 NIL LLINSET (NIL T) -9 NIL 1485358 NIL) (-653 1484513 1484722 1484782 "LITERAL" 1484787 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-652 1477676 1483447 1483751 "LIST" 1484242 NIL LIST (NIL T) -8 NIL NIL NIL) (-651 1477201 1477275 1477414 "LIST3" 1477596 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-650 1476208 1476386 1476614 "LIST2" 1477019 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-649 1474342 1474654 1475053 "LIST2MAP" 1475855 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-648 1473938 1474175 1474216 "LINSET" 1474221 NIL LINSET (NIL T) -9 NIL 1474255 NIL) (-647 1472599 1473269 1473310 "LINEXP" 1473565 NIL LINEXP (NIL T) -9 NIL 1473714 NIL) (-646 1471246 1471506 1471803 "LINDEP" 1472351 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-645 1468013 1468732 1469509 "LIMITRF" 1470501 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-644 1466316 1466612 1467021 "LIMITPS" 1467708 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-643 1460744 1465827 1466055 "LIE" 1466137 NIL LIE (NIL T T) -8 NIL NIL NIL) (-642 1459692 1460161 1460201 "LIECAT" 1460341 NIL LIECAT (NIL T) -9 NIL 1460492 NIL) (-641 1459533 1459560 1459648 "LIECAT-" 1459653 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-640 1452120 1459073 1459229 "LIB" 1459397 T LIB (NIL) -8 NIL NIL NIL) (-639 1447755 1448638 1449573 "LGROBP" 1451237 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-638 1445753 1446027 1446377 "LF" 1447476 NIL LF (NIL T T) -7 NIL NIL NIL) (-637 1444593 1445285 1445313 "LFCAT" 1445520 T LFCAT (NIL) -9 NIL 1445659 NIL) (-636 1441495 1442125 1442813 "LEXTRIPK" 1443957 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-635 1438239 1439065 1439568 "LEXP" 1441075 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-634 1437715 1437960 1438052 "LETAST" 1438167 T LETAST (NIL) -8 NIL NIL NIL) (-633 1436113 1436426 1436827 "LEADCDET" 1437397 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-632 1435303 1435377 1435606 "LAZM3PK" 1436034 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-631 1430220 1433380 1433918 "LAUPOL" 1434815 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-630 1429799 1429843 1430004 "LAPLACE" 1430170 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-629 1427738 1428900 1429151 "LA" 1429632 NIL LA (NIL T T T) -8 NIL NIL NIL) (-628 1426732 1427316 1427357 "LALG" 1427419 NIL LALG (NIL T) -9 NIL 1427478 NIL) (-627 1426446 1426505 1426641 "LALG-" 1426646 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-626 1426281 1426305 1426346 "KVTFROM" 1426408 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-625 1425204 1425648 1425833 "KTVLOGIC" 1426116 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-624 1425039 1425063 1425104 "KRCFROM" 1425166 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-623 1423943 1424130 1424429 "KOVACIC" 1424839 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-622 1423778 1423802 1423843 "KONVERT" 1423905 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-621 1423613 1423637 1423678 "KOERCE" 1423740 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-620 1421444 1422206 1422583 "KERNEL" 1423269 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-619 1420940 1421021 1421153 "KERNEL2" 1421358 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-618 1414710 1419479 1419533 "KDAGG" 1419910 NIL KDAGG (NIL T T) -9 NIL 1420116 NIL) (-617 1414239 1414363 1414568 "KDAGG-" 1414573 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-616 1407387 1413900 1414055 "KAFILE" 1414117 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-615 1401815 1406898 1407126 "JORDAN" 1407208 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-614 1401194 1401464 1401585 "JOINAST" 1401714 T JOINAST (NIL) -8 NIL NIL NIL) (-613 1401040 1401099 1401154 "JAVACODE" 1401159 T JAVACODE (NIL) -8 NIL NIL NIL) (-612 1397292 1399245 1399299 "IXAGG" 1400228 NIL IXAGG (NIL T T) -9 NIL 1400687 NIL) (-611 1396211 1396517 1396936 "IXAGG-" 1396941 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-610 1391741 1396133 1396192 "IVECTOR" 1396197 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-609 1390507 1390744 1391010 "ITUPLE" 1391508 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-608 1389009 1389186 1389481 "ITRIGMNP" 1390329 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-607 1387754 1387958 1388241 "ITFUN3" 1388785 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-606 1387386 1387443 1387552 "ITFUN2" 1387691 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-605 1386545 1386866 1387040 "ITFORM" 1387232 T ITFORM (NIL) -8 NIL NIL NIL) (-604 1384506 1385565 1385843 "ITAYLOR" 1386300 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-603 1373451 1378643 1379806 "ISUPS" 1383376 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-602 1372555 1372695 1372931 "ISUMP" 1373298 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-601 1367930 1372500 1372541 "ISTRING" 1372546 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-600 1367406 1367651 1367743 "ISAST" 1367858 T ISAST (NIL) -8 NIL NIL NIL) (-599 1366615 1366697 1366913 "IRURPK" 1367320 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-598 1365551 1365752 1365992 "IRSN" 1366395 T IRSN (NIL) -7 NIL NIL NIL) (-597 1363622 1363977 1364406 "IRRF2F" 1365189 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-596 1363369 1363407 1363483 "IRREDFFX" 1363578 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-595 1361984 1362243 1362542 "IROOT" 1363102 NIL IROOT (NIL T) -7 NIL NIL NIL) (-594 1358588 1359668 1360360 "IR" 1361324 NIL IR (NIL T) -8 NIL NIL NIL) (-593 1357793 1358081 1358232 "IRFORM" 1358457 T IRFORM (NIL) -8 NIL NIL NIL) (-592 1355406 1355901 1356467 "IR2" 1357271 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-591 1354506 1354619 1354833 "IR2F" 1355289 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-590 1354297 1354331 1354391 "IPRNTPK" 1354466 T IPRNTPK (NIL) -7 NIL NIL NIL) (-589 1350878 1354186 1354255 "IPF" 1354260 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-588 1349205 1350803 1350860 "IPADIC" 1350865 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-587 1348517 1348765 1348895 "IP4ADDR" 1349095 T IP4ADDR (NIL) -8 NIL NIL NIL) (-586 1347891 1348146 1348278 "IOMODE" 1348405 T IOMODE (NIL) -8 NIL NIL NIL) (-585 1346964 1347488 1347615 "IOBFILE" 1347784 T IOBFILE (NIL) -8 NIL NIL NIL) (-584 1346452 1346868 1346896 "IOBCON" 1346901 T IOBCON (NIL) -9 NIL 1346922 NIL) (-583 1345963 1346021 1346204 "INVLAPLA" 1346388 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-582 1335611 1337965 1340351 "INTTR" 1343627 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-581 1331946 1332688 1333553 "INTTOOLS" 1334796 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-580 1331532 1331623 1331740 "INTSLPE" 1331849 T INTSLPE (NIL) -7 NIL NIL NIL) (-579 1329485 1331455 1331514 "INTRVL" 1331519 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-578 1327087 1327599 1328174 "INTRF" 1328970 NIL INTRF (NIL T) -7 NIL NIL NIL) (-577 1326498 1326595 1326737 "INTRET" 1326985 NIL INTRET (NIL T) -7 NIL NIL NIL) (-576 1324495 1324884 1325354 "INTRAT" 1326106 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-575 1321758 1322341 1322960 "INTPM" 1323980 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-574 1318503 1319102 1319840 "INTPAF" 1321144 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-573 1313682 1314644 1315695 "INTPACK" 1317472 T INTPACK (NIL) -7 NIL NIL NIL) (-572 1310630 1313479 1313588 "INT" 1313593 T INT (NIL) -8 NIL NIL NIL) (-571 1309882 1310034 1310242 "INTHERTR" 1310472 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-570 1309321 1309401 1309589 "INTHERAL" 1309796 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-569 1307167 1307610 1308067 "INTHEORY" 1308884 T INTHEORY (NIL) -7 NIL NIL NIL) (-568 1298573 1300194 1301966 "INTG0" 1305519 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-567 1279146 1283936 1288746 "INTFTBL" 1293783 T INTFTBL (NIL) -8 NIL NIL NIL) (-566 1278395 1278533 1278706 "INTFACT" 1279005 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-565 1275822 1276268 1276825 "INTEF" 1277949 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-564 1274189 1274928 1274956 "INTDOM" 1275257 T INTDOM (NIL) -9 NIL 1275464 NIL) (-563 1273558 1273732 1273974 "INTDOM-" 1273979 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-562 1269946 1271874 1271928 "INTCAT" 1272727 NIL INTCAT (NIL T) -9 NIL 1273048 NIL) (-561 1269418 1269521 1269649 "INTBIT" 1269838 T INTBIT (NIL) -7 NIL NIL NIL) (-560 1268117 1268271 1268578 "INTALG" 1269263 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-559 1267600 1267690 1267847 "INTAF" 1268021 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-558 1260943 1267410 1267550 "INTABL" 1267555 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-557 1260276 1260742 1260807 "INT8" 1260841 T INT8 (NIL) -8 NIL NIL 1260886) (-556 1259608 1260074 1260139 "INT64" 1260173 T INT64 (NIL) -8 NIL NIL 1260218) (-555 1258940 1259406 1259471 "INT32" 1259505 T INT32 (NIL) -8 NIL NIL 1259550) (-554 1258272 1258738 1258803 "INT16" 1258837 T INT16 (NIL) -8 NIL NIL 1258882) (-553 1253182 1255895 1255923 "INS" 1256857 T INS (NIL) -9 NIL 1257522 NIL) (-552 1250422 1251193 1252167 "INS-" 1252240 NIL INS- (NIL T) -8 NIL NIL NIL) (-551 1249197 1249424 1249722 "INPSIGN" 1250175 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-550 1248315 1248432 1248629 "INPRODPF" 1249077 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-549 1247209 1247326 1247563 "INPRODFF" 1248195 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-548 1246209 1246361 1246621 "INNMFACT" 1247045 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-547 1245406 1245503 1245691 "INMODGCD" 1246108 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-546 1243914 1244159 1244483 "INFSP" 1245151 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-545 1243098 1243215 1243398 "INFPROD0" 1243794 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-544 1239953 1241163 1241678 "INFORM" 1242591 T INFORM (NIL) -8 NIL NIL NIL) (-543 1239563 1239623 1239721 "INFORM1" 1239888 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-542 1239086 1239175 1239289 "INFINITY" 1239469 T INFINITY (NIL) -7 NIL NIL NIL) (-541 1238262 1238806 1238907 "INETCLTS" 1239005 T INETCLTS (NIL) -8 NIL NIL NIL) (-540 1236878 1237128 1237449 "INEP" 1238010 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-539 1236127 1236775 1236840 "INDE" 1236845 NIL INDE (NIL T) -8 NIL NIL NIL) (-538 1235691 1235759 1235876 "INCRMAPS" 1236054 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-537 1234509 1234960 1235166 "INBFILE" 1235505 T INBFILE (NIL) -8 NIL NIL NIL) (-536 1229808 1230745 1231689 "INBFF" 1233597 NIL INBFF (NIL T) -7 NIL NIL NIL) (-535 1228716 1228985 1229013 "INBCON" 1229526 T INBCON (NIL) -9 NIL 1229792 NIL) (-534 1227968 1228191 1228467 "INBCON-" 1228472 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-533 1227447 1227692 1227783 "INAST" 1227897 T INAST (NIL) -8 NIL NIL NIL) (-532 1226874 1227126 1227232 "IMPTAST" 1227361 T IMPTAST (NIL) -8 NIL NIL NIL) (-531 1223320 1226718 1226822 "IMATRIX" 1226827 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-530 1222028 1222151 1222467 "IMATQF" 1223176 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-529 1220248 1220475 1220812 "IMATLIN" 1221784 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-528 1214826 1220172 1220230 "ILIST" 1220235 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-527 1212731 1214686 1214799 "IIARRAY2" 1214804 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-526 1208129 1212642 1212706 "IFF" 1212711 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-525 1207476 1207746 1207862 "IFAST" 1208033 T IFAST (NIL) -8 NIL NIL NIL) (-524 1202471 1206768 1206956 "IFARRAY" 1207333 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-523 1201651 1202375 1202448 "IFAMON" 1202453 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-522 1201235 1201300 1201354 "IEVALAB" 1201561 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-521 1200910 1200978 1201138 "IEVALAB-" 1201143 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-520 1200541 1200824 1200887 "IDPO" 1200892 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-519 1199791 1200430 1200505 "IDPOAMS" 1200510 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-518 1199098 1199680 1199755 "IDPOAM" 1199760 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-517 1198157 1198433 1198486 "IDPC" 1198899 NIL IDPC (NIL T T) -9 NIL 1199048 NIL) (-516 1197626 1198049 1198122 "IDPAM" 1198127 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-515 1197002 1197518 1197591 "IDPAG" 1197596 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-514 1196647 1196838 1196913 "IDENT" 1196947 T IDENT (NIL) -8 NIL NIL NIL) (-513 1192902 1193750 1194645 "IDECOMP" 1195804 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-512 1185739 1186825 1187872 "IDEAL" 1191938 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-511 1184899 1185011 1185211 "ICDEN" 1185623 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-510 1183970 1184379 1184526 "ICARD" 1184772 T ICARD (NIL) -8 NIL NIL NIL) (-509 1182030 1182343 1182748 "IBPTOOLS" 1183647 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-508 1177637 1181650 1181763 "IBITS" 1181949 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-507 1174360 1174936 1175631 "IBATOOL" 1177054 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-506 1172139 1172601 1173134 "IBACHIN" 1173895 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-505 1169968 1171985 1172088 "IARRAY2" 1172093 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-504 1166074 1169894 1169951 "IARRAY1" 1169956 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-503 1160183 1164486 1164967 "IAN" 1165613 T IAN (NIL) -8 NIL NIL NIL) (-502 1159694 1159751 1159924 "IALGFACT" 1160120 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-501 1159222 1159335 1159363 "HYPCAT" 1159570 T HYPCAT (NIL) -9 NIL NIL NIL) (-500 1158760 1158877 1159063 "HYPCAT-" 1159068 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-499 1158355 1158555 1158638 "HOSTNAME" 1158697 T HOSTNAME (NIL) -8 NIL NIL NIL) (-498 1158200 1158237 1158278 "HOMOTOP" 1158283 NIL HOMOTOP (NIL T) -9 NIL 1158316 NIL) (-497 1154832 1156210 1156251 "HOAGG" 1157232 NIL HOAGG (NIL T) -9 NIL 1157911 NIL) (-496 1153426 1153825 1154351 "HOAGG-" 1154356 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-495 1147428 1153019 1153169 "HEXADEC" 1153296 T HEXADEC (NIL) -8 NIL NIL NIL) (-494 1146176 1146398 1146661 "HEUGCD" 1147205 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-493 1145252 1146013 1146143 "HELLFDIV" 1146148 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-492 1143431 1145029 1145117 "HEAP" 1145196 NIL HEAP (NIL T) -8 NIL NIL NIL) (-491 1142694 1142983 1143117 "HEADAST" 1143317 T HEADAST (NIL) -8 NIL NIL NIL) (-490 1136560 1142609 1142671 "HDP" 1142676 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-489 1130548 1136195 1136347 "HDMP" 1136461 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-488 1129872 1130012 1130176 "HB" 1130404 T HB (NIL) -7 NIL NIL NIL) (-487 1123258 1129718 1129822 "HASHTBL" 1129827 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-486 1122734 1122979 1123071 "HASAST" 1123186 T HASAST (NIL) -8 NIL NIL NIL) (-485 1120512 1122356 1122538 "HACKPI" 1122572 T HACKPI (NIL) -8 NIL NIL NIL) (-484 1116180 1120365 1120478 "GTSET" 1120483 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-483 1109595 1116058 1116156 "GSTBL" 1116161 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-482 1101873 1108626 1108891 "GSERIES" 1109386 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-481 1101014 1101431 1101459 "GROUP" 1101662 T GROUP (NIL) -9 NIL 1101796 NIL) (-480 1100380 1100539 1100790 "GROUP-" 1100795 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-479 1098747 1099068 1099455 "GROEBSOL" 1100057 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-478 1097661 1097949 1098000 "GRMOD" 1098529 NIL GRMOD (NIL T T) -9 NIL 1098697 NIL) (-477 1097429 1097465 1097593 "GRMOD-" 1097598 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-476 1092719 1093783 1094783 "GRIMAGE" 1096449 T GRIMAGE (NIL) -8 NIL NIL NIL) (-475 1091185 1091446 1091770 "GRDEF" 1092415 T GRDEF (NIL) -7 NIL NIL NIL) (-474 1090629 1090745 1090886 "GRAY" 1091064 T GRAY (NIL) -7 NIL NIL NIL) (-473 1089816 1090222 1090273 "GRALG" 1090426 NIL GRALG (NIL T T) -9 NIL 1090519 NIL) (-472 1089477 1089550 1089713 "GRALG-" 1089718 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-471 1086254 1089062 1089240 "GPOLSET" 1089384 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-470 1085608 1085665 1085923 "GOSPER" 1086191 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-469 1081340 1082046 1082572 "GMODPOL" 1085307 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-468 1080345 1080529 1080767 "GHENSEL" 1081152 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-467 1074501 1075344 1076364 "GENUPS" 1079429 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-466 1074198 1074249 1074338 "GENUFACT" 1074444 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-465 1073610 1073687 1073852 "GENPGCD" 1074116 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-464 1073084 1073119 1073332 "GENMFACT" 1073569 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-463 1071650 1071907 1072214 "GENEEZ" 1072827 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-462 1065798 1071261 1071423 "GDMP" 1071573 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-461 1055141 1059569 1060675 "GCNAALG" 1064781 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-460 1053468 1054330 1054358 "GCDDOM" 1054613 T GCDDOM (NIL) -9 NIL 1054770 NIL) (-459 1052938 1053065 1053280 "GCDDOM-" 1053285 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-458 1051610 1051795 1052099 "GB" 1052717 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-457 1040226 1042556 1044948 "GBINTERN" 1049301 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-456 1038063 1038355 1038776 "GBF" 1039901 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-455 1036844 1037009 1037276 "GBEUCLID" 1037879 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-454 1036193 1036318 1036467 "GAUSSFAC" 1036715 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-453 1034560 1034862 1035176 "GALUTIL" 1035912 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-452 1032868 1033142 1033466 "GALPOLYU" 1034287 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-451 1030233 1030523 1030930 "GALFACTU" 1032565 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-450 1022039 1023538 1025146 "GALFACT" 1028665 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-449 1019427 1020085 1020113 "FVFUN" 1021269 T FVFUN (NIL) -9 NIL 1021989 NIL) (-448 1018693 1018875 1018903 "FVC" 1019194 T FVC (NIL) -9 NIL 1019377 NIL) (-447 1018336 1018518 1018586 "FUNDESC" 1018645 T FUNDESC (NIL) -8 NIL NIL NIL) (-446 1017951 1018133 1018214 "FUNCTION" 1018288 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-445 1015695 1016273 1016739 "FT" 1017505 T FT (NIL) -8 NIL NIL NIL) (-444 1014486 1014996 1015199 "FTEM" 1015512 T FTEM (NIL) -8 NIL NIL NIL) (-443 1012777 1013066 1013463 "FSUPFACT" 1014177 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-442 1011174 1011463 1011795 "FST" 1012465 T FST (NIL) -8 NIL NIL NIL) (-441 1010373 1010479 1010667 "FSRED" 1011056 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-440 1009072 1009328 1009675 "FSPRMELT" 1010088 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-439 1006378 1006816 1007302 "FSPECF" 1008635 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-438 988016 996347 996388 "FS" 1000272 NIL FS (NIL T) -9 NIL 1002561 NIL) (-437 976659 979652 983709 "FS-" 984009 NIL FS- (NIL T T) -8 NIL NIL NIL) (-436 976187 976241 976411 "FSINT" 976600 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-435 974479 975180 975483 "FSERIES" 975966 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-434 973521 973637 973861 "FSCINT" 974359 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-433 969729 972465 972506 "FSAGG" 972876 NIL FSAGG (NIL T) -9 NIL 973135 NIL) (-432 967491 968092 968888 "FSAGG-" 968983 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-431 966533 966676 966903 "FSAGG2" 967344 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-430 964215 964495 965042 "FS2UPS" 966251 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-429 963849 963892 964021 "FS2" 964166 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-428 962727 962898 963200 "FS2EXPXP" 963674 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-427 962153 962268 962420 "FRUTIL" 962607 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-426 953566 957648 959006 "FR" 960827 NIL FR (NIL T) -8 NIL NIL NIL) (-425 948580 951255 951295 "FRNAALG" 952615 NIL FRNAALG (NIL T) -9 NIL 953213 NIL) (-424 944253 945329 946604 "FRNAALG-" 947354 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-423 943891 943934 944061 "FRNAAF2" 944204 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-422 942266 942740 943036 "FRMOD" 943703 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-421 940009 940641 940959 "FRIDEAL" 942057 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-420 939200 939287 939578 "FRIDEAL2" 939916 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-419 938333 938747 938788 "FRETRCT" 938793 NIL FRETRCT (NIL T) -9 NIL 938969 NIL) (-418 937445 937676 938027 "FRETRCT-" 938032 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-417 934533 935743 935802 "FRAMALG" 936684 NIL FRAMALG (NIL T T) -9 NIL 936976 NIL) (-416 932667 933122 933752 "FRAMALG-" 933975 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-415 926586 932140 932417 "FRAC" 932422 NIL FRAC (NIL T) -8 NIL NIL NIL) (-414 926222 926279 926386 "FRAC2" 926523 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-413 925858 925915 926022 "FR2" 926159 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-412 920371 923264 923292 "FPS" 924411 T FPS (NIL) -9 NIL 924968 NIL) (-411 919820 919929 920093 "FPS-" 920239 NIL FPS- (NIL T) -8 NIL NIL NIL) (-410 917122 918791 918819 "FPC" 919044 T FPC (NIL) -9 NIL 919186 NIL) (-409 916915 916955 917052 "FPC-" 917057 NIL FPC- (NIL T) -8 NIL NIL NIL) (-408 915705 916403 916444 "FPATMAB" 916449 NIL FPATMAB (NIL T) -9 NIL 916601 NIL) (-407 913378 913881 914307 "FPARFRAC" 915342 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-406 908772 909270 909952 "FORTRAN" 912810 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-405 906488 906988 907527 "FORT" 908253 T FORT (NIL) -7 NIL NIL NIL) (-404 904164 904726 904754 "FORTFN" 905814 T FORTFN (NIL) -9 NIL 906438 NIL) (-403 903928 903978 904006 "FORTCAT" 904065 T FORTCAT (NIL) -9 NIL 904127 NIL) (-402 902034 902544 902934 "FORMULA" 903558 T FORMULA (NIL) -8 NIL NIL NIL) (-401 901822 901852 901921 "FORMULA1" 901998 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-400 901345 901397 901570 "FORDER" 901764 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-399 900441 900605 900798 "FOP" 901172 T FOP (NIL) -7 NIL NIL NIL) (-398 899022 899721 899895 "FNLA" 900323 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-397 897751 898166 898194 "FNCAT" 898654 T FNCAT (NIL) -9 NIL 898914 NIL) (-396 897290 897710 897738 "FNAME" 897743 T FNAME (NIL) -8 NIL NIL NIL) (-395 895853 896816 896844 "FMTC" 896849 T FMTC (NIL) -9 NIL 896885 NIL) (-394 894599 895789 895835 "FMONOID" 895840 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-393 891427 892595 892636 "FMONCAT" 893853 NIL FMONCAT (NIL T) -9 NIL 894458 NIL) (-392 890619 891169 891318 "FM" 891323 NIL FM (NIL T T) -8 NIL NIL NIL) (-391 888043 888689 888717 "FMFUN" 889861 T FMFUN (NIL) -9 NIL 890569 NIL) (-390 887312 887493 887521 "FMC" 887811 T FMC (NIL) -9 NIL 887993 NIL) (-389 884391 885251 885305 "FMCAT" 886500 NIL FMCAT (NIL T T) -9 NIL 886995 NIL) (-388 883257 884157 884257 "FM1" 884336 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-387 881031 881447 881941 "FLOATRP" 882808 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-386 874609 878760 879381 "FLOAT" 880430 T FLOAT (NIL) -8 NIL NIL NIL) (-385 872047 872547 873125 "FLOATCP" 874076 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-384 870787 871625 871666 "FLINEXP" 871671 NIL FLINEXP (NIL T) -9 NIL 871764 NIL) (-383 869941 870176 870504 "FLINEXP-" 870509 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-382 869017 869161 869385 "FLASORT" 869793 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-381 866133 867001 867053 "FLALG" 868280 NIL FLALG (NIL T T) -9 NIL 868747 NIL) (-380 859837 863589 863630 "FLAGG" 864892 NIL FLAGG (NIL T) -9 NIL 865544 NIL) (-379 858563 858902 859392 "FLAGG-" 859397 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-378 857605 857748 857975 "FLAGG2" 858416 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-377 854456 855464 855523 "FINRALG" 856651 NIL FINRALG (NIL T T) -9 NIL 857159 NIL) (-376 853616 853845 854184 "FINRALG-" 854189 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-375 852996 853235 853263 "FINITE" 853459 T FINITE (NIL) -9 NIL 853566 NIL) (-374 845353 847540 847580 "FINAALG" 851247 NIL FINAALG (NIL T) -9 NIL 852700 NIL) (-373 840685 841735 842879 "FINAALG-" 844258 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-372 840053 840440 840543 "FILE" 840615 NIL FILE (NIL T) -8 NIL NIL NIL) (-371 838711 839049 839103 "FILECAT" 839787 NIL FILECAT (NIL T T) -9 NIL 840003 NIL) (-370 836427 837955 837983 "FIELD" 838023 T FIELD (NIL) -9 NIL 838103 NIL) (-369 835047 835432 835943 "FIELD-" 835948 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-368 832897 833682 834029 "FGROUP" 834733 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-367 831987 832151 832371 "FGLMICPK" 832729 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-366 827819 831912 831969 "FFX" 831974 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-365 827420 827481 827616 "FFSLPE" 827752 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-364 823410 824192 824988 "FFPOLY" 826656 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-363 822914 822950 823159 "FFPOLY2" 823368 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-362 818760 822833 822896 "FFP" 822901 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-361 814158 818671 818735 "FF" 818740 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-360 809284 813501 813691 "FFNBX" 814012 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-359 804212 808419 808677 "FFNBP" 809138 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-358 798845 803496 803707 "FFNB" 804045 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-357 797677 797875 798190 "FFINTBAS" 798642 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-356 793746 795966 795994 "FFIELDC" 796614 T FFIELDC (NIL) -9 NIL 796990 NIL) (-355 792408 792779 793276 "FFIELDC-" 793281 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-354 791977 792023 792147 "FFHOM" 792350 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-353 789672 790159 790676 "FFF" 791492 NIL FFF (NIL T) -7 NIL NIL NIL) (-352 785290 789414 789515 "FFCGX" 789615 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-351 780912 785022 785129 "FFCGP" 785233 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-350 776095 780639 780747 "FFCG" 780848 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-349 757491 766572 766658 "FFCAT" 771823 NIL FFCAT (NIL T T T) -9 NIL 773274 NIL) (-348 752688 753736 755050 "FFCAT-" 756280 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-347 752099 752142 752377 "FFCAT2" 752639 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 741422 745071 746291 "FEXPR" 750951 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-345 740384 740819 740860 "FEVALAB" 740944 NIL FEVALAB (NIL T) -9 NIL 741205 NIL) (-344 739543 739753 740091 "FEVALAB-" 740096 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-343 738109 738926 739129 "FDIV" 739442 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-342 735129 735870 735985 "FDIVCAT" 737553 NIL FDIVCAT (NIL T T T T) -9 NIL 737990 NIL) (-341 734891 734918 735088 "FDIVCAT-" 735093 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-340 734111 734198 734475 "FDIV2" 734798 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 733085 733406 733608 "FCTRDATA" 733929 T FCTRDATA (NIL) -8 NIL NIL NIL) (-338 731771 732030 732319 "FCPAK1" 732816 T FCPAK1 (NIL) -7 NIL NIL NIL) (-337 730870 731271 731412 "FCOMP" 731662 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-336 714575 718020 721558 "FC" 727352 T FC (NIL) -8 NIL NIL NIL) (-335 706938 710966 711006 "FAXF" 712808 NIL FAXF (NIL T) -9 NIL 713500 NIL) (-334 704215 704872 705697 "FAXF-" 706162 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-333 699267 703591 703767 "FARRAY" 704072 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-332 694161 696228 696281 "FAMR" 697304 NIL FAMR (NIL T T) -9 NIL 697764 NIL) (-331 693051 693353 693788 "FAMR-" 693793 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-330 692220 692973 693026 "FAMONOID" 693031 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-329 690006 690716 690769 "FAMONC" 691710 NIL FAMONC (NIL T T) -9 NIL 692096 NIL) (-328 688670 689760 689897 "FAGROUP" 689902 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-327 686465 686784 687187 "FACUTIL" 688351 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-326 685564 685749 685971 "FACTFUNC" 686275 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-325 677986 684867 685066 "EXPUPXS" 685420 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-324 675469 676009 676595 "EXPRTUBE" 677420 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-323 671740 672332 673062 "EXPRODE" 674808 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-322 657225 670389 670818 "EXPR" 671344 NIL EXPR (NIL T) -8 NIL NIL NIL) (-321 651779 652366 653172 "EXPR2UPS" 656523 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-320 651411 651468 651577 "EXPR2" 651716 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-319 642799 650562 650853 "EXPEXPAN" 651247 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-318 642599 642756 642785 "EXIT" 642790 T EXIT (NIL) -8 NIL NIL NIL) (-317 642079 642323 642414 "EXITAST" 642528 T EXITAST (NIL) -8 NIL NIL NIL) (-316 641706 641768 641881 "EVALCYC" 642011 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-315 641247 641365 641406 "EVALAB" 641576 NIL EVALAB (NIL T) -9 NIL 641680 NIL) (-314 640728 640850 641071 "EVALAB-" 641076 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-313 638096 639398 639426 "EUCDOM" 639981 T EUCDOM (NIL) -9 NIL 640331 NIL) (-312 636501 636943 637533 "EUCDOM-" 637538 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-311 624040 626799 629549 "ESTOOLS" 633771 T ESTOOLS (NIL) -7 NIL NIL NIL) (-310 623672 623729 623838 "ESTOOLS2" 623977 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-309 623423 623465 623545 "ESTOOLS1" 623624 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-308 617460 619068 619096 "ES" 621864 T ES (NIL) -9 NIL 623274 NIL) (-307 612407 613694 615511 "ES-" 615675 NIL ES- (NIL T) -8 NIL NIL NIL) (-306 608781 609542 610322 "ESCONT" 611647 T ESCONT (NIL) -7 NIL NIL NIL) (-305 608526 608558 608640 "ESCONT1" 608743 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-304 608201 608251 608351 "ES2" 608470 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-303 607831 607889 607998 "ES1" 608137 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-302 607047 607176 607352 "ERROR" 607675 T ERROR (NIL) -7 NIL NIL NIL) (-301 600439 606906 606997 "EQTBL" 607002 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-300 592942 595753 597202 "EQ" 599023 NIL -3074 (NIL T) -8 NIL NIL NIL) (-299 592574 592631 592740 "EQ2" 592879 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-298 587865 588912 590005 "EP" 591513 NIL EP (NIL T) -7 NIL NIL NIL) (-297 586465 586756 587062 "ENV" 587579 T ENV (NIL) -8 NIL NIL NIL) (-296 585559 586113 586141 "ENTIRER" 586146 T ENTIRER (NIL) -9 NIL 586192 NIL) (-295 582253 583741 584102 "EMR" 585367 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-294 581383 581568 581622 "ELTAGG" 582002 NIL ELTAGG (NIL T T) -9 NIL 582213 NIL) (-293 581102 581164 581305 "ELTAGG-" 581310 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-292 580866 580895 580949 "ELTAB" 581033 NIL ELTAB (NIL T T) -9 NIL 581085 NIL) (-291 579992 580138 580337 "ELFUTS" 580717 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-290 579734 579790 579818 "ELEMFUN" 579923 T ELEMFUN (NIL) -9 NIL NIL NIL) (-289 579604 579625 579693 "ELEMFUN-" 579698 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-288 574418 577674 577715 "ELAGG" 578655 NIL ELAGG (NIL T) -9 NIL 579118 NIL) (-287 572703 573137 573800 "ELAGG-" 573805 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-286 572015 572152 572308 "ELABOR" 572567 T ELABOR (NIL) -8 NIL NIL NIL) (-285 570676 570955 571249 "ELABEXPR" 571741 T ELABEXPR (NIL) -8 NIL NIL NIL) (-284 563540 565343 566170 "EFUPXS" 569952 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-283 556990 558791 559601 "EFULS" 562816 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-282 554475 554833 555305 "EFSTRUC" 556622 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-281 544266 545832 547380 "EF" 552990 NIL EF (NIL T T) -7 NIL NIL NIL) (-280 543340 543751 543900 "EAB" 544137 T EAB (NIL) -8 NIL NIL NIL) (-279 542522 543299 543327 "E04UCFA" 543332 T E04UCFA (NIL) -8 NIL NIL NIL) (-278 541704 542481 542509 "E04NAFA" 542514 T E04NAFA (NIL) -8 NIL NIL NIL) (-277 540886 541663 541691 "E04MBFA" 541696 T E04MBFA (NIL) -8 NIL NIL NIL) (-276 540068 540845 540873 "E04JAFA" 540878 T E04JAFA (NIL) -8 NIL NIL NIL) (-275 539252 540027 540055 "E04GCFA" 540060 T E04GCFA (NIL) -8 NIL NIL NIL) (-274 538436 539211 539239 "E04FDFA" 539244 T E04FDFA (NIL) -8 NIL NIL NIL) (-273 537618 538395 538423 "E04DGFA" 538428 T E04DGFA (NIL) -8 NIL NIL NIL) (-272 531791 533143 534507 "E04AGNT" 536274 T E04AGNT (NIL) -7 NIL NIL NIL) (-271 530471 530977 531017 "DVARCAT" 531492 NIL DVARCAT (NIL T) -9 NIL 531691 NIL) (-270 529675 529887 530201 "DVARCAT-" 530206 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-269 522812 529474 529603 "DSMP" 529608 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-268 517593 518757 519825 "DROPT" 521764 T DROPT (NIL) -8 NIL NIL NIL) (-267 517258 517317 517415 "DROPT1" 517528 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-266 512373 513499 514636 "DROPT0" 516141 T DROPT0 (NIL) -7 NIL NIL NIL) (-265 510718 511043 511429 "DRAWPT" 512007 T DRAWPT (NIL) -7 NIL NIL NIL) (-264 505305 506228 507307 "DRAW" 509692 NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 504938 504991 505109 "DRAWHACK" 505246 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-262 503669 503938 504229 "DRAWCX" 504667 T DRAWCX (NIL) -7 NIL NIL NIL) (-261 503184 503253 503404 "DRAWCURV" 503595 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-260 493652 495614 497729 "DRAWCFUN" 501089 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-259 490416 492345 492386 "DQAGG" 493015 NIL DQAGG (NIL T) -9 NIL 493289 NIL) (-258 478540 485009 485092 "DPOLCAT" 486944 NIL DPOLCAT (NIL T T T T) -9 NIL 487489 NIL) (-257 473377 474725 476683 "DPOLCAT-" 476688 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-256 466499 473238 473336 "DPMO" 473341 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-255 459524 466279 466446 "DPMM" 466451 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-254 459094 459308 459397 "DOMTMPLT" 459455 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-253 458527 458896 458976 "DOMCTOR" 459034 T DOMCTOR (NIL) -8 NIL NIL NIL) (-252 457739 458007 458158 "DOMAIN" 458396 T DOMAIN (NIL) -8 NIL NIL NIL) (-251 451727 457374 457526 "DMP" 457640 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-250 451327 451383 451527 "DLP" 451665 NIL DLP (NIL T) -7 NIL NIL NIL) (-249 445149 450654 450844 "DLIST" 451169 NIL DLIST (NIL T) -8 NIL NIL NIL) (-248 441946 444002 444043 "DLAGG" 444593 NIL DLAGG (NIL T) -9 NIL 444823 NIL) (-247 440622 441286 441314 "DIVRING" 441406 T DIVRING (NIL) -9 NIL 441489 NIL) (-246 439859 440049 440349 "DIVRING-" 440354 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-245 437961 438318 438724 "DISPLAY" 439473 T DISPLAY (NIL) -7 NIL NIL NIL) (-244 431847 437875 437938 "DIRPROD" 437943 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-243 430695 430898 431163 "DIRPROD2" 431640 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-242 419470 425476 425529 "DIRPCAT" 425939 NIL DIRPCAT (NIL NIL T) -9 NIL 426779 NIL) (-241 416796 417438 418319 "DIRPCAT-" 418656 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-240 416083 416243 416429 "DIOSP" 416630 T DIOSP (NIL) -7 NIL NIL NIL) (-239 412738 414995 415036 "DIOPS" 415470 NIL DIOPS (NIL T) -9 NIL 415699 NIL) (-238 412287 412401 412592 "DIOPS-" 412597 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-237 411110 411738 411766 "DIFRING" 411953 T DIFRING (NIL) -9 NIL 412063 NIL) (-236 410756 410833 410985 "DIFRING-" 410990 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-235 410464 410509 410550 "DIFFDOM" 410671 NIL DIFFDOM (NIL T) -9 NIL 410739 NIL) (-234 410317 410341 410425 "DIFFDOM-" 410430 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 408053 409325 409366 "DIFEXT" 409729 NIL DIFEXT (NIL T) -9 NIL 410023 NIL) (-232 406338 406766 407432 "DIFEXT-" 407437 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 403613 405870 405911 "DIAGG" 405916 NIL DIAGG (NIL T) -9 NIL 405936 NIL) (-230 402997 403154 403406 "DIAGG-" 403411 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 398414 401956 402233 "DHMATRIX" 402766 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 394026 394935 395945 "DFSFUN" 397424 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 389106 392957 393269 "DFLOAT" 393734 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 387369 387650 388039 "DFINTTLS" 388814 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 384398 385390 385790 "DERHAM" 387035 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 382199 384173 384262 "DEQUEUE" 384342 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 381453 381586 381769 "DEGRED" 382061 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 377883 378628 379474 "DEFINTRF" 380681 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 375438 375907 376499 "DEFINTEF" 377402 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 374788 375058 375173 "DEFAST" 375343 T DEFAST (NIL) -8 NIL NIL NIL) (-219 368790 374381 374531 "DECIMAL" 374658 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 366302 366760 367266 "DDFACT" 368334 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 365898 365941 366092 "DBLRESP" 366253 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 363766 364128 364489 "DBASE" 365664 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 363008 363246 363392 "DATAARY" 363665 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 362114 362967 362995 "D03FAFA" 363000 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 361221 362073 362101 "D03EEFA" 362106 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 359171 359637 360126 "D03AGNT" 360752 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 358460 359130 359158 "D02EJFA" 359163 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 357749 358419 358447 "D02CJFA" 358452 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 357038 357708 357736 "D02BHFA" 357741 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 356327 356997 357025 "D02BBFA" 357030 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 349524 351113 352719 "D02AGNT" 354741 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 347292 347815 348361 "D01WGTS" 348998 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 346359 347251 347279 "D01TRNS" 347284 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 345427 346318 346346 "D01GBFA" 346351 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 344495 345386 345414 "D01FCFA" 345419 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 343563 344454 344482 "D01ASFA" 344487 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 342631 343522 343550 "D01AQFA" 343555 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 341699 342590 342618 "D01APFA" 342623 T D01APFA (NIL) -8 NIL NIL NIL) (-199 340767 341658 341686 "D01ANFA" 341691 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 339835 340726 340754 "D01AMFA" 340759 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 338903 339794 339822 "D01ALFA" 339827 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 337971 338862 338890 "D01AKFA" 338895 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 337039 337930 337958 "D01AJFA" 337963 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 330334 331887 333448 "D01AGNT" 335498 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 329671 329799 329951 "CYCLOTOM" 330202 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 326404 327119 327846 "CYCLES" 328964 T CYCLES (NIL) -7 NIL NIL NIL) (-191 325716 325850 326021 "CVMP" 326265 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 323557 323815 324184 "CTRIGMNP" 325444 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 322993 323351 323424 "CTOR" 323504 T CTOR (NIL) -8 NIL NIL NIL) (-188 322502 322724 322825 "CTORKIND" 322912 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 321793 322109 322137 "CTORCAT" 322319 T CTORCAT (NIL) -9 NIL 322432 NIL) (-186 321391 321502 321661 "CTORCAT-" 321666 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 320853 321065 321173 "CTORCALL" 321315 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 320227 320326 320479 "CSTTOOLS" 320750 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 316026 316683 317441 "CRFP" 319539 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 315501 315747 315839 "CRCEAST" 315954 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 314548 314733 314961 "CRAPACK" 315305 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 313932 314033 314237 "CPMATCH" 314424 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 313657 313685 313791 "CPIMA" 313898 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 310005 310677 311396 "COORDSYS" 312992 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 309417 309538 309680 "CONTOUR" 309883 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 305308 307420 307912 "CONTFRAC" 308957 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 305188 305209 305237 "CONDUIT" 305274 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 304276 304830 304858 "COMRING" 304863 T COMRING (NIL) -9 NIL 304915 NIL) (-173 303330 303634 303818 "COMPPROP" 304112 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 302991 303026 303154 "COMPLPAT" 303289 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 293282 302800 302909 "COMPLEX" 302914 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 292918 292975 293082 "COMPLEX2" 293219 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 292257 292378 292538 "COMPILER" 292778 T COMPILER (NIL) -8 NIL NIL NIL) (-168 291975 292010 292108 "COMPFACT" 292216 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276055 286049 286089 "COMPCAT" 287093 NIL COMPCAT (NIL T) -9 NIL 288441 NIL) (-166 265567 268494 272121 "COMPCAT-" 272477 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265296 265324 265427 "COMMUPC" 265533 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265090 265124 265183 "COMMONOP" 265257 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 264646 264841 264928 "COMM" 265023 T COMM (NIL) -8 NIL NIL NIL) (-162 264222 264450 264525 "COMMAAST" 264591 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 263471 263665 263693 "COMBOPC" 264031 T COMBOPC (NIL) -9 NIL 264206 NIL) (-160 262367 262577 262819 "COMBINAT" 263261 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 258824 259398 260025 "COMBF" 261789 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 257582 257940 258175 "COLOR" 258609 T COLOR (NIL) -8 NIL NIL NIL) (-157 257058 257303 257395 "COLONAST" 257510 T COLONAST (NIL) -8 NIL NIL NIL) (-156 256698 256745 256870 "CMPLXRT" 257005 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256146 256398 256497 "CLLCTAST" 256619 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 251648 252676 253756 "CLIP" 255086 T CLIP (NIL) -7 NIL NIL NIL) (-153 249989 250749 250989 "CLIF" 251475 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246164 248135 248176 "CLAGG" 249105 NIL CLAGG (NIL T) -9 NIL 249641 NIL) (-151 244586 245043 245626 "CLAGG-" 245631 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244130 244215 244355 "CINTSLPE" 244495 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 241631 242102 242650 "CHVAR" 243658 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 240805 241359 241387 "CHARZ" 241392 T CHARZ (NIL) -9 NIL 241407 NIL) (-147 240559 240599 240677 "CHARPOL" 240759 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 239617 240204 240232 "CHARNZ" 240279 T CHARNZ (NIL) -9 NIL 240335 NIL) (-145 237523 238271 238624 "CHAR" 239284 T CHAR (NIL) -8 NIL NIL NIL) (-144 237249 237310 237338 "CFCAT" 237449 T CFCAT (NIL) -9 NIL NIL NIL) (-143 236490 236601 236784 "CDEN" 237133 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 232455 235643 235923 "CCLASS" 236230 T CCLASS (NIL) -8 NIL NIL NIL) (-141 231706 231863 232040 "CATEGORY" 232298 T -10 (NIL) -8 NIL NIL NIL) (-140 231279 231625 231673 "CATCTOR" 231678 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 230730 230982 231080 "CATAST" 231201 T CATAST (NIL) -8 NIL NIL NIL) (-138 230206 230451 230543 "CASEAST" 230658 T CASEAST (NIL) -8 NIL NIL NIL) (-137 225344 226363 227107 "CARTEN" 229518 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 224452 224600 224821 "CARTEN2" 225191 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 222768 223602 223859 "CARD" 224215 T CARD (NIL) -8 NIL NIL NIL) (-134 222344 222572 222647 "CAPSLAST" 222713 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 221848 222056 222084 "CACHSET" 222216 T CACHSET (NIL) -9 NIL 222294 NIL) (-132 221318 221640 221668 "CABMON" 221718 T CABMON (NIL) -9 NIL 221774 NIL) (-131 220791 221022 221132 "BYTEORD" 221228 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 219768 220320 220462 "BYTE" 220625 T BYTE (NIL) -8 NIL NIL 220747) (-129 215118 219273 219445 "BYTEBUF" 219616 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 212627 214810 214917 "BTREE" 215044 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 210076 212275 212397 "BTOURN" 212537 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 207446 209546 209587 "BTCAT" 209655 NIL BTCAT (NIL T) -9 NIL 209732 NIL) (-125 207113 207193 207342 "BTCAT-" 207347 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 202492 206372 206400 "BTAGG" 206514 T BTAGG (NIL) -9 NIL 206624 NIL) (-123 201982 202107 202313 "BTAGG-" 202318 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 198977 201260 201475 "BSTREE" 201799 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198115 198241 198425 "BRILL" 198833 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 194767 196841 196882 "BRAGG" 197531 NIL BRAGG (NIL T) -9 NIL 197789 NIL) (-119 193296 193702 194257 "BRAGG-" 194262 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 186523 192640 192825 "BPADICRT" 193143 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 184838 186460 186505 "BPADIC" 186510 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 184536 184566 184680 "BOUNDZRO" 184802 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 179764 180962 181874 "BOP" 183644 T BOP (NIL) -8 NIL NIL NIL) (-114 177545 177949 178424 "BOP1" 179322 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177246 177307 177335 "BOOLE" 177446 T BOOLE (NIL) -9 NIL 177528 NIL) (-112 176071 176820 176969 "BOOLEAN" 177117 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175350 175754 175808 "BMODULE" 175813 NIL BMODULE (NIL T T) -9 NIL 175878 NIL) (-110 171151 175148 175221 "BITS" 175297 T BITS (NIL) -8 NIL NIL NIL) (-109 170572 170691 170831 "BINDING" 171031 T BINDING (NIL) -8 NIL NIL NIL) (-108 164577 170167 170316 "BINARY" 170443 T BINARY (NIL) -8 NIL NIL NIL) (-107 162357 163832 163873 "BGAGG" 164133 NIL BGAGG (NIL T) -9 NIL 164270 NIL) (-106 162188 162220 162311 "BGAGG-" 162316 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161259 161572 161777 "BFUNCT" 162003 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159949 160127 160415 "BEZOUT" 161083 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156418 158801 159131 "BBTREE" 159652 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156152 156205 156233 "BASTYPE" 156352 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 156004 156033 156106 "BASTYPE-" 156111 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155438 155514 155666 "BALFACT" 155915 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154294 154853 155039 "AUTOMOR" 155283 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 154020 154025 154051 "ATTREG" 154056 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152272 152717 153069 "ATTRBUT" 153686 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151880 152100 152166 "ATTRAST" 152224 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151416 151529 151555 "ATRIG" 151756 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151225 151266 151353 "ATRIG-" 151358 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150870 151056 151082 "ASTCAT" 151087 T ASTCAT (NIL) -9 NIL 151117 NIL) (-92 150597 150656 150775 "ASTCAT-" 150780 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148746 150373 150461 "ASTACK" 150540 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147251 147548 147913 "ASSOCEQ" 148428 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146283 146910 147034 "ASP9" 147158 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 146046 146231 146270 "ASP8" 146275 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144914 145651 145793 "ASP80" 145935 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143812 144549 144681 "ASP7" 144813 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142766 143489 143607 "ASP78" 143725 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141735 142446 142563 "ASP77" 142680 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140647 141373 141504 "ASP74" 141635 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139547 140282 140414 "ASP73" 140546 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138651 139373 139473 "ASP6" 139478 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137598 138328 138446 "ASP55" 138564 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136547 137272 137391 "ASP50" 137510 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135635 136248 136358 "ASP4" 136468 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134723 135336 135446 "ASP49" 135556 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133507 134262 134430 "ASP42" 134612 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132284 133040 133210 "ASP41" 133394 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131234 131961 132079 "ASP35" 132197 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130999 131182 131221 "ASP34" 131226 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130736 130803 130879 "ASP33" 130954 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129630 130371 130503 "ASP31" 130635 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129395 129578 129617 "ASP30" 129622 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129130 129199 129275 "ASP29" 129350 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128895 129078 129117 "ASP28" 129122 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128660 128843 128882 "ASP27" 128887 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127744 128358 128469 "ASP24" 128580 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126821 127546 127658 "ASP20" 127663 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125909 126522 126632 "ASP1" 126742 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124852 125583 125702 "ASP19" 125821 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124589 124656 124732 "ASP12" 124807 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123441 124188 124332 "ASP10" 124476 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121292 123285 123376 "ARRAY2" 123381 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117057 120940 121054 "ARRAY1" 121209 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116089 116262 116483 "ARRAY12" 116880 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110401 112319 112394 "ARR2CAT" 115024 NIL ARR2CAT (NIL T T T) -9 NIL 115782 NIL) (-56 107835 108579 109533 "ARR2CAT-" 109538 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107152 107462 107587 "ARITY" 107728 T ARITY (NIL) -8 NIL NIL NIL) (-54 105928 106080 106379 "APPRULE" 106988 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105579 105627 105746 "APPLYORE" 105874 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104933 105172 105292 "ANY" 105477 T ANY (NIL) -8 NIL NIL NIL) (-51 104211 104334 104491 "ANY1" 104807 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101741 102648 102975 "ANTISYM" 103935 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101233 101448 101544 "ANON" 101663 T ANON (NIL) -8 NIL NIL NIL) (-48 95482 99772 100226 "AN" 100797 T AN (NIL) -8 NIL NIL NIL) (-47 91380 92768 92819 "AMR" 93567 NIL AMR (NIL T T) -9 NIL 94167 NIL) (-46 90492 90713 91076 "AMR-" 91081 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74931 90409 90470 "ALIST" 90475 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71736 74525 74694 "ALGSC" 74849 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68292 68846 69453 "ALGPKG" 71176 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67569 67670 67854 "ALGMFACT" 68178 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63604 64183 64777 "ALGMANIP" 67153 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54974 63230 63380 "ALGFF" 63537 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54170 54301 54480 "ALGFACT" 54832 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53111 53711 53749 "ALGEBRA" 53754 NIL ALGEBRA (NIL T) -9 NIL 53795 NIL) (-37 52829 52888 53020 "ALGEBRA-" 53025 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34892 50801 50853 "ALAGG" 50989 NIL ALAGG (NIL T T) -9 NIL 51150 NIL) (-35 34428 34541 34567 "AHYP" 34768 T AHYP (NIL) -9 NIL NIL NIL) (-34 33359 33607 33633 "AGG" 34132 T AGG (NIL) -9 NIL 34411 NIL) (-33 32793 32955 33169 "AGG-" 33174 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30599 31022 31427 "AF" 32435 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30079 30324 30414 "ADDAST" 30527 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29347 29606 29762 "ACPLOT" 29941 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26474 26512 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 90860da6..7429861b 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,9671 +1,6649 @@
-(732410 . 3485439396)
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186))
- (-14 *4 *2))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3))
- (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109))
- (-4 *3 (-167 *6)) (-4 (-959 *6) (-893 *5))
- (-4 *6 (-13 (-893 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-896 *4 *1)) (-5 *3 (-899 *4)) (-4 *1 (-893 *4))
- (-4 *4 (-1109))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109))
- (-4 *6 (-13 (-1109) (-1047 *3))) (-4 *3 (-893 *5))
- (-5 *1 (-938 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109))
- (-4 *3 (-13 (-436 *6) (-620 *4) (-893 *5) (-1047 (-618 $))))
- (-5 *4 (-899 *5)) (-4 *6 (-13 (-562) (-893 *5)))
- (-5 *1 (-939 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 (-570) *3)) (-5 *4 (-899 (-570))) (-4 *3 (-551))
- (-5 *1 (-940 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 *6)) (-5 *3 (-618 *6)) (-4 *5 (-1109))
- (-4 *6 (-13 (-1109) (-1047 (-618 $)) (-620 *4) (-893 *5)))
- (-5 *4 (-899 *5)) (-5 *1 (-941 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-892 *5 *6 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109))
- (-4 *6 (-893 *5)) (-4 *3 (-672 *6)) (-5 *1 (-942 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-896 *6 *3) *8 (-899 *6) (-896 *6 *3)))
- (-4 *8 (-856)) (-5 *2 (-896 *6 *3)) (-5 *4 (-899 *6))
- (-4 *6 (-1109)) (-4 *3 (-13 (-956 *9 *7 *8) (-620 *4)))
- (-4 *7 (-799)) (-4 *9 (-13 (-1058) (-893 *6)))
- (-5 *1 (-943 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109))
- (-4 *3 (-13 (-956 *8 *6 *7) (-620 *4))) (-5 *4 (-899 *5))
- (-4 *7 (-893 *5)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *8 (-13 (-1058) (-893 *5))) (-5 *1 (-943 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-1001 *6))
- (-4 *6 (-13 (-562) (-893 *5) (-620 *4))) (-5 *4 (-899 *5))
- (-5 *1 (-946 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-896 *5 (-1186))) (-5 *3 (-1186)) (-5 *4 (-899 *5))
- (-4 *5 (-1109)) (-5 *1 (-947 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-650 (-899 *7))) (-5 *5 (-1 *9 (-650 *9)))
- (-5 *6 (-1 (-896 *7 *9) *9 (-899 *7) (-896 *7 *9))) (-4 *7 (-1109))
- (-4 *9 (-13 (-1058) (-620 (-899 *7)) (-1047 *8)))
- (-5 *2 (-896 *7 *9)) (-5 *3 (-650 *9)) (-4 *8 (-1058))
- (-5 *1 (-948 *7 *8 *9)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227)))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))))
+(732523 . 3485461458)
+(((*1 *1) (-5 *1 (-142))))
(((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7)))
- (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7))))
+ (-12 (-5 *3 (-594 *2)) (-4 *2 (-13 (-29 *4) (-1214)))
+ (-5 *1 (-591 *4 *2))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))))
((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-1253 *4)) (-5 *2 (-424 (-1182 *5)))
- (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3))
- (-4 *3 (-654 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))))
-(((*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-562))))
- ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-542)) (-5 *1 (-541 *4))
- (-4 *4 (-1227)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-777) *2)) (-5 *4 (-777)) (-4 *2 (-1109))
- (-5 *1 (-684 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-777) *3)) (-4 *3 (-1109)) (-5 *1 (-688 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
+ (-12 (-5 *3 (-594 (-415 (-961 *4))))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *4))
+ (-5 *1 (-597 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-5 *1 (-336)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1282)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-695 (-1182 *8))) (-4 *5 (-1058)) (-4 *8 (-1058))
- (-4 *6 (-1253 *5)) (-5 *2 (-695 *6)) (-5 *1 (-507 *5 *6 *7 *8))
- (-4 *7 (-1253 *6)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-780)) (-5 *1 (-115))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-780)) (-5 *1 (-115)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-965 *3)) (-5 *1 (-1173 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2))
- (-4 *2 (-1268 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1253 *3))
- (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1268 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2))
- (-4 *2 (-1268 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148)))
- (-5 *1 (-1162 *3)))))
-(((*1 *1) (-5 *1 (-584))))
+ (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-4 *4 (-1111))
+ (-5 *1 (-581 *4 *2)) (-4 *2 (-438 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 *7)) (-5 *3 (-572)) (-4 *7 (-958 *6 *4 *5))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
+ (-5 *1 (-327 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-1279 (-322 (-386))))
+ (-5 *1 (-311)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-846))) (-5 *1 (-141)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1229))
+ (-4 *5 (-1229)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-244 *6 *7)) (-14 *6 (-779))
+ (-4 *7 (-1229)) (-4 *5 (-1229)) (-5 *2 (-244 *6 *5))
+ (-5 *1 (-243 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1229)) (-4 *5 (-1229))
+ (-4 *2 (-380 *5)) (-5 *1 (-378 *6 *4 *5 *2)) (-4 *4 (-380 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1111)) (-4 *5 (-1111))
+ (-4 *2 (-433 *5)) (-5 *1 (-431 *6 *4 *5 *2)) (-4 *4 (-433 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-652 *6)) (-4 *6 (-1229))
+ (-4 *5 (-1229)) (-5 *2 (-652 *5)) (-5 *1 (-650 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-967 *6)) (-4 *6 (-1229))
+ (-4 *5 (-1229)) (-5 *2 (-967 *5)) (-5 *1 (-966 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1168 *6)) (-4 *6 (-1229))
+ (-4 *3 (-1229)) (-5 *2 (-1168 *3)) (-5 *1 (-1166 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1279 *6)) (-4 *6 (-1229))
+ (-4 *5 (-1229)) (-5 *2 (-1279 *5)) (-5 *1 (-1278 *6 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-730)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1184 *4)) (-5 *1 (-536 *4))
+ (-4 *4 (-356)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570))
- (-14 *4 *2) (-4 *5 (-174))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-928)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-928))))
- ((*1 *2)
- (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3))
- (-5 *2 (-928))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4))
- (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *5)) (-5 *4 (-1277 *5)) (-4 *5 (-368))
- (-5 *2 (-777)) (-5 *1 (-673 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453))))
- (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-5 *2 (-777))
- (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4))))
+ (-12 (-5 *2 (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 *4))))
+ (-5 *1 (-898 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))))
((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3))
- (-4 *3 (-693 *4 *5 *6))))
+ (-12 (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111))
+ (-4 *7 (-1111)) (-5 *2 (-652 *1)) (-4 *1 (-1114 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3) (-12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562))
- (-5 *2 (-777)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-1277 *4))) (-4 *4 (-1058)) (-5 *2 (-695 *4))
- (-5 *1 (-1038 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-868)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1186))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-650 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -3730 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1212) (-27) (-436 *8)))
- (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570))
- (-5 *2 (-650 *4)) (-5 *1 (-1023 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1151 *4 *2)) (-14 *4 (-928))
- (-4 *2 (-13 (-1058) (-10 -7 (-6 (-4454 "*")))))
- (-5 *1 (-909 *4 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))
- (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
+ (-12 (-4 *1 (-1114 *3 *4 *2 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1184 (-572))) (-5 *3 (-572)) (-4 *1 (-877 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-620 *6))) (-5 *4 (-1188)) (-5 *2 (-620 *6))
+ (-4 *6 (-438 *5)) (-4 *5 (-1111)) (-5 *1 (-581 *5 *6)))))
+(((*1 *1) (-5 *1 (-514))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2681 (-650 *1))))
- (-4 *1 (-372 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-459 *3 *4 *5 *6))
- (|:| -2681 (-650 (-459 *3 *4 *5 *6)))))
- (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227)))
+ (-5 *2 (-1281)) (-5 *1 (-262)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-317))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-981))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1005))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1047))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1084)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214)))
+ (-5 *1 (-608 *4 *3 *2)) (-4 *3 (-13 (-438 *4) (-1013) (-1214))))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34))))))
+ (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))))
+ (-5 *1 (-207)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-755)))))
+(((*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8))))
- (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2))))
+ (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-1279 *3))
+ (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3))
+ (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *2 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
+ (-4 *3 (-564)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-652 *2)) (-5 *1 (-114 *2))
+ (-4 *2 (-1111))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-570) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1021)) (-5 *2 (-868)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1036 *5 *6 *7 *3))) (-5 *1 (-1036 *5 *6 *7 *3))
- (-4 *3 (-1074 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-650 *6)) (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1080 *3 *4 *5 *2)) (-4 *3 (-458)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1155 *5 *6 *7 *3))) (-5 *1 (-1155 *5 *6 *7 *3))
- (-4 *3 (-1074 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-551))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4))
- (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856)))
- (-14 *3 (-650 (-1186)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-650 (-1186))) (-4 *3 (-174))
- (-4 *5 (-240 (-2857 *2) (-777)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4298 *4) (|:| -2940 *5))
- (-2 (|:| -4298 *4) (|:| -2940 *5))))
- (-5 *1 (-467 *2 *3 *4 *5 *6 *7)) (-4 *4 (-856))
- (-4 *7 (-956 *3 *5 (-870 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1253 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-741 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1058))
- (-4 *3 (-732))))
- ((*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-652 *4))) (-4 *4 (-1111))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-652 *4)))
+ (-5 *1 (-114 *4)) (-4 *4 (-1111))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1227)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060))
+ (-5 *1 (-722 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112))
+ (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272)))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
+(((*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-577 *3)) (-4 *3 (-1049 (-572)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-779)) (-4 *4 (-313)) (-4 *6 (-1255 *4))
+ (-5 *2 (-1279 (-652 *6))) (-5 *1 (-463 *4 *6)) (-5 *5 (-652 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1046)) (-5 *1 (-761)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707))))
+ ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1111)) (-4 *2 (-909 *5)) (-5 *1 (-700 *5 *2 *3 *4))
+ (-4 *3 (-380 *2)) (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-298 (-839 *3)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-839 *3)) (-5 *1 (-642 *5 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *5)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-356)) (-5 *3 (-572)) (-5 *2 (-1201 (-930) (-779))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3))
+ (-4 *3 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3)))
+ (-4 *3 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-594 *3)) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-237)) (-4 *3 (-1060)) (-4 *4 (-858)) (-4 *5 (-271 *4))
+ (-4 *6 (-801)) (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1060)) (-4 *3 (-858)) (-4 *5 (-271 *3)) (-4 *6 (-801))
+ (-5 *2 (-1 *1 (-779))) (-4 *1 (-258 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-271 *2)) (-4 *2 (-858)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1184 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-849)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-848))))
+ ((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-652 (-386))) (-5 *5 (-652 (-851 (-386))))
+ (-5 *6 (-652 (-322 (-386)))) (-5 *3 (-322 (-386))) (-5 *2 (-1046))
+ (-5 *1 (-848))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386)))
+ (-5 *5 (-652 (-851 (-386)))) (-5 *2 (-1046)) (-5 *1 (-848))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 (-839 (-959 *5)))) (-4 *5 (-458))
- (-5 *2 (-839 (-413 (-959 *5)))) (-5 *1 (-643 *5))
- (-5 *3 (-413 (-959 *5)))))
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-386))) (-5 *2 (-1046))
+ (-5 *1 (-848))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5)))
- (-4 *5 (-458)) (-5 *2 (-839 *3)) (-5 *1 (-643 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386)))
+ (-5 *2 (-1046)) (-5 *1 (-848)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
+ (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
+ (-5 *1 (-796)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))))
+(((*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-930))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-930))
+ (-5 *1 (-536 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
+ (-5 *2
+ (-2 (|:| |ir| (-594 (-415 *6))) (|:| |specpart| (-415 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060)) (-4 *5 (-1255 *4)) (-5 *2 (-1 *6 (-652 *6)))
+ (-5 *1 (-1273 *4 *5 *3 *6)) (-4 *3 (-664 *5)) (-4 *6 (-1270 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-415 (-572))))
+ (-5 *1 (-311)))))
+(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-811)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-319 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))))
+ (-5 *1 (-428 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
+ (-14 *6 (-1188)) (-14 *7 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
(((*1 *2)
- (-12 (-14 *4 (-777)) (-4 *5 (-1227)) (-5 *2 (-135))
- (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5))))
+ (-12 (-5 *2 (-697 (-919 *3))) (-5 *1 (-358 *3 *4)) (-14 *3 (-930))
+ (-14 *4 (-930))))
((*1 *2)
- (-12 (-4 *4 (-368)) (-5 *2 (-135)) (-5 *1 (-332 *3 *4))
- (-4 *3 (-333 *4))))
+ (-12 (-5 *2 (-697 *3)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356))
+ (-14 *4
+ (-3 (-1184 *3)
+ (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131)))))))))
((*1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799))
- (-5 *2 (-570)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1058)) (-5 *2 (-928))))
- ((*1 *2) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-368)) (-5 *2 (-135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 *2))
- (-14 *4 (-650 *2)) (-4 *5 (-393))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-320 *5)) (-4 *5 (-393)) (-5 *1 (-344 *3 *4 *5))
- (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186)))))
- ((*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-959 (-384))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 (-413 (-959 (-570))))) (-4 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 (-413 (-959 (-384))))) (-4 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 (-959 (-570)))) (-4 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 (-959 (-384)))) (-4 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 (-320 (-570)))) (-4 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 (-320 (-384)))) (-4 *1 (-447))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-320 (-227)))
- (|:| -2744 (-650 (-1103 (-849 (-227)))))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-775))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-814))))
- ((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-697 *3)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356))
+ (-14 *4 (-930)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1188)) (-5 *1 (-544))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-712 *3)) (-4 *3 (-622 (-544)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-712 *3))
+ (-4 *3 (-622 (-544))))))
+(((*1 *2 *1) (-12 (-4 *1 (-775 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572))))
(-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227)))
- (|:| |lb| (-650 (-849 (-227))))
- (|:| |cf| (-650 (-320 (-227))))
- (|:| |ub| (-650 (-849 (-227))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-650 (-320 (-227))))
- (|:| -3458 (-650 (-227)))))))
- (-5 *1 (-847))))
- ((*1 *2 *1)
+ (-2 (|:| |func| *3) (|:| |kers| (-652 (-620 *3)))
+ (|:| |vals| (-652 *3))))
+ (-5 *1 (-282 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
+ (-4 *3 (-1255 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
+ (-251 *4 (-415 (-572)))))
+ (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112))
+ (-5 *1 (-513 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1104 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1255 *9)) (-4 *7 (-801)) (-4 *8 (-858)) (-4 *9 (-313))
+ (-4 *10 (-958 *9 *7 *8))
(-5 *2
- (-2 (|:| |pde| (-650 (-320 (-227))))
- (|:| |constraints|
- (-650
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-777)) (|:| |boundaryType| (-570))
- (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227))))))
- (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168))
- (|:| |tol| (-227))))
- (-5 *1 (-905))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *1 (-985 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2)
- (-3749
- (-12 (-5 *2 (-959 *3))
- (-12 (-3201 (-4 *3 (-38 (-413 (-570)))))
- (-3201 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)))
- (-12 (-5 *2 (-959 *3))
- (-12 (-3201 (-4 *3 (-551))) (-3201 (-4 *3 (-38 (-413 (-570)))))
- (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)))
- (-12 (-5 *2 (-959 *3))
- (-12 (-3201 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570))))
- (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)))))
- ((*1 *1 *2)
- (-3749
- (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5))
- (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570)))
- (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))
- (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5))
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)))))
-(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ (-2 (|:| |deter| (-652 (-1184 *10)))
+ (|:| |dterm|
+ (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-652 *6)) (|:| |nlead| (-652 *10))))
+ (-5 *1 (-786 *6 *7 *8 *9 *10)) (-5 *3 (-1184 *10)) (-5 *4 (-652 *6))
+ (-5 *5 (-652 *10)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1168 (-982))) (-5 *1 (-982)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *2 (-652 *3)) (-5 *1 (-933 *4 *5 *6 *3))
+ (-4 *3 (-958 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-901 *6)))
+ (-5 *5 (-1 (-898 *6 *8) *8 (-901 *6) (-898 *6 *8))) (-4 *6 (-1111))
+ (-4 *8 (-13 (-1060) (-622 (-901 *6)) (-1049 *7)))
+ (-5 *2 (-898 *6 *8)) (-4 *7 (-1060)) (-5 *1 (-950 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141))))
+ ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187))))
+ ((*1 *2 *1) (-12 (-5 *2 (-253)) (-5 *1 (-252)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-1193) (-779)))) (-5 *1 (-339)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227))
+ (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1111)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-691 *4 *5)) (-4 *4 (-1111))))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1) (-4 *1 (-1148))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1253 *4)) (-5 *2 (-695 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3))
- (-5 *2 (-695 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-650
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-570)))))
- (-4 *2 (-562)) (-5 *1 (-424 *2))))
+ (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-570))
- (|:| -2660 (-650 (-2 (|:| |irr| *4) (|:| -3634 (-570)))))))
- (-4 *4 (-1253 (-570))) (-5 *2 (-424 *4)) (-5 *1 (-448 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-956 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-163)))
- ((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-163)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186))
- (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1058))
- (-5 *1 (-325 *4 *5 *2 *6)) (-4 *6 (-956 *2 *4 *5)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112))
- (-5 *2 (-1044)) (-5 *1 (-751)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570))))
- (-4 *5 (-1253 *4))
- (-5 *2 (-2 (|:| -3730 (-413 *5)) (|:| |coeff| (-413 *5))))
- (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-767))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1227)) (-4 *2 (-1109))
- (-4 *2 (-856)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1253 (-570))) (-5 *1 (-492 *3)))))
-(((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186)))))
+ (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939))))
((*1 *2 *1)
- (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186)))))
+ (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060))))
((*1 *2 *1)
- (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-650 (-1186))) (-4 *5 (-240 (-2857 *3) (-777)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4298 *4) (|:| -2940 *5))
- (-2 (|:| -4298 *4) (|:| -2940 *5))))
- (-4 *2 (-174)) (-5 *1 (-467 *3 *2 *4 *5 *6 *7)) (-4 *4 (-856))
- (-4 *7 (-956 *2 *5 (-870 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1109))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1253 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-856))
- (-4 *3 (-732))))
- ((*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *3 (-798)) (-4 *4 (-856))
- (-4 *2 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52))))
- (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1227))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1253 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058)))))
+ (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-1211 *4))
+ (-4 *4 (-1060)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-415 (-572))))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368))
- (-14 *4 (-1186)) (-14 *5 *3))))
+ (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4))
+ (-4 *2 (-242 *3 *4)))))
+(((*1 *2) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1284))
+ (-5 *1 (-441 *3 *4)) (-4 *4 (-438 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-460)))))
+(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-97)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
+ (-12 (-5 *3 (-777))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))
+ (-5 *1 (-573))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-777)) (-5 *4 (-1074))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))
+ (-5 *1 (-573))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-795)) (-5 *3 (-1074))
+ (-5 *4
+ (-2 (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *2 (-112)) (-5 *1 (-304)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1103 *3)) (-4 *3 (-956 *7 *6 *4)) (-4 *6 (-799))
- (-4 *4 (-856)) (-4 *7 (-562))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570))))
- (-5 *1 (-600 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-562))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570))))
- (-5 *1 (-600 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1212)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1212)))
- (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1178 *4 *2))))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))
+ (|:| |extra| (-1046))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570))))
- (-5 *2 (-413 (-959 *5))) (-5 *1 (-1179 *5)) (-5 *3 (-959 *5))))
+ (-12 (-4 *1 (-795)) (-5 *3 (-1074))
+ (-5 *4
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))
+ (|:| |extra| (-1046))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570))))
- (-5 *2 (-3 (-413 (-959 *5)) (-320 *5))) (-5 *1 (-1179 *5))
- (-5 *3 (-413 (-959 *5)))))
+ (-12 (-4 *1 (-808)) (-5 *3 (-1074))
+ (-5 *4
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-816))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170)))))
+ (-5 *1 (-813))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1101 (-959 *5))) (-5 *3 (-959 *5))
- (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 *3))
- (-5 *1 (-1179 *5))))
+ (-12 (-5 *3 (-816)) (-5 *4 (-1074))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170)))))
+ (-5 *1 (-813))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1101 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5)))
- (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-3 *3 (-320 *5)))
- (-5 *1 (-1179 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-695 (-570))) (-5 *5 (-112)) (-5 *7 (-695 (-227)))
- (-5 *3 (-570)) (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-757)))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1253 (-570))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1227)) (-4 *2 (-856))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4))
- (-14 *3 (-928)) (-4 *4 (-1058))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174))
- (-4 *6 (-240 (-2857 *3) (-777)))
- (-14 *7
- (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *6))
- (-2 (|:| -4298 *5) (|:| -2940 *6))))
- (-5 *2 (-719 *5 *6 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-856)) (-4 *8 (-956 *4 *6 (-870 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-732)) (-4 *2 (-856)) (-5 *1 (-741 *3 *2))
- (-4 *3 (-1058))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798))
- (-4 *4 (-856)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-1270 *4 *2))
- (-4 *4 (-38 (-413 (-570)))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1149 *3 *2)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *2 (-13 (-1109) (-34))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4))
+ (-12 (-4 *1 (-847)) (-5 *3 (-1074))
+ (-5 *4
+ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))
+ (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-847)) (-5 *3 (-1074))
+ (-5 *4
+ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227)))
+ (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
+ (|:| |ub| (-652 (-851 (-227))))))
+ (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-849))
(-5 *2
- (-3 (|:| |overq| (-1182 (-413 (-570))))
- (|:| |overan| (-1182 (-48))) (|:| -3405 (-112))))
- (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1253 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 *6)) (-4 *5 (-1231)) (-4 *6 (-1253 *5))
- (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *3) (|:| |radicand| *6)))
- (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-777)) (-4 *7 (-1253 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4))
- (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112))))
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170)))))
+ (-5 *1 (-848))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-849)) (-5 *4 (-1074))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170)))))
+ (-5 *1 (-848))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-904)) (-5 *3 (-1074))
+ (-5 *4
+ (-2 (|:| |pde| (-652 (-322 (-227))))
+ (|:| |constraints|
+ (-652
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-779)) (|:| |boundaryType| (-572))
+ (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
+ (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
+ (|:| |tol| (-227))))
+ (-5 *2 (-2 (|:| -4329 (-386)) (|:| |explanations| (-1170))))))
((*1 *2 *3)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1099)))))
+ (-12 (-5 *3 (-907))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170)))))
+ (-5 *1 (-906))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-907)) (-5 *4 (-1074))
+ (-5 *2
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170)))))
+ (-5 *1 (-906)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-697 *6)) (-5 *5 (-1 (-426 (-1184 *6)) (-1184 *6)))
+ (-4 *6 (-370))
+ (-5 *2
+ (-652
+ (-2 (|:| |outval| *7) (|:| |outmult| (-572))
+ (|:| |outvect| (-652 (-697 *7))))))
+ (-5 *1 (-540 *6 *7 *4)) (-4 *7 (-370)) (-4 *4 (-13 (-370) (-856))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-697 *2)) (-5 *4 (-779))
+ (-4 *2 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
(((*1 *2)
- (-12 (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4)))
- (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4)))
- (-5 *1 (-1197 *4)) (-4 *4 (-856)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-777)) (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384)))
- (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282))
- (-5 *1 (-794))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384)))
- (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282))
- (-5 *1 (-794)))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1188)) (-5 *1 (-336)))))
+(((*1 *1) (-5 *1 (-586)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-871))))
+ ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-871))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-871))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1168 *4))
+ (-4 *4 (-1111)) (-4 *4 (-1229)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1176 3 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
+ ((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4)))
+ (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1279 (-779))) (-5 *1 (-683 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 (-959 *6))) (-4 *6 (-562))
- (-4 *2 (-956 (-413 (-959 *6)) *5 *4)) (-5 *1 (-738 *5 *4 *6 *2))
- (-4 *5 (-799))
- (-4 *4 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-650 (-112))) (-5 *5 (-695 (-227)))
- (-5 *6 (-695 (-570))) (-5 *7 (-227)) (-5 *3 (-570)) (-5 *2 (-1044))
- (-5 *1 (-760)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058))))
- ((*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194))))
+ (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-4 *5 (-370))
+ (-4 *5 (-1060)) (-5 *2 (-112)) (-5 *1 (-1040 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1227)) (-4 *3 (-1227)))))
+ (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370)) (-4 *4 (-1060))
+ (-5 *2 (-112)) (-5 *1 (-1040 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |h| *6)
+ (|:| |c1| (-415 *6)) (|:| |c2| (-415 *6)) (|:| -2508 *6)))
+ (-5 *1 (-1027 *5 *6)) (-5 *3 (-415 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-650 *4)) (-4 *4 (-856))
- (-5 *1 (-1197 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1182 *3)) (-4 *3 (-373)) (-4 *1 (-333 *3))
- (-4 *3 (-368)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-553))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2067 *3) (|:| |coef2| (-788 *3))))
- (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282))
- (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282))
- (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2))
- (-4 *2 (-1253 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1235))))))
+ (-12 (-5 *2 (-652 (-386))) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-476))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-670 *4 *5)))
- (-5 *1 (-633 *4 *5 *6)) (-4 *5 (-13 (-174) (-723 (-413 (-570)))))
- (-14 *6 (-928)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))))
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-171 (-227))) (-5 *6 (-1170))
+ (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-1304)))))
+(((*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-572))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
+ (-4 *3 (-1255 *4)) (-5 *2 (-572))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-564) (-1049 *2) (-647 *2) (-460)))
+ (-5 *2 (-572)) (-5 *1 (-1127 *4 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572))
+ (-5 *1 (-1127 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-1170))
+ (-4 *6 (-13 (-564) (-1049 *2) (-647 *2) (-460))) (-5 *2 (-572))
+ (-5 *1 (-1127 *6 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-572))
+ (-5 *1 (-1128 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-851 (-415 (-961 *6))))
+ (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-572))
+ (-5 *1 (-1128 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1188))
+ (-5 *5 (-1170)) (-4 *6 (-460)) (-5 *2 (-572)) (-5 *1 (-1128 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *2 (-652 *3)) (-5 *1 (-988 *4 *5 *6 *3))
+ (-4 *3 (-1076 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 (-112) (-652 *1)))
+ (-4 *1 (-1082 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-988 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-975 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-384)) (-5 *1 (-207)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858))
+ (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-572)) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3))
+ (-4 *3 (-1060))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-858)) (-4 *1 (-1296 *4 *3))
+ (-4 *3 (-1060)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1231))
- (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5)))
- (-5 *2 (-2 (|:| |num| (-695 *5)) (|:| |den| *5))))))
+ (-12 (-5 *3 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *4 *5 *6 *7))
+ (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229))
+ (-4 *7 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *3 *2))
+ (-4 *3 (-13 (-1111) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1290)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4))))
- (-5 *1 (-1285 *4)) (-4 *4 (-368)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-542)))))
-(((*1 *1 *1) (-4 *1 (-245)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1253 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-3749 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1227)))
- (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1227)))))
- ((*1 *1 *1) (-4 *1 (-479)))
- ((*1 *2 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-368)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-501)))))
-(((*1 *1) (-5 *1 (-603))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-849 *4)) (-5 *3 (-618 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1212) (-29 *6)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-226 *6 *4)))))
+ (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2020 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1109)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1044)) (-5 *1 (-754)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-1212) (-966) (-29 *4))))))
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-336)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
+ (-5 *2
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
+ (|:| |success| (-112))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-779)) (-4 *5 (-174))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-779)) (-4 *5 (-174))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
+ (-251 *4 (-415 (-572)))))
+ (-5 *3 (-652 (-872 *4))) (-14 *4 (-652 (-1188))) (-14 *5 (-779))
+ (-5 *1 (-513 *4 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 (-650 *6))) (-4 *6 (-956 *3 *5 *4))
- (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186))))
- (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *3 (-907 *6))
- (-5 *2 (-695 *3)) (-5 *1 (-698 *6 *3 *7 *4)) (-4 *7 (-378 *3))
- (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4452)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1282)) (-5 *1 (-1189))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1282))
- (-5 *1 (-1189))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1282))
- (-5 *1 (-1189)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3)) (-4 *3 (-1111))
+ (-4 *3 (-1229)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111))
+ (-5 *2 (-2 (|:| -2379 (-572)) (|:| |var| (-620 *1))))
+ (-4 *1 (-438 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-4 *6 (-458))
- (-5 *2 (-650 (-650 *7))) (-5 *1 (-544 *6 *7 *5)) (-4 *7 (-368))
- (-4 *5 (-13 (-368) (-854))))))
+ (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-652 *5) *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-661 (-415 *7))) (-5 *4 (-1 (-652 *6) *7))
+ (-5 *5 (-1 (-426 *7) *7))
+ (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-652 *5) *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *6 (-1255 *5)) (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-662 *7 (-415 *7))) (-5 *4 (-1 (-652 *6) *7))
+ (-5 *5 (-1 (-426 *7) *7))
+ (-4 *6 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *7 (-1255 *6)) (-5 *2 (-652 (-415 *7))) (-5 *1 (-820 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-661 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-1 (-426 *6) *6))
+ (-4 *6 (-1255 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-662 *5 (-415 *5))) (-4 *5 (-1255 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2 (-652 (-415 *5))) (-5 *1 (-820 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-1 (-426 *6) *6))
+ (-4 *6 (-1255 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2 (-652 (-415 *6))) (-5 *1 (-820 *5 *6)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-415 *2)) (-4 *2 (-1255 *5))
+ (-5 *1 (-815 *5 *2 *3 *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *3 (-664 *2)) (-4 *6 (-664 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-415 *2))) (-4 *2 (-1255 *5))
+ (-5 *1 (-815 *5 *2 *3 *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2))
+ (-4 *6 (-664 (-415 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
+ (-5 *4 (-322 (-171 (-386)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
+ (-5 *4 (-322 (-386))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
+ (-5 *4 (-322 (-572))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-171 (-386)))))
+ (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-386)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-572)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-171 (-386)))))
+ (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-386)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-572)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-171 (-386)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-386))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-572))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
+ (-5 *4 (-322 (-702))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
+ (-5 *4 (-322 (-707))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-961 (-572))))
+ (-5 *4 (-322 (-709))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-702)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-707)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-322 (-709)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-702)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-707)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-322 (-709)))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-702))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-707))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-709))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-702))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-707))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-697 (-709))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-702))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-707))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-322 (-709))) (-5 *1 (-336))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-336))))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-980 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 *5)) (-4 *5 (-370)) (-5 *2 (-652 *6))
+ (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-5 *2 (-2 (|:| -1640 *3) (|:| -3762 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-652 *7))) (-4 *1 (-1222 *4 *5 *6 *7))
+ (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-52)) (-5 *1 (-837)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384))
- (|:| |expense| (-384)) (|:| |accuracy| (-384))
- (|:| |intermediateResults| (-384))))
- (-5 *1 (-809)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562)))))
-(((*1 *2 *2) (-12 (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)))))
-(((*1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-373))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1277 *4)) (-5 *1 (-534 *4))
- (-4 *4 (-354))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-856)) (-5 *1 (-719 *2 *3 *4)) (-4 *3 (-1109))
- (-14 *4
- (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *3))
- (-2 (|:| -4298 *2) (|:| -2940 *3)))))))
+ (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
+ (-4 *3 (-380 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-511 *4 *5 *6 *3)) (-4 *6 (-380 *4)) (-4 *3 (-380 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |num| (-697 *4)) (|:| |den| *4)))
+ (-5 *1 (-701 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *6 (-1255 *5))
+ (-5 *2 (-2 (|:| -3179 *7) (|:| |rh| (-652 (-415 *6)))))
+ (-5 *1 (-815 *5 *6 *7 *3)) (-5 *4 (-652 (-415 *6)))
+ (-4 *7 (-664 *6)) (-4 *3 (-664 (-415 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1248 *4 *5 *3))
+ (-4 *3 (-1255 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-868))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
+ (-14 *4 (-652 (-1188)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
+ (-14 *4 (-652 (-1188)))))
+ ((*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370))))
((*1 *2 *1)
- (-12 (-5 *2 (-1151 *3 *4)) (-5 *1 (-1002 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-368))))
+ (|partial| -12 (-4 *1 (-342 *3 *4 *5 *2)) (-4 *3 (-370))
+ (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
+ (-4 *2 (-349 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *5))) (-4 *5 (-1058))
- (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *6 (-240 *4 *5))
- (-4 *7 (-240 *3 *5)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-618 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-5 *5 (-1182 *2))
- (-4 *2 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-618 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186)))
- (-5 *5 (-413 (-1182 *2))) (-4 *2 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4))))
- (-5 *1 (-1225 *4)) (-5 *3 (-1182 (-1182 *4))))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-174))))
+ ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-732 *2 *3)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-886 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-888 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-5 *1 (-891 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1150))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-799))
- (-4 *3 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *5 (-562))
- (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-799))
- (-4 *3
- (-13 (-856)
- (-10 -8 (-15 -2601 ((-1186) $))
- (-15 -1433 ((-3 $ "failed") (-1186))))))
- (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *6))
- (-4 *6
- (-13 (-856)
- (-10 -8 (-15 -2601 ((-1186) $))
- (-15 -1433 ((-3 $ "failed") (-1186))))))
- (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2))
- (-4 *2 (-956 (-959 *4) *5 *6)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-5 *6 (-1182 *3))
- (-4 *3 (-13 (-436 *7) (-27) (-1212)))
- (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3))
- (-5 *6 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *7) (-27) (-1212)))
- (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1107))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1168 *3))) (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-763)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-800)) (-4 *3 (-174)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1060))
+ (-5 *1 (-861 *5 *2)) (-4 *2 (-860 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 (-415 (-961 *6))))
+ (-5 *3 (-415 (-961 *6)))
+ (-4 *6 (-13 (-564) (-1049 (-572)) (-148)))
(-5 *2
(-2 (|:| |mainpart| *3)
(|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-112))
- (-5 *1 (-266)))))
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-578 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188))
+ (-5 *2 (-652 *4)) (-5 *1 (-1125 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-413 (-570)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570)))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8))
- (-5 *5 (-1244 (-413 (-570)))) (-5 *6 (-413 (-570)))
- (-4 *8 (-13 (-27) (-1212) (-436 *7)))
- (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-413 (-570))))
- (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *8)))
- (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-413 (-570))) (-4 *4 (-1058)) (-4 *1 (-1260 *4 *3))
- (-4 *3 (-1237 *4)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-652 (-227))) (-5 *1 (-206)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
+ (-5 *2
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
+ (|:| |success| (-112))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-757)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-858)) (-4 *5 (-801))
+ (-4 *6 (-564)) (-4 *7 (-958 *6 *5 *3))
+ (-5 *1 (-470 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1049 (-415 (-572))) (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $))
+ (-15 -2224 (*7 $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-262)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227)))
+ (-5 *1 (-705)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229))
+ (-4 *2 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3))
+ (-4 *3 (-1229))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111))
+ (-5 *1 (-745 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
+ ((*1 *1 *1 *1) (-4 *1 (-481)))
+ ((*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
+ ((*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-892))))
+ ((*1 *1 *1) (-5 *1 (-982)))
+ ((*1 *1 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-603 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1060)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-514)) (-5 *2 (-699 (-1115))) (-5 *1 (-297)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-227))
+ (-5 *2
+ (-2 (|:| |brans| (-652 (-652 (-952 *4))))
+ (|:| |xValues| (-1105 *4)) (|:| |yValues| (-1105 *4))))
+ (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 *4)))))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1370 (-790 *3)) (|:| |coef1| (-790 *3))
+ (|:| |coef2| (-790 *3))))
+ (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-2 (|:| -1370 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386))))
+ ((*1 *1 *1 *1) (-4 *1 (-553)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
+ ((*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-779)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1111 (-1111 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129))))))
- (-4 *4 (-354)) (-5 *2 (-695 *4)) (-5 *1 (-351 *4)))))
-(((*1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1) (-4 *1 (-1148))) ((*1 *1 *1 *1) (-4 *1 (-1148))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *1 *1) (-5 *1 (-1072))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-570)) (-4 *5 (-13 (-458) (-1047 *4) (-645 *4)))
- (-5 *2 (-52)) (-5 *1 (-319 *5 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-458) (-1047 *5) (-645 *5))) (-5 *5 (-570))
- (-5 *2 (-52)) (-5 *1 (-319 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1244 (-570)))
- (-4 *7 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-570)))
- (-4 *3 (-13 (-27) (-1212) (-436 *7)))
- (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-570)) (-4 *4 (-1058)) (-4 *1 (-1239 *4 *3))
- (-4 *3 (-1268 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1237 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1227))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-545 *4 *2 *5 *6))
- (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777))))))
+ (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
+ (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572))) (-5 *3 (-572))
+ (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8)))
+ (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8)))
+ (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-572)) (-5 *4 (-426 *2)) (-4 *2 (-958 *7 *5 *6))
+ (-5 *1 (-750 *5 *6 *7 *2)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-313)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5))
- (-4 *3 (-1253 *4))
- (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))))))
+ (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
+(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-386)))
+ ((*1 *1) (-5 *1 (-386))))
+(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709))))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-709)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-652
+ (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
+ (|:| |wcond| (-652 (-961 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *5))))))))))
+ (-5 *4 (-1170)) (-4 *5 (-13 (-313) (-148))) (-4 *8 (-958 *5 *7 *6))
+ (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-572))
+ (-5 *1 (-933 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2185 (-115)) (|:| |arg| (-652 (-901 *3)))))
+ (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-901 *4)))
+ (-5 *1 (-901 *4)) (-4 *4 (-1111)))))
+(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1214))))
+ ((*1 *2 *1) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-334))))
- ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334)))))
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $))
+ (-15 -2224 ((-1136 *3 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *3 (-620 $))))))))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-683 *2)) (-4 *2 (-1060)) (-4 *2 (-1111)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4)))))
+ (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
+ (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-652 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801))
+ (-4 *8 (-858)) (-5 *1 (-988 *6 *7 *8 *9)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1255 *4)))))
+(((*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
+ (-4 *3 (-1111)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-112))
+ (-5 *1 (-913 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-930)) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460))
+ (-5 *2 (-652 (-652 (-251 *5 *6)))) (-5 *1 (-479 *5 *6 *7))
+ (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))))
+(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 (-930))) (-4 *2 (-370)) (-5 *1 (-153 *4 *2 *5))
+ (-14 *4 (-930)) (-14 *5 (-1004 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4))
+ (-4 *4 (-1255 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-734))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5))
+ (-4 *4 (-1060)) (-4 *5 (-858))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060))
+ (-4 *2 (-858))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6))
+ (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *2 (-858))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-4 *2 (-958 *4 (-539 *5) *5))
+ (-5 *1 (-1137 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-858))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-961 *4)) (-5 *1 (-1223 *4))
+ (-4 *4 (-1060)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1010 *3)) (-4 *3 (-174)) (-5 *1 (-807 *3)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2))
+ (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-52)) (-5 *1 (-319 *5 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-298 *3)) (-5 *5 (-777))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6))
- (-4 *6 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1244 (-777)))
- (-4 *7 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-777)))
- (-4 *3 (-13 (-27) (-1212) (-436 *7)))
- (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *7 *3))))
+ (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174))
+ (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1268 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4))
- (-4 *4 (-354)))))
+ (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
+ (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))))
+(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))
+ (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1109)) (-4 *5 (-1109))
- (-5 *2 (-1 *5)) (-5 *1 (-689 *4 *5)))))
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3))
+ (-4 *3 (-13 (-1214) (-29 *5))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-779)) (-5 *1 (-1112 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1294 (-1188) *3)) (-4 *3 (-1060)) (-5 *1 (-1301 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *1 (-1303 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-245))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1284)) (-5 *1 (-245)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132))
+ (-4 *3 (-800)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1212) (-436 (-171 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058))
- (-5 *2 (-650 (-650 (-650 (-950 *3))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1277 (-1277 (-570)))) (-5 *1 (-472)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-368)) (-5 *2 (-650 (-1166 *4))) (-5 *1 (-289 *4 *5))
- (-5 *3 (-1166 *4)) (-4 *5 (-1268 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))))
+ (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
+ (-4 *3 (-1255 *2)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-572))
+ (-5 *6
+ (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))))
+ (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
+ (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
+ (-5 *1 (-796))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-572))
+ (-5 *6
+ (-2 (|:| |try| (-386)) (|:| |did| (-386)) (|:| -2692 (-386))))
+ (-5 *7 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
+ (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
+ (-5 *1 (-796)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
+(((*1 *1) (-5 *1 (-476))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-4 *1 (-1255 *4)) (-4 *4 (-1060))
+ (-5 *2 (-1279 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-650 (-959 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-650 (-959 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-650 (-959 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-650 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-459 *4 *5 *6 *7))) (-5 *2 (-650 (-959 *4)))
- (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *4 (-174))
- (-14 *5 (-928)) (-14 *6 (-650 (-1186))) (-14 *7 (-1277 (-695 *4))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-551))))
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-333 *3)) (-4 *5 (-1253 *4))
- (-5 *1 (-783 *3 *4 *5 *2 *6)) (-4 *2 (-1253 *5)) (-14 *6 (-928))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-4 *3 (-373))))
- ((*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-368)) (-4 *2 (-373)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562))
- (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-986 *5 *6 *7 *8)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-59 *3)) (-4 *3 (-1227))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-59 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-366 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3)) (-4 *3 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-655 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-512)) (-5 *3 (-650 (-1191))) (-5 *1 (-1191)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *1) (-5 *1 (-1074))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-564)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
+ (-5 *1 (-1219 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2) (-12 (-5 *2 (-1158 (-1170))) (-5 *1 (-399)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
+(((*1 *2)
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-109))) (-5 *1 (-177)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
+ (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
+ (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-320 *4)) (-4 *4 (-13 (-834) (-1058))) (-5 *2 (-1168))
- (-5 *1 (-832 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-1058)))
- (-5 *2 (-1168)) (-5 *1 (-832 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-828)) (-5 *4 (-320 *5)) (-4 *5 (-13 (-834) (-1058)))
- (-5 *2 (-1282)) (-5 *1 (-832 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-828)) (-5 *4 (-320 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-834) (-1058))) (-5 *2 (-1282)) (-5 *1 (-832 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-1168))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-112)) (-5 *2 (-1168))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *2 (-1282))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *4 (-112)) (-5 *2 (-1282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5))
- (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-1290 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562))
- (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1290 *5 *6 *7 *8)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-320 *5)))
- (-5 *1 (-1138 *5))))
+ (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-14 *5 (-652 (-1188)))
+ (-5 *2
+ (-652 (-2 (|:| -1758 (-1184 *4)) (|:| -2862 (-652 (-961 *4))))))
+ (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2
+ (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5))))))
+ (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5)))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2
+ (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5))))))
+ (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5)))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186)))
- (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-320 *5))))
- (-5 *1 (-1138 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-112))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2
+ (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5))))))
+ (-5 *1 (-1306 *5 *6 *7)) (-5 *3 (-652 (-961 *5)))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112))
- (-5 *1 (-362 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4))
+ (-12 (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
(-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))))
-(((*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1011))
- (-4 *2 (-1058)))))
+ (-652 (-2 (|:| -1758 (-1184 *4)) (|:| -2862 (-652 (-961 *4))))))
+ (-5 *1 (-1306 *4 *5 *6)) (-5 *3 (-652 (-961 *4)))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-107 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4))
+ (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6)))
+ (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572))))
+ (-5 *2 (-2 (|:| -2068 (-779)) (|:| -4358 *8)))
+ (-5 *1 (-920 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6))
+ (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4)))
+ (-4 *6 (-349 (-415 (-572)) *4 *5))
+ (-5 *2 (-2 (|:| -2068 (-779)) (|:| -4358 *6)))
+ (-5 *1 (-921 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 (-849 *3))) (-4 *3 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570))))
+ (-12 (-5 *4 (-1103 (-851 *3))) (-4 *3 (-13 (-1214) (-968) (-29 *5)))
+ (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
(-5 *2
- (-3 (-849 *3)
- (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-849 *3) "failed")))
- "failed"))
- (-5 *1 (-642 *5 *3))))
+ (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-298 *3)) (-5 *5 (-1168))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-849 *3)) (-5 *1 (-642 *6 *3))))
+ (-12 (-5 *4 (-1103 (-851 *3))) (-5 *5 (-1170))
+ (-4 *3 (-13 (-1214) (-968) (-29 *6)))
+ (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2
+ (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 (-849 (-959 *5)))) (-4 *5 (-458))
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1103 (-851 (-322 *5))))
+ (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
(-5 *2
- (-3 (-849 (-413 (-959 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-849 (-413 (-959 *5))) "failed")))
- "failed"))
- (-5 *1 (-643 *5)) (-5 *3 (-413 (-959 *5)))))
+ (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-415 (-961 *6))) (-5 *4 (-1103 (-851 (-322 *6))))
+ (-5 *5 (-1170))
+ (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2
+ (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5)))
- (-4 *5 (-458))
+ (-12 (-5 *4 (-1103 (-851 (-415 (-961 *5))))) (-5 *3 (-415 (-961 *5)))
+ (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
(-5 *2
- (-3 (-849 *3)
- (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-849 *3) "failed")))
- "failed"))
- (-5 *1 (-643 *5))))
+ (-3 (|:| |f1| (-851 (-322 *5))) (|:| |f2| (-652 (-851 (-322 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-298 (-413 (-959 *6)))) (-5 *5 (-1168))
- (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-849 *3))
- (-5 *1 (-643 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-777)) (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-311))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-453 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6))
- (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-453 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6))
- (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-453 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-777))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 (-413 (-570))))
+ (-12 (-5 *4 (-1103 (-851 (-415 (-961 *6))))) (-5 *5 (-1170))
+ (-5 *3 (-415 (-961 *6)))
+ (-4 *6 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
(-5 *2
- (-650
- (-2 (|:| |outval| *4) (|:| |outmult| (-570))
- (|:| |outvect| (-650 (-695 *4))))))
- (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854))))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *3 (-1074 *6 *7 *8))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1117 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3))))
+ (-3 (|:| |f1| (-851 (-322 *6))) (|:| |f2| (-652 (-851 (-322 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-3 *3 (-652 *3))) (-5 *1 (-436 *5 *3))
+ (-4 *3 (-13 (-1214) (-968) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
+ (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
+ (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9))))
- (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8))
- (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856))
- (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -4246 *9))))
- (-5 *1 (-1117 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1253 (-171 *2)))))
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
+ (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-1105 (-851 (-386))))
+ (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
+ (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
+ (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
+ (-5 *5 (-386)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-322 (-386))) (-5 *4 (-652 (-1105 (-851 (-386)))))
+ (-5 *5 (-386)) (-5 *6 (-1074)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386))))
+ (-5 *5 (-1170)) (-5 *2 (-1046)) (-5 *1 (-573))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-322 (-386))) (-5 *4 (-1103 (-851 (-386))))
+ (-5 *5 (-1188)) (-5 *2 (-1046)) (-5 *1 (-573))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1253 (-171 *2))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3))
- (-4 *3 (-1109)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1227)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-610 *3 *2)) (-4 *3 (-1109))
- (-4 *2 (-1227)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1109) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1150 *3 *4)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-777))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880))
- (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-1278))
- (-5 *1 (-1281))))
+ (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4))
+ (-5 *2 (-594 (-415 *5))) (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266)))
- (-5 *2 (-1278)) (-5 *1 (-1281)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))
- (-5 *1 (-997 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))
- (-5 *1 (-1116 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-2 (|:| -2340 (-1182 *6)) (|:| -2940 (-570)))))
- (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570))
- (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-368)) (-5 *1 (-903 *2 *3))
- (-4 *2 (-1253 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 (-320 (-227))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))))
- (-5 *1 (-207)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2))
- (-4 *3 (-562)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266)))))
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-3 (-322 *5) (-652 (-322 *5)))) (-5 *1 (-597 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-748 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858))
+ (-4 *3 (-38 (-415 (-572))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-961 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-4 *3 (-1060))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-4 *2 (-858))
+ (-5 *1 (-1137 *3 *2 *4)) (-4 *4 (-958 *3 (-539 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060))
+ (-5 *1 (-1172 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-4 *3 (-1060))))
+ ((*1 *1 *1 *2)
+ (-3783
+ (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060))
+ (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214))
+ (-4 *3 (-38 (-415 (-572))))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-1239 *3)) (-4 *3 (-1060))
+ (-12 (|has| *3 (-15 -2220 ((-652 *2) *3)))
+ (|has| *3 (-15 -4161 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1239 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ ((*1 *1 *1 *2)
+ (-3783
+ (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060))
+ (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214))
+ (-4 *3 (-38 (-415 (-572))))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-1260 *3)) (-4 *3 (-1060))
+ (-12 (|has| *3 (-15 -2220 ((-652 *2) *3)))
+ (|has| *3 (-15 -4161 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3783
+ (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060))
+ (-12 (-4 *3 (-29 (-572))) (-4 *3 (-968)) (-4 *3 (-1214))
+ (-4 *3 (-38 (-415 (-572))))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-1270 *3)) (-4 *3 (-1060))
+ (-12 (|has| *3 (-15 -2220 ((-652 *2) *3)))
+ (|has| *3 (-15 -4161 (*3 *3 *2))) (-4 *3 (-38 (-415 (-572))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-38 (-415 (-572))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *3 (-1060)) (-14 *5 *3))))
+(((*1 *1) (-5 *1 (-605))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570)))
- (-5 *1 (-192)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-354)) (-4 *2 (-1058)) (-5 *1 (-718 *2 *3))
- (-4 *3 (-1253 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777)))
- (-5 *1 (-911 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1058))
- (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288)))
- (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-777)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174))))
+ (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
+ (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8)))
+ (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8))))
((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -2420 *6) (|:| |sol?| (-112))) (-570)
- *6))
- (-4 *6 (-368)) (-4 *7 (-1253 *6))
- (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6)))
- (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-856))
- (-5 *2
- (-2 (|:| |f1| (-650 *4)) (|:| |f2| (-650 (-650 (-650 *4))))
- (|:| |f3| (-650 (-650 *4))) (|:| |f4| (-650 (-650 (-650 *4))))))
- (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 (-650 *4)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-55)))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))))
-(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -2420 *6) (|:| |sol?| (-112))) (-570)
- *6))
- (-4 *6 (-368)) (-4 *7 (-1253 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6))
- (-2 (|:| -3730 (-413 *7)) (|:| |coeff| (-413 *7))) "failed"))
- (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))))
-(((*1 *1) (-5 *1 (-334))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-4 *5 (-1253 *4)) (-5 *2 (-1282))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1253 (-413 *5))) (-14 *7 *6))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-650 (-777))) (-5 *1 (-978 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1253 *5))
- (-5 *1 (-733 *5 *2)) (-4 *5 (-368)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-112))
- (-5 *1 (-896 *4 *5)) (-4 *5 (-1109))))
+ (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-5 *2 (-112))
- (-5 *1 (-897 *5 *3)) (-4 *3 (-1227))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109))
- (-4 *6 (-1227)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227)))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
+ (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8)))
+ (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-870)) (-5 *1 (-1168 *3)) (-4 *3 (-1111))
+ (-4 *3 (-1229)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-1145)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))))
-(((*1 *2 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-309)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1044))
- (-5 *1 (-752)))))
+ (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4))
+ (-5 *3 (-652 *4)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227)))
- (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227))))
- (|:| |ub| (-650 (-849 (-227))))))
- (-5 *1 (-270)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-311)) (-4 *3 (-1001 *2)) (-4 *4 (-1253 *3))
- (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1227)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-956 *4 *6 *5)) (-4 *4 (-458))
- (-4 *5 (-856)) (-4 *6 (-799)) (-5 *1 (-996 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-1231))
- (-4 *6 (-1253 (-413 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-347 *4 *5 *6)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060))
+ (-5 *1 (-1172 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))))
-(((*1 *2 *1) (-12 (-5 *2 (-424 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-426 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-320 (-227))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
(-5 *2
- (-2 (|:| |additions| (-570)) (|:| |multiplications| (-570))
- (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570))))
- (-5 *1 (-309)))))
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-194)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-423 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-4 *4 (-1227)) (-5 *2 (-112))
- (-5 *1 (-1166 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1279))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
+ (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *1 (-1041 *2))
- (-4 *2 (-13 (-1109) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-458)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-1277 *3))
- (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3))
- (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))))
-(((*1 *1 *1) (-5 *1 (-1072))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-864))))
- ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-972))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-998))))
- ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *2 *3))
- (-4 *3 (-13 (-1109) (-34))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1253 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368))
- (-5 *2
- (-2 (|:| |ir| (-592 (-413 *6))) (|:| |specpart| (-413 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6)))))
+ (-12 (-4 *3 (-313)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1255 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-313)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1255 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-313)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-779)))
+ (-5 *1 (-547 *3 *2 *4 *5)) (-4 *2 (-1255 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-695 (-917 *3))) (-5 *1 (-356 *3 *4)) (-14 *3 (-928))
- (-14 *4 (-928))))
+ (-12 (-4 *4 (-370)) (-5 *2 (-930)) (-5 *1 (-334 *3 *4))
+ (-4 *3 (-335 *4))))
((*1 *2)
- (-12 (-5 *2 (-695 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354))
- (-14 *4
- (-3 (-1182 *3)
- (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129)))))))))
+ (-12 (-4 *4 (-370)) (-5 *2 (-841 (-930))) (-5 *1 (-334 *3 *4))
+ (-4 *3 (-335 *4))))
+ ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930))))
((*1 *2)
- (-12 (-5 *2 (-695 *3)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354))
- (-14 *4 (-928)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1253 *9)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-311))
- (-4 *10 (-956 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-650 (-1182 *10)))
- (|:| |dterm|
- (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-650 *6)) (|:| |nlead| (-650 *10))))
- (-5 *1 (-784 *6 *7 *8 *9 *10)) (-5 *3 (-1182 *10)) (-5 *4 (-650 *6))
- (-5 *5 (-650 *10)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1282))
- (-5 *1 (-439 *3 *4)) (-4 *4 (-436 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1253 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1277 (-777))) (-5 *1 (-681 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *4 *5 *6 *7))
- (-4 *4 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227))
- (-4 *7 (-1227)))))
+ (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188)))
+ (-5 *2 (-697 (-322 (-227)))) (-5 *1 (-207))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1111)) (-4 *6 (-909 *5)) (-5 *2 (-697 *6))
+ (-5 *1 (-700 *5 *6 *3 *4)) (-4 *3 (-380 *6))
+ (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-109)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
+ (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
+ (-5 *1 (-796)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-474))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1278))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1279)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-884 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-886 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-889 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 (-413 (-959 *6))))
- (-5 *3 (-413 (-959 *6)))
- (-4 *6 (-13 (-562) (-1047 (-570)) (-148)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-576 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-260)))))
+ (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
+(((*1 *1 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191))))
+ ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191)))))
(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3903 (-788 *3)) (|:| |coef1| (-788 *3))
- (|:| |coef2| (-788 *3))))
- (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-2 (|:| -1370 (-790 *3)) (|:| |coef1| (-790 *3))))
+ (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-2 (|:| -3903 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231))
- (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1292 (-1186) *3)) (-4 *3 (-1058)) (-5 *1 (-1299 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1292 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *1 (-1301 *3 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-4 *1 (-107 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058))
- (-5 *1 (-1170 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384)))
- (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282))
- (-5 *1 (-794)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-927)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-378 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-650 (-1186))) (-4 *2 (-174))
- (-4 *4 (-240 (-2857 *5) (-777)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4298 *3) (|:| -2940 *4))
- (-2 (|:| -4298 *3) (|:| -2940 *4))))
- (-5 *1 (-467 *5 *2 *3 *4 *6 *7)) (-4 *3 (-856))
- (-4 *7 (-956 *2 *4 (-870 *5))))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1186)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044))
- (-5 *1 (-754)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))))
-(((*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058))
- (-4 *3 (-1109)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7))
- (-4 *7 (-956 *5 *6 *4)) (-4 *5 (-916)) (-4 *6 (-799))
- (-4 *4 (-856)) (-5 *1 (-913 *5 *6 *4 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1250 *5 *4)))
- (-5 *1 (-1123 *4 *5)) (-5 *3 (-1250 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-591)) (-5 *1 (-284)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-852)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189)))))
-(((*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493))))
- ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))
- ((*1 *1 *1) (-4 *1 (-1069))))
+ (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-2 (|:| -1370 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3))))
- (-5 *1 (-601 *3)) (-4 *3 (-1058)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1229)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
+ (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779))
+ (-14 *4 (-779)) (-4 *5 (-174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-544))) (-5 *2 (-1188)) (-5 *1 (-544)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
+(((*1 *1 *1) (-4 *1 (-553))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4))))
- (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2)))))
-(((*1 *1) (-5 *1 (-443))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1282)) (-5 *1 (-837)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2660 (-650 (-2 (|:| |irr| *10) (|:| -3634 (-570)))))))
- (-5 *6 (-650 *3)) (-5 *7 (-650 *8)) (-4 *8 (-856)) (-4 *3 (-311))
- (-4 *10 (-956 *3 *9 *8)) (-4 *9 (-799))
- (-5 *2
- (-2 (|:| |polfac| (-650 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-650 (-1182 *3)))))
- (-5 *1 (-631 *8 *9 *3 *10)) (-5 *4 (-650 (-1182 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1102 *3)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1227))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1103 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-1227))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2) (-12 (-5 *1 (-1244 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1227))
- (-4 *5 (-378 *4)) (-4 *2 (-378 *4))))
+ (-12 (-5 *3 (-652 *6)) (-5 *4 (-1188)) (-4 *6 (-438 *5))
+ (-4 *5 (-1111)) (-5 *2 (-652 (-620 *6))) (-5 *1 (-581 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $))
+ (-15 -2224 ((-1136 *3 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *3 (-620 $))))))))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *5 (-930))
+ (-5 *2 (-1284)) (-5 *1 (-476))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *7 *2)) (-4 *6 (-1058))
- (-4 *7 (-240 *5 *6)) (-4 *2 (-240 *4 *6)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880))
- (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-474)) (-5 *1 (-1281))))
+ (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-882)) (-5 *5 (-930))
+ (-5 *2 (-1284)) (-5 *1 (-476)))))
+(((*1 *1 *1) (-4 *1 (-1155))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-652 (-171 *4))) (-5 *1 (-156 *3 *4))
+ (-4 *3 (-1255 (-171 (-572)))) (-4 *4 (-13 (-370) (-856)))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-474))
- (-5 *1 (-1281))))
+ (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266)))
- (-5 *2 (-474)) (-5 *1 (-1281)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-652 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-696 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3))
+ (-4 *3 (-656 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3))
+ (-4 *3 (-656 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060))))
+ ((*1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))))
+(((*1 *2 *3) (-12 (-5 *3 (-499)) (-5 *2 (-699 (-587))) (-5 *1 (-587)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-870)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-929)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-594 *3) *3 (-1188)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1188)))
+ (-4 *3 (-290)) (-4 *3 (-637)) (-4 *3 (-1049 *4)) (-4 *3 (-438 *7))
+ (-5 *4 (-1188)) (-4 *7 (-622 (-901 (-572)))) (-4 *7 (-460))
+ (-4 *7 (-895 (-572))) (-4 *7 (-1111)) (-5 *2 (-594 *3))
+ (-5 *1 (-581 *7 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-194)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-974))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4))
- (-4 *4 (-1058)))))
+ (-12 (-5 *3 (-1200 (-652 *4))) (-4 *4 (-858))
+ (-5 *2 (-652 (-652 *4))) (-5 *1 (-1199 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-870))))
+ ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-971)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4)))
- (-5 *2 (-2 (|:| |num| (-1277 *4)) (|:| |den| *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-777)) (-5 *4 (-570)) (-5 *1 (-451 *2)) (-4 *2 (-1058)))))
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1478 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1151 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233))
+ (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1058)) (-4 *3 (-1109))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2940 (-570)))) (-4 *1 (-436 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -2940 (-899 *3))))
- (-5 *1 (-899 *3)) (-4 *3 (-1109))))
+ (|partial| -12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058))
- (-4 *7 (-956 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -2940 (-570))))
- (-5 *1 (-957 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-801)) (-4 *5 (-1060)) (-4 *6 (-958 *5 *4 *2))
+ (-4 *2 (-858)) (-5 *1 (-959 *4 *2 *5 *6 *3))
(-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $))
- (-15 -1599 (*7 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-320 (-384))) (-5 *1 (-309)))))
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *6)) (-15 -2209 (*6 $))
+ (-15 -2224 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564))
+ (-5 *2 (-1188)) (-5 *1 (-1054 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1255 *6))
+ (-4 *6 (-13 (-370) (-148) (-1049 *4))) (-5 *4 (-572))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -3179
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1026 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-832)) (-5 *1 (-833)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-564))
+ (-5 *2 (-2 (|:| -1866 (-697 *5)) (|:| |vec| (-1279 (-652 (-930))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3829 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011))))))
+ (-12 (-4 *2 (-1255 *4)) (-5 *1 (-817 *4 *2 *3 *5))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2))
+ (-4 *5 (-664 (-415 *2))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-950 *4)) (-4 *4 (-1058)) (-5 *1 (-1174 *3 *4))
- (-14 *3 (-928)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-1166 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186)))
- (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *4 (-650 (-1186)))
- (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27))
- (-5 *2 (-650 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))
- (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4))
- (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9))
- (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6))
- (-4 *8 (-378 *7)) (-4 *9 (-378 *7))))
+ (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229))))
((*1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2)) (-4 *2 (-311))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2))
- (-4 *2 (-693 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3))))
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229))))
((*1 *1 *1)
- (-12 (-4 *1 (-1062 *2 *3 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *2 *4)) (-4 *4 (-311)))))
-(((*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-650 (-650 (-950 (-227)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-650 (-650 (-950 (-227))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *6)))))
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-827 *3)) (-4 *3 (-858)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572))))
+ (-4 *2 (-174)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148)))
+ (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-1188))
+ (-4 *2 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-282 *5 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-118 *4)) (-14 *4 *3)
+ (-5 *3 (-572))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-879 *4)) (-14 *4 *3)
+ (-5 *3 (-572))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-415 (-572))) (-5 *1 (-880 *4 *5))
+ (-5 *3 (-572)) (-4 *5 (-877 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1023)) (-5 *2 (-415 (-572)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370)))
+ (-4 *3 (-1255 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3491 (*2 (-1188))))
+ (-4 *2 (-1060)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058))
- (-14 *4 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1227))))
+ (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017))))
+ ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-868)) (-5 *3 (-129)) (-5 *2 (-779)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-985)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-779)) (-5 *2 (-652 (-1188))) (-5 *1 (-212))
+ (-5 *3 (-1188))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-322 (-227))) (-5 *4 (-779)) (-5 *2 (-652 (-1188)))
+ (-5 *1 (-272))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856)))
- (-14 *4 (-650 (-1186)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-856)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
+ (-5 *2 (-652 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 *3)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-827 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-652 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-652 (-1188))) (-4 *2 (-174))
+ (-4 *4 (-242 (-3475 *5) (-779)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -1795 *3) (|:| -2477 *4))
+ (-2 (|:| -1795 *3) (|:| -2477 *4))))
+ (-5 *1 (-469 *5 *2 *3 *4 *6 *7)) (-4 *3 (-858))
+ (-4 *7 (-958 *2 *4 (-872 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-572)) (-4 *4 (-174)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)) (-5 *1 (-696 *4 *5 *6 *2))
+ (-4 *2 (-695 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1146)) (-5 *3 (-297)) (-5 *1 (-169)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-476)) (-5 *3 (-652 (-268))) (-5 *1 (-1280))))
+ ((*1 *1 *1) (-5 *1 (-1280))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))))
+(((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-423 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 *5)) (-4 *5 (-368))
- (-4 *5 (-562)) (-5 *2 (-1277 *5)) (-5 *1 (-644 *5 *4))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-690 *2)) (-4 *2 (-1111))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 *5))
- (-3201 (-4 *5 (-368))) (-4 *5 (-562)) (-5 *2 (-1277 (-413 *5)))
- (-5 *1 (-644 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1227))
- (-5 *2 (-650 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-910 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-777)) (-5 *3 (-950 *4)) (-4 *1 (-1143 *4))
- (-4 *4 (-1058))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-777)) (-5 *4 (-950 (-227))) (-5 *2 (-1282))
- (-5 *1 (-1279)))))
+ (-12 (-5 *3 (-1 (-652 *5) (-652 *5))) (-5 *4 (-572))
+ (-5 *2 (-652 *5)) (-5 *1 (-690 *5)) (-4 *5 (-1111)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1188)))))
+(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
+(((*1 *2)
+ (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1188))
+ (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *1 (-1191)))))
+(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572)))))
+ (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-171 *5)) (-5 *1 (-606 *4 *5 *3))
- (-4 *5 (-13 (-436 *4) (-1011) (-1212)))
- (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1212))))))
-(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-650 (-1221 *5)))
- (-5 *1 (-1285 *5)) (-5 *4 (-1221 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-331 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
+ (-4 *4 (-356)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-620 *1)) (-4 *1 (-438 *4)) (-4 *4 (-1111))
+ (-4 *4 (-564)) (-5 *2 (-415 (-1184 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-1184 (-415 (-1184 *3)))) (-5 *1 (-568 *6 *3 *7))
+ (-5 *5 (-1184 *3)) (-4 *7 (-1111))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1275 *5)) (-14 *5 (-1188)) (-4 *6 (-1060))
+ (-5 *2 (-1252 *5 (-961 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-961 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1227))
- (-14 *4 (-570)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 (-650 *4))))
- (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 *4))))))
+ (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-1184 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858)) (-5 *2 (-1184 *1))
+ (-4 *1 (-958 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-1060))
+ (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-415 (-1184 *3)))
+ (-5 *1 (-959 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1184 *3))
+ (-4 *3
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $)))))
+ (-4 *7 (-958 *6 *5 *4)) (-4 *5 (-801)) (-4 *4 (-858))
+ (-4 *6 (-1060)) (-5 *1 (-959 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-4 *5 (-564))
+ (-5 *2 (-415 (-1184 (-415 (-961 *5))))) (-5 *1 (-1054 *5))
+ (-5 *3 (-415 (-961 *5))))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
+ (-5 *1 (-756)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3))))
- (-5 *2 (-650 (-1085 *3 *4 *5))) (-5 *1 (-1086 *3 *4 *5))
- (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))))
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-961 *6)) (-5 *4 (-1188))
+ (-5 *5 (-851 *7))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-4 *7 (-13 (-1214) (-29 *6))) (-5 *1 (-226 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1184 *6)) (-5 *4 (-851 *6))
+ (-4 *6 (-13 (-1214) (-29 *5)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-226 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))
- (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *1) (-4 *1 (-290)))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4))
- (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9))
- (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6))
- (-4 *8 (-378 *7)) (-4 *9 (-378 *7))))
+ (-12 (-5 *3 (-426 *4)) (-4 *4 (-564))
+ (-5 *2 (-652 (-2 (|:| -2379 (-779)) (|:| |logand| *4))))
+ (-5 *1 (-326 *4))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058))
- (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-368))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-672 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-368)) (-4 *3 (-174)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2))
- (-4 *2 (-693 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-695 *2)) (-4 *2 (-368)) (-4 *2 (-1058))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572)))))
+ (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4))
+ (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-240 *2 *3)) (-4 *5 (-240 *2 *3)) (-4 *3 (-368))))
- ((*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-1197 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058))
- (-5 *1 (-696 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-854)) (-4 *4 (-368)) (-5 *2 (-777))
- (-5 *1 (-952 *4 *5)) (-4 *5 (-1253 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1253 (-48))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-570)) (|has| *1 (-6 -4443)) (-4 *1 (-410))
- (-5 *2 (-928)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 (-413 (-959 (-570))))) (-5 *4 (-650 (-1186)))
- (-5 *2 (-650 (-650 *5))) (-5 *1 (-385 *5))
- (-4 *5 (-13 (-854) (-368)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-854) (-368))))))
-(((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-777))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-408)) (-5 *2 (-777)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6))
- (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *1))))
- (-4 *1 (-1080 *4 *5 *6 *3)))))
+ (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
+ (-14 *4 *2))))
+(((*1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
+ (-4 *5 (-242 (-3475 *3) (-779)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *5))
+ (-2 (|:| -1795 *2) (|:| -2477 *5))))
+ (-4 *2 (-858)) (-5 *1 (-469 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-958 *4 *5 (-872 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-415 (-572))))
+ (-5 *2 (-2 (|:| -3770 (-1168 *4)) (|:| -3780 (-1168 *4))))
+ (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8))) (-4 *7 (-856))
- (-4 *8 (-311)) (-4 *6 (-799)) (-4 *9 (-956 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-650 (-2 (|:| -2340 (-1182 *9)) (|:| -2940 (-570)))))))
- (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1204 *4 *5))
- (-4 *4 (-1109)) (-4 *5 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1212)))
- (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1212)))
- (-5 *1 (-606 *4 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *4 (-1253 *3))
- (-5 *2
- (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-695 *3))))
- (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-1253 *3))
- (-5 *2
- (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-695 *3))))
- (-5 *1 (-774 *4 *5)) (-4 *5 (-415 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 *3))
- (-5 *2
- (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-695 *3))))
- (-5 *1 (-994 *4 *3 *5 *6)) (-4 *6 (-730 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 *3))
- (-5 *2
- (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-695 *3))))
- (-5 *1 (-1286 *4 *3 *5 *6)) (-4 *6 (-415 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-145)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-1277 *5)) (-4 *5 (-311))
- (-4 *5 (-1058)) (-5 *2 (-695 *5)) (-5 *1 (-1038 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1253 (-171 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-354))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570)))))))
- (-5 *1 (-218 *5 *3)) (-4 *3 (-1253 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-618 *4)) (-4 *4 (-1109)) (-4 *2 (-1109))
- (-5 *1 (-617 *2 *4)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *4 (-1186))
- (-5 *1 (-1189))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1190))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *1 (-1190)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-897 *4 *3))
- (-4 *3 (-1227))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-757)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-311))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1109))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-391 *3))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1437 (-777)) (|:| -3357 (-777))))
- (-5 *1 (-777))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-849 (-227)))) (-5 *4 (-227)) (-5 *2 (-650 *4))
- (-5 *1 (-270)))))
-(((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
+ (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-4 *7 (-858))
+ (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801)) (-4 *8 (-313))
+ (-5 *2 (-652 (-779))) (-5 *1 (-750 *6 *7 *8 *9)) (-5 *5 (-779)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049))))
- ((*1 *1 *1 *1) (-4 *1 (-1148))))
-(((*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3))
+ (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-413 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-13 (-368) (-148)))
- (-5 *1 (-405 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-659 (-413 *2))) (-4 *2 (-1253 *4)) (-5 *1 (-816 *4 *2))
- (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))))
+ (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930))
+ (-14 *4 (-930)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-697 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
+ ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882)))
+ (-5 *4 (-652 (-930))) (-5 *5 (-652 (-268))) (-5 *1 (-476))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882)))
+ (-5 *4 (-652 (-930))) (-5 *1 (-476))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476))))
+ ((*1 *1 *1) (-5 *1 (-476))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174))
+ (-5 *2 (-1279 (-697 (-961 *4)))) (-5 *1 (-191 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-143 *3 *4 *2))
+ (-4 *2 (-380 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-660 *2 (-413 *2))) (-4 *2 (-1253 *4))
- (-5 *1 (-816 *4 *2))
- (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1227)) (-4 *3 (-1058))
- (-5 *2 (-695 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))))
+ (-12 (-4 *4 (-564)) (-4 *5 (-1003 *4)) (-4 *2 (-380 *4))
+ (-5 *1 (-511 *4 *5 *2 *3)) (-4 *3 (-380 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 *5)) (-4 *5 (-1003 *4)) (-4 *4 (-564))
+ (-5 *2 (-697 *4)) (-5 *1 (-701 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-4 *4 (-1003 *3)) (-5 *1 (-1248 *3 *4 *2))
+ (-4 *2 (-1255 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-458))
+ (-12 (-5 *3 (-652 (-930))) (-5 *2 (-1190 (-415 (-572))))
+ (-5 *1 (-192)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-779))) (-5 *3 (-112)) (-5 *1 (-1176 *4 *5))
+ (-14 *4 (-930)) (-4 *5 (-1060)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
+ (-4 *3 (-167 *6)) (-4 (-961 *6) (-895 *5))
+ (-4 *6 (-13 (-895 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-898 *4 *1)) (-5 *3 (-901 *4)) (-4 *1 (-895 *4))
+ (-4 *4 (-1111))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
+ (-4 *6 (-13 (-1111) (-1049 *3))) (-4 *3 (-895 *5))
+ (-5 *1 (-940 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111))
+ (-4 *3 (-13 (-438 *6) (-622 *4) (-895 *5) (-1049 (-620 $))))
+ (-5 *4 (-901 *5)) (-4 *6 (-13 (-564) (-895 *5)))
+ (-5 *1 (-941 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 (-572) *3)) (-5 *4 (-901 (-572))) (-4 *3 (-553))
+ (-5 *1 (-942 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 *6)) (-5 *3 (-620 *6)) (-4 *5 (-1111))
+ (-4 *6 (-13 (-1111) (-1049 (-620 $)) (-622 *4) (-895 *5)))
+ (-5 *4 (-901 *5)) (-5 *1 (-943 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-894 *5 *6 *3)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
+ (-4 *6 (-895 *5)) (-4 *3 (-674 *6)) (-5 *1 (-944 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-898 *6 *3) *8 (-901 *6) (-898 *6 *3)))
+ (-4 *8 (-858)) (-5 *2 (-898 *6 *3)) (-5 *4 (-901 *6))
+ (-4 *6 (-1111)) (-4 *3 (-13 (-958 *9 *7 *8) (-622 *4)))
+ (-4 *7 (-801)) (-4 *9 (-13 (-1060) (-895 *6)))
+ (-5 *1 (-945 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111))
+ (-4 *3 (-13 (-958 *8 *6 *7) (-622 *4))) (-5 *4 (-901 *5))
+ (-4 *7 (-895 *5)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *8 (-13 (-1060) (-895 *5))) (-5 *1 (-945 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 *3)) (-4 *5 (-1111)) (-4 *3 (-1003 *6))
+ (-4 *6 (-13 (-564) (-895 *5) (-622 *4))) (-5 *4 (-901 *5))
+ (-5 *1 (-948 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-898 *5 (-1188))) (-5 *3 (-1188)) (-5 *4 (-901 *5))
+ (-4 *5 (-1111)) (-5 *1 (-949 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-652 (-901 *7))) (-5 *5 (-1 *9 (-652 *9)))
+ (-5 *6 (-1 (-898 *7 *9) *9 (-901 *7) (-898 *7 *9))) (-4 *7 (-1111))
+ (-4 *9 (-13 (-1060) (-622 (-901 *7)) (-1049 *8)))
+ (-5 *2 (-898 *7 *9)) (-5 *3 (-652 *9)) (-4 *8 (-1060))
+ (-5 *1 (-950 *7 *8 *9)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
(-5 *2
- (-650
- (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4))))
- (|:| |geneigvec| (-650 (-695 (-413 (-959 *4))))))))
- (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570)))))
- (-4 *2 (-13 (-856) (-21))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-711 *3 *4)) (-4 *3 (-1227)) (-4 *4 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-413 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-562))
- (-4 *4 (-1058)) (-4 *2 (-1268 *4)) (-5 *1 (-1271 *4 *5 *6 *2))
- (-4 *6 (-662 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799))
- (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799))
- (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368))
- (-5 *2 (-1182 (-959 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109))
- (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4))))
- (-5 *1 (-1085 *4 *5 *2))
- (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3))))
- (-5 *1 (-1085 *3 *4 *2))
- (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 *4))))
- (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-655 *3 *4 *5)))))
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
+ (|:| |success| (-112))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798))
- (-4 *2 (-368))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-227))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))
+ (-4 *2 (-370))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-227))))
((*1 *1 *1 *1)
- (-3749 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1227)))
- (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1227)))))
- ((*1 *1 *1 *1) (-4 *1 (-368)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384))))
+ (-3783 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229)))
+ (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229)))))
+ ((*1 *1 *1 *1) (-4 *1 (-370)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-386))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-562)) (-4 *3 (-1109))
- (-4 *1 (-436 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-479)))
+ (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-564)) (-4 *3 (-1111))
+ (-4 *1 (-438 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-481)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-542)))
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-544)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-627 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-732) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-629 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-734) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-732) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174)) (-4 *2 (-368))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-734) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174)) (-4 *2 (-370))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-668 *2 *4 *3)) (-4 *2 (-723 *4))
- (-4 *3 (|SubsetCategory| (-732) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-670 *2 *4 *3)) (-4 *2 (-725 *4))
+ (-4 *3 (|SubsetCategory| (-734) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4))
- (-4 *2 (|SubsetCategory| (-732) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4))
+ (-4 *2 (|SubsetCategory| (-734) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2)) (-4 *2 (-368))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2)) (-4 *2 (-370))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-872 *2 *3 *4 *5)) (-4 *2 (-368))
- (-4 *2 (-1058)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-777)))
- (-14 *5 (-777))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562))))
+ (|partial| -12 (-5 *1 (-874 *2 *3 *4 *5)) (-4 *2 (-370))
+ (-4 *2 (-1060)) (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-779)))
+ (-14 *5 (-779))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058))
- (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-368))))
+ (-12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060))
+ (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-370))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-368))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-370))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-368)) (-4 *2 (-1058)) (-4 *3 (-856))
- (-4 *4 (-799)) (-14 *6 (-650 *3))
- (-5 *1 (-1289 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-956 *2 *4 *3))
- (-14 *7 (-650 (-777))) (-14 *8 (-777))))
+ (|partial| -12 (-4 *2 (-370)) (-4 *2 (-1060)) (-4 *3 (-858))
+ (-4 *4 (-801)) (-14 *6 (-652 *3))
+ (-5 *1 (-1291 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-958 *2 *4 *3))
+ (-14 *7 (-652 (-779))) (-14 *8 (-779))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-368)) (-4 *2 (-1058))
- (-4 *3 (-852)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-868) (-868) (-868))) (-5 *4 (-570)) (-5 *2 (-868))
- (-5 *1 (-655 *5 *6 *7)) (-4 *5 (-1109)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-868)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-1058))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-868)) (-5 *1 (-1182 *3)) (-4 *3 (-1058)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-384)) (-5 *1 (-1072)))))
-(((*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-512)) (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4))
- (-5 *2 (-2 (|:| -1747 (-413 *5)) (|:| |poly| *3)))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1253 (-413 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-384)) (-5 *1 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-810 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1212) (-966))))))
+ (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-370)) (-4 *2 (-1060))
+ (-4 *3 (-854)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060))
+ (-4 *3 (-1111)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1207)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))))
+(((*1 *1 *1 *1) (-4 *1 (-553))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *4 (-1109)))))
+ (-12 (-5 *3 (-652 (-2 (|:| -1653 *4) (|:| -1470 (-572)))))
+ (-4 *4 (-1111)) (-5 *2 (-1 *4)) (-5 *1 (-1028 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4))
+ (-4 *4 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779))))
+ ((*1 *1 *1) (-4 *1 (-237)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4))
+ (-4 *4 (-1255 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3))
+ (-4 *3 (-1255 *2))))
+ ((*1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4))
+ (-4 *4 (-1111))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-135)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-856)
- (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $))
- (-15 -1919 ((-1282) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227))))
+ (-13 (-858)
+ (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $))
+ (-15 -3019 ((-1284) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
- ((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
+ ((*1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-21)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-424 *2)) (-4 *2 (-311)) (-5 *1 (-921 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-424 (-959 *6))) (-5 *5 (-1186)) (-5 *3 (-959 *6))
- (-4 *6 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))))
- (-4 *4 (-1253 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *5))
- (-4 *5 (-1253 (-413 *4))))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-572)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7))
+ (-4 *7 (-958 *5 *6 *4)) (-4 *5 (-918)) (-4 *6 (-801))
+ (-4 *4 (-858)) (-5 *1 (-915 *5 *6 *4 *7)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-858)) (-5 *1 (-1199 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011))))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227))))
- (-5 *2 (-1044)) (-5 *1 (-760)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856))
- (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856))
- (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-928))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-341 *4 *5 *6 *7)) (-4 *4 (-13 (-373) (-368)))
- (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-4 *7 (-347 *4 *5 *6))
- (-5 *2 (-777)) (-5 *1 (-398 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-839 (-928)))))
- ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4))
- (-4 *4 (-1253 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-746 *4 *3)) (-4 *4 (-1058))
- (-4 *3 (-856))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-746 *4 *3)) (-4 *4 (-1058)) (-4 *3 (-856))
- (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4))
- (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6)))
- (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570))))
- (-5 *2 (-777)) (-5 *1 (-918 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6))
- (-4 *4 (-1253 (-413 (-570)))) (-4 *5 (-1253 (-413 *4)))
- (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-777))
- (-5 *1 (-919 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-341 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-368))
- (-4 *7 (-1253 *6)) (-4 *4 (-1253 (-413 *7))) (-4 *8 (-347 *6 *7 *4))
- (-4 *9 (-13 (-373) (-368))) (-5 *2 (-777))
- (-5 *1 (-1027 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1058)) (-4 *3 (-562))
- (-5 *2 (-777))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562))))
- ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1017 *3)) (-4 *3 (-1047 (-413 (-570)))))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111))
+ (-4 *4 (-674 *3))))
+ ((*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-370)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4267 *1)))
+ (-4 *1 (-860 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))
- (-5 *2 (-2 (|:| -2442 (-650 *6)) (|:| -2965 (-650 *6)))))))
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-868)) (-5 *2 (-699 (-130))) (-5 *3 (-130)))))
+(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-97)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-856)
- (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $))
- (-15 -1919 ((-1282) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1227))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1227))))
+ (-13 (-858)
+ (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $))
+ (-15 -3019 ((-1284) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-25)) (-4 *2 (-1229))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132))))
+ (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-132))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-1253 *3))))
+ (-12 (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *2))
+ (-4 *2 (-1255 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856))
- (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-542)))
+ (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
+ (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-544)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-25)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-650
- (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *2))
- (|:| |logand| (-1182 *2)))))
- (-5 *4 (-650 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-368)) (-5 *1 (-592 *2)))))
-(((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-798)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-207))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-384))) (-5 *2 (-384)) (-5 *1 (-207)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-650
- (-650
- (-3 (|:| -1770 (-1186))
- (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))))
- (-5 *1 (-1190)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-4 *3 (-1109))
- (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-25)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-828)) (-14 *5 (-1188)) (-5 *2 (-652 (-1252 *5 *4)))
+ (-5 *1 (-1125 *4 *5)) (-5 *3 (-1252 *5 *4)))))
+(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))))
+(((*1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1166 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2744
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1044)) (-5 *1 (-309)))))
+ (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7)))
+ (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5)))
+ (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-572)) (-4 *4 (-1255 (-415 *3))) (-5 *2 (-930))
+ (-5 *1 (-922 *4 *5)) (-4 *5 (-1255 (-415 *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *5 (-373))
- (-5 *2 (-777)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1070 (-1033 *4) (-1182 (-1033 *4)))) (-5 *3 (-868))
- (-5 *1 (-1033 *4)) (-4 *4 (-13 (-854) (-368) (-1031))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058))
- (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3))
- (-4 *3 (-858 *5)))))
+ (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
+ (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
+(((*1 *2 *1) (-12 (-5 *2 (-593)) (-5 *1 (-286)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-1184 *3))
+ (-4 *3 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3)))
+ (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-415 (-1184 *3)))
+ (-4 *3 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3)))
+ (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-251 *4 *5))
+ (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1060)) (-5 *1 (-722 *2 *3))
+ (-4 *3 (-656 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-174)) (-4 *2 (-1060)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-1200 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1074)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4)))))
- (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-959 *4)))
- (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-158))))
- ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-880))))
- ((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559)))))
+ (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412))
+ (-5 *2 (-930)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-650 *3))))
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227))
- (-5 *2 (-650 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-980)))))
-(((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5))))
- (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5)))))
- (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-854)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-652 *11)) (-5 *5 (-652 (-1184 *9)))
+ (-5 *6 (-652 *9)) (-5 *7 (-652 *12)) (-5 *8 (-652 (-779)))
+ (-4 *11 (-858)) (-4 *9 (-313)) (-4 *12 (-958 *9 *10 *11))
+ (-4 *10 (-801)) (-5 *2 (-652 (-1184 *12)))
+ (-5 *1 (-715 *10 *11 *9 *12)) (-5 *3 (-1184 *12)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-928)) (-5 *1 (-1039 *2))
- (-4 *2 (-13 (-1109) (-10 -8 (-15 -3992 ($ $ $))))))))
-(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-750 *3)) (-4 *3 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1058)) (-5 *2 (-1182 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5))
- (-4 *3 (-1253 *4))
- (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))))))
-(((*1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-373)) (-4 *2 (-1109)))))
+ (|partial| -12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460))
+ (-5 *1 (-367 *3 *4)) (-14 *4 (-652 (-1188)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460))
+ (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-564))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $))
+ (-15 -2224 ((-1136 *3 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *3 (-620 $))))))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-868)) (-5 *2 (-699 (-557))) (-5 *3 (-557)))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930))))
+ ((*1 *1 *1 *1) (-5 *1 (-1234))) ((*1 *1 *1 *1) (-5 *1 (-1235)))
+ ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237))))
(((*1 *2 *3)
(-12
- (-5 *2
- (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))
- (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))
- (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570)))
- (-5 *4 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))
- (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570))) (-5 *4 (-413 (-570)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-413 (-570)))
- (-5 *2 (-650 (-2 (|:| -2403 *5) (|:| -2420 *5)))) (-5 *1 (-1029 *3))
- (-4 *3 (-1253 (-570))) (-5 *4 (-2 (|:| -2403 *5) (|:| -2420 *5)))))
+ (-5 *3
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170)))))
+ (-5 *2 (-1046)) (-5 *1 (-311))))
((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| -4329 (-386)) (|:| -2402 (-1170))
+ (|:| |explanations| (-652 (-1170))) (|:| |extra| (-1046))))
+ (-5 *2 (-1046)) (-5 *1 (-311)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
+ (-14 *6 (-652 (-1188)))
(-5 *2
- (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))
- (-5 *1 (-1030 *3)) (-4 *3 (-1253 (-413 (-570))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))
- (-5 *1 (-1030 *3)) (-4 *3 (-1253 (-413 (-570))))
- (-5 *4 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-413 (-570)))
- (-5 *2 (-650 (-2 (|:| -2403 *4) (|:| -2420 *4)))) (-5 *1 (-1030 *3))
- (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-413 (-570)))
- (-5 *2 (-650 (-2 (|:| -2403 *5) (|:| -2420 *5)))) (-5 *1 (-1030 *3))
- (-4 *3 (-1253 *5)) (-5 *4 (-2 (|:| -2403 *5) (|:| -2420 *5))))))
+ (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6)))))
+ (-5 *1 (-636 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1282))
- (-5 *1 (-1228 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1282))
- (-5 *1 (-1228 *4)))))
+ (-12 (-5 *3 (-1188)) (-5 *2 (-544)) (-5 *1 (-543 *4))
+ (-4 *4 (-1229)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231))
- (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410))))
- ((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410))))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4443)) (-4 *1 (-410))))
- ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928))))
- ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-1166 (-570))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *3))
- (-4 *3 (-1227))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1227))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1220 *4 *5 *3 *2)) (-4 *4 (-562))
- (-4 *5 (-799)) (-4 *3 (-856)) (-4 *2 (-1074 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-5 *1 (-1224 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-928)) (-4 *3 (-368))
- (-14 *4 (-1002 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1253 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))
- ((*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))
- ((*1 *1 *1) (|partial| -4 *1 (-728)))
- ((*1 *1 *1) (|partial| -4 *1 (-732)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368)))
- (-4 *2 (-1253 *3))))
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930))))
+ ((*1 *1 *1 *1) (-5 *1 (-1234))) ((*1 *1 *1 *1) (-5 *1 (-1235)))
+ ((*1 *1 *1 *1) (-5 *1 (-1236))) ((*1 *1 *1 *1) (-5 *1 (-1237))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572))))
+ ((*1 *1 *1) (-4 *1 (-1071))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828))
+ (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-779) *2)) (-5 *4 (-779)) (-4 *2 (-1111))
+ (-5 *1 (-686 *2))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129))))))
- (-4 *4 (-354)) (-5 *2 (-777)) (-5 *1 (-351 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-356 *3 *4)) (-14 *3 (-928))
- (-14 *4 (-928))))
- ((*1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354))
- (-14 *4
- (-3 (-1182 *3)
- (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354))
- (-14 *4 (-928)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-934))
- (-5 *2
- (-2 (|:| |brans| (-650 (-650 (-950 (-227)))))
- (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570)))
+ (-12 (-5 *2 (-1 *3 (-779) *3)) (-4 *3 (-1111)) (-5 *1 (-690 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-930))) (-5 *4 (-914 (-572)))
+ (-5 *2 (-697 (-572))) (-5 *1 (-598))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572))))
+ (-5 *1 (-598))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-914 (-572))))
+ (-5 *2 (-652 (-697 (-572)))) (-5 *1 (-598)))))
+(((*1 *1 *2) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-697 *11)) (-5 *4 (-652 (-415 (-961 *8))))
+ (-5 *5 (-779)) (-5 *6 (-1170)) (-4 *8 (-13 (-313) (-148)))
+ (-4 *11 (-958 *8 *10 *9)) (-4 *9 (-13 (-858) (-622 (-1188))))
+ (-4 *10 (-801))
(-5 *2
- (-2 (|:| |brans| (-650 (-650 (-950 (-227)))))
- (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))))
- (-5 *1 (-154)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-971 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))))
+ (-2
+ (|:| |rgl|
+ (-652
+ (-2 (|:| |eqzro| (-652 *11)) (|:| |neqzro| (-652 *11))
+ (|:| |wcond| (-652 (-961 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *8))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *8))))))))))
+ (|:| |rgsz| (-572))))
+ (-5 *1 (-933 *8 *9 *10 *11)) (-5 *7 (-572)))))
+(((*1 *1 *1) (-5 *1 (-227)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *1 *1) (-5 *1 (-386))) ((*1 *1) (-5 *1 (-386))))
(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -1567 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-436 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186))))
- ((*1 *1 *1) (-4 *1 (-161))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1208)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270))))
- ((*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))))
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-152 *2)) (-4 *2 (-1229))
+ (-4 *2 (-1111)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-5 *1 (-443)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1196)))))
-(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1) (-4 *1 (-1148))))
+ (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3))))
+ (-5 *1 (-603 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3))
+ (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2))
+ (-4 *2 (-695 *3 *5 *6)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1198)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *1) (-5 *1 (-188))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1060))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186))))
- (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-956 *3 *5 *4)))))
-(((*1 *1 *1) (-5 *1 (-542))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-650 (-1186))) (-14 *5 (-777))
+ (-12
(-5 *2
- (-650
- (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4)
- (-249 *4 (-413 (-570))))))
- (-5 *1 (-511 *4 *5))
- (-5 *3
- (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4)
- (-249 *4 (-413 (-570))))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-298 *3))) (-5 *1 (-298 *3)) (-4 *3 (-562))
- (-4 *3 (-1227)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-458) (-148))) (-5 *2 (-424 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-13 (-458) (-148)))
- (-5 *2 (-424 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-424 *4)) (-4 *4 (-562)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1149 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1150 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-368) (-148)))
- (-5 *2 (-650 (-2 (|:| -2940 (-777)) (|:| -1744 *4) (|:| |num| *4))))
- (-5 *1 (-405 *3 *4)) (-4 *4 (-1253 *3)))))
-(((*1 *1) (-5 *1 (-188))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-4 *6 (-562)) (-5 *2 (-650 (-320 *6)))
- (-5 *1 (-223 *5 *6)) (-5 *3 (-320 *6)) (-4 *5 (-1058))))
- ((*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-13 (-29 *4) (-1212)))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-650 *5))
- (-5 *1 (-589 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-413 (-959 *4))))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-650 (-320 *4))) (-5 *1 (-595 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1104 *3 *2)) (-4 *3 (-854)) (-4 *2 (-1158 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *1)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854))
- (-4 *2 (-1158 *4))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-572))))
+ (-4 *4 (-13 (-1255 *3) (-564) (-10 -8 (-15 -1370 ($ $ $)))))
+ (-4 *3 (-564)) (-5 *1 (-1258 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-952 (-227)))) (-5 *1 (-1280)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 (-620 *5))) (-5 *3 (-1188)) (-4 *5 (-438 *4))
+ (-4 *4 (-1111)) (-5 *1 (-581 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-858)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1231)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1168 *4)) (-5 *3 (-1 *4 (-572))) (-4 *4 (-1060))
+ (-5 *1 (-1172 *4)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1292 (-1186) *3)) (-5 *1 (-1299 *3)) (-4 *3 (-1058))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1301 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-1058)))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *1) (-4 *1 (-501)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3058 *7) (|:| |sol?| (-112)))
+ (-572) *7))
+ (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7))
+ (-5 *3 (-415 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-582 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-112)) (-5 *1 (-618 *4))
- (-4 *4 (-1109))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-618 *4)) (-4 *4 (-1109))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3 *4))
- (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6)) (-4 *6 (-893 *5)) (-4 *5 (-1109))
- (-5 *2 (-112)) (-5 *1 (-894 *5 *6 *4)) (-4 *4 (-620 (-899 *5))))))
+ (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564)) (-4 *7 (-801))
+ (-4 *8 (-858)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2620 (-652 *9))))
+ (-5 *3 (-652 *9)) (-4 *1 (-1222 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2620 (-652 *8))))
+ (-5 *3 (-652 *8)) (-4 *1 (-1222 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-4 *1 (-553))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 (-572)))
+ (-5 *2 (-1279 (-415 (-572)))) (-5 *1 (-1307 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1255 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-779))
+ (-4 *3 (-13 (-734) (-375) (-10 -7 (-15 ** (*3 *3 (-572))))))
+ (-5 *1 (-250 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))))
-(((*1 *1) (-4 *1 (-976))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1277 *5)) (-4 *5 (-798)) (-5 *2 (-112))
- (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))))
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))))
+(((*1 *1)
+ (-12 (-4 *1 (-412)) (-3795 (|has| *1 (-6 -4445)))
+ (-3795 (|has| *1 (-6 -4437)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858))))
+ ((*1 *1) (-4 *1 (-852))) ((*1 *1 *1 *1) (-4 *1 (-858)))
+ ((*1 *2 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *1) (-4 *1 (-499)))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *1) (-4 *1 (-501)))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-298 (-959 (-570))))
- (-5 *2
- (-2 (|:| |varOrder| (-650 (-1186)))
- (|:| |inhom| (-3 (-650 (-1277 (-777))) "failed"))
- (|:| |hom| (-650 (-1277 (-777))))))
- (-5 *1 (-238)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-758)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
+(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313))))
+ ((*1 *2 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-313))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-572)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1037 *3)) (-4 *3 (-1229)))))
+(((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-1229)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-779))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1060))
+ (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
+ (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-620 *3)) (-4 *3 (-1111))))
+ ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368))
- (-4 *7 (-1253 (-413 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -1550 *3)))
- (-5 *1 (-568 *5 *6 *7 *3)) (-4 *3 (-347 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-652 (-1188))) (-4 *5 (-460))
(-5 *2
- (-2 (|:| |answer| (-413 *6)) (|:| -1550 (-413 *6))
- (|:| |specpart| (-413 *6)) (|:| |polypart| *6)))
- (-5 *1 (-569 *5 *6)) (-5 *3 (-413 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25))))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473))))
- ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473))))
- ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-762)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458))))
- ((*1 *1 *1 *1) (-4 *1 (-458)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1253 (-570)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1253 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-777)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311))
- (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5))
- (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-311))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1182 *7))) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-311)) (-5 *2 (-1182 *7)) (-5 *1 (-923 *4 *5 *6 *7))
- (-4 *7 (-956 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-928)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-458)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2))
- (-4 *2 (-1253 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-458)))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227))
- (-4 *3 (-1109)) (-5 *2 (-777))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4452)) (-4 *1 (-495 *4))
- (-4 *4 (-1227)) (-5 *2 (-777)))))
+ (-2 (|:| |glbase| (-652 (-251 *4 *5))) (|:| |glval| (-652 (-572)))))
+ (-5 *1 (-639 *4 *5)) (-5 *3 (-652 (-251 *4 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-280)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *1 *1) (-4 *1 (-499)))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *1 *1) (-4 *1 (-501)))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 *2)))
- (-5 *2 (-899 *3)) (-5 *1 (-1085 *3 *4 *5))
- (-4 *5 (-13 (-436 *4) (-893 *3) (-620 *2))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1277 (-650 *3))) (-4 *4 (-311))
- (-5 *2 (-650 *3)) (-5 *1 (-461 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011))))))
-(((*1 *1) (-5 *1 (-295))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1035 *3)) (-4 *3 (-1227)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1129)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-697 (-1184 *8))) (-4 *5 (-1060)) (-4 *8 (-1060))
+ (-4 *6 (-1255 *5)) (-5 *2 (-697 *6)) (-5 *1 (-509 *5 *6 *7 *8))
+ (-4 *7 (-1255 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188)))
+ (-4 *6 (-13 (-564) (-1049 *5))) (-4 *5 (-564))
+ (-5 *2 (-652 (-652 (-300 (-415 (-961 *6)))))) (-5 *1 (-1050 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (|has| *4 (-6 (-4454 "*")))
- (-4 *4 (-1058)) (-5 *1 (-1037 *4))))
+ (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8))
+ (-4 *8 (-958 *5 *7 *6)) (-4 *5 (-13 (-313) (-148)))
+ (-4 *6 (-13 (-858) (-622 (-1188)))) (-4 *7 (-801)) (-5 *2 (-112))
+ (-5 *1 (-933 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $))
+ (-15 -2224 ((-1136 *3 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *3 (-620 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $))
+ (-15 -2224 ((-1136 *3 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *3 (-620 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *2))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *4 (-620 $)) $))
+ (-15 -2224 ((-1136 *4 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *4 (-620 $)))))))
+ (-4 *4 (-564)) (-5 *1 (-41 *4 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928))
- (|has| *4 (-6 (-4454 "*"))) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-976))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1227)))))
+ (-12 (-5 *3 (-652 (-620 *2)))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *4 (-620 $)) $))
+ (-15 -2224 ((-1136 *4 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *4 (-620 $)))))))
+ (-4 *4 (-564)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4))))
+ (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *1 *1) (-4 *1 (-499)))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *1 *1) (-4 *1 (-501)))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-368 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-393 *4)) (-4 *4 (-1111)) (-5 *2 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *2 (-23)) (-5 *1 (-657 *4 *2 *5))
+ (-4 *4 (-1111)) (-14 *5 *2))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-782)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-782)) (-5 *1 (-115)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *2 (-413 (-959 *4))) (-5 *1 (-931 *4 *5 *6 *3))
- (-4 *3 (-956 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5))
- (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *2 (-695 (-413 (-959 *4))))
- (-5 *1 (-931 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5))
- (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *2 (-650 (-413 (-959 *4))))
- (-5 *1 (-931 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-397)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-801)) (-4 *2 (-958 *4 *5 *6)) (-5 *1 (-457 *4 *5 *6 *2))
+ (-4 *4 (-460)) (-4 *6 (-858)))))
+(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1132 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
+ ((*1 *1 *1) (|partial| -4 *1 (-730))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-333 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-524 *3 *4))
+ (-14 *4 (-572)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1277 (-650 (-570)))) (-5 *1 (-486))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562))
- (-5 *2 (-112)) (-5 *1 (-644 *4 *5)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-551))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-650 (-777)))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-563 *6 *3)))))
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *3 *5))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *3 (-664 *2))
+ (-4 *5 (-664 (-415 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1255 *4)) (-5 *1 (-815 *4 *2 *5 *3))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-664 *2))
+ (-4 *3 (-664 (-415 *2))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *1 *1) (-4 *1 (-499)))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *1 *1) (-4 *1 (-501)))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3))
- (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1109))
- (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3))))
- (-5 *1 (-1085 *3 *4 *2))
- (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-695 *4))
- (-5 *1 (-820 *4 *5)) (-4 *5 (-662 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-368))
- (-5 *2 (-695 *5)) (-5 *1 (-820 *5 *6)) (-4 *6 (-662 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-585)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3))
- (-4 *3 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458))))
- ((*1 *1 *1 *1) (-4 *1 (-458))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -4246 *7))))
- (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-997 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -4246 *7))))
- (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1116 *3 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-266)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-967 *3)) (-5 *1 (-1175 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1300 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-1060)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-370)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060))
+ (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3))
+ (-4 *3 (-860 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1244 *3)) (-4 *3 (-1227)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1058)) (-4 *1 (-1253 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1109))
- (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3))))
- (-5 *1 (-1085 *3 *4 *2))
- (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3))))))
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-1109)))))
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1182 *6)) (-4 *6 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-1182 *7)) (-5 *1 (-325 *4 *5 *6 *7))
- (-4 *7 (-956 *6 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-423 *4)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-777))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-928))))
+ (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4))
+ (-5 *1 (-536 *4)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-779))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-930))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777))
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
(-4 *4 (-174))))
((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-158))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-158))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212)))
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214)))
(-5 *1 (-229 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1227)) (-4 *2 (-732))))
+ (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1227)) (-4 *2 (-732))))
+ (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1227))))
+ (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1227))))
+ (-12 (-5 *1 (-300 *2)) (-4 *2 (-1123)) (-4 *2 (-1229))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109))))
+ (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-368 *2)) (-4 *2 (-1111))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-386 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856))))
+ (-12 (-5 *1 (-388 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-858))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109))))
+ (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174))
- (-4 *6 (-240 (-2857 *3) (-777)))
+ (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
+ (-4 *6 (-242 (-3475 *3) (-779)))
(-14 *7
- (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *6))
- (-2 (|:| -4298 *5) (|:| -2940 *6))))
- (-5 *1 (-467 *3 *4 *5 *6 *7 *2)) (-4 *5 (-856))
- (-4 *2 (-956 *4 *6 (-870 *3)))))
+ (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *6))
+ (-2 (|:| -1795 *5) (|:| -2477 *6))))
+ (-5 *1 (-469 *3 *4 *5 *6 *7 *2)) (-4 *5 (-858))
+ (-4 *2 (-958 *4 *6 (-872 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856))
- (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4))))
+ (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
+ (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-542)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-602 *3)) (-4 *3 (-1058))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-690 *5 *6 *7))))
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-544)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-692 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-693 *3 *2 *4)) (-4 *3 (-1058)) (-4 *2 (-378 *3))
- (-4 *4 (-378 *3))))
+ (-12 (-4 *1 (-695 *3 *2 *4)) (-4 *3 (-1060)) (-4 *2 (-380 *3))
+ (-4 *4 (-380 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-693 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *2 (-378 *3))))
+ (-12 (-4 *1 (-695 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *2 (-380 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
+ (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-726))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-728))) ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1277 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-562))
- (-5 *1 (-978 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067))))
- ((*1 *1 *1 *1) (-4 *1 (-1121)))
+ (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564))
+ (-5 *1 (-980 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069))))
+ ((*1 *1 *1 *1) (-4 *1 (-1123)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *2 (-240 *3 *4))
- (-4 *5 (-240 *3 *4))))
+ (-12 (-4 *1 (-1134 *3 *4 *2 *5)) (-4 *4 (-1060)) (-4 *2 (-242 *3 *4))
+ (-4 *5 (-242 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4))
- (-4 *2 (-240 *3 *4))))
+ (-12 (-4 *1 (-1134 *3 *4 *5 *2)) (-4 *4 (-1060)) (-4 *5 (-242 *3 *4))
+ (-4 *2 (-242 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2))
- (-4 *2 (-956 *3 (-537 *4) *4))))
+ (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2))
+ (-4 *2 (-958 *3 (-539 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-950 (-227))) (-5 *3 (-227)) (-5 *1 (-1223))))
+ (-12 (-5 *2 (-952 (-227))) (-5 *3 (-227)) (-5 *1 (-1225))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-732))))
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-732))))
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-734))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-570)) (-4 *1 (-1275 *3)) (-4 *3 (-1227)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-572)) (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1294 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058))))
+ (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-440))
- (-5 *2
- (-650
- (-3 (|:| -1770 (-1186))
- (|:| -4346 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))))
- (-5 *1 (-1190)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1189)) (-5 *3 (-1186)))))
+ (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2)))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551))))
- ((*1 *1 *1) (-4 *1 (-1069))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
+ ((*1 *1 *1) (|partial| -4 *1 (-730))))
+(((*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1304)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-697 (-227))) (-5 *6 (-112)) (-5 *7 (-697 (-572)))
+ (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-572)) (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-761)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3))))
- (-5 *2 (-650 (-1186))) (-5 *1 (-1085 *3 *4 *5))
- (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))))
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *6))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1109)) (-4 *6 (-1109))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *5 (-1109)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-565)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-194)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-572))
+ (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572)))))))
+ (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-572))
+ (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572)))))))
+ (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1121)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-868))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058))
- (-5 *1 (-1170 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-570)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058))
- (-14 *4 (-1186)) (-14 *5 *3))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1277 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562))
- (-5 *2 (-1277 *4)) (-5 *1 (-644 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-112))))
+ (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-311))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-852)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1253 *4))
- (-5 *2 (-2 (|:| |ans| (-413 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1024 *4 *5)) (-5 *3 (-413 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1113)) (-5 *1 (-283)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-901 *3)) (|:| |den| (-901 *3))))
+ (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1284)) (-5 *1 (-839)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (-4 *4 (-1058))
- (-5 *1 (-1037 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928)) (-4 *4 (-1058))
- (-5 *1 (-1037 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-1129)) (-5 *2 (-112)) (-5 *1 (-827)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-562)) (-4 *2 (-1058))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *1))))
- (-4 *1 (-1080 *4 *5 *6 *3)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-370)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-664 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-370)) (-5 *2 (-2 (|:| -3179 *3) (|:| -2185 (-652 *5))))
+ (-5 *1 (-1036 *5 *3)) (-5 *4 (-652 *5)) (-4 *3 (-664 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-1279 (-697 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 (-697 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370))
+ (-5 *2 (-1279 (-697 (-415 (-961 *5))))) (-5 *1 (-1097 *5))
+ (-5 *4 (-697 (-415 (-961 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-1188))) (-4 *5 (-370))
+ (-5 *2 (-1279 (-697 (-961 *5)))) (-5 *1 (-1097 *5))
+ (-5 *4 (-697 (-961 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-697 *4))) (-4 *4 (-370))
+ (-5 *2 (-1279 (-697 *4))) (-5 *1 (-1097 *4)))))
+(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *1 *1 *1) (-5 *1 (-384)))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-777)))))
-(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7))))
- (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-690 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1109)) (-5 *1 (-974 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-148)) (-4 *2 (-311)) (-4 *2 (-458)) (-4 *3 (-856))
- (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-320 (-570))) (-5 *1 (-1128))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1282) (-1277 *5) (-1277 *5) (-384)))
- (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282))
- (-5 *1 (-794)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 *4))))
- (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109))
- (-4 *7 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-1112 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060))
+ (-5 *1 (-1172 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060))
+ (-14 *4 (-1188)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1049 (-572))) (-4 *3 (-564)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-438 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1184 *4)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1060)) (-4 *1 (-308))))
+ ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3))))
+ ((*1 *2) (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *2 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4)
- (-249 *4 (-413 (-570)))))
- (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112))
- (-5 *1 (-511 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-95)))
+ (-12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370)))
+ (-4 *2 (-1255 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-620 *3))
+ (-4 *3 (-13 (-438 *5) (-27) (-1214)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3)))
+ (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -1591 (-652 (-2 (|:| |irr| *10) (|:| -1948 (-572)))))))
+ (-5 *6 (-652 *3)) (-5 *7 (-652 *8)) (-4 *8 (-858)) (-4 *3 (-313))
+ (-4 *10 (-958 *3 *9 *8)) (-4 *9 (-801))
+ (-5 *2
+ (-2 (|:| |polfac| (-652 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-652 (-1184 *3)))))
+ (-5 *1 (-633 *8 *9 *3 *10)) (-5 *4 (-652 (-1184 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-779)) (-5 *5 (-652 *3)) (-4 *3 (-313)) (-4 *6 (-858))
+ (-4 *7 (-801)) (-5 *2 (-112)) (-5 *1 (-633 *6 *7 *3 *8))
+ (-4 *8 (-958 *3 *7 *6)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-564) (-1049 (-572)) (-148)))
+ (-5 *2
+ (-2 (|:| -1647 (-415 (-961 *5))) (|:| |coeff| (-415 (-961 *5)))))
+ (-5 *1 (-578 *5)) (-5 *3 (-415 (-961 *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34))))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *1 *1 *1) (-5 *1 (-386)))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1166 (-980))) (-5 *1 (-980)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-1209 *4))
- (-4 *4 (-1058)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695 *6)) (-5 *5 (-1 (-424 (-1182 *6)) (-1182 *6)))
- (-4 *6 (-368))
- (-5 *2
- (-650
- (-2 (|:| |outval| *7) (|:| |outmult| (-570))
- (|:| |outvect| (-650 (-695 *7))))))
- (-5 *1 (-538 *6 *7 *4)) (-4 *7 (-368)) (-4 *4 (-13 (-368) (-854))))))
-(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280))))
- ((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |h| *6)
- (|:| |c1| (-413 *6)) (|:| |c2| (-413 *6)) (|:| -1881 *6)))
- (-5 *1 (-1025 *5 *6)) (-5 *3 (-413 *6)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-457 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-590)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-620 *3)) (-5 *5 (-1 (-1184 *3) (-1184 *3)))
+ (-4 *3 (-13 (-27) (-438 *6))) (-4 *6 (-564)) (-5 *2 (-594 *3))
+ (-5 *1 (-559 *6 *3)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227))) (-5 *6 (-683 (-227)))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-758)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1229))
+ (-4 *5 (-380 *4)) (-4 *2 (-380 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *7 *2)) (-4 *6 (-1060))
+ (-4 *7 (-242 *5 *6)) (-4 *2 (-242 *4 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-413 *2)) (-4 *2 (-1253 *5))
- (-5 *1 (-813 *5 *2 *3 *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *3 (-662 *2)) (-4 *6 (-662 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-413 *2))) (-4 *2 (-1253 *5))
- (-5 *1 (-813 *5 *2 *3 *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2))
- (-4 *6 (-662 (-413 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-315))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1003))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1045))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1082)))))
+ (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-1168 (-1168 (-961 *5))))
+ (-5 *1 (-1287 *5)) (-5 *4 (-1168 (-961 *5))))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
+ (-5 *2 (-426 (-1184 (-415 (-572))))) (-5 *1 (-443 *4 *5 *3))
+ (-4 *3 (-1255 *5)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-650 *7))) (-4 *1 (-1220 *4 *5 *6 *7))
- (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1166 *3))) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $))
- (-15 -1599 ((-1134 *3 (-618 $)) $))
- (-15 -2869 ($ (-1134 *3 (-618 $))))))))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))))
-(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *2 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (|partial| -12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-682 *3)))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-112)) (|:| -3114 (-779)) (|:| |period| (-779))))
+ (-5 *1 (-1168 *4)) (-4 *4 (-1229)) (-5 *3 (-779)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-572)) (-4 *5 (-856)) (-4 *5 (-370))
+ (-5 *2 (-779)) (-5 *1 (-954 *5 *6)) (-4 *6 (-1255 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-711 *3))
+ (-4 *3 (-622 (-544)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1188)) (-5 *2 (-1 (-227) (-227) (-227)))
+ (-5 *1 (-711 *3)) (-4 *3 (-622 (-544))))))
+(((*1 *1) (-5 *1 (-297))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-572)) (-5 *1 (-1168 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *1 *1) (-4 *1 (-1215))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))))
-(((*1 *1) (-5 *1 (-1072))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-868)) (-5 *1 (-1166 *3)) (-4 *3 (-1109))
- (-4 *3 (-1227)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7))))
- (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3903 (-788 *3)) (|:| |coef1| (-788 *3))))
- (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-779)) (-4 *4 (-356)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1255 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)) (-4 *3 (-174))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-2 (|:| -3903 *1) (|:| |coef1| *1)))
- (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-650 (-171 *4))) (-5 *1 (-156 *3 *4))
- (-4 *3 (-1253 (-171 (-570)))) (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))))
+ (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))
+ ((*1 *1 *1 *1) (-5 *1 (-1131))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1198 (-650 *4))) (-4 *4 (-856))
- (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1253 *4)) (-4 *4 (-1231))
- (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1253 (-413 *3))))))
+ (-12 (-4 *4 (-13 (-564) (-148))) (-5 *2 (-652 *3))
+ (-5 *1 (-1249 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-652 (-652 (-227)))) (-5 *4 (-227))
+ (-5 *2 (-652 (-952 *4))) (-5 *1 (-1225)) (-5 *3 (-952 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *1 *1) (-4 *1 (-1215))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *1 *1) (-4 *1 (-1217))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-760)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1168 (-415 *3))) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2067 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
+ (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2))
+ (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2))
+ (-4 *4 (-695 *2 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1111)) (-5 *2 (-112))
+ (-5 *1 (-1230 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229)))))
+(((*1 *2)
+ (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-930)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-1213 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1186))
- (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *1 (-1189)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928))
- (-14 *4 (-928)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-97)))))
+ (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
+ (-4 *3 (-1111)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
+ (-5 *2 (-2 (|:| -1647 (-415 *6)) (|:| |coeff| (-415 *6))))
+ (-5 *1 (-582 *5 *6)) (-5 *3 (-415 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *1 *1) (-4 *1 (-1215))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-1253 (-413 *3))) (-5 *2 (-928))
- (-5 *1 (-920 *4 *5)) (-4 *5 (-1253 (-413 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-1198 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *1 *1) (-4 *1 (-1217))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-928))) (-5 *4 (-912 (-570)))
- (-5 *2 (-695 (-570))) (-5 *1 (-596))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-928))) (-5 *2 (-650 (-695 (-570))))
- (-5 *1 (-596))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-928))) (-5 *4 (-650 (-912 (-570))))
- (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-596)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1058))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1058)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799))
- (-4 *8 (-856)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-650 *9))))
- (-5 *3 (-650 *9)) (-4 *1 (-1220 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1999 (-650 *8))))
- (-5 *3 (-650 *8)) (-4 *1 (-1220 *5 *6 *7 *8)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $))
- (-15 -1599 ((-1134 *3 (-618 $)) $))
- (-15 -2869 ($ (-1134 *3 (-618 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $))
- (-15 -1599 ((-1134 *3 (-618 $)) $))
- (-15 -2869 ($ (-1134 *3 (-618 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *2))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *4 (-618 $)) $))
- (-15 -1599 ((-1134 *4 (-618 $)) $))
- (-15 -2869 ($ (-1134 *4 (-618 $)))))))
- (-4 *4 (-562)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-618 *2)))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *4 (-618 $)) $))
- (-15 -1599 ((-1134 *4 (-618 $)) $))
- (-15 -2869 ($ (-1134 *4 (-618 $)))))))
- (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))))
+ (-12 (-4 *6 (-564)) (-4 *2 (-958 *3 *5 *4))
+ (-5 *1 (-740 *5 *4 *6 *2)) (-5 *3 (-415 (-961 *6))) (-4 *5 (-801))
+ (-4 *4 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-967 (-185 (-140)))) (-5 *1 (-339))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614)))))
+(((*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
+ ((*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
+ (-4 *3 (-858)) (-5 *2 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1184 *7)) (-4 *5 (-1060))
+ (-4 *7 (-1060)) (-4 *2 (-1255 *5)) (-5 *1 (-509 *5 *2 *6 *7))
+ (-4 *6 (-1255 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060))
+ (-4 *4 (-1255 *5)) (-5 *2 (-1184 *7)) (-5 *1 (-509 *5 *4 *6 *7))
+ (-4 *6 (-1255 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1131)) (-4 *4 (-356))
+ (-5 *1 (-536 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *2)) (-4 *3 (-1111))
+ (-4 *2 (-1229)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-566 *2)) (-4 *2 (-553)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *1 *1) (-4 *1 (-1215))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *1 *1) (-4 *1 (-1217))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-799)) (-4 *2 (-956 *4 *5 *6)) (-5 *1 (-455 *4 *5 *6 *2))
- (-4 *4 (-458)) (-4 *6 (-856)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-174))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1298 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-1058)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-695 (-227))) (-5 *6 (-112)) (-5 *7 (-695 (-570)))
- (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-570)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-588)))))
+ (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
+ (-251 *4 (-415 (-572)))))
+ (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112))
+ (-5 *1 (-513 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060))
+ (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
+ (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1111) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34))))))
+(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-870))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-570)) (-4 *5 (-854)) (-4 *5 (-368))
- (-5 *2 (-777)) (-5 *1 (-952 *5 *6)) (-4 *6 (-1253 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1253 *4)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4454 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2))
- (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1253 *2))
- (-4 *4 (-693 *2 *5 *6)))))
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
+(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1073)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4))
+ (-4 *4 (-1255 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *1 *1) (-4 *1 (-1215))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1182 *7)) (-4 *5 (-1058))
- (-4 *7 (-1058)) (-4 *2 (-1253 *5)) (-5 *1 (-507 *5 *2 *6 *7))
- (-4 *6 (-1253 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058))
- (-4 *4 (-1253 *5)) (-5 *2 (-1182 *7)) (-5 *1 (-507 *5 *4 *6 *7))
- (-4 *6 (-1253 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1260 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1237 *3))
- (-5 *2 (-413 (-570))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 (-950 *4))) (-4 *1 (-1143 *4)) (-4 *4 (-1058))
- (-5 *2 (-777)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562))
- (-4 *8 (-956 *7 *5 *6))
- (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *3) (|:| |radicand| *3)))
- (-5 *1 (-960 *5 *6 *7 *8 *3)) (-5 *4 (-777))
- (-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *8)) (-15 -1587 (*8 $)) (-15 -1599 (*8 $))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4))
- (-5 *2 (-424 *3)) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1253 *5)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *1 *1) (-4 *1 (-1217))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-557))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1279 (-1279 (-572)))) (-5 *3 (-930)) (-5 *1 (-474)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1229)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34)))
- (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1150 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044))
- (-5 *1 (-754)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1186)) (-5 *1 (-542))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-710 *3))
- (-4 *3 (-620 (-542))))))
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858))))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *1 *1) (-4 *1 (-1215))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 (-171 (-570))))) (-5 *2 (-650 (-171 *4)))
- (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570))))))
- (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 (-171 *5))))
- (-5 *1 (-383 *5)) (-4 *5 (-13 (-368) (-854))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-320 (-384))) (-5 *2 (-320 (-227))) (-5 *1 (-309)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1227)) (-5 *2 (-570)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))))
-(((*1 *1 *1) (-4 *1 (-875 *2))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-854)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2660 (-424 *3))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112))
- (-5 *1 (-1216 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4))))))
-(((*1 *1 *1) (-5 *1 (-1185)))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *1 *1) (-4 *1 (-1217))))
+(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
+ (-4 *3 (-1255 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1279 (-652 *3))) (-4 *4 (-313))
+ (-5 *2 (-652 *3)) (-5 *1 (-463 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4))
+ (-4 *4 (-1229)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882))
+ (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-1280))
+ (-5 *1 (-1283))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268)))
+ (-5 *2 (-1280)) (-5 *1 (-1283)))))
+(((*1 *1 *1) (-5 *1 (-1187)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))))
-(((*1 *1 *1) (-4 *1 (-635)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011) (-1212))))))
-(((*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))))
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *5 (-1231)) (-4 *6 (-1253 *5))
- (-4 *7 (-1253 (-413 *6))) (-5 *2 (-650 (-959 *5)))
- (-5 *1 (-346 *4 *5 *6 *7)) (-4 *4 (-347 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1231))
- (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5))) (-4 *4 (-368))
- (-5 *2 (-650 (-959 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141))))
- ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187))))
- ((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-250)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *1 (-592 *2)) (-4 *2 (-1047 *3))
- (-4 *2 (-368))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-636 *4 *2))
- (-4 *2 (-13 (-436 *4) (-1011) (-1212)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-1011) (-1212)))
- (-4 *4 (-562)) (-5 *1 (-636 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-966)) (-5 *2 (-1186))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-966)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1058)) (-5 *1 (-718 *3 *4))
- (-4 *4 (-1253 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-689 *4 *5)) (-4 *4 (-1109))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058))))
+ (-12 (-4 *4 (-1111)) (-5 *2 (-112)) (-5 *1 (-894 *3 *4 *5))
+ (-4 *3 (-1111)) (-4 *5 (-674 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-1058)) (-5 *1 (-1300 *2 *3)) (-4 *3 (-852)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-928)) (-4 *1 (-240 *3 *4)) (-4 *4 (-1058))
- (-4 *4 (-1227))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174))
- (-4 *5 (-240 (-2857 *3) (-777)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *5))
- (-2 (|:| -4298 *2) (|:| -2940 *5))))
- (-5 *1 (-467 *3 *4 *2 *5 *6 *7)) (-4 *2 (-856))
- (-4 *7 (-956 *4 *5 (-870 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 *4) (-1011) (-1212)))
- (-5 *1 (-606 *4 *2 *3))
- (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1212))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1182 *7))
- (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *2 (-1253 *5))
- (-5 *1 (-507 *5 *2 *6 *7)) (-4 *6 (-1253 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-403)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-1174 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1279))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1279)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1282)) (-5 *1 (-474)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1268 *4))
- (-4 *4 (-38 (-413 (-570))))
- (-5 *2 (-1 (-1166 *4) (-1166 *4) (-1166 *4))) (-5 *1 (-1270 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-334)))))
-(((*1 *1) (-5 *1 (-584)))
- ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-869))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-869))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1282)) (-5 *1 (-869))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1166 *4))
- (-4 *4 (-1109)) (-4 *4 (-1227)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-695 *3))
- (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-695 *3))
- (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *1 *1) (-4 *1 (-635)))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011) (-1212))))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-761))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-394))
- (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562))
- (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8))))
- (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3))
- (-5 *1 (-748 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311))
- (-5 *2 (-650 (-777))) (-5 *1 (-784 *3 *4 *5 *6 *7))
- (-4 *3 (-1253 *6)) (-4 *7 (-956 *6 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-635)))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-337 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011) (-1212))))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *1 *1) (-4 *1 (-1217))))
+(((*1 *1) (-5 *1 (-1096))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
+ (-5 *2 (-1046)) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-29 *4) (-1212)))
- (-5 *1 (-589 *4 *2))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-413 (-959 *4))))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *4))
- (-5 *1 (-595 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1227))
- (-4 *5 (-1227)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-242 *6 *7)) (-14 *6 (-777))
- (-4 *7 (-1227)) (-4 *5 (-1227)) (-5 *2 (-242 *6 *5))
- (-5 *1 (-241 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1227)) (-4 *5 (-1227))
- (-4 *2 (-378 *5)) (-5 *1 (-376 *6 *4 *5 *2)) (-4 *4 (-378 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109))
- (-4 *2 (-431 *5)) (-5 *1 (-429 *6 *4 *5 *2)) (-4 *4 (-431 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-650 *6)) (-4 *6 (-1227))
- (-4 *5 (-1227)) (-5 *2 (-650 *5)) (-5 *1 (-648 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-965 *6)) (-4 *6 (-1227))
- (-4 *5 (-1227)) (-5 *2 (-965 *5)) (-5 *1 (-964 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1166 *6)) (-4 *6 (-1227))
- (-4 *3 (-1227)) (-5 *2 (-1166 *3)) (-5 *1 (-1164 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1277 *6)) (-4 *6 (-1227))
- (-4 *5 (-1227)) (-5 *2 (-1277 *5)) (-5 *1 (-1276 *6 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-753)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1277 *5)) (-4 *5 (-798)) (-5 *2 (-112))
- (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))))
+ (-12 (-5 *3 (-851 (-386))) (-5 *2 (-851 (-227))) (-5 *1 (-311)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1262 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186))
- (-14 *5 *3) (-5 *1 (-323 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058))
- (-5 *2 (-650 (-650 (-650 (-777))))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *5 (-1253 *4)) (-5 *2 (-1182 (-413 *5))) (-5 *1 (-621 *4 *5))
- (-5 *3 (-413 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2 (-1182 (-413 *6))) (-5 *1 (-621 *5 *6)) (-5 *3 (-413 *6)))))
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))))
+ (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111))
+ (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1109)) (-4 *4 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *5 *4 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219)))))
+ (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
+ (-5 *1 (-999 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
+ (-5 *1 (-1118 *3 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-806))
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-1044)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-570)) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3))
- (-4 *3 (-1058))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-825 *4)) (-4 *4 (-856)) (-4 *1 (-1294 *4 *3))
- (-4 *3 (-1058)))))
-(((*1 *2 *1 *1)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
(-5 *2
- (-2 (|:| -1747 *3) (|:| |gap| (-777)) (|:| -1437 (-788 *3))
- (|:| -3357 (-788 *3))))
- (-5 *1 (-788 *3)) (-4 *3 (-1058))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856))
- (-5 *2
- (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -1437 *1)
- (|:| -3357 *1)))
- (-4 *1 (-1074 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2
- (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -1437 *1)
- (|:| -3357 *1)))
- (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)) (-4 *2 (-856))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 *4)) (-4 *4 (-347 *5 *6 *7))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-812 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *3 *2))
- (-4 *3 (-13 (-1109) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1288)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282))
- (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282))
- (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1168 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4336
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-567)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-487 *4 *5))
- (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-1102 *3)) (-4 *3 (-1227)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112))
- (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1044)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799))
- (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799))
- (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1231)) (-4 *5 (-1253 (-413 *2)))
- (-4 *2 (-1253 *4)) (-5 *1 (-346 *3 *4 *2 *5))
- (-4 *3 (-347 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1231))
- (-4 *4 (-1253 (-413 *2))) (-4 *2 (-1253 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-928)) (-4 *4 (-373)) (-4 *4 (-368)) (-5 *2 (-1182 *1))
- (-4 *1 (-333 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *3 (-368))
- (-4 *2 (-1253 *3))))
+ (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
((*1 *2 *3)
- (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4))
- (-5 *1 (-534 *4)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1186)) (-5 *6 (-112))
- (-4 *7 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
- (-4 *3 (-13 (-1212) (-966) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *7 *3)) (-5 *5 (-849 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1182 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *3 (-1253 *4)) (-5 *1 (-815 *4 *3 *2 *5)) (-4 *2 (-662 *3))
- (-4 *5 (-662 (-413 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-413 *5))
- (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1253 *4))
- (-5 *1 (-815 *4 *5 *2 *6)) (-4 *2 (-662 *5)) (-4 *6 (-662 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-249 *3 *4))
- (-14 *3 (-650 (-1186))) (-4 *4 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-570))) (-14 *3 (-650 (-1186)))
- (-5 *1 (-460 *3 *4 *5)) (-4 *4 (-1058))
- (-4 *5 (-240 (-2857 *3) (-777)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-487 *3 *4))
- (-14 *3 (-650 (-1186))) (-4 *4 (-1058)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-5 *2 (-2 (|:| -4144 *3) (|:| -3165 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3903 *3)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-543 *4 *2))
- (-4 *2 (-1268 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3)))
- (-4 *5 (-1253 *4)) (-4 *6 (-730 *4 *5)) (-5 *1 (-547 *4 *5 *6 *2))
- (-4 *2 (-1268 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3)))
- (-5 *1 (-548 *4 *2)) (-4 *2 (-1268 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148)))
- (-5 *1 (-1162 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227)))
- (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1253 *6))
- (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570))))
- (-4 *8 (-1253 (-413 *7))) (-5 *2 (-592 *3))
- (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1253 *4))))
+ (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
+ ((*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3))
- (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3))
- (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3))
- (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3))
- (-4 *3 (-1253 (-570)))))
+ (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3))
- (-4 *3 (-1253 (-413 (-570))))))
+ (-12 (-5 *3 (-1184 (-415 (-572)))) (-5 *2 (-652 *1)) (-4 *1 (-1023))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-1242 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058))
- (-14 *4 (-650 (-1186)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856)))
- (-14 *4 (-650 (-1186)))))
- ((*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-340 *3 *4 *5 *2)) (-4 *3 (-368))
- (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4)))
- (-4 *2 (-347 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-174))))
- ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-730 *2 *3)) (-4 *3 (-1253 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-570)) (-4 *4 (-354))
- (-5 *1 (-534 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-985 *4 *5 *3 *6)) (-4 *4 (-1058)) (-4 *5 (-799))
- (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-194))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1105))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1265 *3)) (-4 *3 (-1227))))
- ((*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058))
- (-5 *3 (-570)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-171 (-320 *4)))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4))))))
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-1023)) (-5 *2 (-652 *1))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-171 *3)) (-5 *1 (-1216 *4 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *4))))))
-(((*1 *2)
- (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4))
- (-4 *4 (-1253 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1058))
- (-5 *1 (-859 *5 *2)) (-4 *2 (-858 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1212))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 (-413 (-959 (-570)))))
- (-5 *2
- (-650
- (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570))
- (|:| |radvect| (-650 (-695 (-320 (-570))))))))
- (-5 *1 (-1040)))))
-(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384))))
- ((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-384)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-320 (-570))))
- (-5 *1 (-1040)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-432 *4 *2)) (-4 *2 (-13 (-1212) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *5))
- (-5 *1 (-595 *5)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458))
- (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044))
- (-5 *1 (-754)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-152 *2)) (-4 *2 (-1227))
- (-4 *2 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *3))
- (-4 *3 (-1227))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1227))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109))
- (-5 *1 (-743 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))))
+ (-12 (-4 *4 (-13 (-856) (-370))) (-4 *3 (-1255 *4)) (-5 *2 (-652 *1))
+ (-4 *1 (-1079 *4 *3)))))
+(((*1 *1 *1) (-4 *1 (-637)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-872 *4))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4))))
- (-5 *1 (-1285 *4)) (-4 *4 (-368)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-237 *3))
- (-4 *3 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-237 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)) (-4 *2 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1227))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109))
- (-5 *1 (-743 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))))
+ (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-425 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-1182 *6))
- (-5 *1 (-325 *4 *5 *6 *7)))))
+ (-12 (-5 *4 (-572)) (-4 *5 (-356)) (-5 *2 (-426 (-1184 (-1184 *5))))
+ (-5 *1 (-1227 *5)) (-5 *3 (-1184 (-1184 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384))))
- ((*1 *1 *1 *1) (-4 *1 (-551)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))
- ((*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-777)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4))
- (-4 *4 (-354)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-4 *3 (-13 (-27) (-1212) (-436 *6) (-10 -8 (-15 -2869 ($ *7)))))
- (-4 *7 (-854))
- (-4 *8
- (-13 (-1255 *3 *7) (-368) (-1212)
- (-10 -8 (-15 -2375 ($ $)) (-15 -1363 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))))
- (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8))
- (-14 *10 (-1186)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1190)) (-5 *1 (-1189)))))
-(((*1 *1) (-5 *1 (-603))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-618 *4)) (-5 *1 (-617 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-334)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1035 (-849 (-570))))
- (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *4)))) (-4 *4 (-1058))
- (-5 *1 (-601 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3))
- (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2))
- (-4 *2 (-693 *3 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1227))
- (-4 *5 (-378 *4)) (-4 *2 (-378 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *2 *7)) (-4 *6 (-1058))
- (-4 *7 (-240 *4 *6)) (-4 *2 (-240 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-270)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-681 *2)) (-4 *2 (-1058)) (-4 *2 (-1109)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-650 (-266))) (-5 *1 (-1279))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1168)) (-5 *1 (-1279))))
- ((*1 *1 *1) (-5 *1 (-1279))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-695 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-5 *2 (-1182 *3)) (-5 *1 (-1201 *3))
- (-4 *3 (-368)))))
-(((*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-212)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-928))) (-5 *4 (-650 (-570)))
- (-5 *2 (-695 (-570))) (-5 *1 (-1119)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1))
- (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227)))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
+ (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229))
(-5 *2 (-112)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-112)) (-5 *1 (-899 *4))
- (-4 *4 (-1109)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-777)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-650 (-413 *6))) (-5 *3 (-413 *6))
- (-4 *6 (-1253 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-574 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-243))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1282)) (-5 *1 (-243)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570))
- (-5 *2 (-1044)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4))))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890))
- (-5 *3 (-650 (-570)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890))
- (-5 *3 (-650 (-570))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880)))
- (-5 *1 (-474)))))
-(((*1 *1) (-5 *1 (-443))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-458)))))
-(((*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4))))
- (-5 *1 (-1225 *4)) (-5 *3 (-1182 (-1182 *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-122 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2609 (-650 *3)) (|:| -3946 (-650 *3))))
- (-5 *1 (-1228 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))))
-(((*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384)))
- (-5 *2 (-1044)) (-5 *1 (-846)))))
-(((*1 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1280)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7))
- (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-916)) (-4 *5 (-799))
- (-4 *6 (-856)) (-5 *1 (-913 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5))
- (-4 *5 (-1253 *4)) (-4 *4 (-916)) (-5 *1 (-914 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-825 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-852)) (-5 *1 (-1300 *3 *2)) (-4 *3 (-1058)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-246 *2)) (-4 *2 (-1227)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1058)) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227)))
- (-5 *5 (-112)) (-5 *2 (-1279)) (-5 *1 (-260)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))
- (-4 *3 (-562)))))
+ (-12 (-5 *3 (-652 (-2 (|:| -2972 (-1184 *6)) (|:| -2477 (-572)))))
+ (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572))
+ (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *7)) (-4 *7 (-856))
- (-4 *8 (-956 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1277 (-413 *8)) "failed"))
- (|:| -2681 (-650 (-1277 (-413 *8))))))
- (-5 *1 (-675 *5 *6 *7 *8)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-950 *5)) (-5 *3 (-777)) (-4 *5 (-1058))
- (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1058)) (-5 *1 (-901 *2 *3)) (-4 *2 (-1253 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1111 *3)) (-5 *1 (-912 *3)) (-4 *3 (-373))
- (-4 *3 (-1109)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1209 *3)) (-4 *3 (-1058)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1153))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112))
- (-5 *1 (-362 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-112))
- (-5 *1 (-534 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-442)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4443)) (-4 *1 (-410))))
- ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-1249 *4 *2))
- (-4 *2 (-1253 *4)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1161))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1253 *4)) (-5 *2 (-695 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-695 *4))
- (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-415 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3))
- (-5 *2 (-695 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-542))) (-5 *2 (-1186)) (-5 *1 (-542)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *1 *1) (-4 *1 (-551))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-551)) (-5 *1 (-160 *2)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *2 (-697 (-585))) (-5 *1 (-585)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1186))
- (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-758)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-295)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-743 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109))))
- ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-972))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-650 (-171 *4)))
- (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2))
- (-4 *2 (-1268 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1253 *3))
- (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1268 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2))
- (-4 *2 (-1268 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148)))
- (-5 *1 (-1162 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-868))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6))
- (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-959 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6))
- (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-510 *3 *4 *5 *6))) (-4 *3 (-368)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856))
- (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7))
- (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2))
- (-4 *3 (-562)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-879 (-1191) (-777)))) (-5 *1 (-337)))))
-(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-983)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-980)) (-5 *1 (-1302)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2896 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109))
- (-5 *2 (-2 (|:| -1747 (-570)) (|:| |var| (-618 *1))))
- (-4 *1 (-436 *3)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186))
- (-5 *2 (-650 *4)) (-5 *1 (-1123 *4 *5)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-384)))
- ((*1 *1) (-5 *1 (-384))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1253 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 (-928))) (-4 *2 (-368)) (-5 *1 (-153 *4 *2 *5))
- (-14 *4 (-928)) (-14 *5 (-1002 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4))
- (-4 *4 (-1253 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-732))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5))
- (-4 *4 (-1058)) (-4 *5 (-856))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058))
- (-4 *2 (-856))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6))
- (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *2 (-856))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-4 *2 (-956 *4 (-537 *5) *5))
- (-5 *1 (-1135 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-856))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-959 *4)) (-5 *1 (-1221 *4))
- (-4 *4 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-118 *4)) (-14 *4 *3)
- (-5 *3 (-570))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-877 *4)) (-14 *4 *3)
- (-5 *3 (-570))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-413 (-570))) (-5 *1 (-878 *4 *5))
- (-5 *3 (-570)) (-4 *5 (-875 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1021)) (-5 *2 (-413 (-570)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368)))
- (-4 *3 (-1253 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1255 *2 *3)) (-4 *3 (-798))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2869 (*2 (-1186))))
- (-4 *2 (-1058)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4))
- (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6)))
- (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570))))
- (-5 *2 (-2 (|:| -3995 (-777)) (|:| -3746 *8)))
- (-5 *1 (-918 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6))
- (-4 *4 (-1253 (-413 (-570)))) (-4 *5 (-1253 (-413 *4)))
- (-4 *6 (-347 (-413 (-570)) *4 *5))
- (-5 *2 (-2 (|:| -3995 (-777)) (|:| -3746 *6)))
- (-5 *1 (-919 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-424 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1212) (-436 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3)))))
+ (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (|has| *4 (-6 (-4456 "*")))
+ (-4 *4 (-1060)) (-5 *1 (-1039 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1216 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-777)) (-5 *2 (-650 (-1186))) (-5 *1 (-212))
- (-5 *3 (-1186))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 (-227))) (-5 *4 (-777)) (-5 *2 (-650 (-1186)))
- (-5 *1 (-270))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174))
- (-5 *2 (-650 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 *3)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-825 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-650 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6)) (-5 *4 (-1186)) (-4 *6 (-436 *5))
- (-4 *5 (-1109)) (-5 *2 (-650 (-618 *6))) (-5 *1 (-579 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1148))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3393 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-562))
- (-5 *2 (-2 (|:| -2565 (-695 *5)) (|:| |vec| (-1277 (-650 (-928))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570))))
- (-4 *2 (-174)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-295)) (-5 *1 (-169)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-143 *3 *4 *2))
- (-4 *2 (-378 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-4 *2 (-378 *4))
- (-5 *1 (-509 *4 *5 *2 *3)) (-4 *3 (-378 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562))
- (-5 *2 (-695 *4)) (-5 *1 (-699 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-1246 *3 *4 *2))
- (-4 *2 (-1253 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856))))
- ((*1 *1) (-4 *1 (-1161))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1208)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-650 *11)) (-5 *5 (-650 (-1182 *9)))
- (-5 *6 (-650 *9)) (-5 *7 (-650 *12)) (-5 *8 (-650 (-777)))
- (-4 *11 (-856)) (-4 *9 (-311)) (-4 *12 (-956 *9 *10 *11))
- (-4 *10 (-799)) (-5 *2 (-650 (-1182 *12)))
- (-5 *1 (-713 *10 *11 *9 *12)) (-5 *3 (-1182 *12)))))
+ (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930))
+ (|has| *4 (-6 (-4456 "*"))) (-4 *4 (-1060)) (-5 *1 (-1039 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-618 *1)) (-4 *1 (-436 *4)) (-4 *4 (-1109))
- (-4 *4 (-562)) (-5 *2 (-413 (-1182 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-1182 (-413 (-1182 *3)))) (-5 *1 (-566 *6 *3 *7))
- (-5 *5 (-1182 *3)) (-4 *7 (-1109))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1273 *5)) (-14 *5 (-1186)) (-4 *6 (-1058))
- (-5 *2 (-1250 *5 (-959 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-959 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-1182 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-1182 *1))
- (-4 *1 (-956 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058))
- (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-413 (-1182 *3)))
- (-5 *1 (-957 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1182 *3))
- (-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $)))))
- (-4 *7 (-956 *6 *5 *4)) (-4 *5 (-799)) (-4 *4 (-856))
- (-4 *6 (-1058)) (-5 *1 (-957 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-4 *5 (-562))
- (-5 *2 (-413 (-1182 (-413 (-959 *5))))) (-5 *1 (-1052 *5))
- (-5 *3 (-413 (-959 *5))))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1184 *1)) (-5 *3 (-1188)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-961 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-29 *3)) (-4 *3 (-564))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-564))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 *2)) (-5 *4 (-1188)) (-4 *2 (-438 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-564))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-4 *1 (-1023))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1184 *1)) (-5 *3 (-930)) (-5 *4 (-870))
+ (-4 *1 (-1023))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-930)) (-4 *4 (-13 (-856) (-370)))
+ (-4 *1 (-1079 *4 *2)) (-4 *2 (-1255 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-882))))
+ ((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-370)) (-5 *1 (-905 *2 *3))
+ (-4 *2 (-1255 *3)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-650 (-1186))) (-4 *5 (-458))
- (-5 *2
- (-2 (|:| |glbase| (-650 (-249 *4 *5))) (|:| |glval| (-650 (-570)))))
- (-5 *1 (-637 *4 *5)) (-5 *3 (-650 (-249 *4 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *1) (-4 *1 (-288)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-424 *4)) (-4 *4 (-562))
- (-5 *2 (-650 (-2 (|:| -1747 (-777)) (|:| |logand| *4))))
- (-5 *1 (-324 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-670 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570)))))
- (-4 *5 (-856)) (-5 *1 (-1293 *4 *5 *2)) (-4 *2 (-1298 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-1297 *3 *4))
- (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174)))))
-(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856))))
- ((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
+ (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4))))
+ (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-978))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1253 *4)) (-5 *1 (-813 *4 *2 *3 *5))
- (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2))
- (-4 *5 (-662 (-413 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1253 *4)) (-5 *1 (-813 *4 *2 *5 *3))
- (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-662 *2))
- (-4 *3 (-662 (-413 *2))))))
-(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227)))))
-(((*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-570))
- (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570)))))))
- (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
+ (-12 (-5 *3 (-697 *8)) (-5 *4 (-779)) (-4 *8 (-958 *5 *7 *6))
+ (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
+ (-4 *7 (-801))
(-5 *2
- (-2 (|:| |contp| (-570))
- (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570)))))))
- (-5 *1 (-1242 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-368)) (-5 *1 (-1034 *3 *2)) (-4 *2 (-662 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-5 *2 (-2 (|:| -2557 *3) (|:| -1567 (-650 *5))))
- (-5 *1 (-1034 *5 *3)) (-5 *4 (-650 *5)) (-4 *3 (-662 *5)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1186))
- (-4 *5 (-13 (-562) (-1047 (-570)) (-148)))
- (-5 *2
- (-2 (|:| -3730 (-413 (-959 *5))) (|:| |coeff| (-413 (-959 *5)))))
- (-5 *1 (-576 *5)) (-5 *3 (-413 (-959 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-1166 (-1166 (-959 *5))))
- (-5 *1 (-1285 *5)) (-5 *4 (-1166 (-959 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-650 *3))
- (-5 *1 (-1247 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368))
- (-5 *2 (-2 (|:| -3730 (-413 *6)) (|:| |coeff| (-413 *6))))
- (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-564 *2)) (-4 *2 (-551)))))
-(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1071))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1071)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112)))))
+ (-652
+ (-2 (|:| |det| *8) (|:| |rows| (-652 (-572)))
+ (|:| |cols| (-652 (-572))))))
+ (-5 *1 (-933 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-892 *3 *4 *5))
- (-4 *3 (-1109)) (-4 *5 (-672 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 *4)) (-4 *4 (-368)) (-5 *2 (-1182 *4))
- (-5 *1 (-538 *4 *5 *6)) (-4 *5 (-368)) (-4 *6 (-13 (-368) (-854))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4))
- (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-334))))
- ((*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-334))))
- ((*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-334))))
- ((*1 *1 *2) (-12 (-5 *2 (-320 (-700))) (-5 *1 (-334))))
- ((*1 *1 *2) (-12 (-5 *2 (-320 (-707))) (-5 *1 (-334))))
- ((*1 *1 *2) (-12 (-5 *2 (-320 (-705))) (-5 *1 (-334))))
- ((*1 *1) (-5 *1 (-334))))
-(((*1 *2 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058))
- (-5 *2 (-249 *4 *5)) (-5 *1 (-951 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227))
- (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4454 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2))
- (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1253 *2))
- (-4 *4 (-693 *2 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-828)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-650
- (-2 (|:| -4412 (-777))
- (|:| |eqns|
- (-650
- (-2 (|:| |det| *7) (|:| |rows| (-650 (-570)))
- (|:| |cols| (-650 (-570))))))
- (|:| |fgb| (-650 *7)))))
- (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148)))
- (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777))
- (-5 *1 (-931 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 (-413 (-959 (-570)))))
- (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-618 *4)) (-5 *6 (-1182 *4))
- (-4 *4 (-13 (-436 *7) (-27) (-1212)))
- (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-618 *4)) (-5 *6 (-413 (-1182 *4)))
- (-4 *4 (-13 (-436 *7) (-27) (-1212)))
- (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4))
- (-4 *4 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777))))
- ((*1 *1 *1) (-4 *1 (-235)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4))
- (-4 *4 (-1253 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3))
- (-4 *3 (-1253 *2))))
- ((*1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4))
- (-4 *4 (-1109))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-570)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-777)) (-4 *5 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777))
- (-4 *4 (-174))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *2 *4)) (-4 *2 (-378 *3))
- (-4 *4 (-378 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-777)) (-4 *3 (-1058)))))
-(((*1 *2 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-458)) (-4 *4 (-1109))
- (-5 *1 (-579 *4 *2)) (-4 *2 (-288)) (-4 *2 (-436 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4)))
- (-5 *2 (-1277 *6)) (-5 *1 (-341 *3 *4 *5 *6))
- (-4 *6 (-347 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1227)) (-4 *2 (-1058))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-950 (-227))) (-5 *2 (-227)) (-5 *1 (-1223))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-650 *5))
- (-5 *1 (-897 *4 *5)) (-4 *5 (-1227)))))
-(((*1 *1)
- (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109))
- (-4 *4 (-672 *3))))
- ((*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570)))
- (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-763)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3903 (-788 *3)) (|:| |coef2| (-788 *3))))
- (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-2 (|:| -3903 *1) (|:| |coef2| *1)))
- (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 (-487 *3 *4))) (-14 *3 (-650 (-1186)))
- (-4 *4 (-458)) (-5 *1 (-637 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-592 *3)) (-4 *3 (-368)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-298 *6)) (-5 *4 (-115)) (-4 *6 (-436 *5))
- (-4 *5 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-650 *7))
- (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7))
- (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-650 (-298 *8))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *8))
- (-5 *6 (-650 *8)) (-4 *8 (-436 *7))
- (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7))
- (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-115))) (-5 *6 (-650 (-298 *8)))
- (-4 *8 (-436 *7)) (-5 *5 (-298 *8))
- (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-298 *5)) (-5 *4 (-115)) (-4 *5 (-436 *6))
- (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6))
- (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6))
- (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-5 *6 (-650 *3))
- (-4 *3 (-436 *7)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52))
- (-5 *1 (-321 *7 *3)))))
+ (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
+ (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *4 (-777))
- (-5 *2 (-695 (-227))) (-5 *1 (-270)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-562)) (-4 *2 (-458)) (-5 *1 (-978 *2 *3))
- (-4 *3 (-1253 *2)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-650 (-570)))
- (|:| |cols| (-650 (-570)))))
- (-5 *4 (-695 *12)) (-5 *5 (-650 (-413 (-959 *9))))
- (-5 *6 (-650 (-650 *12))) (-5 *7 (-777)) (-5 *8 (-570))
- (-4 *9 (-13 (-311) (-148))) (-4 *12 (-956 *9 *11 *10))
- (-4 *10 (-13 (-856) (-620 (-1186)))) (-4 *11 (-799))
+ (-12 (-4 *5 (-370)) (-4 *5 (-564))
(-5 *2
- (-2 (|:| |eqzro| (-650 *12)) (|:| |neqzro| (-650 *12))
- (|:| |wcond| (-650 (-959 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *9))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *9)))))))))
- (-5 *1 (-931 *9 *10 *11 *12)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-4 *7 (-1253 *5)) (-4 *4 (-730 *5 *7))
- (-5 *2 (-2 (|:| -2565 (-695 *6)) (|:| |vec| (-1277 *5))))
- (-5 *1 (-817 *5 *6 *7 *4 *3)) (-4 *6 (-662 *5)) (-4 *3 (-662 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-380 *4 *2))
- (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453)))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *3 (-959 (-570)))
- (-5 *1 (-334))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *1 (-334)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-996 *3 *4 *5 *2))
- (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-856)) (-4 *5 (-916)) (-4 *6 (-799))
- (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-424 (-1182 *8)))
- (-5 *1 (-913 *5 *6 *7 *8)) (-5 *4 (-1182 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-1253 *4)) (-5 *2 (-424 (-1182 *5)))
- (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))))
+ (-2 (|:| |minor| (-652 (-930))) (|:| -3179 *3)
+ (|:| |minors| (-652 (-652 (-930)))) (|:| |ops| (-652 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-930)) (-4 *3 (-664 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-545 *4 *2 *5 *6))
- (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))
- (-5 *2 (-1044)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-650 (-115))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-4 *4 (-1109))
- (-5 *1 (-579 *4 *2)) (-4 *2 (-436 *4)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-650 (-618 *6))) (-5 *4 (-1186)) (-5 *2 (-618 *6))
- (-4 *6 (-436 *5)) (-4 *5 (-1109)) (-5 *1 (-579 *5 *6)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-12 (-5 *3 (-697 (-322 (-227))))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))))
+ (-2 (|:| |stiffnessFactor| (-386)) (|:| |stabilityFactor| (-386))))
(-5 *1 (-207)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-650 *2)) (-5 *1 (-114 *2))
- (-4 *2 (-1109))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-650 *4))) (-4 *4 (-1109))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109))
- (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-650 *4)))
- (-5 *1 (-114 *4)) (-4 *4 (-1109))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058))
- (-5 *1 (-720 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227)))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3))
- (-4 *3 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3)))
- (-4 *3 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-413 (-570))))
- (-5 *1 (-309)))))
-(((*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-777)) (-5 *1 (-567)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799))
- (-5 *1 (-510 *4 *5 *6 *2)) (-4 *2 (-956 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928))))
- ((*1 *1 *1 *1) (-5 *1 (-1232))) ((*1 *1 *1 *1) (-5 *1 (-1233)))
- ((*1 *1 *1 *1) (-5 *1 (-1234))) ((*1 *1 *1 *1) (-5 *1 (-1235))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-912 (-570))) (-5 *4 (-570)) (-5 *2 (-695 *4))
- (-5 *1 (-1037 *5)) (-4 *5 (-1058))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1037 *4))
- (-4 *4 (-1058))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-912 (-570)))) (-5 *4 (-570))
- (-5 *2 (-650 (-695 *4))) (-5 *1 (-1037 *5)) (-4 *5 (-1058))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-650 (-570)))) (-5 *2 (-650 (-695 (-570))))
- (-5 *1 (-1037 *4)) (-4 *4 (-1058)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-413 (-570))) (-4 *1 (-560 *3))
- (-4 *3 (-13 (-410) (-1212)))))
- ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-413 *1)) (-4 *1 (-1253 *3)) (-4 *3 (-1058))
- (-4 *3 (-562))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-4 *6 (-893 *5)) (-5 *2 (-892 *5 *6 (-650 *6)))
- (-5 *1 (-894 *5 *6 *4)) (-5 *3 (-650 *6)) (-4 *4 (-620 (-899 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 *3))) (-5 *1 (-894 *5 *3 *4))
- (-4 *3 (-1047 (-1186))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 (-959 *3))))
- (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-1058))
- (-3201 (-4 *3 (-1047 (-1186)))) (-4 *3 (-893 *5))
- (-4 *4 (-620 (-899 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-5 *2 (-896 *5 *3)) (-5 *1 (-894 *5 *3 *4))
- (-3201 (-4 *3 (-1047 (-1186)))) (-3201 (-4 *3 (-1058)))
- (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *1 *1) (-5 *1 (-227)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *1 *1) (-5 *1 (-384))) ((*1 *1) (-5 *1 (-384))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-1111 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-650 *4))) (-5 *1 (-911 *4))
- (-5 *3 (-650 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-911 *4))
- (-5 *3 (-1111 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227)))
- (-5 *1 (-703))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-227)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1 (-950 (-227)) (-227) (-227)))
- (-5 *4 (-1103 (-227))) (-5 *5 (-650 (-266))) (-5 *1 (-703)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-1058)) (-4 *4 (-1109))
- (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -2940 (-570))))
- (-4 *1 (-436 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1058)) (-4 *4 (-1109))
- (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -2940 (-570))))
- (-4 *1 (-436 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109))
- (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -2940 (-570))))
- (-4 *1 (-436 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -2940 (-777))))
- (-5 *1 (-899 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-2 (|:| |var| *5) (|:| -2940 (-777))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058))
- (-4 *7 (-956 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -2940 (-570))))
- (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $))
- (-15 -1599 (*7 $))))))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-762)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4452)) (-4 *1 (-237 *3))
- (-4 *3 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1227)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-224 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-4 *1 (-257 *3))))
- ((*1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3))
- (-4 *3 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1253 *6))
- (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570))))
- (-4 *8 (-1253 (-413 *7))) (-5 *2 (-592 *3))
- (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-570)) (-5 *1 (-492 *4))
- (-4 *4 (-1253 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-4 *2 (-1253 *5))
- (-5 *1 (-1271 *5 *2 *6 *3)) (-4 *6 (-662 *2)) (-4 *3 (-1268 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-980)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2681 (-650 *1))))
- (-4 *1 (-372 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-459 *3 *4 *5 *6))
- (|:| -2681 (-650 (-459 *3 *4 *5 *6)))))
- (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *1 *1) (-4 *1 (-635)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011) (-1212))))))
-(((*1 *1 *1) (-4 *1 (-551))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
- (-5 *7 (-695 (-570)))
- (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-320 (-227))) (-5 *2 (-413 (-570))) (-5 *1 (-309)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1244 (-570))) (-4 *1 (-286 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1227)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334))
- (-5 *1 (-336)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570))))
- (-4 *5 (-893 (-570)))
- (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-573 *5 *3)) (-4 *3 (-635))
- (-4 *3 (-13 (-27) (-1212) (-436 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1186)) (-5 *4 (-849 *2)) (-4 *2 (-1148))
- (-4 *2 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570)))
- (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570))))
- (-5 *1 (-573 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058))
- (-5 *2 (-487 *4 *5)) (-5 *1 (-951 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-1227)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-777))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1058))
- (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288)))
- (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-618 *3)) (-4 *3 (-1109))))
- ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))))
-(((*1 *1 *1) (-4 *1 (-1069))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-816 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 (-413 *6))) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2 (-2 (|:| -2681 (-650 (-413 *6))) (|:| -2565 (-695 *5))))
- (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
+ (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -3491 ($ *7)))))
+ (-4 *7 (-856))
+ (-4 *8
+ (-13 (-1257 *3 *7) (-370) (-1214)
+ (-10 -8 (-15 -3011 ($ $)) (-15 -4161 ($ $)))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-816 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 *6 (-413 *6))) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2 (-2 (|:| -2681 (-650 (-413 *6))) (|:| -2565 (-695 *5))))
- (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-1047 (-413 *2)))) (-5 *2 (-570))
- (-5 *1 (-116 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1268 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-828)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
- (-5 *2 (-1044)) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-334)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1268 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-1277 (-1110 *3 *4))) (-5 *1 (-1110 *3 *4))
- (-14 *3 (-928)) (-14 *4 (-928)))))
-(((*1 *1) (-5 *1 (-1091))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1247 *3 *2))
- (-4 *2 (-1253 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1277 (-1186))) (-5 *3 (-1277 (-459 *4 *5 *6 *7)))
- (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928))
- (-14 *6 (-650 (-1186))) (-14 *7 (-1277 (-695 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-459 *4 *5 *6 *7)))
- (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928))
- (-14 *6 (-650 *2)) (-14 *7 (-1277 (-695 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-459 *3 *4 *5 *6))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186)))
- (-14 *6 (-1277 (-695 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-1186))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186)))
- (-14 *6 (-1277 (-695 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-928)) (-14 *5 (-650 *2)) (-14 *6 (-1277 (-695 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-459 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-928))
- (-14 *4 (-650 (-1186))) (-14 *5 (-1277 (-695 *2))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-458))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *1))))
- (-4 *1 (-1080 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1231)))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))))
+ (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8))
+ (-14 *10 (-1188)))))
+(((*1 *1 *1) (-4 *1 (-637)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-1256 *3 *2))
- (-4 *2 (-13 (-1253 *3) (-562) (-10 -8 (-15 -3903 ($ $ $))))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227))))
- (-5 *2 (-1044)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-777)) (-4 *6 (-368)) (-5 *4 (-1221 *6))
- (-5 *2 (-1 (-1166 *4) (-1166 *4))) (-5 *1 (-1285 *6))
- (-5 *5 (-1166 *4)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
(((*1 *2)
- (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5)))
- (-5 *2 (-650 (-650 *4))) (-5 *1 (-346 *3 *4 *5 *6))
- (-4 *3 (-347 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-4 *3 (-373)) (-5 *2 (-650 (-650 *3))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-176 *3)) (-4 *3 (-311))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-680 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-746 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-856))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *1 (-989 *3)) (-4 *3 (-1058))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7))
- (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))))
-(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-650 *3)) (-5 *1 (-968 *3)) (-4 *3 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-252)) (-5 *1 (-337)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-695 *4)) (-4 *4 (-1058)) (-5 *1 (-1151 *3 *4))
- (-14 *3 (-777)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-5 *2 (-112)))))
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2))
+ (-4 *3 (-564)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1277 *5)) (-5 *3 (-777)) (-5 *4 (-1129)) (-4 *5 (-354))
- (-5 *1 (-534 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856))
- (-5 *2 (-59 (-650 (-678 *5)))) (-5 *1 (-678 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *2 (-777))
- (-5 *1 (-1174 *4 *5)) (-14 *4 (-928))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5))
- (-14 *4 (-928)) (-4 *5 (-1058))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058))
- (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-884))))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-884))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-572))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-514))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-600))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-486))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-634))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1101))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1084))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-981))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-182))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1047))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-317))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-679))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-533))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1290))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1077))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-689))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1126))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-614))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-139))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-1289))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-684))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-220))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1148)) (-5 *2 (-532))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193)))))
+(((*1 *1 *1) (-4 *1 (-175)))
((*1 *1 *1)
- (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-602 *3)) (-4 *3 (-1058))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-4 *5 (-856)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $))
- (-15 -1599 ((-1134 *3 (-618 $)) $))
- (-15 -2869 ($ (-1134 *3 (-618 $))))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-585)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1009 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-354))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+ (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1282)) (-5 *1 (-1229))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1282)) (-5 *1 (-1229)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1292 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174))
- (-5 *1 (-670 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-670 *3 *4)) (-5 *1 (-1297 *3 *4))
- (-4 *3 (-856)) (-4 *4 (-174)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2))
- (-4 *2 (-1268 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1253 *3))
- (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1268 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2))
- (-4 *2 (-1268 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148)))
- (-5 *1 (-1162 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1244 (-570))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856))
- (-4 *4 (-269 *3)) (-4 *5 (-799)))))
-(((*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368))))
+ (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *2 (-415 (-961 *4))) (-5 *1 (-933 *4 *5 *6 *3))
+ (-4 *3 (-958 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5))
+ (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *2 (-697 (-415 (-961 *4))))
+ (-5 *1 (-933 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1277 *4)) (-5 *1 (-534 *4))
- (-4 *4 (-354)))))
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5))
+ (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *2 (-652 (-415 (-961 *4))))
+ (-5 *1 (-933 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-699 (-286)))) (-5 *1 (-169)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-112)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-115)) (-4 *4 (-1058)) (-5 *1 (-720 *4 *2))
- (-4 *2 (-654 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-842 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-368)) (-4 *6 (-1253 (-413 *2)))
- (-4 *2 (-1253 *5)) (-5 *1 (-217 *5 *2 *6 *3))
- (-4 *3 (-347 *5 *2 *6)))))
+ (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-309))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-899 *3)) (|:| |den| (-899 *3))))
- (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
+ (-12 (-5 *3 (-936))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-777)) (-5 *4 (-1277 *2)) (-4 *5 (-311))
- (-4 *6 (-1001 *5)) (-4 *2 (-13 (-415 *6 *7) (-1047 *6)))
- (-5 *1 (-419 *5 *6 *7 *2)) (-4 *7 (-1253 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3))
- (-4 *3 (-1109)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-173)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3903 *3)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2))
- (-4 *2 (-1253 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1277 *1)) (-4 *1 (-372 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4))
+ (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
+ (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572)))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-413 *5))
- (|:| |c2| (-413 *5)) (|:| |deg| (-777))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1253 (-413 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-5 *2 (-1277 *3)) (-5 *1 (-718 *3 *4))
- (-4 *4 (-1253 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-618 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186)))
- (-4 *2 (-13 (-436 *5) (-27) (-1212)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1109)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368))
- (-5 *2 (-1182 (-959 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-761)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (|has| *1 (-6 -4453)) (-4 *1 (-1265 *3))
- (-4 *3 (-1227)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799))
- (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-1280))))
- ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1280)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3393 *4))) (-5 *1 (-978 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1233))))))
-(((*1 *1 *2)
+ (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
+ (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |mval| (-695 *3)) (|:| |invmval| (-695 *3))
- (|:| |genIdeal| (-510 *3 *4 *5 *6))))
- (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-785 *4))
- (-4 *4 (-13 (-368) (-854))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-697 (-284)))) (-5 *1 (-169)))))
-(((*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-1058))))
- ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354))
- (-5 *2 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129))))))
- (-5 *1 (-351 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-562))
- (-4 *7 (-956 *3 *5 *6))
- (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *8) (|:| |radicand| *8)))
- (-5 *1 (-960 *5 *6 *3 *7 *8)) (-5 *4 (-777))
- (-4 *8
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306))))
- ((*1 *1 *1) (-4 *1 (-306)))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-112))
- (-5 *1 (-678 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1253 *4)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-1141 *4 *2))
- (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4452) (-6 -4453))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-856)) (-4 *3 (-1227)) (-5 *1 (-1141 *3 *2))
- (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4452) (-6 -4453)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1168)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 (-171 (-413 (-570)))))
+ (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
+ (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-652 (-952 (-227))))))
+ ((*1 *2 *3)
+ (-12
(-5 *2
- (-650
- (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-570))
- (|:| |outvect| (-650 (-695 (-171 *4)))))))
- (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854))))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044))
- (-5 *1 (-754)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-695 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))))
+ (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
+ (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-652 (-652 (-952 (-227)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109)) (-5 *2 (-650 *1))
- (-4 *1 (-436 *3))))
+ (-12 (-4 *3 (-1060)) (-4 *4 (-1111)) (-5 *2 (-652 *1))
+ (-4 *1 (-389 *3 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-1109))))
+ (-12 (-5 *2 (-652 (-743 *3 *4))) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-734))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3))
- (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $))
- (-15 -1599 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1069)) (-4 *3 (-1212))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-958 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-650 (-950 (-227)))))
- (-5 *2 (-650 (-1103 (-227)))) (-5 *1 (-935)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1094))) (-5 *1 (-295)))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-1111 *3))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1212) (-436 *3)))
- (-14 *4 (-1186)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-4 *2 (-13 (-27) (-1212) (-436 *3) (-10 -8 (-15 -2869 ($ *4)))))
- (-4 *4 (-854))
- (-4 *5
- (-13 (-1255 *2 *4) (-368) (-1212)
- (-10 -8 (-15 -2375 ($ $)) (-15 -1363 ($ $)))))
- (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *6 (-992 *5)) (-14 *7 (-1186)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1109)) (-5 *1 (-971 *3 *2)) (-4 *3 (-1109)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1244 (-570))) (-4 *1 (-657 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1227)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))))
-(((*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-856))
- (-4 *3 (-13 (-174) (-723 (-413 (-570))))) (-14 *4 (-928))))
- ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856))))
- ((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-983)))))
-(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384))))
- ((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-384)))))
-(((*1 *1) (-5 *1 (-145)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-266)))))
-(((*1 *2 *1) (-12 (-5 *2 (-965 (-185 (-140)))) (-5 *1 (-337))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-612)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186))
- (-5 *2
- (-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227)))
- (|:| |singularities| (-1166 (-227)))))
- (-5 *1 (-105)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1253 *2)) (-4 *2 (-1231)) (-5 *1 (-149 *2 *4 *3))
- (-4 *3 (-1253 (-413 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-777)) (-4 *4 (-354))
- (-5 *1 (-534 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-950 *4)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1253 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
- (-5 *1 (-122 *3)) (-4 *3 (-856))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 *4)) (-4 *4 (-13 (-29 *3) (-1212)))
- (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-589 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 (-413 (-959 *3))))
- (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-595 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-368))
- (-5 *2 (-2 (|:| -1493 *3) (|:| |special| *3))) (-5 *1 (-733 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1277 *5)) (-4 *5 (-368)) (-4 *5 (-1058))
- (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5))
- (-5 *3 (-650 (-695 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1277 (-1277 *5))) (-4 *5 (-368)) (-4 *5 (-1058))
- (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5))
- (-5 *3 (-650 (-695 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-650 *1)) (-4 *1 (-1153))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-650 *1)) (-4 *1 (-1153)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-413 (-1182 (-320 *3)))) (-4 *3 (-562))
- (-5 *1 (-1139 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5))
- (-4 *5 (-167 *4)) (-4 *4 (-551)) (-5 *1 (-150 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 *3)) (-4 *3 (-1253 *5))
- (-4 *5 (-1253 *4)) (-4 *4 (-354)) (-5 *1 (-363 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 (-1182 (-570)))) (-5 *3 (-1182 (-570)))
- (-5 *1 (-578))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 (-1182 *1))) (-5 *3 (-1182 *1))
- (-4 *1 (-916)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-965 (-1182 *4))) (-5 *1 (-362 *4))
- (-5 *3 (-1182 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-112))))
+ (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-112))
+ (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))))
-(((*1 *2)
- (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *3 (-1074 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-650 *5))) (-4 *5 (-1268 *4))
- (-4 *4 (-38 (-413 (-570))))
- (-5 *2 (-1 (-1166 *4) (-650 (-1166 *4)))) (-5 *1 (-1270 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3903 *3)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (-4 *1 (-1104 *3)) (-4 *3 (-1229)))))
+(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-1060))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-650 (-1182 *11))) (-5 *3 (-1182 *11))
- (-5 *4 (-650 *10)) (-5 *5 (-650 *8)) (-5 *6 (-650 (-777)))
- (-5 *7 (-1277 (-650 (-1182 *8)))) (-4 *10 (-856))
- (-4 *8 (-311)) (-4 *11 (-956 *8 *9 *10)) (-4 *9 (-799))
- (-5 *1 (-713 *9 *10 *8 *11)))))
+ (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572)))
+ (-5 *1 (-192)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |k| (-1186)) (|:| |c| (-1299 *3)))))
- (-5 *1 (-1299 *3)) (-4 *3 (-1058))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |k| *3) (|:| |c| (-1301 *3 *4)))))
- (-5 *1 (-1301 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *5 (-1253 *4)) (-5 *2 (-650 (-659 (-413 *5))))
- (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-562))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-531)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-1227)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-171 (-227))) (-5 *6 (-1168))
- (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856))
- (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-777)) (-4 *5 (-174))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-777)) (-4 *5 (-174))))
- ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-1224 *3))
+ (-4 *3 (-985)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-122 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-858))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-288 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4)
- (-249 *4 (-413 (-570)))))
- (-5 *3 (-650 (-870 *4))) (-14 *4 (-650 (-1186))) (-14 *5 (-777))
- (-5 *1 (-511 *4 *5)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
- (-4 *3 (-378 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-509 *4 *5 *6 *3)) (-4 *6 (-378 *4)) (-4 *3 (-378 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562))
- (-5 *2 (-2 (|:| |num| (-695 *4)) (|:| |den| *4)))
- (-5 *1 (-699 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *6 (-1253 *5))
- (-5 *2 (-2 (|:| -2557 *7) (|:| |rh| (-650 (-413 *6)))))
- (-5 *1 (-813 *5 *6 *7 *3)) (-5 *4 (-650 (-413 *6)))
- (-4 *7 (-662 *6)) (-4 *3 (-662 (-413 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1246 *4 *5 *3))
- (-4 *3 (-1253 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-761)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
- (-5 *2 (-1044)) (-5 *1 (-755)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-601 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1058)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8)))
- (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8)))
- (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -1567 (-115)) (|:| |arg| (-650 (-899 *3)))))
- (-5 *1 (-899 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-899 *4)))
- (-5 *1 (-899 *4)) (-4 *4 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-570))
- (-5 *6
- (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))))
- (-5 *7 (-1 (-1282) (-1277 *5) (-1277 *5) (-384)))
- (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282))
- (-5 *1 (-794))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-570))
- (-5 *6
- (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2072 (-384))))
- (-5 *7 (-1 (-1282) (-1277 *5) (-1277 *5) (-384)))
- (-5 *3 (-1277 (-384))) (-5 *5 (-384)) (-5 *2 (-1282))
- (-5 *1 (-794)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))
- (-5 *1 (-1217 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3)))))
+ (-2
+ (|:| -1640
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3762
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1168 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4336
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-567))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-4 *1 (-703 *2)) (-4 *2 (-1111))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4))
- (-5 *3 (-650 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-368)) (-5 *2 (-928)) (-5 *1 (-332 *3 *4))
- (-4 *3 (-333 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-368)) (-5 *2 (-839 (-928))) (-5 *1 (-332 *3 *4))
- (-4 *3 (-333 *4))))
- ((*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928))))
- ((*1 *2)
- (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227)))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-799)) (-4 *5 (-1058)) (-4 *6 (-956 *5 *4 *2))
- (-4 *2 (-856)) (-5 *1 (-957 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *6)) (-15 -1587 (*6 $))
- (-15 -1599 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562))
- (-5 *2 (-1186)) (-5 *1 (-1052 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1253 *4)) (-5 *1 (-815 *4 *2 *3 *5))
- (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2))
- (-4 *5 (-662 (-413 *2))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *3 (-129)) (-5 *2 (-777)))))
-(((*1 *2 *3)
(-12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
(-5 *2
(-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1166 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2744
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-565)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792)))))
+ (|:| -1640
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (|:| -3762
+ (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
+ (|:| |expense| (-386)) (|:| |accuracy| (-386))
+ (|:| |intermediateResults| (-386))))))
+ (-5 *1 (-811))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
+ (-4 *3 (-1111)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4))
- (-4 *4 (-354)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-4 *7 (-856))
- (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-4 *8 (-311))
- (-5 *2 (-650 (-777))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *5 (-777)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880)))
- (-5 *4 (-650 (-928))) (-5 *5 (-650 (-266))) (-5 *1 (-474))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880)))
- (-5 *4 (-650 (-928))) (-5 *1 (-474))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474))))
- ((*1 *1 *1) (-5 *1 (-474))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
+ (-12 (-4 *4 (-564)) (-5 *2 (-1279 (-697 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-697 *4)) (-4 *5 (-664 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-2 (|:| -4156 *4) (|:| -2023 (-570)))))
- (-4 *4 (-1109)) (-5 *2 (-1 *4)) (-5 *1 (-1026 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3))
- (-4 *3 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1072)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-866)) (-5 *2 (-697 (-555))) (-5 *3 (-555)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
(((*1 *2)
- (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-152 *2)) (-4 *2 (-1227))
- (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-950 (-227)))) (-5 *1 (-1278)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 (-570)))
- (-5 *2 (-1277 (-413 (-570)))) (-5 *1 (-1305 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311))))
- ((*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311))))
- ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311))))
- ((*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-570)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-331 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-522 *3 *4))
- (-14 *4 (-570)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4))
- (-5 *1 (-534 *4)))))
+ (-12 (-5 *2 (-2 (|:| -2331 (-652 *3)) (|:| -2891 (-652 *3))))
+ (-5 *1 (-1230 *3)) (-4 *3 (-1111)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *6))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
+ (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-1076 *3 *4 *2)) (-4 *2 (-858))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1047 (-570))) (-4 *3 (-562)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-436 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1182 *4)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1058)) (-4 *1 (-306))))
- ((*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3))))
- ((*1 *2) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1253 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368)))
- (-4 *2 (-1253 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-709 *3))
- (-4 *3 (-620 (-542)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227) (-227)))
- (-5 *1 (-709 *3)) (-4 *3 (-620 (-542))))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551)))))
+ (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)))))
(((*1 *2)
- (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-1129)) (-4 *4 (-354))
- (-5 *1 (-534 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1058))
- (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288)))
- (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1277 (-1277 (-570)))) (-5 *3 (-928)) (-5 *1 (-472)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109))
- (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-378 *3)) (-4 *3 (-1227)) (-4 *3 (-856)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-378 *4)) (-4 *4 (-1227))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-880))))
- ((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-4 *5 (-562))
- (-5 *2
- (-2 (|:| |minor| (-650 (-928))) (|:| -2557 *3)
- (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570))
- (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-413 (-959 *6)) (-1175 (-1186) (-959 *6))))
- (-5 *5 (-777)) (-4 *6 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *6)))))
- (-5 *1 (-296 *6)) (-5 *4 (-695 (-413 (-959 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5))))
- (|:| |eigmult| (-777)) (|:| |eigvec| (-650 *4))))
- (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5)))))
- (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5)))))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))))
-(((*1 *1 *2)
(-12
- (-5 *2
- (-650
- (-2
- (|:| -4144
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3165
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1166 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2744
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-565)))))
+ (-5 *2 (-2 (|:| -2891 (-652 (-1188))) (|:| -2331 (-652 (-1188)))))
+ (-5 *1 (-1231)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-5 *2 (-650 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109))
- (-5 *2 (-650 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1166 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1058))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 *3)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-732))))
- ((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-650 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1058)) (-5 *2 (-1166 *3)))))
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-399)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-618 *5))) (-4 *4 (-1109)) (-5 *2 (-618 *5))
- (-5 *1 (-579 *4 *5)) (-4 *5 (-436 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))))
-(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
-(((*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-882))))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-882))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-570))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1168))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-512))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-598))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-484))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1176))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-632))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1105))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1099))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1082))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-979))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-182))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1045))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-315))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-677))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-155))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1160))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-531))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1288))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1075))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-523))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-687))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1124))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-134))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-612))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-139))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1287))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-682))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-220))))
- ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-177))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-1094)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1231)) (-4 *5 (-1253 *3)) (-4 *6 (-1253 (-413 *5)))
- (-5 *2 (-112)) (-5 *1 (-346 *4 *3 *5 *6)) (-4 *4 (-347 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-837)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-650
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-799)) (-4 *3 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856))
- (-5 *1 (-455 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 *3 (-650 *1)))
- (-4 *1 (-1080 *4 *5 *6 *3)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-777)) (|:| -3147 *4))) (-5 *5 (-777))
- (-4 *4 (-956 *6 *7 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-455 *6 *7 *8 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))))
-(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-158)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570))
- (-5 *2 (-1044)) (-5 *1 (-762)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1033 *3))
- (-4 *3 (-13 (-854) (-368) (-1031)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3))
- (-4 *3 (-1253 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368)))
- (-4 *3 (-1253 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-601 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1237 *3)) (-4 *3 (-1058))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1268 *3)) (-4 *3 (-1058)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-788 *3)) (|:| |polden| *3) (|:| -4131 (-777))))
- (-5 *1 (-788 *3)) (-4 *3 (-1058))))
+ (-12 (-4 *4 (-370)) (-4 *4 (-564)) (-4 *5 (-1255 *4))
+ (-5 *2 (-2 (|:| -3278 (-631 *4 *5)) (|:| -2707 (-415 *5))))
+ (-5 *1 (-631 *4 *5)) (-5 *3 (-415 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4))
+ (-14 *3 (-930)) (-4 *4 (-1060))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4131 (-777))))
- (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227))
- (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))
- (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-2 (|:| -2340 *4) (|:| -2650 (-570)))))
- (-4 *4 (-1253 (-570))) (-5 *2 (-743 (-777))) (-5 *1 (-448 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-424 *5)) (-4 *5 (-1253 *4)) (-4 *4 (-1058))
- (-5 *2 (-743 (-777))) (-5 *1 (-450 *4 *5)))))
+ (-12 (-4 *3 (-460)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1255 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1231)) (-4 *5 (-1253 (-413 *2)))
- (-4 *2 (-1253 *4)) (-5 *1 (-346 *3 *4 *2 *5))
- (-4 *3 (-347 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1231))
- (-4 *4 (-1253 (-413 *2))) (-4 *2 (-1253 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-980)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777))
- (-4 *4 (-174)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562)))))
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356))
+ (-5 *2 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131))))))
+ (-5 *1 (-353 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-356)) (-4 *2 (-1060)) (-5 *1 (-720 *2 *3))
+ (-4 *3 (-1255 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
+(((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-544))) (-5 *1 (-544)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-572))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2565 (-695 (-413 (-959 *4))))
- (|:| |vec| (-650 (-413 (-959 *4)))) (|:| -4412 (-777))
- (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))
- (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799))
- (-5 *2
- (-2 (|:| |partsol| (-1277 (-413 (-959 *4))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *4)))))))
- (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
+ (-12 (-5 *3 (-1279 *5)) (-4 *5 (-647 *4)) (-4 *4 (-564))
+ (-5 *2 (-112)) (-5 *1 (-646 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1253 *3))
- (-4 *3 (-13 (-368) (-148) (-1047 (-570)))) (-5 *1 (-574 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1280)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4))
- (-4 *4 (-354)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-227)) (-5 *1 (-309)))))
-(((*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1047 (-570)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-320 (-570))) (|:| -3014 (-320 (-384)))
- (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185))))
- (-5 *1 (-1185)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-899 *6)))
- (-5 *5 (-1 (-896 *6 *8) *8 (-899 *6) (-896 *6 *8))) (-4 *6 (-1109))
- (-4 *8 (-13 (-1058) (-620 (-899 *6)) (-1047 *7)))
- (-5 *2 (-896 *6 *8)) (-4 *7 (-1058)) (-5 *1 (-948 *6 *7 *8)))))
-(((*1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1227)))))
-(((*1 *1) (-5 *1 (-145))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777)))
- (-5 *1 (-911 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300))))
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-316)) (-5 *1 (-300))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300))))
+ (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-318)) (-5 *1 (-302))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-302))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-1168))) (-5 *3 (-1168)) (-5 *2 (-316))
- (-5 *1 (-300)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227))
- (-5 *2 (-650 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-743 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-445))) (-5 *1 (-871)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-650
- (-2 (|:| -4412 (-777))
- (|:| |eqns|
- (-650
- (-2 (|:| |det| *7) (|:| |rows| (-650 (-570)))
- (|:| |cols| (-650 (-570))))))
- (|:| |fgb| (-650 *7)))))
- (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148)))
- (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777))
- (-5 *1 (-931 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-279 *4 *3))
- (-4 *3 (-13 (-436 *4) (-1011))))))
+ (-12 (-5 *4 (-652 (-1170))) (-5 *3 (-1170)) (-5 *2 (-318))
+ (-5 *1 (-302)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779)))
+ (-5 *1 (-913 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1046)) (-5 *1 (-848))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-322 (-386)))) (-5 *4 (-652 (-386)))
+ (-5 *2 (-1046)) (-5 *1 (-848)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115)))
- ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-551)))
- ((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058))))
+ ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-553)))
+ ((*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060))))
((*1 *1 *1)
- (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-311))
- (-5 *2 (-413 (-424 (-959 *4)))) (-5 *1 (-1051 *4)))))
-(((*1 *1) (-5 *1 (-443))))
+ (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-1058)) (-5 *2 (-1277 *4))
- (-5 *1 (-1187 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-5 *2 (-1277 *3)) (-5 *1 (-1187 *3))
- (-4 *3 (-1058)))))
+ (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 (-572)))
+ (-5 *2 (-1279 (-572))) (-5 *1 (-1307 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-564))
+ (-4 *7 (-958 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *8) (|:| |radicand| *8)))
+ (-5 *1 (-962 *5 *6 *3 *7 *8)) (-5 *4 (-779))
+ (-4 *8
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $))))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1268 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-650 *2) *2 *2 *2)) (-4 *2 (-1109))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-562))
+ (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060))
+ (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
+ (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4)))))
+(((*1 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1282)))))
+(((*1 *2 *2) (-12 (-5 *2 (-652 (-322 (-227)))) (-5 *1 (-272)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9))
+ (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *9 (-1076 *6 *7 *8))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1109))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-391 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109)) (-5 *2 (-650 *1))
- (-4 *1 (-436 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-1109))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3))
- (-5 *1 (-957 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $))
- (-15 -1599 (*7 $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *1)) (-5 *4 (-1277 *1)) (-4 *1 (-645 *5))
- (-4 *5 (-1058))
- (-5 *2 (-2 (|:| -2565 (-695 *5)) (|:| |vec| (-1277 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-695 *1)) (-4 *1 (-645 *4)) (-4 *4 (-1058))
- (-5 *2 (-695 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186)))
- (-4 *5 (-458))
+ (-652
+ (-2 (|:| -3179 (-652 *9)) (|:| -1746 *10) (|:| |ineq| (-652 *9)))))
+ (-5 *1 (-999 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-652 *10)) (-5 *5 (-112)) (-4 *10 (-1082 *6 *7 *8 *9))
+ (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *9 (-1076 *6 *7 *8))
(-5 *2
- (-2 (|:| |gblist| (-650 (-249 *4 *5)))
- (|:| |gvlist| (-650 (-570)))))
- (-5 *1 (-637 *4 *5)))))
+ (-652
+ (-2 (|:| -3179 (-652 *9)) (|:| -1746 *10) (|:| |ineq| (-652 *9)))))
+ (-5 *1 (-1118 *6 *7 *8 *9 *10)) (-5 *3 (-652 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-652 (-779)))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777))
- (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373))
- (-5 *2 (-1182 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373))
- (-5 *2 (-1182 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-570) "failed") *5)) (-4 *5 (-1058))
- (-5 *2 (-570)) (-5 *1 (-549 *5 *3)) (-4 *3 (-1253 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058))
- (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058))
- (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-562) (-148)))
- (-5 *2 (-2 (|:| -2403 *3) (|:| -2420 *3))) (-5 *1 (-1247 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1) (-4 *1 (-306))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-650 (-618 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-618 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1253 (-171 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373))))
- ((*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1253 *2)) (-4 *2 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1253 *2)) (-4 *2 (-1001 *3)) (-5 *1 (-419 *3 *2 *4 *5))
- (-4 *3 (-311)) (-4 *5 (-13 (-415 *2 *4) (-1047 *2)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-386)) (-5 *1 (-207)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
+ (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308))))
+ ((*1 *1 *1) (-4 *1 (-308)))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ ((*1 *1 *1) (-5 *1 (-870))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-336)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779))))
((*1 *2 *1)
- (-12 (-4 *4 (-1253 *2)) (-4 *2 (-1001 *3))
- (-5 *1 (-420 *3 *2 *4 *5 *6)) (-4 *3 (-311)) (-4 *5 (-415 *2 *4))
- (-14 *6 (-1277 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-4 *5 (-1058))
- (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1212) (-288)))
- (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1253 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-501)))) (-5 *1 (-501))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-501))) (-5 *1 (-501))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-650 (-618 (-501))))
- (-5 *1 (-501))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-618 (-501))) (-5 *1 (-501))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-928)) (-4 *4 (-354))
- (-5 *1 (-534 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-730 *4 *2)) (-4 *2 (-1253 *4))
- (-5 *1 (-781 *4 *2 *5 *3)) (-4 *3 (-1253 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174))))
- ((*1 *1 *1) (-4 *1 (-1069))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))))
+ (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-779)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-652
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858))
+ (-5 *1 (-457 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1227)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562))
- (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562))
- (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2681 (-650 *6)))
- *7 *6))
- (-4 *6 (-368)) (-4 *7 (-662 *6))
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-336))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-460))
(-5 *2
- (-2 (|:| |particular| (-3 (-1277 *6) "failed"))
- (|:| -2681 (-650 (-1277 *6)))))
- (-5 *1 (-819 *6 *7)) (-5 *4 (-1277 *6)))))
-(((*1 *1) (-5 *1 (-334))))
+ (-652
+ (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4))))
+ (|:| |eigmult| (-779))
+ (|:| |eigvec| (-652 (-697 (-415 (-961 *4))))))))
+ (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1227))
- (-4 *4 (-378 *2)) (-4 *5 (-378 *2))))
+ (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229))
+ (-4 *4 (-380 *2)) (-4 *5 (-380 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4453)) (-4 *1 (-120 *3))
- (-4 *3 (-1227))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3))
+ (-4 *3 (-1229))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4453)) (-4 *1 (-120 *3))
- (-4 *3 (-1227))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4455)) (-4 *1 (-120 *3))
+ (-4 *3 (-1229))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109))
- (-4 *2 (-1227))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1186)) (-5 *1 (-638))))
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111))
+ (-4 *2 (-1229))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1188)) (-5 *1 (-640))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1244 (-570))) (|has| *1 (-6 -4453)) (-4 *1 (-657 *2))
- (-4 *2 (-1227))))
+ (-12 (-5 *3 (-1246 (-572))) (|has| *1 (-6 -4455)) (-4 *1 (-659 *2))
+ (-4 *2 (-1229))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
+ (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4453)) (-4 *1 (-1019 *2))
- (-4 *2 (-1227))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2))
+ (-4 *2 (-1229))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1203 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))
+ (-12 (-4 *1 (-1205 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2))
- (-4 *2 (-1227))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2))
+ (-4 *2 (-1229))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4453)) (-4 *1 (-1265 *3))
- (-4 *3 (-1227))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3))
+ (-4 *3 (-1229))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2))
- (-4 *2 (-1227)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1226))) (-5 *3 (-1226)) (-5 *1 (-687)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *1) (-5 *1 (-603))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-424 *5)) (-4 *5 (-562))
- (-5 *2
- (-2 (|:| -2940 (-777)) (|:| -1747 *5) (|:| |radicand| (-650 *5))))
- (-5 *1 (-324 *5)) (-5 *4 (-777))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-570)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2))
+ (-4 *2 (-1229)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-565 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892)) (-5 *3 (-572)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-112))
+ (-5 *1 (-680 *4)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-413 *5)) (-4 *4 (-1231)) (-4 *5 (-1253 *4))
- (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1253 *3))))
+ (-12 (-5 *3 (-415 *5)) (-4 *4 (-1233)) (-4 *5 (-1255 *4))
+ (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1255 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570)))
+ (-12 (-5 *3 (-1190 (-415 (-572)))) (-5 *2 (-415 (-572)))
(-5 *1 (-192))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-695 (-320 (-227)))) (-5 *3 (-650 (-1186)))
- (-5 *4 (-1277 (-320 (-227)))) (-5 *1 (-207))))
+ (-12 (-5 *2 (-697 (-322 (-227)))) (-5 *3 (-652 (-1188)))
+ (-5 *4 (-1279 (-322 (-227)))) (-5 *1 (-207))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-298 *3))) (-4 *3 (-313 *3)) (-4 *3 (-1109))
- (-4 *3 (-1227)) (-5 *1 (-298 *3))))
+ (-12 (-5 *2 (-652 (-300 *3))) (-4 *3 (-315 *3)) (-4 *3 (-1111))
+ (-4 *3 (-1229)) (-5 *1 (-300 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-313 *2)) (-4 *2 (-1109)) (-4 *2 (-1227))
- (-5 *1 (-298 *2))))
+ (-12 (-4 *2 (-315 *2)) (-4 *2 (-1111)) (-4 *2 (-1229))
+ (-5 *1 (-300 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 (-650 *1))))
- (-4 *1 (-306))))
+ (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 (-652 *1))))
+ (-4 *1 (-308))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306))))
+ (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306))))
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 *1)) (-4 *1 (-308))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306))))
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1 *1 (-652 *1))) (-4 *1 (-308))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 (-650 *1))))
- (-4 *1 (-306))))
+ (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 (-652 *1))))
+ (-4 *1 (-308))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306))))
+ (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-1 *1 *1))) (-4 *1 (-308))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-298 *3))) (-4 *1 (-313 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-652 (-300 *3))) (-4 *1 (-315 *3)) (-4 *3 (-1111))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-298 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-300 *3)) (-4 *1 (-315 *3)) (-4 *3 (-1111))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-570))) (-5 *4 (-1188 (-413 (-570))))
- (-5 *1 (-314 *2)) (-4 *2 (-38 (-413 (-570))))))
+ (-12 (-5 *3 (-1 *2 (-572))) (-5 *4 (-1190 (-415 (-572))))
+ (-5 *1 (-316 *2)) (-4 *2 (-38 (-415 (-572))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *1)) (-4 *1 (-379 *4 *5))
- (-4 *4 (-856)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *1)) (-4 *1 (-381 *4 *5))
+ (-4 *4 (-858)) (-4 *5 (-174))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058))))
+ (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 (-650 *1)))
- (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058))))
+ (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *4 (-1 *1 (-652 *1)))
+ (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-1060))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777)))
- (-5 *4 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-436 *5)) (-4 *5 (-1109))
- (-4 *5 (-1058))))
+ (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779)))
+ (-5 *4 (-652 (-1 *1 (-652 *1)))) (-4 *1 (-438 *5)) (-4 *5 (-1111))
+ (-4 *5 (-1060))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777)))
- (-5 *4 (-650 (-1 *1 *1))) (-4 *1 (-436 *5)) (-4 *5 (-1109))
- (-4 *5 (-1058))))
+ (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-652 (-779)))
+ (-5 *4 (-652 (-1 *1 *1))) (-4 *1 (-438 *5)) (-4 *5 (-1111))
+ (-4 *5 (-1060))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 *1)) (-5 *4 (-1186))
- (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-620 (-542)))))
+ (-12 (-5 *2 (-652 (-115))) (-5 *3 (-652 *1)) (-5 *4 (-1188))
+ (-4 *1 (-438 *5)) (-4 *5 (-1111)) (-4 *5 (-622 (-544)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1186)) (-4 *1 (-436 *4)) (-4 *4 (-1109))
- (-4 *4 (-620 (-542)))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1188)) (-4 *1 (-438 *4)) (-4 *4 (-1111))
+ (-4 *4 (-622 (-544)))))
((*1 *1 *1)
- (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-620 (-542)))))
+ (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)) (-4 *2 (-622 (-544)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-1186))) (-4 *1 (-436 *3)) (-4 *3 (-1109))
- (-4 *3 (-620 (-542)))))
+ (-12 (-5 *2 (-652 (-1188))) (-4 *1 (-438 *3)) (-4 *3 (-1111))
+ (-4 *3 (-622 (-544)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109))
- (-4 *3 (-620 (-542)))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))
+ (-4 *3 (-622 (-544)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1227))))
+ (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1229))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *5)) (-4 *1 (-520 *4 *5))
- (-4 *4 (-1109)) (-4 *5 (-1227))))
+ (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 *5)) (-4 *1 (-522 *4 *5))
+ (-4 *4 (-1111)) (-4 *5 (-1229))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-839 *3)) (-4 *3 (-368)) (-5 *1 (-724 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))
+ (-12 (-5 *2 (-841 *3)) (-4 *3 (-370)) (-5 *1 (-726 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186)) (-4 *4 (-562))
- (-5 *1 (-1052 *4))))
+ (-12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188)) (-4 *4 (-564))
+ (-5 *1 (-1054 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-650 (-1186))) (-5 *4 (-650 (-413 (-959 *5))))
- (-5 *2 (-413 (-959 *5))) (-4 *5 (-562)) (-5 *1 (-1052 *5))))
+ (-12 (-5 *3 (-652 (-1188))) (-5 *4 (-652 (-415 (-961 *5))))
+ (-5 *2 (-415 (-961 *5))) (-4 *5 (-564)) (-5 *1 (-1054 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-5 *2 (-413 (-959 *4)))
- (-4 *4 (-562)) (-5 *1 (-1052 *4))))
+ (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-5 *2 (-415 (-961 *4)))
+ (-4 *4 (-564)) (-5 *1 (-1054 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-298 (-413 (-959 *4))))) (-5 *2 (-413 (-959 *4)))
- (-4 *4 (-562)) (-5 *1 (-1052 *4))))
+ (-12 (-5 *3 (-652 (-300 (-415 (-961 *4))))) (-5 *2 (-415 (-961 *4)))
+ (-4 *4 (-564)) (-5 *1 (-1054 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1166 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *1) (-4 *1 (-551))))
-(((*1 *2 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1168 *3)))))
(((*1 *2 *3 *2)
- (-12 (-4 *1 (-793)) (-5 *2 (-1044))
- (-5 *3
- (-2 (|:| |fn| (-320 (-227)))
- (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-793)) (-5 *2 (-1044))
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227)))))))
+ (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-38 (-415 (-572))))
+ (-4 *2 (-174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-572))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
+(((*1 *1 *1) (-4 *1 (-553))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1278))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278))))
+ (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1280))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1279))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1279))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1279)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))))
-(((*1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *2 (-777)) (-5 *1 (-596)))))
-(((*1 *1 *1) (-4 *1 (-1069)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1255 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2067 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-1227))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1227))
- (-14 *4 (-570)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458))
- (-5 *2
- (-2 (|:| |dpolys| (-650 (-249 *5 *6)))
- (|:| |coords| (-650 (-570)))))
- (-5 *1 (-477 *5 *6 *7)) (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-570))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856))
- (-5 *1 (-455 *5 *6 *7 *4)))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112))
- (-5 *2 (-1044)) (-5 *1 (-751)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-650
- (-2
- (|:| -4144
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227))))
- (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227)))
- (|:| |g| (-320 (-227))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3165
- (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384))
- (|:| |expense| (-384)) (|:| |accuracy| (-384))
- (|:| |intermediateResults| (-384)))))))
- (-5 *1 (-809)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1253 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3))
- (-4 *3 (-1253 (-413 *4))))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1058))
- (-4 *2 (-1237 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7))))
- (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-827)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-871))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243)) (-5 *3 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-311))
- (-5 *2 (-777)) (-5 *1 (-461 *5 *3)))))
-(((*1 *1 *1) (-5 *1 (-1072))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1869 (-570)) (|:| -2660 (-650 *3))))
- (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))))
-(((*1 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-368) (-854)))
- (-5 *2 (-650 (-2 (|:| -2660 (-650 *3)) (|:| -3070 *5))))
- (-5 *1 (-183 *5 *3)) (-4 *3 (-1253 (-171 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-368) (-854)))
- (-5 *2 (-650 (-2 (|:| -2660 (-650 *3)) (|:| -3070 *4))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))
- (-5 *2 (-384)) (-5 *1 (-270))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-309)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109))
- (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934))
- (-5 *1 (-932 *3)) (-4 *3 (-620 (-542)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-5 *2 (-934)) (-5 *1 (-932 *3))
- (-4 *3 (-620 (-542)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-934))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-650 *5) *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5))
- (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -2557 *3))))
- (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6))
- (-4 *7 (-662 (-413 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-650 *5) *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *6 (-1253 *5))
- (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -2557 (-660 *6 (-413 *6))))))
- (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6))))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1186))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1212) (-966)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2681 (-650 *4))))
- (-5 *1 (-807 *6 *4 *3)) (-4 *3 (-662 *4)))))
+ (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-1281))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1281)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1109)) (-4 *2 (-907 *4)) (-5 *1 (-698 *4 *2 *5 *3))
- (-4 *5 (-378 *2)) (-4 *3 (-13 (-378 *4) (-10 -7 (-6 -4452)))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1220 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4)))))
+ (|partial| -12 (-5 *2 (-652 (-1184 *7))) (-5 *3 (-1184 *7))
+ (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-918)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-5 *1 (-915 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5))
+ (-4 *5 (-1255 *4)) (-4 *4 (-918)) (-5 *1 (-916 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3))
+ (-4 *3 (-1255 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1166 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1058))
- (-5 *3 (-413 (-570))) (-5 *1 (-1170 *4)))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2))
+ (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-245)))))
+(((*1 *1) (-5 *1 (-131))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1204 *4 *5))
- (-4 *4 (-1109)) (-4 *5 (-1109)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-333 *4)) (-4 *4 (-368))
- (-5 *2 (-695 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1277 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-695 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-1277 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1253 *4)) (-5 *2 (-695 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1253 *4)) (-5 *2 (-1277 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-415 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1253 *4)) (-5 *2 (-695 *4))))
+ (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636)))) (-5 *3 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-756)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-457 *4 *5 *6 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-827 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3))
- (-5 *2 (-1277 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-423 *4)) (-4 *4 (-174))
- (-5 *2 (-695 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1277 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-695 *5))) (-5 *3 (-695 *5)) (-4 *5 (-368))
- (-5 *2 (-1277 *5)) (-5 *1 (-1095 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1232))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
+ (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1151 *3 *4)) (-14 *3 (-928)) (-4 *4 (-368))
- (-5 *1 (-1002 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-458))
- (-5 *2 (-487 *4 *5)) (-5 *1 (-637 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7))))
- (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))))
-(((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442)))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *2)) (-5 *1 (-181 *2)) (-4 *2 (-311))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-650 (-650 *4))) (-5 *2 (-650 *4)) (-4 *4 (-311))
- (-5 *1 (-181 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 *8))
- (-5 *4
- (-650
- (-2 (|:| -2681 (-695 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-695 *7)))))
- (-5 *5 (-777)) (-4 *8 (-1253 *7)) (-4 *7 (-1253 *6)) (-4 *6 (-354))
- (-5 *2
- (-2 (|:| -2681 (-695 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-695 *7))))
- (-5 *1 (-504 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-758)))))
+ (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1192)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2))
+ (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2))
+ (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-572))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148)))
+ (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5)))))
+ (-5 *1 (-1140 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148)))
+ (-5 *2 (-1177 (-652 (-322 *5)) (-652 (-300 (-322 *5)))))
+ (-5 *1 (-1140 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245)) (-5 *3 (-1170))))
+ ((*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-873))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132))
- (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 *4))))))
+ (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553))
+ (-5 *2 (-415 (-572)))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| -1747 *3) (|:| -3677 *4))))
- (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732))))
+ (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553))
+ (-4 *3 (-564))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-553)) (-5 *2 (-415 (-572)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-5 *2 (-1166 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-902))
- (-5 *3
- (-2 (|:| |pde| (-650 (-320 (-227))))
- (|:| |constraints|
- (-650
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-777)) (|:| |boundaryType| (-570))
- (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227))))))
- (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168))
- (|:| |tol| (-227))))
- (-5 *2 (-1044)))))
+ (|partial| -12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553))
+ (-5 *2 (-415 (-572)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553))
+ (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553))
+ (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553))
+ (-5 *2 (-415 (-572)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3))
+ (-4 *3 (-1049 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
+ (-4 *3 (-1111)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1058))
- (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288)))
- (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-4 *5 (-1058))
- (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1212) (-288)))
- (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1253 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3)))
- (-5 *1 (-694 *3 *4 *5 *6)) (-4 *6 (-693 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-706 *3))
- (-4 *3 (-311)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-691 *4 *3)) (-4 *4 (-1111))
+ (-4 *3 (-1111)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186))))
- (-4 *7 (-799))
- (-5 *2
- (-650
- (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8))
- (|:| |wcond| (-650 (-959 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *5))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *5))))))))))
- (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-650 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *8)) (-5 *4 (-650 (-1186))) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186))))
- (-4 *7 (-799))
- (-5 *2
- (-650
- (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8))
- (|:| |wcond| (-650 (-959 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *5))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *5))))))))))
- (-5 *1 (-931 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5))
- (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799))
- (-5 *2
- (-650
- (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7))
- (|:| |wcond| (-650 (-959 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *4))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *4))))))))))
- (-5 *1 (-931 *4 *5 *6 *7))))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4))))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-1292 *4 *5 *6 *7)))
+ (-5 *1 (-1292 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695 *9)) (-5 *5 (-928)) (-4 *9 (-956 *6 *8 *7))
- (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186))))
- (-4 *8 (-799))
- (-5 *2
- (-650
- (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9))
- (|:| |wcond| (-650 (-959 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *6))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *6))))))))))
- (-5 *1 (-931 *6 *7 *8 *9)) (-5 *4 (-650 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-928))
- (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148)))
- (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799))
+ (-12 (-5 *3 (-652 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1076 *6 *7 *8)) (-4 *6 (-564))
+ (-4 *7 (-801)) (-4 *8 (-858)) (-5 *2 (-652 (-1292 *6 *7 *8 *9)))
+ (-5 *1 (-1292 *6 *7 *8 *9)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-553)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192))))
+ ((*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1) (-4 *1 (-877 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800))
+ (-4 *4 (-858)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 (-171 (-415 (-572)))))
(-5 *2
- (-650
- (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9))
- (|:| |wcond| (-650 (-959 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *6))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *6))))))))))
- (-5 *1 (-931 *6 *7 *8 *9))))
+ (-652
+ (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-572))
+ (|:| |outvect| (-652 (-697 (-171 *4)))))))
+ (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2))
+ (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-697 *4))
+ (-5 *1 (-822 *4 *5)) (-4 *5 (-664 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *8)) (-5 *4 (-928)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186))))
- (-4 *7 (-799))
- (-5 *2
- (-650
- (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8))
- (|:| |wcond| (-650 (-959 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *5))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *5))))))))))
- (-5 *1 (-931 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 *9)) (-5 *5 (-1168))
- (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148)))
- (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570))
- (-5 *1 (-931 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-1168))
- (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148)))
- (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570))
- (-5 *1 (-931 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *8)) (-5 *4 (-1168)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186))))
- (-4 *7 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 *10)) (-5 *5 (-928))
- (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148)))
- (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570))
- (-5 *1 (-931 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 (-1186))) (-5 *5 (-928))
- (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148)))
- (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570))
- (-5 *1 (-931 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695 *9)) (-5 *4 (-928)) (-5 *5 (-1168))
- (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148)))
- (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570))
- (-5 *1 (-931 *6 *7 *8 *9)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-777)) (-5 *2 (-1282)))))
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-370))
+ (-5 *2 (-697 *5)) (-5 *1 (-822 *5 *6)) (-4 *6 (-664 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -1556 *3) (|:| -2477 (-779)))) (-5 *1 (-595 *3))
+ (-4 *3 (-553)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
+ (-5 *1 (-756)))))
+(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-311)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3058 *6) (|:| |sol?| (-112))) (-572)
+ *6))
+ (-4 *6 (-370)) (-4 *7 (-1255 *6))
+ (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6)))
+ (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936))
+ (-5 *1 (-934 *3)) (-4 *3 (-622 (-544)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936))
+ (-5 *1 (-934 *3)) (-4 *3 (-622 (-544)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-935))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-935))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-1 (-227) (-227)))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1105 (-227)))
+ (-5 *5 (-112)) (-5 *2 (-1281)) (-5 *1 (-262)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1192)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1303 *3 *4)) (-4 *1 (-381 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-393 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-827 *3)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-587)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-697 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1168)) (-4 *1 (-369 *2 *4)) (-4 *2 (-1109))
- (-4 *4 (-1109))))
+ (-12 (-5 *3 (-1170)) (-4 *1 (-371 *2 *4)) (-4 *2 (-1111))
+ (-4 *4 (-1111))))
((*1 *1 *2)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+ (-12 (-4 *1 (-371 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-339)) (-5 *1 (-253)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1227)) (-5 *1 (-879 *3 *2)) (-4 *3 (-1227))))
- ((*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-4 *7 (-956 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-650 *7)) (|:| |n0| (-650 *7))))
- (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-650 *7)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-4 *4 (-458))
- (-5 *2 (-650 (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4)))))
- (-5 *1 (-296 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-424 *3)) (-4 *3 (-562)) (-5 *1 (-425 *3)))))
+ (-12 (-4 *2 (-1229)) (-5 *1 (-881 *3 *2)) (-4 *3 (-1229))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-55)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1109)) (-4 *5 (-1109))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-689 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1227)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-695 (-570))) (-5 *3 (-650 (-570))) (-5 *1 (-1119)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1208)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1227))
- (-4 *3 (-378 *4)) (-4 *5 (-378 *4)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2))
- (-4 *2 (-1253 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044))
- (-5 *1 (-754)))))
-(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-697 (-973 *3))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1277 (-650 (-2 (|:| -4156 (-917 *3)) (|:| -4298 (-1129))))))
- (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928))))
- ((*1 *2)
- (-12 (-5 *2 (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129))))))
- (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1277 (-650 (-2 (|:| -4156 *3) (|:| -4298 (-1129))))))
- (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-1205)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-458))))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *5 (-916)) (-5 *1 (-463 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-916)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1150))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1262 *3 *4 *5)) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368))
- (-14 *4 (-1186)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1109)) (-5 *1 (-719 *3 *2 *4)) (-4 *3 (-856))
- (-14 *4
- (-1 (-112) (-2 (|:| -4298 *3) (|:| -2940 *2))
- (-2 (|:| -4298 *3) (|:| -2940 *2)))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1270 *3 *2))
- (-4 *2 (-1268 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1189))))
- ((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-983)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))))
+ (-12 (-5 *2 (-699 (-881 (-975 *3) (-975 *3)))) (-5 *1 (-975 *3))
+ (-4 *3 (-1111)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8))
- (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799))
- (-4 *7 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-1058))
- (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1253 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3))
- (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5))))
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5))))
+ (-5 *1 (-1140 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 *7)))
- (-5 *1 (-748 *4 *5 *6 *7)) (-5 *3 (-1182 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-458)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-424 *1)) (-4 *1 (-956 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-458)) (-5 *2 (-424 *3))
- (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))
+ (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-13 (-313) (-148)))
+ (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-300 (-415 (-961 *5)))) (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-300 (-322 *5))))
+ (-5 *1 (-1140 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7))))
- (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1231))))
+ (-12 (-5 *3 (-300 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148)))
+ (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1140 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
+ (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5)))))
+ (-5 *1 (-1140 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-1256 *4 *3))
- (-4 *3 (-13 (-1253 *4) (-562) (-10 -8 (-15 -3903 ($ $ $)))))))
+ (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-13 (-313) (-148)))
+ (-5 *2 (-652 (-652 (-300 (-322 *4))))) (-5 *1 (-1140 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-300 (-415 (-961 *5))))) (-5 *4 (-652 (-1188)))
+ (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *5)))))
+ (-5 *1 (-1140 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-14 *5 (-650 (-1186)))
+ (-12 (-5 *3 (-652 (-300 (-415 (-961 *4)))))
+ (-4 *4 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-300 (-322 *4)))))
+ (-5 *1 (-1140 *4)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-620 *4)) (-5 *6 (-1188))
+ (-4 *4 (-13 (-438 *7) (-27) (-1214)))
+ (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
(-5 *2
- (-650 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6)))))
- (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186))))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-652 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
+ (-4 *3 (-564)))))
+(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
+ ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -1746 *7))))
+ (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-999 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-652 (-2 (|:| |val| (-652 *6)) (|:| -1746 *7))))
+ (-4 *6 (-1076 *3 *4 *5)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-1118 *3 *4 *5 *6 *7)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1111)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-5 *2 (-777))))
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111)) (-5 *2 (-652 *1))
+ (-4 *1 (-438 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109))
- (-5 *2 (-777))))
+ (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
+ (-4 *3 (-1111))))
((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-732)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-687))))
- ((*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-5 *2 (-1226)) (-5 *1 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1127)))))
-(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))))
+ (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
+ (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3))
+ (-5 *1 (-959 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $))
+ (-15 -2224 (*7 $))))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-318)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7))
- (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227))
- (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-227)) (-5 *5 (-570)) (-5 *2 (-1222 *3))
- (-5 *1 (-796 *3)) (-4 *3 (-983))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-112))
- (-5 *1 (-1222 *2)) (-4 *2 (-983)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-322)) (-5 *3 (-227)))))
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *7)) (-4 *7 (-858))
+ (-4 *8 (-958 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1279 (-415 *8)) "failed"))
+ (|:| -1769 (-652 (-1279 (-415 *8))))))
+ (-5 *1 (-677 *5 *6 *7 *8)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 *4))))
- (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))))
-(((*1 *1) (-5 *1 (-1072))))
-(((*1 *1 *1 *1) (-4 *1 (-667))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-237 *3))))
- ((*1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570))))
- ((*1 *1 *1) (-5 *1 (-1129))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1253 *4)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)))))
+ (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
+ (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058))
- (-5 *1 (-1170 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-570)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058))
- (-14 *4 (-1186)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-354)) (-4 *6 (-1253 *5))
- (-5 *2
- (-650
- (-2 (|:| -2681 (-695 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-695 *6)))))
- (-5 *1 (-504 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2681 (-695 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-695 *6))))
- (-4 *7 (-1253 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-594 *3)) (-5 *1 (-565 *5 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-695 *5)) (-4 *5 (-1058)) (-5 *1 (-1063 *3 *4 *5))
- (-14 *3 (-777)) (-14 *4 (-777)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-27) (-436 *4))) (-4 *4 (-13 (-562) (-1047 (-570))))
- (-4 *7 (-1253 (-413 *6))) (-5 *1 (-558 *4 *5 *6 *7 *2))
- (-4 *2 (-347 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1253 *5))
- (-5 *2 (-650 *3)) (-5 *1 (-783 *4 *5 *6 *3 *7)) (-4 *3 (-1253 *6))
- (-14 *7 (-928)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570))))
- ((*1 *1 *1 *1) (-5 *1 (-1129))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-375 *2 *4)) (-4 *4 (-1253 *2))
- (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *4 (-1253 *2)) (-4 *2 (-174)) (-5 *1 (-414 *3 *2 *4))
- (-4 *3 (-415 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-415 *2 *3)) (-4 *3 (-1253 *2)) (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *3 (-1253 *2)) (-5 *2 (-570)) (-5 *1 (-774 *3 *4))
- (-4 *4 (-415 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)) (-4 *3 (-174))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1253 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-174)))))
-(((*1 *1 *1 *1) (-4 *1 (-667))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-760)))))
+ (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-268)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1071)) (-4 *3 (-1214))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572)))))
+ (-4 *2 (-13 (-858) (-21))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-779)) (-5 *1 (-595 *2)) (-4 *2 (-553)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-952 *5)) (-5 *3 (-779)) (-4 *5 (-1060))
+ (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-652 (-572))) (-5 *3 (-652 (-930))) (-5 *4 (-112))
+ (-5 *1 (-1121)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
+ (-4 *4 (-174)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-652 (-952 (-227)))))
+ (-5 *2 (-652 (-1105 (-227)))) (-5 *1 (-937)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1046))
+ (-5 *1 (-757)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-652 (-322 (-227))))
+ (|:| |constraints|
+ (-652
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-779)) (|:| |boundaryType| (-572))
+ (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
+ (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
+ (|:| |tol| (-227))))
+ (-5 *2 (-112)) (-5 *1 (-212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-689))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-981))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-1084))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-1129)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3058 *6) (|:| |sol?| (-112))) (-572)
+ *6))
+ (-4 *6 (-370)) (-4 *7 (-1255 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6))
+ (-2 (|:| -1647 (-415 *7)) (|:| |coeff| (-415 *7))) "failed"))
+ (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
+ (-12 (-4 *3 (-1060)) (-5 *1 (-903 *2 *3)) (-4 *2 (-1255 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-570))
- (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
+ (-12 (-5 *3 (-779)) (-5 *2 (-697 (-961 *4))) (-5 *1 (-1039 *4))
+ (-4 *4 (-1060)))))
+(((*1 *1 *1 *1) (-4 *1 (-978))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-745 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570))))
- ((*1 *1 *1 *1) (-5 *1 (-1129))))
-(((*1 *1 *1 *1) (-4 *1 (-767))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |c| (-413 *6))
- (|:| -1881 *6)))
- (-5 *1 (-1024 *5 *6)) (-5 *3 (-413 *6)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1096))) (-5 *1 (-297)))))
+(((*1 *2)
+ (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4))
+ (-4 *3 (-335 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-779)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1113 *3)) (-5 *1 (-914 *3)) (-4 *3 (-375))
+ (-4 *3 (-1111)))))
+(((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-572)) (-5 *5 (-1170)) (-5 *6 (-697 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
+(((*1 *1 *1 *1) (-4 *1 (-669))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1246 *3)) (-4 *3 (-1229)))))
+(((*1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572))))
+ ((*1 *1 *1) (-5 *1 (-1131))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *3 (-1076 *6 *7 *8))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1083 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8))
+ (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858))
+ (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -1746 *9))))
+ (-5 *1 (-1083 *6 *7 *4 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-572)) (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-1225)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-755)))))
+(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231))
- (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4))))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-135)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (-4 *1 (-669))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1060)) (-4 *1 (-1255 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572))))
+ ((*1 *1 *1 *1) (-5 *1 (-1131))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-652 (-112))) (-5 *7 (-697 (-227)))
+ (-5 *8 (-697 (-572))) (-5 *3 (-572)) (-5 *4 (-227)) (-5 *5 (-112))
+ (-5 *2 (-1046)) (-5 *1 (-762)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-537))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-380 *2)) (-4 *2 (-1229))
+ (-4 *2 (-858))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4455))
+ (-4 *1 (-380 *3)) (-4 *3 (-1229)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
+ (-5 *1 (-338)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-508 *2)) (-14 *2 (-572))))
+ ((*1 *1 *1 *1) (-5 *1 (-1131))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *6)) (-4 *6 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-1184 *7)) (-5 *1 (-327 *4 *5 *6 *7))
+ (-4 *7 (-958 *6 *4 *5)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1222 *5 *6 *7 *8)) (-4 *5 (-564))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-4 *1 (-152 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
+ (-14 *4 *2))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-961 (-572))) (-5 *3 (-1188))
+ (-5 *4 (-1105 (-415 (-572)))) (-5 *1 (-30)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-572)) (-5 *1 (-1211 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1111)) (-5 *1 (-1206 *3 *2)) (-4 *3 (-1111)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-152 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-650 (-2 (|:| -2940 (-777)) (|:| -1744 *4) (|:| |num| *4))))
- (-4 *4 (-1253 *3)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4))))
+ (-5 *2 (-652 (-2 (|:| -2477 (-779)) (|:| -2376 *4) (|:| |num| *4))))
+ (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-112)) (-5 *1 (-443))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-112)) (-5 *1 (-445))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-5 *3 (-650 (-1186))) (-5 *4 (-112)) (-5 *1 (-443))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-5 *3 (-652 (-1188))) (-5 *4 (-112)) (-5 *1 (-445))))
((*1 *2 *1)
- (-12 (-5 *2 (-1166 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174))))
+ (-12 (-5 *2 (-1168 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-174))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4))
+ (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4))
+ (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4))
+ (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-5 *1 (-672 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 (-650 *3)))) (-4 *3 (-1109))
- (-5 *1 (-681 *3))))
+ (-12 (-5 *2 (-652 (-652 (-652 *3)))) (-4 *3 (-1111))
+ (-5 *1 (-683 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-719 *2 *3 *4)) (-4 *2 (-856)) (-4 *3 (-1109))
+ (-12 (-5 *1 (-721 *2 *3 *4)) (-4 *2 (-858)) (-4 *3 (-1111))
(-14 *4
- (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *3))
- (-2 (|:| -4298 *2) (|:| -2940 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-844))))
+ (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *3))
+ (-2 (|:| -1795 *2) (|:| -2477 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-846))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1227)) (-4 *3 (-1227))))
+ (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 *4))))
- (-4 *4 (-1109)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 *4))))
+ (-4 *4 (-1111)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1111))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *5)) (-4 *5 (-13 (-1109) (-34)))
- (-5 *2 (-650 (-1149 *3 *5))) (-5 *1 (-1149 *3 *5))
- (-4 *3 (-13 (-1109) (-34)))))
+ (-12 (-5 *4 (-652 *5)) (-4 *5 (-13 (-1111) (-34)))
+ (-5 *2 (-652 (-1151 *3 *5))) (-5 *1 (-1151 *3 *5))
+ (-4 *3 (-13 (-1111) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-2 (|:| |val| *4) (|:| -4246 *5))))
- (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34)))
- (-5 *2 (-650 (-1149 *4 *5))) (-5 *1 (-1149 *4 *5))))
+ (-12 (-5 *3 (-652 (-2 (|:| |val| *4) (|:| -1746 *5))))
+ (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34)))
+ (-5 *2 (-652 (-1151 *4 *5))) (-5 *1 (-1151 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4246 *4)))
- (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34)))
- (-5 *1 (-1149 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1746 *4)))
+ (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34)))
+ (-5 *1 (-1151 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34)))))
+ (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-650 *3)) (-4 *3 (-13 (-1109) (-34)))
- (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34)))))
+ (-12 (-5 *4 (-652 *3)) (-4 *3 (-13 (-1111) (-34)))
+ (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-1149 *2 *3))) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34))) (-5 *1 (-1150 *2 *3))))
+ (-12 (-5 *4 (-652 (-1151 *2 *3))) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34))) (-5 *1 (-1152 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-1150 *2 *3))) (-5 *1 (-1150 *2 *3))
- (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34)))))
+ (-12 (-5 *4 (-652 (-1152 *2 *3))) (-5 *1 (-1152 *2 *3))
+ (-4 *2 (-13 (-1111) (-34))) (-4 *3 (-13 (-1111) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4))))
+ (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856)))
- (-14 *3 (-650 (-1186))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |k| (-678 *3)) (|:| |c| *4))))
- (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-650 (-413 *7)))
- (-4 *7 (-1253 *6)) (-5 *3 (-413 *7)) (-4 *6 (-368))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-580 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-687))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1127)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 (-2 (|:| -2340 (-1182 *6)) (|:| -2940 (-570)))))
- (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))))
+ (-12 (-5 *1 (-1177 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 *1)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-697 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 *4)) (-4 *4 (-1060)) (-4 *1 (-1134 *3 *4 *5 *6))
+ (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-425 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-689))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1129)))))
+(((*1 *1) (-5 *1 (-131))))
(((*1 *2 *3)
- (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1))
- (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-856)))))
-(((*1 *1) (-5 *1 (-443))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
+ (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *2 (-1284))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1255 (-415 *5))) (-14 *7 *6))))
+(((*1 *2)
+ (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
+ (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460))
+ (-5 *1 (-927 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-368)) (-14 *6 (-1277 (-695 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-928)) (-14 *5 (-650 (-1186)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-14 *6 (-1279 (-697 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-930)) (-14 *5 (-652 (-1188)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1229))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881 'JINT 'X 'ELAM) (-2881) (-705))))
- (-5 *1 (-61 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503 'JINT 'X 'ELAM) (-3503) (-707))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 'XC) (-705))))
- (-5 *1 (-63 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 'XC) (-707))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-344 (-2881 'X) (-2881) (-705))) (-5 *1 (-64 *3))
- (-14 *3 (-1186))))
+ (-12 (-5 *2 (-346 (-3503 'X) (-3503) (-707))) (-5 *1 (-64 *3))
+ (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-344 (-2881) (-2881 'XC) (-705))) (-5 *1 (-66 *3))
- (-14 *3 (-1186))))
+ (-12 (-5 *2 (-346 (-3503) (-3503 'XC) (-707))) (-5 *1 (-66 *3))
+ (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881 'X) (-2881 '-2246) (-705))))
- (-5 *1 (-71 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503 'X) (-3503 '-2872) (-707))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 'X) (-705))))
- (-5 *1 (-74 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 'X) (-707))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881 'X 'EPS) (-2881 '-2246) (-705))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186))
- (-14 *5 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503 'X 'EPS) (-3503 '-2872) (-707))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188))
+ (-14 *5 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881 'EPS) (-2881 'YA 'YB) (-705))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186))
- (-14 *5 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503 'EPS) (-3503 'YA 'YB) (-707))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1188)) (-14 *4 (-1188))
+ (-14 *5 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-344 (-2881) (-2881 'X) (-705))) (-5 *1 (-77 *3))
- (-14 *3 (-1186))))
+ (-12 (-5 *2 (-346 (-3503) (-3503 'X) (-707))) (-5 *1 (-77 *3))
+ (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-344 (-2881) (-2881 'X) (-705))) (-5 *1 (-78 *3))
- (-14 *3 (-1186))))
+ (-12 (-5 *2 (-346 (-3503) (-3503 'X) (-707))) (-5 *1 (-78 *3))
+ (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 'XC) (-705))))
- (-5 *1 (-79 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 'XC) (-707))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881) (-2881 'X) (-705))))
- (-5 *1 (-80 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503) (-3503 'X) (-707))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881 'X '-2246) (-2881) (-705))))
- (-5 *1 (-82 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503 'X '-2872) (-3503) (-707))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-695 (-344 (-2881 'X '-2246) (-2881) (-705))))
- (-5 *1 (-83 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-697 (-346 (-3503 'X '-2872) (-3503) (-707))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-695 (-344 (-2881 'X) (-2881) (-705)))) (-5 *1 (-84 *3))
- (-14 *3 (-1186))))
+ (-12 (-5 *2 (-697 (-346 (-3503 'X) (-3503) (-707)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881 'X) (-2881) (-705))))
- (-5 *1 (-85 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503 'X) (-3503) (-707))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-344 (-2881 'X) (-2881 '-2246) (-705))))
- (-5 *1 (-86 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-1279 (-346 (-3503 'X) (-3503 '-2872) (-707))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-695 (-344 (-2881 'XL 'XR 'ELAM) (-2881) (-705))))
- (-5 *1 (-87 *3)) (-14 *3 (-1186))))
+ (-12 (-5 *2 (-697 (-346 (-3503 'XL 'XR 'ELAM) (-3503) (-707))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-344 (-2881 'X) (-2881 '-2246) (-705))) (-5 *1 (-89 *3))
- (-14 *3 (-1186))))
+ (-12 (-5 *2 (-346 (-3503 'X) (-3503 '-2872) (-707))) (-5 *1 (-89 *3))
+ (-14 *3 (-1188))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-652 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-572)) (-14 *4 (-779)) (-4 *5 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-570)) (-14 *4 (-777))))
+ (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-572)) (-14 *4 (-779))))
((*1 *1 *2)
- (-12 (-5 *2 (-1151 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570))))
+ (-12 (-5 *2 (-1153 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))))
((*1 *1 *2)
- (-12 (-5 *2 (-242 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570))))
+ (-12 (-5 *2 (-244 *4 *5)) (-14 *4 (-779)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))))
((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-695 *4))) (-4 *4 (-174))
- (-5 *2 (-1277 (-695 (-413 (-959 *4))))) (-5 *1 (-191 *4))))
+ (-12 (-5 *3 (-1279 (-697 *4))) (-4 *4 (-174))
+ (-5 *2 (-1279 (-697 (-415 (-961 *4))))) (-5 *1 (-191 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1101 (-320 *4)))
- (-4 *4 (-13 (-856) (-562) (-620 (-384)))) (-5 *2 (-1101 (-384)))
- (-5 *1 (-261 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278))))
+ (-12 (-5 *3 (-1103 (-322 *4)))
+ (-4 *4 (-13 (-858) (-564) (-622 (-386)))) (-5 *2 (-1103 (-386)))
+ (-5 *1 (-263 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-280))))
((*1 *2 *1)
- (-12 (-4 *2 (-1253 *3)) (-5 *1 (-293 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1255 *3)) (-5 *1 (-295 *3 *2 *4 *5 *6 *7))
(-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1262 *4 *5 *6)) (-4 *4 (-13 (-27) (-1212) (-436 *3)))
- (-14 *5 (-1186)) (-14 *6 *4)
- (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458)))
- (-5 *1 (-317 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1264 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3)))
+ (-14 *5 (-1188)) (-14 *6 *4)
+ (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
+ (-5 *1 (-319 *3 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-320 *5)) (-5 *1 (-344 *3 *4 *5))
- (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
+ (-12 (-5 *2 (-322 *5)) (-5 *1 (-346 *3 *4 *5))
+ (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *3 *4 *2))
- (-4 *3 (-333 *4))))
+ (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *3 *4 *2))
+ (-4 *3 (-335 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *2 *4 *3))
- (-4 *3 (-333 *4))))
+ (-12 (-4 *4 (-356)) (-4 *2 (-335 *4)) (-5 *1 (-354 *2 *4 *3))
+ (-4 *3 (-335 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174))
- (-5 *2 (-1301 *3 *4))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
+ (-5 *2 (-1303 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174))
- (-5 *2 (-1292 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
+ (-5 *2 (-1294 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))
- (-4 *1 (-388))))
- ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-388))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-388))))
- ((*1 *1 *2) (-12 (-5 *2 (-695 (-705))) (-4 *1 (-388))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))
+ (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-390))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697 (-707))) (-4 *1 (-390))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))
- (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-389))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-389))))
- ((*1 *2 *3) (-12 (-5 *2 (-400)) (-5 *1 (-399 *3)) (-4 *3 (-1109))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))
+ (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-391))))
+ ((*1 *2 *3) (-12 (-5 *2 (-402)) (-5 *1 (-401 *3)) (-4 *3 (-1111))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))
- (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-402))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-402))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))
+ (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-404))))
((*1 *1 *2)
- (-12 (-5 *2 (-298 (-320 (-171 (-384))))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-300 (-322 (-171 (-386))))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-298 (-320 (-384)))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-300 (-322 (-386)))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-298 (-320 (-570)))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-300 (-322 (-572)))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-384))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-322 (-386))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-570))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-322 (-572))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-298 (-320 (-700)))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-300 (-322 (-702)))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-298 (-320 (-705)))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-300 (-322 (-707)))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-298 (-320 (-707)))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-300 (-322 (-709)))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-700))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-322 (-702))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-705))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-322 (-707))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-707))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-322 (-709))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))
- (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186))
- (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))
+ (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188))
+ (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-334))) (-5 *1 (-404 *3 *4 *5 *6))
- (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-652 (-336))) (-5 *1 (-406 *3 *4 *5 *6))
+ (-14 *3 (-1188)) (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-334)) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186))
- (-14 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))
+ (-12 (-5 *2 (-336)) (-5 *1 (-406 *3 *4 *5 *6)) (-14 *3 (-1188))
+ (-14 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1192))))
((*1 *1 *2)
- (-12 (-5 *2 (-335 *4)) (-4 *4 (-13 (-856) (-21)))
- (-5 *1 (-433 *3 *4)) (-4 *3 (-13 (-174) (-38 (-413 (-570)))))))
+ (-12 (-5 *2 (-337 *4)) (-4 *4 (-13 (-858) (-21)))
+ (-5 *1 (-435 *3 *4)) (-4 *3 (-13 (-174) (-38 (-415 (-572)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-433 *2 *3)) (-4 *2 (-13 (-174) (-38 (-413 (-570)))))
- (-4 *3 (-13 (-856) (-21)))))
+ (-12 (-5 *1 (-435 *2 *3)) (-4 *2 (-13 (-174) (-38 (-415 (-572)))))
+ (-4 *3 (-13 (-858) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-413 (-959 (-413 *3)))) (-4 *3 (-562)) (-4 *3 (-1109))
- (-4 *1 (-436 *3))))
+ (-12 (-5 *2 (-415 (-961 (-415 *3)))) (-4 *3 (-564)) (-4 *3 (-1111))
+ (-4 *1 (-438 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-959 (-413 *3))) (-4 *3 (-562)) (-4 *3 (-1109))
- (-4 *1 (-436 *3))))
+ (-12 (-5 *2 (-961 (-415 *3))) (-4 *3 (-564)) (-4 *3 (-1111))
+ (-4 *1 (-438 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-413 *3)) (-4 *3 (-562)) (-4 *3 (-1109))
- (-4 *1 (-436 *3))))
+ (-12 (-5 *2 (-415 *3)) (-4 *3 (-564)) (-4 *3 (-1111))
+ (-4 *1 (-438 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-1058)) (-4 *3 (-1109))
- (-4 *1 (-436 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-440))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-443))))
+ (-12 (-5 *2 (-1136 *3 (-620 *1))) (-4 *3 (-1060)) (-4 *3 (-1111))
+ (-4 *1 (-438 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-442))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-442))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-442))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-442))))
+ ((*1 *1 *2) (-12 (-5 *2 (-442)) (-5 *1 (-445))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))
- (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-446))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 (-705))) (-4 *1 (-446))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))
+ (-4 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 (-707))) (-4 *1 (-448))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -2544 (-650 (-334)))))
- (-4 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-447))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-447))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1192)) (|:| -3167 (-652 (-336)))))
+ (-4 *1 (-449))))
+ ((*1 *1 *2) (-12 (-5 *2 (-336)) (-4 *1 (-449))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-336))) (-4 *1 (-449))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 (-413 (-959 *3)))) (-4 *3 (-174))
- (-14 *6 (-1277 (-695 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-14 *4 (-928)) (-14 *5 (-650 (-1186)))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474))))
- ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-474))))
+ (-12 (-5 *2 (-1279 (-415 (-961 *3)))) (-4 *3 (-174))
+ (-14 *6 (-1279 (-697 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-14 *4 (-930)) (-14 *5 (-652 (-1188)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-476))))
((*1 *1 *2)
- (-12 (-5 *2 (-1262 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186))
- (-14 *5 *3) (-5 *1 (-480 *3 *4 *5))))
+ (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-1060)) (-14 *4 (-1188))
+ (-14 *5 *3) (-5 *1 (-482 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501))))
- ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-508))))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-510))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-530))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-612))))
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-614))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-613 *3 *2)) (-4 *2 (-750 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1058))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-615 *3 *2)) (-4 *2 (-752 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1060))))
((*1 *2 *1)
- (-12 (-5 *2 (-1297 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))
+ (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
((*1 *2 *1)
- (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))
+ (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-641 *3 *2)) (-4 *2 (-750 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-643 *3 *2)) (-4 *2 (-752 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
((*1 *2 *1)
- (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-5 *1 (-681 *3))
- (-4 *3 (-1109))))
+ (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-5 *1 (-683 *3))
+ (-4 *3 (-1111))))
((*1 *1 *2)
- (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-4 *3 (-1109))
- (-5 *1 (-681 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856))))
- ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-687))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-967 (-967 (-967 *3)))) (-4 *3 (-1111))
+ (-5 *1 (-683 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-689))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-690 *3)) (-4 *3 (-1111))))
((*1 *1 *2)
- (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *2)) (-4 *4 (-378 *3))
- (-4 *2 (-378 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-700))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-705))) (-5 *1 (-700))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-570))) (-5 *1 (-700))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700))))
- ((*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-705))))
- ((*1 *2 *1) (-12 (-5 *2 (-384)) (-5 *1 (-705))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-320 (-570))) (-5 *2 (-320 (-707))) (-5 *1 (-707))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716))))
+ (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *2)) (-4 *4 (-380 *3))
+ (-4 *2 (-380 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-709))) (-5 *1 (-702))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-702))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-572))) (-5 *1 (-702))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-386))) (-5 *1 (-702))))
+ ((*1 *1 *2) (-12 (-5 *2 (-709)) (-5 *1 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-386)) (-5 *1 (-707))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-322 (-572))) (-5 *2 (-322 (-709))) (-5 *1 (-709))))
+ ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-2 (|:| -1747 *3) (|:| -3677 *4))))
- (-4 *3 (-1058)) (-4 *4 (-732)) (-5 *1 (-741 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-769))))
+ (-12 (-5 *2 (-652 (-2 (|:| -2379 *3) (|:| -4298 *4))))
+ (-4 *3 (-1060)) (-4 *4 (-734)) (-5 *1 (-743 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-771))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(|:| |mdnia|
- (-2 (|:| |fn| (-320 (-227)))
- (|:| -2744 (-650 (-1103 (-849 (-227)))))
+ (-2 (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-652 (-1105 (-851 (-227)))))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-775))))
+ (-5 *1 (-777))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-320 (-227)))
- (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227))
+ (-2 (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-775))))
+ (-5 *1 (-777))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-775))))
- ((*1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-779 *3)) (-4 *3 (-1227))))
+ (-5 *1 (-777))))
+ ((*1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-781 *3)) (-4 *3 (-1229))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-814))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-830))))
+ (-5 *1 (-816))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-832))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227)))
- (|:| |lb| (-650 (-849 (-227))))
- (|:| |cf| (-650 (-320 (-227))))
- (|:| |ub| (-650 (-849 (-227))))))
+ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227)))
+ (|:| |lb| (-652 (-851 (-227))))
+ (|:| |cf| (-652 (-322 (-227))))
+ (|:| |ub| (-652 (-851 (-227))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-650 (-320 (-227))))
- (|:| -3458 (-650 (-227)))))))
- (-5 *1 (-847))))
+ (-2 (|:| |lfn| (-652 (-322 (-227))))
+ (|:| -3477 (-652 (-227)))))))
+ (-5 *1 (-849))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))
- (-5 *1 (-847))))
+ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))
+ (-5 *1 (-849))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227)))
- (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227))))
- (|:| |ub| (-650 (-849 (-227))))))
- (-5 *1 (-847))))
- ((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-864))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-959 (-48))) (-5 *2 (-320 (-570))) (-5 *1 (-881))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-413 (-959 (-48)))) (-5 *2 (-320 (-570)))
- (-5 *1 (-881))))
- ((*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856))))
+ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227)))
+ (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
+ (|:| |ub| (-652 (-851 (-227))))))
+ (-5 *1 (-849))))
+ ((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-866))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-961 (-48))) (-5 *2 (-322 (-572))) (-5 *1 (-883))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-415 (-961 (-48)))) (-5 *2 (-322 (-572)))
+ (-5 *1 (-883))))
+ ((*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-650 (-320 (-227))))
+ (-2 (|:| |pde| (-652 (-322 (-227))))
(|:| |constraints|
- (-650
+ (-652
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-777)) (|:| |boundaryType| (-570))
- (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227))))))
- (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168))
+ (|:| |grid| (-779)) (|:| |boundaryType| (-572))
+ (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
+ (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
(|:| |tol| (-227))))
- (-5 *1 (-905))))
+ (-5 *1 (-907))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3))))
+ (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3))))
+ (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-914 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3))))
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-413 (-424 *3))) (-4 *3 (-311)) (-5 *1 (-921 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311))))
+ (-12 (-5 *2 (-415 (-426 *3))) (-4 *3 (-313)) (-5 *1 (-923 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-415 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313))))
((*1 *2 *3)
- (-12 (-5 *3 (-483)) (-5 *2 (-320 *4)) (-5 *1 (-926 *4))
- (-4 *4 (-562))))
- ((*1 *2 *3) (-12 (-5 *2 (-1282)) (-5 *1 (-1042 *3)) (-4 *3 (-1227))))
- ((*1 *2 *3) (-12 (-5 *3 (-316)) (-5 *1 (-1042 *2)) (-4 *2 (-1227))))
+ (-12 (-5 *3 (-485)) (-5 *2 (-322 *4)) (-5 *1 (-928 *4))
+ (-4 *4 (-564))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1284)) (-5 *1 (-1044 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *3) (-12 (-5 *3 (-318)) (-5 *1 (-1044 *2)) (-4 *2 (-1229))))
((*1 *1 *2)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5))
- (-14 *6 (-650 *2))))
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5))
+ (-14 *6 (-652 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-1052 *3)) (-4 *3 (-562))))
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-564))))
((*1 *1 *2)
- (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2))
- (-4 *2 (-956 *3 (-537 *4) *4))))
+ (-12 (-4 *3 (-1060)) (-4 *4 (-858)) (-5 *1 (-1137 *3 *4 *2))
+ (-4 *2 (-958 *3 (-539 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1058)) (-4 *2 (-856)) (-5 *1 (-1135 *3 *2 *4))
- (-4 *4 (-956 *3 (-537 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-868))))
- ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1153))))
+ (-12 (-4 *3 (-1060)) (-4 *2 (-858)) (-5 *1 (-1137 *3 *2 *4))
+ (-4 *4 (-958 *3 (-539 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-870))))
+ ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1155))))
((*1 *2 *3)
- (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1250 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186))
- (-14 *5 *3) (-5 *1 (-1184 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-1199 (-1186) (-443))) (-5 *1 (-1190))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1198 *3)) (-4 *3 (-1109))))
- ((*1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *1 (-1206 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188))
+ (-14 *5 *3) (-5 *1 (-1186 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1187))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1201 (-1188) (-445))) (-5 *1 (-1192))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1200 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1209)) (-5 *1 (-1208 *3)) (-4 *3 (-1111))))
((*1 *1 *2)
- (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-5 *1 (-1221 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1221 *3)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-5 *1 (-1223 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1223 *3)) (-4 *3 (-1060))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1241 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1103 *3)) (-4 *3 (-1227)) (-5 *1 (-1244 *3))))
+ (-12 (-5 *2 (-1105 *3)) (-4 *3 (-1229)) (-5 *1 (-1246 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1269 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1250 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186))
- (-14 *5 *3) (-5 *1 (-1269 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1273 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1278))))
- ((*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *2 (-1278)) (-5 *1 (-1281))))
+ (-12 (-5 *2 (-1252 *4 *3)) (-4 *3 (-1060)) (-14 *4 (-1188))
+ (-14 *5 *3) (-5 *1 (-1271 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-870)) (-5 *1 (-1280))))
+ ((*1 *2 *3) (-12 (-5 *3 (-476)) (-5 *2 (-1280)) (-5 *1 (-1283))))
((*1 *1 *2)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
((*1 *2 *1)
- (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-856))
+ (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858))
(-4 *4 (-174))))
((*1 *2 *1)
- (-12 (-5 *2 (-1292 *3 *4)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-856))
+ (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174))
- (-5 *1 (-1297 *3 *4)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1168)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *4 (-1074 *6 *7 *8)) (-5 *2 (-1282))
- (-5 *1 (-782 *6 *7 *8 *4 *5)) (-4 *5 (-1080 *6 *7 *8 *4)))))
-(((*1 *1 *1) (-4 *1 (-667))))
+ (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
+ (-5 *1 (-1299 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *1) (-4 *1 (-669))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
+ (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1275 *3)) (-4 *3 (-23)) (-4 *3 (-1227)))))
-(((*1 *1) (-5 *1 (-565))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1044)) (-5 *1 (-754)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-757)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1103 (-849 (-227)))) (-5 *1 (-309)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *3 (-1074 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
+ (-12 (-5 *2 (-779)) (-4 *1 (-1277 *3)) (-4 *3 (-23)) (-4 *3 (-1229)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-442))
(-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))
+ (-652
+ (-3 (|:| -2402 (-1188))
+ (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572)))))))))
+ (-5 *1 (-1192)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *4)) (-4 *4 (-1060)) (-4 *2 (-1255 *4))
+ (-5 *1 (-452 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-415 (-1184 (-322 *5)))) (-5 *3 (-1279 (-322 *5)))
+ (-5 *4 (-572)) (-4 *5 (-564)) (-5 *1 (-1141 *5)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-428 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))
+ (-14 *4 (-1188)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-4 *2 (-13 (-27) (-1214) (-438 *3) (-10 -8 (-15 -3491 ($ *4)))))
+ (-4 *4 (-856))
+ (-4 *5
+ (-13 (-1257 *2 *4) (-370) (-1214)
+ (-10 -8 (-15 -3011 ($ $)) (-15 -4161 ($ $)))))
+ (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *6 (-994 *5)) (-14 *7 (-1188)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-415 *6))
+ (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370))
+ (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5)))
+ (-5 *1 (-876 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-779)) (-5 *4 (-1271 *5 *6 *7)) (-4 *5 (-370))
+ (-14 *6 (-1188)) (-14 *7 *5) (-5 *2 (-415 (-1252 *6 *5)))
+ (-5 *1 (-876 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
+ ((*1 *1 *1) (-4 *1 (-1155))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188))
+ (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-194))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *3 (-1074 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4452)) (-4 *1 (-34)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-252))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-980))))
+ (-12 (-5 *3 (-322 (-227))) (-5 *4 (-1188))
+ (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-554))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858))))
+ ((*1 *1) (-4 *1 (-1163))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-779))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4454)) (-4 *1 (-34)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-254))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-982))))
((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-570))))
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-572))))
((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-852)))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-854)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1191)) (-5 *3 (-1188)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-988 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-650
- (-2
- (|:| -4144
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3165
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1166 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2744
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-565))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1227))
- (-5 *2 (-650 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1019 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *6 (-620 (-1186)))
- (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *2 (-1175 (-650 (-959 *4)) (-650 (-298 (-959 *4)))))
- (-5 *1 (-510 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))))
-(((*1 *1) (-5 *1 (-829))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *2 (-1074 *4 *5 *6)) (-5 *1 (-782 *4 *5 *6 *2 *3))
- (-4 *3 (-1080 *4 *5 *6 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1227)) (-5 *2 (-777)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1227))
- (-4 *4 (-378 *2)) (-4 *5 (-378 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109))
- (-4 *2 (-1227)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570))
- (-14 *4 (-777)) (-4 *5 (-174)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2)))))
+ (-12 (-4 *2 (-1111)) (-5 *1 (-973 *3 *2)) (-4 *3 (-1111)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27))
- (-5 *2 (-650 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186)))
- (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))))
-(((*1 *1) (-5 *1 (-1278))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1111 *4)) (-4 *4 (-1109)) (-5 *2 (-1 *4))
- (-5 *1 (-1026 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801))
+ (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-652 (-779))) (-5 *1 (-980 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *4 (-1188))
+ (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-652 (-227))) (-5 *1 (-306)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-570))) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856))
- (-5 *2 (-650 (-678 *5))) (-5 *1 (-678 *5)))))
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112))
+ (-5 *1 (-364 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-112))
+ (-5 *1 (-536 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1035 (-849 (-570)))) (-5 *1 (-601 *3)) (-4 *3 (-1058)))))
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
+ ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
+ ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1188)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1255 *5))
+ (-5 *1 (-735 *5 *2)) (-4 *5 (-370)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-386))) (-5 *1 (-268))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-561)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-444)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-652 (-300 *4))) (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-562))))
+ (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798))
- (-4 *2 (-562))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-562)))
+ (|partial| -12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))
+ (-4 *2 (-564))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-564)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058))
- (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-562))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-777)))
+ (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060))
+ (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-564))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-779)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-562))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
+ (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-564))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-562))
- (-5 *1 (-978 *3 *4))))
+ (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-564))
+ (-5 *1 (-980 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058))
- (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-562))))
+ (|partial| -12 (-4 *1 (-1064 *3 *4 *2 *5 *6)) (-4 *2 (-1060))
+ (-4 *5 (-242 *4 *2)) (-4 *6 (-242 *3 *2)) (-4 *2 (-564))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-1270 *4 *2))
- (-4 *4 (-38 (-413 (-570)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4453)) (-4 *1 (-495 *3))
- (-4 *3 (-1227)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-194))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-304))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-309)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-777)) (-5 *3 (-950 *5)) (-4 *5 (-1058))
- (-5 *1 (-1174 *4 *5)) (-14 *4 (-928))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5))
- (-14 *4 (-928)) (-4 *5 (-1058))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058))
- (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-115)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-788 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-970 *3 *2)) (-4 *2 (-132)) (-4 *3 (-562))
- (-4 *3 (-1058)) (-4 *2 (-798))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-1182 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-980)) (-4 *2 (-132)) (-5 *1 (-1188 *3)) (-4 *3 (-562))
- (-4 *3 (-1058))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-1250 *4 *3)) (-14 *4 (-1186))
- (-4 *3 (-1058)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4))
- (-4 *4 (-354)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-368))
- (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-456 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-368))
- (-5 *2
- (-2 (|:| R (-695 *6)) (|:| A (-695 *6)) (|:| |Ainv| (-695 *6))))
- (-5 *1 (-987 *6)) (-5 *3 (-695 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))))
+ (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *1 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *2 (-858)) (-4 *3 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-635 *2 *3 *4)) (-4 *2 (-858))
+ (-4 *3 (-13 (-174) (-725 (-415 (-572))))) (-14 *4 (-930))))
+ ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *2 (-564)) (-5 *1 (-980 *2 *4))
+ (-4 *4 (-1255 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-112))
+ (-5 *1 (-898 *4 *5)) (-4 *5 (-1111))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-901 *5)) (-4 *5 (-1111)) (-5 *2 (-112))
+ (-5 *1 (-899 *5 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *6)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1229)) (-5 *2 (-112)) (-5 *1 (-899 *5 *6)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-779)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412))))
+ ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-825 *3)) (|:| |rm| (-825 *3))))
- (-5 *1 (-825 *3)) (-4 *3 (-856))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-827 *3)) (|:| |rm| (-827 *3))))
+ (-5 *1 (-827 *3)) (-4 *3 (-858))))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553))))
+ ((*1 *1 *1) (-4 *1 (-1071))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-497)) (-5 *4 (-961)) (-5 *2 (-697 (-539)))
- (-5 *1 (-539))))
+ (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564))
+ (-5 *2 (-1184 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-171 (-572))) (-5 *2 (-112)) (-5 *1 (-454))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
+ (-251 *4 (-415 (-572)))))
+ (-14 *4 (-652 (-1188))) (-14 *5 (-779)) (-5 *2 (-112))
+ (-5 *1 (-513 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-970 *3)) (-4 *3 (-553))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1233)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801))
+ (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1080 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *3 (-1076 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-961)) (-4 *3 (-1109)) (-5 *2 (-697 *1))
- (-4 *1 (-773 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3))
- (-4 *3 (-13 (-1212) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-148)))
- (-5 *2 (-592 (-413 (-959 *5)))) (-5 *1 (-576 *5))
- (-5 *3 (-413 (-959 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *5)) (-4 *5 (-1253 *3)) (-4 *3 (-311))
- (-5 *2 (-112)) (-5 *1 (-461 *3 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777))
- (-14 *4 (-777)) (-4 *5 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-531))))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1160)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1212))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368)))
- (-4 *3 (-1253 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570))
- (-5 *2 (-1044)) (-5 *1 (-760)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-870 *4))
- (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *8)) (-5 *4 (-777)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186))))
- (-4 *7 (-799))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
(-5 *2
- (-650
- (-2 (|:| |det| *8) (|:| |rows| (-650 (-570)))
- (|:| |cols| (-650 (-570))))))
- (-5 *1 (-931 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-542)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856))
- (-4 *4 (-269 *3)) (-4 *5 (-799)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-856))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1227))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-286 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-779)) (-5 *6 (-112)) (-4 *7 (-460)) (-4 *8 (-801))
+ (-4 *9 (-858)) (-4 *3 (-1076 *7 *8 *9))
(-5 *2
- (-2
- (|:| -4144
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3165
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1166 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -2744
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-565))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-701 *2)) (-4 *2 (-1109))))
- ((*1 *1 *2)
- (-12
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1156 *7 *8 *9 *3 *4)) (-4 *4 (-1120 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *3 (-1076 *6 *7 *8))
(-5 *2
- (-2
- (|:| -4144
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (|:| -3165
- (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384))
- (|:| |expense| (-384)) (|:| |accuracy| (-384))
- (|:| |intermediateResults| (-384))))))
- (-5 *1 (-809))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))))
-(((*1 *1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1 *1) (-5 *1 (-777)))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
+(((*1 *1 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-384)) (-5 *1 (-207)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-243)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1190)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-689 *4 *3)) (-4 *4 (-1109))
- (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1540 *3) (|:| -2940 (-777)))) (-5 *1 (-593 *3))
- (-4 *3 (-551)))))
-(((*1 *1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1 *1) (-5 *1 (-777)))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1301 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-825 *3)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1148))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-592 *3)) (-5 *1 (-563 *5 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-442)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-283)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-777)) (-5 *1 (-215 *4 *2)) (-14 *4 (-928))
- (-4 *2 (-1109)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-753)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-378 *2)) (-4 *2 (-1227))
- (-4 *2 (-856))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4453))
- (-4 *1 (-378 *3)) (-4 *3 (-1227)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-959 (-570))) (-5 *3 (-1186))
- (-5 *4 (-1103 (-413 (-570)))) (-5 *1 (-30)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 *1)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1058)) (-5 *1 (-695 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *4)) (-4 *4 (-1058)) (-4 *1 (-1132 *3 *4 *5 *6))
- (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *4)) (-4 *4 (-1058)) (-4 *2 (-1253 *4))
- (-5 *1 (-450 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-413 (-1182 (-320 *5)))) (-5 *3 (-1277 (-320 *5)))
- (-5 *4 (-570)) (-4 *5 (-562)) (-5 *1 (-1139 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2))
- (-4 *5 (-378 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-4 *2 (-1109)) (-5 *1 (-215 *4 *2))
- (-14 *4 (-928))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1227))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7))
- (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058)))))
+ (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
+ (|:| |expense| (-386)) (|:| |accuracy| (-386))
+ (|:| |intermediateResults| (-386))))
+ (-5 *2 (-1046)) (-5 *1 (-311)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-5 *1 (-1251 *4 *2))
+ (-4 *2 (-1255 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473))))
- ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473))))
- ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-898 *4 *5)) (-5 *3 (-898 *4 *6)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-674 *5)) (-5 *1 (-894 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562))
- (-5 *2 (-1182 *3)))))
+ (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
+ (-5 *2 (-652 (-1188))) (-5 *1 (-1087 *3 *4 *5))
+ (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1253 (-171 *2))))))
+ (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1255 (-171 *2))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386))))
+ ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *10))
+ (-5 *1 (-632 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1082 *5 *6 *7 *8))
+ (-4 *10 (-1120 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
+ (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6)))
+ (-5 *1 (-636 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
+ (-14 *6 (-652 (-1188)))
+ (-5 *2
+ (-652 (-1157 *5 (-539 (-872 *6)) (-872 *6) (-788 *5 (-872 *6)))))
+ (-5 *1 (-636 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1038 *5 *6 *7 *8))) (-5 *1 (-1038 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
+ (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6)))
+ (-5 *1 (-1057 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-112)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1157 *5 *6 *7 *8))) (-5 *1 (-1157 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1222 *4 *5 *6 *7)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1168 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-961 (-227))) (-5 *2 (-227)) (-5 *1 (-311)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-637)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858))
+ (-4 *4 (-271 *3)) (-4 *5 (-801)))))
+(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1 *1) (-5 *1 (-779)))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))
- ((*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
+ ((*1 *1 *2) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
+ (-12 (-5 *3 (-930)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1111)) (-4 *6 (-1111))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *5 (-1111)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-858)) (-5 *3 (-652 *6)) (-5 *5 (-652 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-652 *5)) (|:| |f3| *5)
+ (|:| |f4| (-652 *5))))
+ (-5 *1 (-1199 *6)) (-5 *4 (-652 *5)))))
+(((*1 *1) (-5 *1 (-145)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-268)))))
+(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058))
- (-4 *6 (-1253 *5)) (-5 *2 (-1182 (-1182 *7)))
- (-5 *1 (-507 *5 *6 *4 *7)) (-4 *4 (-1253 *6)))))
+ (-12 (-5 *3 (-652 (-1279 *5))) (-5 *4 (-572)) (-5 *2 (-1279 *5))
+ (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1046))
+ (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-227) (-227)))
+ (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-260)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801))
+ (-5 *2 (-112)) (-5 *1 (-998 *3 *4 *5 *6))
+ (-4 *6 (-958 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))))))
+(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1 *1) (-5 *1 (-779)))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-227)))) (-5 *1 (-935)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-567)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1060)) (-4 *7 (-1060))
+ (-4 *6 (-1255 *5)) (-5 *2 (-1184 (-1184 *7)))
+ (-5 *1 (-509 *5 *6 *4 *7)) (-4 *4 (-1255 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-285)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227)))
+ (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
+ (|:| |ub| (-652 (-851 (-227))))))
+ (-5 *1 (-272)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-572))) (-5 *5 (-1 (-1168 *4))) (-4 *4 (-370))
+ (-4 *4 (-1060)) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1163))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
(-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
(|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *2 *1) (-12 (-5 *2 (-965 (-777))) (-5 *1 (-337)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-490 *3)))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-927)) (-5 *2 (-2 (|:| -1747 (-650 *1)) (|:| -3643 *1)))
- (-5 *3 (-650 *1)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-695 *2)) (-5 *4 (-570))
- (-4 *2 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *5 (-1253 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1168)) (|:| -1770 (-1168))))
- (-5 *1 (-828)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *2 (-1044)) (-5 *1 (-757)))))
+ (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-837)) (-5 *3 (-1170)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *3)) (-4 *3 (-1118 *5 *6 *7 *8))
- (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-597 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-562)))))
+ (-12 (-5 *3 (-1188))
+ (-5 *2
+ (-2 (|:| |zeros| (-1168 (-227))) (|:| |ones| (-1168 (-227)))
+ (|:| |singularities| (-1168 (-227)))))
+ (-5 *1 (-105)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))
- (-5 *1 (-997 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))
- (-5 *1 (-1116 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856))
- (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-452)) (-5 *3 (-570)))))
-(((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-443)) (-5 *1 (-1190)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1182 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-809)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1212))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368)))
- (-4 *3 (-1253 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *2 (-650 *3)) (-5 *1 (-931 *4 *5 *6 *3))
- (-4 *3 (-956 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-413 (-570))))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-695 *2)) (-5 *4 (-777))
- (-4 *2 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *5 (-1253 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1148))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 (-112) (-650 *1)))
- (-4 *1 (-1080 *4 *5 *6 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))))
-(((*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))))
+ (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-313)) (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3))
+ (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-650 *5) *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *6 (-1253 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-659 (-413 *7))) (-5 *4 (-1 (-650 *6) *7))
- (-5 *5 (-1 (-424 *7) *7))
- (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *7 (-1253 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-650 *5) *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *6 (-1253 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-660 *7 (-413 *7))) (-5 *4 (-1 (-650 *6) *7))
- (-5 *5 (-1 (-424 *7) *7))
- (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *7 (-1253 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-659 (-413 *5))) (-4 *5 (-1253 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-424 *6) *6))
- (-4 *6 (-1253 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-660 *5 (-413 *5))) (-4 *5 (-1253 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-424 *6) *6))
- (-4 *6 (-1253 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))))
-(((*1 *1 *1) (-5 *1 (-1072))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))
+ (-5 *1 (-416 *3 *4 *5)) (-4 *3 (-417 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
+ (-5 *2 (-697 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-967 (-779))) (-5 *1 (-339)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
(-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
(|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *1 *1 *1) (-4 *1 (-479)))
- ((*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))
- ((*1 *2 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-890))))
- ((*1 *1 *1) (-5 *1 (-980)))
- ((*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2))
- (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
+ (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-652 *3))
+ (-5 *1 (-599 *5 *6 *7 *8 *3)) (-4 *3 (-1120 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148)))
+ (-5 *2
+ (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5))))))
+ (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5)))
+ (-14 *6 (-652 (-1188)))))
((*1 *2 *3)
- (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174))
- (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2))
- (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))))
+ (-12 (-4 *4 (-13 (-313) (-148)))
+ (-5 *2
+ (-652 (-2 (|:| -1758 (-1184 *4)) (|:| -2862 (-652 (-961 *4))))))
+ (-5 *1 (-1089 *4 *5)) (-5 *3 (-652 (-961 *4)))
+ (-14 *5 (-652 (-1188)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148)))
+ (-5 *2
+ (-652 (-2 (|:| -1758 (-1184 *5)) (|:| -2862 (-652 (-961 *5))))))
+ (-5 *1 (-1089 *5 *6)) (-5 *3 (-652 (-961 *5)))
+ (-14 *6 (-652 (-1188))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-652 (-1188))) (-4 *2 (-174))
+ (-4 *3 (-242 (-3475 *4) (-779)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *3))
+ (-2 (|:| -1795 *5) (|:| -2477 *3))))
+ (-5 *1 (-469 *4 *2 *5 *3 *6 *7)) (-4 *5 (-858))
+ (-4 *7 (-958 *2 *3 (-872 *4))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-300 *2)) (-4 *2 (-734)) (-4 *2 (-1229)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2)
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
+ (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
+ (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282))
- (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1282))
- (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-311)) (-5 *1 (-461 *3 *2)) (-4 *2 (-1253 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-311)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1253 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-311)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-777)))
- (-5 *1 (-545 *3 *2 *4 *5)) (-4 *2 (-1253 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189))))
- ((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1189)))))
-(((*1 *1 *1) (-4 *1 (-1153))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1301 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-825 *3)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1287)))))
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-1076 *3 *4 *5)) (-5 *1 (-632 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *2 (-1120 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-870))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015))))
- ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))))
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-171 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
+ (-5 *1 (-766)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1233)) (-5 *1 (-149 *2 *4 *3))
+ (-4 *3 (-1255 (-415 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564))
+ (-5 *2 (-2 (|:| -2379 *4) (|:| -1882 *3) (|:| -2336 *3)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1076 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-564)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| -2379 *3) (|:| -1882 *1) (|:| -2336 *1)))
+ (-4 *1 (-1255 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-492 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-756)))))
+(((*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-621 (-870))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-779))) (-5 *3 (-173)) (-5 *1 (-1176 *4 *5))
+ (-14 *4 (-930)) (-4 *5 (-1060)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-779)) (-4 *4 (-356))
+ (-5 *1 (-536 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-631 *3 *4))
+ (-4 *4 (-1255 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-734))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-112)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-474)) (-5 *3 (-650 (-266))) (-5 *1 (-1278))))
- ((*1 *1 *1) (-5 *1 (-1278))))
-(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-958 *4 *6 *5)) (-4 *4 (-460))
+ (-4 *5 (-858)) (-4 *6 (-801)) (-5 *1 (-998 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))
+ (-5 *2 (-652 (-2 (|:| -3083 *1) (|:| -3589 (-652 *7)))))
+ (-5 *3 (-652 *7)) (-4 *1 (-1222 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-553)) (-5 *1 (-160 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060))
+ (-5 *1 (-1172 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060))
+ (-14 *4 (-1188)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-929)) (-5 *2 (-2 (|:| -2379 (-652 *1)) (|:| -4267 *1)))
+ (-5 *3 (-652 *1)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174))
- (-4 *5 (-240 (-2857 *3) (-777)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4298 *2) (|:| -2940 *5))
- (-2 (|:| -4298 *2) (|:| -2940 *5))))
- (-4 *2 (-856)) (-5 *1 (-467 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-956 *4 *5 (-870 *3))))))
+ (-12 (-5 *2 (-952 *4)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-426 *4) *4)) (-4 *4 (-564)) (-5 *2 (-426 *4))
+ (-5 *1 (-427 *4))))
+ ((*1 *1 *1) (-5 *1 (-935)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
+ ((*1 *1 *1) (-5 *1 (-936)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))
+ (-5 *4 (-415 (-572))) (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))
+ (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))
+ (-5 *4 (-415 (-572))) (-5 *1 (-1032 *3)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))
+ (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
+ (-4 *3 (-1255 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-375)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-572)) (-5 *1 (-1121))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1279 (-572))) (-5 *3 (-652 (-572))) (-5 *4 (-572))
+ (-5 *1 (-1121)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-695 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1233))
+ (-4 *6 (-1255 (-415 *5)))
(-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
- (|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *1 *1 *1) (-4 *1 (-551))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-368)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3643 *1)))
- (-4 *1 (-858 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-112))))
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-349 *4 *5 *6)))))
+(((*1 *1 *1) (-5 *1 (-870))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1279 *5)) (-4 *5 (-647 *4)) (-4 *4 (-564))
+ (-5 *2 (-1279 *4)) (-5 *1 (-646 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
+ (-5 *1 (-122 *3)) (-4 *3 (-858))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-594 *4)) (-4 *4 (-13 (-29 *3) (-1214)))
+ (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-591 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-594 (-415 (-961 *3))))
+ (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *1 (-597 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370))
+ (-5 *2 (-2 (|:| -2107 *3) (|:| |special| *3))) (-5 *1 (-735 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1279 *5)) (-4 *5 (-370)) (-4 *5 (-1060))
+ (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
+ (-5 *3 (-652 (-697 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1279 (-1279 *5))) (-4 *5 (-370)) (-4 *5 (-1060))
+ (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
+ (-5 *3 (-652 (-697 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-652 *1)) (-4 *1 (-1155))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-652 *1)) (-4 *1 (-1155)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-1074)))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058))
+ (-5 *3 (-572)))))
+(((*1 *2 *1) (-12 (-5 *2 (-426 *3)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-930)) (-5 *2 (-476)) (-5 *1 (-1280)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-386)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1302 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-854)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9))))
- (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1282))
- (-5 *1 (-1078 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9))))
- (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1282))
- (-5 *1 (-1154 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $))
- (-15 -1599 ((-1134 *3 (-618 $)) $))
- (-15 -2869 ($ (-1134 *3 (-618 $))))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-570))))
- (-4 *4 (-13 (-1253 *3) (-562) (-10 -8 (-15 -3903 ($ $ $)))))
- (-4 *3 (-562)) (-5 *1 (-1256 *3 *4)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-777))
- (-4 *3 (-13 (-732) (-373) (-10 -7 (-15 ** (*3 *3 (-570))))))
- (-5 *1 (-248 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))))
+ (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9))))
+ (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284))
+ (-5 *1 (-1080 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9))))
+ (-5 *4 (-779)) (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8))
+ (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858)) (-5 *2 (-1284))
+ (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-415 (-1184 (-322 *3)))) (-4 *3 (-564))
+ (-5 *1 (-1141 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186)))
- (-4 *6 (-13 (-562) (-1047 *5))) (-4 *5 (-562))
- (-5 *2 (-650 (-650 (-298 (-413 (-959 *6)))))) (-5 *1 (-1048 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-368)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058))
- (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3))
- (-4 *3 (-858 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1302)))))
-(((*1 *1 *1 *2)
- (-12
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-572)) (-5 *1 (-386)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1072 (-1035 *3) (-1184 (-1035 *3))))
+ (-5 *1 (-1035 *3)) (-4 *3 (-13 (-856) (-370) (-1033))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 (-322 (-227))))
(-5 *2
- (-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868)))
- (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868)))
- (|:| |args| (-650 (-868)))))
- (-5 *1 (-1186))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-1186)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058))
- (-5 *1 (-1170 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-570)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-1058))
- (-14 *4 (-1186)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-618 *3)) (-5 *5 (-1 (-1182 *3) (-1182 *3)))
- (-4 *3 (-13 (-27) (-436 *6))) (-4 *6 (-562)) (-5 *2 (-592 *3))
- (-5 *1 (-557 *6 *3)))))
-(((*1 *2 *3 *1)
+ (-2 (|:| |additions| (-572)) (|:| |multiplications| (-572))
+ (|:| |exponentiations| (-572)) (|:| |functionCalls| (-572))))
+ (-5 *1 (-311)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-415 (-572)))
+ (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -2485 (-777)) (|:| |period| (-777))))
- (-5 *1 (-1166 *4)) (-4 *4 (-1227)) (-5 *3 (-777)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311)))))
-(((*1 *2 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798))))
- ((*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799))
- (-4 *3 (-856)) (-5 *2 (-777)))))
-(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4))
- (-4 *4 (-354)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1196)))))
-(((*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551)))))
-(((*1 *1) (-5 *1 (-443))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1186))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-650 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -3730 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1212) (-27) (-436 *8)))
- (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -2420 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1022 *8 *4)))))
+ (-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870)))
+ (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870)))
+ (|:| |args| (-652 (-870)))))
+ (-5 *1 (-1188))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-1188)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-572)))) (-4 *5 (-1255 *4))
+ (-5 *2 (-2 (|:| |ans| (-415 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1026 *4 *5)) (-5 *3 (-415 *5)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-779)) (-5 *1 (-228))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-171 (-227))) (-5 *3 (-779)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-652 (-1184 *5))) (-5 *3 (-1184 *5))
+ (-4 *5 (-167 *4)) (-4 *4 (-553)) (-5 *1 (-150 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-652 *3)) (-4 *3 (-1255 *5))
+ (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *1 (-365 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-652 (-1184 (-572)))) (-5 *3 (-1184 (-572)))
+ (-5 *1 (-580))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-652 (-1184 *1))) (-5 *3 (-1184 *1))
+ (-4 *1 (-918)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-697 *7)) (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5))
+ (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-697 *2)) (-5 *4 (-572))
+ (-4 *2 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *5 (-1255 *2)) (-5 *1 (-507 *2 *5 *6)) (-4 *6 (-417 *2 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1277 *4)) (-4 *4 (-423 *3)) (-4 *3 (-311))
- (-4 *3 (-562)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-4 *4 (-368)) (-5 *2 (-1277 *1))
- (-4 *1 (-333 *4))))
- ((*1 *2) (-12 (-4 *3 (-368)) (-5 *2 (-1277 *1)) (-4 *1 (-333 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-174)) (-4 *4 (-1253 *3)) (-5 *2 (-1277 *1))
- (-4 *1 (-415 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4))
- (-5 *2 (-1277 *6)) (-5 *1 (-419 *3 *4 *5 *6))
- (-4 *6 (-13 (-415 *4 *5) (-1047 *4)))))
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-425 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-370))
+ (-5 *1 (-529 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4))
- (-5 *2 (-1277 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7))
- (-4 *6 (-415 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1277 *1)) (-4 *1 (-423 *3))))
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *3 (-380 *2)) (-4 *4 (-380 *2))
+ (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060))))
((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1277 (-1277 *4))) (-5 *1 (-534 *4))
- (-4 *4 (-354)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *8 (-1074 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-650 *8))
- (|:| |towers| (-650 (-1036 *5 *6 *7 *8)))))
- (-5 *1 (-1036 *5 *6 *7 *8)) (-5 *3 (-650 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *8 (-1074 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-650 *8))
- (|:| |towers| (-650 (-1155 *5 *6 *7 *8)))))
- (-5 *1 (-1155 *5 *6 *7 *8)) (-5 *3 (-650 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+ (-12 (-4 *4 (-380 *2)) (-4 *5 (-380 *2)) (-4 *2 (-174))
+ (-5 *1 (-696 *2 *4 *5 *3)) (-4 *3 (-695 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
+ (-4 *5 (-242 *3 *2)) (|has| *2 (-6 (-4456 "*"))) (-4 *2 (-1060)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-760)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370))
+ (-5 *2 (-2 (|:| -2107 (-426 *3)) (|:| |special| (-426 *3))))
+ (-5 *1 (-735 *5 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1170)) (|:| -2402 (-1170))))
+ (-5 *1 (-830)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1115)) (-5 *1 (-285)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572))))
+ (-4 *5 (-895 (-572)))
+ (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-575 *5 *3)) (-4 *3 (-637))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-967 (-1184 *4))) (-5 *1 (-364 *4))
+ (-5 *3 (-1184 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-322 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1072)) (-5 *3 (-1168)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-551))))
-(((*1 *1) (-5 *1 (-1279))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
+ (-12 (-5 *3 (-514)) (-5 *2 (-699 (-782))) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1170)) (-5 *2 (-782)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-974)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-4 *4 (-1229)) (-5 *2 (-112))
+ (-5 *1 (-1168 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-652 *5) *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5))
+ (-5 *2 (-652 (-2 (|:| -4338 *5) (|:| -3179 *3))))
+ (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6))
+ (-4 *7 (-664 (-415 *6))))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-514)) (-5 *3 (-1115)) (-5 *1 (-297)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 (-572)))
+ (-5 *1 (-441 *4 *3)) (-4 *3 (-438 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-620 *3)) (-4 *3 (-438 *5))
+ (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-1184 (-415 (-572))))
+ (-5 *1 (-441 *5 *3)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-510 (-413 (-570)) (-242 *4 (-777)) (-870 *3)
- (-249 *3 (-413 (-570)))))
- (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-511 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *2 (-650 (-650 (-570))))
- (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-570)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-424 *2)) (-4 *2 (-562)))))
+ (-512 (-415 (-572)) (-244 *4 (-779)) (-872 *3)
+ (-251 *3 (-415 (-572)))))
+ (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-513 *3 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-697 *4)) (-5 *3 (-930)) (-4 *4 (-1060))
+ (-5 *1 (-1039 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 (-697 *4))) (-5 *3 (-930)) (-4 *4 (-1060))
+ (-5 *1 (-1039 *4)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1227)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3))))
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4))
- (-14 *3 (-928)) (-4 *4 (-1058)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-171 (-227))))
- (-5 *2 (-1044)) (-5 *1 (-761)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3))
- (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-650 *7) (-650 *7))) (-5 *2 (-650 *7))
- (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799))
- (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-384)) (-5 *1 (-791 *3)) (-4 *3 (-620 *2))))
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1281))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-788 *5 (-872 *6)))) (-5 *4 (-112)) (-4 *5 (-460))
+ (-14 *6 (-652 (-1188))) (-5 *2 (-652 (-1057 *5 *6)))
+ (-5 *1 (-636 *5 *6)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1264 *4 *5 *6))
+ (|:| |%expon| (-325 *4 *5 *6))
+ (|:| |%expTerms|
+ (-652 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4))))))
+ (|:| |%type| (-1170))))
+ (-5 *1 (-1265 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1214) (-438 *3)))
+ (-14 *5 (-1188)) (-14 *6 *4))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))
+ (-5 *2 (-652 (-227))) (-5 *1 (-311)))))
+(((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-793 *3)) (-4 *3 (-622 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-5 *2 (-384)) (-5 *1 (-791 *3))
- (-4 *3 (-620 *2))))
+ (-12 (-5 *4 (-930)) (-5 *2 (-386)) (-5 *1 (-793 *3))
+ (-4 *3 (-622 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2))
- (-5 *2 (-384)) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2))
+ (-5 *2 (-386)) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058))
- (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
+ (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 *2))
- (-5 *2 (-384)) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 *2))
+ (-5 *2 (-386)) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856))
- (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
+ (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856))
- (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))))
+ (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858))
+ (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928))
- (-5 *2
- (-3 (-1182 *4)
- (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129)))))))
- (-5 *1 (-351 *4)) (-4 *4 (-354)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-998))))
+ (-12 (-5 *4 (-652 *3)) (-4 *3 (-1120 *5 *6 *7 *8))
+ (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *8 (-1076 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-599 *5 *6 *7 *8 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *3 (-652 (-268)))
+ (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-268))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1105 (-386)))) (-5 *1 (-476)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-1170)) (-5 *1 (-1000))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-4 *4 (-1227)) (-5 *1 (-1066 *3 *4))
- (-4 *3 (-1102 *4))))
+ (-12 (-5 *2 (-1188)) (-4 *4 (-1229)) (-5 *1 (-1068 *3 *4))
+ (-4 *3 (-1104 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1103 *4)) (-4 *4 (-1227))
- (-5 *1 (-1101 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190)))))
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1105 *4)) (-4 *4 (-1229))
+ (-5 *1 (-1103 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-5 *2 (-572))
+ (-5 *1 (-451 *5 *3 *6)) (-4 *3 (-1255 *5))
+ (-4 *6 (-13 (-412) (-1049 *5) (-370) (-1214) (-290)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5))
+ (-4 *3 (-1255 *4))
+ (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-745 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111))))
+ ((*1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-1111)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 (-570)))))
- (-5 *1 (-366 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109))
- (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -2651 (-777)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| -2340 *3) (|:| -2940 (-570)))))
- (-5 *1 (-424 *3)) (-4 *3 (-562)))))
-(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279))))
- ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1268 *4))
- (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-1166 *4)))
- (-5 *1 (-1270 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-220))))
- ((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-682))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-424 *3)) (-4 *3 (-562))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-2 (|:| -2340 *4) (|:| -2650 (-570)))))
- (-4 *4 (-1253 (-570))) (-5 *2 (-777)) (-5 *1 (-448 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-650 (-870 *4)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-477 *4 *5 *6))
- (-4 *6 (-458)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141)))))
+ (-12 (-4 *2 (-1255 *3)) (-5 *1 (-407 *3 *2))
+ (-4 *3 (-13 (-370) (-148))))))
+(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-564)) (-4 *2 (-1060))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-980 *3 *2)) (-4 *2 (-1255 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *1))))
+ (-4 *1 (-1082 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-564)))))
+(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
+ ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058))
- (-14 *4 (-650 (-1186)))))
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
+ (-14 *4 (-652 (-1188)))))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *1) (-4 *1 (-288)))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *1) (-4 *1 (-290)))
((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
((*1 *1 *2)
- (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-5 *1 (-633 *3 *4 *5))
- (-14 *5 (-928))))
+ (-12 (-5 *2 (-672 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-5 *1 (-635 *3 *4 *5))
+ (-14 *5 (-930))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570)))))
- (-4 *5 (-856)) (-5 *1 (-1293 *4 *5 *2)) (-4 *2 (-1298 *5 *4))))
+ (-12 (-5 *3 (-779)) (-4 *4 (-13 (-1060) (-725 (-415 (-572)))))
+ (-4 *5 (-858)) (-5 *1 (-1295 *4 *5 *2)) (-4 *2 (-1300 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-1297 *3 *4))
- (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058))
- (-14 *4 (-650 (-1186)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-570)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856)))
- (-14 *4 (-650 (-1186)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856))
- (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-278))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 *8)) (-5 *4 (-650 *6)) (-4 *6 (-856))
- (-4 *8 (-956 *7 *5 *6)) (-4 *5 (-799)) (-4 *7 (-1058))
- (-5 *2 (-650 (-777))) (-5 *1 (-325 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174))
- (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-476 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4))
- (-4 *4 (-1253 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799))
- (-4 *3 (-856)) (-5 *2 (-777))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *2 *4)) (-4 *3 (-1058)) (-4 *4 (-856))
- (-4 *2 (-798))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-777))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1239 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1268 *3))
- (-5 *2 (-570))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1260 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1237 *3))
- (-5 *2 (-413 (-570)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-777)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-384)) (-5 *1 (-207)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-650 *11))
- (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -4246 *11))))))
- (-5 *6 (-777))
- (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -4246 *11))))
- (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9))
- (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799))
- (-4 *9 (-856)) (-5 *1 (-1078 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-650 *11))
- (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -4246 *11))))))
- (-5 *6 (-777))
- (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -4246 *11))))
- (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9))
- (-4 *11 (-1118 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799))
- (-4 *9 (-856)) (-5 *1 (-1154 *7 *8 *9 *10 *11)))))
-(((*1 *1) (-5 *1 (-443))))
-(((*1 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227)))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4))
+ (-4 *4 (-725 (-415 (-572)))) (-4 *3 (-858)) (-4 *4 (-174)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-652 (-572))) (-5 *3 (-697 (-572))) (-5 *1 (-1121)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-542))) (-5 *1 (-542)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-120 *2)) (-4 *2 (-1227)))))
+ (-12 (-5 *3 (-930)) (-5 *1 (-1043 *2))
+ (-4 *2 (-13 (-1111) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-158))))
+ ((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *2 (-652 (-171 *4)))
+ (-5 *1 (-772 *4)) (-4 *4 (-13 (-370) (-856))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 (-544))) (-5 *1 (-544)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4)))
+ (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
+ (-5 *1 (-999 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-652 *7)) (-4 *7 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
+ (-5 *1 (-1118 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-779)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))
+ (-4 *2 (-460))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-1255 (-572))) (-5 *2 (-652 (-572)))
+ (-5 *1 (-494 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)) (-4 *3 (-460)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-313))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4267 *1)))
+ (-4 *1 (-313)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4))))
+ (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1270 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3))
+ (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2))
+ (-4 *2 (-1270 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148)))
+ (-5 *1 (-1164 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-988 *4 *5 *6 *7)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-364 *3)) (-4 *3 (-356)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
+ (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-650 (-788 *3))) (-5 *1 (-788 *3)) (-4 *3 (-562))
- (-4 *3 (-1058)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *7 (-907 *6))
- (-5 *2 (-695 *7)) (-5 *1 (-698 *6 *7 *3 *4)) (-4 *3 (-378 *7))
- (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4452)))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1111 (-777))) (-5 *6 (-777))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *3 (-1076 *6 *7 *8))
(-5 *2
- (-2 (|:| |contp| (-570))
- (|:| -2660 (-650 (-2 (|:| |irr| *3) (|:| -3634 (-570)))))))
- (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-5 *1 (-334)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-120 *2)) (-4 *2 (-1227)))))
-(((*1 *1) (-5 *1 (-512))))
-(((*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270)))))
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1282)) (-5 *1 (-828)))))
+ (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-460)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-760)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
+ (-5 *2
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
+ (|:| |success| (-112))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2067 *3) (|:| |coef1| (-788 *3))))
- (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1166 (-650 (-928)))) (-5 *1 (-890)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-705)) (-5 *1 (-309)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-1 (-1182 (-959 *4)) (-959 *4)))
- (-5 *1 (-1285 *4)) (-4 *4 (-368)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-777))))
+ (-12 (-5 *3 (-697 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-174)) (-4 *2 (-1255 *4)) (-5 *1 (-179 *4 *2 *3))
+ (-4 *3 (-732 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 (-415 (-961 *5)))) (-5 *4 (-1188))
+ (-5 *2 (-961 *5)) (-5 *1 (-298 *5)) (-4 *5 (-460))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-5 *2 (-961 *4))
+ (-5 *1 (-298 *4)) (-4 *4 (-460))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 (-171 (-415 (-572)))))
+ (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *4))
+ (-4 *4 (-13 (-370) (-856)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 (-171 (-415 (-572))))) (-5 *4 (-1188))
+ (-5 *2 (-961 (-171 (-415 (-572))))) (-5 *1 (-772 *5))
+ (-4 *5 (-13 (-370) (-856)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-961 (-415 (-572))))
+ (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *4 (-1188))
+ (-5 *2 (-961 (-415 (-572)))) (-5 *1 (-787 *5))
+ (-4 *5 (-13 (-370) (-856))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
+ (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
+(((*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-454)) (-5 *3 (-572)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-652 *5))) (-4 *5 (-1270 *4))
+ (-4 *4 (-38 (-415 (-572))))
+ (-5 *2 (-1 (-1168 *4) (-652 (-1168 *4)))) (-5 *1 (-1272 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-322 *3)) (-4 *3 (-13 (-1060) (-858)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188))))))
+(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-779))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-378 *3)) (-4 *3 (-1227))
- (-4 *3 (-1109))))
+ (-12 (-5 *2 (-572)) (-4 *1 (-380 *3)) (-4 *3 (-1229))
+ (-4 *3 (-1111))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-378 *3)) (-4 *3 (-1227)) (-4 *3 (-1109))
- (-5 *2 (-570))))
+ (-12 (-4 *1 (-380 *3)) (-4 *3 (-1229)) (-4 *3 (-1111))
+ (-5 *2 (-572))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-378 *4)) (-4 *4 (-1227))
- (-5 *2 (-570))))
- ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-535))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570)) (-5 *3 (-142))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-1188 (-413 (-570))))
- (-5 *1 (-192)))))
-(((*1 *1 *1) (-5 *1 (-1072))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-368)) (-4 *1 (-333 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-1253 *4)) (-4 *4 (-1231))
- (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1253 (-413 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-1277 *1)) (-4 *4 (-174))
- (-4 *1 (-372 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-1277 *1)) (-4 *4 (-174))
- (-4 *1 (-375 *4 *5)) (-4 *5 (-1253 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4))
- (-4 *4 (-1253 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))))
-(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-315))))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-380 *4)) (-4 *4 (-1229))
+ (-5 *2 (-572))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-537))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)) (-5 *3 (-142))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-572)))))
+(((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-339)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6))
+ (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-961 *5)) (-4 *5 (-460)) (-5 *2 (-652 *6))
+ (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-370)) (-4 *4 (-13 (-370) (-856))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 *1)) (|has| *1 (-6 -4455)) (-4 *1 (-1021 *3))
+ (-4 *3 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-317))))
((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(-5 *2
(-2
@@ -9680,8637 +6658,11660 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1166 (-227)))
+ (-3 (|:| |str| (-1168 (-227)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -2744
+ (|:| -4336
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-565)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1186)) (-5 *6 (-650 (-618 *3)))
- (-5 *5 (-618 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *7)))
- (-4 *7 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3)))
- (-5 *1 (-563 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-928))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *1) (-5 *1 (-158))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1227))
- (-4 *5 (-378 *4)) (-4 *3 (-378 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-331 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1227)) (-14 *4 *2))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856))
- (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-650 (-777)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856))
- (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 (-777))))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044))
- (-5 *1 (-760)))))
+ (-5 *1 (-567)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-620 *2) (-174))) (-5 *2 (-899 *4))
- (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1109)) (-4 *3 (-167 *5))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-692 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1370 *3)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112))
+ (-5 *2 (-1046)) (-5 *1 (-761)))))
+(((*1 *1 *1) (-5 *1 (-227)))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1) (-4 *1 (-1150))) ((*1 *1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-130))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-512 *3 *4 *5 *6))) (-4 *3 (-370)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
+ (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7))
+ (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1146)) (-5 *2 (-699 (-286))) (-5 *1 (-169)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-622 *2) (-174))) (-5 *2 (-901 *4))
+ (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1111)) (-4 *3 (-167 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1103 (-849 (-384)))))
- (-5 *2 (-650 (-1103 (-849 (-227))))) (-5 *1 (-309))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-400))))
+ (-12 (-5 *3 (-652 (-1105 (-851 (-386)))))
+ (-5 *2 (-652 (-1105 (-851 (-227))))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-402))))
((*1 *1 *2)
- (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4))
- (-4 *4 (-1253 *3))))
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4))
+ (-4 *4 (-1255 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1253 *3))
- (-5 *2 (-1277 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1277 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1277 *3))))
+ (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
+ (-5 *2 (-1279 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-424 *1)) (-4 *1 (-436 *3)) (-4 *3 (-562))
- (-4 *3 (-1109))))
+ (-12 (-5 *2 (-426 *1)) (-4 *1 (-438 *3)) (-4 *3 (-564))
+ (-4 *3 (-1111))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-469 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-542))))
- ((*1 *2 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1227))))
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-471 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-544))))
+ ((*1 *2 *1) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1229))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1253 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
((*1 *1 *2)
- (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5))
- (-4 *5 (-620 (-1186))) (-4 *4 (-799)) (-4 *5 (-856))))
+ (-12 (-5 *2 (-961 *3)) (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5))
+ (-4 *5 (-622 (-1188))) (-4 *4 (-801)) (-4 *5 (-858))))
((*1 *1 *2)
- (-3749
- (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5))
- (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570)))
- (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))
- (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5))
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))))
+ (-3783
+ (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
+ (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572)))
+ (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))
+ (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
((*1 *1 *2)
- (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8)))
- (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168))
- (-5 *1 (-1078 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -4246 *8)))
- (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1118 *4 *5 *6 *7)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168))
- (-5 *1 (-1154 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-1191))))
- ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1191))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1207))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1207))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-786 *4 (-870 *5)))
- (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186)))
- (-5 *2 (-786 *4 (-870 *6))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *6 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-786 *4 (-870 *6)))
- (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186)))
- (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *5 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1182 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-1182 (-1033 (-413 *4)))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186)))))
+ (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8)))
+ (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170))
+ (-5 *1 (-1080 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-652 *7)) (|:| -1746 *8)))
+ (-4 *7 (-1076 *4 *5 *6)) (-4 *8 (-1120 *4 *5 *6 *7)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1170))
+ (-5 *1 (-1156 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1115)) (-5 *1 (-1193))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-1193))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-870)) (-5 *3 (-572)) (-5 *1 (-1209))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-788 *4 (-872 *5)))
+ (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *5 (-652 (-1188)))
+ (-5 *2 (-788 *4 (-872 *6))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *6 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-788 *4 (-872 *6)))
+ (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188)))
+ (-5 *2 (-961 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *5 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-1184 (-1035 (-415 *4)))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6))))
- (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186)))
- (-5 *2 (-650 (-786 *4 (-870 *6)))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *5 (-650 (-1186))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186)))
- (-4 *5 (-562)) (-5 *2 (-650 (-650 (-959 *5)))) (-5 *1 (-1195 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058))
- (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5)))))
+ (-5 *3 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6))))
+ (-4 *4 (-13 (-856) (-313) (-148) (-1033))) (-14 *6 (-652 (-1188)))
+ (-5 *2 (-652 (-788 *4 (-872 *6)))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *5 (-652 (-1188))))))
+(((*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-148)) (-4 *2 (-313)) (-4 *2 (-460)) (-4 *3 (-858))
+ (-4 *4 (-801)) (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-322 (-572))) (-5 *1 (-1130))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-445)) (-5 *1 (-1192)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928))
- (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384)))
- (-5 *1 (-791 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384)))
- (-5 *1 (-791 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384)))
- (-5 *1 (-791 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-1237 *4)) (-4 *4 (-1058)) (-4 *4 (-562))
- (-5 *2 (-413 (-959 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-1237 *4)) (-4 *4 (-1058)) (-4 *4 (-562))
- (-5 *2 (-413 (-959 *4))))))
+ (-12 (-5 *3 (-1170))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112))
+ (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1214) (-29 *4))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115))))
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-460)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-512)) (-4 *4 (-1109)) (-5 *1 (-936 *4 *2))
- (-4 *2 (-436 *4))))
+ (-12 (-5 *3 (-514)) (-4 *4 (-1111)) (-5 *1 (-938 *4 *2))
+ (-4 *2 (-438 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-512)) (-5 *2 (-320 (-570)))
- (-5 *1 (-937)))))
-(((*1 *1) (-5 *1 (-809))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
+ (-12 (-5 *3 (-1188)) (-5 *4 (-514)) (-5 *2 (-322 (-572)))
+ (-5 *1 (-939)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-760)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2))
+ (-4 *3 (-564)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-936)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058))
- (-5 *2 (-650 (-650 (-950 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112)) (-4 *4 (-1058))
- (-4 *1 (-1143 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 (-950 *3)))) (-4 *3 (-1058))
- (-4 *1 (-1143 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-112))
- (-4 *1 (-1143 *4)) (-4 *4 (-1058))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112))
- (-4 *1 (-1143 *4)) (-4 *4 (-1058))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-650 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-650 (-650 (-950 *5)))) (-5 *3 (-650 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334))
- (-5 *1 (-336))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-1101 (-959 (-570)))) (-5 *2 (-334))
- (-5 *1 (-336))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058))
- (-4 *3 (-1109)))))
+ (-12 (-5 *3 (-1105 (-851 (-386)))) (-5 *2 (-1105 (-851 (-227))))
+ (-5 *1 (-311)))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-423 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777))
- (-4 *4 (-174))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-436 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-1297 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-174)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))
- (-5 *2 (-1044)) (-5 *1 (-754)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-650 (-1 *4 (-650 *4)))) (-4 *4 (-1109))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109))
- (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-1 *4 (-650 *4))))
- (-5 *1 (-114 *4)) (-4 *4 (-1109)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-570) (-227) (-512) (-1168) (-1191)))
- (-5 *1 (-1191)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-368))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-580 *5 *3)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-486)))))
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-967 (-1131)))
+ (-5 *1 (-353 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-413 (-959 (-570)))))
- (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-854) (-368)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-298 (-413 (-959 (-570))))))
- (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-854) (-368)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 (-298 (-959 *4))))
- (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-298 (-413 (-959 (-570)))))
- (-5 *2 (-650 (-298 (-959 *4)))) (-5 *1 (-385 *4))
- (-4 *4 (-13 (-854) (-368)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1186))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1212) (-966)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2681 (-650 *4))))
- (-5 *1 (-658 *6 *4 *3)) (-4 *3 (-662 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *2))
- (-4 *2 (-13 (-29 *6) (-1212) (-966)))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *1 (-658 *6 *2 *3)) (-4 *3 (-662 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *5)) (-4 *5 (-368))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1277 *5) "failed"))
- (|:| -2681 (-650 (-1277 *5)))))
- (-5 *1 (-673 *5)) (-5 *4 (-1277 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1277 *5) "failed"))
- (|:| -2681 (-650 (-1277 *5)))))
- (-5 *1 (-673 *5)) (-5 *4 (-1277 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *5)) (-4 *5 (-368))
- (-5 *2
- (-650
- (-2 (|:| |particular| (-3 (-1277 *5) "failed"))
- (|:| -2681 (-650 (-1277 *5))))))
- (-5 *1 (-673 *5)) (-5 *4 (-650 (-1277 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368))
- (-5 *2
- (-650
- (-2 (|:| |particular| (-3 (-1277 *5) "failed"))
- (|:| -2681 (-650 (-1277 *5))))))
- (-5 *1 (-673 *5)) (-5 *4 (-650 (-1277 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453))))
- (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4453))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453))))
- (-4 *7 (-13 (-378 *5) (-10 -7 (-6 -4453))))
- (-5 *2
- (-650
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2681 (-650 *7)))))
- (-5 *1 (-674 *5 *6 *7 *3)) (-5 *4 (-650 *7))
- (-4 *3 (-693 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562))
- (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562))
- (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *1 (-778 *5 *2)) (-4 *2 (-13 (-29 *5) (-1212) (-966)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-695 *7)) (-5 *5 (-1186))
- (-4 *7 (-13 (-29 *6) (-1212) (-966)))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1277 *7)) (|:| -2681 (-650 (-1277 *7)))))
- (-5 *1 (-808 *6 *7)) (-5 *4 (-1277 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-695 *6)) (-5 *4 (-1186))
- (-4 *6 (-13 (-29 *5) (-1212) (-966)))
- (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2 (-650 (-1277 *6))) (-5 *1 (-808 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115)))
- (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1212) (-966)))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1277 *7)) (|:| -2681 (-650 (-1277 *7)))))
- (-5 *1 (-808 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115)))
- (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1212) (-966)))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1277 *7)) (|:| -2681 (-650 (-1277 *7)))))
- (-5 *1 (-808 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-1186))
- (-4 *7 (-13 (-29 *6) (-1212) (-966)))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2681 (-650 *7))) *7 "failed"))
- (-5 *1 (-808 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-1186))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-38 (-415 (-572))))
+ (-4 *2 (-174)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-652 (-1184 *11))) (-5 *3 (-1184 *11))
+ (-5 *4 (-652 *10)) (-5 *5 (-652 *8)) (-5 *6 (-652 (-779)))
+ (-5 *7 (-1279 (-652 (-1184 *8)))) (-4 *10 (-858))
+ (-4 *8 (-313)) (-4 *11 (-958 *8 *9 *10)) (-4 *9 (-801))
+ (-5 *1 (-715 *9 *10 *8 *11)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-779)) (-4 *2 (-1111))
+ (-5 *1 (-686 *2)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2681 (-650 *3))) *3 "failed"))
- (-5 *1 (-808 *6 *3)) (-4 *3 (-13 (-29 *6) (-1212) (-966)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-298 *2)) (-5 *4 (-115)) (-5 *5 (-650 *2))
- (-4 *2 (-13 (-29 *6) (-1212) (-966))) (-5 *1 (-808 *6 *2))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-298 *2)) (-5 *5 (-650 *2))
- (-4 *2 (-13 (-29 *6) (-1212) (-966)))
- (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *1 (-808 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-814)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1277 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4))
- (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1277 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4))
- (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1277 (-320 *4))) (-5 *5 (-650 (-384)))
- (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1277 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4))
- (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1277 (-320 *4))) (-5 *5 (-650 (-384)))
- (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1277 (-320 *4))) (-5 *5 (-650 (-384)))
- (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -2681 (-650 *6))) "failed")
- *7 *6))
- (-4 *6 (-368)) (-4 *7 (-662 *6))
- (-5 *2 (-2 (|:| |particular| (-1277 *6)) (|:| -2681 (-695 *6))))
- (-5 *1 (-819 *6 *7)) (-5 *3 (-695 *6)) (-5 *4 (-1277 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-905)) (-5 *2 (-1044)) (-5 *1 (-904))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-905)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-904))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168))
- (-5 *8 (-227)) (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384))
- (-5 *2 (-1044)) (-5 *1 (-904))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168))
- (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384)) (-5 *2 (-1044))
- (-5 *1 (-904))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 (-384)))
- (-5 *1 (-1032)) (-5 *4 (-384))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 (-384))) (-5 *1 (-1032))
- (-5 *4 (-384))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4))
- (-5 *3 (-320 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4))
- (-5 *3 (-298 (-320 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5))
- (-5 *3 (-298 (-320 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5))
- (-5 *3 (-320 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-1186)))
- (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1140 *5))
- (-5 *3 (-650 (-298 (-320 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186)))
- (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5))))))
- (-5 *1 (-1195 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-1186))) (-4 *5 (-562))
- (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-1195 *5))
- (-5 *3 (-650 (-298 (-413 (-959 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-562))
- (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-1195 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4))))))
- (-5 *1 (-1195 *4)) (-5 *3 (-650 (-298 (-413 (-959 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-4 *5 (-562))
- (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5))
- (-5 *3 (-413 (-959 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-4 *5 (-562))
- (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5))
- (-5 *3 (-298 (-413 (-959 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4)))))
- (-5 *1 (-1195 *4)) (-5 *3 (-413 (-959 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4)))))
- (-5 *1 (-1195 *4)) (-5 *3 (-298 (-413 (-959 *4)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-650 *6))
- (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-847)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-846))))
- ((*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-650 (-384))) (-5 *5 (-650 (-849 (-384))))
- (-5 *6 (-650 (-320 (-384)))) (-5 *3 (-320 (-384))) (-5 *2 (-1044))
- (-5 *1 (-846))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384)))
- (-5 *5 (-650 (-849 (-384)))) (-5 *2 (-1044)) (-5 *1 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384))) (-5 *2 (-1044))
- (-5 *1 (-846))))
+ (-652
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-779)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-801)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460)) (-4 *5 (-858))
+ (-5 *1 (-457 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384)))
- (-5 *2 (-1044)) (-5 *1 (-846)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-777)) (-4 *2 (-1109))
- (-5 *1 (-684 *2)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-562))
- (-5 *2 (-868)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283)))))
-(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279))))
- ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-227))) (-5 *4 (-777)) (-5 *2 (-695 (-227)))
- (-5 *1 (-309)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1067)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368)))
- (-4 *3 (-1253 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-250)))))
+ (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4)))
+ (-4 *4 (-858)) (-5 *1 (-1199 *4)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-252)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-158))))
+ ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-882))))
+ ((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-440)) (-4 *5 (-1109))
- (-5 *1 (-1115 *5 *4)) (-4 *4 (-436 *5)))))
+ (-12 (-5 *2 (-1188)) (-5 *3 (-442)) (-4 *5 (-1111))
+ (-5 *1 (-1117 *5 *4)) (-4 *4 (-438 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-354)) (-5 *2 (-1277 *1))))
+ (-12 (-4 *3 (-1255 (-415 (-572))))
+ (-5 *2 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572))))
+ (-5 *1 (-922 *3 *4)) (-4 *4 (-1255 (-415 *3)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-146)) (-4 *1 (-916))
- (-5 *2 (-1277 *1)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1227)) (-5 *1 (-184 *3 *2)) (-4 *2 (-680 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
+ (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3))
+ (-4 *3 (-1255 (-415 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| |k| (-1188)) (|:| |c| (-1301 *3)))))
+ (-5 *1 (-1301 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| |k| *3) (|:| |c| (-1303 *3 *4)))))
+ (-5 *1 (-1303 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1252 *4 *5)) (-5 *3 (-652 *5)) (-14 *4 (-1188))
+ (-4 *5 (-370)) (-5 *1 (-932 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *5)) (-4 *5 (-370)) (-5 *2 (-1184 *5))
+ (-5 *1 (-932 *4 *5)) (-14 *4 (-1188))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-652 *6)) (-5 *4 (-779)) (-4 *6 (-370))
+ (-5 *2 (-415 (-961 *6))) (-5 *1 (-1061 *5 *6)) (-14 *5 (-1188)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-32 *3 *4))
- (-4 *4 (-436 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-55)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *1 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-438 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-55)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-779)) (-5 *1 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-159 *3 *4))
- (-4 *4 (-436 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-115)) (-5 *1 (-164))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-159 *3 *4))
+ (-4 *4 (-438 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-115)) (-5 *1 (-164))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-279 *3 *4))
- (-4 *4 (-13 (-436 *3) (-1011)))))
- ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-305 *3)) (-4 *3 (-306))))
- ((*1 *2 *2) (-12 (-4 *1 (-306)) (-5 *2 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-281 *3 *4))
+ (-4 *4 (-13 (-438 *3) (-1013)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-307 *3)) (-4 *3 (-308))))
+ ((*1 *2 *2) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *4 (-1109)) (-5 *1 (-435 *3 *4))
- (-4 *3 (-436 *4))))
+ (-12 (-5 *2 (-115)) (-4 *4 (-1111)) (-5 *1 (-437 *3 *4))
+ (-4 *3 (-438 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-437 *3 *4))
- (-4 *4 (-436 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-618 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-439 *3 *4))
+ (-4 *4 (-438 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-620 *3)) (-4 *3 (-1111))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-636 *3 *4))
- (-4 *4 (-13 (-436 *3) (-1011) (-1212)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1200 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1083))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-564)) (-5 *1 (-638 *3 *4))
+ (-4 *4 (-13 (-438 *3) (-1013) (-1214)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1202 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060))
+ (-5 *3 (-572)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1085))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
+ (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458)))
- (-5 *2 (-849 *4)) (-5 *1 (-317 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1212) (-436 *3))) (-14 *5 (-1186))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458)))
- (-5 *2 (-849 *4)) (-5 *1 (-1263 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1212) (-436 *3))) (-14 *5 (-1186))
- (-14 *6 *4))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-570))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))))
+ (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-99 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-572)) (-14 *4 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-640)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858)))
+ (-14 *3 (-652 (-1188))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-4 *1 (-912 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-423 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1) (-4 *1 (-1148))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 *2)) (-4 *2 (-956 (-413 (-959 *6)) *5 *4))
- (-5 *1 (-738 *5 *4 *6 *2)) (-4 *5 (-799))
- (-4 *4 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $)))))
- (-4 *6 (-562)))))
-(((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-638)))))
-(((*1 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282))
- (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282))
- (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5))))
+ (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-570))) (-5 *4 (-570)) (-5 *2 (-52))
- (-5 *1 (-1014)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-650 *6) "failed") (-570) *6 *6)) (-4 *6 (-368))
- (-4 *7 (-1253 *6))
- (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6)))
- (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))))
+ (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8))))
+ (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1186))
- (|:| |arrayIndex| (-650 (-959 (-570))))
+ (-2 (|:| |var| (-1188))
+ (|:| |arrayIndex| (-652 (-961 (-572))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1186)) (|:| |rand| (-868))
+ (-2 (|:| |var| (-1188)) (|:| |rand| (-870))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1185)) (|:| |thenClause| (-334))
- (|:| |elseClause| (-334))))
+ (-2 (|:| |switch| (-1187)) (|:| |thenClause| (-336))
+ (|:| |elseClause| (-336))))
(|:| |returnBranch|
- (-2 (|:| -2171 (-112))
- (|:| -4156
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1393 (-868))))))
- (|:| |blockBranch| (-650 (-334)))
- (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168))
+ (-2 (|:| -3712 (-112))
+ (|:| -1653
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1999 (-870))))))
+ (|:| |blockBranch| (-652 (-336)))
+ (|:| |commentBranch| (-652 (-1170))) (|:| |callBranch| (-1170))
(|:| |forBranch|
- (-2 (|:| -2744 (-1101 (-959 (-570))))
- (|:| |span| (-959 (-570))) (|:| -1781 (-334))))
- (|:| |labelBranch| (-1129))
- (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -1781 (-334))))
+ (-2 (|:| -4336 (-1103 (-961 (-572))))
+ (|:| |span| (-961 (-572))) (|:| -2414 (-336))))
+ (|:| |labelBranch| (-1131))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1187)) (|:| -2414 (-336))))
(|:| |commonBranch|
- (-2 (|:| -1770 (-1186)) (|:| |contents| (-650 (-1186)))))
- (|:| |printBranch| (-650 (-868)))))
- (-5 *1 (-334)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3))))
- ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-866)) (-5 *2 (-697 (-1235))) (-5 *3 (-1235)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2))
- (-4 *2 (-662 *4)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-650
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-777)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-799)) (-4 *6 (-956 *4 *3 *5)) (-4 *4 (-458)) (-4 *5 (-856))
- (-5 *1 (-455 *4 *3 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+ (-2 (|:| -2402 (-1188)) (|:| |contents| (-652 (-1188)))))
+ (|:| |printBranch| (-652 (-870)))))
+ (-5 *1 (-336)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892))
+ (-5 *3 (-652 (-572))))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-798))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-800))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-650 (-1186)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-652 (-1188)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570))
- (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572))
+ (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174))
(-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-320 *3) (-320 *3))) (-4 *3 (-13 (-1058) (-856)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186)))))
+ (-12 (-5 *2 (-1 (-322 *3) (-322 *3))) (-4 *3 (-13 (-1060) (-858)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-652 (-1188)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777))
- (-4 *6 (-1227)) (-4 *7 (-1227)) (-5 *2 (-242 *5 *7))
- (-5 *1 (-241 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779))
+ (-4 *6 (-1229)) (-4 *7 (-1229)) (-5 *2 (-244 *5 *7))
+ (-5 *1 (-243 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-298 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-298 *6)) (-5 *1 (-297 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-300 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-300 *6)) (-5 *1 (-299 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-298 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-300 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1168)) (-5 *5 (-618 *6))
- (-4 *6 (-306)) (-4 *2 (-1227)) (-5 *1 (-301 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1170)) (-5 *5 (-620 *6))
+ (-4 *6 (-308)) (-4 *2 (-1229)) (-5 *1 (-303 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-618 *5)) (-4 *5 (-306))
- (-4 *2 (-306)) (-5 *1 (-302 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-620 *5)) (-4 *5 (-308))
+ (-4 *2 (-308)) (-5 *1 (-304 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-618 *1)) (-4 *1 (-306))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-620 *1)) (-4 *1 (-308))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-695 *5)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-5 *2 (-695 *6)) (-5 *1 (-308 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-5 *2 (-697 *6)) (-5 *1 (-310 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-320 *5)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-320 *6)) (-5 *1 (-318 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-322 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-322 *6)) (-5 *1 (-320 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-341 *5 *6 *7 *8)) (-4 *5 (-368))
- (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-4 *8 (-347 *5 *6 *7))
- (-4 *9 (-368)) (-4 *10 (-1253 *9)) (-4 *11 (-1253 (-413 *10)))
- (-5 *2 (-341 *9 *10 *11 *12))
- (-5 *1 (-338 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-347 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-343 *5 *6 *7 *8)) (-4 *5 (-370))
+ (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7))
+ (-4 *9 (-370)) (-4 *10 (-1255 *9)) (-4 *11 (-1255 (-415 *10)))
+ (-5 *2 (-343 *9 *10 *11 *12))
+ (-5 *1 (-340 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-349 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1111))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1231)) (-4 *8 (-1231))
- (-4 *6 (-1253 *5)) (-4 *7 (-1253 (-413 *6))) (-4 *9 (-1253 *8))
- (-4 *2 (-347 *8 *9 *10)) (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-347 *5 *6 *7)) (-4 *10 (-1253 (-413 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1233)) (-4 *8 (-1233))
+ (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6))) (-4 *9 (-1255 *8))
+ (-4 *2 (-349 *8 *9 *10)) (-5 *1 (-347 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-349 *5 *6 *7)) (-4 *10 (-1255 (-415 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1227)) (-4 *6 (-1227))
- (-4 *2 (-378 *6)) (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-378 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1229)) (-4 *6 (-1229))
+ (-4 *2 (-380 *6)) (-5 *1 (-378 *5 *4 *6 *2)) (-4 *4 (-380 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-387 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-1109))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-389 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-1111))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-424 *5)) (-4 *5 (-562))
- (-4 *6 (-562)) (-5 *2 (-424 *6)) (-5 *1 (-411 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-426 *5)) (-4 *5 (-564))
+ (-4 *6 (-564)) (-5 *2 (-426 *6)) (-5 *1 (-413 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-562))
- (-4 *6 (-562)) (-5 *2 (-413 *6)) (-5 *1 (-412 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-415 *5)) (-4 *5 (-564))
+ (-4 *6 (-564)) (-5 *2 (-415 *6)) (-5 *1 (-414 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-419 *5 *6 *7 *8)) (-4 *5 (-311))
- (-4 *6 (-1001 *5)) (-4 *7 (-1253 *6))
- (-4 *8 (-13 (-415 *6 *7) (-1047 *6))) (-4 *9 (-311))
- (-4 *10 (-1001 *9)) (-4 *11 (-1253 *10))
- (-5 *2 (-419 *9 *10 *11 *12))
- (-5 *1 (-418 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-415 *10 *11) (-1047 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-421 *5 *6 *7 *8)) (-4 *5 (-313))
+ (-4 *6 (-1003 *5)) (-4 *7 (-1255 *6))
+ (-4 *8 (-13 (-417 *6 *7) (-1049 *6))) (-4 *9 (-313))
+ (-4 *10 (-1003 *9)) (-4 *11 (-1255 *10))
+ (-5 *2 (-421 *9 *10 *11 *12))
+ (-5 *1 (-420 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-417 *10 *11) (-1049 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-423 *6)) (-5 *1 (-421 *4 *5 *2 *6)) (-4 *4 (-423 *5))))
+ (-4 *2 (-425 *6)) (-5 *1 (-423 *4 *5 *2 *6)) (-4 *4 (-425 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-562)) (-5 *1 (-424 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-564)) (-5 *1 (-426 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058))
- (-4 *2 (-436 *6)) (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-436 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060))
+ (-4 *2 (-438 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-438 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109))
- (-4 *2 (-431 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-431 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111))
+ (-4 *2 (-433 *6)) (-5 *1 (-431 *5 *4 *6 *2)) (-4 *4 (-433 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-495 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-497 *3)) (-4 *3 (-1229))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-515 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-856))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-517 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-858))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-368))
- (-4 *6 (-368)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-594 *5)) (-4 *5 (-370))
+ (-4 *6 (-370)) (-5 *2 (-594 *6)) (-5 *1 (-592 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -3730 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-368)) (-4 *6 (-368))
- (-5 *2 (-2 (|:| -3730 *6) (|:| |coeff| *6)))
- (-5 *1 (-590 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -1647 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-370)) (-4 *6 (-370))
+ (-5 *2 (-2 (|:| -1647 *6) (|:| |coeff| *6)))
+ (-5 *1 (-592 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-368)) (-4 *2 (-368)) (-5 *1 (-590 *5 *2))))
+ (-4 *5 (-370)) (-4 *2 (-370)) (-5 *1 (-592 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-652 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-368)) (-4 *6 (-368))
+ (-4 *5 (-370)) (-4 *6 (-370))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-590 *5 *6))))
+ (-652 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-592 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-607 *6)) (-5 *1 (-604 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-609 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-609 *6)) (-5 *1 (-606 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7))
- (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-607 *8))
- (-5 *1 (-605 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-609 *7))
+ (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-609 *8))
+ (-5 *1 (-607 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-607 *7))
- (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-1166 *8))
- (-5 *1 (-605 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-609 *7))
+ (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8))
+ (-5 *1 (-607 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-1166 *7))
- (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-1166 *8))
- (-5 *1 (-605 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-609 *6)) (-5 *5 (-1168 *7))
+ (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8))
+ (-5 *1 (-607 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1227)) (-5 *1 (-607 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-650 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-650 *6)) (-5 *1 (-648 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-652 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-652 *6)) (-5 *1 (-650 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-650 *6)) (-5 *5 (-650 *7))
- (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-650 *8))
- (-5 *1 (-649 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-652 *6)) (-5 *5 (-652 *7))
+ (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-652 *8))
+ (-5 *1 (-651 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-657 *3)) (-4 *3 (-1227))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1058)) (-4 *8 (-1058))
- (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *2 (-693 *8 *9 *10))
- (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-693 *5 *6 *7))
- (-4 *9 (-378 *8)) (-4 *10 (-378 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1058))
- (-4 *8 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5))
- (-4 *2 (-693 *8 *9 *10)) (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-693 *5 *6 *7)) (-4 *9 (-378 *8)) (-4 *10 (-378 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-562)) (-4 *7 (-562))
- (-4 *6 (-1253 *5)) (-4 *2 (-1253 (-413 *8)))
- (-5 *1 (-715 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1253 (-413 *6)))
- (-4 *8 (-1253 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1058)) (-4 *9 (-1058))
- (-4 *5 (-856)) (-4 *6 (-799)) (-4 *2 (-956 *9 *7 *5))
- (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799))
- (-4 *4 (-956 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-856)) (-4 *6 (-856)) (-4 *7 (-799))
- (-4 *9 (-1058)) (-4 *2 (-956 *9 *8 *6))
- (-5 *1 (-735 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-799))
- (-4 *4 (-956 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-741 *5 *7)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-4 *7 (-732)) (-5 *2 (-741 *6 *7))
- (-5 *1 (-740 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1060)) (-4 *8 (-1060))
+ (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *2 (-695 *8 *9 *10))
+ (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-695 *5 *6 *7))
+ (-4 *9 (-380 *8)) (-4 *10 (-380 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1060))
+ (-4 *8 (-1060)) (-4 *6 (-380 *5)) (-4 *7 (-380 *5))
+ (-4 *2 (-695 *8 *9 *10)) (-5 *1 (-693 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-695 *5 *6 *7)) (-4 *9 (-380 *8)) (-4 *10 (-380 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-564)) (-4 *7 (-564))
+ (-4 *6 (-1255 *5)) (-4 *2 (-1255 (-415 *8)))
+ (-5 *1 (-717 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1255 (-415 *6)))
+ (-4 *8 (-1255 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1060)) (-4 *9 (-1060))
+ (-4 *5 (-858)) (-4 *6 (-801)) (-4 *2 (-958 *9 *7 *5))
+ (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801))
+ (-4 *4 (-958 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-858)) (-4 *6 (-858)) (-4 *7 (-801))
+ (-4 *9 (-1060)) (-4 *2 (-958 *9 *8 *6))
+ (-5 *1 (-737 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-801))
+ (-4 *4 (-958 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5 *7)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-4 *7 (-734)) (-5 *2 (-743 *6 *7))
+ (-5 *1 (-742 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-741 *3 *4))
- (-4 *4 (-732))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-743 *3 *4))
+ (-4 *4 (-734))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-803 *6)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *4 (-803 *5))))
+ (-4 *2 (-805 *6)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *4 (-805 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-841 *6)) (-5 *1 (-840 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-838 *5 *6))))
+ (-12 (-5 *2 (-841 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-841 *5))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-840 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-848 *5 *6))))
+ (-12 (-5 *2 (-851 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-5 *1 (-850 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-896 *5 *6)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-896 *5 *7))
- (-5 *1 (-895 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-898 *5 *6)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-898 *5 *7))
+ (-5 *1 (-897 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-5 *2 (-959 *6)) (-5 *1 (-953 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-5 *2 (-961 *6)) (-5 *1 (-955 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-856))
- (-4 *8 (-1058)) (-4 *6 (-799))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-858))
+ (-4 *8 (-1060)) (-4 *6 (-801))
(-4 *2
- (-13 (-1109)
- (-10 -8 (-15 -3992 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777))))))
- (-5 *1 (-958 *6 *7 *8 *5 *2)) (-4 *5 (-956 *8 *6 *7))))
+ (-13 (-1111)
+ (-10 -8 (-15 -4005 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-779))))))
+ (-5 *1 (-960 *6 *7 *8 *5 *2)) (-4 *5 (-958 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-965 *6)) (-5 *1 (-964 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-967 *6)) (-5 *1 (-966 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-5 *2 (-973 *6)) (-5 *1 (-975 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-975 *6)) (-5 *1 (-977 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-5 *2 (-950 *6)) (-5 *1 (-990 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-5 *2 (-952 *6)) (-5 *1 (-992 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-959 *4))) (-4 *4 (-1058))
- (-4 *2 (-956 (-959 *4) *5 *6)) (-4 *5 (-799))
+ (-12 (-5 *3 (-1 *2 (-961 *4))) (-4 *4 (-1060))
+ (-4 *2 (-958 (-961 *4) *5 *6)) (-4 *5 (-801))
(-4 *6
- (-13 (-856)
- (-10 -8 (-15 -2601 ((-1186) $))
- (-15 -1433 ((-3 $ "failed") (-1186))))))
- (-5 *1 (-993 *4 *5 *6 *2))))
+ (-13 (-858)
+ (-10 -8 (-15 -3222 ((-1188) $))
+ (-15 -2043 ((-3 $ "failed") (-1188))))))
+ (-5 *1 (-995 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-562)) (-4 *6 (-562))
- (-4 *2 (-1001 *6)) (-5 *1 (-999 *5 *6 *4 *2)) (-4 *4 (-1001 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-564)) (-4 *6 (-564))
+ (-4 *2 (-1003 *6)) (-5 *1 (-1001 *5 *6 *4 *2)) (-4 *4 (-1003 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-1006 *6)) (-5 *1 (-1007 *4 *5 *2 *6)) (-4 *4 (-1006 *5))))
+ (-4 *2 (-1008 *6)) (-5 *1 (-1009 *4 *5 *2 *6)) (-4 *4 (-1008 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7))
- (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7))
+ (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7))
- (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1064 *3 *4 *5 *6 *7))
+ (-4 *5 (-1060)) (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1058)) (-4 *10 (-1058))
- (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7))
- (-4 *9 (-240 *5 *7)) (-4 *2 (-1062 *5 *6 *10 *11 *12))
- (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *11 (-240 *6 *10))
- (-4 *12 (-240 *5 *10))))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1060)) (-4 *10 (-1060))
+ (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7))
+ (-4 *9 (-242 *5 *7)) (-4 *2 (-1064 *5 *6 *10 *11 *12))
+ (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *11 (-242 *6 *10))
+ (-4 *12 (-242 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-1103 *6)) (-5 *1 (-1098 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-1105 *6)) (-5 *1 (-1100 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-854))
- (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-650 *6))
- (-5 *1 (-1098 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1105 *5)) (-4 *5 (-856))
+ (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-652 *6))
+ (-5 *1 (-1100 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-1101 *6)) (-5 *1 (-1100 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-1103 *6)) (-5 *1 (-1102 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854))
- (-4 *2 (-1158 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856))
+ (-4 *2 (-1160 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1168 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-1168 *6)) (-5 *1 (-1166 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-1166 *7))
- (-4 *6 (-1227)) (-4 *7 (-1227)) (-4 *8 (-1227)) (-5 *2 (-1166 *8))
- (-5 *1 (-1165 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1168 *6)) (-5 *5 (-1168 *7))
+ (-4 *6 (-1229)) (-4 *7 (-1229)) (-4 *8 (-1229)) (-5 *2 (-1168 *8))
+ (-5 *1 (-1167 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-5 *2 (-1184 *6)) (-5 *1 (-1182 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1205 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1241 *5 *7 *9)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1241 *6 *8 *10)) (-5 *1 (-1236 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1186))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5 *7 *9)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1243 *6 *8 *10)) (-5 *1 (-1238 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1188))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-1244 *6)) (-5 *1 (-1243 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-1246 *6)) (-5 *1 (-1245 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5)) (-4 *5 (-854))
- (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1166 *6))
- (-5 *1 (-1243 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1246 *5)) (-4 *5 (-856))
+ (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1168 *6))
+ (-5 *1 (-1245 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1250 *5 *6)) (-14 *5 (-1186))
- (-4 *6 (-1058)) (-4 *8 (-1058)) (-5 *2 (-1250 *7 *8))
- (-5 *1 (-1245 *5 *6 *7 *8)) (-14 *7 (-1186))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1252 *5 *6)) (-14 *5 (-1188))
+ (-4 *6 (-1060)) (-4 *8 (-1060)) (-5 *2 (-1252 *7 *8))
+ (-5 *1 (-1247 *5 *6 *7 *8)) (-14 *7 (-1188))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058))
- (-4 *2 (-1253 *6)) (-5 *1 (-1251 *5 *4 *6 *2)) (-4 *4 (-1253 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060))
+ (-4 *2 (-1255 *6)) (-5 *1 (-1253 *5 *4 *6 *2)) (-4 *4 (-1255 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5 *7 *9)) (-4 *5 (-1058))
- (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1262 *6 *8 *10)) (-5 *1 (-1257 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1186))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5 *7 *9)) (-4 *5 (-1060))
+ (-4 *6 (-1060)) (-14 *7 (-1188)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1264 *6 *8 *10)) (-5 *1 (-1259 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1188))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058))
- (-4 *2 (-1268 *6)) (-5 *1 (-1266 *5 *6 *4 *2)) (-4 *4 (-1268 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1060)) (-4 *6 (-1060))
+ (-4 *2 (-1270 *6)) (-5 *1 (-1268 *5 *6 *4 *2)) (-4 *4 (-1270 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1277 *5)) (-4 *5 (-1227))
- (-4 *6 (-1227)) (-5 *2 (-1277 *6)) (-5 *1 (-1276 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-1229))
+ (-4 *6 (-1229)) (-5 *2 (-1279 *6)) (-5 *1 (-1278 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1277 *5))
- (-4 *5 (-1227)) (-4 *6 (-1227)) (-5 *2 (-1277 *6))
- (-5 *1 (-1276 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1279 *5))
+ (-4 *5 (-1229)) (-4 *6 (-1229)) (-5 *2 (-1279 *6))
+ (-5 *1 (-1278 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-1058))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-1060))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-1300 *3 *4))
- (-4 *4 (-852)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-650 (-2 (|:| |totdeg| (-777)) (|:| -3147 *3))))
- (-5 *4 (-777)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799))
- (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-1302 *3 *4))
+ (-4 *4 (-854)))))
+(((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115))))
- ((*1 *1) (-5 *1 (-584))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799))
+ (-12 (-5 *2 (-652 (-2 (|:| |k| (-680 *3)) (|:| |c| *4))))
+ (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-544) (-652 (-544)))) (-5 *1 (-115))))
+ ((*1 *1) (-5 *1 (-586))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-564))
(-5 *2
- (-2 (|:| |mval| (-695 *4)) (|:| |invmval| (-695 *4))
- (|:| |genIdeal| (-510 *4 *5 *6 *7))))
- (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-779))))
+ ((*1 *1 *1) (-4 *1 (-410))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-384)) (-5 *1 (-194)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-928)) (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-798))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1258 *3)) (-4 *3 (-1058)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-366 (-115))) (-4 *2 (-1058)) (-5 *1 (-720 *2 *4))
- (-4 *4 (-654 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-366 (-115))) (-5 *1 (-842 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-173))))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-115)) (-5 *4 (-777))
- (-4 *5 (-13 (-458) (-1047 (-570)))) (-4 *5 (-562))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-436 *5))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *5 (-618 $)) $))
- (-15 -1599 ((-1134 *5 (-618 $)) $))
- (-15 -2869 ($ (-1134 *5 (-618 $))))))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-327 *4 *2)) (-4 *4 (-1109))
- (-4 *2 (-132)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))))
-(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1069))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-1069))))
- ((*1 *1 *1) (-4 *1 (-854)))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)) (-4 *2 (-1069))))
- ((*1 *1 *1) (-4 *1 (-1069))) ((*1 *1 *1) (-4 *1 (-1148))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-928))
- (-5 *2 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129))))))
- (-5 *1 (-351 *4)) (-4 *4 (-354)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1237 *3)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856))
- (-5 *2 (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -3357 *1)))
- (-4 *1 (-1074 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-2 (|:| -1747 *1) (|:| |gap| (-777)) (|:| -3357 *1)))
- (-4 *1 (-1074 *3 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458))
- (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-714 *3)) (-5 *1 (-833 *2 *3)) (-4 *3 (-1058)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
+ (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-928)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-368)) (-14 *5 (-1002 *3 *4)))))
+ (-12 (-5 *2 (-1279 *4)) (-4 *4 (-1229)) (-4 *1 (-242 *3 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1227)) (-5 *2 (-777)) (-5 *1 (-184 *4 *3))
- (-4 *3 (-680 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-368)) (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3)))
- (-5 *1 (-772 *3 *4)) (-4 *3 (-714 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-368)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058))
- (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3))
- (-4 *3 (-858 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-1201 *2)) (-4 *2 (-368)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1212) (-966)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1) (-5 *1 (-868)))
+ (-12 (-4 *4 (-918)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-426 (-1184 *7)))
+ (-5 *1 (-915 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-650 *3)) (|:| |image| (-650 *3))))
- (-5 *1 (-912 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-413 (-570))) (-5 *1 (-309)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-436 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))))
-(((*1 *2)
- (-12 (-5 *2 (-1282)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
+ (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5)))
+ (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-652 (-415 *7)))
+ (-4 *7 (-1255 *6)) (-5 *3 (-415 *7)) (-4 *6 (-370))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-582 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191)))))
+ (-12 (-5 *3 (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5))))
+ (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5)))))
+ (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-421 *3 *4 *5 *6)) (-4 *6 (-1049 *4)) (-4 *3 (-313))
+ (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *6 (-417 *4 *5))
+ (-14 *7 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1279 *6)) (-4 *6 (-417 *4 *5)) (-4 *4 (-1003 *3))
+ (-4 *5 (-1255 *4)) (-4 *3 (-313)) (-5 *1 (-422 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1069)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1079 *4 *3)) (-4 *4 (-13 (-856) (-370)))
+ (-4 *3 (-1255 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-759)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-930)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-370)) (-14 *5 (-1004 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1168 *3)) (-5 *1 (-1172 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-185 (-253))) (-5 *1 (-252)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-533)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-371 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-5 *2 (-1170)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-914 *3))) (-4 *3 (-1111)) (-5 *1 (-913 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229))
+ (-5 *2 (-112)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058))
- (-5 *1 (-1170 *3)))))
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
+ (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-988 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1282))
- (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -3730 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-368)) (-4 *7 (-1253 *6))
- (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6)))
- (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-512))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-882))) (-5 *1 (-489)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-856))
- (-4 *3 (-1109)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1186))
- (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-581 *4 *2))
- (-4 *2 (-13 (-1212) (-966) (-1148) (-29 *4))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))))
-(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))))
+ (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-356)) (-5 *2 (-1279 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-697 *1)) (-4 *1 (-146)) (-4 *1 (-918))
+ (-5 *2 (-1279 *1)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-514))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-884))) (-5 *1 (-491)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 (-2 (|:| -2972 (-1184 *6)) (|:| -2477 (-572)))))
+ (-4 *6 (-313)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
+ (-4 *2 (-1229)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570))
- (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-572))
+ (-14 *6 (-779)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *9)) (-4 *9 (-1058)) (-4 *5 (-856)) (-4 *6 (-799))
- (-4 *8 (-1058)) (-4 *2 (-956 *9 *7 *5))
- (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799))
- (-4 *4 (-956 *8 *6 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-4 *3 (-13 (-27) (-1212) (-436 *6) (-10 -8 (-15 -2869 ($ *7)))))
- (-4 *7 (-854))
- (-4 *8
- (-13 (-1255 *3 *7) (-368) (-1212)
- (-10 -8 (-15 -2375 ($ $)) (-15 -1363 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))))
- (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8))
- (-14 *10 (-1186)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835)))))
+ (-12 (-5 *3 (-652 *9)) (-4 *9 (-1060)) (-4 *5 (-858)) (-4 *6 (-801))
+ (-4 *8 (-1060)) (-4 *2 (-958 *9 *7 *5))
+ (-5 *1 (-736 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-801))
+ (-4 *4 (-958 *8 *6 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-934))
- (-5 *2
- (-2 (|:| |brans| (-650 (-650 (-950 (-227)))))
- (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570)))
- (-5 *2
- (-2 (|:| |brans| (-650 (-650 (-950 (-227)))))
- (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-650 (-650 (-950 (-227)))))
- (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-650 (-950 (-227))))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-650 (-650 (-950 (-227)))))
- (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 (-227)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-1222 *3))
- (-4 *3 (-983)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-1074 *3 *4 *2)) (-4 *2 (-856))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))))
-(((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-542))) (-5 *1 (-542)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 (-384))) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
-(((*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270)))))
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6))
+ (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-650
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856))
- (-5 *1 (-455 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-380 *4 *2))
- (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551))
- (-5 *2 (-413 (-570)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551))
- (-4 *3 (-562))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-551)) (-5 *2 (-413 (-570)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551))
- (-5 *2 (-413 (-570)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551))
- (-4 *3 (-1109))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551))
- (-4 *3 (-1109))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551))
- (-5 *2 (-413 (-570)))))
+ (-12 (-4 *3 (-1229)) (-5 *1 (-184 *3 *2)) (-4 *2 (-682 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 *6)) (-5 *3 (-572)) (-4 *6 (-313)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *1 (-750 *4 *5 *6 *7)) (-4 *7 (-958 *6 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1))
+ (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3))
- (-4 *3 (-1047 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5))
+ (-4 *3 (-1255 *4))
+ (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570))
- (-14 *4 (-777)) (-4 *5 (-174)))))
+ (-12 (-5 *2 (-652 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))
+ (-14 *4 (-779)) (-4 *5 (-174)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
+ (-12 (-5 *2 (-1170)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-268))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-127 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174))))
+ (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25))))))
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-870))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-870) (-652 (-870)))) (-5 *1 (-115))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3))
+ (-4 *3
+ (-13 (-858)
+ (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 (*2 $))
+ (-15 -3019 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-402))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-402))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-718))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1209))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1209)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-652 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-176 *3)) (-4 *3 (-313))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-682 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-748 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-858))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *1 (-991 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7))
+ (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058))
- (-4 *5 (-856)) (-5 *2 (-959 *4))))
+ (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060))
+ (-4 *5 (-858)) (-5 *2 (-961 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058))
- (-4 *5 (-856)) (-5 *2 (-959 *4))))
+ (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *5)) (-4 *4 (-1060))
+ (-4 *5 (-858)) (-5 *2 (-961 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-1268 *4)) (-4 *4 (-1058))
- (-5 *2 (-959 *4))))
+ (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060))
+ (-5 *2 (-961 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-1268 *4)) (-4 *4 (-1058))
- (-5 *2 (-959 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934))
- (-5 *1 (-932 *3)) (-4 *3 (-620 (-542)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934))
- (-5 *1 (-932 *3)) (-4 *3 (-620 (-542)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-933))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-933))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227)))
- (-5 *1 (-934)))))
+ (-12 (-5 *3 (-779)) (-4 *1 (-1270 *4)) (-4 *4 (-1060))
+ (-5 *2 (-961 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-868))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1282)) (-5 *1 (-216 *3))
- (-4 *3
- (-13 (-856)
- (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 (*2 $))
- (-15 -1919 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-400))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-400))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-508))))
- ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-716))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1207))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1207)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-752 *3)) (-4 *3 (-174)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1170)) (-4 *1 (-371 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-650 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856))
- (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-650 (-570))) (-5 *3 (-650 (-928))) (-5 *4 (-112))
- (-5 *1 (-1119)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-695 (-959 *4))) (-5 *1 (-1037 *4))
- (-4 *4 (-1058)))))
-(((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+ (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
+ (-5 *2 (-851 *4)) (-5 *1 (-319 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1049 (-572)) (-647 (-572)) (-460)))
+ (-5 *2 (-851 *4)) (-5 *1 (-1265 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1214) (-438 *3))) (-14 *5 (-1188))
+ (-14 *6 *4))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-572)) (-4 *6 (-370)) (-4 *6 (-375))
+ (-4 *6 (-1060)) (-5 *2 (-652 (-652 (-697 *6)))) (-5 *1 (-1040 *6))
+ (-5 *3 (-652 (-697 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-370)) (-4 *4 (-375)) (-4 *4 (-1060))
+ (-5 *2 (-652 (-652 (-697 *4)))) (-5 *1 (-1040 *4))
+ (-5 *3 (-652 (-697 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060))
+ (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
+ (-5 *3 (-652 (-697 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-930)) (-4 *5 (-370)) (-4 *5 (-375)) (-4 *5 (-1060))
+ (-5 *2 (-652 (-652 (-697 *5)))) (-5 *1 (-1040 *5))
+ (-5 *3 (-652 (-697 *5))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570))))
- ((*1 *1 *1) (-4 *1 (-1011)))
- ((*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1021))))
- ((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1021))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-928))))
- ((*1 *1 *1) (-4 *1 (-1021))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1109)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-1109)))))
-(((*1 *2)
- (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5)))
- (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186))
- (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186))
- (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-559)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-950 (-227)) (-227) (-227)))
- (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-258)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-570))) (-5 *5 (-1 (-1166 *4))) (-4 *4 (-368))
- (-4 *4 (-1058)) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572))))
+ ((*1 *1 *1) (-4 *1 (-1013)))
+ ((*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1023))))
+ ((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1023))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-930))))
+ ((*1 *1 *1) (-4 *1 (-1023))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-5 *2 (-1184 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-858)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-652 *3)) (-5 *1 (-970 *3)) (-4 *3 (-553)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4))
+ (-4 *4 (-1229)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282))
- (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282))
- (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-438 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
+ (-5 *1 (-159 *4 *5)) (-4 *5 (-438 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
+ (-5 *1 (-281 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-307 *4)) (-4 *4 (-308))))
+ ((*1 *2 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *5 (-1111)) (-5 *2 (-112))
+ (-5 *1 (-437 *4 *5)) (-4 *4 (-438 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
+ (-5 *1 (-439 *4 *5)) (-4 *5 (-438 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-564)) (-5 *2 (-112))
+ (-5 *1 (-638 *4 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-112))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-572))))
((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))
- (-5 *2 (-650 (-2 (|:| -2442 *1) (|:| -2965 (-650 *7)))))
- (-5 *3 (-650 *7)) (-4 *1 (-1220 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-5 *1 (-868))))
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-572)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
+ (-5 *1 (-756)))))
+(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-928)) (-5 *2 (-474)) (-5 *1 (-1278)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-413 (-570)))
- (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-368))
- (-5 *1 (-527 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2))
- (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058))))
+ (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-313))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-455 *4 *5 *6 *2)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-339)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -2376 *5) (|:| -3283 *5))))
+ (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-664 *5))
+ (-4 *6 (-664 (-415 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -2376 *4) (|:| -3283 *4))))
+ (-5 *1 (-815 *5 *4 *3 *6)) (-4 *3 (-664 *4))
+ (-4 *6 (-664 (-415 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *5 (-1255 *4)) (-5 *2 (-652 (-2 (|:| -2376 *5) (|:| -3283 *5))))
+ (-5 *1 (-815 *4 *5 *6 *3)) (-4 *6 (-664 *5))
+ (-4 *3 (-664 (-415 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *4 (-1255 *5)) (-5 *2 (-652 (-2 (|:| -2376 *4) (|:| -3283 *4))))
+ (-5 *1 (-815 *5 *4 *6 *3)) (-4 *6 (-664 *4))
+ (-4 *3 (-664 (-415 *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
((*1 *2 *3)
- (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174))
- (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2))
- (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4454 "*"))) (-4 *2 (-1058)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-650 *5) *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1253 *5))
- (-5 *2 (-650 (-2 (|:| -3722 *5) (|:| -2557 *3))))
- (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6))
- (-4 *7 (-662 (-413 *6))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1262 *4 *5 *6))
- (|:| |%expon| (-323 *4 *5 *6))
- (|:| |%expTerms|
- (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4))))))
- (|:| |%type| (-1168))))
- (-5 *1 (-1263 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1212) (-436 *3)))
- (-14 *5 (-1186)) (-14 *6 *4))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1253 *3)) (-5 *1 (-405 *3 *2))
- (-4 *3 (-13 (-368) (-148))))))
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-322 (-572))) (|:| -3636 (-322 (-386)))
+ (|:| CF (-322 (-171 (-386)))) (|:| |switch| (-1187))))
+ (-5 *1 (-1187)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *3 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-457 *4 *3 *5 *6)) (-4 *6 (-958 *4 *3 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1227))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
+ (|partial| -12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
+ (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
+ (|partial| -12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
+ (|partial| -12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
+ (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5))
- (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
+ (|partial| -12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5))
- (-14 *3 (-650 *2)) (-14 *4 (-650 *2)) (-4 *5 (-393))))
+ (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5))
+ (-14 *3 (-652 *2)) (-14 *4 (-652 *2)) (-4 *5 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-320 *5)) (-4 *5 (-393))
- (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186)))))
+ (|partial| -12 (-5 *2 (-322 *5)) (-4 *5 (-395))
+ (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389))))
+ (|partial| -12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402))))
+ (|partial| -12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-570))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-384))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-570))) (-4 *1 (-402))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-384))) (-4 *1 (-402))))
+ (|partial| -12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-572))) (-4 *1 (-404))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-961 (-386))) (-4 *1 (-404))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-572))) (-4 *1 (-404))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-322 (-386))) (-4 *1 (-404))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1277 (-413 (-959 (-570))))) (-4 *1 (-447))))
+ (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1277 (-413 (-959 (-384))))) (-4 *1 (-447))))
+ (|partial| -12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1277 (-959 (-570)))) (-4 *1 (-447))))
+ (|partial| -12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1277 (-959 (-384)))) (-4 *1 (-447))))
+ (|partial| -12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1277 (-320 (-570)))) (-4 *1 (-447))))
+ (|partial| -12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1277 (-320 (-384)))) (-4 *1 (-447))))
+ (|partial| -12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1253 *5))
- (-5 *2 (-1182 (-1182 *4))) (-5 *1 (-783 *4 *5 *6 *3 *7))
- (-4 *3 (-1253 *6)) (-14 *7 (-928))))
+ (|partial| -12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5))
+ (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-785 *4 *5 *6 *3 *7))
+ (-4 *3 (-1255 *6)) (-14 *7 (-930))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *1 (-985 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1047 *2)) (-4 *2 (-1227))))
+ (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *1 (-987 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1049 *2)) (-4 *2 (-1229))))
((*1 *1 *2)
- (|partial| -3749
- (-12 (-5 *2 (-959 *3))
- (-12 (-3201 (-4 *3 (-38 (-413 (-570)))))
- (-3201 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)))
- (-12 (-5 *2 (-959 *3))
- (-12 (-3201 (-4 *3 (-551))) (-3201 (-4 *3 (-38 (-413 (-570)))))
- (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)))
- (-12 (-5 *2 (-959 *3))
- (-12 (-3201 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570))))
- (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)))))
+ (|partial| -3783
+ (-12 (-5 *2 (-961 *3))
+ (-12 (-3795 (-4 *3 (-38 (-415 (-572)))))
+ (-3795 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)))
+ (-12 (-5 *2 (-961 *3))
+ (-12 (-3795 (-4 *3 (-553))) (-3795 (-4 *3 (-38 (-415 (-572)))))
+ (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)))
+ (-12 (-5 *2 (-961 *3))
+ (-12 (-3795 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572))))
+ (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)))))
((*1 *1 *2)
- (|partial| -3749
- (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5))
- (-12 (-3201 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570)))
- (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))
- (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5))
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))))
+ (|partial| -3783
+ (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
+ (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572)))
+ (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))
+ (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))
- (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))))
-(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-158))))
- ((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-986 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
- (-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
- (|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-758)))))
+ (|partial| -12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188)))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1253 (-570))) (-5 *1 (-492 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060)) (-5 *2 (-572)) (-5 *1 (-451 *4 *3 *5))
+ (-4 *3 (-1255 *4))
+ (-4 *5 (-13 (-412) (-1049 *4) (-370) (-1214) (-290))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-1166 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-458)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856))))
- ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3))
- (-4 *3 (-1253 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-570))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368)))
- (-4 *3 (-1253 *4)) (-5 *2 (-570))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-562) (-1047 *2) (-645 *2) (-458)))
- (-5 *2 (-570)) (-5 *1 (-1125 *4 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570))
- (-5 *1 (-1125 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-1168))
- (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570))
- (-5 *1 (-1125 *6 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-570))
- (-5 *1 (-1126 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 (-413 (-959 *6))))
- (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-570))
- (-5 *1 (-1126 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1186))
- (-5 *5 (-1168)) (-4 *6 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1209 *3)) (-4 *3 (-1058)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021)))))
+ (-12 (-5 *2 (-697 *4)) (-4 *4 (-1060)) (-5 *1 (-1153 *3 *4))
+ (-14 *3 (-779)))))
+(((*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-603 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4))))
+ (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-158)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229))
+ (-4 *4 (-380 *2)) (-4 *5 (-380 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-294 *3 *2)) (-4 *3 (-1111))
+ (-4 *2 (-1229)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1182 (-413 (-1182 *2)))) (-5 *4 (-618 *2))
- (-4 *2 (-13 (-436 *5) (-27) (-1212)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1109))))
+ (-12 (-5 *3 (-1184 (-415 (-1184 *2)))) (-5 *4 (-620 *2))
+ (-4 *2 (-13 (-438 *5) (-27) (-1214)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1111))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1182 *1)) (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *3 (-856))))
+ (-12 (-5 *2 (-1184 *1)) (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *3 (-858))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1182 *4)) (-4 *4 (-1058)) (-4 *1 (-956 *4 *5 *3))
- (-4 *5 (-799)) (-4 *3 (-856))))
+ (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1060)) (-4 *1 (-958 *4 *5 *3))
+ (-4 *5 (-801)) (-4 *3 (-858))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-1182 *2))) (-4 *5 (-799)) (-4 *4 (-856))
- (-4 *6 (-1058))
+ (-12 (-5 *3 (-415 (-1184 *2))) (-4 *5 (-801)) (-4 *4 (-858))
+ (-4 *6 (-1060))
(-4 *2
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $)))))
- (-5 *1 (-957 *5 *4 *6 *7 *2)) (-4 *7 (-956 *6 *5 *4))))
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $)))))
+ (-5 *1 (-959 *5 *4 *6 *7 *2)) (-4 *7 (-958 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-1182 (-413 (-959 *5))))) (-5 *4 (-1186))
- (-5 *2 (-413 (-959 *5))) (-5 *1 (-1052 *5)) (-4 *5 (-562)))))
-(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-130)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1109))
- (-4 *3 (-1227)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570))))
- (-5 *4 (-320 (-171 (-384)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570))))
- (-5 *4 (-320 (-384))) (-5 *1 (-334))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570))))
- (-5 *4 (-320 (-570))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-171 (-384)))))
- (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-384)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-570)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-171 (-384)))))
- (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-384)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-570)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-171 (-384)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-384))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-570))) (-5 *1 (-334))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570))))
- (-5 *4 (-320 (-700))) (-5 *1 (-334))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570))))
- (-5 *4 (-320 (-705))) (-5 *1 (-334))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570))))
- (-5 *4 (-320 (-707))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-700)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-705)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-320 (-707)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-700)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-705)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-707)))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-700))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-705))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-1277 (-707))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-700))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-705))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-707))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-700))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-705))) (-5 *1 (-334))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-707))) (-5 *1 (-334))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-334))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1148))))
+ (-12 (-5 *3 (-415 (-1184 (-415 (-961 *5))))) (-5 *4 (-1188))
+ (-5 *2 (-415 (-961 *5))) (-5 *1 (-1054 *5)) (-4 *5 (-564)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1168 *7))) (-4 *6 (-858))
+ (-4 *7 (-958 *5 (-539 *6) *6)) (-4 *5 (-1060))
+ (-5 *2 (-1 (-1168 *7) *7)) (-5 *1 (-1137 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
+ (-4 *3 (-1255 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1170)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *4 (-1076 *6 *7 *8)) (-5 *2 (-1284))
+ (-5 *1 (-784 *6 *7 *8 *4 *5)) (-4 *5 (-1082 *6 *7 *8 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-375)) (-4 *2 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-650 (-227))) (-5 *1 (-206)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
+ (-4 *4 (-356)))))
+(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-130)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4455)) (-4 *1 (-497 *3))
+ (-4 *3 (-1229)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2480 (-572)) (|:| -1591 (-652 *3))))
+ (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-52)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *3 (-570))
- (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-52)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1253 *3)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-650 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799))
- (-4 *8 (-856)) (-5 *1 (-986 *6 *7 *8 *9)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1008 *3)) (-4 *3 (-174)) (-5 *1 (-805 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-413 (-570))) (-4 *4 (-1047 (-570))) (-4 *4 (-562))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-436 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-135)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-245)) (-5 *2 (-570))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3))
- (-4 *5 (-1268 *4)) (-5 *1 (-281 *4 *5 *2)) (-4 *2 (-1239 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3))
- (-4 *5 (-1237 *4)) (-5 *1 (-282 *4 *5 *2 *6)) (-4 *2 (-1260 *4 *5))
- (-4 *6 (-992 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-288)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *1) (-5 *1 (-384)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-391 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-436 *3)) (-4 *3 (-1109))
- (-4 *3 (-1121))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-479)) (-5 *2 (-570))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-570)) (-4 *4 (-354))
- (-5 *1 (-534 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-542))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-542))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *4 (-1109))
- (-5 *1 (-688 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-368))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058))
- (-5 *1 (-696 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4))
- (-4 *4 (-654 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-4 *4 (-1058))
- (-5 *1 (-720 *4 *5)) (-4 *5 (-654 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-777))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-842 *3)) (-4 *3 (-1058))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-5 *1 (-842 *4)) (-4 *4 (-1058))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-413 (-570)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-928))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4)) (-4 *4 (-368))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856))))
- ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3))
- (-4 *3 (-1253 *2)))))
+ (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-425 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))
+ (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))
+ (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572)))
+ (-5 *4 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))
+ (-5 *1 (-1031 *3)) (-4 *3 (-1255 (-572))) (-5 *4 (-415 (-572)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-415 (-572)))
+ (-5 *2 (-652 (-2 (|:| -3041 *5) (|:| -3058 *5)))) (-5 *1 (-1031 *3))
+ (-4 *3 (-1255 (-572))) (-5 *4 (-2 (|:| -3041 *5) (|:| -3058 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))
+ (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))
+ (-5 *1 (-1032 *3)) (-4 *3 (-1255 (-415 (-572))))
+ (-5 *4 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-415 (-572)))
+ (-5 *2 (-652 (-2 (|:| -3041 *4) (|:| -3058 *4)))) (-5 *1 (-1032 *3))
+ (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-415 (-572)))
+ (-5 *2 (-652 (-2 (|:| -3041 *5) (|:| -3058 *5)))) (-5 *1 (-1032 *3))
+ (-4 *3 (-1255 *5)) (-5 *4 (-2 (|:| -3041 *5) (|:| -3058 *5))))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-650 (-928))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-928))
- (-4 *2 (-368)) (-14 *5 (-1002 *4 *2))))
+ (-12 (-5 *3 (-652 (-930))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-930))
+ (-4 *2 (-370)) (-14 *5 (-1004 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-719 *5 *6 *7)) (-4 *5 (-856))
- (-4 *6 (-240 (-2857 *4) (-777)))
+ (-12 (-5 *3 (-721 *5 *6 *7)) (-4 *5 (-858))
+ (-4 *6 (-242 (-3475 *4) (-779)))
(-14 *7
- (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *6))
- (-2 (|:| -4298 *5) (|:| -2940 *6))))
- (-14 *4 (-650 (-1186))) (-4 *2 (-174))
- (-5 *1 (-467 *4 *2 *5 *6 *7 *8)) (-4 *8 (-956 *2 *6 (-870 *4)))))
+ (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *6))
+ (-2 (|:| -1795 *5) (|:| -2477 *6))))
+ (-14 *4 (-652 (-1188))) (-4 *2 (-174))
+ (-5 *1 (-469 *4 *2 *5 *6 *7 *8)) (-4 *8 (-958 *2 *6 (-872 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856))))
+ (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4))
- (-4 *4 (-1253 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058))))
+ (-12 (-5 *3 (-572)) (-4 *2 (-564)) (-5 *1 (-631 *2 *4))
+ (-4 *4 (-1255 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-716 *2)) (-4 *2 (-1060))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-741 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-732))))
+ (-12 (-5 *1 (-743 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-734))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5))
- (-4 *4 (-1058)) (-4 *5 (-856))))
+ (-12 (-5 *2 (-652 *5)) (-5 *3 (-652 (-779))) (-4 *1 (-748 *4 *5))
+ (-4 *4 (-1060)) (-4 *5 (-858))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058))
- (-4 *2 (-856))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058))))
+ (-12 (-5 *3 (-779)) (-4 *1 (-748 *4 *2)) (-4 *4 (-1060))
+ (-4 *2 (-858))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-860 *2)) (-4 *2 (-1060))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6))
- (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856))))
+ (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 (-779))) (-4 *1 (-958 *4 *5 *6))
+ (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *6 (-858))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *2 (-856))))
+ (-12 (-5 *3 (-779)) (-4 *1 (-958 *4 *5 *2)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *2 (-858))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 *5)) (-4 *1 (-982 *4 *5 *6))
- (-4 *4 (-1058)) (-4 *5 (-798)) (-4 *6 (-856))))
+ (-12 (-5 *2 (-652 *6)) (-5 *3 (-652 *5)) (-4 *1 (-984 *4 *5 *6))
+ (-4 *4 (-1060)) (-4 *5 (-800)) (-4 *6 (-858))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-982 *4 *3 *2)) (-4 *4 (-1058)) (-4 *3 (-798))
- (-4 *2 (-856)))))
+ (-12 (-4 *1 (-984 *4 *3 *2)) (-4 *4 (-1060)) (-4 *3 (-800))
+ (-4 *2 (-858)))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
+ (-4 *3 (-1255 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *1) (-5 *1 (-567))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1227)) (-5 *2 (-777))
- (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5))))
+ (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779))
+ (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132))
- (-5 *2 (-777))))
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132))
+ (-5 *2 (-779))))
((*1 *2)
- (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4))
- (-4 *3 (-333 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-366 *3)) (-4 *3 (-1109))))
- ((*1 *2) (-12 (-4 *1 (-373)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109)) (-5 *2 (-777))))
+ (-12 (-4 *4 (-370)) (-5 *2 (-779)) (-5 *1 (-334 *3 *4))
+ (-4 *3 (-335 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-368 *3)) (-4 *3 (-1111))))
+ ((*1 *2) (-12 (-4 *1 (-375)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111)) (-5 *2 (-779))))
((*1 *2)
- (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-430 *3 *4))
- (-4 *3 (-431 *4))))
+ (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-432 *3 *4))
+ (-4 *3 (-433 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-777)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109))
+ (-12 (-5 *2 (-779)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1253 *4)) (-5 *2 (-777))
- (-5 *1 (-729 *3 *4 *5)) (-4 *3 (-730 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015))))
+ (-12 (-4 *4 (-174)) (-4 *5 (-1255 *4)) (-5 *2 (-779))
+ (-5 *1 (-731 *3 *4 *5)) (-4 *3 (-732 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1017))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3))
- (-4 *3 (-1253 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-1253 *4)) (-4 *4 (-1058))
- (-5 *2 (-1277 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-109))) (-5 *1 (-177)))))
-(((*1 *1) (-5 *1 (-603))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))))
+ (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
+ (-4 *3 (-1255 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *1 (-812 *4 *2)) (-4 *2 (-13 (-29 *4) (-1214) (-968))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1111)) (-4 *5 (-1111))
+ (-5 *2 (-1 *5)) (-5 *1 (-691 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *3 (-618 $)) $))
- (-15 -1599 ((-1134 *3 (-618 $)) $))
- (-15 -2869 ($ (-1134 *3 (-618 $))))))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-592 *3) *3 (-1186)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1186)))
- (-4 *3 (-288)) (-4 *3 (-635)) (-4 *3 (-1047 *4)) (-4 *3 (-436 *7))
- (-5 *4 (-1186)) (-4 *7 (-620 (-899 (-570)))) (-4 *7 (-458))
- (-4 *7 (-893 (-570))) (-4 *7 (-1109)) (-5 *2 (-592 *3))
- (-5 *1 (-579 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-831)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825 *3)) (-4 *3 (-856)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-174)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)) (-5 *1 (-694 *4 *5 *6 *2))
- (-4 *2 (-693 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1282)) (-5 *1 (-1147)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3))
+ (-4 *3 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-239 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-572)) (-4 *4 (-1111))
+ (-5 *1 (-745 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-5 *1 (-745 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1151 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-928))) (-5 *2 (-1188 (-413 (-570))))
- (-5 *1 (-192)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284))
+ (-5 *1 (-1230 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-1111)) (-5 *2 (-1284))
+ (-5 *1 (-1230 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1046)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370))
+ (-5 *2 (-112)) (-5 *1 (-675 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
+ (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-112))
+ (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1279 *5)) (-5 *3 (-779)) (-5 *4 (-1131)) (-4 *5 (-356))
+ (-5 *1 (-536 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 *2)) (-4 *2 (-958 (-415 (-961 *6)) *5 *4))
+ (-5 *1 (-740 *5 *4 *6 *2)) (-4 *5 (-801))
+ (-4 *4 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $)))))
+ (-4 *6 (-564)))))
+(((*1 *2 *2) (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1111)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *4 *5 *6)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-216 *4))
+ (-4 *4
+ (-13 (-858)
+ (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 (*2 $))
+ (-15 -3019 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1284)) (-5 *1 (-216 *3))
+ (-4 *3
+ (-13 (-858)
+ (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 (*2 $))
+ (-15 -3019 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-510)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-899 *4 *5)) (-4 *5 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1178)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-837)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
+ (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-897 *4 *5)) (-4 *5 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1176)))))
+ (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-143 *2 *4 *3))
+ (-4 *3 (-380 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-511 *2 *4 *5 *3))
+ (-4 *5 (-380 *2)) (-4 *3 (-380 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 *4)) (-4 *4 (-1003 *2)) (-4 *2 (-564))
+ (-5 *1 (-701 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1003 *2)) (-4 *2 (-564)) (-5 *1 (-1248 *2 *4 *3))
+ (-4 *3 (-1255 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-856)) (-5 *1 (-1197 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-980)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3))
- (-4 *3 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3)))
- (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3)))
- (-4 *3 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3)))
- (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-829)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458))
- (-5 *1 (-365 *3 *4)) (-14 *4 (-650 (-1186)))))
+ (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3))))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458))
- (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826))
- (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3))
- (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2))
- (-4 *2 (-693 *3 *5 *6)))))
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4))
- (-4 *4 (-1058))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *1 (-233 *4))
+ (-4 *4 (-1060))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777))))
- ((*1 *1 *1) (-4 *1 (-235)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-269 *3)) (-4 *3 (-856))))
- ((*1 *1 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-779))))
+ ((*1 *1 *1) (-4 *1 (-237)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-4 *1 (-271 *3)) (-4 *3 (-858))))
+ ((*1 *1 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231))
- (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
+ (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4))
- (-4 *4 (-1253 *3))))
+ (-12 (-5 *2 (-779)) (-4 *3 (-13 (-370) (-148))) (-5 *1 (-407 *3 *4))
+ (-4 *4 (-1255 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3))
- (-4 *3 (-1253 *2))))
+ (-12 (-4 *2 (-13 (-370) (-148))) (-5 *1 (-407 *2 *3))
+ (-4 *3 (-1255 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-482 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-368)) (-4 *2 (-907 *3)) (-5 *1 (-592 *2))
- (-5 *3 (-1186))))
+ (-12 (-4 *2 (-370)) (-4 *2 (-909 *3)) (-5 *1 (-594 *2))
+ (-5 *3 (-1188))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-592 *2)) (-4 *2 (-368))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-594 *2)) (-4 *2 (-370))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4))
- (-4 *4 (-1109))))
+ (-12 (-5 *2 (-652 *4)) (-5 *3 (-652 (-779))) (-4 *1 (-909 *4))
+ (-4 *4 (-1111))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109))))
+ (-12 (-5 *3 (-779)) (-4 *1 (-909 *2)) (-4 *2 (-1111))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109))))
+ (-12 (-5 *2 (-652 *3)) (-4 *1 (-909 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1111))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1179 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1185 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1186 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1241 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1243 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1253 *3)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1262 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1264 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1269 *3 *4 *5))
- (-4 *3 (-1058)) (-14 *5 *3))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1 *4 (-570))) (-4 *4 (-1058))
- (-5 *1 (-1170 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))))
-(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-278)))))
+ (-12 (-5 *2 (-1275 *4)) (-14 *4 (-1188)) (-5 *1 (-1271 *3 *4 *5))
+ (-4 *3 (-1060)) (-14 *5 *3))))
(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933))))
- ((*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1119)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-777)) (-5 *5 (-650 *3)) (-4 *3 (-311)) (-4 *6 (-856))
- (-4 *7 (-799)) (-5 *2 (-112)) (-5 *1 (-631 *6 *7 *3 *8))
- (-4 *8 (-956 *3 *7 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4))
- (-5 *2 (-424 (-1182 (-413 (-570))))) (-5 *1 (-441 *4 *5 *3))
- (-4 *3 (-1253 *5)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-570)) (-5 *1 (-1166 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
+ (-5 *1 (-999 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
+ (-5 *1 (-1118 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-1105 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-1105 (-227))))))
+(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-370) (-856)))
+ (-5 *2 (-652 (-2 (|:| -1591 (-652 *3)) (|:| -3684 *5))))
+ (-5 *1 (-183 *5 *3)) (-4 *3 (-1255 (-171 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-370) (-856)))
+ (-5 *2 (-652 (-2 (|:| -1591 (-652 *3)) (|:| -3684 *4))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412))))
+ ((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-411 *3)) (-4 *3 (-412))))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412))))
+ ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930))))
+ ((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-1168 (-572))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3) (-12 (-5 *3 (-652 *2)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858))
+ (-5 *2 (-59 (-652 (-680 *5)))) (-5 *1 (-680 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 (-251 *4 *5))) (-5 *2 (-251 *4 *5))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-639 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
+ (-5 *2 (-652 (-652 (-652 (-952 *3))))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-1277 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-650 (-650 (-227)))) (-5 *4 (-227))
- (-5 *2 (-650 (-950 *4))) (-5 *1 (-1223)) (-5 *3 (-950 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1227)) (-5 *2 (-112)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4))
- (-4 *4 (-1253 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))))
-(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311))
- (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5))
- (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-311)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-603))) (-5 *1 (-603)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-283))) (-5 *1 (-283))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-570)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-763)))))
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1279 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-572))) (-5 *4 (-572)) (-5 *2 (-52))
+ (-5 *1 (-1016)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-695 (-413 (-959 (-570)))))
- (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458))
- (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-997 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458))
- (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1116 *5 *6 *7 *8 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458)) (-5 *1 (-365 *3 *4))
- (-14 *4 (-650 (-1186)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-456 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6))
- (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-456 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6))
- (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-456 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-1184 *6))
+ (-5 *1 (-327 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))
+ (-5 *2 (-386)) (-5 *1 (-272))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-311)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-779)) (-5 *1 (-215 *4 *2)) (-14 *4 (-930))
+ (-4 *2 (-1111)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-759)))))
+(((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-952 *5)) (-4 *5 (-1060)) (-5 *2 (-779))
+ (-5 *1 (-1176 *4 *5)) (-14 *4 (-930))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5))
+ (-14 *4 (-930)) (-4 *5 (-1060))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060))
+ (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1) (-5 *1 (-586))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 (-572)))) (-5 *1 (-474)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2))
+ (-4 *5 (-380 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-4 *2 (-1111)) (-5 *1 (-215 *4 *2))
+ (-14 *4 (-930))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7))
+ (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-652 *6) "failed") (-572) *6 *6)) (-4 *6 (-370))
+ (-4 *7 (-1255 *6))
+ (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6)))
+ (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
+ (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6))
+ (-4 *6 (-349 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111))
+ (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-930)) (-4 *3 (-370))
+ (-14 *4 (-1004 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856))
- (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-174)) (-4 *2 (-564))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
+ ((*1 *1) (-12 (-5 *1 (-726 *2)) (-4 *2 (-370))))
+ ((*1 *1 *1) (|partial| -4 *1 (-730)))
+ ((*1 *1 *1) (|partial| -4 *1 (-734)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1079 *3 *2)) (-4 *3 (-13 (-856) (-370)))
+ (-4 *2 (-1255 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458))
- (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4)))))
-(((*1 *1) (-5 *1 (-1189))))
+ (|partial| -12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1105 (-851 (-227)))) (-5 *1 (-311)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5))
+ (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-1292 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
+ (-14 *4 *2))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-1060)) (-4 *4 (-174))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))
+ (-4 *3 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-370)) (-5 *2 (-652 (-1168 *4))) (-5 *1 (-291 *4 *5))
+ (-5 *3 (-1168 *4)) (-4 *5 (-1270 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))
- (-5 *2 (-413 (-570))) (-5 *1 (-1029 *4)) (-4 *4 (-1253 (-570))))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-368)) (-4 *3 (-1253 *4)) (-4 *5 (-1253 (-413 *3)))
- (-4 *1 (-340 *4 *3 *5 *2)) (-4 *2 (-347 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-368)) (-4 *4 (-1253 *2))
- (-4 *5 (-1253 (-413 *4))) (-4 *1 (-340 *2 *4 *5 *6))
- (-4 *6 (-347 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-368)) (-4 *3 (-1253 *2)) (-4 *4 (-1253 (-413 *3)))
- (-4 *1 (-340 *2 *3 *4 *5)) (-4 *5 (-347 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4)))
- (-4 *1 (-340 *3 *4 *5 *2)) (-4 *2 (-347 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-419 *4 (-413 *4) *5 *6)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-4 *3 (-368))
- (-4 *1 (-340 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-105)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705))))
- ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
+ (-4 *4 (-356)))))
+(((*1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1212)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1188)) (-5 *5 (-1105 (-227))) (-5 *2 (-936))
+ (-5 *1 (-934 *3)) (-4 *3 (-622 (-544)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-5 *2 (-936)) (-5 *1 (-934 *3))
+ (-4 *3 (-622 (-544)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-936))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-48))) (-5 *2 (-424 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1253 (-48)))))
+ (-12 (-5 *4 (-652 (-48))) (-5 *2 (-426 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1255 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1253 (-48)))))
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799))
- (-5 *2 (-424 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-956 (-48) *6 *5))))
+ (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801))
+ (-5 *2 (-426 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-958 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799))
- (-4 *7 (-956 (-48) *6 *5)) (-5 *2 (-424 (-1182 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1182 *7))))
+ (-12 (-5 *4 (-652 (-48))) (-4 *5 (-858)) (-4 *6 (-801))
+ (-4 *7 (-958 (-48) *6 *5)) (-5 *2 (-426 (-1184 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1184 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-168 *4 *3))
- (-4 *3 (-1253 (-171 *4)))))
+ (-12 (-4 *4 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-168 *4 *3))
+ (-4 *3 (-1255 (-171 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-370) (-856))) (-5 *2 (-426 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1253 *4))))
+ (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1255 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570)))))
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3))
- (-4 *3 (-1253 (-570)))))
+ (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
+ (-4 *3 (-1255 (-572)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3))
- (-4 *3 (-1253 (-570)))))
+ (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
+ (-4 *3 (-1255 (-572)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3))
- (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570)))))
+ (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3))
+ (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3))
- (-4 *3 (-1253 (-570)))))
+ (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
+ (-4 *3 (-1255 (-572)))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 (-171 (-570)))) (-5 *1 (-452))
- (-5 *3 (-171 (-570)))))
+ (-12 (-5 *2 (-426 (-171 (-572)))) (-5 *1 (-454))
+ (-5 *3 (-171 (-572)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-856)
- (-10 -8 (-15 -2601 ((-1186) $))
- (-15 -1433 ((-3 $ "failed") (-1186))))))
- (-4 *5 (-799)) (-4 *7 (-562)) (-5 *2 (-424 *3))
- (-5 *1 (-462 *4 *5 *6 *7 *3)) (-4 *6 (-562))
- (-4 *3 (-956 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-5 *2 (-424 (-1182 *4))) (-5 *1 (-464 *4))
- (-5 *3 (-1182 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368))
- (-4 *7 (-13 (-368) (-148) (-730 *5 *6))) (-5 *2 (-424 *3))
- (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-1253 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7)))
- (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799))
- (-5 *2 (-424 *3)) (-5 *1 (-546 *5 *6 *7 *3))
- (-4 *3 (-956 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7)))
- (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799))
- (-4 *8 (-956 *7 *6 *5)) (-5 *2 (-424 (-1182 *8)))
- (-5 *1 (-546 *5 *6 *7 *8)) (-5 *3 (-1182 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-650 *5) *6))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *6 (-1253 *5)) (-5 *2 (-650 (-659 (-413 *6))))
- (-5 *1 (-663 *5 *6)) (-5 *3 (-659 (-413 *6)))))
+ (-13 (-858)
+ (-10 -8 (-15 -3222 ((-1188) $))
+ (-15 -2043 ((-3 $ "failed") (-1188))))))
+ (-4 *5 (-801)) (-4 *7 (-564)) (-5 *2 (-426 *3))
+ (-5 *1 (-464 *4 *5 *6 *7 *3)) (-4 *6 (-564))
+ (-4 *3 (-958 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-313)) (-5 *2 (-426 (-1184 *4))) (-5 *1 (-466 *4))
+ (-5 *3 (-1184 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
+ (-4 *7 (-13 (-370) (-148) (-732 *5 *6))) (-5 *2 (-426 *3))
+ (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-1255 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7)))
+ (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801))
+ (-5 *2 (-426 *3)) (-5 *1 (-548 *5 *6 *7 *3))
+ (-4 *3 (-958 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-426 (-1184 *7)) (-1184 *7)))
+ (-4 *7 (-13 (-313) (-148))) (-4 *5 (-858)) (-4 *6 (-801))
+ (-4 *8 (-958 *7 *6 *5)) (-5 *2 (-426 (-1184 *8)))
+ (-5 *1 (-548 *5 *6 *7 *8)) (-5 *3 (-1184 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-652 *5) *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *6 (-1255 *5)) (-5 *2 (-652 (-661 (-415 *6))))
+ (-5 *1 (-665 *5 *6)) (-5 *3 (-661 (-415 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
- (-4 *5 (-1253 *4)) (-5 *2 (-650 (-659 (-413 *5))))
- (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5)))))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *5 (-1255 *4)) (-5 *2 (-652 (-661 (-415 *5))))
+ (-5 *1 (-665 *4 *5)) (-5 *3 (-661 (-415 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-678 *4)))
- (-5 *1 (-678 *4))))
+ (-12 (-5 *3 (-827 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-680 *4)))
+ (-5 *1 (-680 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-570)) (-5 *2 (-650 *3)) (-5 *1 (-702 *3))
- (-4 *3 (-1253 *4))))
+ (-12 (-5 *4 (-572)) (-5 *2 (-652 *3)) (-5 *1 (-704 *3))
+ (-4 *3 (-1255 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354)) (-5 *2 (-424 *3))
- (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))
+ (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356)) (-5 *2 (-426 *3))
+ (-5 *1 (-706 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354))
- (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7)))
- (-5 *1 (-704 *4 *5 *6 *7)) (-5 *3 (-1182 *7))))
+ (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-356))
+ (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7)))
+ (-5 *1 (-706 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-799))
+ (-12 (-4 *4 (-801))
(-4 *5
- (-13 (-856)
- (-10 -8 (-15 -2601 ((-1186) $))
- (-15 -1433 ((-3 $ "failed") (-1186))))))
- (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-736 *4 *5 *6 *3))
- (-4 *3 (-956 (-959 *6) *4 *5))))
+ (-13 (-858)
+ (-10 -8 (-15 -3222 ((-1188) $))
+ (-15 -2043 ((-3 $ "failed") (-1188))))))
+ (-4 *6 (-313)) (-5 *2 (-426 *3)) (-5 *1 (-738 *4 *5 *6 *3))
+ (-4 *3 (-958 (-961 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-799))
- (-4 *5 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *6 (-562))
- (-5 *2 (-424 *3)) (-5 *1 (-738 *4 *5 *6 *3))
- (-4 *3 (-956 (-413 (-959 *6)) *4 *5))))
+ (-12 (-4 *4 (-801))
+ (-4 *5 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *6 (-564))
+ (-5 *2 (-426 *3)) (-5 *1 (-740 *4 *5 *6 *3))
+ (-4 *3 (-958 (-415 (-961 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-13 (-311) (-148)))
- (-5 *2 (-424 *3)) (-5 *1 (-739 *4 *5 *6 *3))
- (-4 *3 (-956 (-413 *6) *4 *5))))
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-13 (-313) (-148)))
+ (-5 *2 (-426 *3)) (-5 *1 (-741 *4 *5 *6 *3))
+ (-4 *3 (-958 (-415 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148)))
- (-5 *2 (-424 *3)) (-5 *1 (-747 *4 *5 *6 *3))
- (-4 *3 (-956 *6 *5 *4))))
+ (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148)))
+ (-5 *2 (-426 *3)) (-5 *1 (-749 *4 *5 *6 *3))
+ (-4 *3 (-958 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148)))
- (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7)))
- (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1182 *7))))
+ (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-13 (-313) (-148)))
+ (-4 *7 (-958 *6 *5 *4)) (-5 *2 (-426 (-1184 *7)))
+ (-5 *1 (-749 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3))
- (-4 *3 (-1253 (-413 (-570))))))
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3))
+ (-4 *3 (-1255 (-415 (-572))))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-1050 *3))
- (-4 *3 (-1253 (-413 (-959 (-570)))))))
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-1052 *3))
+ (-4 *3 (-1255 (-415 (-961 (-572)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1253 (-413 (-570))))
- (-4 *5 (-13 (-368) (-148) (-730 (-413 (-570)) *4)))
- (-5 *2 (-424 *3)) (-5 *1 (-1088 *4 *5 *3)) (-4 *3 (-1253 *5))))
+ (-12 (-4 *4 (-1255 (-415 (-572))))
+ (-4 *5 (-13 (-370) (-148) (-732 (-415 (-572)) *4)))
+ (-5 *2 (-426 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1255 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1253 (-413 (-959 (-570)))))
- (-4 *5 (-13 (-368) (-148) (-730 (-413 (-959 (-570))) *4)))
- (-5 *2 (-424 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1253 *5))))
+ (-12 (-4 *4 (-1255 (-415 (-961 (-572)))))
+ (-4 *5 (-13 (-370) (-148) (-732 (-415 (-961 (-572))) *4)))
+ (-5 *2 (-426 *3)) (-5 *1 (-1092 *4 *5 *3)) (-4 *3 (-1255 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7))))
- (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1231))))
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460))
+ (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7))))
+ (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233))))
((*1 *2 *3)
- (-12 (-5 *2 (-424 *3)) (-5 *1 (-1242 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1250 *5 *4)) (-5 *1 (-1184 *4 *5 *6))
- (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1250 *5 *4)) (-5 *1 (-1269 *4 *5 *6))
- (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186))
- (-4 *4 (-13 (-562) (-1047 (-570)) (-148))) (-5 *1 (-576 *4)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1044))
- (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-4 *1 (-515 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-856)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
- (-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
- (|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-130)))
- ((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777))
- (-4 *4 (-174))))
- ((*1 *1) (-5 *1 (-552))) ((*1 *1) (-5 *1 (-553)))
- ((*1 *1) (-5 *1 (-554))) ((*1 *1) (-5 *1 (-555)))
- ((*1 *1) (-4 *1 (-732))) ((*1 *1) (-5 *1 (-1186)))
- ((*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-928))))
- ((*1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928))))
- ((*1 *1) (-5 *1 (-1232))) ((*1 *1) (-5 *1 (-1233)))
- ((*1 *1) (-5 *1 (-1234))) ((*1 *1) (-5 *1 (-1235))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186)))))
- (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113))
- (-5 *1 (-403))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186)))))
- (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113))
- (-5 *1 (-403))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-650 (-1186))) (-5 *5 (-1189)) (-5 *3 (-1186))
- (-5 *2 (-1113)) (-5 *1 (-403)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-928)) (-4 *5 (-562)) (-5 *2 (-695 *5))
- (-5 *1 (-963 *5 *3)) (-4 *3 (-662 *5)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-650 (-1186)))
- (-4 *2 (-13 (-436 (-171 *5)) (-1011) (-1212))) (-4 *5 (-562))
- (-5 *1 (-606 *5 *6 *2)) (-4 *6 (-13 (-436 *5) (-1011) (-1212))))))
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-856)) (-5 *4 (-650 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-650 *4))))
- (-5 *1 (-1197 *6)) (-5 *5 (-650 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-413 (-570))))
- (-5 *2 (-2 (|:| -3876 (-1166 *4)) (|:| -3887 (-1166 *4))))
- (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-650 (-1182 *4))) (-5 *3 (-1182 *4))
- (-4 *4 (-916)) (-5 *1 (-669 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1228 *2))
- (-4 *2 (-1109))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-856))
- (-5 *1 (-1228 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109))
- (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *2 (-1222 (-933)))
- (-5 *1 (-322))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *7 (-1168))
- (-5 *2 (-1222 (-933))) (-5 *1 (-322))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570))
- (-5 *2 (-1222 (-933))) (-5 *1 (-322))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570)) (-5 *8 (-1168))
- (-5 *2 (-1222 (-933))) (-5 *1 (-322)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-368)))))
-(((*1 *1 *1 *1) (-4 *1 (-479))) ((*1 *1 *1 *1) (-4 *1 (-767))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1277 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368))
- (-4 *1 (-730 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1253 *5))
- (-5 *2 (-695 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *1 *1) (-4 *1 (-635)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011) (-1212))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2) (-12 (-5 *2 (-650 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-133)))))
-(((*1 *1) (-4 *1 (-354)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-13 (-562) (-148)))
+ (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *3 (-1076 *6 *7 *8))
(-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-650 (-1182 *5)))
- (|:| |prim| (-1182 *5))))
- (-5 *1 (-438 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-562) (-148)))
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
(-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1182 *3))
- (|:| |pol2| (-1182 *3)) (|:| |prim| (-1182 *3))))
- (-5 *1 (-438 *4 *3)) (-4 *3 (-27)) (-4 *3 (-436 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-959 *5)) (-5 *4 (-1186)) (-4 *5 (-13 (-368) (-148)))
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-779)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *3 (-1076 *6 *7 *8))
(-5 *2
- (-2 (|:| |coef1| (-570)) (|:| |coef2| (-570))
- (|:| |prim| (-1182 *5))))
- (-5 *1 (-967 *5))))
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1156 *6 *7 *8 *3 *4)) (-4 *4 (-1120 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186)))
- (-4 *5 (-13 (-368) (-148)))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
(-5 *2
- (-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 *5)))
- (|:| |prim| (-1182 *5))))
- (-5 *1 (-967 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-5 *5 (-1186))
- (-4 *6 (-13 (-368) (-148)))
+ (-2 (|:| |done| (-652 *4))
+ (|:| |todo| (-652 (-2 (|:| |val| (-652 *3)) (|:| -1746 *4))))))
+ (-5 *1 (-1156 *5 *6 *7 *3 *4)) (-4 *4 (-1120 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-4 *5 (-858)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *3 (-652 (-268)))
+ (-5 *1 (-266))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-489 *5 *6))) (-5 *3 (-489 *5 *6))
+ (-14 *5 (-652 (-1188))) (-4 *6 (-460)) (-5 *2 (-1279 *6))
+ (-5 *1 (-639 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1170)) (-5 *1 (-311)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-868)) (-5 *2 (-699 (-1237))) (-5 *3 (-1237)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6) (-10 -8 (-15 -3491 ($ *7)))))
+ (-4 *7 (-856))
+ (-4 *8
+ (-13 (-1257 *3 *7) (-370) (-1214)
+ (-10 -8 (-15 -3011 ($ $)) (-15 -4161 ($ $)))))
(-5 *2
- (-2 (|:| -1747 (-650 (-570))) (|:| |poly| (-650 (-1182 *6)))
- (|:| |prim| (-1182 *6))))
- (-5 *1 (-967 *6)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1170)) (|:| |prob| (-1170))))))
+ (-5 *1 (-430 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1170)) (-4 *9 (-994 *8))
+ (-14 *10 (-1188)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1277 (-650 (-2 (|:| -4156 *4) (|:| -4298 (-1129))))))
- (-4 *4 (-354)) (-5 *2 (-1282)) (-5 *1 (-534 *4)))))
+ (-12 (-5 *4 (-1 (-652 *5) *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *6 (-1255 *5))
+ (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -3179 *3))))
+ (-5 *1 (-817 *5 *6 *3 *7)) (-4 *3 (-664 *6))
+ (-4 *7 (-664 (-415 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-652 *5) *6))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *6 (-1255 *5))
+ (-5 *2 (-652 (-2 (|:| |poly| *6) (|:| -3179 (-662 *6 (-415 *6))))))
+ (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131))))))
+ (-4 *4 (-356)) (-5 *2 (-779)) (-5 *1 (-353 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-358 *3 *4)) (-14 *3 (-930))
+ (-14 *4 (-930))))
+ ((*1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-359 *3 *4)) (-4 *3 (-356))
+ (-14 *4
+ (-3 (-1184 *3)
+ (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-360 *3 *4)) (-4 *3 (-356))
+ (-14 *4 (-930)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-386)) (-5 *3 (-1170)) (-5 *1 (-97)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
+ (-4 *3 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *3) (-12 (-5 *3 (-514)) (-5 *2 (-699 (-189))) (-5 *1 (-189)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-652 (-961 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-652 (-961 *4))) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-652 (-961 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-652 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1279 (-461 *4 *5 *6 *7))) (-5 *2 (-652 (-961 *4)))
+ (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-564)) (-4 *4 (-174))
+ (-14 *5 (-930)) (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4))))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1192)) (-5 *1 (-1191)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2))
+ (-4 *2 (-664 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-370)) (-4 *2 (-1255 *4))
+ (-5 *1 (-931 *4 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *1 *1) (-4 *1 (-637)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227)))
- (|:| |lb| (-650 (-849 (-227))))
- (|:| |cf| (-650 (-320 (-227))))
- (|:| |ub| (-650 (-849 (-227))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-650 (-320 (-227))))
- (|:| -3458 (-650 (-227)))))))
- (-5 *2 (-650 (-1168))) (-5 *1 (-270)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1182 *7)) (-5 *3 (-570)) (-4 *7 (-956 *6 *4 *5))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058))
- (-5 *1 (-325 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
+ (-5 *2
+ (-652
+ (-2
+ (|:| -1640
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3762
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1168 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4336
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229))
+ (-5 *2 (-652 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858)))
+ (-14 *3 (-652 (-1188))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1212)))
- (-5 *1 (-606 *4 *3 *2)) (-4 *3 (-13 (-436 *4) (-1011) (-1212))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5))
- (-4 *3 (-562)))))
+ (-12 (-5 *3 (-936))
+ (-5 *2
+ (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
+ (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-936)) (-5 *4 (-415 (-572)))
+ (-5 *2
+ (-2 (|:| |brans| (-652 (-652 (-952 (-227)))))
+ (|:| |xValues| (-1105 (-227))) (|:| |yValues| (-1105 (-227)))))
+ (-5 *1 (-154)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1222 *4 *5 *3 *6)) (-4 *4 (-564)) (-4 *5 (-801))
+ (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705))))
- ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))))
-(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-52)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-235)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4))
- (-4 *6 (-799)) (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799))
- (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-269 *2)) (-4 *2 (-856)))))
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)))) (-4 *3 (-564))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-438 *3))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *3 (-620 $)) $))
+ (-15 -2224 ((-1136 *3 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *3 (-620 $))))))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
+(((*1 *2) (-12 (-5 *2 (-652 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))))
+(((*1 *1) (-5 *1 (-605))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1109 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-1253 *4)) (-5 *2 (-1 *6 (-650 *6)))
- (-5 *1 (-1271 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-1268 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570))))
+ (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-460)) (-5 *2 (-112))
+ (-5 *1 (-367 *4 *5)) (-14 *5 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-788 *4 (-872 *5)))) (-4 *4 (-460))
+ (-14 *5 (-652 (-1188))) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-650 (-618 *3)))
- (|:| |vals| (-650 *3))))
- (-5 *1 (-280 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5))))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-777)) (-4 *3 (-1227)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *1) (-5 *1 (-173)))
- ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1109))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395))))
- ((*1 *1) (-5 *1 (-400)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-4 *1 (-657 *3)) (-4 *3 (-1227))))
- ((*1 *1)
- (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109))
- (-4 *4 (-672 *3))))
- ((*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-1151 *3 *2)) (-14 *3 (-777)) (-4 *2 (-1058))))
- ((*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058))))
- ((*1 *1 *1) (-5 *1 (-1186))) ((*1 *1) (-5 *1 (-1186)))
- ((*1 *1) (-5 *1 (-1207))))
+ (-652
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-779)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-801)) (-4 *6 (-958 *4 *3 *5)) (-4 *4 (-460)) (-4 *5 (-858))
+ (-5 *1 (-457 *4 *3 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-973 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-1151 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1111) (-34))) (-4 *5 (-13 (-1111) (-34)))
+ (-5 *1 (-1152 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-1151 *3 *4))) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))) (-5 *1 (-1152 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-587)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-652 (-961 (-572)))) (-5 *4 (-652 (-1188)))
+ (-5 *2 (-652 (-652 (-386)))) (-5 *1 (-1034)) (-5 *5 (-386))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4)))))
+ (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-961 *4)))
+ (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-335 *3)) (-4 *5 (-1255 *4))
+ (-5 *1 (-785 *3 *4 *5 *2 *6)) (-4 *2 (-1255 *5)) (-14 *6 (-930))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-4 *3 (-375))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1298 *2)) (-4 *2 (-370)) (-4 *2 (-375)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-620 *4)) (-5 *1 (-619 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-779)) (-4 *4 (-13 (-564) (-148)))
+ (-5 *1 (-1249 *4 *2)) (-4 *2 (-1255 *4)))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-52)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1021 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1227))
- (-4 *2 (-1227)) (-5 *1 (-58 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1229))
+ (-4 *2 (-1229)) (-5 *1 (-58 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (|has| *1 (-6 -4452))
- (-4 *1 (-152 *2)) (-4 *2 (-1227))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (|has| *1 (-6 -4454))
+ (-4 *1 (-152 *2)) (-4 *2 (-1229))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *2))
- (-4 *2 (-1227))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2))
+ (-4 *2 (-1229))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4452)) (-4 *1 (-152 *2))
- (-4 *2 (-1227))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *2))
+ (-4 *2 (-1229))))
((*1 *2 *3)
- (-12 (-4 *4 (-1058))
- (-5 *2 (-2 (|:| -3147 (-1182 *4)) (|:| |deg| (-928))))
- (-5 *1 (-223 *4 *5)) (-5 *3 (-1182 *4)) (-4 *5 (-562))))
+ (-12 (-4 *4 (-1060))
+ (-5 *2 (-2 (|:| -3888 (-1184 *4)) (|:| |deg| (-930))))
+ (-5 *1 (-223 *4 *5)) (-5 *3 (-1184 *4)) (-4 *5 (-564))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777))
- (-4 *6 (-1227)) (-4 *2 (-1227)) (-5 *1 (-241 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-244 *5 *6)) (-14 *5 (-779))
+ (-4 *6 (-1229)) (-4 *2 (-1229)) (-5 *1 (-243 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-293 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1253 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-12 (-4 *4 (-174)) (-5 *1 (-295 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1255 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-320 *2)) (-4 *2 (-562)) (-4 *2 (-1109))))
+ ((*1 *1 *1) (-12 (-5 *1 (-322 *2)) (-4 *2 (-564)) (-4 *2 (-1111))))
((*1 *1 *1)
- (-12 (-4 *1 (-340 *2 *3 *4 *5)) (-4 *2 (-368)) (-4 *3 (-1253 *2))
- (-4 *4 (-1253 (-413 *3))) (-4 *5 (-347 *2 *3 *4))))
+ (-12 (-4 *1 (-342 *2 *3 *4 *5)) (-4 *2 (-370)) (-4 *3 (-1255 *2))
+ (-4 *4 (-1255 (-415 *3))) (-4 *5 (-349 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1227)) (-4 *2 (-1227))
- (-5 *1 (-376 *5 *4 *2 *6)) (-4 *4 (-378 *5)) (-4 *6 (-378 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1229)) (-4 *2 (-1229))
+ (-5 *1 (-378 *5 *4 *2 *6)) (-4 *4 (-380 *5)) (-4 *6 (-380 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109))
- (-5 *1 (-429 *5 *4 *2 *6)) (-4 *4 (-431 *5)) (-4 *6 (-431 *2))))
- ((*1 *1 *1) (-5 *1 (-501)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1111)) (-4 *2 (-1111))
+ (-5 *1 (-431 *5 *4 *2 *6)) (-4 *4 (-433 *5)) (-4 *6 (-433 *2))))
+ ((*1 *1 *1) (-5 *1 (-503)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-650 *5)) (-4 *5 (-1227))
- (-4 *2 (-1227)) (-5 *1 (-648 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-652 *5)) (-4 *5 (-1229))
+ (-4 *2 (-1229)) (-5 *1 (-650 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1058)) (-4 *2 (-1058))
- (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *8 (-378 *2))
- (-4 *9 (-378 *2)) (-5 *1 (-691 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-693 *5 *6 *7)) (-4 *10 (-693 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1060)) (-4 *2 (-1060))
+ (-4 *6 (-380 *5)) (-4 *7 (-380 *5)) (-4 *8 (-380 *2))
+ (-4 *9 (-380 *2)) (-5 *1 (-693 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-695 *5 *6 *7)) (-4 *10 (-695 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1253 *3))))
+ (-12 (-4 *3 (-1060)) (-5 *1 (-720 *3 *2)) (-4 *2 (-1255 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1253 *3)) (-4 *3 (-368))
- (-4 *3 (-174)) (-4 *1 (-730 *3 *4))))
+ (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-370))
+ (-4 *3 (-174)) (-4 *1 (-732 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1253 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-732 *3 *2)) (-4 *2 (-1255 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-965 *5)) (-4 *5 (-1227))
- (-4 *2 (-1227)) (-5 *1 (-964 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-967 *5)) (-4 *5 (-1229))
+ (-4 *2 (-1229)) (-5 *1 (-966 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5))
- (-14 *6 (-650 *2))))
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-1045 *3 *4 *5 *2 *6)) (-4 *2 (-958 *3 *4 *5))
+ (-14 *6 (-652 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1058)) (-4 *2 (-1058))
- (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7))
- (-4 *9 (-240 *5 *7)) (-4 *10 (-240 *6 *2)) (-4 *11 (-240 *5 *2))
- (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *12 (-1062 *5 *6 *2 *10 *11))))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1060)) (-4 *2 (-1060))
+ (-14 *5 (-779)) (-14 *6 (-779)) (-4 *8 (-242 *6 *7))
+ (-4 *9 (-242 *5 *7)) (-4 *10 (-242 *6 *2)) (-4 *11 (-242 *5 *2))
+ (-5 *1 (-1066 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1064 *5 *6 *7 *8 *9)) (-4 *12 (-1064 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1227))
- (-4 *2 (-1227)) (-5 *1 (-1164 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1168 *5)) (-4 *5 (-1229))
+ (-4 *2 (-1229)) (-5 *1 (-1166 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1220 *5 *6 *7 *2)) (-4 *5 (-562)) (-4 *6 (-799))
- (-4 *7 (-856)) (-4 *2 (-1074 *5 *6 *7))))
+ (-4 *1 (-1222 *5 *6 *7 *2)) (-4 *5 (-564)) (-4 *6 (-801))
+ (-4 *7 (-858)) (-4 *2 (-1076 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1277 *5)) (-4 *5 (-1227))
- (-4 *2 (-1227)) (-5 *1 (-1276 *5 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1227)) (-5 *2 (-777))
- (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-435 *3 *4))
- (-4 *3 (-436 *4))))
- ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-550 *3)) (-4 *3 (-551))))
- ((*1 *2) (-12 (-4 *1 (-769)) (-5 *2 (-777))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-802 *3 *4))
- (-4 *3 (-803 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-1000 *3 *4))
- (-4 *3 (-1001 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-1005 *3 *4))
- (-4 *3 (-1006 *4))))
- ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1020 *3)) (-4 *3 (-1021))))
- ((*1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-777))))
- ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1068 *3)) (-4 *3 (-1069)))))
-(((*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-1109)) (-5 *2 (-777)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-368))
- (-5 *2 (-650 (-2 (|:| C (-695 *5)) (|:| |g| (-1277 *5)))))
- (-5 *1 (-987 *5)) (-5 *3 (-695 *5)) (-5 *4 (-1277 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-293 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1253 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1253 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-928)) (-5 *1 (-448 *2))
- (-4 *2 (-1253 (-570)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-928)) (-5 *4 (-777)) (-5 *1 (-448 *2))
- (-4 *2 (-1253 (-570)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *1 (-448 *2))
- (-4 *2 (-1253 (-570)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777))
- (-5 *1 (-448 *2)) (-4 *2 (-1253 (-570)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777))
- (-5 *6 (-112)) (-5 *1 (-448 *2)) (-4 *2 (-1253 (-570)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-424 *2)) (-4 *2 (-1253 *5))
- (-5 *1 (-450 *5 *2)) (-4 *5 (-1058)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1279 *5)) (-4 *5 (-1229))
+ (-4 *2 (-1229)) (-5 *1 (-1278 *5 *2)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-779)) (-4 *3 (-1229)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *1) (-5 *1 (-173)))
+ ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1111))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397))))
+ ((*1 *1) (-5 *1 (-402)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1111)) (-5 *1 (-894 *2 *3 *4)) (-4 *2 (-1111))
+ (-4 *4 (-674 *3))))
+ ((*1 *1) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-1153 *3 *2)) (-14 *3 (-779)) (-4 *2 (-1060))))
+ ((*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060))))
+ ((*1 *1 *1) (-5 *1 (-1188))) ((*1 *1) (-5 *1 (-1188)))
+ ((*1 *1) (-5 *1 (-1209))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-652 (-2 (|:| |totdeg| (-779)) (|:| -3888 *3))))
+ (-5 *4 (-779)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *6 (-801))
+ (-4 *7 (-858)) (-5 *1 (-457 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1188))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1214) (-968)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1769 (-652 *4))))
+ (-5 *1 (-809 *6 *4 *3)) (-4 *3 (-664 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-794)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))
- (-5 *2 (-650 (-413 (-570)))) (-5 *1 (-1029 *4))
- (-4 *4 (-1253 (-570))))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-757)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-2 (|:| -4144 *3) (|:| -3165 *4))))
- (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *1 (-1203 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1203 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -2185 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-618 *6)) (-4 *6 (-13 (-436 *5) (-27) (-1212)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-1182 (-413 (-1182 *6)))) (-5 *1 (-566 *5 *6 *7))
- (-5 *3 (-1182 *6)) (-4 *7 (-1109))))
+ (-12 (-5 *4 (-620 *6)) (-4 *6 (-13 (-438 *5) (-27) (-1214)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-1184 (-415 (-1184 *6)))) (-5 *1 (-568 *5 *6 *7))
+ (-5 *3 (-1184 *6)) (-4 *7 (-1111))))
((*1 *2 *1)
- (-12 (-4 *2 (-1253 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058))))
+ (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060))))
((*1 *2 *1)
- (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1253 *3))))
+ (-12 (-4 *1 (-732 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1255 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1182 *11)) (-5 *6 (-650 *10))
- (-5 *7 (-650 (-777))) (-5 *8 (-650 *11)) (-4 *10 (-856))
- (-4 *11 (-311)) (-4 *9 (-799)) (-4 *5 (-956 *11 *9 *10))
- (-5 *2 (-650 (-1182 *5))) (-5 *1 (-748 *9 *10 *11 *5))
- (-5 *3 (-1182 *5))))
+ (|partial| -12 (-5 *4 (-1184 *11)) (-5 *6 (-652 *10))
+ (-5 *7 (-652 (-779))) (-5 *8 (-652 *11)) (-4 *10 (-858))
+ (-4 *11 (-313)) (-4 *9 (-801)) (-4 *5 (-958 *11 *9 *10))
+ (-5 *2 (-652 (-1184 *5))) (-5 *1 (-750 *9 *10 *11 *5))
+ (-5 *3 (-1184 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-956 *3 *4 *5)) (-5 *1 (-1043 *3 *4 *5 *2 *6))
- (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-14 *6 (-650 *2)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1253 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-662 *3)) (-4 *3 (-1058)) (-4 *3 (-368))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-777)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368))
- (-5 *1 (-665 *5 *2)) (-4 *2 (-662 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-535))))
- ((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-535)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-1093 *3)) (-4 *3 (-133)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1058)) (-5 *1 (-1249 *3 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1153))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-5 *1 (-705))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-695 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-368)) (-5 *1 (-987 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-762)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
+ (-12 (-4 *2 (-958 *3 *4 *5)) (-5 *1 (-1045 *3 *4 *5 *2 *6))
+ (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-14 *6 (-652 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-2 (|:| -1640 *3) (|:| -3762 *4))))
+ (-4 *3 (-1111)) (-4 *4 (-1111)) (-4 *1 (-1205 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1205 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1011 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-370))
+ (-5 *2
+ (-2 (|:| A (-697 *5))
+ (|:| |eqs|
+ (-652
+ (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5)) (|:| -3179 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5))
+ (-4 *6 (-664 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-370)) (-4 *6 (-664 *5))
+ (-5 *2 (-2 (|:| -1866 (-697 *6)) (|:| |vec| (-1279 *5))))
+ (-5 *1 (-821 *5 *6)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *5)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-928)) (-4 *5 (-311)) (-4 *3 (-1253 *5))
- (-5 *2 (-2 (|:| |plist| (-650 *3)) (|:| |modulo| *5)))
- (-5 *1 (-466 *5 *3)) (-5 *4 (-650 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5)))
- (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-777)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227)))
- (-5 *1 (-703)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-591)) (-5 *3 (-603)) (-5 *4 (-295)) (-5 *1 (-284)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-1015)))))
+ (-12
+ (-5 *2
+ (-2 (|:| -3829 *3) (|:| |coef1| (-790 *3)) (|:| |coef2| (-790 *3))))
+ (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1095 *3)) (-4 *3 (-133)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
+ (-5 *2
+ (-2 (|:| |mval| (-697 *4)) (|:| |invmval| (-697 *4))
+ (|:| |genIdeal| (-512 *4 *5 *6 *7))))
+ (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-336)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1111)) (-4 *2 (-909 *4)) (-5 *1 (-700 *4 *2 *5 *3))
+ (-4 *5 (-380 *2)) (-4 *3 (-13 (-380 *4) (-10 -7 (-6 -4454)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-887)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-512)) (-5 *2 (-650 (-972))) (-5 *1 (-295)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384))))
- ((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-384)))))
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *6 (-622 (-1188)))
+ (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *2 (-1177 (-652 (-961 *4)) (-652 (-300 (-961 *4)))))
+ (-5 *1 (-512 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-438 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188))))
+ ((*1 *1 *1) (-4 *1 (-161))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-913 *4))
+ (-4 *4 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2)
+ (-12 (-4 *1 (-356))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354))
- (-4 *2
- (-13 (-408)
- (-10 -7 (-15 -2869 (*2 *4)) (-15 -1997 ((-928) *2))
- (-15 -2681 ((-1277 *2) (-928))) (-15 -4257 (*2 *2)))))
- (-5 *1 (-361 *2 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-695 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109))
- (-5 *2 (-650 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 (-2 (|:| |k| (-900 *3)) (|:| |c| *4))))
- (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 (-678 *3))) (-5 *1 (-900 *3)) (-4 *3 (-856)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-4 *2 (-1109))
- (-5 *1 (-896 *4 *2)))))
+ (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-305 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1105 (-851 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-311))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-988 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1) (-5 *1 (-870))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1037 (-851 (-572))))
+ (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *4)))) (-4 *4 (-1060))
+ (-5 *1 (-603 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3))
+ (-4 *3 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1111)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3))
- (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5))
- (-5 *2 (-419 *4 (-413 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1277 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4)))
- (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-4 *3 (-311))
- (-5 *1 (-419 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-695 (-413 (-959 (-570)))))
- (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040))
- (-5 *3 (-320 (-570))))))
-(((*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-854)) (-5 *1 (-307 *3)))))
+ (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1231)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))
+ (-4 *2 (-460))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2))
+ (-4 *4 (-1255 (-415 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-460))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)) (-4 *3 (-460))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-460))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-313)) (-4 *3 (-564)) (-5 *1 (-1175 *3 *2))
+ (-4 *2 (-1255 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-295)) (-5 *1 (-284)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-650 (-650 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-650 (-650 *5)))))
+ (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572))))))
+ (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4))
+ (-4 *4 (-13 (-370) (-856)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-300 (-415 (-961 (-171 (-572)))))))
+ (-5 *2 (-652 (-652 (-300 (-961 (-171 *4)))))) (-5 *1 (-385 *4))
+ (-4 *4 (-13 (-370) (-856)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-961 (-171 (-572)))))
+ (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4))
+ (-4 *4 (-13 (-370) (-856)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-300 (-415 (-961 (-171 (-572))))))
+ (-5 *2 (-652 (-300 (-961 (-171 *4))))) (-5 *1 (-385 *4))
+ (-4 *4 (-13 (-370) (-856))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-767)))))
+(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1168 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1060))
+ (-5 *3 (-415 (-572))) (-5 *1 (-1172 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1255 (-415 (-572)))) (-5 *1 (-922 *3 *2))
+ (-4 *2 (-1255 (-415 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1294 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
+ (-5 *1 (-672 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-650 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1109)))))
+ (|partial| -12 (-5 *2 (-672 *3 *4)) (-5 *1 (-1299 *3 *4))
+ (-4 *3 (-858)) (-4 *4 (-174)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1166 *4) (-1166 *4))) (-5 *2 (-1166 *4))
- (-5 *1 (-1303 *4)) (-4 *4 (-1227))))
+ (-12 (-5 *3 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *4 *5 *6))
+ (-4 *4 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))))
+(((*1 *2 *3) (-12 (-5 *3 (-415 (-572))) (-5 *2 (-227)) (-5 *1 (-311)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-572)) (-4 *3 (-174)) (-4 *5 (-380 *3))
+ (-4 *6 (-380 *3)) (-5 *1 (-696 *3 *5 *6 *2))
+ (-4 *2 (-695 *3 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-386)) (-5 *1 (-194)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-1172 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1271 *2 *3 *4)) (-4 *2 (-1060)) (-14 *3 (-1188))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5))
+ (-4 *4 (-1111)) (-4 *5 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1168 *4) (-1168 *4))) (-5 *2 (-1168 *4))
+ (-5 *1 (-1305 *4)) (-4 *4 (-1229))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-650 (-1166 *5)) (-650 (-1166 *5)))) (-5 *4 (-570))
- (-5 *2 (-650 (-1166 *5))) (-5 *1 (-1303 *5)) (-4 *5 (-1227)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-327 *2 *4)) (-4 *4 (-132))
- (-4 *2 (-1109))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-391 *2)) (-4 *2 (-1109))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-1109)) (-5 *1 (-655 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
+ (-12 (-5 *3 (-1 (-652 (-1168 *5)) (-652 (-1168 *5)))) (-5 *4 (-572))
+ (-5 *2 (-652 (-1168 *5))) (-5 *1 (-1305 *5)) (-4 *5 (-1229)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4453)) (-4 *4 (-368)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-527 *4 *5 *6 *3))
- (-4 *3 (-693 *4 *5 *6))))
+ (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272))))
+ ((*1 *2 *3) (-12 (-5 *3 (-322 (-227))) (-5 *2 (-112)) (-5 *1 (-272))))
((*1 *2 *3)
- (-12 (|has| *9 (-6 -4453)) (-4 *4 (-562)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *8 (-378 *7))
- (-4 *9 (-378 *7)) (-5 *2 (-650 *6))
- (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-693 *4 *5 *6))
- (-4 *10 (-693 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-650 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-694 *4 *5 *6 *3))
- (-4 *3 (-693 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562))
- (-5 *2 (-650 *7)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-52)) (-5 *1 (-899 *4))
- (-4 *4 (-1109)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109)))))
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-831))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1287)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1186)) (-5 *1 (-681 *3)) (-4 *3 (-1109)))))
+ (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1270 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3))
+ (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2))
+ (-4 *2 (-1270 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148)))
+ (-5 *1 (-1164 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-697 *5))) (-4 *5 (-313)) (-4 *5 (-1060))
+ (-5 *2 (-1279 (-1279 *5))) (-5 *1 (-1040 *5)) (-5 *4 (-1279 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-272)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-59 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-59 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058))
- (-5 *1 (-720 *3 *4))))
+ (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-930)) (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-800))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-62 *3)) (-14 *3 (-1186))))
- ((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-69 *3)) (-14 *3 (-1186))))
- ((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-72 *3)) (-14 *3 (-1186))))
- ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1282))))
- ((*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1282)) (-5 *1 (-403))))
+ (-12 (-5 *2 (-415 (-572))) (-4 *1 (-1260 *3)) (-4 *3 (-1060)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-62 *3)) (-14 *3 (-1188))))
+ ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-69 *3)) (-14 *3 (-1188))))
+ ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-72 *3)) (-14 *3 (-1188))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1284))))
+ ((*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-405))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147))))
- ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147))))
+ (-12 (-5 *3 (-1170)) (-5 *4 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
+ ((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1284)) (-5 *1 (-1149))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1282)) (-5 *1 (-1147)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4)))))
- ((*1 *1 *1) (-5 *1 (-384)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-763)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-384)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4452)) (-4 *1 (-495 *4))
- (-4 *4 (-1227)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-311))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *2)))))
-(((*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))))
-(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212)))))
- ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))
- ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-397)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *5)) (-5 *4 (-1277 *5)) (-4 *5 (-368))
- (-5 *2 (-112)) (-5 *1 (-673 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4453))))
- (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4453)))) (-5 *2 (-112))
- (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-143 *2 *4 *3))
- (-4 *3 (-378 *4))))
+ (-12 (-5 *3 (-652 (-870))) (-5 *2 (-1284)) (-5 *1 (-1149)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1229))
+ (-4 *5 (-380 *4)) (-4 *2 (-380 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *6 *2 *7)) (-4 *6 (-1060))
+ (-4 *7 (-242 *4 *6)) (-4 *2 (-242 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-952 (-227)))) (-5 *1 (-268))))
((*1 *2 *3)
- (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-509 *2 *4 *5 *3))
- (-4 *5 (-378 *2)) (-4 *3 (-378 *4))))
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-335 *4)) (-4 *4 (-370))
+ (-5 *2 (-697 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1279 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-697 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-1279 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1255 *4)) (-5 *2 (-1279 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-695 *4)) (-4 *4 (-1001 *2)) (-4 *2 (-562))
- (-5 *1 (-699 *2 *4))))
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-417 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
+ (-5 *2 (-1279 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-1246 *2 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-1201 *2)) (-4 *2 (-368)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5))
- (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-1290 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562))
- (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1290 *5 *6 *7 *8)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *3 (-650 (-266)))
- (-5 *1 (-264))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266))))
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-425 *4)) (-4 *4 (-174))
+ (-5 *2 (-697 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-1279 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-487 *5 *6))) (-5 *3 (-487 *5 *6))
- (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-1277 *6))
- (-5 *1 (-637 *5 *6)))))
+ (-12 (-5 *4 (-652 (-697 *5))) (-5 *3 (-697 *5)) (-4 *5 (-370))
+ (-5 *2 (-1279 *5)) (-5 *1 (-1097 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *2 (-1076 *4 *5 *6)) (-5 *1 (-784 *4 *5 *6 *2 *3))
+ (-4 *3 (-1082 *4 *5 *6 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-5 *1 (-445)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1155)) (-5 *2 (-1246 (-572))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-961 *4)) (-4 *4 (-13 (-313) (-148)))
+ (-4 *2 (-958 *4 *6 *5)) (-5 *1 (-933 *4 *5 *6 *2))
+ (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
+(((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214)))))
+ ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-368 (-115))) (-4 *2 (-1060)) (-5 *1 (-722 *2 *4))
+ (-4 *4 (-656 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-368 (-115))) (-5 *1 (-844 *2)) (-4 *2 (-1060)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-399)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572))))
+ (-4 *5 (-1255 *4)) (-5 *2 (-652 (-415 *5))) (-5 *1 (-1027 *4 *5))
+ (-5 *3 (-415 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1234))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1046)) (-5 *3 (-1188)) (-5 *1 (-272)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1229)) (-5 *2 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-564)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 (-1 *6 (-652 *6))))
+ (-4 *5 (-38 (-415 (-572)))) (-4 *6 (-1270 *5)) (-5 *2 (-652 *6))
+ (-5 *1 (-1272 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-258 *2 *3 *4 *5)) (-4 *2 (-1060)) (-4 *3 (-858))
+ (-4 *4 (-271 *3)) (-4 *5 (-801)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-831)) (-5 *1 (-830)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-368 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-657 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-173))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-1109)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-760)))))
+(((*1 *2 *3) (-12 (-5 *3 (-396)) (-5 *2 (-1284)) (-5 *1 (-399))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-399)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))
+ (-14 *4 (-779)) (-4 *5 (-174)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856)))
- (-14 *3 (-650 (-1186))))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1149 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34)))
- (-5 *1 (-1150 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-1149 *3 *4))) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1282)) (-5 *1 (-397))))
- ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-397)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-368))
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-375)) (-4 *2 (-370))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4))
+ (-4 *4 (-356)))))
+(((*1 *2 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060))))
+ ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-652 (-268))) (-5 *1 (-1281))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1170)) (-5 *1 (-1281))))
+ ((*1 *1 *1) (-5 *1 (-1281))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-115)) (-5 *4 (-779))
+ (-4 *5 (-13 (-460) (-1049 (-572)))) (-4 *5 (-564))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-438 *5))
+ (-4 *2
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *5 (-620 $)) $))
+ (-15 -2224 ((-1136 *5 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *5 (-620 $))))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
(-5 *2
- (-2 (|:| A (-695 *5))
- (|:| |eqs|
- (-650
- (-2 (|:| C (-695 *5)) (|:| |g| (-1277 *5)) (|:| -2557 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *5)) (-5 *4 (-1277 *5))
- (-4 *6 (-662 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-368)) (-4 *6 (-662 *5))
- (-5 *2 (-2 (|:| -2565 (-695 *6)) (|:| |vec| (-1277 *5))))
- (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *6)) (-5 *4 (-1277 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-911 *4))
- (-4 *4 (-1109))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798))
- (-4 *2 (-458))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-1253 *2))
- (-4 *4 (-1253 (-413 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)) (-4 *3 (-458))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-458))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-311)) (-4 *3 (-562)) (-5 *1 (-1173 *3 *2))
- (-4 *2 (-1253 *3)))))
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
+ (|:| |success| (-112))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *4 *5 *6))
- (-4 *4 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-695 *5))) (-4 *5 (-311)) (-4 *5 (-1058))
- (-5 *2 (-1277 (-1277 *5))) (-5 *1 (-1038 *5)) (-5 *4 (-1277 *5)))))
+ (|partial| -12 (-5 *2 (-572)) (-5 *1 (-577 *3)) (-4 *3 (-1049 *2)))))
+(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-1282)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-115)) (-4 *4 (-1060)) (-5 *1 (-722 *4 *2))
+ (-4 *2 (-656 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-844 *2)) (-4 *2 (-1060)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-311) (-148)))
- (-4 *2 (-956 *4 *6 *5)) (-5 *1 (-931 *4 *5 *6 *2))
- (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-596 *4))
+ (-4 *4 (-356)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-514)) (-5 *3 (-652 (-1193))) (-5 *1 (-1193)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-2 (|:| -1640 (-1188)) (|:| -3762 (-445)))))
+ (-5 *1 (-1192)))))
+(((*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-1170)) (-5 *1 (-718)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1153 *3 *4)) (-14 *3 (-930)) (-4 *4 (-370))
+ (-5 *1 (-1004 *3 *4)))))
+(((*1 *1) (-4 *1 (-356))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-329 *4 *2)) (-4 *4 (-1111))
+ (-4 *2 (-132)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1) (-4 *1 (-1150))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 (-1 *6 (-650 *6))))
- (-4 *5 (-38 (-413 (-570)))) (-4 *6 (-1268 *5)) (-5 *2 (-650 *6))
- (-5 *1 (-1270 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))))
+ (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27))
+ (-5 *2 (-652 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188)))
+ (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-610 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1227)) (-5 *2 (-1282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-4 *4 (-1058))
- (-5 *1 (-1038 *4)))))
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-612 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1229)) (-5 *2 (-1284)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1058)) (-4 *3 (-1253 *4)) (-4 *2 (-1268 *4))
- (-5 *1 (-1271 *4 *3 *5 *2)) (-4 *5 (-662 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-542)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-458)) (-4 *4 (-856))
- (-4 *5 (-799)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-551))))
+ (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1279 (-707))) (-5 *1 (-311)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-322 *4)) (-4 *4 (-13 (-836) (-1060))) (-5 *2 (-1170))
+ (-5 *1 (-834 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-322 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-836) (-1060)))
+ (-5 *2 (-1170)) (-5 *1 (-834 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-830)) (-5 *4 (-322 *5)) (-4 *5 (-13 (-836) (-1060)))
+ (-5 *2 (-1284)) (-5 *1 (-834 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-830)) (-5 *4 (-322 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-836) (-1060))) (-5 *2 (-1284)) (-5 *1 (-834 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-836)) (-5 *2 (-1170))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-112)) (-5 *2 (-1170))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *2 (-1284))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-836)) (-5 *3 (-830)) (-5 *4 (-112)) (-5 *2 (-1284)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1155)) (-5 *2 (-145)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-697 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-697 *4)) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1074 *3 *4 *5)))))
+ (-12 (-5 *2 (-652 (-1215 *3))) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-460))
+ (-5 *2 (-489 *4 *5)) (-5 *1 (-639 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-930))) (-5 *2 (-652 (-697 (-572))))
+ (-5 *1 (-1121)))))
+(((*1 *1) (-5 *1 (-1280))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-996 (-413 (-570)) (-870 *3) (-242 *4 (-777))
- (-249 *3 (-413 (-570)))))
- (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-995 *3 *4)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-928)) (-5 *4 (-227)) (-5 *5 (-570)) (-5 *6 (-880))
- (-5 *2 (-1282)) (-5 *1 (-1278)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-424 *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-1058)) (-5 *2 (-650 *6)) (-5 *1 (-450 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-2 (|:| -4144 (-1186)) (|:| -3165 (-443)))))
- (-5 *1 (-1190)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-629 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -2420 *4) (|:| |sol?| (-112)))
- (-570) *4))
- (-4 *4 (-368)) (-4 *5 (-1253 *4)) (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1277
- (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3109 (-570))
- (|:| -2571 (-570)) (|:| |spline| (-570)) (|:| -2593 (-570))
- (|:| |axesColor| (-880)) (|:| -2482 (-570))
- (|:| |unitsColor| (-880)) (|:| |showing| (-570)))))
- (-5 *1 (-1278)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-799))
- (-4 *3 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *5 (-562))
- (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-799))
- (-4 *3
- (-13 (-856)
- (-10 -8 (-15 -2601 ((-1186) $))
- (-15 -1433 ((-3 $ "failed") (-1186))))))
- (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *6))
- (-4 *6
- (-13 (-856)
- (-10 -8 (-15 -2601 ((-1186) $))
- (-15 -1433 ((-3 $ "failed") (-1186))))))
- (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2))
- (-4 *2 (-956 (-959 *4) *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695 *2)) (-4 *4 (-1253 *2))
- (-4 *2 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-5 *1 (-505 *2 *4 *5)) (-4 *5 (-415 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2))
- (-4 *5 (-240 *3 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *3 (-650 (-570)))
- (-5 *1 (-890)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-370)) (-4 *6 (-1255 (-415 *2)))
+ (-4 *2 (-1255 *5)) (-5 *1 (-217 *5 *2 *6 *3))
+ (-4 *3 (-349 *5 *2 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918))
+ (-5 *1 (-465 *3 *4 *2 *5)) (-4 *5 (-958 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *2 (-918))
+ (-5 *1 (-915 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-918)) (-5 *1 (-916 *2 *3)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-384))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-4 *6 (-347 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2047 (-419 *4 (-413 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1253 *5)) (-4 *5 (-368))
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
+ (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6))
+ (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
+ (-4 *7 (-801))
(-5 *2
- (-2 (|:| |poly| *6) (|:| -1493 (-413 *6))
- (|:| |special| (-413 *6))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-413 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-903 *3 *4))
- (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-777)) (-4 *5 (-368))
- (-5 *2 (-2 (|:| -2403 *3) (|:| -2420 *3))) (-5 *1 (-903 *3 *5))
- (-4 *3 (-1253 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112))
- (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458))
- (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112))
- (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458))
- (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112))
- (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458))
- (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112))
- (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458))
- (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (|has| *1 (-6 -4453)) (-4 *1 (-378 *3))
- (-4 *3 (-1227)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))))
+ (-652
+ (-2 (|:| -1526 (-779))
+ (|:| |eqns|
+ (-652
+ (-2 (|:| |det| *8) (|:| |rows| (-652 (-572)))
+ (|:| |cols| (-652 (-572))))))
+ (|:| |fgb| (-652 *8)))))
+ (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-779)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186)))
- (-4 *5 (-458)) (-5 *2 (-650 (-249 *4 *5))) (-5 *1 (-637 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458))
- (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570))
- (-5 *2 (-1044)) (-5 *1 (-764)))))
+ (-12 (-4 *2 (-370)) (-4 *2 (-856)) (-5 *1 (-954 *2 *3))
+ (-4 *3 (-1255 *2)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856))
- (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1113 *4)) (-4 *4 (-1111)) (-5 *2 (-1 *4))
+ (-5 *1 (-1028 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194))))
+ (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-112))
- (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))))))
+ (-12 (-5 *3 (-1105 (-572))) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188))))
+ (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-958 *3 *5 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-4 *4 (-1060))
+ (-5 *1 (-1040 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-1277 (-695 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-695 *4)) (-4 *5 (-662 *4)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1228))) (-5 *1 (-532)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5))
+ (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-1292 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-652 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1292 *5 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *2 (-652 (-572))) (-5 *1 (-569)) (-5 *3 (-572)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
+ (-4 *2 (-695 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-930)) (-4 *5 (-858))
+ (-5 *2 (-652 (-680 *5))) (-5 *1 (-680 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-368)) (-4 *4 (-562)) (-4 *5 (-1253 *4))
- (-5 *2 (-2 (|:| -2436 (-629 *4 *5)) (|:| -3922 (-413 *5))))
- (-5 *1 (-629 *4 *5)) (-5 *3 (-413 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4))
- (-14 *3 (-928)) (-4 *4 (-1058))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-458)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1253 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))))
+ (-12 (-14 *4 (-652 (-1188))) (-14 *5 (-779))
+ (-5 *2
+ (-652
+ (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
+ (-251 *4 (-415 (-572))))))
+ (-5 *1 (-513 *4 *5))
+ (-5 *3
+ (-512 (-415 (-572)) (-244 *5 (-779)) (-872 *4)
+ (-251 *4 (-415 (-572))))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1277 *4)) (-4 *4 (-645 (-570)))
- (-5 *2 (-1277 (-570))) (-5 *1 (-1305 *4)))))
+ (-12 (-4 *4 (-1060)) (-4 *3 (-1255 *4)) (-4 *2 (-1270 *4))
+ (-5 *1 (-1273 *4 *3 *5 *2)) (-4 *5 (-664 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))
- (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-570))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4))))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192))))
- ((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1) (-4 *1 (-875 *2)))
+ (-12 (-5 *4 (-930)) (-5 *2 (-1184 *3)) (-5 *1 (-1203 *3))
+ (-4 *3 (-370)))))
+(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))
((*1 *1 *1)
- (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798))
- (-4 *4 (-856)))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))
+ ((*1 *1 *1) (-4 *1 (-856)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))
+ ((*1 *1 *1) (-4 *1 (-1071))) ((*1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-2 (|:| |deg| (-779)) (|:| -2896 *5))))
+ (-4 *5 (-1255 *4)) (-4 *4 (-356)) (-5 *2 (-652 *5))
+ (-5 *1 (-218 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-2 (|:| -2972 *5) (|:| -1497 (-572)))))
+ (-5 *4 (-572)) (-4 *5 (-1255 *4)) (-5 *2 (-652 *5))
+ (-5 *1 (-704 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
+ (-12 (-5 *2 (-1037 (-851 (-572)))) (-5 *1 (-603 *3)) (-4 *3 (-1060)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-374 *2)) (-4 *2 (-564)) (-4 *2 (-174)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-544)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5))))
- (-5 *1 (-1138 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-13 (-311) (-148)))
- (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4))))
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-322 *5)))
+ (-5 *1 (-1140 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
+ (-4 *5 (-13 (-313) (-148))) (-5 *2 (-652 (-652 (-322 *5))))
+ (-5 *1 (-1140 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-930))
+ (-5 *2 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131))))))
+ (-5 *1 (-353 *4)) (-4 *4 (-356)))))
+(((*1 *2 *2) (-12 (-5 *2 (-322 (-227))) (-5 *1 (-212)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-572)) (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-313))
+ (-4 *9 (-958 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3888 (-1184 *9)) (|:| |polval| (-1184 *8))))
+ (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)) (-5 *4 (-1184 *8)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-652 (-1184 *13))) (-5 *3 (-1184 *13))
+ (-5 *4 (-652 *12)) (-5 *5 (-652 *10)) (-5 *6 (-652 *13))
+ (-5 *7 (-652 (-652 (-2 (|:| -3269 (-779)) (|:| |pcoef| *13)))))
+ (-5 *8 (-652 (-779))) (-5 *9 (-1279 (-652 (-1184 *10))))
+ (-4 *12 (-858)) (-4 *10 (-313)) (-4 *13 (-958 *10 *11 *12))
+ (-4 *11 (-801)) (-5 *1 (-715 *11 *12 *10 *13)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-300 *3))) (-5 *1 (-300 *3)) (-4 *3 (-564))
+ (-4 *3 (-1229)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-460)) (-4 *4 (-858))
+ (-4 *5 (-801)) (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 *2))
+ (-5 *2 (-386)) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5))))
- (-5 *1 (-1138 *5))))
+ (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
+ (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148)))
- (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4))))
+ (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564))
+ (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186)))
- (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5)))))
- (-5 *1 (-1138 *5))))
+ (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148)))
- (-5 *2 (-650 (-650 (-298 (-320 *4))))) (-5 *1 (-1138 *4))))
+ (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
+ (-4 *4 (-622 *2)) (-5 *2 (-386)) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-298 (-413 (-959 *5))))) (-5 *4 (-650 (-1186)))
- (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5)))))
- (-5 *1 (-1138 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-298 (-413 (-959 *4)))))
- (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *4)))))
- (-5 *1 (-1138 *4)))))
+ (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-858)) (-4 *5 (-622 *2)) (-5 *2 (-386))
+ (-5 *1 (-793 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1044))
- (-5 *1 (-755)))))
-(((*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *3 (-1074 *6 *7 *8))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -4246 *9))))
- (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8))
- (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856))
- (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -4246 *9))))
- (-5 *1 (-1081 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-650 (-112))) (-5 *7 (-695 (-227)))
- (-5 *8 (-695 (-570))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *5 (-112))
- (-5 *2 (-1044)) (-5 *1 (-760)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1220 *5 *6 *7 *8)) (-4 *5 (-562))
- (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-757)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *2 (-562)) (-5 *1 (-978 *2 *4))
- (-4 *4 (-1253 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-171 (-570))) (-5 *2 (-112)) (-5 *1 (-452))))
+ (-12 (-4 *1 (-258 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-858))
+ (-4 *5 (-801)) (-4 *2 (-271 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4)
- (-249 *4 (-413 (-570)))))
- (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112))
- (-5 *1 (-511 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-968 *3)) (-4 *3 (-551))))
- ((*1 *2 *1) (-12 (-4 *1 (-1231)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1186))
- (-4 *4 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-856)) (-5 *3 (-650 *6)) (-5 *5 (-650 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-650 *5)) (|:| |f3| *5)
- (|:| |f4| (-650 *5))))
- (-5 *1 (-1197 *6)) (-5 *4 (-650 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835)) (-5 *3 (-1168)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
- (-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
- (|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 (-227))) (-5 *4 (-570)) (-5 *2 (-1044))
- (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-754)))))
-(((*1 *1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-373)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-1072)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-570)) (-5 *1 (-384)))))
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356)) (-5 *2 (-112))
+ (-5 *1 (-364 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
+ (-5 *1 (-178 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-256 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-856))
- (-4 *5 (-799)) (-4 *2 (-269 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-777)) (-5 *1 (-228))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-171 (-227))) (-5 *3 (-777)) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1148))))
+ (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111))
+ (-4 *2 (-858)))))
+(((*1 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-396)) (-5 *1 (-444)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570))))
- (-4 *5 (-893 (-570)))
- (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-573 *5 *3)) (-4 *3 (-635))
- (-4 *3 (-13 (-27) (-1212) (-436 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1282)) (-5 *1 (-1147))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1282)) (-5 *1 (-1147)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *3 (-650 (-266)))
- (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474)))))
-(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279))))
- ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2))
+ (-4 *4 (-38 (-415 (-572)))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-460) (-148))) (-5 *2 (-426 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-13 (-460) (-148)))
+ (-5 *2 (-426 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *1 *1) (-4 *1 (-553))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058))
- (-4 *2 (-458))))
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553))
+ (-5 *2 (-415 (-572)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-426 *3)) (-4 *3 (-553))
+ (-4 *3 (-564))))
+ ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-415 (-572)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553))
+ (-5 *2 (-415 (-572)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-841 *3)) (-4 *3 (-553))
+ (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-851 *3)) (-4 *3 (-553))
+ (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553))
+ (-5 *2 (-415 (-572)))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-1253 (-570))) (-5 *2 (-650 (-570)))
- (-5 *1 (-492 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)) (-4 *3 (-458)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-320 *3)) (-4 *3 (-13 (-1058) (-856)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186))))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1168))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112))
- (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1212) (-29 *4))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-38 (-413 (-570))))
- (-4 *2 (-174)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1250 *4 *5)) (-5 *3 (-650 *5)) (-14 *4 (-1186))
- (-4 *5 (-368)) (-5 *1 (-930 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *5)) (-4 *5 (-368)) (-5 *2 (-1182 *5))
- (-5 *1 (-930 *4 *5)) (-14 *4 (-1186))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-650 *6)) (-5 *4 (-777)) (-4 *6 (-368))
- (-5 *2 (-413 (-959 *6))) (-5 *1 (-1059 *5 *6)) (-14 *5 (-1186)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-4 *1 (-910 *3)))))
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1019 *3)) (-4 *3 (-1049 *2)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *2 (-572)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-657 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-777))))
- ((*1 *1 *1) (-4 *1 (-408))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-419 *3 *4 *5 *6)) (-4 *6 (-1047 *4)) (-4 *3 (-311))
- (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4)) (-4 *6 (-415 *4 *5))
- (-14 *7 (-1277 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1277 *6)) (-4 *6 (-415 *4 *5)) (-4 *4 (-1001 *3))
- (-4 *5 (-1253 *4)) (-4 *3 (-311)) (-5 *1 (-420 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-5 *2 (-1168)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
- (-4 *2 (-1227)))))
+ (-12 (-5 *3 (-572)) (-4 *1 (-659 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-923 *3)) (-4 *3 (-313)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-973 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-777)) (-4 *1 (-1253 *3)) (-4 *3 (-1058)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-798)) (-4 *3 (-174)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-856)) (-4 *5 (-799))
- (-4 *6 (-562)) (-4 *7 (-956 *6 *5 *3))
- (-5 *1 (-468 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1047 (-413 (-570))) (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $))
- (-15 -1599 (*7 $))))))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-512)) (-5 *2 (-697 (-1113))) (-5 *1 (-295)))))
+ (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-570)) (-5 *4 (-424 *2)) (-4 *2 (-956 *7 *5 *6))
- (-5 *1 (-748 *5 *6 *7 *2)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-311)))))
-(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1212))))
- ((*1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458))
- (-5 *2 (-650 (-650 (-249 *5 *6)))) (-5 *1 (-477 *5 *6 *7))
- (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3))
- (-4 *3 (-13 (-1212) (-29 *5))))))
-(((*1 *1) (-5 *1 (-474))))
-(((*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-14 *5 (-650 (-1186)))
- (-5 *2
- (-650 (-2 (|:| -3744 (-1182 *4)) (|:| -2987 (-650 (-959 *4))))))
- (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2
- (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5))))))
- (-5 *1 (-1304 *5 *6 *7)) (-5 *3 (-650 (-959 *5)))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2
- (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5))))))
- (-5 *1 (-1304 *5 *6 *7)) (-5 *3 (-650 (-959 *5)))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2
- (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5))))))
- (-5 *1 (-1304 *5 *6 *7)) (-5 *3 (-650 (-959 *5)))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2
- (-650 (-2 (|:| -3744 (-1182 *4)) (|:| -2987 (-650 (-959 *4))))))
- (-5 *1 (-1304 *4 *5 *6)) (-5 *3 (-650 (-959 *4)))
- (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
-(((*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3))
- (-4 *3 (-654 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3))
- (-4 *3 (-654 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058))))
- ((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1253 *6))
- (-4 *6 (-13 (-368) (-148) (-1047 *4))) (-5 *4 (-570))
+ (-12 (-5 *3 (-652 (-930))) (-5 *4 (-652 (-572)))
+ (-5 *2 (-697 (-572))) (-5 *1 (-1121)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *2)) (-5 *1 (-181 *2)) (-4 *2 (-313))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-652 (-652 *4))) (-5 *2 (-652 *4)) (-4 *4 (-313))
+ (-5 *1 (-181 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-652 *8))
+ (-5 *4
+ (-652
+ (-2 (|:| -1769 (-697 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-697 *7)))))
+ (-5 *5 (-779)) (-4 *8 (-1255 *7)) (-4 *7 (-1255 *6)) (-4 *6 (-356))
(-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -2557
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1024 *6 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-5 *2 (-112)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570)))))
- (-4 *5 (-856)) (-5 *1 (-1293 *4 *5 *2)) (-4 *2 (-1298 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-413 (-570))))
- (-5 *2 (-2 (|:| -3745 (-1166 *4)) (|:| -3758 (-1166 *4))))
- (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279))))
- ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))))
+ (-2 (|:| -1769 (-697 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-697 *7))))
+ (-5 *1 (-506 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-866)) (-5 *2 (-697 (-130))) (-5 *3 (-130)))))
-(((*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))))
+ (-12 (-5 *3 (-572)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-426 *4)) (-4 *4 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-779)) (-5 *4 (-1279 *2)) (-4 *5 (-313))
+ (-4 *6 (-1003 *5)) (-4 *2 (-13 (-417 *6 *7) (-1049 *6)))
+ (-5 *1 (-421 *5 *6 *7 *2)) (-4 *7 (-1255 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
+ (-5 *1 (-178 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-570)) (|has| *1 (-6 -4443)) (-4 *1 (-410))
- (-5 *2 (-928)))))
+ (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
+ (-5 *2 (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -2336 *1)))
+ (-4 *1 (-1076 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -2336 *1)))
+ (-4 *1 (-1076 *3 *4 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168)))))
- (-5 *2 (-1044)) (-5 *1 (-309))))
+ (-12 (-5 *2 (-426 (-1184 *1))) (-5 *1 (-322 *4)) (-5 *3 (-1184 *1))
+ (-4 *4 (-460)) (-4 *4 (-564)) (-4 *4 (-1111))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))))
- (-5 *2 (-1044)) (-5 *1 (-309)))))
+ (-12 (-4 *1 (-918)) (-5 *2 (-426 (-1184 *1))) (-5 *3 (-1184 *1)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-488)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-194))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-306))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1170)) (-5 *1 (-311)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-695 *11)) (-5 *4 (-650 (-413 (-959 *8))))
- (-5 *5 (-777)) (-5 *6 (-1168)) (-4 *8 (-13 (-311) (-148)))
- (-4 *11 (-956 *8 *10 *9)) (-4 *9 (-13 (-856) (-620 (-1186))))
- (-4 *10 (-799))
+ (-12
(-5 *2
- (-2
- (|:| |rgl|
- (-650
- (-2 (|:| |eqzro| (-650 *11)) (|:| |neqzro| (-650 *11))
- (|:| |wcond| (-650 (-959 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *8))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *8))))))))))
- (|:| |rgsz| (-570))))
- (-5 *1 (-931 *8 *9 *10 *11)) (-5 *7 (-570)))))
+ (-998 (-415 (-572)) (-872 *3) (-244 *4 (-779))
+ (-251 *3 (-415 (-572)))))
+ (-14 *3 (-652 (-1188))) (-14 *4 (-779)) (-5 *1 (-997 *3 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-121 *3)) (-4 *3 (-1255 (-572))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 (-618 *5))) (-5 *3 (-1186)) (-4 *5 (-436 *4))
- (-4 *4 (-1109)) (-5 *1 (-579 *4 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1253 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2))
- (-4 *4 (-378 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8))
- (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148)))
- (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-112))
- (-5 *1 (-931 *5 *6 *7 *8)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562))))
- ((*1 *1 *1) (|partial| -4 *1 (-728))))
+ (-12 (-5 *3 (-779)) (-4 *4 (-370)) (-5 *1 (-905 *2 *4))
+ (-4 *2 (-1255 *4)))))
+(((*1 *1) (-12 (-4 *1 (-1056 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
+ (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-988 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-438 *5) (-27) (-1214)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2 (-594 *3)) (-5 *1 (-574 *5 *3 *6)) (-4 *6 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-457 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-779)) (-5 *3 (-952 *5)) (-4 *5 (-1060))
+ (-5 *1 (-1176 *4 *5)) (-14 *4 (-930))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-779))) (-5 *3 (-779)) (-5 *1 (-1176 *4 *5))
+ (-14 *4 (-930)) (-4 *5 (-1060))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-779))) (-5 *3 (-952 *5)) (-4 *5 (-1060))
+ (-5 *1 (-1176 *4 *5)) (-14 *4 (-930)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1151 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1111) (-34))) (-4 *6 (-13 (-1111) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1152 *5 *6)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-930)) (-5 *4 (-227)) (-5 *5 (-572)) (-5 *6 (-882))
+ (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-1184 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-716 *3)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1046)) (-5 *1 (-761)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-132))
+ (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| -2379 *3) (|:| -4298 *4))))
+ (-5 *1 (-743 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-734))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-5 *2 (-1168 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-370) (-148)))
+ (-5 *2 (-652 (-2 (|:| -2477 (-779)) (|:| -2376 *4) (|:| |num| *4))))
+ (-5 *1 (-407 *3 *4)) (-4 *4 (-1255 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-514)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-115)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3))
+ (-4 *3 (-1111)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-426 *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-1060)) (-5 *2 (-652 *6)) (-5 *1 (-452 *5 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-679))))
((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1112 *3 *4)) (-14 *3 (-930))
+ (-14 *4 (-930)))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-904))
(-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-194)))))
-(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227)))))
+ (-2 (|:| |pde| (-652 (-322 (-227))))
+ (|:| |constraints|
+ (-652
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-779)) (|:| |boundaryType| (-572))
+ (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
+ (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
+ (|:| |tol| (-227))))
+ (-5 *2 (-1046)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-779)) (-5 *1 (-790 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-972 *3 *2)) (-4 *2 (-132)) (-4 *3 (-564))
+ (-4 *3 (-1060)) (-4 *2 (-800))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-779)) (-5 *1 (-1184 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-982)) (-4 *2 (-132)) (-5 *1 (-1190 *3)) (-4 *3 (-564))
+ (-4 *3 (-1060))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-779)) (-5 *1 (-1252 *4 *3)) (-14 *4 (-1188))
+ (-4 *3 (-1060)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-618 *3))
- (-4 *3 (-13 (-436 *5) (-27) (-1212)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-2 (|:| -3730 *3) (|:| |coeff| *3)))
- (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-681 (-227)))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-756)))))
-(((*1 *1) (-5 *1 (-295))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)) (-4 *3 (-174))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1253 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-174)))))
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-173)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-631 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3058 *4) (|:| |sol?| (-112)))
+ (-572) *4))
+ (-4 *4 (-370)) (-4 *5 (-1255 *4)) (-5 *1 (-582 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-762)))))
+(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013))
+ (-4 *2 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1229)) (-5 *2 (-779)) (-5 *1 (-184 *4 *3))
+ (-4 *3 (-682 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4))
- (-4 *4 (-354))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
+ (-4 *4 (-356))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4))
- (-4 *4 (-354))))
- ((*1 *1) (-4 *1 (-373)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1277 *4)) (-5 *1 (-534 *4))
- (-4 *4 (-354))))
- ((*1 *1 *1) (-4 *1 (-551))) ((*1 *1) (-4 *1 (-551)))
- ((*1 *1 *1) (-5 *1 (-777)))
- ((*1 *2 *1) (-12 (-5 *2 (-912 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
+ (-4 *4 (-356))))
+ ((*1 *1) (-4 *1 (-375)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4))
+ (-4 *4 (-356))))
+ ((*1 *1 *1) (-4 *1 (-553))) ((*1 *1) (-4 *1 (-553)))
+ ((*1 *1 *1) (-5 *1 (-779)))
+ ((*1 *2 *1) (-12 (-5 *2 (-914 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4))
- (-4 *4 (-1109))))
- ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-551)) (-4 *2 (-562)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1109))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1109)) (-5 *2 (-112))
- (-5 *1 (-1228 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-555))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4452)) (-4 *1 (-495 *4))
- (-4 *4 (-1227)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535)))))
+ (-12 (-5 *3 (-572)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4))
+ (-4 *4 (-1111))))
+ ((*1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-553)) (-4 *2 (-564)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-570)) (-4 *5 (-354)) (-5 *2 (-424 (-1182 (-1182 *5))))
- (-5 *1 (-1225 *5)) (-5 *3 (-1182 (-1182 *5))))))
+ (-12 (-5 *4 (-652 *3)) (-4 *3 (-958 *5 *6 *7)) (-4 *5 (-460))
+ (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-457 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060))
+ (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
+ (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-930)) (-4 *5 (-1060))
+ (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290)))
+ (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-1188)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-308)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-620 *4))
+ (-4 *4 (-1111))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-620 *4)) (-4 *4 (-1111))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-843 *3)) (-4 *3 (-1111)) (-5 *2 (-112))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1111)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3 *4))
+ (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *6)) (-4 *6 (-895 *5)) (-4 *5 (-1111))
+ (-5 *2 (-112)) (-5 *1 (-896 *5 *6 *4)) (-4 *4 (-622 (-901 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1370 *3)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 (-697 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1227))
- (-4 *4 (-378 *2)) (-4 *5 (-378 *2))))
+ (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1229))
+ (-4 *4 (-380 *2)) (-4 *5 (-380 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2))
- (-4 *5 (-378 *2)) (-4 *2 (-1227))))
+ (-12 (-5 *3 (-572)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-380 *2))
+ (-4 *5 (-380 *2)) (-4 *2 (-1229))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1229))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 (-570))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 (-570)) (-14 *5 (-777))))
+ (-12 (-5 *3 (-652 (-572))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 (-572)) (-14 *5 (-779))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-777))))
+ (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-779))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-777))))
+ (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-779))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-777))))
+ (-12 (-5 *3 (-572)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-779))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-570))
- (-14 *4 (-777))))
+ (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-572))
+ (-14 *4 (-779))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-247 (-1168))) (-5 *1 (-216 *4))
+ (-12 (-5 *3 (-1188)) (-5 *2 (-249 (-1170))) (-5 *1 (-216 *4))
(-4 *4
- (-13 (-856)
- (-10 -8 (-15 -2057 ((-1168) $ *3)) (-15 -2467 ((-1282) $))
- (-15 -1919 ((-1282) $)))))))
+ (-13 (-858)
+ (-10 -8 (-15 -2679 ((-1170) $ *3)) (-15 -3105 ((-1284) $))
+ (-15 -3019 ((-1284) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-998)) (-5 *1 (-216 *3))
+ (-12 (-5 *2 (-1000)) (-5 *1 (-216 *3))
(-4 *3
- (-13 (-856)
- (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 ((-1282) $))
- (-15 -1919 ((-1282) $)))))))
+ (-13 (-858)
+ (-10 -8 (-15 -2679 ((-1170) $ (-1188))) (-15 -3105 ((-1284) $))
+ (-15 -3019 ((-1284) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-777)) (-5 *1 (-247 *4)) (-4 *4 (-856))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-247 *3)) (-4 *3 (-856))))
+ (-12 (-5 *3 "count") (-5 *2 (-779)) (-5 *1 (-249 *4)) (-4 *4 (-858))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-249 *3)) (-4 *3 (-858))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-247 *3)) (-4 *3 (-856))))
+ (-12 (-5 *2 "unique") (-5 *1 (-249 *3)) (-4 *3 (-858))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1227)) (-4 *2 (-1227))))
+ (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1229)) (-4 *2 (-1229))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1227))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115))))
+ (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1231)) (-4 *3 (-1253 *2))
- (-4 *4 (-1253 (-413 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1168)) (-5 *1 (-508))))
+ (-12 (-4 *1 (-349 *2 *3 *4)) (-4 *2 (-1233)) (-4 *3 (-1255 *2))
+ (-4 *4 (-1255 (-415 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1170)) (-5 *1 (-510))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109))))
+ (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))
+ (-12 (-5 *2 (-652 (-572))) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-650 (-899 *4))) (-5 *1 (-899 *4))
- (-4 *4 (-1109))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-652 (-901 *4))) (-5 *1 (-901 *4))
+ (-4 *4 (-1111))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4))
- (-4 *4 (-1109))))
+ (-12 (-5 *3 (-779)) (-5 *2 (-914 *4)) (-5 *1 (-913 *4))
+ (-4 *4 (-1111))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1019 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1227))))
+ (-12 (-5 *3 "value") (-4 *1 (-1021 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *2 (-1058))
- (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2))))
+ (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7)) (-4 *2 (-1060))
+ (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7))
- (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058))))
+ (-12 (-5 *3 (-572)) (-4 *1 (-1064 *4 *5 *2 *6 *7))
+ (-4 *6 (-242 *5 *2)) (-4 *7 (-242 *4 *2)) (-4 *2 (-1060))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-928)) (-4 *4 (-1109))
- (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4))))
- (-5 *1 (-1085 *4 *5 *2))
- (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4))))))
+ (-12 (-5 *3 (-930)) (-4 *4 (-1111))
+ (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
+ (-5 *1 (-1087 *4 *5 *2))
+ (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-928)) (-4 *4 (-1109))
- (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4))))
- (-5 *1 (-1086 *4 *5 *2))
- (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1153)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186))))
+ (-12 (-5 *3 (-930)) (-4 *4 (-1111))
+ (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
+ (-5 *1 (-1088 *4 *5 *2))
+ (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1155)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-1188))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-413 *1)) (-4 *1 (-1253 *2)) (-4 *2 (-1058))
- (-4 *2 (-368))))
+ (-12 (-5 *3 (-415 *1)) (-4 *1 (-1255 *2)) (-4 *2 (-1060))
+ (-4 *2 (-370))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-413 *1)) (-4 *1 (-1253 *3)) (-4 *3 (-1058))
- (-4 *3 (-562))))
+ (-12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))
+ (-4 *3 (-564))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1265 *2)) (-4 *2 (-1227))))
+ (-12 (-5 *3 "last") (-4 *1 (-1267 *2)) (-4 *2 (-1229))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1265 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 *2)) (-5 *4 (-1186)) (-4 *2 (-436 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-562))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-4 *1 (-1021))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-5 *4 (-868))
- (-4 *1 (-1021))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-928)) (-4 *4 (-13 (-854) (-368)))
- (-4 *1 (-1077 *4 *2)) (-4 *2 (-1253 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-300 (-851 *3))) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2
+ (-3 (-851 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-851 *3) "failed")))
+ "failed"))
+ (-5 *1 (-644 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-300 *3)) (-5 *5 (-1170))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-851 *3)) (-5 *1 (-644 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-300 (-851 (-961 *5)))) (-4 *5 (-460))
+ (-5 *2
+ (-3 (-851 (-415 (-961 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-851 (-415 (-961 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-851 (-415 (-961 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-645 *5)) (-5 *3 (-415 (-961 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5)))
+ (-4 *5 (-460))
+ (-5 *2
+ (-3 (-851 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-851 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-851 *3) "failed")))
+ "failed"))
+ (-5 *1 (-645 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-300 (-415 (-961 *6)))) (-5 *5 (-1170))
+ (-5 *3 (-415 (-961 *6))) (-4 *6 (-460)) (-5 *2 (-851 *3))
+ (-5 *1 (-645 *6)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-112)) (-5 *1 (-901 *4))
+ (-4 *4 (-1111)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-370)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3)))
+ (-5 *1 (-774 *3 *4)) (-4 *3 (-716 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-370)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-370)) (-4 *5 (-1060))
+ (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3))
+ (-4 *3 (-860 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1210))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112))
+ (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-570)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *2 (-1282)) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-570))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856))
- (-5 *1 (-455 *5 *6 *7 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-1141 *4 *2))
- (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4452) (-6 -4453))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-856)) (-4 *3 (-1227)) (-5 *1 (-1141 *3 *2))
- (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4452) (-6 -4453)))))))
+ (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-958 *4 *5 *6)) (-5 *2 (-652 (-652 *7)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-5 *3 (-652 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-313) (-148))) (-4 *6 (-801))
+ (-4 *7 (-858)) (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-652 (-652 *8)))
+ (-5 *1 (-456 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174))
- (-14 *6
- (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *2))
- (-2 (|:| -4298 *5) (|:| -2940 *2))))
- (-4 *2 (-240 (-2857 *3) (-777))) (-5 *1 (-467 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-856)) (-4 *7 (-956 *4 *2 (-870 *3))))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-4 *1 (-562))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -3730 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-368)) (-4 *7 (-1253 *6))
+ (-12
(-5 *2
- (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6))
- (-2 (|:| -3730 (-413 *7)) (|:| |coeff| (-413 *7))) "failed"))
- (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
+ (-1279
+ (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -1571 (-572))
+ (|:| -1930 (-572)) (|:| |spline| (-572)) (|:| -2142 (-572))
+ (|:| |axesColor| (-882)) (|:| -4309 (-572))
+ (|:| |unitsColor| (-882)) (|:| |showing| (-572)))))
+ (-5 *1 (-1280)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2))
+ (-4 *2 (-1255 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-311) (-148)))
- (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799))
- (-5 *2
- (-650
- (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7))
- (|:| |wcond| (-650 (-959 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *4))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *4))))))))))
- (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 *8))
- (-4 *7 (-856)) (-4 *8 (-1058)) (-4 *9 (-956 *8 *6 *7))
- (-4 *6 (-799)) (-5 *2 (-1182 *8)) (-5 *1 (-325 *6 *7 *8 *9)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2))
- (-4 *2 (-662 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551))))
- ((*1 *1 *1) (-4 *1 (-1069))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-512)) (-5 *3 (-650 (-882))) (-5 *1 (-489)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044))
- (-5 *1 (-761)))))
-(((*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540))))
- ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109)))))
+ (-12 (-5 *3 (-1184 (-572))) (-5 *2 (-572)) (-5 *1 (-951)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-959 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856))
- (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-956 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1)))
- (-4 *1 (-1253 *3)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-650 *3)) (-5 *5 (-928)) (-4 *3 (-1253 *4))
- (-4 *4 (-311)) (-5 *1 (-466 *4 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-115))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856))
- (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856))
- (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
+ (-4 *4 (-356)))))
+(((*1 *2 *2) (-12 (-5 *1 (-690 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-779)) (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-553)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-1203 *2)) (-4 *2 (-370)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-652 *1)) (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3)))
+ (-5 *1 (-696 *3 *4 *5 *6)) (-4 *6 (-695 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-708 *3))
+ (-4 *3 (-313)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192))))
+ (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *4 *5 *6)) (-4 *4 (-370))
+ (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-458 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-370))
+ (-5 *2
+ (-2 (|:| R (-697 *6)) (|:| A (-697 *6)) (|:| |Ainv| (-697 *6))))
+ (-5 *1 (-989 *6)) (-5 *3 (-697 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-118 *3)) (-14 *3 (-572))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1168 *2)) (-4 *2 (-313)) (-5 *1 (-176 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-415 *3)) (-4 *3 (-313)) (-5 *1 (-176 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-176 (-572))) (-5 *1 (-773 *3)) (-4 *3 (-412))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-176 (-415 (-572)))) (-5 *1 (-879 *3)) (-14 *3 (-572))))
((*1 *2 *1)
- (-12 (-5 *2 (-1277 (-3 (-474) "undefined"))) (-5 *1 (-1278)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-959 (-570)))) (-5 *1 (-443))))
+ (-12 (-14 *3 (-572)) (-5 *2 (-176 (-415 (-572))))
+ (-5 *1 (-880 *3 *4)) (-4 *4 (-877 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-1188))) (-4 *6 (-370))
+ (-5 *2 (-652 (-300 (-961 *6)))) (-5 *1 (-546 *5 *6 *7))
+ (-4 *5 (-460)) (-4 *7 (-13 (-370) (-856))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-313))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-455 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
+ (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-455 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
+ (-4 *4 (-313)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-455 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-652 *3)) (|:| |image| (-652 *3))))
+ (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ ((*1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 *8)) (-4 *8 (-958 *5 *7 *6))
+ (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
+ (-4 *7 (-801))
+ (-5 *2
+ (-652
+ (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
+ (|:| |wcond| (-652 (-961 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *5))))))))))
+ (-5 *1 (-933 *5 *6 *7 *8)) (-5 *4 (-652 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-227))) (-5 *2 (-1113))
- (-5 *1 (-765))))
+ (-12 (-5 *3 (-697 *8)) (-5 *4 (-652 (-1188))) (-4 *8 (-958 *5 *7 *6))
+ (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
+ (-4 *7 (-801))
+ (-5 *2
+ (-652
+ (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
+ (|:| |wcond| (-652 (-961 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *5))))))))))
+ (-5 *1 (-933 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 *7)) (-4 *7 (-958 *4 *6 *5))
+ (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801))
+ (-5 *2
+ (-652
+ (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7))
+ (|:| |wcond| (-652 (-961 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *4))))))))))
+ (-5 *1 (-933 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-697 *9)) (-5 *5 (-930)) (-4 *9 (-958 *6 *8 *7))
+ (-4 *6 (-13 (-313) (-148))) (-4 *7 (-13 (-858) (-622 (-1188))))
+ (-4 *8 (-801))
+ (-5 *2
+ (-652
+ (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9))
+ (|:| |wcond| (-652 (-961 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *6))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *6))))))))))
+ (-5 *1 (-933 *6 *7 *8 *9)) (-5 *4 (-652 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-930))
+ (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
+ (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801))
+ (-5 *2
+ (-652
+ (-2 (|:| |eqzro| (-652 *9)) (|:| |neqzro| (-652 *9))
+ (|:| |wcond| (-652 (-961 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *6))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *6))))))))))
+ (-5 *1 (-933 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-570))) (-5 *2 (-1113))
- (-5 *1 (-765)))))
+ (-12 (-5 *3 (-697 *8)) (-5 *4 (-930)) (-4 *8 (-958 *5 *7 *6))
+ (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
+ (-4 *7 (-801))
+ (-5 *2
+ (-652
+ (-2 (|:| |eqzro| (-652 *8)) (|:| |neqzro| (-652 *8))
+ (|:| |wcond| (-652 (-961 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *5))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *5))))))))))
+ (-5 *1 (-933 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 *9)) (-5 *5 (-1170))
+ (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
+ (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572))
+ (-5 *1 (-933 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-697 *9)) (-5 *4 (-652 (-1188))) (-5 *5 (-1170))
+ (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
+ (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572))
+ (-5 *1 (-933 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 *8)) (-5 *4 (-1170)) (-4 *8 (-958 *5 *7 *6))
+ (-4 *5 (-13 (-313) (-148))) (-4 *6 (-13 (-858) (-622 (-1188))))
+ (-4 *7 (-801)) (-5 *2 (-572)) (-5 *1 (-933 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 *10)) (-5 *5 (-930))
+ (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148)))
+ (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572))
+ (-5 *1 (-933 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-697 *10)) (-5 *4 (-652 (-1188))) (-5 *5 (-930))
+ (-5 *6 (-1170)) (-4 *10 (-958 *7 *9 *8)) (-4 *7 (-13 (-313) (-148)))
+ (-4 *8 (-13 (-858) (-622 (-1188)))) (-4 *9 (-801)) (-5 *2 (-572))
+ (-5 *1 (-933 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-697 *9)) (-5 *4 (-930)) (-5 *5 (-1170))
+ (-4 *9 (-958 *6 *8 *7)) (-4 *6 (-13 (-313) (-148)))
+ (-4 *7 (-13 (-858) (-622 (-1188)))) (-4 *8 (-801)) (-5 *2 (-572))
+ (-5 *1 (-933 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542))))
+ ((*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2))))
+ ((*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4))
- (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4))
- (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3))
- (-4 *3 (-693 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562))
- (-5 *2 (-777)))))
-(((*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540))))
- ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1227)) (-4 *2 (-856))))
+ (-12 (-5 *3 (-300 (-961 (-572))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-652 (-1188)))
+ (|:| |inhom| (-3 (-652 (-1279 (-779))) "failed"))
+ (|:| |hom| (-652 (-1279 (-779))))))
+ (-5 *1 (-240)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-801))
+ (-4 *3 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *5 (-564))
+ (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1060)) (-4 *5 (-801))
+ (-4 *3
+ (-13 (-858)
+ (-10 -8 (-15 -3222 ((-1188) $))
+ (-15 -2043 ((-3 $ "failed") (-1188))))))
+ (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *6))
+ (-4 *6
+ (-13 (-858)
+ (-10 -8 (-15 -3222 ((-1188) $))
+ (-15 -2043 ((-3 $ "failed") (-1188))))))
+ (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2))
+ (-4 *2 (-958 (-961 *4) *5 *6)))))
+(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-374 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-652 (-415 *6))) (-5 *3 (-415 *6))
+ (-4 *6 (-1255 *5)) (-4 *5 (-13 (-370) (-148) (-1049 (-572))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-576 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-415 (-572))) (-5 *1 (-311)))))
+(((*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229))))
((*1 *2 *2)
- (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-912 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-652 (-914 *3))) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856))
- (-4 *6 (-1074 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2037 *1) (|:| |upper| *1)))
- (-4 *1 (-985 *4 *5 *3 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))))
+ (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
+ (-4 *6 (-1076 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -1609 *1) (|:| |upper| *1)))
+ (-4 *1 (-987 *4 *5 *3 *6)))))
+(((*1 *2) (-12 (-5 *2 (-851 (-572))) (-5 *1 (-542))))
+ ((*1 *1) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-779)) (-5 *2 (-1284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-336)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-438 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-650 (-1277 *4))) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562))
- (-5 *2 (-650 (-1277 *3))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1304 *5 *6 *7))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1304 *5 *6 *7))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-959 *4)))
- (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-1055 *4 *5))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799))
- (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2557 (-650 *9)) (|:| -4246 *4) (|:| |ineq| (-650 *9))))
- (-5 *1 (-997 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9))
- (-4 *4 (-1080 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799))
- (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2557 (-650 *9)) (|:| -4246 *4) (|:| |ineq| (-650 *9))))
- (-5 *1 (-1116 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9))
- (-4 *4 (-1080 *6 *7 *8 *9)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -3730 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1253 *7))
- (-5 *3 (-413 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-580 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1121)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *1) (-12 (-5 *2 (-699 (-1146))) (-5 *1 (-1162)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
+ (-4 *7 (-1255 (-415 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2505 *3)))
+ (-5 *1 (-570 *5 *6 *7 *3)) (-4 *3 (-349 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
+ (-5 *2
+ (-2 (|:| |answer| (-415 *6)) (|:| -2505 (-415 *6))
+ (|:| |specpart| (-415 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-571 *5 *6)) (-5 *3 (-415 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-697 *2)) (-4 *4 (-1255 *2))
+ (-4 *2 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-5 *1 (-507 *2 *4 *5)) (-4 *5 (-417 *2 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227)))
- (-5 *2 (-1279)) (-5 *1 (-260)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-777)))))
+ (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
+ (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-415 *5))
+ (|:| |c2| (-415 *5)) (|:| |deg| (-779))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-777)) (-4 *4 (-311)) (-4 *6 (-1253 *4))
- (-5 *2 (-1277 (-650 *6))) (-5 *1 (-461 *4 *6)) (-5 *5 (-650 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-354)) (-5 *3 (-570)) (-5 *2 (-1199 (-928) (-777))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1227)))))
-(((*1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-542))) ((*1 *1) (-4 *1 (-728)))
- ((*1 *1) (-4 *1 (-732)))
- ((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))
- ((*1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))))
-(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-928))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1277 *4)) (-4 *4 (-354)) (-5 *2 (-928))
- (-5 *1 (-534 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570))))
+ (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8)))
+ (-4 *7 (-858)) (-4 *8 (-313)) (-4 *9 (-958 *8 *6 *7)) (-4 *6 (-801))
(-5 *2
- (-3 (|:| |%expansion| (-317 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))))
- (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1212) (-436 *5)))
- (-14 *6 (-1186)) (-14 *7 *3))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))))
-(((*1 *1) (-5 *1 (-1282))))
-(((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4))
- (-4 *2 (-240 *3 *4)))))
+ (-2 (|:| |upol| (-1184 *8)) (|:| |Lval| (-652 *8))
+ (|:| |Lfact|
+ (-652 (-2 (|:| -2972 (-1184 *8)) (|:| -2477 (-572)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-750 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-1229)))))
+(((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-4 *1 (-730)))
+ ((*1 *1) (-4 *1 (-734)))
+ ((*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
+ ((*1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1058)) (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2))
- (-4 *5 (-240 *3 *2)))))
-(((*1 *1) (-4 *1 (-976))))
+ (-12 (-5 *2 (-1284)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 (-415 (-572))))
+ (-5 *2
+ (-652
+ (-2 (|:| |outval| *4) (|:| |outmult| (-572))
+ (|:| |outvect| (-652 (-697 *4))))))
+ (-5 *1 (-787 *4)) (-4 *4 (-13 (-370) (-856))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564))
+ (-4 *3 (-958 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -2477 (-779)) (|:| -2379 *3) (|:| |radicand| (-652 *3))))
+ (-5 *1 (-962 *5 *6 *7 *3 *8)) (-5 *4 (-779))
+ (-4 *8
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *3)) (-15 -2209 (*3 $)) (-15 -2224 (*3 $))))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-779)) (-5 *1 (-864 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1111)) (-5 *2 (-1131)))))
+(((*1 *1) (-5 *1 (-1284))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
+ (-5 *2 (-1046)) (-5 *1 (-764)))))
+(((*1 *1) (-4 *1 (-978))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *3 (-652 (-572)))
+ (-5 *1 (-892)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-650
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
+ (-652
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227)))))
- (-5 *1 (-565))))
+ (-5 *1 (-567))))
((*1 *2 *1)
- (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-5 *2 (-650 *3))))
+ (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-5 *2 (-652 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-650
+ (-652
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227)))))
- (-5 *1 (-809)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109))
- (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-686 *5 *6 *2)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-132)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-177))) (-5 *1 (-1094)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1135 *4 *3 *5))) (-4 *4 (-38 (-413 (-570))))
- (-4 *4 (-1058)) (-4 *3 (-856)) (-5 *1 (-1135 *4 *3 *5))
- (-4 *5 (-956 *4 (-537 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1221 *4))) (-5 *3 (-1186)) (-5 *1 (-1221 *4))
- (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-542)))
- ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067))))
- ((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))
- ((*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260)))))
+ (-5 *1 (-811)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-570))) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6))
- (-5 *2 (-2 (|:| -2940 (-777)) (|:| -1747 *9) (|:| |radicand| *9)))
- (-5 *1 (-960 *5 *6 *7 *8 *9)) (-5 *4 (-777))
- (-4 *9
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *8)) (-15 -1587 (*8 $)) (-15 -1599 (*8 $))))))))
-(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1280)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-440)) (|:| -1994 "void")))
- (-5 *2 (-1282)) (-5 *1 (-1189))))
+ (-12 (-5 *3 (-499)) (-5 *4 (-963)) (-5 *2 (-699 (-541)))
+ (-5 *1 (-541))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186))
- (-5 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *2 (-1282))
- (-5 *1 (-1189))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1186))
- (-5 *4 (-3 (|:| |fst| (-440)) (|:| -1994 "void"))) (-5 *2 (-1282))
- (-5 *1 (-1189)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282))
- (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1282))
- (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))))
+ (-12 (-5 *4 (-963)) (-4 *3 (-1111)) (-5 *2 (-699 *1))
+ (-4 *1 (-775 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-1124)))))
+ (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4))
+ (-4 *4 (-1255 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-4 *3 (-174)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
+ (-4 *2 (-695 *3 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-650 *7) *7 (-1182 *7))) (-5 *5 (-1 (-424 *7) *7))
- (-4 *7 (-1253 *6)) (-4 *6 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-5 *2 (-650 (-2 (|:| |frac| (-413 *7)) (|:| -2557 *3))))
- (-5 *1 (-815 *6 *7 *3 *8)) (-4 *3 (-662 *7))
- (-4 *8 (-662 (-413 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1253 *5))
- (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1111))
+ (-4 *6 (-1111)) (-4 *2 (-1111)) (-5 *1 (-688 *5 *6 *2)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
+ (-4 *3 (-1076 *6 *7 *8))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1119 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-652 (-2 (|:| |val| (-652 *8)) (|:| -1746 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1076 *6 *7 *4)) (-4 *9 (-1082 *6 *7 *4 *8))
+ (-4 *6 (-460)) (-4 *7 (-801)) (-4 *4 (-858))
+ (-5 *2 (-652 (-2 (|:| |val| *8) (|:| -1746 *9))))
+ (-5 *1 (-1119 *6 *7 *4 *8 *9)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-544)))
+ ((*1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1069))))
+ ((*1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
+ ((*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-1069)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4))))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-4 *7 (-958 *4 *6 *5))
(-5 *2
- (-650 (-2 (|:| |frac| (-413 *6)) (|:| -2557 (-660 *6 (-413 *6))))))
- (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6))))))
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-652 *7)) (|:| |n0| (-652 *7))))
+ (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-564)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060))
+ (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3))
+ (-4 *3 (-860 *5)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
+ ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
+ ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-371 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))))
+(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-322 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1989)) (-5 *2 (-112)) (-5 *1 (-623))))
+ (-12 (-5 *3 (|[\|\|]| -2611)) (-5 *2 (-112)) (-5 *1 (-625))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1935)) (-5 *2 (-112)) (-5 *1 (-623))))
+ (-12 (-5 *3 (|[\|\|]| -2556)) (-5 *2 (-112)) (-5 *1 (-625))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3915)) (-5 *2 (-112)) (-5 *1 (-623))))
+ (-12 (-5 *3 (|[\|\|]| -1383)) (-5 *2 (-112)) (-5 *1 (-625))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2738)) (-5 *2 (-112)) (-5 *1 (-697 *4))
- (-4 *4 (-619 (-868)))))
+ (-12 (-5 *3 (|[\|\|]| -3360)) (-5 *2 (-112)) (-5 *1 (-699 *4))
+ (-4 *4 (-621 (-870)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-619 (-868))) (-5 *2 (-112))
- (-5 *1 (-697 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-621 (-870))) (-5 *2 (-112))
+ (-5 *1 (-699 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-882))))
+ (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-884))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-882))))
+ (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-884))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-598))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-600))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-486))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-632))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-634))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1101))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-981))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-315))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-317))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-679))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-533))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1288))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1290))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1287))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-1289))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1148)) (-5 *3 (|[\|\|]| (-532))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1191))))
+ (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-1193))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-1191))))
+ (-12 (-5 *3 (|[\|\|]| (-514))) (-5 *2 (-112)) (-5 *1 (-1193))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1191))))
+ (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1193))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112)) (-5 *1 (-1191)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1277 *4)) (-4 *4 (-1227)) (-4 *1 (-240 *3 *4)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2))))
- ((*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174)))))
-(((*1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1280)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-986 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856))))
- ((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856))))
- ((*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856))))
+ (-12 (-5 *3 (|[\|\|]| (-572))) (-5 *2 (-112)) (-5 *1 (-1193)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1193)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-767)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1255 (-171 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1255 (-171 *2))))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-594 *3)) (-5 *1 (-434 *5 *3))
+ (-4 *3 (-13 (-1214) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572)) (-148)))
+ (-5 *2 (-594 (-415 (-961 *5)))) (-5 *1 (-578 *5))
+ (-5 *3 (-415 (-961 *5))))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-620 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188)))
+ (-4 *2 (-13 (-438 *5) (-27) (-1214)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *1 (-574 *5 *2 *6)) (-4 *6 (-1111)))))
+(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-386))))
+(((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-858))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1220 *2 *3 *4 *5)) (-4 *2 (-562))
- (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1222 *2 *3 *4 *5)) (-4 *2 (-564))
+ (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-1076 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1265 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
+ (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -3457 *1) (|:| -4441 *1) (|:| |associate| *1)))
+ (-4 *1 (-564)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-370)) (-4 *3 (-1060))
+ (-5 *1 (-1172 *3)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-1248 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-4 *1 (-379 *3 *4))
- (-4 *4 (-174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
+ (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892))
+ (-5 *3 (-652 (-572)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))
- ((*1 *1 *1 *1) (-5 *1 (-1129))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))))
+ (-12 (-5 *2 (-1168 (-652 (-572)))) (-5 *1 (-892))
+ (-5 *3 (-652 (-572))))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
+ (-5 *2 (-1046)) (-5 *1 (-764)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-535)) (-5 *3 (-129)) (-5 *2 (-779)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 *5)) (-4 *5 (-1255 *3)) (-4 *3 (-313))
+ (-5 *2 (-112)) (-5 *1 (-463 *3 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2667 (-421 *4 (-415 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5)) (-4 *5 (-370))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -2107 (-415 *6))
+ (|:| |special| (-415 *6))))
+ (-5 *1 (-735 *5 *6)) (-5 *3 (-415 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-905 *3 *4))
+ (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-779)) (-4 *5 (-370))
+ (-5 *2 (-2 (|:| -3041 *3) (|:| -3058 *3))) (-5 *1 (-905 *3 *5))
+ (-4 *3 (-1255 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
+ (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
+ (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
+ (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-652 *9)) (-5 *3 (-652 *8)) (-5 *4 (-112))
+ (-4 *8 (-1076 *5 *6 *7)) (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
(((*1 *2)
- (-12 (-4 *4 (-1231)) (-4 *5 (-1253 *4)) (-4 *6 (-1253 (-413 *5)))
- (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-562)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-306)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1058)) (-4 *4 (-1253 *3)) (-5 *1 (-165 *3 *4 *2))
- (-4 *2 (-1253 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-91 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-620 (-899 *3))) (-4 *3 (-893 *3)) (-4 *3 (-458))
- (-5 *1 (-1218 *3 *2)) (-4 *2 (-620 (-899 *3))) (-4 *2 (-893 *3))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-695 *3))))
- (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
+ (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370))
+ (-5 *2 (-1184 (-961 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1109)) (-4 *3 (-856))
- (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856))))
- ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856))))
+ (-12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1111)) (-4 *3 (-858))
+ (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-858))))
+ ((*1 *2 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-858))))
((*1 *2 *1)
- (-12 (-4 *2 (-1227)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856))))
+ (-12 (-4 *2 (-1229)) (-5 *1 (-881 *2 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-680 *3)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1265 *3)) (-4 *3 (-1227))))
- ((*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-856)) (-5 *2 (-1198 (-650 *4))) (-5 *1 (-1197 *4))
- (-5 *3 (-650 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1231)) (-4 *3 (-1253 *4))
- (-4 *5 (-1253 (-413 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-831)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *6))))
- (-5 *4 (-1035 (-849 (-570)))) (-5 *5 (-1186)) (-5 *7 (-413 (-570)))
- (-4 *6 (-1058)) (-5 *2 (-868)) (-5 *1 (-601 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-650 (-227)))
- (-5 *1 (-474)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+ (-12 (-5 *2 (-779)) (-4 *1 (-1267 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-118 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-572))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-879 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-879 *2)) (-14 *2 (-572))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-572)) (-14 *3 *2) (-5 *1 (-880 *3 *4))
+ (-4 *4 (-877 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-572)) (-5 *1 (-880 *2 *3)) (-4 *3 (-877 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-572)) (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-1270 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1241 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1270 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 *6)) (-4 *5 (-1233)) (-4 *6 (-1255 *5))
+ (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *3) (|:| |radicand| *6)))
+ (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-779)) (-4 *7 (-1255 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284))
+ (-5 *1 (-457 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1111)) (-4 *3 (-909 *5)) (-5 *2 (-697 *3))
+ (-5 *1 (-700 *5 *3 *6 *4)) (-4 *6 (-380 *3))
+ (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4454)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-697 (-415 (-961 *4)))) (-4 *4 (-460))
+ (-5 *2 (-652 (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4)))))
+ (-5 *1 (-298 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-870)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 (-779))
+ (-14 *4 (-779)) (-4 *5 (-174)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-380 *3))
+ (-4 *3 (-1229)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1096)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-654 *5)) (-4 *5 (-1058))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-858 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-656 *5)) (-4 *5 (-1060))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-860 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-695 *3)) (-4 *1 (-423 *3)) (-4 *3 (-174))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058))))
+ (-12 (-5 *2 (-697 *3)) (-4 *1 (-425 *3)) (-4 *3 (-174))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1058))
- (-5 *1 (-859 *2 *3)) (-4 *3 (-858 *2)))))
-(((*1 *1) (-5 *1 (-623))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-562))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058))
- (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))))
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1060))
+ (-5 *1 (-861 *2 *3)) (-4 *3 (-860 *2)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *1) (-5 *1 (-625))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1647 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-370)) (-4 *7 (-1255 *6))
+ (-5 *2 (-2 (|:| |answer| (-594 (-415 *7))) (|:| |a0| *6)))
+ (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-618 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4)))
- (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-280 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-799))
- (-4 *5 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))) (-4 *6 (-562))
- (-5 *2 (-2 (|:| -1548 (-959 *6)) (|:| -2091 (-959 *6))))
- (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-956 (-413 (-959 *6)) *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570))))
- (-5 *2 (-2 (|:| -2791 *3) (|:| |nconst| *3))) (-5 *1 (-573 *5 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *5))))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-311)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-295)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))))
+ (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *3 (-652 (-882)))
+ (-5 *1 (-476)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334))
- (-5 *1 (-336)))))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *4))))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-426 *3)) (-4 *3 (-564)) (-5 *1 (-427 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-158)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-760)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1282)) (-5 *1 (-216 *4))
- (-4 *4
- (-13 (-856)
- (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 (*2 $))
- (-15 -1919 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1282)) (-5 *1 (-216 *3))
- (-4 *3
- (-13 (-856)
- (-10 -8 (-15 -2057 ((-1168) $ (-1186))) (-15 -2467 (*2 $))
- (-15 -1919 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-508)))))
-(((*1 *1) (-5 *1 (-443))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4)))
- (-5 *2 (-1277 *6)) (-5 *1 (-341 *3 *4 *5 *6))
- (-4 *6 (-347 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1210)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-762)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-4 *2 (-1253 *4))
- (-5 *1 (-929 *4 *2)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-533))))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1162)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1255 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-763)))))
+(((*1 *1) (-5 *1 (-297))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-112))
- (-5 *1 (-365 *4 *5)) (-14 *5 (-650 (-1186)))))
+ (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
+ (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-786 *4 (-870 *5)))) (-4 *4 (-458))
- (-14 *5 (-650 (-1186))) (-5 *2 (-112)) (-5 *1 (-634 *4 *5)))))
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-779)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-858))
+ (-4 *3 (-1111)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148)))
- (-5 *1 (-1247 *4 *2)) (-4 *2 (-1253 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))))
+ (-12 (-4 *3 (-370)) (-5 *1 (-291 *3 *2)) (-4 *2 (-1270 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 *4))
+ (-5 *2 (-2 (|:| |radicand| (-415 *5)) (|:| |deg| (-779))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (|has| *1 (-6 -4455)) (-4 *1 (-1267 *3))
+ (-4 *3 (-1229)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188)))
+ (-4 *5 (-460)) (-5 *2 (-652 (-251 *4 *5))) (-5 *1 (-639 *4 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-652 (-322 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-212)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1101)))))
(((*1 *1)
- (-12 (-4 *1 (-410)) (-3201 (|has| *1 (-6 -4443)))
- (-3201 (|has| *1 (-6 -4435)))))
- ((*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856))))
- ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-856))))
- ((*1 *1) (-4 *1 (-850))) ((*1 *1 *1 *1) (-4 *1 (-856))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3))
- (-4 *3 (-13 (-436 *6) (-27) (-1212)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1109)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1253 (-413 (-570)))) (-5 *1 (-920 *3 *2))
- (-4 *2 (-1253 (-413 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186))
- (-14 *4 *2))))
+ (-12 (-4 *1 (-412)) (-3795 (|has| *1 (-6 -4445)))
+ (-3795 (|has| *1 (-6 -4437)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1111)) (-4 *2 (-858))))
+ ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-858))))
+ ((*1 *1) (-4 *1 (-852))) ((*1 *1 *1 *1) (-4 *1 (-858))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-460)) (-4 *4 (-828))
+ (-14 *5 (-1188)) (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
+(((*1 *1) (-5 *1 (-1096))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1111)) (-4 *5 (-1111))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-691 *4 *5)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-583 *4 *2))
+ (-4 *2 (-13 (-1214) (-968) (-1150) (-29 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-620 *4)) (-4 *4 (-1111)) (-4 *2 (-1111))
+ (-5 *1 (-619 *2 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570))))
- (-4 *5 (-1253 *4)) (-5 *2 (-650 (-413 *5))) (-5 *1 (-1025 *4 *5))
- (-5 *3 (-413 *5)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
+ (-12
(-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
- (|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *1) (-4 *1 (-354))))
+ (-1279 (-652 (-2 (|:| -1653 (-919 *3)) (|:| -1795 (-1131))))))
+ (-5 *1 (-358 *3 *4)) (-14 *3 (-930)) (-14 *4 (-930))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131))))))
+ (-5 *1 (-359 *3 *4)) (-4 *3 (-356)) (-14 *4 (-3 (-1184 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1279 (-652 (-2 (|:| -1653 *3) (|:| -1795 (-1131))))))
+ (-5 *1 (-360 *3 *4)) (-4 *3 (-356)) (-14 *4 (-930)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
+ (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-988 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-1213 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6))
- (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186))))
- (-4 *7 (-799))
- (-5 *2
- (-650
- (-2 (|:| -4412 (-777))
- (|:| |eqns|
- (-650
- (-2 (|:| |det| *8) (|:| |rows| (-650 (-570)))
- (|:| |cols| (-650 (-570))))))
- (|:| |fgb| (-650 *8)))))
- (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-777)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2))
- (-4 *2 (-693 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-2 (|:| |deg| (-777)) (|:| -2532 *5))))
- (-4 *5 (-1253 *4)) (-4 *4 (-354)) (-5 *2 (-650 *5))
- (-5 *1 (-218 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-2 (|:| -2340 *5) (|:| -2650 (-570)))))
- (-5 *4 (-570)) (-4 *5 (-1253 *4)) (-5 *2 (-650 *5))
- (-5 *1 (-702 *5)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-650 (-1182 *13))) (-5 *3 (-1182 *13))
- (-5 *4 (-650 *12)) (-5 *5 (-650 *10)) (-5 *6 (-650 *13))
- (-5 *7 (-650 (-650 (-2 (|:| -4163 (-777)) (|:| |pcoef| *13)))))
- (-5 *8 (-650 (-777))) (-5 *9 (-1277 (-650 (-1182 *10))))
- (-4 *12 (-856)) (-4 *10 (-311)) (-4 *13 (-956 *10 *11 *12))
- (-4 *11 (-799)) (-5 *1 (-713 *11 *12 *10 *13)))))
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
+ (-5 *2 (-112)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1227)) (-4 *2 (-1109))
- (-4 *2 (-856)))))
+ (-12 (-4 *1 (-703 *3)) (-4 *3 (-1111))
+ (-5 *2 (-652 (-2 (|:| -3762 *3) (|:| -1371 (-779))))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
+ (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1168 *3))) (-5 *1 (-1168 *3)) (-4 *3 (-1229)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-486)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *5) (-27) (-1212)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
- (-5 *2 (-592 *3)) (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-677))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928))
- (-14 *4 (-928)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-650 *3)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458))
- (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-455 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1208))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1208)))))
+ (-12 (-4 *4 (-356))
+ (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -2896 *3))))
+ (-5 *1 (-218 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1111)) (-5 *1 (-914 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-899 *4 *3))
+ (-4 *3 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3) (-12 (-5 *3 (-386)) (-5 *2 (-227)) (-5 *1 (-1282))))
+ ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-612 *4 *3)) (-4 *4 (-1111))
+ (-4 *3 (-1229)) (-4 *3 (-1111)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2))))
- ((*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1119)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562))
- (-4 *3 (-956 *7 *5 *6))
+ (-12 (-5 *3 (-652 (-652 (-652 *4)))) (-5 *2 (-652 (-652 *4)))
+ (-5 *1 (-1199 *4)) (-4 *4 (-858)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-460)))))
+(((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-697 (-572))) (-5 *3 (-652 (-572))) (-5 *1 (-1121)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-484 *4 *5 *6 *7)) (|:| -2620 (-652 *7))))
+ (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-1207)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -1478 *4))) (-5 *1 (-980 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572))
+ (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| -2940 (-777)) (|:| -1747 *3) (|:| |radicand| (-650 *3))))
- (-5 *1 (-960 *5 *6 *7 *3 *8)) (-5 *4 (-777))
- (-4 *8
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *3)) (-15 -1587 (*3 $)) (-15 -1599 (*3 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))))
+ (-652
+ (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *3))
+ (|:| |logand| (-1184 *3)))))
+ (-5 *1 (-594 *3)) (-4 *3 (-370)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-858 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058))
- (-5 *2 (-2 (|:| -1437 *3) (|:| -3357 *3))) (-5 *1 (-859 *5 *3))
- (-4 *3 (-858 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-765)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570))
- (-5 *2 (-1044)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-695 *3))
- (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3))
- (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4))))
- (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-313))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1111))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-393 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1882 (-779)) (|:| -2336 (-779))))
+ (-5 *1 (-779))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-460))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *5 (-918)) (-5 *1 (-465 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-918)))))
+(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1235))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-801)) (-4 *7 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858))
+ (-5 *2 (-112)) (-5 *1 (-457 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-585))))
+ ((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-585)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1268 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826))
- (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-354))
- (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -2532 *3))))
- (-5 *1 (-218 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-1074 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-482 *4 *5 *6 *7)) (|:| -1999 (-650 *7))))
- (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))))
-(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868))))
- ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *2)
- (-12 (-4 *3 (-1231)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 (-413 *4)))
- (-5 *2 (-1277 *1)) (-4 *1 (-347 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *4 (-1253 *3))
- (-5 *2
- (-2 (|:| -2681 (-695 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-695 *3))))
- (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1253 (-570)))
- (-5 *2
- (-2 (|:| -2681 (-695 (-570))) (|:| |basisDen| (-570))
- (|:| |basisInv| (-695 (-570)))))
- (-5 *1 (-774 *3 *4)) (-4 *4 (-415 (-570) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 *4))
- (-5 *2
- (-2 (|:| -2681 (-695 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-695 *4))))
- (-5 *1 (-994 *3 *4 *5 *6)) (-4 *6 (-730 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-354)) (-4 *4 (-1253 *3)) (-4 *5 (-1253 *4))
- (-5 *2
- (-2 (|:| -2681 (-695 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-695 *4))))
- (-5 *1 (-1286 *3 *4 *5 *6)) (-4 *6 (-415 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1109)) (-5 *1 (-974 *3)))))
+ (|partial| -12 (-5 *3 (-779)) (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1264 *3 *4 *5)) (-4 *3 (-370)) (-14 *4 (-1188))
+ (-14 *5 *3) (-5 *1 (-325 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1212) (-436 *4)))))
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *4)))))
+ (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-413 (-570)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5)))))
+ (-12 (-5 *4 (-415 (-572)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *5 *3))))
+ (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570)))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-319 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6))
- (-4 *6 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *5 *6))))
+ (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572)))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6))
+ (-4 *6 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3))
- (-4 *3 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *6 *3))))
+ (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1244 (-570)))
- (-4 *7 (-13 (-27) (-1212) (-436 *6)))
- (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572)))
+ (-4 *7 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-570)))
- (-4 *3 (-13 (-27) (-1212) (-436 *7)))
- (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *7 *3))))
+ (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572)))
+ (-4 *3 (-13 (-27) (-1214) (-438 *7)))
+ (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8))
- (-5 *5 (-1244 (-413 (-570)))) (-5 *6 (-413 (-570)))
- (-4 *8 (-13 (-27) (-1212) (-436 *7)))
- (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8))
+ (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572)))
+ (-4 *8 (-13 (-27) (-1214) (-438 *7)))
+ (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1244 (-413 (-570))))
- (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1212) (-436 *8)))
- (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52))
- (-5 *1 (-465 *8 *3))))
+ (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572))))
+ (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8)))
+ (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3))))
- (-4 *3 (-1058)) (-5 *1 (-601 *3))))
+ (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3))))
+ (-4 *3 (-1060)) (-5 *1 (-603 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-602 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-5 *1 (-604 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3))))
- (-4 *3 (-1058)) (-4 *1 (-1237 *3))))
+ (-12 (-5 *2 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *3))))
+ (-4 *3 (-1060)) (-4 *1 (-1239 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-777))
- (-5 *3 (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4))))
- (-4 *4 (-1058)) (-4 *1 (-1258 *4))))
+ (-12 (-5 *2 (-779))
+ (-5 *3 (-1168 (-2 (|:| |k| (-415 (-572))) (|:| |c| *4))))
+ (-4 *4 (-1060)) (-4 *1 (-1260 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-4 *1 (-1268 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-1060)) (-4 *1 (-1270 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1166 (-2 (|:| |k| (-777)) (|:| |c| *3))))
- (-4 *3 (-1058)) (-4 *1 (-1268 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-650 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *5 *6))
- (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-455 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *5 (-1253 *4))
- (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -2557 *5))))
- (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-662 *5))
- (-4 *6 (-662 (-413 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-570))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9))
- (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *9 (-1074 *6 *7 *8))
- (-5 *2
- (-650
- (-2 (|:| -2557 (-650 *9)) (|:| -4246 *10) (|:| |ineq| (-650 *9)))))
- (-5 *1 (-997 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9))
- (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *9 (-1074 *6 *7 *8))
- (-5 *2
- (-650
- (-2 (|:| -2557 (-650 *9)) (|:| -4246 *10) (|:| |ineq| (-650 *9)))))
- (-5 *1 (-1116 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9)))))
+ (-12 (-5 *2 (-1168 (-2 (|:| |k| (-779)) (|:| |c| *3))))
+ (-4 *3 (-1060)) (-4 *1 (-1270 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1229))
+ (-4 *3 (-380 *4)) (-4 *5 (-380 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-458))
- (-5 *2
- (-650
- (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4))))
- (|:| |eigmult| (-777))
- (|:| |eigvec| (-650 (-695 (-413 (-959 *4))))))))
- (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-961)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1058)) (-5 *2 (-112)) (-5 *1 (-450 *4 *3))
- (-4 *3 (-1253 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-551)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *2 (-1044)) (-5 *1 (-757)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1282)) (-5 *1 (-1189))))
- ((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-1190)))))
-(((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2) (-12 (-5 *1 (-1244 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))))
-(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279))))
- ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1279)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4))
- (-4 *3 (-372 *4))))
- ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777))
- (-4 *4 (-174)))))
-(((*1 *1 *1 *1) (-4 *1 (-976))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227)))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186))
- (-14 *4 *2))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))
- ((*1 *2 *1)
+ (-12 (-5 *3 (-652 (-851 (-227)))) (-5 *4 (-227)) (-5 *2 (-652 *4))
+ (-5 *1 (-272)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-963)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214)))))
+ ((*1 *1 *1 *1) (-4 *1 (-801))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -3077 (-650 (-868))) (|:| -1548 (-650 (-868)))
- (|:| |presup| (-650 (-868))) (|:| -3684 (-650 (-868)))
- (|:| |args| (-650 (-868)))))
- (-5 *1 (-1186)))))
+ (-2 (|:| |mval| (-697 *3)) (|:| |invmval| (-697 *3))
+ (|:| |genIdeal| (-512 *3 *4 *5 *6))))
+ (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
+ (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
+ (-5 *1 (-796))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-572)) (-5 *6 (-1 (-1284) (-1279 *5) (-1279 *5) (-386)))
+ (-5 *3 (-1279 (-386))) (-5 *5 (-386)) (-5 *2 (-1284))
+ (-5 *1 (-796)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
+ (-5 *2 (-652 (-652 (-652 (-779))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *4 (-564)) (-5 *1 (-980 *4 *2))
+ (-4 *2 (-1255 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870))))
+ ((*1 *1 *1) (-5 *1 (-870))))
+(((*1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *1 *1) (-5 *1 (-227)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1 (-386))) (-5 *1 (-1051))))
+ ((*1 *1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1264 *3 *4 *5)) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370))
+ (-14 *4 (-1188)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-426 *3)) (-4 *3 (-564))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1111)) (-5 *1 (-721 *3 *2 *4)) (-4 *3 (-858))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -1795 *3) (|:| -2477 *2))
+ (-2 (|:| -1795 *3) (|:| -2477 *2)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334))
- (-5 *1 (-336)))))
+ (-12 (-5 *3 (-697 (-415 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-787 *4))
+ (-4 *4 (-13 (-370) (-856))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 (-961 *6))) (-4 *6 (-564))
+ (-4 *2 (-958 (-415 (-961 *6)) *5 *4)) (-5 *1 (-740 *5 *4 *6 *2))
+ (-4 *5 (-801))
+ (-4 *4 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186))
- (-5 *1 (-265 *2)) (-4 *2 (-1227))))
+ (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188))
+ (-5 *1 (-267 *2)) (-4 *2 (-1229))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-52))
- (-5 *1 (-266)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-246 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458))
- (-5 *1 (-925 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-552))))))
-(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-384)))))
+ (|partial| -12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-52))
+ (-5 *1 (-268)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-650 (-298 *4))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856))
- (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-896 *4 *5)) (-5 *3 (-896 *4 *6)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-672 *5)) (-5 *1 (-892 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-635)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011) (-1212))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799))
- (-5 *2 (-112)) (-5 *1 (-996 *3 *4 *5 *6))
- (-4 *6 (-956 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34)))
- (-4 *4 (-13 (-1109) (-34))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1058))
- (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1212) (-288)))
- (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1253 *4))))
- ((*1 *1 *1) (-4 *1 (-551)))
- ((*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-678 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-683 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-825 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-900 *3)) (-4 *3 (-856))))
- ((*1 *2 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1227)) (-5 *2 (-777))))
- ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1224 *3)) (-4 *3 (-1227))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1227)) (-4 *2 (-1011))
- (-4 *2 (-1058)))))
+ (-12 (-5 *2 (-2 (|:| -3829 *3) (|:| |coef1| (-790 *3))))
+ (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *5 (-1255 *4)) (-5 *2 (-1184 (-415 *5))) (-5 *1 (-623 *4 *5))
+ (-5 *3 (-415 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-148) (-27) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2 (-1184 (-415 *6))) (-5 *1 (-623 *5 *6)) (-5 *3 (-415 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1233)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
+ (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *4 (-1255 *3))
+ (-5 *2
+ (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-697 *3))))
+ (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1255 (-572)))
+ (-5 *2
+ (-2 (|:| -1769 (-697 (-572))) (|:| |basisDen| (-572))
+ (|:| |basisInv| (-697 (-572)))))
+ (-5 *1 (-776 *3 *4)) (-4 *4 (-417 (-572) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4))
+ (-5 *2
+ (-2 (|:| -1769 (-697 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-697 *4))))
+ (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-732 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-356)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 *4))
+ (-5 *2
+ (-2 (|:| -1769 (-697 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-697 *4))))
+ (-5 *1 (-1288 *3 *4 *5 *6)) (-4 *6 (-417 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
+ (-5 *1 (-756)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060))))
+ ((*1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-1184 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-370) (-308)
+ (-10 -8 (-15 -2209 ((-1136 *4 (-620 $)) $))
+ (-15 -2224 ((-1136 *4 (-620 $)) $))
+ (-15 -3491 ($ (-1136 *4 (-620 $))))))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-652 (-112))) (-5 *5 (-697 (-227)))
+ (-5 *6 (-697 (-572))) (-5 *7 (-227)) (-5 *3 (-572)) (-5 *2 (-1046))
+ (-5 *1 (-762)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1168 (-652 (-930)))) (-5 *1 (-892)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *2 (-1282))
- (-5 *1 (-474))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-989 *3))))
+ (-12 (-5 *3 (-952 (-227))) (-5 *4 (-882)) (-5 *2 (-1284))
+ (-5 *1 (-476))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1060)) (-4 *1 (-991 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-950 *3))))
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-952 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3))))
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-779)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-652 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-952 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1223)) (-5 *3 (-227)))))
-(((*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-630 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *2 (-1118 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)) (-5 *3 (-227)))))
+(((*1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1111)) (-5 *1 (-976 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-1111)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-384)) (-5 *1 (-207)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1229)) (-5 *2 (-779))
+ (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1111)) (-5 *2 (-779)) (-5 *1 (-437 *3 *4))
+ (-4 *3 (-438 *4))))
+ ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-552 *3)) (-4 *3 (-553))))
+ ((*1 *2) (-12 (-4 *1 (-771)) (-5 *2 (-779))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-804 *3 *4))
+ (-4 *3 (-805 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-1002 *3 *4))
+ (-4 *3 (-1003 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-779)) (-5 *1 (-1007 *3 *4))
+ (-4 *3 (-1008 *4))))
+ ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1022 *3)) (-4 *3 (-1023))))
+ ((*1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-779))))
+ ((*1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-1070 *3)) (-4 *3 (-1071)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-779)) (-5 *1 (-569)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1253 *5)) (-4 *5 (-368))
- (-5 *2 (-2 (|:| -1493 (-424 *3)) (|:| |special| (-424 *3))))
- (-5 *1 (-733 *5 *3)))))
+ (-12 (-5 *2 (-652 (-952 *4))) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *2 *3) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-569)) (-5 *3 (-572))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-779)) (-5 *1 (-683 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-652 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *5 *6))
+ (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-457 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 (-570)))
- (-5 *1 (-439 *4 *3)) (-4 *3 (-436 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-618 *3)) (-4 *3 (-436 *5))
- (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1182 (-413 (-570))))
- (-5 *1 (-439 *5 *3)))))
+ (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-5 *1 (-1272 *3 *2))
+ (-4 *2 (-1270 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3)) (-4 *3 (-13 (-370) (-148)))
+ (-5 *1 (-407 *3 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
+ (-5 *1 (-512 *4 *5 *6 *2)) (-4 *2 (-958 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1111)) (-5 *2 (-779)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
+ (-5 *1 (-178 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-650 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570))))))
- (-5 *2 (-650 (-227))) (-5 *1 (-309)))))
-(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))))
+ (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1168 (-227))) (-5 *2 (-652 (-1170))) (-5 *1 (-311)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-707)) (-5 *1 (-311)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4)))
- (-5 *2 (-2 (|:| |num| (-1277 *4)) (|:| |den| *4))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
+ (-12 (-5 *2 (-699 (-975 *3))) (-5 *1 (-975 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *5 (-1255 *4))
+ (-5 *2 (-652 (-2 (|:| |deg| (-779)) (|:| -3179 *5))))
+ (-5 *1 (-817 *4 *5 *3 *6)) (-4 *3 (-664 *5))
+ (-4 *6 (-664 (-415 *5))))))
+(((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-1191))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1188)) (-5 *2 (-1284)) (-5 *1 (-1191)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-661 (-415 *2))) (-4 *2 (-1255 *4)) (-5 *1 (-818 *4 *2))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-662 *2 (-415 *2))) (-4 *2 (-1255 *4))
+ (-5 *1 (-818 *4 *2))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572))))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-370))
+ (-5 *2 (-652 (-2 (|:| C (-697 *5)) (|:| |g| (-1279 *5)))))
+ (-5 *1 (-989 *5)) (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-1 (-227) (-227) (-227) (-227)))
+ (-5 *2 (-1 (-952 (-227)) (-227) (-227))) (-5 *1 (-705)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-695 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
+ (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-652 *4)) (-4 *4 (-858))
+ (-5 *1 (-1199 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1188)) (-5 *2 (-1 (-1184 (-961 *4)) (-961 *4)))
+ (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-985)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-914 (-572))) (-5 *4 (-572)) (-5 *2 (-697 *4))
+ (-5 *1 (-1039 *5)) (-4 *5 (-1060))))
((*1 *2 *3)
- (-12 (-4 *4 (-174)) (-4 *2 (-1253 *4)) (-5 *1 (-179 *4 *2 *3))
- (-4 *3 (-730 *4 *2))))
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-697 (-572))) (-5 *1 (-1039 *4))
+ (-4 *4 (-1060))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 (-413 (-959 *5)))) (-5 *4 (-1186))
- (-5 *2 (-959 *5)) (-5 *1 (-296 *5)) (-4 *5 (-458))))
+ (-12 (-5 *3 (-652 (-914 (-572)))) (-5 *4 (-572))
+ (-5 *2 (-652 (-697 *4))) (-5 *1 (-1039 *5)) (-4 *5 (-1060))))
((*1 *2 *3)
- (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-5 *2 (-959 *4))
- (-5 *1 (-296 *4)) (-4 *4 (-458))))
+ (-12 (-5 *3 (-652 (-652 (-572)))) (-5 *2 (-652 (-697 (-572))))
+ (-5 *1 (-1039 *4)) (-4 *4 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-295 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1255 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1253 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-695 (-171 (-413 (-570)))))
- (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *4))
- (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *4 (-1186))
- (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *5))
- (-4 *5 (-13 (-368) (-854)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-959 (-413 (-570))))
- (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *4 (-1186))
- (-5 *2 (-959 (-413 (-570)))) (-5 *1 (-785 *5))
- (-4 *5 (-13 (-368) (-854))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 *1)) (|has| *1 (-6 -4453)) (-4 *1 (-1019 *3))
- (-4 *3 (-1227)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1144)) (-5 *2 (-697 (-284))) (-5 *1 (-169)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-965 (-1129)))
- (-5 *1 (-351 *4)))))
+ (-12 (-4 *2 (-23)) (-5 *1 (-719 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1255 *3)) (-5 *1 (-720 *3 *2)) (-4 *3 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-877 *3)) (-5 *2 (-572)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4)))
- (-4 *4 (-856)) (-5 *1 (-1197 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-570)) (-14 *4 (-777)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890))
- (-5 *3 (-650 (-570))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227))
- (-5 *2 (-1044)) (-5 *1 (-757)))))
+ (|partial| -12
+ (-5 *3 (-652 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-438 *4) (-1013))) (-4 *4 (-564))
+ (-5 *1 (-281 *4 *2)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1182 *6)) (-5 *3 (-570)) (-4 *6 (-311)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-127 *3)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-570)) (-4 *6 (-368)) (-4 *6 (-373))
- (-4 *6 (-1058)) (-5 *2 (-650 (-650 (-695 *6)))) (-5 *1 (-1038 *6))
- (-5 *3 (-650 (-695 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-368)) (-4 *4 (-373)) (-4 *4 (-1058))
- (-5 *2 (-650 (-650 (-695 *4)))) (-5 *1 (-1038 *4))
- (-5 *3 (-650 (-695 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058))
- (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5))
- (-5 *3 (-650 (-695 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058))
- (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5))
- (-5 *3 (-650 (-695 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-978 *4 *3))
- (-4 *3 (-1253 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227)))
- (-5 *1 (-703)))))
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-375)) (-4 *1 (-335 *3))
+ (-4 *3 (-370)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1111)) (-4 *4 (-1111))
+ (-4 *6 (-1111)) (-5 *2 (-1 *6 *5)) (-5 *1 (-692 *5 *4 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-779)) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1060)) (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
+ (-4 *5 (-242 *3 *2)))))
+(((*1 *1) (-5 *1 (-145))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))
- (-5 *1 (-1217 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707))))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707)))))
-(((*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1280)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))))
-(((*1 *2 *3) (-12 (-5 *3 (-542)) (-5 *1 (-541 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-542)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132))
- (-4 *3 (-798)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-603)) (-5 *1 (-284)))))
+ (-12 (-5 *3 (-415 (-572))) (-4 *4 (-1049 (-572))) (-4 *4 (-564))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-438 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-135)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-227)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-247)) (-5 *2 (-572))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3))
+ (-4 *5 (-1270 *4)) (-5 *1 (-283 *4 *5 *2)) (-4 *2 (-1241 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-415 (-572))) (-4 *4 (-370)) (-4 *4 (-38 *3))
+ (-4 *5 (-1239 *4)) (-5 *1 (-284 *4 *5 *2 *6)) (-4 *2 (-1262 *4 *5))
+ (-4 *6 (-994 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-290)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *1) (-5 *1 (-386)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-779)) (-4 *1 (-393 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-438 *3)) (-4 *3 (-1111))
+ (-4 *3 (-1123))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-481)) (-5 *2 (-572))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356))
+ (-5 *1 (-536 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-544))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-544))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-779)) (-4 *4 (-1111))
+ (-5 *1 (-690 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3)) (-4 *3 (-370))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060))
+ (-5 *1 (-698 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (-4 *3 (-1060)) (-5 *1 (-722 *3 *4))
+ (-4 *4 (-656 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-4 *4 (-1060))
+ (-5 *1 (-722 *4 *5)) (-4 *5 (-656 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-930))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-730)) (-5 *2 (-779))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-779))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-844 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-572)) (-5 *1 (-844 *4)) (-4 *4 (-1060))))
+ ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-415 (-572)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1123)) (-5 *2 (-930))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (-4 *1 (-1134 *3 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *3 *4)) (-4 *4 (-370))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-162))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-684))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1030))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1077))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1107)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-415 (-572))) (-4 *1 (-562 *3))
+ (-4 *3 (-13 (-412) (-1214)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-562 *2)) (-4 *2 (-13 (-412) (-1214))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-444)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
+(((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-219)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7)))
- (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799))
- (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8)))
- (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7)))
- (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7))))
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-1190 (-415 (-572))))
+ (-5 *1 (-192)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-914 *4)) (-4 *4 (-1111)) (-5 *2 (-652 (-779)))
+ (-5 *1 (-913 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-132)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-572)) (-5 *6 (-1170))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-415 *1)) (-4 *1 (-1255 *3)) (-4 *3 (-1060))
+ (-4 *3 (-564))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-930)) (-5 *1 (-450 *2))
+ (-4 *2 (-1255 (-572)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-930)) (-5 *4 (-779)) (-5 *1 (-450 *2))
+ (-4 *2 (-1255 (-572)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *1 (-450 *2))
+ (-4 *2 (-1255 (-572)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779))
+ (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-930)) (-5 *4 (-652 (-779))) (-5 *5 (-779))
+ (-5 *6 (-112)) (-5 *1 (-450 *2)) (-4 *2 (-1255 (-572)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799))
- (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8)))
- (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-194)))))
-(((*1 *1 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *5 (-928))
- (-5 *2 (-1282)) (-5 *1 (-474))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1282)) (-5 *1 (-474))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-880)) (-5 *5 (-928))
- (-5 *2 (-1282)) (-5 *1 (-474)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-194)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1149 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-162))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-682))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028))))
- ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1075))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1105)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148)))
- (-5 *1 (-1247 *4 *2)) (-4 *2 (-1253 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))))
-(((*1 *2)
- (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1253 (-570))))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-959 *6)) (-5 *4 (-1186))
- (-5 *5 (-849 *7))
- (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-4 *7 (-13 (-1212) (-29 *6))) (-5 *1 (-226 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1182 *6)) (-5 *4 (-849 *6))
- (-4 *6 (-13 (-1212) (-29 *5)))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-226 *5 *6)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-777))) (-5 *3 (-112)) (-5 *1 (-1174 *4 *5))
- (-14 *4 (-928)) (-4 *5 (-1058)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1205)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-930)) (-5 *4 (-426 *2)) (-4 *2 (-1255 *5))
+ (-5 *1 (-452 *5 *2)) (-4 *5 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-109))))
((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-371 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1111))))
+ ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-446 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-491))))
+ ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-873))))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-974))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1086 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-514)) (-5 *1 (-1126))))
+ ((*1 *1 *1) (-5 *1 (-1188))))
+(((*1 *1 *1) (-4 *1 (-1155))))
+(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-555))))))
+(((*1 *1 *1) (-5 *1 (-1074))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-808))
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-1046)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-564)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
+ (-5 *2 (-652 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-745 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-447))) (-5 *1 (-873)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-249 *4 *5))
- (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1109))))
- ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-444 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-489))))
- ((*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1109))))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-972))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1084 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1124))))
- ((*1 *1 *1) (-5 *1 (-1186))))
-(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458))
- (-14 *6 (-650 (-1186)))
+ (-12 (-4 *4 (-460))
(-5 *2
- (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6)))))
- (-5 *1 (-634 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -2420 *7) (|:| |sol?| (-112)))
- (-570) *7))
- (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1253 *7))
- (-5 *3 (-413 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-580 *7 *8)))))
-(((*1 *1)
- (-12 (-4 *1 (-410)) (-3201 (|has| *1 (-6 -4443)))
- (-3201 (|has| *1 (-6 -4435)))))
- ((*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856))))
- ((*1 *1) (-4 *1 (-850))) ((*1 *1 *1 *1) (-4 *1 (-856)))
- ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-1109))
- (-4 *4 (-1109)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-366 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *1 (-391 *4)) (-4 *4 (-1109)) (-5 *2 (-777))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-570)) (-4 *2 (-23)) (-5 *1 (-655 *4 *2 *5))
- (-4 *4 (-1109)) (-14 *5 *2))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562))))
- ((*1 *1 *1) (|partial| -4 *1 (-728))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174))
- (-5 *2 (-1277 (-695 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1277 (-695 *4))) (-5 *1 (-422 *3 *4))
- (-4 *3 (-423 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1277 (-695 *3)))))
+ (-652
+ (-2 (|:| |eigval| (-3 (-415 (-961 *4)) (-1177 (-1188) (-961 *4))))
+ (|:| |geneigvec| (-652 (-697 (-415 (-961 *4))))))))
+ (-5 *1 (-298 *4)) (-5 *3 (-697 (-415 (-961 *4)))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1111)) (-4 *6 (-895 *5)) (-5 *2 (-894 *5 *6 (-652 *6)))
+ (-5 *1 (-896 *5 *6 *4)) (-5 *3 (-652 *6)) (-4 *4 (-622 (-901 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368))
- (-5 *2 (-1277 (-695 (-413 (-959 *5))))) (-5 *1 (-1095 *5))
- (-5 *4 (-695 (-413 (-959 *5))))))
+ (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 *3))) (-5 *1 (-896 *5 *3 *4))
+ (-4 *3 (-1049 (-1188))) (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368))
- (-5 *2 (-1277 (-695 (-959 *5)))) (-5 *1 (-1095 *5))
- (-5 *4 (-695 (-959 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368))
- (-5 *2 (-1277 (-695 *4))) (-5 *1 (-1095 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1227)) (-5 *1 (-184 *3 *2))
- (-4 *2 (-680 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+ (-12 (-4 *5 (-1111)) (-5 *2 (-652 (-300 (-961 *3))))
+ (-5 *1 (-896 *5 *3 *4)) (-4 *3 (-1060))
+ (-3795 (-4 *3 (-1049 (-1188)))) (-4 *3 (-895 *5))
+ (-4 *4 (-622 (-901 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1111)) (-5 *2 (-898 *5 *3)) (-5 *1 (-896 *5 *3 *4))
+ (-3795 (-4 *3 (-1049 (-1188)))) (-3795 (-4 *3 (-1060)))
+ (-4 *3 (-895 *5)) (-4 *4 (-622 (-901 *5))))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3829 *3) (|:| |coef2| (-790 *3))))
+ (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-177))) (-5 *1 (-1096)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1227)) (-5 *1 (-1156 *3)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-758)))))
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-5 *1 (-1158 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-562)) (-4 *2 (-956 *3 *5 *4))
- (-5 *1 (-738 *5 *4 *6 *2)) (-5 *3 (-413 (-959 *6))) (-4 *5 (-799))
- (-4 *4 (-13 (-856) (-10 -8 (-15 -2601 ((-1186) $))))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4)
- (-249 *4 (-413 (-570)))))
- (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112))
- (-5 *1 (-511 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
+ (-12 (-5 *4 (-652 (-652 *8))) (-5 *3 (-652 *8))
+ (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564)) (-4 *6 (-801))
+ (-4 *7 (-858)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
+ (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (-5 *1 (-322 *3)) (-4 *3 (-564)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-313)) (-5 *1 (-181 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1301 *4 *2)) (-4 *1 (-379 *4 *2)) (-4 *4 (-856))
+ (-12 (-5 *3 (-1303 *4 *2)) (-4 *1 (-381 *4 *2)) (-4 *4 (-858))
(-4 *2 (-174))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1294 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058))))
+ (-12 (-4 *1 (-1296 *3 *2)) (-4 *3 (-858)) (-4 *2 (-1060))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-825 *4)) (-4 *1 (-1294 *4 *2)) (-4 *4 (-856))
- (-4 *2 (-1058))))
+ (-12 (-5 *3 (-827 *4)) (-4 *1 (-1296 *4 *2)) (-4 *4 (-858))
+ (-4 *2 (-1060))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1058)) (-5 *1 (-1300 *2 *3)) (-4 *3 (-852)))))
-(((*1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021))))
- ((*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1182 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1182 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1253 *4)) (-5 *2 (-650 *1))
- (-4 *1 (-1077 *4 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-650 (-1168))) (-5 *3 (-570)) (-5 *4 (-1168))
- (-5 *1 (-243))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1255 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))))
-(((*1 *1 *1) (-4 *1 (-175)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
+ (-12 (-4 *2 (-1060)) (-5 *1 (-1302 *2 *3)) (-4 *3 (-854)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 *1))
- (-4 *1 (-387 *3 *4))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-779))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-741 *3 *4))) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-732))))
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
+ (-5 *1 (-999 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
+ (-5 *1 (-1118 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *3 (-572)) (-5 *1 (-245))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-652 (-1170))) (-5 *3 (-572)) (-5 *4 (-1170))
+ (-5 *1 (-245))))
+ ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-956 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
+ (-12 (-4 *1 (-1257 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2379 *3) (|:| |gap| (-779)) (|:| -1882 (-790 *3))
+ (|:| -2336 (-790 *3))))
+ (-5 *1 (-790 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
+ (-5 *2
+ (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -1882 *1)
+ (|:| -2336 *1)))
+ (-4 *1 (-1076 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2
+ (-2 (|:| -2379 *1) (|:| |gap| (-779)) (|:| -1882 *1)
+ (|:| -2336 *1)))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1137 *4 *3 *5))) (-4 *4 (-38 (-415 (-572))))
+ (-4 *4 (-1060)) (-4 *3 (-858)) (-5 *1 (-1137 *4 *3 *5))
+ (-4 *5 (-958 *4 (-539 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1223 *4))) (-5 *3 (-1188)) (-5 *1 (-1223 *4))
+ (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-370)) (-4 *1 (-335 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1255 *4)) (-4 *4 (-1233))
+ (-4 *1 (-349 *4 *3 *5)) (-4 *5 (-1255 (-415 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174))
+ (-4 *1 (-374 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-1279 *1)) (-4 *4 (-174))
+ (-4 *1 (-377 *4 *5)) (-4 *5 (-1255 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-417 *3 *4))
+ (-4 *4 (-1255 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-174)) (-4 *1 (-425 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-4 *4 (-1060))
+ (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-1255 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-435 *3 *2)) (-4 *3 (-13 (-174) (-38 (-415 (-572)))))
+ (-4 *2 (-13 (-858) (-21))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5))
- (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-311) (-148)))
- (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-112))
- (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
+ (-12
+ (-5 *3
+ (-652 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572))))))
+ (-5 *2 (-652 (-415 (-572)))) (-5 *1 (-1031 *4))
+ (-4 *4 (-1255 (-572))))))
+(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-830)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-779)) (-4 *5 (-370)) (-5 *2 (-176 *6))
+ (-5 *1 (-875 *5 *4 *6)) (-4 *4 (-1270 *5)) (-4 *6 (-1255 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-779)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1142 (-227))) (-5 *1 (-258))))
+ (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1144 (-227))) (-5 *1 (-260))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266)))
- (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227)))
- (-5 *1 (-262 *6))))
+ (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
+ (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
+ (-5 *1 (-264 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384)))
- (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227)))
- (-5 *1 (-262 *5))))
+ (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386)))
+ (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
+ (-5 *1 (-264 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266)))
- (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3))
- (-4 *3 (-13 (-620 (-542)) (-1109)))))
+ (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
+ (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-622 (-544)) (-1111)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3))
- (-4 *3 (-13 (-620 (-542)) (-1109)))))
+ (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1144 (-227))) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-622 (-544)) (-1111)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266)))
- (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227)))
- (-5 *1 (-262 *6))))
+ (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
+ (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
+ (-5 *1 (-264 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384)))
- (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227)))
- (-5 *1 (-262 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-2 (|:| |k| (-825 *3)) (|:| |c| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-650 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570)))))
+ (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386)))
+ (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1144 (-227)))
+ (-5 *1 (-264 *5)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2))
+ (-4 *2 (-1255 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-858))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858)))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-159 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-553)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1253 *5))
- (-4 *7 (-1253 (-413 *6))) (-4 *8 (-347 *5 *6 *7))
- (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112))
- (-5 *1 (-918 *4 *5 *6 *7 *8))))
+ (-12
+ (-5 *3
+ (-652
+ (-2 (|:| -1526 (-779))
+ (|:| |eqns|
+ (-652
+ (-2 (|:| |det| *7) (|:| |rows| (-652 (-572)))
+ (|:| |cols| (-652 (-572))))))
+ (|:| |fgb| (-652 *7)))))
+ (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148)))
+ (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779))
+ (-5 *1 (-933 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3))
+ (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313))
+ (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 *7)))
+ (-5 *1 (-750 *4 *5 *6 *7)) (-5 *3 (-1184 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-460)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-426 *1)) (-4 *1 (-958 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6))
- (-4 *4 (-1253 (-413 (-570)))) (-4 *5 (-1253 (-413 *4)))
- (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-919 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2067 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-867))))
- ((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-867)))))
-(((*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1253 *2)) (-4 *2 (-1253 *4)) (-5 *1 (-994 *4 *2 *3 *5))
- (-4 *4 (-354)) (-4 *5 (-730 *2 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *4)) (-5 *1 (-892 *3 *4 *5))
- (-4 *3 (-1109)) (-4 *5 (-672 *4))))
+ (-12 (-4 *4 (-858)) (-4 *5 (-801)) (-4 *6 (-460)) (-5 *2 (-426 *3))
+ (-5 *1 (-990 *4 *5 *6 *3)) (-4 *3 (-958 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-973 *4)) (-4 *4 (-1109)) (-5 *2 (-1111 *4))
- (-5 *1 (-974 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1) (-5 *1 (-638))))
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-460))
+ (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-426 (-1184 (-415 *7))))
+ (-5 *1 (-1183 *4 *5 *6 *7)) (-5 *3 (-1184 (-415 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-426 *1)) (-4 *1 (-1233))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-426 *3)) (-5 *1 (-1258 *4 *3))
+ (-4 *3 (-13 (-1255 *4) (-564) (-10 -8 (-15 -1370 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-14 *5 (-652 (-1188)))
+ (-5 *2
+ (-652 (-1157 *4 (-539 (-872 *6)) (-872 *6) (-788 *4 (-872 *6)))))
+ (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1253 (-171 *3))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-249 *5 *6))) (-4 *6 (-458))
- (-5 *2 (-249 *5 *6)) (-14 *5 (-650 (-1186))) (-5 *1 (-637 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-650 *5)) (-4 *5 (-856)) (-5 *1 (-1197 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373))
- (-5 *2 (-1182 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
- (-4 *4 (-13 (-368) (-854))) (-4 *3 (-1253 *2)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-570) (-570))) (-5 *1 (-366 *3)) (-4 *3 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-777) (-777))) (-4 *1 (-391 *3)) (-4 *3 (-1109))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)))))
-(((*1 *2)
- (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-348 *3 *4)) (-14 *3 (-928))
- (-14 *4 (-928))))
- ((*1 *2)
- (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-349 *3 *4)) (-4 *3 (-354))
- (-14 *4 (-1182 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-350 *3 *4)) (-4 *3 (-354))
- (-14 *4 (-928)))))
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-759)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-248 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-699 (-1237))))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *6 (-378 *5)) (-4 *4 (-378 *5))
+ (-12 (-5 *3 (-661 *4)) (-4 *4 (-349 *5 *6 *7))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6)))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-1133 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-827)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1277 *4)) (-5 *3 (-695 *4)) (-4 *4 (-368))
- (-5 *1 (-673 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-368))
- (-4 *5 (-13 (-378 *4) (-10 -7 (-6 -4453))))
- (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453))))
- (-5 *1 (-674 *4 *5 *2 *3)) (-4 *3 (-693 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-650 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-368))
- (-5 *1 (-820 *2 *3)) (-4 *3 (-662 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *1 (-1137 *3 *2)) (-4 *3 (-1253 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-562))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-978 *5 *3)) (-4 *3 (-1253 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-5 *2 (-1277 *3)) (-5 *1 (-718 *3 *4))
- (-4 *4 (-1253 *3)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-814 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1109) (-1047 *5)))
- (-4 *5 (-893 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-938 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2896 *4)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4)))))
+ (-12 (-4 *4 (-564)) (-5 *2 (-112)) (-5 *1 (-281 *4 *3))
+ (-4 *3 (-13 (-438 *4) (-1013))))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-262)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1282))
- (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))))
+ (-12 (-5 *3 (-415 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-564))
+ (-4 *4 (-1060)) (-4 *2 (-1270 *4)) (-5 *1 (-1273 *4 *5 *6 *2))
+ (-4 *6 (-664 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562))
- (-5 *2 (-1182 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-295)))
- ((*1 *1) (-5 *1 (-868)))
- ((*1 *1)
- (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799))
- (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1094)))
- ((*1 *1)
- (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34)))))
- ((*1 *1) (-5 *1 (-1189))) ((*1 *1) (-5 *1 (-1190))))
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-5 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
+ (-5 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-779)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-734)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-719 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))))
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3))
+ (-4 *3 (-1111)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-1111))
+ (-4 *4 (-1111)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1188)) (-5 *6 (-652 (-620 *3)))
+ (-5 *5 (-620 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *7)))
+ (-4 *7 (-13 (-460) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-2 (|:| -1647 *3) (|:| |coeff| *3)))
+ (-5 *1 (-565 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *2 (-1277 (-320 (-384))))
- (-5 *1 (-309)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1182 (-570))) (-5 *3 (-570)) (-4 *1 (-875 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))
- (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))))
+ (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-313))
+ (-5 *2 (-415 (-426 (-961 *4)))) (-5 *1 (-1053 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-572))) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-564)) (-4 *8 (-958 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *9) (|:| |radicand| *9)))
+ (-5 *1 (-962 *5 *6 *7 *8 *9)) (-5 *4 (-779))
+ (-4 *9
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *8)) (-15 -2209 (*8 $)) (-15 -2224 (*8 $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1060)) (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-1058)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-858)) (-5 *2 (-652 (-672 *4 *5)))
+ (-5 *1 (-635 *4 *5 *6)) (-4 *5 (-13 (-174) (-725 (-415 (-572)))))
+ (-14 *6 (-930)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229)))))
+(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-620 *5)) (-4 *5 (-438 *4)) (-4 *4 (-1049 (-572)))
+ (-4 *4 (-564)) (-5 *2 (-1184 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-620 *1)) (-4 *1 (-1060)) (-4 *1 (-308))
+ (-5 *2 (-1184 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
+ (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
+ (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-912 *3)) (-4 *3 (-1111)) (-5 *2 (-1113 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-652 *4))) (-5 *1 (-913 *4))
+ (-5 *3 (-652 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1111)) (-5 *2 (-1113 (-1113 *4))) (-5 *1 (-913 *4))
+ (-5 *3 (-1113 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1113 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-664 *3)) (-4 *3 (-1060)) (-4 *3 (-370))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-779)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370))
+ (-5 *1 (-667 *5 *2)) (-4 *2 (-664 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1278)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1280)) (-5 *1 (-260))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1280)) (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1278)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1280)) (-5 *1 (-260))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-888 (-1 (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *5 (-650 (-266))) (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384)))
- (-5 *2 (-1279)) (-5 *1 (-258))))
+ (-12 (-5 *3 (-891 (-1 (-227) (-227) (-227)))) (-5 *4 (-1105 (-386)))
+ (-5 *2 (-1281)) (-5 *1 (-260))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-298 *7)) (-5 *4 (-1186)) (-5 *5 (-650 (-266)))
- (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-856) (-1047 (-570))))
- (-5 *2 (-1278)) (-5 *1 (-259 *6 *7))))
+ (-12 (-5 *3 (-300 *7)) (-5 *4 (-1188)) (-5 *5 (-652 (-268)))
+ (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-858) (-1049 (-572))))
+ (-5 *2 (-1280)) (-5 *1 (-261 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278))
- (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109)))))
+ (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1280))
+ (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1278)) (-5 *1 (-262 *3))
- (-4 *3 (-13 (-620 (-542)) (-1109)))))
+ (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1280)) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-622 (-544)) (-1111)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-884 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266)))
- (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278))
- (-5 *1 (-262 *6))))
+ (-12 (-5 *3 (-886 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
+ (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280))
+ (-5 *1 (-264 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-884 *5)) (-5 *4 (-1101 (-384)))
- (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278))
- (-5 *1 (-262 *5))))
+ (-12 (-5 *3 (-886 *5)) (-5 *4 (-1103 (-386)))
+ (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1280))
+ (-5 *1 (-264 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266)))
- (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279))
- (-5 *1 (-262 *6))))
+ (-12 (-5 *3 (-888 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
+ (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
+ (-5 *1 (-264 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384)))
- (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279))
- (-5 *1 (-262 *5))))
+ (-12 (-5 *3 (-888 *5)) (-5 *4 (-1103 (-386)))
+ (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
+ (-5 *1 (-264 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1279))
- (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109)))))
+ (-12 (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268))) (-5 *2 (-1281))
+ (-5 *1 (-264 *3)) (-4 *3 (-13 (-622 (-544)) (-1111)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1279)) (-5 *1 (-262 *3))
- (-4 *3 (-13 (-620 (-542)) (-1109)))))
+ (-12 (-5 *4 (-1103 (-386))) (-5 *2 (-1281)) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-622 (-544)) (-1111)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266)))
- (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279))
- (-5 *1 (-262 *6))))
+ (-12 (-5 *3 (-891 *6)) (-5 *4 (-1103 (-386))) (-5 *5 (-652 (-268)))
+ (-4 *6 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
+ (-5 *1 (-264 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384)))
- (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1279))
- (-5 *1 (-262 *5))))
+ (-12 (-5 *3 (-891 *5)) (-5 *4 (-1103 (-386)))
+ (-4 *5 (-13 (-622 (-544)) (-1111))) (-5 *2 (-1281))
+ (-5 *1 (-264 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1278)) (-5 *1 (-263))))
+ (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1280)) (-5 *1 (-265))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1278))
- (-5 *1 (-263))))
+ (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1280))
+ (-5 *1 (-265))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *2 (-1278)) (-5 *1 (-263))))
+ (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *2 (-1280)) (-5 *1 (-265))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-650 (-266)))
- (-5 *2 (-1278)) (-5 *1 (-263))))
+ (-12 (-5 *3 (-652 (-952 (-227)))) (-5 *4 (-652 (-268)))
+ (-5 *2 (-1280)) (-5 *1 (-265))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1279)) (-5 *1 (-263))))
+ (-12 (-5 *3 (-652 (-227))) (-5 *2 (-1281)) (-5 *1 (-265))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1279))
- (-5 *1 (-263)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-4 *2 (-907 *5)) (-5 *1 (-698 *5 *2 *3 *4))
- (-4 *3 (-378 *2)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
-(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1074 *3 *4 *5)))))
+ (-12 (-5 *3 (-652 (-227))) (-5 *4 (-652 (-268))) (-5 *2 (-1281))
+ (-5 *1 (-265)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
+ (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-1284))
+ (-5 *1 (-1119 *4 *5 *6 *7 *8)) (-4 *8 (-1082 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-930))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-1060)) (-5 *2 (-1279 *4))
+ (-5 *1 (-1189 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-930)) (-5 *2 (-1279 *3)) (-5 *1 (-1189 *3))
+ (-4 *3 (-1060)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-899 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1109))
- (-4 *5 (-1227)) (-5 *1 (-897 *4 *5))))
+ (-12 (-5 *2 (-901 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1111))
+ (-4 *5 (-1229)) (-5 *1 (-899 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-899 *4)) (-5 *3 (-650 (-1 (-112) *5))) (-4 *4 (-1109))
- (-4 *5 (-1227)) (-5 *1 (-897 *4 *5))))
+ (-12 (-5 *2 (-901 *4)) (-5 *3 (-652 (-1 (-112) *5))) (-4 *4 (-1111))
+ (-4 *5 (-1229)) (-5 *1 (-899 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-899 *5)) (-5 *3 (-650 (-1186)))
- (-5 *4 (-1 (-112) (-650 *6))) (-4 *5 (-1109)) (-4 *6 (-1227))
- (-5 *1 (-897 *5 *6))))
+ (-12 (-5 *2 (-901 *5)) (-5 *3 (-652 (-1188)))
+ (-5 *4 (-1 (-112) (-652 *6))) (-4 *5 (-1111)) (-4 *6 (-1229))
+ (-5 *1 (-899 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1227)) (-4 *4 (-1109))
- (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4))))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1229)) (-4 *4 (-1111))
+ (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-1 (-112) *5))) (-4 *5 (-1227)) (-4 *4 (-1109))
- (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4))))
+ (-12 (-5 *3 (-652 (-1 (-112) *5))) (-4 *5 (-1229)) (-4 *4 (-1111))
+ (-5 *1 (-946 *4 *2 *5)) (-4 *2 (-438 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1227))
- (-5 *2 (-320 (-570))) (-5 *1 (-945 *5))))
+ (-12 (-5 *3 (-1188)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1229))
+ (-5 *2 (-322 (-572))) (-5 *1 (-947 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1186)) (-5 *4 (-650 (-1 (-112) *5))) (-4 *5 (-1227))
- (-5 *2 (-320 (-570))) (-5 *1 (-945 *5))))
+ (-12 (-5 *3 (-1188)) (-5 *4 (-652 (-1 (-112) *5))) (-4 *5 (-1229))
+ (-5 *2 (-322 (-572))) (-5 *1 (-947 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1 (-112) (-650 *6)))
- (-4 *6 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))) (-4 *4 (-1109))
- (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4))))
- (-5 *1 (-1085 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227))
- (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-757)))))
-(((*1 *2) (-12 (-5 *2 (-1282)) (-5 *1 (-97)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1174 3 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3))))
- ((*1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))))
+ (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-1 (-112) (-652 *6)))
+ (-4 *6 (-13 (-438 *5) (-895 *4) (-622 (-901 *4)))) (-4 *4 (-1111))
+ (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
+ (-5 *1 (-1087 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1184 (-961 *4))) (-5 *1 (-424 *3 *4))
+ (-4 *3 (-425 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-4 *3 (-370))
+ (-5 *2 (-1184 (-961 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227)))
+ (-5 *1 (-705))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-952 (-227)) (-227) (-227))) (-5 *4 (-1105 (-227)))
+ (-5 *5 (-652 (-268))) (-5 *2 (-1144 (-227))) (-5 *1 (-705))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1144 (-227))) (-5 *3 (-1 (-952 (-227)) (-227) (-227)))
+ (-5 *4 (-1105 (-227))) (-5 *5 (-652 (-268))) (-5 *1 (-705)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-537))))
+ ((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-537)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-4 *5 (-368))
- (-4 *5 (-1058)) (-5 *2 (-112)) (-5 *1 (-1038 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368)) (-4 *4 (-1058))
- (-5 *2 (-112)) (-5 *1 (-1038 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3))
- (-4 *3 (-1074 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
(-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
- (|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
+ (-2 (|:| |solns| (-652 *5))
+ (|:| |maps| (-652 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1139 *3 *5)) (-4 *3 (-1255 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 (-384))) (-5 *1 (-791 *3)) (-4 *3 (-620 (-384)))))
+ (-12 (-5 *2 (-171 (-386))) (-5 *1 (-793 *3)) (-4 *3 (-622 (-386)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-928)) (-5 *2 (-171 (-384))) (-5 *1 (-791 *3))
- (-4 *3 (-620 (-384)))))
+ (-12 (-5 *4 (-930)) (-5 *2 (-171 (-386))) (-5 *1 (-793 *3))
+ (-4 *3 (-622 (-386)))))
((*1 *2 *3)
- (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-620 (-384)))
- (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-622 (-386)))
+ (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 *5)) (-5 *4 (-928)) (-4 *5 (-174))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-171 *5)) (-5 *4 (-930)) (-4 *5 (-174))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-620 (-384)))
- (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-622 (-386)))
+ (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 (-384)))
- (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-961 *4)) (-4 *4 (-1060)) (-4 *4 (-622 (-386)))
+ (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 (-384)))
- (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-4 *4 (-622 (-386)))
+ (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856))
- (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5))))
+ (-12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564)) (-4 *5 (-858))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856))
- (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4))))
+ (-12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384)))
- (-5 *1 (-791 *5)))))
-(((*1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1227))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1186)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-176 *6))
- (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1268 *5)) (-4 *6 (-1253 *5)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-246 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1056)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
+ (-12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
+ (-5 *1 (-793 *5)))))
+(((*1 *1 *2) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1188)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-935))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1105 (-227))) (-5 *1 (-936))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-961 *5)) (-4 *5 (-1060)) (-5 *2 (-489 *4 *5))
+ (-5 *1 (-953 *4 *5)) (-14 *4 (-652 (-1188))))))
+(((*1 *1) (-5 *1 (-158))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-442)) (|:| -2613 "void")))
+ (-5 *2 (-1284)) (-5 *1 (-1191))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1188))
+ (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *2 (-1284))
+ (-5 *1 (-1191))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1188))
+ (-5 *4 (-3 (|:| |fst| (-442)) (|:| -2613 "void"))) (-5 *2 (-1284))
+ (-5 *1 (-1191)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1170) (-782))) (-5 *1 (-115)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1198)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570)))))))
- (-5 *2
- (-2 (|:| |solns| (-650 *5))
- (|:| |maps| (-650 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1137 *3 *5)) (-4 *3 (-1253 *5)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1060)) (-5 *1 (-1251 *3 *2)) (-4 *2 (-1255 *3)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1188)) (-4 *4 (-1060)) (-4 *4 (-1111))
+ (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -2477 (-572))))
+ (-4 *1 (-438 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1060)) (-4 *4 (-1111))
+ (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -2477 (-572))))
+ (-4 *1 (-438 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1123)) (-4 *3 (-1111))
+ (-5 *2 (-2 (|:| |var| (-620 *1)) (|:| -2477 (-572))))
+ (-4 *1 (-438 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -2477 (-779))))
+ (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-2 (|:| |var| *5) (|:| -2477 (-779))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
+ (-4 *7 (-958 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2477 (-572))))
+ (-5 *1 (-959 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $))
+ (-15 -2224 (*7 $))))))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227)))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1277 *6)) (-5 *4 (-1277 (-570))) (-5 *5 (-570))
- (-4 *6 (-1109)) (-5 *2 (-1 *6)) (-5 *1 (-1026 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-13 (-311) (-148)))
- (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799))
- (-5 *2 (-650 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7))
- (-4 *7 (-956 *4 *6 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1227)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1046)) (-5 *1 (-761)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-652 *1)) (-4 *1 (-308))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-620 *3)) (-4 *3 (-1111))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-115)) (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-1109))
- (-5 *1 (-618 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-879 (-928) (-928)))) (-5 *1 (-980)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1047 (-48)))
- (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4))
- (-5 *2 (-424 (-1182 (-48)))) (-5 *1 (-441 *4 *5 *3))
- (-4 *3 (-1253 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4))
- (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-103 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-354)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-916)))))
-(((*1 *1 *1 *1) (-4 *1 (-551))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-872 *4 *5 *6 *7))
- (-4 *4 (-1058)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-4 *5 (-856)) (-4 *6 (-799))
- (-14 *8 (-650 *5)) (-5 *2 (-1282))
- (-5 *1 (-1289 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-956 *4 *6 *5))
- (-14 *9 (-650 *3)) (-14 *10 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384))
- (-5 *2
- (-2 (|:| -4156 *4) (|:| -3070 *4) (|:| |totalpts| (-570))
- (|:| |success| (-112))))
- (-5 *1 (-795)) (-5 *5 (-570)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1168)) (-5 *2 (-216 (-508))) (-5 *1 (-843)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-1085 *3 *4 *5))) (-4 *3 (-1109))
- (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3))))
- (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3))))
- (-5 *1 (-1086 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-570)) (-4 *2 (-436 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1047 *4)) (-4 *3 (-562)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-1168))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1044))
- (-5 *1 (-756)))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-652 *5)) (-5 *4 (-779)) (-4 *5 (-1111))
+ (-5 *1 (-620 *5)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-695 *3))
- (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-1039 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-652 (-697 *3))) (-4 *3 (-1060)) (-5 *1 (-1039 *3)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-112))
+ (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1046)) (-5 *1 (-764)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-652 *2) *2 *2 *2)) (-4 *2 (-1111))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1111)) (-5 *1 (-103 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 *1)) (-5 *3 (-652 *7)) (-4 *1 (-1082 *4 *5 *6 *7))
+ (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-652 *1)) (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-652 *1))
+ (-4 *1 (-1082 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-829)))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
+ ((*1 *1 *1) (-4 *1 (-1155))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
+ (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1279 *6)) (-5 *4 (-1279 (-572))) (-5 *5 (-572))
+ (-4 *6 (-1111)) (-5 *2 (-1 *6)) (-5 *1 (-1028 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *3 *5 *6 *7))
- (-4 *3 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227))
- (-4 *7 (-1227))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-386)) (-5 *1 (-207)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
+ (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1080 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *3 *5 *6))
- (-4 *3 (-620 (-542))) (-4 *5 (-1227)) (-4 *6 (-1227)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-830)) (-5 *3 (-650 (-1186))) (-5 *1 (-831)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 *9)) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *9 (-1120 *5 *6 *7 *8)) (-4 *5 (-460)) (-4 *6 (-801))
+ (-4 *7 (-858)) (-5 *2 (-779)) (-5 *1 (-1156 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-572)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1229))
+ (-4 *5 (-380 *4)) (-4 *3 (-380 *4)))))
(((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-695 (-413 *4))))))
-(((*1 *1 *1) (-5 *1 (-868)))
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
+ (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-460)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-1284))
+ (-5 *1 (-1119 *3 *4 *5 *6 *7)) (-4 *7 (-1082 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-564))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-1087 *3 *4 *5))) (-4 *3 (-1111))
+ (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
+ (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3))))
+ (-5 *1 (-1088 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227))
+ (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-5 *1 (-707))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-697 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-370)) (-5 *1 (-989 *5)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-13 (-313) (-148)))
+ (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801))
+ (-5 *2 (-652 (-415 (-961 *4)))) (-5 *1 (-933 *4 *5 *6 *7))
+ (-4 *7 (-958 *4 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-561)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-333 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-572)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229)) (-14 *4 *2))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2)))
+ (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5))
+ (-4 *3 (-349 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233))
+ (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))))
+(((*1 *1 *1) (-5 *1 (-870)))
((*1 *2 *1)
- (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109))))
- ((*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1167))))
- ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1186)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1113)) (-5 *3 (-780)) (-5 *1 (-52)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4453)) (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
+ (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111))))
+ ((*1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-1169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1188)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058))
- (-14 *4 (-650 (-1186)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856)))
- (-14 *4 (-650 (-1186))))))
+ (-12 (-4 *1 (-1049 (-572))) (-4 *1 (-308)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1111))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-393 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 *4))))
+ (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-657 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1111)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 (-618 *4))) (-4 *4 (-436 *3)) (-4 *3 (-1109))
- (-5 *1 (-579 *3 *4))))
+ (-12 (-5 *2 (-652 (-620 *4))) (-4 *4 (-438 *3)) (-4 *3 (-1111))
+ (-5 *1 (-581 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))))
-(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473))))
- ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473))))
- ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-777))
- (-4 *3 (-13 (-311) (-10 -8 (-15 -2929 ((-424 $) $)))))
- (-4 *4 (-1253 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-839 (-570))) (-5 *1 (-540))))
- ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))))
+ (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-239 *3))
+ (-4 *3 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-881 (-930) (-930)))) (-5 *1 (-982)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-697 (-322 (-227)))) (-5 *2 (-386)) (-5 *1 (-207)))))
+(((*1 *2) (-12 (-5 *2 (-841 (-572))) (-5 *1 (-542))))
+ ((*1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233))
+ (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
+ (-5 *2 (-2 (|:| |num| (-697 *5)) (|:| |den| *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
+ (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-652 (-779)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
+ (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-652 (-779))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-514)) (-5 *3 (-1129)) (-5 *1 (-1126)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1239 *3 *2)) (-4 *3 (-1058))
- (-4 *2 (-1268 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-650 (-1085 *4 *5 *2))) (-4 *4 (-1109))
- (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4))))
- (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-650 (-1085 *5 *6 *2))) (-5 *4 (-928)) (-4 *5 (-1109))
- (-4 *6 (-13 (-1058) (-893 *5) (-620 (-899 *5))))
- (-4 *2 (-13 (-436 *6) (-893 *5) (-620 (-899 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-145))) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-142)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6))
- (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-986 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1277 *5)) (-4 *5 (-798)) (-5 *2 (-112))
- (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1212))))))
-(((*1 *1 *2) (-12 (-5 *1 (-1213 *2)) (-4 *2 (-1109))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1111)) (-5 *2 (-652 *1))
+ (-4 *1 (-438 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3))
+ (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-652 *1)) (-4 *1 (-958 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
+ (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *3))
+ (-5 *1 (-959 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $))
+ (-15 -2224 (*7 $))))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-227)) (-5 *5 (-572)) (-5 *2 (-1224 *3))
+ (-5 *1 (-798 *3)) (-4 *3 (-985))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-112))
+ (-5 *1 (-1224 *2)) (-4 *2 (-985)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-870) (-870) (-870))) (-5 *4 (-572)) (-5 *2 (-870))
+ (-5 *1 (-657 *5 *6 *7)) (-4 *5 (-1111)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-870)) (-5 *1 (-862 *3 *4 *5)) (-4 *3 (-1060))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-870))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-870))))
+ ((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-870))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-870)) (-5 *1 (-1184 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *2) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111))))
((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1213 *3))))
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-1215 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-650 (-1213 *2))) (-5 *1 (-1213 *2)) (-4 *2 (-1109)))))
+ (-12 (-5 *3 (-652 (-1215 *2))) (-5 *1 (-1215 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1049 (-48)))
+ (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
+ (-5 *2 (-426 (-1184 (-48)))) (-5 *1 (-443 *4 *5 *3))
+ (-4 *3 (-1255 *5)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2))
- (-4 *3 (-562))))
+ (-12 (-4 *2 (-13 (-438 *3) (-1013))) (-5 *1 (-281 *3 *2))
+ (-4 *3 (-564))))
((*1 *1)
- (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186)))
- (-14 *3 (-650 (-1186))) (-4 *4 (-393))))
- ((*1 *1) (-5 *1 (-483))) ((*1 *1) (-4 *1 (-1212))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-497)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1220 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-753)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-854) (-368))) (-5 *2 (-112)) (-5 *1 (-1070 *4 *3))
- (-4 *3 (-1253 *4)))))
+ (-12 (-5 *1 (-346 *2 *3 *4)) (-14 *2 (-652 (-1188)))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-395))))
+ ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-4 *1 (-1214))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1 (-1168 (-961 *4)) (-1168 (-961 *4))))
+ (-5 *1 (-1287 *4)) (-4 *4 (-370)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046))
+ (-5 *1 (-762)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-652 *7) *7 (-1184 *7))) (-5 *5 (-1 (-426 *7) *7))
+ (-4 *7 (-1255 *6)) (-4 *6 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-5 *2 (-652 (-2 (|:| |frac| (-415 *7)) (|:| -3179 *3))))
+ (-5 *1 (-817 *6 *7 *3 *8)) (-4 *3 (-664 *7))
+ (-4 *8 (-664 (-415 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-426 *6) *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2
+ (-652 (-2 (|:| |frac| (-415 *6)) (|:| -3179 (-662 *6 (-415 *6))))))
+ (-5 *1 (-820 *5 *6)) (-5 *3 (-662 *6 (-415 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 *1)) (-5 *4 (-1279 *1)) (-4 *1 (-647 *5))
+ (-4 *5 (-1060))
+ (-5 *2 (-2 (|:| -1866 (-697 *5)) (|:| |vec| (-1279 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-697 *1)) (-4 *1 (-647 *4)) (-4 *4 (-1060))
+ (-5 *2 (-697 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-650 *1)) (-4 *1 (-436 *4))
- (-4 *4 (-1109))))
+ (-12 (-5 *2 (-1188)) (-5 *3 (-652 *1)) (-4 *1 (-438 *4))
+ (-4 *4 (-1111))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-1277 *4))
- (-5 *1 (-820 *4 *3)) (-4 *3 (-662 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2)
- (-12 (-4 *1 (-354))
- (-5 *2 (-650 (-2 (|:| -2340 (-570)) (|:| -2940 (-570))))))))
+ (-12 (-5 *2 (-1188)) (-4 *1 (-438 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-386)) (-5 *1 (-1074)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-845))
- (-5 *3
- (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227)))
- (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227))))
- (|:| |ub| (-650 (-849 (-227))))))
- (-5 *2 (-1044))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-845))
- (-5 *3
- (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))
- (-5 *2 (-1044)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-368) (-1212) (-1011))))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1109))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1208)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306))))
- ((*1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1) (-5 *1 (-868))))
-(((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1279))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1279)))))
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-324)) (-5 *3 (-227)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-764)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-386)) (-5 *1 (-97)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4))
+ (-4 *4 (-38 (-415 (-572)))) (-4 *4 (-1060)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-503)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
+ (-4 *5 (-564)) (-5 *2 (-652 (-652 (-961 *5)))) (-5 *1 (-1197 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1280))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-268))) (-5 *1 (-1281)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *6)) (-4 *5 (-1109))
- (-4 *6 (-1227)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *5 *6))))
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *6)) (-4 *5 (-1111))
+ (-4 *6 (-1229)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109))
- (-4 *2 (-1227)) (-5 *1 (-647 *5 *2))))
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111))
+ (-4 *2 (-1229)) (-5 *1 (-649 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 *5)) (-4 *6 (-1109))
- (-4 *5 (-1227)) (-5 *2 (-1 *5 *6)) (-5 *1 (-647 *6 *5))))
+ (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 *5)) (-4 *6 (-1111))
+ (-4 *5 (-1229)) (-5 *2 (-1 *5 *6)) (-5 *1 (-649 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109))
- (-4 *2 (-1227)) (-5 *1 (-647 *5 *2))))
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-4 *5 (-1111))
+ (-4 *2 (-1229)) (-5 *1 (-649 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-650 *5)) (-5 *4 (-650 *6))
- (-4 *5 (-1109)) (-4 *6 (-1227)) (-5 *1 (-647 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-652 *5)) (-5 *4 (-652 *6))
+ (-4 *5 (-1111)) (-4 *6 (-1229)) (-5 *1 (-649 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1109)) (-4 *2 (-1227)) (-5 *1 (-647 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-777)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458))
- (-5 *1 (-925 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-827)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 (-249 *4 *5))) (-5 *2 (-249 *4 *5))
- (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5)))))
-(((*1 *1) (-5 *1 (-584))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-777)) (-4 *1 (-1294 *3 *4)) (-4 *3 (-856))
- (-4 *4 (-1058)) (-4 *4 (-174))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))
- (-4 *3 (-174)))))
-(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309)))))
-(((*1 *2 *3) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-189))) (-5 *1 (-189)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1220 *4 *5 *3 *6)) (-4 *4 (-562)) (-4 *5 (-799))
- (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *3 (-652 *5)) (-5 *4 (-652 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1111)) (-4 *2 (-1229)) (-5 *1 (-649 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1155)) (-5 *3 (-145)) (-5 *2 (-779)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-652 (-173)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1111)) (-5 *1 (-938 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1188)) (-5 *2 (-322 (-572))) (-5 *1 (-939)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-489 *4 *5))) (-14 *4 (-652 (-1188)))
+ (-4 *5 (-460))
+ (-5 *2
+ (-2 (|:| |gblist| (-652 (-251 *4 *5)))
+ (|:| |gvlist| (-652 (-572)))))
+ (-5 *1 (-639 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-224 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1229)) (-4 *1 (-259 *3))))
+ ((*1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-103 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-1001 *2)) (-4 *4 (-1253 *3)) (-4 *2 (-311))
- (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3)))))
+ (-12 (-4 *3 (-1003 *2)) (-4 *4 (-1255 *3)) (-4 *2 (-313))
+ (-5 *1 (-421 *2 *3 *4 *5)) (-4 *5 (-13 (-417 *3 *4) (-1049 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1)))
- (-4 *1 (-436 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501))))
+ (-12 (-4 *3 (-564)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1)))
+ (-4 *1 (-438 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4))
- (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4))
+ (-5 *1 (-629 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4))
- (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))))
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-734) *4))
+ (-5 *1 (-670 *3 *4 *2)) (-4 *3 (-725 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5))
+ (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6))
+ (-4 *6 (-460))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-489 *5 *6))) (-5 *4 (-872 *5))
+ (-14 *5 (-652 (-1188))) (-5 *2 (-489 *5 *6)) (-5 *1 (-639 *5 *6))
+ (-4 *6 (-460)))))
+(((*1 *1) (-5 *1 (-605))))
+(((*1 *1 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-1111)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))
- (-5 *2 (-650 (-1186))) (-5 *1 (-270))))
+ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))
+ (-5 *2 (-652 (-1188))) (-5 *1 (-272))))
((*1 *2 *3)
- (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-650 *5))
- (-5 *1 (-325 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1184 *7)) (-4 *7 (-958 *6 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1060)) (-5 *2 (-652 *5))
+ (-5 *1 (-327 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-344 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-393))))
+ (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-346 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-395))))
((*1 *2 *1)
- (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-1186)))))
+ (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-652 (-1188)))))
((*1 *2 *1)
- (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109))))
+ (-12 (-5 *2 (-652 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1111))))
((*1 *2 *1)
- (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-650 *5))))
+ (-12 (-4 *1 (-958 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-652 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058))
- (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *5))
- (-5 *1 (-957 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
+ (-4 *7 (-958 *6 *4 *5)) (-5 *2 (-652 *5))
+ (-5 *1 (-959 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-368)
- (-10 -8 (-15 -2869 ($ *7)) (-15 -1587 (*7 $)) (-15 -1599 (*7 $)))))))
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $)) (-15 -2224 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-4 *5 (-856)) (-5 *2 (-650 *5))))
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-4 *5 (-858)) (-5 *2 (-652 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-1186)))
- (-5 *1 (-1052 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-650 (-1186)))
- (-5 *2 (-650 (-650 (-384)))) (-5 *1 (-1032)) (-5 *5 (-384))))
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4)))))
- (-5 *1 (-1304 *4 *5 *6)) (-14 *6 (-650 (-1186)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1304 *5 *6 *7))
- (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-959 *4)))
- (-4 *4 (-13 (-854) (-311) (-148) (-1031)))
- (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1304 *4 *5 *6))
- (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))))
+ (-12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564)) (-5 *2 (-652 (-1188)))
+ (-5 *1 (-1054 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 *4)) (-5 *1 (-1150 *3 *4))
- (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2067 *3) (|:| |coef1| (-788 *3)) (|:| |coef2| (-788 *3))))
- (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))))
+ (-12 (-5 *2 (-652 *4)) (-5 *1 (-1152 *3 *4))
+ (-4 *3 (-13 (-1111) (-34))) (-4 *4 (-13 (-1111) (-34))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1046)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))
+ (-5 *2 (-1046)) (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1103 (-849 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-309))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112))
- (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570))))))
- (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-298 (-413 (-959 (-171 (-570)))))))
- (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 (-171 (-570)))))
- (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-368) (-854)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-298 (-413 (-959 (-171 (-570))))))
- (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4))
- (-4 *4 (-13 (-368) (-854))))))
-(((*1 *2 *3) (-12 (-5 *3 (-413 (-570))) (-5 *2 (-227)) (-5 *1 (-309)))))
-(((*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-270)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-779))
+ (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-901 *4)) (-4 *4 (-1111)) (-5 *1 (-898 *4 *3))
+ (-4 *3 (-1111)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-356)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-918)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1253 *4))
- (-5 *2 (-1277 *6)) (-5 *1 (-419 *3 *4 *5 *6))
- (-4 *6 (-13 (-415 *4 *5) (-1047 *4)))))
+ (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4))
+ (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6))
+ (-4 *6 (-13 (-417 *4 *5) (-1049 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1058)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1)))
- (-4 *1 (-436 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501))))
+ (-12 (-4 *3 (-1060)) (-4 *3 (-1111)) (-5 *2 (-1136 *3 (-620 *1)))
+ (-4 *1 (-438 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1136 (-572) (-620 (-503)))) (-5 *1 (-503))))
((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-627 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-732) *3))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-629 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-734) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-723 *3)) (-5 *1 (-668 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-732) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))))
-(((*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058))))
- ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-725 *3)) (-5 *1 (-670 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-734) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)))))
+(((*1 *1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-851 *4)) (-5 *3 (-620 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1214) (-29 *6)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-226 *6 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-760)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-594 *4))
- (-4 *4 (-354)))))
+ (-12 (-5 *2 (-572)) (-5 *1 (-453 *3)) (-4 *3 (-412)) (-4 *3 (-1060)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))
+ (-5 *2 (-1184 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))
+ (-5 *2 (-1184 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 *4))))
+ (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-514)) (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6))
+ (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572))))
+ (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3))
+ (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-930)) (-4 *5 (-313)) (-4 *3 (-1255 *5))
+ (-5 *2 (-2 (|:| |plist| (-652 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-468 *5 *3)) (-5 *4 (-652 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-553))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1111)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1111)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1277 (-705))) (-5 *1 (-309)))))
+ (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
+ (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-687 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-424 *3 *2)) (-4 *3 (-425 *2))))
+ ((*1 *2) (-12 (-4 *1 (-425 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-425 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4))
+ (-5 *2 (-2 (|:| -2379 (-415 *5)) (|:| |poly| *3)))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1255 (-415 *5))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1060)) (-5 *1 (-835 *2 *3)) (-4 *2 (-716 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-874 *4 *5 *6 *7))
+ (-4 *4 (-1060)) (-14 *5 (-652 (-1188))) (-14 *6 (-652 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-779)) (-4 *4 (-1060)) (-4 *5 (-858)) (-4 *6 (-801))
+ (-14 *8 (-652 *5)) (-5 *2 (-1284))
+ (-5 *1 (-1291 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-958 *4 *6 *5))
+ (-14 *9 (-652 *3)) (-14 *10 *3))))
(((*1 *2)
- (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916))
- (-5 *1 (-463 *3 *4 *2 *5)) (-4 *5 (-956 *2 *3 *4))))
+ (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
+ (-5 *2 (-779)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916))
- (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-916)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1253 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1226))) (-5 *1 (-530)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-779)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1222 *5 *6 *7 *3))
+ (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1046)) (-5 *1 (-756)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2))
- (-5 *2 (-384)) (-5 *1 (-791 *4))))
+ (|partial| -12 (-5 *3 (-961 (-171 *4))) (-4 *4 (-174))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058))
- (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5))))
+ (|partial| -12 (-5 *3 (-961 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-174))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562))
- (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4))))
+ (|partial| -12 (-5 *3 (-961 *4)) (-4 *4 (-1060))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5))))
+ (|partial| -12 (-5 *3 (-961 *5)) (-5 *4 (-930)) (-4 *5 (-1060))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856))
- (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4))))
+ (|partial| -12 (-5 *3 (-415 (-961 *4))) (-4 *4 (-564))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562))
- (-4 *5 (-856)) (-4 *5 (-620 *2)) (-5 *2 (-384))
- (-5 *1 (-791 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551))
- (-5 *2 (-413 (-570)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551))
- (-4 *3 (-562))))
- ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-413 (-570)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551))
- (-5 *2 (-413 (-570)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551))
- (-4 *3 (-1109))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551))
- (-4 *3 (-1109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551))
- (-5 *2 (-413 (-570)))))
+ (|partial| -12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3)) (-4 *3 (-1047 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011)))
- (-5 *1 (-178 *3)))))
+ (|partial| -12 (-5 *3 (-415 (-961 (-171 *4)))) (-4 *4 (-564))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-415 (-961 (-171 *5)))) (-5 *4 (-930))
+ (-4 *5 (-564)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
+ (-5 *1 (-793 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-322 *4)) (-4 *4 (-564)) (-4 *4 (-858))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-322 *5)) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
+ (-5 *1 (-793 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-322 (-171 *4))) (-4 *4 (-564)) (-4 *4 (-858))
+ (-4 *4 (-622 (-386))) (-5 *2 (-171 (-386))) (-5 *1 (-793 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-322 (-171 *5))) (-5 *4 (-930)) (-4 *5 (-564))
+ (-4 *5 (-858)) (-4 *5 (-622 (-386))) (-5 *2 (-171 (-386)))
+ (-5 *1 (-793 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-930)) (-4 *4 (-375)) (-4 *4 (-370)) (-5 *2 (-1184 *1))
+ (-4 *1 (-335 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-1184 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-174)) (-4 *3 (-370))
+ (-4 *2 (-1255 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *4)) (-4 *4 (-356)) (-5 *2 (-1184 *4))
+ (-5 *1 (-536 *4)))))
+(((*1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1282)))))
+(((*1 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-1282)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-5 *1 (-903 *2 *4))
- (-4 *2 (-1253 *4)))))
-(((*1 *1 *1) (-5 *1 (-1072))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1207)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-685 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))))
+ (-12 (-5 *1 (-687 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-572) "failed") *5)) (-4 *5 (-1060))
+ (-5 *2 (-572)) (-5 *1 (-551 *5 *3)) (-4 *3 (-1255 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060))
+ (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-572) "failed") *4)) (-4 *4 (-1060))
+ (-5 *2 (-572)) (-5 *1 (-551 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-386)) (-5 *1 (-1051)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1105 (-227))) (-5 *6 (-652 (-268))) (-5 *2 (-1144 (-227)))
+ (-5 *1 (-705)))))
(((*1 *2)
- (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-423 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-570)) (-5 *1 (-949)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1058)) (-5 *1 (-833 *2 *3)) (-4 *2 (-714 *3)))))
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-827 *3)) (-4 *3 (-858)) (-5 *1 (-680 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1186))) (-4 *6 (-368))
- (-5 *2 (-650 (-298 (-959 *6)))) (-5 *1 (-544 *5 *6 *7))
- (-4 *5 (-458)) (-4 *7 (-13 (-368) (-854))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8)))
- (-4 *7 (-856)) (-4 *8 (-311)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799))
+ (-12 (-5 *3 (-829)) (-5 *4 (-52)) (-5 *2 (-1284)) (-5 *1 (-839)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-1214) (-968) (-29 *4))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564))
+ (-5 *2 (-415 (-961 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-1239 *4)) (-4 *4 (-1060)) (-4 *4 (-564))
+ (-5 *2 (-415 (-961 *4))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1188)) (-5 *6 (-112))
+ (-4 *7 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-4 *3 (-13 (-1214) (-968) (-29 *7)))
(-5 *2
- (-2 (|:| |upol| (-1182 *8)) (|:| |Lval| (-650 *8))
- (|:| |Lfact|
- (-650 (-2 (|:| -2340 (-1182 *8)) (|:| -2940 (-570)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-748 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2))
- (-4 *2 (-693 *3 *4 *5)))))
+ (-3 (|:| |f1| (-851 *3)) (|:| |f2| (-652 (-851 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *7 *3)) (-5 *5 (-851 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-564) (-148)))
+ (-5 *2 (-2 (|:| -3041 *3) (|:| -3058 *3))) (-5 *1 (-1249 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-988 *4 *5 *6 *7)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-685 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1347 *1) (|:| -4439 *1) (|:| |associate| *1)))
- (-4 *1 (-562)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-118 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-570))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-877 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-14 *2 (-570))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-570)) (-14 *3 *2) (-5 *1 (-878 *3 *4))
- (-4 *4 (-875 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-570)) (-5 *1 (-878 *2 *3)) (-4 *3 (-875 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-570)) (-4 *1 (-1239 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-1268 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1239 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1268 *2)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1094)))))
-(((*1 *1) (-5 *1 (-295))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-650 (-320 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-212)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-701 *3)) (-4 *3 (-1109))
- (-5 *2 (-650 (-2 (|:| -3165 *3) (|:| -3901 (-777))))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-610 *4 *3)) (-4 *4 (-1109))
- (-4 *3 (-1227)) (-4 *3 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *1) (-5 *1 (-1074))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-812 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1214) (-968))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-572)) (-5 *1 (-494 *4))
+ (-4 *4 (-1255 *2)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-593)) (-5 *3 (-605)) (-5 *4 (-297)) (-5 *1 (-286)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
(-5 *2
- (-650
- (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *3))
- (|:| |logand| (-1182 *3)))))
- (-5 *1 (-592 *3)) (-4 *3 (-368)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-583))))
- ((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-583)))))
-(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1212)))))
- ((*1 *1 *1 *1) (-4 *1 (-799))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
+ (|:| |success| (-112))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 (-652 *6))) (-4 *6 (-958 *3 *5 *4))
+ (-4 *3 (-13 (-313) (-148))) (-4 *4 (-13 (-858) (-622 (-1188))))
+ (-4 *5 (-801)) (-5 *1 (-933 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34))))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-564))
+ (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-1250 *4 *3))
+ (-4 *3 (-1255 *4)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058))))
- ((*1 *2)
- (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))))
-(((*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1) (-4 *1 (-308))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-572)) (-5 *3 (-930)) (-4 *1 (-412))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-572)) (-4 *1 (-412))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *2 *6)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1111)) (-4 *6 (-1111))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-692 *4 *5 *6)) (-4 *4 (-1111)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-1060)) (-4 *2 (-1255 *5))
+ (-5 *1 (-1273 *5 *2 *6 *3)) (-4 *6 (-664 *2)) (-4 *3 (-1270 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-476)) (-5 *4 (-930)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-239 *3))))
+ ((*1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *4)) (-4 *4 (-647 (-572))) (-5 *2 (-112))
+ (-5 *1 (-1307 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *3 (-909 *6))
+ (-5 *2 (-697 *3)) (-5 *1 (-700 *6 *3 *7 *4)) (-4 *7 (-380 *3))
+ (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-882)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-652 (-620 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 (-48))) (-5 *3 (-620 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))))
+ (-12 (-4 *2 (-13 (-370) (-856))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1255 (-171 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3)) (-5 *1 (-421 *3 *2 *4 *5))
+ (-4 *3 (-313)) (-4 *5 (-13 (-417 *2 *4) (-1049 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1255 *2)) (-4 *2 (-1003 *3))
+ (-5 *1 (-422 *3 *2 *4 *5 *6)) (-4 *3 (-313)) (-4 *5 (-417 *2 *4))
+ (-14 *6 (-1279 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-930)) (-4 *5 (-1060))
+ (-4 *2 (-13 (-412) (-1049 *5) (-370) (-1214) (-290)))
+ (-5 *1 (-451 *5 *3 *2)) (-4 *3 (-1255 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-620 (-503)))) (-5 *1 (-503))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-503))) (-5 *1 (-503))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-652 (-620 (-503))))
+ (-5 *1 (-503))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 (-503))) (-5 *3 (-620 (-503))) (-5 *1 (-503))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356))
+ (-5 *1 (-536 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-732 *4 *2)) (-4 *2 (-1255 *4))
+ (-5 *1 (-783 *4 *2 *5 *3)) (-4 *3 (-1255 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174))))
+ ((*1 *1 *1) (-4 *1 (-1071))))
(((*1 *2 *2)
- (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1212) (-1011)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-1 (-227) (-227) (-227) (-227)))
- (-5 *2 (-1 (-950 (-227)) (-227) (-227))) (-5 *1 (-703)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-650 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-436 *4) (-1011))) (-4 *4 (-562))
- (-5 *1 (-279 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) ((*1 *1) (-4 *1 (-551)))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-442)))))
-(((*1 *1 *1) (-4 *1 (-1153))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570))))
- (-4 *2 (-174)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1270 *3))
+ (-5 *1 (-283 *3 *4 *2)) (-4 *2 (-1241 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *4 (-1239 *3))
+ (-5 *1 (-284 *3 *4 *2 *5)) (-4 *2 (-1262 *3 *4)) (-4 *5 (-994 *4))))
+ ((*1 *1 *1) (-4 *1 (-501)))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1173 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227)))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014)))) (-5 *3 (-227))
- (-5 *2 (-1044)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148)))
- (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5)))))
- (-5 *1 (-1138 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148)))
- (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5)))))
- (-5 *1 (-1138 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-1290 *4 *5 *6 *7)))
- (-5 *1 (-1290 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-38 (-415 (-572))))
+ (-5 *1 (-1174 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-680 *3)) (-4 *3 (-858)) (-4 *1 (-381 *3 *4))
+ (-4 *4 (-174)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-426 *2)) (-4 *2 (-313)) (-5 *1 (-923 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-650 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562))
- (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-650 (-1290 *6 *7 *8 *9)))
- (-5 *1 (-1290 *6 *7 *8 *9)))))
+ (-12 (-5 *4 (-426 (-961 *6))) (-5 *5 (-1188)) (-5 *3 (-961 *6))
+ (-4 *6 (-13 (-313) (-148))) (-5 *2 (-52)) (-5 *1 (-924 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1060)) (-4 *2 (-695 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1255 *4)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-982)) (-5 *1 (-914 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-216 (-510))) (-5 *1 (-845)))))
+(((*1 *1 *2) (-12 (-5 *2 (-415 (-572))) (-5 *1 (-495)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-1188))) (-5 *2 (-1284)) (-5 *1 (-1191))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284))
+ (-5 *1 (-1191))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1284))
+ (-5 *1 (-1191)))))
+(((*1 *1) (-5 *1 (-811))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1227)) (-5 *1 (-380 *4 *2))
- (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4453)))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-4 *1 (-410))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-410))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *2 *6)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))))
+ (-12 (-5 *3 (-1184 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-2 (|:| |den| (-572)) (|:| |gcdnum| (-572)))))
+ (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *5))
+ (-4 *5 (-1255 (-415 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3) (-12 (-5 *3 (-572)) (-5 *2 (-1284)) (-5 *1 (-1017)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1769 (-652 *1))))
+ (-4 *1 (-374 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-461 *3 *4 *5 *6))
+ (|:| -1769 (-652 (-461 *3 *4 *5 *6)))))
+ (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-1046))) (-5 *2 (-1046)) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-659 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *1) (-5 *1 (-1074)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1165 *4))
+ (-4 *4 (-1229))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572)))))
+ (-4 *3 (-1255 *4)) (-5 *1 (-817 *4 *3 *2 *5)) (-4 *2 (-664 *3))
+ (-4 *5 (-664 (-415 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-415 *5))
+ (-4 *4 (-13 (-370) (-148) (-1049 (-415 (-572))))) (-4 *5 (-1255 *4))
+ (-5 *1 (-817 *4 *5 *2 *6)) (-4 *2 (-664 *5)) (-4 *6 (-664 *3)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
+ (-5 *2 (-112)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-349 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-1060))
+ (-5 *1 (-1172 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-572)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-1060))
+ (-14 *4 (-1188)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-889)))))
+(((*1 *1 *1) (-4 *1 (-637)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-572)) (-4 *2 (-438 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1049 *4)) (-4 *3 (-564)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-4 *6 (-460))
+ (-5 *2 (-652 (-652 *7))) (-5 *1 (-546 *6 *7 *5)) (-4 *7 (-370))
+ (-4 *5 (-13 (-370) (-856))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058))
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
+ (-5 *2 (-652 (-652 (-952 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112)) (-4 *4 (-1060))
+ (-4 *1 (-1145 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 (-952 *3)))) (-4 *3 (-1060))
+ (-4 *1 (-1145 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-652 (-652 (-652 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1145 *4)) (-4 *4 (-1060))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-652 (-652 (-952 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1145 *4)) (-4 *4 (-1060))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-652 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-652 (-652 (-952 *5)))) (-5 *3 (-652 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1145 *5)) (-4 *5 (-1060)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-386))) (-5 *1 (-1051)) (-5 *3 (-386)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-251 *3 *4))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-572))) (-14 *3 (-652 (-1188)))
+ (-5 *1 (-462 *3 *4 *5)) (-4 *4 (-1060))
+ (-4 *5 (-242 (-3475 *3) (-779)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-489 *3 *4))
+ (-14 *3 (-652 (-1188))) (-4 *4 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-564)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-356)) (-4 *6 (-1255 *5))
(-5 *2
- (-2 (|:| -3109 (-777)) (|:| |curves| (-777))
- (|:| |polygons| (-777)) (|:| |constructs| (-777)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-309)))))
-(((*1 *2 *1) (-12 (-5 *2 (-337)) (-5 *1 (-251)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-618 *4)) (-5 *6 (-1186))
- (-4 *4 (-13 (-436 *7) (-27) (-1212)))
- (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))))
+ (-652
+ (-2 (|:| -1769 (-697 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-697 *6)))))
+ (-5 *1 (-506 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -1769 (-697 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-697 *6))))
+ (-4 *7 (-1255 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-514)) (-5 *2 (-652 (-974))) (-5 *1 (-297)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *5 (-1170))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1046))
+ (-5 *1 (-758)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
+ (|:| |expense| (-386)) (|:| |accuracy| (-386))
+ (|:| |intermediateResults| (-386))))
+ (-5 *1 (-811)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1370 *3)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564))
+ (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564))
+ (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-697 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1769 (-652 *6)))
+ *7 *6))
+ (-4 *6 (-370)) (-4 *7 (-664 *6))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2681 (-650 *4))))
- (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-835)))))
+ (-2 (|:| |particular| (-3 (-1279 *6) "failed"))
+ (|:| -1769 (-652 (-1279 *6)))))
+ (-5 *1 (-821 *6 *7)) (-5 *4 (-1279 *6)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-308)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-697 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
+ (-5 *7 (-697 (-572)))
+ (-5 *8 (-3 (|:| |fn| (-396)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-396)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-285)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-697 *3))
+ (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148))) (-5 *1 (-545 *4 *2))
+ (-4 *2 (-1270 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3)))
+ (-4 *5 (-1255 *4)) (-4 *6 (-732 *4 *5)) (-5 *1 (-549 *4 *5 *6 *2))
+ (-4 *2 (-1270 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-572)) (-4 *4 (-13 (-370) (-375) (-622 *3)))
+ (-5 *1 (-550 *4 *2)) (-4 *2 (-1270 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1168 *4)) (-5 *3 (-572)) (-4 *4 (-13 (-564) (-148)))
+ (-5 *1 (-1164 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-572)) (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-1255 *3)) (-5 *1 (-165 *3 *4 *2))
+ (-4 *2 (-1255 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-697 *5)) (-4 *5 (-1060)) (-5 *1 (-1065 *3 *4 *5))
+ (-14 *3 (-779)) (-14 *4 (-779)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227))))
+ (-5 *2 (-1046)) (-5 *1 (-762)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-930)) (-5 *1 (-1112 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-767)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-313)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1135 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-171 (-227)))) (-5 *2 (-1046))
+ (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-322 (-227))) (-5 *2 (-415 (-572))) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-145))))
+ ((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-145)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-112)) (-5 *6 (-697 (-227)))
+ (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-746)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-755)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570)))))
- (-4 *2 (-13 (-856) (-21))))))
+ (-12 (-5 *2 (-652 (-1228))) (-5 *3 (-1228)) (-5 *1 (-689)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
+ (-5 *1 (-338))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1188)) (-5 *4 (-1103 (-961 (-572)))) (-5 *2 (-336))
+ (-5 *1 (-338))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-683 *3)) (-4 *3 (-1060))
+ (-4 *3 (-1111)))))
(((*1 *2 *1)
+ (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
+ (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
+ (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-930))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-343 *4 *5 *6 *7)) (-4 *4 (-13 (-375) (-370)))
+ (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *7 (-349 *4 *5 *6))
+ (-5 *2 (-779)) (-5 *1 (-400 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-841 (-930)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-412)) (-5 *2 (-572))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4))
+ (-4 *4 (-1255 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-748 *4 *3)) (-4 *4 (-1060))
+ (-4 *3 (-858))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-748 *4 *3)) (-4 *4 (-1060)) (-4 *3 (-858))
+ (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-877 *3)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4))
+ (-4 *6 (-1255 *5)) (-4 *7 (-1255 (-415 *6)))
+ (-4 *8 (-349 *5 *6 *7)) (-4 *4 (-13 (-564) (-1049 (-572))))
+ (-5 *2 (-779)) (-5 *1 (-920 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6))
+ (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4)))
+ (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-779))
+ (-5 *1 (-921 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-343 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-370))
+ (-4 *7 (-1255 *6)) (-4 *4 (-1255 (-415 *7))) (-4 *8 (-349 *6 *7 *4))
+ (-4 *9 (-13 (-375) (-370))) (-5 *2 (-779))
+ (-5 *1 (-1029 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1060)) (-4 *3 (-564))
+ (-5 *2 (-779))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-27) (-438 *4))) (-4 *4 (-13 (-564) (-1049 (-572))))
+ (-4 *7 (-1255 (-415 *6))) (-5 *1 (-560 *4 *5 *6 *7 *2))
+ (-4 *2 (-349 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386))))
+ ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *2 *3)
(-12
(-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-334)))))
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *4)))))))
+ (-5 *3 (-652 *7)) (-4 *4 (-13 (-313) (-148)))
+ (-4 *7 (-958 *4 *6 *5)) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *1 (-933 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1188)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-710 *3 *5 *6 *7))
+ (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229))
+ (-4 *7 (-1229))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-5 *2 (-1 *6 *5)) (-5 *1 (-714 *3 *5 *6))
+ (-4 *3 (-622 (-544))) (-4 *5 (-1229)) (-4 *6 (-1229)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-652 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-425 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-572)) (-5 *1 (-245))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-572)) (-5 *1 (-245)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1146))) (-5 *1 (-1077)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-91 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-930)) (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-370))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-930)) (-4 *4 (-356))
+ (-5 *1 (-536 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3 *2 *4 *5)) (-4 *4 (-242 *3 *2))
+ (-4 *5 (-242 *3 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-426 *3)) (-4 *3 (-553)) (-4 *3 (-564))))
+ ((*1 *2 *1) (-12 (-4 *1 (-553)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-805 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-553)) (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-851 *3)) (-4 *3 (-553)) (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1008 *3)) (-4 *3 (-174)) (-4 *3 (-553)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1019 *3)) (-4 *3 (-1049 (-415 (-572)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -4362 (-652 (-870))) (|:| -2486 (-652 (-870)))
+ (|:| |presup| (-652 (-870))) (|:| -2450 (-652 (-870)))
+ (|:| |args| (-652 (-870)))))
+ (-5 *1 (-1188)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-4 *5 (-335 *4)) (-4 *6 (-1255 *5))
+ (-5 *2 (-652 *3)) (-5 *1 (-785 *4 *5 *6 *3 *7)) (-4 *3 (-1255 *6))
+ (-14 *7 (-930)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-832)) (-5 *3 (-652 (-1188))) (-5 *1 (-833)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-356))
+ (-4 *2
+ (-13 (-410)
+ (-10 -7 (-15 -3491 (*2 *4)) (-15 -4370 ((-930) *2))
+ (-15 -1769 ((-1279 *2) (-930))) (-15 -2933 (*2 *2)))))
+ (-5 *1 (-363 *2 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1246 (-572))) (-4 *1 (-288 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-572)) (-4 *1 (-288 *3)) (-4 *3 (-1229)))))
+(((*1 *2 *2) (-12 (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
+ (-4 *4 (-174))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-438 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1103 *2)) (-4 *2 (-438 *4)) (-4 *4 (-564))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1188))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1255 *6))
+ (-4 *6 (-13 (-27) (-438 *5))) (-4 *5 (-13 (-564) (-1049 (-572))))
+ (-4 *8 (-1255 (-415 *7))) (-5 *2 (-594 *3))
+ (-5 *1 (-560 *5 *6 *7 *8 *3)) (-4 *3 (-349 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *1) (-4 *1 (-499)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
+ (-12 (-4 *3 (-622 (-901 *3))) (-4 *3 (-895 *3)) (-4 *3 (-460))
+ (-5 *1 (-1220 *3 *2)) (-4 *2 (-622 (-901 *3))) (-4 *2 (-895 *3))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *1) (-5 *1 (-605))))
+(((*1 *2 *1) (-12 (-4 *1 (-271 *2)) (-4 *2 (-858))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-872 *3)) (-14 *3 (-652 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1000))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1229)) (-5 *2 (-1188)) (-5 *1 (-1068 *3 *4))
+ (-4 *3 (-1104 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1103 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1257 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-5 *2 (-1188))))
+ ((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1275 *3)) (-14 *3 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))
+ (-5 *2 (-2 (|:| -3083 (-652 *6)) (|:| -3589 (-652 *6)))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1060))
+ (-4 *2 (-13 (-412) (-1049 *4) (-370) (-1214) (-290)))
+ (-5 *1 (-451 *4 *3 *2)) (-4 *3 (-1255 *4))))
+ ((*1 *1 *1) (-4 *1 (-553)))
+ ((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-827 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-902 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1229)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-1226 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1013))
+ (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-374 *4)) (-4 *4 (-174))
+ (-5 *2 (-697 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-174)) (-5 *2 (-697 *3)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-620 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188))) (-5 *5 (-1184 *2))
+ (-4 *2 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-620 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1188)))
+ (-5 *5 (-415 (-1184 *2))) (-4 *2 (-13 (-438 *6) (-27) (-1214)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *1 (-568 *6 *2 *7)) (-4 *7 (-1111)))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-426 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1255 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
+ (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-779))) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
+ (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-652 (-779))) (-5 *5 (-779)) (-5 *2 (-426 *3))
+ (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-779)) (-5 *2 (-426 *3)) (-5 *1 (-450 *3))
+ (-4 *3 (-1255 (-572)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-1018 *3))
+ (-4 *3 (-1255 (-415 (-572))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-426 *3)) (-5 *1 (-1244 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-426 *5)) (-4 *5 (-564))
+ (-5 *2
+ (-2 (|:| -2477 (-779)) (|:| -2379 *5) (|:| |radicand| (-652 *5))))
+ (-5 *1 (-326 *5)) (-5 *4 (-779))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-572)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-697 *3))))
+ (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
+ (-5 *2 (-652 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| |k| (-902 *3)) (|:| |c| *4))))
+ (-5 *1 (-635 *3 *4 *5)) (-4 *3 (-858))
+ (-4 *4 (-13 (-174) (-725 (-415 (-572))))) (-14 *5 (-930))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-680 *3))) (-5 *1 (-902 *3)) (-4 *3 (-858)))))
+(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |pde| (-650 (-320 (-227))))
- (|:| |constraints|
- (-650
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-777)) (|:| |boundaryType| (-570))
- (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227))))))
- (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168))
- (|:| |tol| (-227))))
- (-5 *2 (-112)) (-5 *1 (-212)))))
+ (-652
+ (-2 (|:| |scalar| (-415 (-572))) (|:| |coeff| (-1184 *2))
+ (|:| |logand| (-1184 *2)))))
+ (-5 *4 (-652 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-370)) (-5 *1 (-594 *2)))))
(((*1 *2)
- (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4))
- (-4 *3 (-333 *4))))
- ((*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-777)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-570)) (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-1223)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1269 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186))
- (-14 *4 *2))))
-(((*1 *1 *1) (-5 *1 (-1072))))
-(((*1 *2 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-368)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799))
- (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-270)))))
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-5 *2 (-426 (-1184 (-1184 *4))))
+ (-5 *1 (-1227 *4)) (-5 *3 (-1184 (-1184 *4))))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))
+ (-5 *2 (-1046)) (-5 *1 (-756)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1279 *4)) (-5 *3 (-572)) (-4 *4 (-356))
+ (-5 *1 (-536 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *2 *4)) (-4 *4 (-1255 *2))
+ (-4 *2 (-174))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1255 *2)) (-4 *2 (-174)) (-5 *1 (-416 *3 *2 *4))
+ (-4 *3 (-417 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-417 *2 *3)) (-4 *3 (-1255 *2)) (-4 *2 (-174))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1255 *2)) (-5 *2 (-572)) (-5 *1 (-776 *3 *4))
+ (-4 *4 (-417 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-958 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)) (-4 *3 (-174))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-564)) (-5 *1 (-980 *2 *3)) (-4 *3 (-1255 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1060)) (-4 *2 (-174)))))
+(((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *3) (-12 (-5 *3 (-652 (-52))) (-5 *2 (-1284)) (-5 *1 (-871)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-4 *2 (-1111))
+ (-5 *1 (-898 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
+ (-5 *1 (-338)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1268 *3))
- (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1239 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1237 *3))
- (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1260 *3 *4)) (-4 *5 (-992 *4))))
- ((*1 *1 *1) (-4 *1 (-499)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1171 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570))))
- (-5 *1 (-1172 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799))
- (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1078 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *3 (-1074 *6 *7 *8))
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-801))
+ (-4 *3 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *5 (-564))
+ (-5 *1 (-740 *4 *3 *5 *2)) (-4 *2 (-958 (-415 (-961 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1060)) (-4 *5 (-801))
+ (-4 *3
+ (-13 (-858)
+ (-10 -8 (-15 -3222 ((-1188) $))
+ (-15 -2043 ((-3 $ "failed") (-1188))))))
+ (-5 *1 (-995 *4 *5 *3 *2)) (-4 *2 (-958 (-961 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 *6))
+ (-4 *6
+ (-13 (-858)
+ (-10 -8 (-15 -3222 ((-1188) $))
+ (-15 -2043 ((-3 $ "failed") (-1188))))))
+ (-4 *4 (-1060)) (-4 *5 (-801)) (-5 *1 (-995 *4 *5 *6 *2))
+ (-4 *2 (-958 (-961 *4) *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-652 (-1 *4 (-652 *4)))) (-4 *4 (-1111))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1111))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-652 (-1 *4 (-652 *4))))
+ (-5 *1 (-114 *4)) (-4 *4 (-1111)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-800)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3))
+ (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-958 *6 *4 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1188)) (-4 *5 (-622 (-901 (-572))))
+ (-4 *5 (-895 (-572)))
+ (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-575 *5 *3)) (-4 *3 (-637))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1188)) (-5 *4 (-851 *2)) (-4 *2 (-1150))
+ (-4 *2 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-622 (-901 (-572)))) (-4 *5 (-895 (-572)))
+ (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
+ (-5 *1 (-575 *5 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3)) (-5 *6 (-1184 *3))
+ (-4 *3 (-13 (-438 *7) (-27) (-1214)))
+ (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-620 *3)) (-5 *5 (-652 *3))
+ (-5 *6 (-415 (-1184 *3))) (-4 *3 (-13 (-438 *7) (-27) (-1214)))
+ (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-568 *7 *3 *8)) (-4 *8 (-1111)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-572) (-227) (-514) (-1170) (-1193)))
+ (-5 *1 (-1193)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-987 *4 *5 *3 *6)) (-4 *4 (-1060)) (-4 *5 (-801))
+ (-4 *3 (-858)) (-4 *6 (-1076 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-858)) (-5 *2 (-1200 (-652 *4))) (-5 *1 (-1199 *4))
+ (-5 *3 (-652 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-795)) (-5 *2 (-1046))
+ (-5 *3
+ (-2 (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-652 (-1105 (-851 (-227))))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-795)) (-5 *2 (-1046))
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227)))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *2)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *2 (-1111)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-1111)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-207))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-652 (-386))) (-5 *2 (-386)) (-5 *1 (-207)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
+ (-5 *2 (-489 *4 *5)) (-5 *1 (-953 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4 *5 *6)) (-4 *3 (-370)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5))
+ (-5 *2 (-421 *4 (-415 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1279 *6)) (-4 *6 (-13 (-417 *4 *5) (-1049 *4)))
+ (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4)) (-4 *3 (-313))
+ (-5 *1 (-421 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-370))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-512 *3 *4 *5 *6)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-1267 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *2 (-605)) (-5 *1 (-286)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-268))) (-5 *4 (-1188)) (-5 *2 (-112))
+ (-5 *1 (-268)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-370))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-582 *5 *3)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
+ (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-762)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *1) (-4 *1 (-1071))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-697 (-415 (-961 (-572)))))
+ (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042))
+ (-5 *3 (-322 (-572))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
+ (-14 *4 (-652 (-1188)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
+ (-14 *4 (-652 (-1188))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-846))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1126))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-1193))) (-5 *3 (-1193)) (-5 *1 (-1129)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-1170))) (-5 *2 (-1170)) (-5 *1 (-194))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-833)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-572)) (-5 *2 (-112)) (-5 *1 (-488)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-661 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
(-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-818 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799))
- (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9))
+ (-12 (-5 *3 (-661 (-415 *6))) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2 (-2 (|:| -1769 (-652 (-415 *6))) (|:| -1866 (-697 *5))))
+ (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-662 *6 (-415 *6))) (-5 *4 (-415 *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
(-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1154 *7 *8 *9 *3 *4)) (-4 *4 (-1118 *7 *8 *9 *3))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-818 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-662 *6 (-415 *6))) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572)) (-1049 (-415 (-572)))))
+ (-5 *2 (-2 (|:| -1769 (-652 (-415 *6))) (|:| -1866 (-697 *5))))
+ (-5 *1 (-818 *5 *6)) (-5 *4 (-652 (-415 *6))))))
+(((*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-856)) (-5 *1 (-309 *3)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
+ ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-475))))
+ ((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1113 (-1113 *3))) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-415 (-961 (-572)))))
+ (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-856) (-370)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-300 (-415 (-961 (-572))))))
+ (-5 *2 (-652 (-652 (-300 (-961 *4))))) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-856) (-370)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 (-300 (-961 *4))))
+ (-5 *1 (-387 *4)) (-4 *4 (-13 (-856) (-370)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-300 (-415 (-961 (-572)))))
+ (-5 *2 (-652 (-300 (-961 *4)))) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-856) (-370)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856))
- (-4 *3 (-1074 *6 *7 *8))
+ (|partial| -12 (-5 *5 (-1188))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1214) (-968)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1769 (-652 *4))))
+ (-5 *1 (-660 *6 *4 *3)) (-4 *3 (-664 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1188)) (-5 *5 (-652 *2))
+ (-4 *2 (-13 (-29 *6) (-1214) (-968)))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *1 (-660 *6 *2 *3)) (-4 *3 (-664 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 *5)) (-4 *5 (-370))
(-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3))))
+ (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
+ (|:| -1769 (-652 (-1279 *5)))))
+ (-5 *1 (-675 *5)) (-5 *4 (-1279 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
+ (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370))
(-5 *2
- (-2 (|:| |done| (-650 *4))
- (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -4246 *4))))))
- (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *10))
- (-5 *1 (-630 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1080 *5 *6 *7 *8))
- (-4 *10 (-1118 *5 *6 *7 *8))))
+ (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
+ (|:| -1769 (-652 (-1279 *5)))))
+ (-5 *1 (-675 *5)) (-5 *4 (-1279 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458))
- (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6)))
- (-5 *1 (-634 *5 *6))))
+ (-12 (-5 *3 (-697 *5)) (-4 *5 (-370))
+ (-5 *2
+ (-652
+ (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
+ (|:| -1769 (-652 (-1279 *5))))))
+ (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458))
- (-14 *6 (-650 (-1186)))
+ (-12 (-5 *3 (-652 (-652 *5))) (-4 *5 (-370))
(-5 *2
- (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6)))))
- (-5 *1 (-634 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458))
- (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6)))
- (-5 *1 (-1055 *5 *6))))
+ (-652
+ (-2 (|:| |particular| (-3 (-1279 *5) "failed"))
+ (|:| -1769 (-652 (-1279 *5))))))
+ (-5 *1 (-675 *5)) (-5 *4 (-652 (-1279 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1080 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1))
- (-4 *1 (-1220 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799))
- (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-650 *3))
- (-5 *1 (-597 *5 *6 *7 *8 *3)) (-4 *3 (-1118 *5 *6 *7 *8))))
+ (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
+ (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148)))
+ (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
+ (-4 *7 (-13 (-380 *5) (-10 -7 (-6 -4455))))
(-5 *2
- (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5))))))
- (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5)))
- (-14 *6 (-650 (-1186)))))
+ (-652
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1769 (-652 *7)))))
+ (-5 *1 (-676 *5 *6 *7 *3)) (-5 *4 (-652 *7))
+ (-4 *3 (-695 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188))) (-4 *5 (-564))
+ (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-778 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-148)))
+ (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-564))
+ (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-778 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *1 (-780 *5 *2)) (-4 *2 (-13 (-29 *5) (-1214) (-968)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-697 *7)) (-5 *5 (-1188))
+ (-4 *7 (-13 (-29 *6) (-1214) (-968)))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1279 *7)) (|:| -1769 (-652 (-1279 *7)))))
+ (-5 *1 (-810 *6 *7)) (-5 *4 (-1279 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-697 *6)) (-5 *4 (-1188))
+ (-4 *6 (-13 (-29 *5) (-1214) (-968)))
+ (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2 (-652 (-1279 *6))) (-5 *1 (-810 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115)))
+ (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968)))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1279 *7)) (|:| -1769 (-652 (-1279 *7)))))
+ (-5 *1 (-810 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115)))
+ (-5 *5 (-1188)) (-4 *7 (-13 (-29 *6) (-1214) (-968)))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1279 *7)) (|:| -1769 (-652 (-1279 *7)))))
+ (-5 *1 (-810 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-1188))
+ (-4 *7 (-13 (-29 *6) (-1214) (-968)))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
(-5 *2
- (-650 (-2 (|:| -3744 (-1182 *4)) (|:| -2987 (-650 (-959 *4))))))
- (-5 *1 (-1087 *4 *5)) (-5 *3 (-650 (-959 *4)))
- (-14 *5 (-650 (-1186)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148)))
+ (-3 (-2 (|:| |particular| *7) (|:| -1769 (-652 *7))) *7 "failed"))
+ (-5 *1 (-810 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-1188))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
(-5 *2
- (-650 (-2 (|:| -3744 (-1182 *5)) (|:| -2987 (-650 (-959 *5))))))
- (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5)))
- (-14 *6 (-650 (-1186))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1044)) (-5 *1 (-309))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1044))) (-5 *2 (-1044)) (-5 *1 (-309))))
- ((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-657 *3)) (-4 *3 (-1227))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1227))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1 *1) (-5 *1 (-1072)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1163 *4))
- (-4 *4 (-1227))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1227)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-562))
- (-5 *2 (-2 (|:| -1747 *4) (|:| -1437 *3) (|:| -3357 *3)))
- (-5 *1 (-978 *4 *3)) (-4 *3 (-1253 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *2 (-2 (|:| -1437 *1) (|:| -3357 *1))) (-4 *1 (-1074 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-562)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| -1747 *3) (|:| -1437 *1) (|:| -3357 *1)))
- (-4 *1 (-1253 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-777))) (-5 *3 (-173)) (-5 *1 (-1174 *4 *5))
- (-14 *4 (-928)) (-4 *5 (-1058)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-424 *4) *4)) (-4 *4 (-562)) (-5 *2 (-424 *4))
- (-5 *1 (-425 *4))))
- ((*1 *1 *1) (-5 *1 (-933)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933))))
- ((*1 *1 *1) (-5 *1 (-934)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))
- (-5 *4 (-413 (-570))) (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))
- (-5 *1 (-1029 *3)) (-4 *3 (-1253 (-570)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))
- (-5 *4 (-413 (-570))) (-5 *1 (-1030 *3)) (-4 *3 (-1253 *4))))
- ((*1 *2 *3 *2 *2)
+ (-3 (-2 (|:| |particular| *3) (|:| -1769 (-652 *3))) *3 "failed"))
+ (-5 *1 (-810 *6 *3)) (-4 *3 (-13 (-29 *6) (-1214) (-968)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-300 *2)) (-5 *4 (-115)) (-5 *5 (-652 *2))
+ (-4 *2 (-13 (-29 *6) (-1214) (-968))) (-5 *1 (-810 *6 *2))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-300 *2)) (-5 *5 (-652 *2))
+ (-4 *2 (-13 (-29 *6) (-1214) (-968)))
+ (-4 *6 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *1 (-810 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-816)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4))
+ (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4))
+ (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386)))
+ (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1279 (-322 (-386)))) (-5 *4 (-386)) (-5 *5 (-652 *4))
+ (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386)))
+ (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1279 (-322 *4))) (-5 *5 (-652 (-386)))
+ (-5 *6 (-322 (-386))) (-5 *4 (-386)) (-5 *2 (-1046)) (-5 *1 (-813))))
+ ((*1 *2 *3 *4 *5)
(|partial| -12
- (-5 *2 (-2 (|:| -2403 (-413 (-570))) (|:| -2420 (-413 (-570)))))
- (-5 *1 (-1030 *3)) (-4 *3 (-1253 (-413 (-570))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3))
- (-4 *3 (-1253 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551))))
- ((*1 *1 *1 *1) (-5 *1 (-868)))
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -1769 (-652 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-370)) (-4 *7 (-664 *6))
+ (-5 *2 (-2 (|:| |particular| (-1279 *6)) (|:| -1769 (-697 *6))))
+ (-5 *1 (-821 *6 *7)) (-5 *3 (-697 *6)) (-5 *4 (-1279 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-907)) (-5 *2 (-1046)) (-5 *1 (-906))))
((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056))
- (-5 *3 (-570)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-695 *7)) (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5))
- (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-907)) (-5 *4 (-1074)) (-5 *2 (-1046)) (-5 *1 (-906))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170))
+ (-5 *8 (-227)) (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386))
+ (-5 *2 (-1046)) (-5 *1 (-906))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-779)) (-5 *6 (-652 (-652 (-322 *3)))) (-5 *7 (-1170))
+ (-5 *5 (-652 (-322 (-386)))) (-5 *3 (-386)) (-5 *2 (-1046))
+ (-5 *1 (-906))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-961 (-415 (-572)))) (-5 *2 (-652 (-386)))
+ (-5 *1 (-1034)) (-5 *4 (-386))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-961 (-572))) (-5 *2 (-652 (-386))) (-5 *1 (-1034))
+ (-5 *4 (-386))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4))
+ (-5 *3 (-322 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2 (-652 (-300 (-322 *4)))) (-5 *1 (-1142 *4))
+ (-5 *3 (-300 (-322 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5))
+ (-5 *3 (-300 (-322 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2 (-652 (-300 (-322 *5)))) (-5 *1 (-1142 *5))
+ (-5 *3 (-322 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-1188)))
+ (-4 *5 (-13 (-313) (-1049 (-572)) (-647 (-572)) (-148)))
+ (-5 *2 (-652 (-652 (-300 (-322 *5))))) (-5 *1 (-1142 *5))
+ (-5 *3 (-652 (-300 (-322 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-415 (-961 *5)))) (-5 *4 (-652 (-1188)))
+ (-4 *5 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *5))))))
+ (-5 *1 (-1197 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-1188))) (-4 *5 (-564))
+ (-5 *2 (-652 (-652 (-300 (-415 (-961 *5)))))) (-5 *1 (-1197 *5))
+ (-5 *3 (-652 (-300 (-415 (-961 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-415 (-961 *4)))) (-4 *4 (-564))
+ (-5 *2 (-652 (-652 (-300 (-415 (-961 *4)))))) (-5 *1 (-1197 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-652 (-652 (-300 (-415 (-961 *4))))))
+ (-5 *1 (-1197 *4)) (-5 *3 (-652 (-300 (-415 (-961 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-4 *5 (-564))
+ (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5))
+ (-5 *3 (-415 (-961 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-4 *5 (-564))
+ (-5 *2 (-652 (-300 (-415 (-961 *5))))) (-5 *1 (-1197 *5))
+ (-5 *3 (-300 (-415 (-961 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4)))))
+ (-5 *1 (-1197 *4)) (-5 *3 (-415 (-961 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-652 (-300 (-415 (-961 *4)))))
+ (-5 *1 (-1197 *4)) (-5 *3 (-300 (-415 (-961 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1168 (-572))) (-5 *1 (-1172 *4)) (-4 *4 (-1060))
+ (-5 *3 (-572)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1168 (-2 (|:| |k| (-572)) (|:| |c| *6))))
+ (-5 *4 (-1037 (-851 (-572)))) (-5 *5 (-1188)) (-5 *7 (-415 (-572)))
+ (-4 *6 (-1060)) (-5 *2 (-870)) (-5 *1 (-603 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-652 (-930))) (-5 *2 (-779)) (-5 *1 (-598)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-652
+ (-652
+ (-3 (|:| -2402 (-1188))
+ (|:| -2537 (-652 (-3 (|:| S (-1188)) (|:| P (-961 (-572))))))))))
+ (-5 *1 (-1192)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-5 *2 (-570))
- (-5 *1 (-449 *5 *3 *6)) (-4 *3 (-1253 *5))
- (-4 *6 (-13 (-410) (-1047 *5) (-368) (-1212) (-288)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5))
- (-4 *3 (-1253 *4))
- (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1212) (-288))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))))
-(((*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4443)) (-4 *1 (-410))))
- ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928))))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705))))
- ((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-311))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3643 *1)))
- (-4 *1 (-311)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112))
- (-5 *2 (-1044)) (-5 *1 (-759)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-458)))))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7)) (-5 *2 (-652 *4))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-779))
+ (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-171 (-322 *4)))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-171 *3)) (-5 *1 (-1218 *4 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *1) (-4 *1 (-1071)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1257 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800)))))
+(((*1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-572))
+ (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-297)) (-5 *1 (-286)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1103 (-849 (-384)))) (-5 *2 (-1103 (-849 (-227))))
- (-5 *1 (-309)))))
+ (-12 (-4 *4 (-13 (-370) (-1049 (-415 *2)))) (-5 *2 (-572))
+ (-5 *1 (-116 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)) (-5 *2 (-652 *6))
+ (-5 *1 (-998 *3 *4 *5 *6)) (-4 *6 (-958 *3 *5 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1060)) (-5 *2 (-967 (-720 *3 *4))) (-5 *1 (-720 *3 *4))
+ (-4 *4 (-1255 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-652 (-227)))
+ (-5 *1 (-476)))))
(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-747 *3)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-650
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856))
- (-5 *1 (-455 *3 *4 *5 *6)))))
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1168 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4336
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1046)) (-5 *1 (-311)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-652 (-652 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-5 *2 (-652 (-652 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-652 *3))) (-5 *1 (-1200 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060))
+ (-4 *2 (-1270 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058))
- (-5 *3 (-570)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7))
- (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856))
- (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8))))
- (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-1278))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-777)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
+ (-12 (-5 *3 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131))))))
+ (-4 *4 (-356)) (-5 *2 (-697 *4)) (-5 *1 (-353 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *4)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-1255 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *2 (-652 *3)) (-5 *1 (-1139 *4 *3)) (-4 *4 (-1255 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-1170)) (-5 *1 (-794)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3829 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *5 (-375))
+ (-5 *2 (-779)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-370)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))
+ (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-830)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *1 (-329 *2 *4)) (-4 *4 (-132))
+ (-4 *2 (-1111))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-368 *2)) (-4 *2 (-1111))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-4 *1 (-393 *2)) (-4 *2 (-1111))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-572)) (-5 *1 (-426 *2)) (-4 *2 (-564))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-572)) (-4 *2 (-1111)) (-5 *1 (-657 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-652 (-1087 *4 *5 *2))) (-4 *4 (-1111))
+ (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
+ (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-652 (-1087 *5 *6 *2))) (-5 *4 (-930)) (-4 *5 (-1111))
+ (-4 *6 (-13 (-1060) (-895 *5) (-622 (-901 *5))))
+ (-4 *2 (-13 (-438 *6) (-895 *5) (-622 (-901 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-562 *3)) (-4 *3 (-13 (-412) (-1214))) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-333 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229))
+ (-14 *4 (-572)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058))
- (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1220 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))))
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-1109 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1109 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1072 (-1035 *4) (-1184 (-1035 *4)))) (-5 *3 (-870))
+ (-5 *1 (-1035 *4)) (-4 *4 (-13 (-856) (-370) (-1033))))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4455)) (-4 *4 (-370)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-529 *4 *5 *6 *3))
+ (-4 *3 (-695 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4455)) (-4 *4 (-564)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)) (-4 *7 (-1003 *4)) (-4 *8 (-380 *7))
+ (-4 *9 (-380 *7)) (-5 *2 (-652 *6))
+ (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-695 *4 *5 *6))
+ (-4 *10 (-695 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-652 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)) (-5 *2 (-652 *6)) (-5 *1 (-696 *4 *5 *6 *3))
+ (-4 *3 (-695 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564))
+ (-5 *2 (-652 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-769))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-757)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-145))) (-5 *1 (-142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-142)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928))))
- ((*1 *1 *1 *1) (-5 *1 (-1232))) ((*1 *1 *1 *1) (-5 *1 (-1233)))
- ((*1 *1 *1 *1) (-5 *1 (-1234))) ((*1 *1 *1 *1) (-5 *1 (-1235))))
+ (-12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1270 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-4 *4 (-1255 *3))
+ (-4 *5 (-732 *3 *4)) (-5 *1 (-549 *3 *4 *5 *2)) (-4 *2 (-1270 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-375) (-622 (-572)))) (-5 *1 (-550 *3 *2))
+ (-4 *2 (-1270 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1168 *3)) (-4 *3 (-13 (-564) (-148)))
+ (-5 *1 (-1164 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1121)) (-5 *3 (-572)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-436 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112))
- (-5 *1 (-159 *4 *5)) (-4 *5 (-436 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112))
- (-5 *1 (-279 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-305 *4)) (-4 *4 (-306))))
- ((*1 *2 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *5 (-1109)) (-5 *2 (-112))
- (-5 *1 (-435 *4 *5)) (-4 *4 (-436 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112))
- (-5 *1 (-437 *4 *5)) (-4 *5 (-436 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112))
- (-5 *1 (-636 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1212))))))
+ (-12 (-5 *3 (-697 (-415 (-961 (-572)))))
+ (-5 *2
+ (-652
+ (-2 (|:| |radval| (-322 (-572))) (|:| |radmult| (-572))
+ (|:| |radvect| (-652 (-697 (-322 (-572))))))))
+ (-5 *1 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1255 *5))
+ (-4 *5 (-13 (-370) (-148) (-1049 (-572))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-415 *6)) (|:| |c| (-415 *6))
+ (|:| -2508 *6)))
+ (-5 *1 (-1026 *5 *6)) (-5 *3 (-415 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-564)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-860 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-564)) (-4 *5 (-1060))
+ (-5 *2 (-2 (|:| -1882 *3) (|:| -2336 *3))) (-5 *1 (-861 *5 *3))
+ (-4 *3 (-860 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-1188))) (-5 *3 (-52)) (-5 *1 (-901 *4))
+ (-4 *4 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-336)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6))
+ (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-988 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-586))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3) (-12 (-5 *3 (-779)) (-5 *2 (-1284)) (-5 *1 (-386))))
+ ((*1 *2) (-12 (-5 *2 (-1284)) (-5 *1 (-386)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-564))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-5 *1 (-103 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *5 (-1253 *4)) (-5 *2 (-650 (-2 (|:| -1744 *5) (|:| -2662 *5))))
- (-5 *1 (-813 *4 *5 *3 *6)) (-4 *3 (-662 *5))
- (-4 *6 (-662 (-413 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *4 (-1253 *5)) (-5 *2 (-650 (-2 (|:| -1744 *4) (|:| -2662 *4))))
- (-5 *1 (-813 *5 *4 *3 *6)) (-4 *3 (-662 *4))
- (-4 *6 (-662 (-413 *4)))))
+ (-12 (-5 *3 (-1057 *4 *5)) (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-14 *5 (-652 (-1188))) (-5 *2 (-652 (-652 (-1035 (-415 *4)))))
+ (-5 *1 (-1306 *4 *5 *6)) (-14 *6 (-652 (-1188)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-652 (-1035 (-415 *5))))) (-5 *1 (-1306 *5 *6 *7))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-961 *4)))
+ (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-652 (-1035 (-415 *4))))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1279 *1)) (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233))
+ (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1279 (-1112 *3 *4))) (-5 *1 (-1112 *3 *4))
+ (-14 *3 (-930)) (-14 *4 (-930)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-975 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1279 *5)) (-4 *5 (-800)) (-5 *2 (-112))
+ (-5 *1 (-853 *4 *5)) (-14 *4 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1279 (-1279 *4))) (-4 *4 (-1060)) (-5 *2 (-697 *4))
+ (-5 *1 (-1040 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-697 (-415 (-961 (-572))))) (-5 *2 (-652 (-322 (-572))))
+ (-5 *1 (-1042)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-564))
+ (-5 *2 (-870)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-251 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
+ (-5 *2 (-961 *5)) (-5 *1 (-953 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 (-872 *5))) (-14 *5 (-652 (-1188))) (-4 *6 (-460))
+ (-5 *2
+ (-2 (|:| |dpolys| (-652 (-251 *5 *6)))
+ (|:| |coords| (-652 (-572)))))
+ (-5 *1 (-479 *5 *6 *7)) (-5 *3 (-652 (-251 *5 *6))) (-4 *7 (-460)))))
+(((*1 *1) (-5 *1 (-1093))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -1647 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-370)) (-5 *1 (-582 *4 *2)) (-4 *2 (-1255 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-870)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-4 *3 (-1111))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-313) (-148) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-434 *4 *2)) (-4 *2 (-13 (-1214) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-961 *5))) (-5 *4 (-1188)) (-4 *5 (-148))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-322 *5))
+ (-5 *1 (-597 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-514)) (-5 *1 (-285)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-572))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858))
+ (-5 *1 (-457 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-882))
+ (-5 *5 (-930)) (-5 *6 (-652 (-268))) (-5 *2 (-476)) (-5 *1 (-1283))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *5 (-1253 *4)) (-5 *2 (-650 (-2 (|:| -1744 *5) (|:| -2662 *5))))
- (-5 *1 (-813 *4 *5 *6 *3)) (-4 *6 (-662 *5))
- (-4 *3 (-662 (-413 *5)))))
+ (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *2 (-476))
+ (-5 *1 (-1283))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570)))))
- (-4 *4 (-1253 *5)) (-5 *2 (-650 (-2 (|:| -1744 *4) (|:| -2662 *4))))
- (-5 *1 (-813 *5 *4 *6 *3)) (-4 *6 (-662 *4))
- (-4 *3 (-662 (-413 *4))))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
+ (-12 (-5 *3 (-652 (-652 (-952 (-227))))) (-5 *4 (-652 (-268)))
+ (-5 *2 (-476)) (-5 *1 (-1283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1289)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-564) (-148))) (-5 *1 (-1249 *3 *2))
+ (-4 *2 (-1255 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-958 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
+ (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-499)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188))
+ (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
+ ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1111)))))
+(((*1 *1) (-5 *1 (-831))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)))
- (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1212) (-966))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))
- ((*1 *1 *1 *1) (-5 *1 (-868))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-593 *2)) (-4 *2 (-551)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-765)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-306)) (-4 *2 (-1227))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-618 *1))) (-5 *3 (-650 *1)) (-4 *1 (-306))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *1))) (-4 *1 (-306))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-298 *1)) (-4 *1 (-306)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458))
- (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-986 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6))
- (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856))
- (-5 *1 (-986 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-145))))
- ((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-145)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1044)) (-5 *1 (-755))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-394)) (-5 *2 (-1044)) (-5 *1 (-755)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *3 (-650 (-266))) (-5 *1 (-264))))
+ (-12 (-5 *3 (-620 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4)))
+ (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-282 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1060)) (-14 *3 (-652 (-1188)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1060) (-858)))
+ (-14 *3 (-652 (-1188)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-389 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-1111))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-652 (-1188))) (-4 *3 (-174))
+ (-4 *5 (-242 (-3475 *2) (-779)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -1795 *4) (|:| -2477 *5))
+ (-2 (|:| -1795 *4) (|:| -2477 *5))))
+ (-5 *1 (-469 *2 *3 *4 *5 *6 *7)) (-4 *4 (-858))
+ (-4 *7 (-958 *3 *5 (-872 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1111)) (-4 *3 (-858))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-743 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1060))
+ (-4 *3 (-734))))
+ ((*1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-683 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1279 (-1188))) (-5 *3 (-1279 (-461 *4 *5 *6 *7)))
+ (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-1279 (-697 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-1279 (-461 *4 *5 *6 *7)))
+ (-5 *1 (-461 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-930))
+ (-14 *6 (-652 *2)) (-14 *7 (-1279 (-697 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1279 (-461 *3 *4 *5 *6))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188)))
+ (-14 *6 (-1279 (-697 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1279 (-1188))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-930)) (-14 *5 (-652 (-1188)))
+ (-14 *6 (-1279 (-697 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-930)) (-14 *5 (-652 *2)) (-14 *6 (-1279 (-697 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-461 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-930))
+ (-14 *4 (-652 (-1188))) (-14 *5 (-1279 (-697 *2))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-961 (-386))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-415 (-961 (-386)))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
((*1 *1 *2)
+ (-12 (-5 *2 (-322 (-386))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-386))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-961 (-572))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-415 (-961 (-572)))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-322 (-572))) (-5 *1 (-346 *3 *4 *5))
+ (-4 *5 (-1049 (-572))) (-14 *3 (-652 (-1188)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-395))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1188)) (-5 *1 (-346 *3 *4 *5)) (-14 *3 (-652 *2))
+ (-14 *4 (-652 *2)) (-4 *5 (-395))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-322 *5)) (-4 *5 (-395)) (-5 *1 (-346 *3 *4 *5))
+ (-14 *3 (-652 (-1188))) (-14 *4 (-652 (-1188)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-572))))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697 (-415 (-961 (-386))))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-572)))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697 (-961 (-386)))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-697 (-322 (-386)))) (-4 *1 (-391))))
+ ((*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-572)))) (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-415 (-961 (-386)))) (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-961 (-572))) (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-961 (-386))) (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-4 *1 (-404))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-572))))) (-4 *1 (-449))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 (-415 (-961 (-386))))) (-4 *1 (-449))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-572)))) (-4 *1 (-449))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 (-961 (-386)))) (-4 *1 (-449))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-572)))) (-4 *1 (-449))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1279 (-322 (-386)))) (-4 *1 (-449))))
+ ((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-266))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-570)) (-5 *4 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279))))
- ((*1 *2 *1 *3)
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-652 (-1105 (-851 (-227)))))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+ (-5 *1 (-777))))
+ ((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *2 (-1282)) (-5 *1 (-1279))))
+ (-5 *2
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *1 (-816))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2768 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-1279))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-384)) (-5 *2 (-1282)) (-5 *1 (-1279)))))
-(((*1 *2 *3)
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227)))
+ (|:| |lb| (-652 (-851 (-227))))
+ (|:| |cf| (-652 (-322 (-227))))
+ (|:| |ub| (-652 (-851 (-227))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-652 (-322 (-227))))
+ (|:| -3477 (-652 (-227)))))))
+ (-5 *1 (-849))))
+ ((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-570)) (-5 *1 (-206)))))
+ (-5 *2
+ (-2 (|:| |pde| (-652 (-322 (-227))))
+ (|:| |constraints|
+ (-652
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-779)) (|:| |boundaryType| (-572))
+ (|:| |dStart| (-697 (-227))) (|:| |dFinish| (-697 (-227))))))
+ (|:| |f| (-652 (-652 (-322 (-227))))) (|:| |st| (-1170))
+ (|:| |tol| (-227))))
+ (-5 *1 (-907))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *1 (-987 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2)
+ (-3783
+ (-12 (-5 *2 (-961 *3))
+ (-12 (-3795 (-4 *3 (-38 (-415 (-572)))))
+ (-3795 (-4 *3 (-38 (-572)))) (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)))
+ (-12 (-5 *2 (-961 *3))
+ (-12 (-3795 (-4 *3 (-553))) (-3795 (-4 *3 (-38 (-415 (-572)))))
+ (-4 *3 (-38 (-572))) (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)))
+ (-12 (-5 *2 (-961 *3))
+ (-12 (-3795 (-4 *3 (-1003 (-572)))) (-4 *3 (-38 (-415 (-572))))
+ (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *1 (-1076 *3 *4 *5)) (-4 *4 (-801))
+ (-4 *5 (-858)))))
+ ((*1 *1 *2)
+ (-3783
+ (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
+ (-12 (-3795 (-4 *3 (-38 (-415 (-572))))) (-4 *3 (-38 (-572)))
+ (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))
+ (-12 (-5 *2 (-961 (-572))) (-4 *1 (-1076 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))))
+ (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-961 (-415 (-572)))) (-4 *1 (-1076 *3 *4 *5))
+ (-4 *3 (-38 (-415 (-572)))) (-4 *5 (-622 (-1188))) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1188))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-652 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1647 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1214) (-27) (-438 *8)))
+ (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572))
+ (-5 *2 (-652 *4)) (-5 *1 (-1025 *8 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-652 (-952 (-227))))) (-5 *1 (-476)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-650 *2))) (-5 *4 (-650 *5))
- (-4 *5 (-38 (-413 (-570)))) (-4 *2 (-1268 *5))
- (-5 *1 (-1270 *5 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1282)) (-5 *1 (-744)))))
+ (-12 (-5 *3 (-652 (-227))) (-5 *4 (-779)) (-5 *2 (-697 (-227)))
+ (-5 *1 (-311)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112))
+ (-5 *2 (-1046)) (-5 *1 (-753)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-193)) (-5 *3 (-570))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-650 (-695 *6))) (-5 *4 (-112)) (-5 *5 (-570))
- (-5 *2 (-695 *6)) (-5 *1 (-1038 *6)) (-4 *6 (-368)) (-4 *6 (-1058))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-5 *1 (-1038 *4))
- (-4 *4 (-368)) (-4 *4 (-1058))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-5 *2 (-695 *5))
- (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-1058)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-247 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-535)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1294 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1300 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-368)) (-4 *3 (-1058))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3643 *1)))
- (-4 *1 (-858 *3)))))
+ (-12 (-4 *4 (-801))
+ (-4 *5 (-13 (-858) (-10 -8 (-15 -3222 ((-1188) $))))) (-4 *6 (-564))
+ (-5 *2 (-2 (|:| -2486 (-961 *6)) (|:| -4075 (-961 *6))))
+ (-5 *1 (-740 *4 *5 *6 *3)) (-4 *3 (-958 (-415 (-961 *6)) *4 *5)))))
(((*1 *2 *1)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-652 *1))
+ (-4 *1 (-958 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1168 (-1168 *4))) (-5 *2 (-1168 *4)) (-5 *1 (-1172 *4))
+ (-4 *4 (-1060)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-958 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-460))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *1))))
+ (-4 *1 (-1082 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1233)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-1258 *3 *2))
+ (-4 *2 (-13 (-1255 *3) (-564) (-10 -8 (-15 -1370 ($ $ $))))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-656 *3)) (-4 *3 (-1060))
+ (-5 *1 (-722 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1060)) (-5 *1 (-844 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-1170)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-755)))))
+(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1170)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1153 *4 *2)) (-14 *4 (-930))
+ (-4 *2 (-13 (-1060) (-10 -7 (-6 (-4456 "*")))))
+ (-5 *1 (-911 *4 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1115)) (-5 *3 (-782)) (-5 *1 (-52)))))
+(((*1 *1 *2)
(-12
(-5 *2
- (-650
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-570)))))
- (-5 *1 (-424 *3)) (-4 *3 (-562))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-777)) (-4 *3 (-354)) (-4 *5 (-1253 *3))
- (-5 *2 (-650 (-1182 *3))) (-5 *1 (-504 *3 *5 *6))
- (-4 *6 (-1253 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-334)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1227)) (-4 *4 (-378 *3))
- (-4 *5 (-378 *3)) (-5 *2 (-570))))
+ (-652
+ (-2
+ (|:| -1640
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227))))
+ (|:| |yinit| (-652 (-227))) (|:| |intvals| (-652 (-227)))
+ (|:| |g| (-322 (-227))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3762
+ (-2 (|:| |stiffness| (-386)) (|:| |stability| (-386))
+ (|:| |expense| (-386)) (|:| |accuracy| (-386))
+ (|:| |intermediateResults| (-386)))))))
+ (-5 *1 (-811)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188))
+ (-4 *5 (-13 (-1049 (-572)) (-460) (-647 (-572))))
+ (-5 *2 (-2 (|:| -3620 *3) (|:| |nconst| *3))) (-5 *1 (-575 *5 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))))
((*1 *2 *1)
- (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058))
- (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799))
- (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799))
- (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-928))) (-5 *2 (-650 (-695 (-570))))
- (-5 *1 (-1119)))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1075)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-368)) (-4 *2 (-854)) (-5 *1 (-952 *2 *3))
- (-4 *3 (-1253 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-697 (-1144))) (-5 *1 (-1160)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-533)) (-5 *3 (-129)) (-5 *2 (-777)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3))
- (-4 *3 (-1109)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373))))
- ((*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368))))
+ (-12 (-4 *2 (-1060)) (-5 *1 (-50 *2 *3)) (-14 *3 (-652 (-1188)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-322 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1060) (-858))) (-14 *4 (-652 (-1188)))))
((*1 *2 *1)
- (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1253 *2)) (-4 *2 (-174))))
+ (-12 (-4 *1 (-389 *2 *3)) (-4 *3 (-1111)) (-4 *2 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-652 (-1188))) (-4 *5 (-242 (-3475 *3) (-779)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -1795 *4) (|:| -2477 *5))
+ (-2 (|:| -1795 *4) (|:| -2477 *5))))
+ (-4 *2 (-174)) (-5 *1 (-469 *3 *2 *4 *5 *6 *7)) (-4 *4 (-858))
+ (-4 *7 (-958 *2 *5 (-872 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-517 *2 *3)) (-4 *3 (-858)) (-4 *2 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-564)) (-5 *1 (-631 *2 *3)) (-4 *3 (-1255 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1060)) (-5 *1 (-743 *2 *3)) (-4 *3 (-858))
+ (-4 *3 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *3 (-800)) (-4 *4 (-858))
+ (-4 *2 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *3 *4 *2)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)))))
+(((*1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1060)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1255 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4)))
+ (-5 *2 (-2 (|:| |num| (-1279 *4)) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-308))))
+ ((*1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4)))))
+ ((*1 *1 *1) (-5 *1 (-386)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-784 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-856) (-370))) (-5 *2 (-112)) (-5 *1 (-1072 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1105 *3)) (-4 *3 (-958 *7 *6 *4)) (-4 *6 (-801))
+ (-4 *4 (-858)) (-4 *7 (-564))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572))))
+ (-5 *1 (-602 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-564))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-572))))
+ (-5 *1 (-602 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-870))) ((*1 *1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1) (-5 *1 (-870)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1277 *4)) (-5 *3 (-928)) (-4 *4 (-354))
- (-5 *1 (-534 *4))))
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1180 *4 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-161) (-27) (-1214)))
+ (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1180 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572))))
+ (-5 *2 (-415 (-961 *5))) (-5 *1 (-1181 *5)) (-5 *3 (-961 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1188)) (-4 *5 (-13 (-564) (-1049 (-572))))
+ (-5 *2 (-3 (-415 (-961 *5)) (-322 *5))) (-5 *1 (-1181 *5))
+ (-5 *3 (-415 (-961 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1103 (-961 *5))) (-5 *3 (-961 *5))
+ (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-415 *3))
+ (-5 *1 (-1181 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1103 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5)))
+ (-4 *5 (-13 (-564) (-1049 (-572)))) (-5 *2 (-3 *3 (-322 *5)))
+ (-5 *1 (-1181 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-171 (-227))))
+ (-5 *2 (-1046)) (-5 *1 (-762)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
+ (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3))
+ (-5 *2 (-415 (-572))))))
+(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1255 (-415 *2))) (-5 *2 (-572)) (-5 *1 (-922 *4 *3))
+ (-4 *3 (-1255 (-415 *4))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-652 *1)) (-4 *1 (-313)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-800))))
((*1 *2 *1)
- (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2))
- (-4 *5 (-240 *3 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *2 *3 *4)
+ (-12 (-4 *1 (-389 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
+ (-4 *6 (-242 (-3475 *3) (-779)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *6))
+ (-2 (|:| -1795 *5) (|:| -2477 *6))))
+ (-5 *2 (-721 *5 *6 *7)) (-5 *1 (-469 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-858)) (-4 *8 (-958 *4 *6 (-872 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-734)) (-4 *2 (-858)) (-5 *1 (-743 *3 *2))
+ (-4 *3 (-1060))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-800))
+ (-4 *4 (-858)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-779)) (-5 *4 (-572)) (-5 *1 (-453 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-779)) (-4 *6 (-370)) (-5 *4 (-1223 *6))
+ (-5 *2 (-1 (-1168 *4) (-1168 *4))) (-5 *1 (-1287 *6))
+ (-5 *5 (-1168 *4)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-765)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-652 *4)) (-4 *4 (-370)) (-5 *2 (-1279 *4))
+ (-5 *1 (-822 *4 *3)) (-4 *3 (-664 *4)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-564)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1769 (-652 *1))))
+ (-4 *1 (-374 *3))))
+ ((*1 *2)
(|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -3730 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-368)) (-5 *1 (-580 *4 *2)) (-4 *2 (-1253 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856))
- (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856))
- (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-112))))))
+ (-5 *2
+ (-2 (|:| |particular| (-461 *3 *4 *5 *6))
+ (|:| -1769 (-652 (-461 *3 *4 *5 *6)))))
+ (-5 *1 (-461 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1184 *4)) (-5 *1 (-364 *4))
+ (-4 *4 (-356)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-514)) (-5 *3 (-652 (-974))) (-5 *1 (-297)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1212) (-436 (-171 *3))))))
+ (-12 (-4 *3 (-13 (-564) (-1049 (-572)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1214) (-438 (-171 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 (-171 *4))))))
+ (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-564) (-1049 (-572))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 (-171 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *3)))))
+ (-12 (-4 *3 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1218 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1186))
- (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-1216 *4 *2)) (-4 *2 (-13 (-27) (-1212) (-436 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-870 *3)) (-14 *3 (-650 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-998))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1227)) (-5 *2 (-1186)) (-5 *1 (-1066 *3 *4))
- (-4 *3 (-1102 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1101 *3)) (-4 *3 (-1227))))
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-1218 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-800)) (-4 *2 (-1060))))
+ ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1111)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1060)) (-4 *3 (-1111))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2477 (-572)))) (-4 *1 (-438 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1255 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-5 *2 (-1186))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1273 *3)) (-14 *3 *2))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-901 *3)) (|:| -2477 (-901 *3))))
+ (-5 *1 (-901 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1060))
+ (-4 *7 (-958 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2477 (-572))))
+ (-5 *1 (-959 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *7)) (-15 -2209 (*7 $))
+ (-15 -2224 (*7 $))))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1233)) (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5)))
+ (-5 *2 (-652 (-652 *4))) (-5 *1 (-348 *3 *4 *5 *6))
+ (-4 *3 (-349 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-4 *3 (-375)) (-5 *2 (-652 (-652 *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-386)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-268)))))
+(((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-881 *2 *3)) (-4 *2 (-1229)) (-4 *3 (-1229)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1152 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 (-952 *4))) (-4 *1 (-1145 *4)) (-4 *4 (-1060))
+ (-5 *2 (-779)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060))
+ (-4 *2 (-1239 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-952 *3))) (-4 *3 (-1060)) (-4 *1 (-1145 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-952 *3))) (-4 *1 (-1145 *3)) (-4 *3 (-1060)))))
(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))
- (-5 *2 (-1044)) (-5 *1 (-752)))))
-(((*1 *1 *1) (-5 *1 (-1072))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))
+ (-5 *2 (-1046)) (-5 *1 (-754)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058))
- (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *5 (-856)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1220 *5 *6 *7 *3))
- (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-322 (-386))) (-5 *1 (-311)))))
+(((*1 *2)
+ (-12 (-4 *1 (-356))
+ (-5 *2 (-652 (-2 (|:| -2972 (-572)) (|:| -2477 (-572))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-827)) (-5 *4 (-52)) (-5 *2 (-1282)) (-5 *1 (-837)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-4 *3 (-1109))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1250 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186))
- (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-1186))
- (-4 *2 (-13 (-27) (-1212) (-436 *5)))
- (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570))))
- (-5 *1 (-280 *5 *2)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))))
+ (-12 (-5 *3 (-652 (-1 (-112) *8))) (-4 *8 (-1076 *5 *6 *7))
+ (-4 *5 (-564)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8))))
+ (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
+(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1198)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6 *7)) (-4 *3 (-1111)) (-4 *4 (-1111))
+ (-4 *5 (-1111)) (-4 *6 (-1111)) (-4 *7 (-1111)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-652 *7)) (|:| |badPols| (-652 *7))))
+ (-5 *1 (-988 *4 *5 *6 *7)) (-5 *3 (-652 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-544)))))
+(((*1 *1 *1) (-4 *1 (-247)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-174)) (-5 *1 (-295 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1255 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-3783 (-12 (-5 *1 (-300 *2)) (-4 *2 (-370)) (-4 *2 (-1229)))
+ (-12 (-5 *1 (-300 *2)) (-4 *2 (-481)) (-4 *2 (-1229)))))
+ ((*1 *1 *1) (-4 *1 (-481)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1279 *3)) (-4 *3 (-356)) (-5 *1 (-536 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-805 *2)) (-4 *2 (-174)) (-4 *2 (-370)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1188)) (-5 *4 (-961 (-572))) (-5 *2 (-336))
+ (-5 *1 (-338)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-697 *4)) (-4 *4 (-370)) (-5 *2 (-1184 *4))
+ (-5 *1 (-540 *4 *5 *6)) (-4 *5 (-370)) (-4 *6 (-13 (-370) (-856))))))
(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3946 (-650 (-1186))) (|:| -2609 (-650 (-1186)))))
- (-5 *1 (-1229)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044))
- (-5 *1 (-762)))))
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-847))
+ (-5 *3
+ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227)))
+ (|:| |lb| (-652 (-851 (-227)))) (|:| |cf| (-652 (-322 (-227))))
+ (|:| |ub| (-652 (-851 (-227))))))
+ (-5 *2 (-1046))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-847))
+ (-5 *3
+ (-2 (|:| |lfn| (-652 (-322 (-227)))) (|:| -3477 (-652 (-227)))))
+ (-5 *2 (-1046)))))
(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1277 (-413 (-959 *4))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *4)))))))
- (-5 *3 (-650 *7)) (-4 *4 (-13 (-311) (-148)))
- (-4 *7 (-956 *4 *6 *5)) (-4 *5 (-13 (-856) (-620 (-1186))))
- (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1282)) (-5 *1 (-1278)))))
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-572) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1095 *2)))))
+(((*1 *2 *2) (-12 (-5 *1 (-970 *2)) (-4 *2 (-553)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1182 *5)) (-4 *5 (-368)) (-5 *2 (-650 *6))
- (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))))
+ (-12 (-4 *7 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-4 *7 (-564))
+ (-4 *8 (-958 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2477 (-779)) (|:| -2379 *3) (|:| |radicand| *3)))
+ (-5 *1 (-962 *5 *6 *7 *8 *3)) (-5 *4 (-779))
+ (-4 *3
+ (-13 (-370)
+ (-10 -8 (-15 -3491 ($ *8)) (-15 -2209 (*8 $)) (-15 -2224 (*8 $))))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-829)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
+ (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313))
+ (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5))
+ (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-313)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
+ (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-930)) (-4 *1 (-375))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1279 *4)) (-5 *1 (-536 *4))
+ (-4 *4 (-356))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-858)) (-5 *1 (-721 *2 *3 *4)) (-4 *3 (-1111))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *3))
+ (-2 (|:| -1795 *2) (|:| -2477 *3)))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *3))) (-4 *3 (-1060)) (-4 *1 (-695 *3 *4 *5))
+ (-4 *4 (-380 *3)) (-4 *5 (-380 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-652 (-652 (-870)))) (-5 *1 (-870))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1153 *3 *4)) (-5 *1 (-1004 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-370))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-652 *5))) (-4 *5 (-1060))
+ (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *6 (-242 *4 *5))
+ (-4 *7 (-242 *3 *5)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1023)) (-5 *2 (-870)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
+ (-5 *2 (-426 *3)) (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 *3)) (-4 *3 (-1255 *5)) (-4 *5 (-313))
+ (-5 *2 (-779)) (-5 *1 (-463 *5 *3)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-415 (-572)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *5 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-300 *3)) (-5 *5 (-415 (-572)))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-415 (-572)))) (-5 *4 (-300 *8))
+ (-5 *5 (-1246 (-415 (-572)))) (-5 *6 (-415 (-572)))
+ (-4 *8 (-13 (-27) (-1214) (-438 *7)))
+ (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-415 (-572))))
+ (-5 *7 (-415 (-572))) (-4 *3 (-13 (-27) (-1214) (-438 *8)))
+ (-4 *8 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-415 (-572))) (-4 *4 (-1060)) (-4 *1 (-1262 *4 *3))
+ (-4 *3 (-1239 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34)))
- (-4 *3 (-13 (-1109) (-34))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-753)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-570)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-311))
- (-4 *9 (-956 *8 *6 *7))
- (-5 *2 (-2 (|:| -3147 (-1182 *9)) (|:| |polval| (-1182 *8))))
- (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9)) (-5 *4 (-1182 *8)))))
+ (-12 (-5 *2 (-952 *4)) (-4 *4 (-1060)) (-5 *1 (-1176 *3 *4))
+ (-14 *3 (-930)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-605))) (-5 *1 (-605)))))
+(((*1 *1 *2) (-12 (-5 *2 (-322 (-171 (-386)))) (-5 *1 (-336))))
+ ((*1 *1 *2) (-12 (-5 *2 (-322 (-572))) (-5 *1 (-336))))
+ ((*1 *1 *2) (-12 (-5 *2 (-322 (-386))) (-5 *1 (-336))))
+ ((*1 *1 *2) (-12 (-5 *2 (-322 (-702))) (-5 *1 (-336))))
+ ((*1 *1 *2) (-12 (-5 *2 (-322 (-709))) (-5 *1 (-336))))
+ ((*1 *1 *2) (-12 (-5 *2 (-322 (-707))) (-5 *1 (-336))))
+ ((*1 *1) (-5 *1 (-336))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-372 *2)) (-4 *2 (-1111))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-1210)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2) (-12 (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-129)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1151 *4 *5)) (-4 *4 (-13 (-1111) (-34)))
+ (-4 *5 (-13 (-1111) (-34))) (-5 *2 (-112)) (-5 *1 (-1152 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1188))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-652 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1647 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1214) (-27) (-438 *8)))
+ (-4 *8 (-13 (-460) (-148) (-1049 *3) (-647 *3))) (-5 *3 (-572))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3058 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1024 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-572)) (-4 *5 (-13 (-460) (-1049 *4) (-647 *4)))
+ (-5 *2 (-52)) (-5 *1 (-321 *5 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-460) (-1049 *5) (-647 *5))) (-5 *5 (-572))
+ (-5 *2 (-52)) (-5 *1 (-321 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-572)))
+ (-4 *7 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-572)))
+ (-4 *3 (-13 (-27) (-1214) (-438 *7)))
+ (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-572)) (-4 *4 (-1060)) (-4 *1 (-1241 *4 *3))
+ (-4 *3 (-1270 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1262 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1239 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-544)) (-5 *1 (-543 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-544)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-618 *5)) (-4 *5 (-436 *4)) (-4 *4 (-1047 (-570)))
- (-4 *4 (-562)) (-5 *2 (-1182 *5)) (-5 *1 (-32 *4 *5))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-1168 (-227))) (-5 *1 (-194))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-322 (-227))) (-5 *4 (-652 (-1188)))
+ (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1279 (-322 (-227)))) (-5 *4 (-652 (-1188)))
+ (-5 *5 (-1105 (-851 (-227)))) (-5 *2 (-1168 (-227))) (-5 *1 (-306)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-652 (-285))) (-5 *1 (-285))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-1193)))))
+(((*1 *2 *1) (-12 (-4 *1 (-564)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1038 *5 *6 *7 *3))) (-5 *1 (-1038 *5 *6 *7 *3))
+ (-4 *3 (-1076 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-652 *6)) (-4 *1 (-1082 *3 *4 *5 *6)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1082 *3 *4 *5 *2)) (-4 *3 (-460)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-652 (-1157 *5 *6 *7 *3))) (-5 *1 (-1157 *5 *6 *7 *3))
+ (-4 *3 (-1076 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 G)))) (-5 *2 (-1046))
+ (-5 *1 (-756)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1279 *4)) (-4 *4 (-425 *3)) (-4 *3 (-313))
+ (-4 *3 (-564)) (-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-618 *1)) (-4 *1 (-1058)) (-4 *1 (-306))
- (-5 *2 (-1182 *1)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072)))))
+ (-12 (-5 *3 (-930)) (-4 *4 (-370)) (-5 *2 (-1279 *1))
+ (-4 *1 (-335 *4))))
+ ((*1 *2) (-12 (-4 *3 (-370)) (-5 *2 (-1279 *1)) (-4 *1 (-335 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-174)) (-4 *4 (-1255 *3)) (-5 *2 (-1279 *1))
+ (-4 *1 (-417 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4))
+ (-5 *2 (-1279 *6)) (-5 *1 (-421 *3 *4 *5 *6))
+ (-4 *6 (-13 (-417 *4 *5) (-1049 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-313)) (-4 *4 (-1003 *3)) (-4 *5 (-1255 *4))
+ (-5 *2 (-1279 *6)) (-5 *1 (-422 *3 *4 *5 *6 *7))
+ (-4 *6 (-417 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1279 *1)) (-4 *1 (-425 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1279 (-1279 *4))) (-5 *1 (-536 *4))
+ (-4 *4 (-356)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-171 (-227))) (-5 *5 (-572))
+ (-5 *2 (-1046)) (-5 *1 (-766)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-423 *4)))))
-(((*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1280)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227)))
- (-5 *2 (-1044)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-650 (-52))) (-5 *2 (-1282)) (-5 *1 (-869)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-243))))
+ (-12 (-5 *3 (-572)) (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *2 (-1284)) (-5 *1 (-457 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-336))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-336)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *5)) (-4 *5 (-13 (-27) (-1214) (-438 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-570)) (-5 *1 (-243)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
+ (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-52)) (-5 *1 (-321 *5 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-300 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-300 *3)) (-5 *5 (-779))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-321 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-572))) (-5 *4 (-300 *6))
+ (-4 *6 (-13 (-27) (-1214) (-438 *5)))
+ (-4 *5 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-572))) (-5 *4 (-300 *7)) (-5 *5 (-1246 (-779)))
+ (-4 *7 (-13 (-27) (-1214) (-438 *6)))
+ (-4 *6 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1188)) (-5 *5 (-300 *3)) (-5 *6 (-1246 (-779)))
+ (-4 *3 (-13 (-27) (-1214) (-438 *7)))
+ (-4 *7 (-13 (-564) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-52))
+ (-5 *1 (-467 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1241 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-1270 *3)))))
+(((*1 *1) (-5 *1 (-831))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-402))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1209)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1229)) (-5 *2 (-572)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *8 (-1076 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-652 *8))
+ (|:| |towers| (-652 (-1038 *5 *6 *7 *8)))))
+ (-5 *1 (-1038 *5 *6 *7 *8)) (-5 *3 (-652 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *8 (-1076 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-652 *8))
+ (|:| |towers| (-652 (-1157 *5 *6 *7 *8)))))
+ (-5 *1 (-1157 *5 *6 *7 *8)) (-5 *3 (-652 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-415 (-961 (-171 (-572))))) (-5 *2 (-652 (-171 *4)))
+ (-5 *1 (-385 *4)) (-4 *4 (-13 (-370) (-856)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-652 (-415 (-961 (-171 (-572))))))
+ (-5 *4 (-652 (-1188))) (-5 *2 (-652 (-652 (-171 *5))))
+ (-5 *1 (-385 *5)) (-4 *5 (-13 (-370) (-856))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-987 *3 *4 *2 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *2 (-858)) (-4 *5 (-1076 *3 *4 *2)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-572))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-779)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-801)) (-4 *4 (-958 *5 *6 *7)) (-4 *5 (-460)) (-4 *7 (-858))
+ (-5 *1 (-457 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1188)) (-4 *1 (-27))
+ (-5 *2 (-652 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-961 *1)) (-4 *1 (-27)) (-5 *2 (-652 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *2 (-652 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-564)) (-5 *2 (-652 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-489 *4 *5)) (-14 *4 (-652 (-1188))) (-4 *5 (-1060))
+ (-5 *2 (-251 *4 *5)) (-5 *1 (-953 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-765)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 (-961 *4))) (-5 *3 (-652 (-1188))) (-4 *4 (-460))
+ (-5 *1 (-927 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-370)) (-5 *2 (-652 *3)) (-5 *1 (-954 *4 *3))
+ (-4 *3 (-1255 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-935)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-415 (-961 *6)) (-1177 (-1188) (-961 *6))))
+ (-5 *5 (-779)) (-4 *6 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *6)))))
+ (-5 *1 (-298 *6)) (-5 *4 (-697 (-415 (-961 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-415 (-961 *5)) (-1177 (-1188) (-961 *5))))
+ (|:| |eigmult| (-779)) (|:| |eigvec| (-652 *4))))
+ (-4 *5 (-460)) (-5 *2 (-652 (-697 (-415 (-961 *5)))))
+ (-5 *1 (-298 *5)) (-5 *4 (-697 (-415 (-961 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-620 *1))) (-4 *1 (-308)))))
+(((*1 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282))))
+ ((*1 *2 *2) (-12 (-5 *2 (-882)) (-5 *1 (-1282)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-697 (-415 (-961 (-572)))))
+ (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-1074)) (-5 *3 (-1170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-935))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-935))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 (-227)) (-227))) (-5 *3 (-1105 (-227)))
+ (-5 *1 (-936)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1191)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-999 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *7 (-1076 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1118 *4 *5 *6 *7 *3)) (-4 *3 (-1082 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-652 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-460))
+ (-4 *6 (-801)) (-4 *7 (-858)) (-4 *8 (-1076 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1118 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-227))
+ (-5 *7 (-697 (-572))) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-349 *4 *3 *5)) (-4 *4 (-1233)) (-4 *3 (-1255 *4))
+ (-4 *5 (-1255 (-415 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-553))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-322 (-386))) (-5 *2 (-322 (-227))) (-5 *1 (-311)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-1143 *4 *2))
+ (-4 *2 (-13 (-612 (-572) *4) (-10 -7 (-6 -4454) (-6 -4455))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-858)) (-4 *3 (-1229)) (-5 *1 (-1143 *3 *2))
+ (-4 *2 (-13 (-612 (-572) *3) (-10 -7 (-6 -4454) (-6 -4455)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1168 *3)) (-5 *1 (-176 *3)) (-4 *3 (-313)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186)))
- (-14 *4 (-650 (-1186))) (-4 *5 (-393)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1231)) (-4 *5 (-1253 *4))
- (-5 *2 (-2 (|:| |radicand| (-413 *5)) (|:| |deg| (-777))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1253 (-413 *5))))))
-(((*1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
-(((*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-52)) (-5 *1 (-835)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-933)))))
+ (-12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
+ (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
+ (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9))
+ (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6))
+ (-4 *8 (-380 *7)) (-4 *9 (-380 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2)) (-4 *2 (-313))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-313)) (-4 *3 (-174)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
+ (-4 *2 (-695 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-313)) (-5 *1 (-708 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1064 *2 *3 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-242 *3 *4)) (-4 *6 (-242 *2 *4)) (-4 *4 (-313)))))
+(((*1 *1 *1) (-12 (-4 *1 (-288 *2)) (-4 *2 (-1229)) (-4 *2 (-1111))))
+ ((*1 *1 *1) (-12 (-4 *1 (-703 *2)) (-4 *2 (-1111)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-458)) (-5 *1 (-1218 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1212))))))
+ (-12 (-5 *2 (-652 (-961 *3))) (-4 *3 (-460)) (-5 *1 (-367 *3 *4))
+ (-14 *4 (-652 (-1188)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-958 *3 *4 *5)) (-4 *3 (-460))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-458 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
+ (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-458 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-652 *7)) (-5 *3 (-1170)) (-4 *7 (-958 *4 *5 *6))
+ (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-458 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-370)) (-4 *3 (-801)) (-4 *4 (-858))
+ (-5 *1 (-512 *2 *3 *4 *5)) (-4 *5 (-958 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-652 (-788 *3 (-872 *4)))) (-4 *3 (-460))
+ (-14 *4 (-652 (-1188))) (-5 *1 (-636 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7)))
- (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-916)) (-4 *5 (-1253 *4)) (-5 *2 (-424 (-1182 *5)))
- (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -4246 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856))
- (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7)))
- (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799))
- (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8)))
- (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))))
+ (-12 (|has| *2 (-6 (-4456 "*"))) (-4 *5 (-380 *2)) (-4 *6 (-380 *2))
+ (-4 *2 (-1060)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1255 *2))
+ (-4 *4 (-695 *2 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6 *2)) (-4 *3 (-1109)) (-4 *4 (-1109))
- (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))))
+ (-12 (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1152 *3 *4)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *4 (-13 (-1111) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-958 *4 *6 *5))
+ (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *2 (-112)) (-5 *1 (-933 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-961 *4))) (-4 *4 (-13 (-313) (-148)))
+ (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-112))
+ (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-930)) (|has| *1 (-6 -4445)) (-4 *1 (-412))))
+ ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930))))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707))))
+ ((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-1229)))))
+(((*1 *1) (-5 *1 (-1281))))
+(((*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-652
+ (-2
+ (|:| -1640
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3762
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1168 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -4336
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-567)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-118 *3)) (-14 *3 (-570))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-311)) (-5 *1 (-176 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-176 (-570))) (-5 *1 (-771 *3)) (-4 *3 (-410))))
+ (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -1795 *5) (|:| -2477 *2))
+ (-2 (|:| -1795 *5) (|:| -2477 *2))))
+ (-4 *2 (-242 (-3475 *3) (-779))) (-5 *1 (-469 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-858)) (-4 *7 (-958 *4 *2 (-872 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-964)) (-5 *2 (-652 (-652 (-952 (-227)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-652 (-652 (-952 (-227))))))))
+(((*1 *2)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-1191))))
+(((*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1083 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *1) (-4 *1 (-877 *2))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-800))
+ (-5 *2 (-652 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-877 *3)) (-14 *3 (-570))))
+ (-12 (-4 *1 (-389 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1111))
+ (-5 *2 (-652 *3))))
((*1 *2 *1)
- (-12 (-14 *3 (-570)) (-5 *2 (-176 (-413 (-570))))
- (-5 *1 (-878 *3 *4)) (-4 *4 (-875 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799))
- (-4 *4 (-856)) (-4 *2 (-562)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849 (-384))) (-5 *2 (-849 (-227))) (-5 *1 (-309)))))
+ (-12 (-5 *2 (-1168 *3)) (-5 *1 (-604 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 *3)) (-5 *1 (-743 *3 *4)) (-4 *3 (-1060))
+ (-4 *4 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-652 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3)) (-4 *3 (-1060)) (-5 *2 (-1168 *3)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-423 *4)))))
+ (-12 (-5 *3 (-2 (|:| -3041 (-415 (-572))) (|:| -3058 (-415 (-572)))))
+ (-5 *2 (-415 (-572))) (-5 *1 (-1031 *4)) (-4 *4 (-1255 (-572))))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-830)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856))
- (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-2 (|:| |k| (-827 *3)) (|:| |c| *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1277 (-320 (-227)))) (-5 *4 (-650 (-1186)))
- (-5 *2 (-695 (-320 (-227)))) (-5 *1 (-207))))
+ (|partial| -12 (-5 *4 (-300 (-841 *3)))
+ (-4 *5 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-841 *3)) (-5 *1 (-644 *5 *3))
+ (-4 *3 (-13 (-27) (-1214) (-438 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1109)) (-4 *6 (-907 *5)) (-5 *2 (-695 *6))
- (-5 *1 (-698 *5 *6 *3 *4)) (-4 *3 (-378 *6))
- (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4452)))))))
+ (-12 (-5 *4 (-300 (-841 (-961 *5)))) (-4 *5 (-460))
+ (-5 *2 (-841 (-415 (-961 *5)))) (-5 *1 (-645 *5))
+ (-5 *3 (-415 (-961 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-300 (-415 (-961 *5)))) (-5 *3 (-415 (-961 *5)))
+ (-4 *5 (-460)) (-5 *2 (-841 *3)) (-5 *1 (-645 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777))
- (-14 *4 (-777)) (-4 *5 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 (-695 *4))) (-4 *4 (-174))
- (-5 *2 (-1277 (-695 (-959 *4)))) (-5 *1 (-191 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1227)) (-4 *2 (-1109))))
- ((*1 *1 *1) (-12 (-4 *1 (-701 *2)) (-4 *2 (-1109)))))
-(((*1 *2)
- (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1231)) (-4 *4 (-1253 *3))
- (-4 *5 (-1253 (-413 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-652 (-1193))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-562)) (-5 *2 (-1182 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-368) (-306)
- (-10 -8 (-15 -1587 ((-1134 *4 (-618 $)) $))
- (-15 -1599 ((-1134 *4 (-618 $)) $))
- (-15 -2869 ($ (-1134 *4 (-618 $))))))))))
+ (-12 (-4 *4 (-858))
+ (-5 *2
+ (-2 (|:| |f1| (-652 *4)) (|:| |f2| (-652 (-652 (-652 *4))))
+ (|:| |f3| (-652 (-652 *4))) (|:| |f4| (-652 (-652 (-652 *4))))))
+ (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 (-652 *4)))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801)) (-5 *2 (-652 (-652 (-572))))
+ (-5 *1 (-933 *4 *5 *6 *7)) (-5 *3 (-572)) (-4 *7 (-958 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-620 *5))) (-4 *4 (-1111)) (-5 *2 (-620 *5))
+ (-5 *1 (-581 *4 *5)) (-4 *5 (-438 *4)))))
+(((*1 *1 *1) (-4 *1 (-564))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-370) (-856)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1591 (-426 *3))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1255 (-171 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-650 (-950 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
+ (-14 *4 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1229))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
+ (-14 *4 (-652 (-1188)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-680 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-858))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-858)))))
+(((*1 *1) (-5 *1 (-336))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-652
+ (-2 (|:| -1526 (-779))
+ (|:| |eqns|
+ (-652
+ (-2 (|:| |det| *7) (|:| |rows| (-652 (-572)))
+ (|:| |cols| (-652 (-572))))))
+ (|:| |fgb| (-652 *7)))))
+ (-4 *7 (-958 *4 *6 *5)) (-4 *4 (-13 (-313) (-148)))
+ (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801)) (-5 *2 (-779))
+ (-5 *1 (-933 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-370)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 (-415 *3)))
+ (-4 *1 (-342 *4 *3 *5 *2)) (-4 *2 (-349 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-572)) (-4 *2 (-370)) (-4 *4 (-1255 *2))
+ (-4 *5 (-1255 (-415 *4))) (-4 *1 (-342 *2 *4 *5 *6))
+ (-4 *6 (-349 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-370)) (-4 *3 (-1255 *2)) (-4 *4 (-1255 (-415 *3)))
+ (-4 *1 (-342 *2 *3 *4 *5)) (-4 *5 (-349 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
+ (-4 *1 (-342 *3 *4 *5 *2)) (-4 *2 (-349 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-421 *4 (-415 *4) *5 *6)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-4 *6 (-349 *3 *4 *5)) (-4 *3 (-370))
+ (-4 *1 (-342 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-652 (-1184 (-572)))) (-5 *1 (-193)) (-5 *3 (-572)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-249 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-112))
+ (-5 *1 (-1218 *4 *3)) (-4 *3 (-13 (-27) (-1214) (-438 *4))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-572)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-426 *2)) (-4 *2 (-564)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1647 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-370)) (-4 *7 (-1255 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-415 *7)) (|:| |a0| *6))
+ (-2 (|:| -1647 (-415 *7)) (|:| |coeff| (-415 *7))) "failed"))
+ (-5 *1 (-582 *6 *7)) (-5 *3 (-415 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-882)) (-5 *3 (-652 (-268))) (-5 *1 (-266)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5))
- (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6))
- (-4 *6 (-458))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5))
- (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6))
- (-4 *6 (-458)))))
-(((*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266))))
- ((*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1277 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-112))
- (-5 *1 (-1305 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1166 *7))) (-4 *6 (-856))
- (-4 *7 (-956 *5 (-537 *6) *6)) (-4 *5 (-1058))
- (-5 *2 (-1 (-1166 *7) *7)) (-5 *1 (-1135 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-844))))
- ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1124))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-650 (-1191))) (-5 *3 (-1191)) (-5 *1 (-1127)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1212)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1) (-12 (-5 *2 (-650 (-844))) (-5 *1 (-141)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-983)))))
+ (-12 (-4 *5 (-460)) (-4 *6 (-801)) (-4 *7 (-858))
+ (-4 *3 (-1076 *5 *6 *7))
+ (-5 *2 (-652 (-2 (|:| |val| *3) (|:| -1746 *4))))
+ (-5 *1 (-1119 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-688 *2)) (-4 *2 (-1109))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-650 *5) (-650 *5))) (-5 *4 (-570))
- (-5 *2 (-650 *5)) (-5 *1 (-688 *5)) (-4 *5 (-1109)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-572))) (-5 *1 (-1058)))))
+(((*1 *2) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-105)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-343 *5 *6 *7 *8)) (-4 *5 (-438 *4)) (-4 *6 (-1255 *5))
+ (-4 *7 (-1255 (-415 *6))) (-4 *8 (-349 *5 *6 *7))
+ (-4 *4 (-13 (-564) (-1049 (-572)))) (-5 *2 (-112))
+ (-5 *1 (-920 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-343 (-415 (-572)) *4 *5 *6))
+ (-4 *4 (-1255 (-415 (-572)))) (-4 *5 (-1255 (-415 *4)))
+ (-4 *6 (-349 (-415 (-572)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-921 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-652 (-1193))) (-5 *1 (-1147)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1170)) (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *2 (-1046)) (-5 *1 (-765)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-173)))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-570))
- (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -3014))))
- (-5 *2 (-1044)) (-5 *1 (-754)))))
+ (-12 (-4 *3 (-1229)) (-5 *2 (-652 *1)) (-4 *1 (-1021 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4))
+ (-14 *3 (-930)) (-4 *4 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-652 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *2)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *2 (-1076 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-697 (-415 (-961 (-572)))))
+ (-5 *2 (-652 (-697 (-322 (-572))))) (-5 *1 (-1042)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
(((*1 *2)
- (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6))
- (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928))
- (-14 *5 (-650 (-1186))) (-14 *6 (-1277 (-695 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1101 (-849 *3))) (-4 *3 (-13 (-1212) (-966) (-29 *5)))
- (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
+ (-12 (-14 *4 (-779)) (-4 *5 (-1229)) (-5 *2 (-135))
+ (-5 *1 (-241 *3 *4 *5)) (-4 *3 (-242 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-370)) (-5 *2 (-135)) (-5 *1 (-334 *3 *4))
+ (-4 *3 (-335 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-779)) (-5 *1 (-398 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-174))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-572))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *6)) (-4 *6 (-858)) (-4 *4 (-370)) (-4 *5 (-801))
+ (-5 *2 (-572)) (-5 *1 (-512 *4 *5 *6 *7)) (-4 *7 (-958 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1060)) (-5 *2 (-930))))
+ ((*1 *2) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-370)) (-5 *2 (-135)))))
+(((*1 *1 *1) (-12 (-5 *1 (-923 *2)) (-4 *2 (-313)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-112)) (-5 *5 (-697 (-171 (-227))))
+ (-5 *2 (-1046)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-313) (-148)))
+ (-4 *5 (-13 (-858) (-622 (-1188)))) (-4 *6 (-801))
(-5 *2
- (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1101 (-849 *3))) (-5 *5 (-1168))
- (-4 *3 (-13 (-1212) (-966) (-29 *6)))
- (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
+ (-652
+ (-2 (|:| |eqzro| (-652 *7)) (|:| |neqzro| (-652 *7))
+ (|:| |wcond| (-652 (-961 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *4))))))))))
+ (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))))
+(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-779)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-425 *4)))))
+(((*1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707))))
+ ((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-707)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-620 *4)) (-5 *6 (-1184 *4))
+ (-4 *4 (-13 (-438 *7) (-27) (-1214)))
+ (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
(-5 *2
- (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *6 *3))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-620 *4)) (-5 *6 (-415 (-1184 *4)))
+ (-4 *4 (-13 (-438 *7) (-27) (-1214)))
+ (-4 *7 (-13 (-460) (-1049 (-572)) (-148) (-647 (-572))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-664 *4)) (-4 *3 (-1111)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-397)))))
+(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-439 *3 *2)) (-4 *2 (-438 *3))))
+ ((*1 *1 *1) (-4 *1 (-1150))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-779)) (-5 *1 (-1176 *3 *4)) (-14 *3 (-930))
+ (-4 *4 (-1060)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-370) (-1214))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-177))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-514)) (-5 *2 (-699 (-109))) (-5 *1 (-1096)))))
+(((*1 *2)
+ (-12 (-5 *2 (-415 (-961 *3))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-866))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-974))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1000))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1111) (-34))) (-5 *1 (-1151 *2 *3))
+ (-4 *3 (-13 (-1111) (-34))))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-572)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-779)) (-4 *5 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
+ (-4 *4 (-174))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-380 *2))
+ (-4 *4 (-380 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1060)) (-4 *1 (-695 *3 *2 *4)) (-4 *2 (-380 *3))
+ (-4 *4 (-380 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1153 *2 *3)) (-14 *2 (-779)) (-4 *3 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-830)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3829 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1279 *1)) (-4 *1 (-377 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1255 *4)) (-5 *2 (-697 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-417 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
+ (-5 *2 (-697 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 *3))
+ (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-1076 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1076 *4 *5 *6)) (-4 *4 (-564))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-5 *1 (-988 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-652 *7) (-652 *7))) (-5 *2 (-652 *7))
+ (-4 *7 (-1076 *4 *5 *6)) (-4 *4 (-564)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-5 *1 (-988 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1233)) (-4 *5 (-1255 *3)) (-4 *6 (-1255 (-415 *5)))
+ (-5 *2 (-112)) (-5 *1 (-348 *4 *3 *5 *6)) (-4 *4 (-349 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1184 *9)) (-5 *4 (-652 *7)) (-5 *5 (-652 *8))
+ (-4 *7 (-858)) (-4 *8 (-1060)) (-4 *9 (-958 *8 *6 *7))
+ (-4 *6 (-801)) (-5 *2 (-1184 *8)) (-5 *1 (-327 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 *5)) (-4 *5 (-370))
+ (-4 *5 (-564)) (-5 *2 (-1279 *5)) (-5 *1 (-646 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1101 (-849 (-320 *5))))
- (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
+ (|partial| -12 (-5 *3 (-1279 *4)) (-4 *4 (-647 *5))
+ (-3795 (-4 *5 (-370))) (-4 *5 (-564)) (-5 *2 (-1279 (-415 *5)))
+ (-5 *1 (-646 *5 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1186 *4 *5 *6))
+ (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-1252 *5 *4)) (-5 *1 (-1271 *4 *5 *6))
+ (-4 *4 (-1060)) (-14 *5 (-1188)) (-14 *6 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-697 (-322 (-572)))) (-5 *1 (-1042)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-869))))
+ ((*1 *1 *2) (-12 (-5 *2 (-396)) (-5 *1 (-869)))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-476))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1280))))
+ ((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-1281)))))
+(((*1 *1)
+ (-12 (-5 *1 (-657 *2 *3 *4)) (-4 *2 (-1111)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-52)) (-5 *1 (-839)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1111)) (-4 *4 (-1229))
+ (-5 *2 (-652 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-460)) (-4 *4 (-1111))
+ (-5 *1 (-581 *4 *2)) (-4 *2 (-290)) (-4 *2 (-438 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-415 (-961 *4))) (-5 *3 (-1188))
+ (-4 *4 (-13 (-564) (-1049 (-572)) (-148))) (-5 *1 (-578 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2 *3) (-12 (-5 *2 (-426 *3)) (-5 *1 (-566 *3)) (-4 *3 (-553)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *5 (-1233)) (-4 *6 (-1255 *5))
+ (-4 *7 (-1255 (-415 *6))) (-5 *2 (-652 (-961 *5)))
+ (-5 *1 (-348 *4 *5 *6 *7)) (-4 *4 (-349 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *1 (-349 *4 *5 *6)) (-4 *4 (-1233))
+ (-4 *5 (-1255 *4)) (-4 *6 (-1255 (-415 *5))) (-4 *4 (-370))
+ (-5 *2 (-652 (-961 *4))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1060)) (-4 *2 (-370))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-370)) (-5 *1 (-667 *4 *2))
+ (-4 *2 (-664 *4)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1101 (-849 (-320 *6))))
- (-5 *5 (-1168))
- (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
+ (-652
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-779)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-801)) (-4 *3 (-958 *4 *5 *6)) (-4 *4 (-460)) (-4 *6 (-858))
+ (-5 *1 (-457 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-1111)) (-4 *1 (-912 *3)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1046))
+ (-5 *1 (-754)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-370)) (-4 *4 (-1255 *3)) (-4 *5 (-1255 (-415 *4)))
+ (-5 *2 (-1279 *6)) (-5 *1 (-343 *3 *4 *5 *6))
+ (-4 *6 (-349 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1255 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-996 *4 *2 *3 *5))
+ (-4 *4 (-356)) (-4 *5 (-732 *2 *3)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-652
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-572)))))
+ (-4 *2 (-564)) (-5 *1 (-426 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-572))
+ (|:| -1591 (-652 (-2 (|:| |irr| *4) (|:| -1948 (-572)))))))
+ (-4 *4 (-1255 (-572))) (-5 *2 (-426 *4)) (-5 *1 (-450 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1188)) (-5 *1 (-594 *2)) (-4 *2 (-1049 *3))
+ (-4 *2 (-370))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-370))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188)) (-4 *4 (-564)) (-5 *1 (-638 *4 *2))
+ (-4 *2 (-13 (-438 *4) (-1013) (-1214)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1103 *2)) (-4 *2 (-13 (-438 *4) (-1013) (-1214)))
+ (-4 *4 (-564)) (-5 *1 (-638 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-968)) (-5 *2 (-1188))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 *1)) (-4 *1 (-968)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-3 *3 (-652 *1)))
+ (-4 *1 (-1082 *4 *5 *6 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-779)) (-5 *3 (-952 *4)) (-4 *1 (-1145 *4))
+ (-4 *4 (-1060))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-779)) (-5 *4 (-952 (-227))) (-5 *2 (-1284))
+ (-5 *1 (-1281)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-4 *1 (-517 *3 *2)) (-4 *3 (-1111)) (-4 *2 (-858)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *4)) (-5 *1 (-894 *3 *4 *5))
+ (-4 *3 (-1111)) (-4 *5 (-674 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-975 *4)) (-4 *4 (-1111)) (-5 *2 (-1113 *4))
+ (-5 *1 (-976 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-163)))
+ ((*1 *1 *2) (-12 (-5 *2 (-572)) (-5 *1 (-163)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-930))
(-5 *2
- (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1101 (-849 (-413 (-959 *5))))) (-5 *3 (-413 (-959 *5)))
- (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
+ (-3 (-1184 *4)
+ (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131)))))))
+ (-5 *1 (-353 *4)) (-4 *4 (-356)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-564)) (-4 *2 (-553))))
+ ((*1 *1 *1) (-4 *1 (-1071))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-171 *5)) (-5 *1 (-608 *4 *5 *3))
+ (-4 *5 (-13 (-438 *4) (-1013) (-1214)))
+ (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-242 *3 *2)) (-4 *2 (-1229)) (-4 *2 (-1060))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-870))))
+ ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-952 (-227))) (-5 *2 (-227)) (-5 *1 (-1225))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1229)) (-4 *2 (-1060)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-386) (-386))) (-5 *4 (-386))
(-5 *2
- (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1101 (-849 (-413 (-959 *6))))) (-5 *5 (-1168))
- (-5 *3 (-413 (-959 *6)))
- (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
+ (-2 (|:| -1653 *4) (|:| -3684 *4) (|:| |totalpts| (-572))
+ (|:| |success| (-112))))
+ (-5 *1 (-797)) (-5 *5 (-572)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-282 *3 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1188))
+ (-4 *4 (-13 (-564) (-1049 (-572)) (-647 (-572))))
+ (-5 *1 (-282 *4 *2)) (-4 *2 (-13 (-27) (-1214) (-438 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1252 *5 *4)) (-4 *4 (-828)) (-14 *5 (-1188))
+ (-5 *2 (-572)) (-5 *1 (-1125 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-1188))) (-5 *1 (-1192)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-779)) (|:| -3888 *4))) (-5 *5 (-779))
+ (-4 *4 (-958 *6 *7 *8)) (-4 *6 (-460)) (-4 *7 (-801)) (-4 *8 (-858))
(-5 *2
- (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1186))
- (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-3 *3 (-650 *3))) (-5 *1 (-434 *5 *3))
- (-4 *3 (-13 (-1212) (-966) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384))))
- (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384))))
- (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384))))
- (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384))))
- (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384)))))
- (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384)))))
- (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384)))))
- (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384)))))
- (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384))))
- (-5 *5 (-1168)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384))))
- (-5 *5 (-1186)) (-5 *2 (-1044)) (-5 *1 (-571))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1253 *4))
- (-5 *2 (-592 (-413 *5))) (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148))
- (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570))))
- (-5 *2 (-3 (-320 *5) (-650 (-320 *5)))) (-5 *1 (-595 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856))
- (-4 *3 (-38 (-413 (-570))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-959 *3)) (-4 *3 (-38 (-413 (-570))))
- (-4 *3 (-1058))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-4 *2 (-856))
- (-5 *1 (-1135 *3 *2 *4)) (-4 *4 (-956 *3 (-537 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058))
- (-5 *1 (-1170 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1221 *3)) (-4 *3 (-38 (-413 (-570))))
- (-4 *3 (-1058))))
- ((*1 *1 *1 *2)
- (-3749
- (-12 (-5 *2 (-1186)) (-4 *1 (-1237 *3)) (-4 *3 (-1058))
- (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1212))
- (-4 *3 (-38 (-413 (-570))))))
- (-12 (-5 *2 (-1186)) (-4 *1 (-1237 *3)) (-4 *3 (-1058))
- (-12 (|has| *3 (-15 -1598 ((-650 *2) *3)))
- (|has| *3 (-15 -1363 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570))))))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-457 *6 *7 *8 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1111)) (-5 *2 (-898 *3 *5)) (-5 *1 (-894 *3 *4 *5))
+ (-4 *3 (-1111)) (-4 *5 (-674 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-901 *4)) (-4 *4 (-1111)) (-5 *2 (-652 *5))
+ (-5 *1 (-899 *4 *5)) (-4 *5 (-1229)))))
+(((*1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-21)) (-4 *2 (-1229)))))
+(((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *1) (-5 *1 (-640))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-572)) (-4 *4 (-801)) (-4 *5 (-858)) (-4 *2 (-1060))
+ (-5 *1 (-327 *4 *5 *2 *6)) (-4 *6 (-958 *2 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1279 *3)) (-4 *3 (-1060)) (-5 *1 (-720 *3 *4))
+ (-4 *4 (-1255 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 (-572)))))
+ (-5 *1 (-368 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3)) (-4 *3 (-1111))
+ (-5 *2 (-652 (-2 (|:| |gen| *3) (|:| -3272 (-779)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| -2972 *3) (|:| -2477 (-572)))))
+ (-5 *1 (-426 *3)) (-4 *3 (-564)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1104 *3)) (-5 *1 (-1068 *2 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1105 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1104 *2)) (-4 *2 (-1229))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1246 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-936)))))
+(((*1 *2 *1) (-12 (-5 *2 (-572)) (-5 *1 (-870)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1188)) (-4 *5 (-370)) (-5 *2 (-652 (-1223 *5)))
+ (-5 *1 (-1287 *5)) (-5 *4 (-1223 *5)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-130)))
+ ((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
+ (-4 *4 (-174))))
+ ((*1 *1) (-5 *1 (-554))) ((*1 *1) (-5 *1 (-555)))
+ ((*1 *1) (-5 *1 (-556))) ((*1 *1) (-5 *1 (-557)))
+ ((*1 *1) (-4 *1 (-734))) ((*1 *1) (-5 *1 (-1188)))
+ ((*1 *1) (-12 (-5 *1 (-1194 *2)) (-14 *2 (-930))))
+ ((*1 *1) (-12 (-5 *1 (-1195 *2)) (-14 *2 (-930))))
+ ((*1 *1) (-5 *1 (-1234))) ((*1 *1) (-5 *1 (-1235)))
+ ((*1 *1) (-5 *1 (-1236))) ((*1 *1) (-5 *1 (-1237))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1170)) (-5 *5 (-697 (-227))) (-5 *6 (-697 (-572)))
+ (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-765)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1255 (-171 *3))))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-112))
+ (-5 *2 (-1046)) (-5 *1 (-753)))))
+(((*1 *2 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281))))
+ ((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1281)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-333 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-779)) (-5 *1 (-524 *3 *4)) (-4 *3 (-1229))
+ (-14 *4 (-572)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1370 (-790 *3)) (|:| |coef2| (-790 *3))))
+ (-5 *1 (-790 *3)) (-4 *3 (-564)) (-4 *3 (-1060))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-564)) (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-2 (|:| -1370 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188)))))
+ (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115))
+ (-5 *1 (-405))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-652 (-652 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-652 (-3 (|:| |array| (-652 *3)) (|:| |scalar| (-1188)))))
+ (-5 *6 (-652 (-1188))) (-5 *3 (-1188)) (-5 *2 (-1115))
+ (-5 *1 (-405))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-652 (-1188))) (-5 *5 (-1191)) (-5 *3 (-1188))
+ (-5 *2 (-1115)) (-5 *1 (-405)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-761)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-370) (-148) (-1049 (-572))))
+ (-4 *5 (-1255 *4))
+ (-5 *2 (-2 (|:| -1647 (-415 *5)) (|:| |coeff| (-415 *5))))
+ (-5 *1 (-576 *4 *5)) (-5 *3 (-415 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1270 *4))
+ (-4 *4 (-38 (-415 (-572)))) (-5 *2 (-1 (-1168 *4) (-1168 *4)))
+ (-5 *1 (-1272 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-930)) (-4 *1 (-242 *3 *4)) (-4 *4 (-1060))
+ (-4 *4 (-1229))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-652 (-1188))) (-4 *4 (-174))
+ (-4 *5 (-242 (-3475 *3) (-779)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -1795 *2) (|:| -2477 *5))
+ (-2 (|:| -1795 *2) (|:| -2477 *5))))
+ (-5 *1 (-469 *3 *4 *2 *5 *6 *7)) (-4 *2 (-858))
+ (-4 *7 (-958 *4 *5 (-872 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-952 (-227))) (-5 *1 (-1225)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-930)) (-5 *4 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1280)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-514)) (-5 *3 (-652 (-884))) (-5 *1 (-491)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1162)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-858)) (-5 *2 (-652 (-652 (-652 *4))))
+ (-5 *1 (-1199 *4)) (-5 *3 (-652 (-652 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-930)) (-4 *5 (-564)) (-5 *2 (-697 *5))
+ (-5 *1 (-965 *5 *3)) (-4 *3 (-664 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 (-489 *3 *4))) (-14 *3 (-652 (-1188)))
+ (-4 *4 (-460)) (-5 *1 (-639 *3 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-652 *6)) (-5 *4 (-652 (-251 *5 *6))) (-4 *6 (-460))
+ (-5 *2 (-251 *5 *6)) (-14 *5 (-652 (-1188))) (-5 *1 (-639 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-870)))))
+(((*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-220))))
+ ((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-491)) (-5 *1 (-684))))
((*1 *1 *1)
- (-12 (-4 *1 (-1237 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1241 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-851 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-370)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
+ (-5 *1 (-529 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-564)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
+ (-4 *7 (-1003 *4)) (-4 *2 (-695 *7 *8 *9))
+ (-5 *1 (-530 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-695 *4 *5 *6))
+ (-4 *8 (-380 *7)) (-4 *9 (-380 *7))))
((*1 *1 *1)
- (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570))))))
- ((*1 *1 *1 *2)
- (-3749
- (-12 (-5 *2 (-1186)) (-4 *1 (-1258 *3)) (-4 *3 (-1058))
- (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1212))
- (-4 *3 (-38 (-413 (-570))))))
- (-12 (-5 *2 (-1186)) (-4 *1 (-1258 *3)) (-4 *3 (-1058))
- (-12 (|has| *3 (-15 -1598 ((-650 *2) *3)))
- (|has| *3 (-15 -1363 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570))))))))
+ (|partial| -12 (-4 *1 (-695 *2 *3 *4)) (-4 *2 (-1060))
+ (-4 *3 (-380 *2)) (-4 *4 (-380 *2)) (-4 *2 (-370))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-370)) (-4 *3 (-174)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *1 (-696 *3 *4 *5 *2))
+ (-4 *2 (-695 *3 *4 *5))))
((*1 *1 *1)
- (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1262 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3749
- (-12 (-5 *2 (-1186)) (-4 *1 (-1268 *3)) (-4 *3 (-1058))
- (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1212))
- (-4 *3 (-38 (-413 (-570))))))
- (-12 (-5 *2 (-1186)) (-4 *1 (-1268 *3)) (-4 *3 (-1058))
- (-12 (|has| *3 (-15 -1598 ((-650 *2) *3)))
- (|has| *3 (-15 -1363 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570))))))))
+ (|partial| -12 (-5 *1 (-697 *2)) (-4 *2 (-370)) (-4 *2 (-1060))))
((*1 *1 *1)
- (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1273 *4)) (-14 *4 (-1186)) (-5 *1 (-1269 *3 *4 *5))
- (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))))
+ (|partial| -12 (-4 *1 (-1134 *2 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-242 *2 *3)) (-4 *5 (-242 *2 *3)) (-4 *3 (-370))))
+ ((*1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-858)) (-5 *1 (-1199 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-837)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-412)) (-5 *2 (-930)))) ((*1 *1) (-4 *1 (-553)))
+ ((*1 *2 *2) (-12 (-5 *2 (-930)) (-5 *1 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-652 (-652 (-652 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-652 *5)) (-4 *5 (-858)) (-5 *1 (-1199 *5)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-620 *2))) (-5 *4 (-652 (-1188)))
+ (-4 *2 (-13 (-438 (-171 *5)) (-1013) (-1214))) (-4 *5 (-564))
+ (-5 *1 (-608 *5 *6 *2)) (-4 *6 (-13 (-438 *5) (-1013) (-1214))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928))
- (-4 *4 (-1058)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
+ (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-652 (-572))) (-5 *1 (-1015 *3)) (-14 *3 (-572)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *2 (-112)) (-5 *1 (-272)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *3 (-572))
+ (-5 *2 (-1046)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *2 (-1046))
+ (-5 *1 (-763)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
+ (-5 *2 (-652 (-1087 *3 *4 *5))) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *5 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 (-870))) (-5 *1 (-870))))
+ ((*1 *1 *1 *1) (-5 *1 (-870))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060))
+ (-5 *2
+ (-2 (|:| -1571 (-779)) (|:| |curves| (-779))
+ (|:| |polygons| (-779)) (|:| |constructs| (-779)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-858)) (-5 *4 (-652 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-652 *4))))
+ (-5 *1 (-1199 *6)) (-5 *5 (-652 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3) (-12 (-5 *3 (-952 *2)) (-5 *1 (-993 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1184 (-415 (-961 *3)))) (-5 *1 (-461 *3 *4 *5 *6))
+ (-4 *3 (-564)) (-4 *3 (-174)) (-14 *4 (-930))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-1279 (-697 *3))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-769))))
+(((*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *2 (-13 (-438 *4) (-1013) (-1214)))
+ (-5 *1 (-608 *4 *2 *3))
+ (-4 *3 (-13 (-438 (-171 *4)) (-1013) (-1214))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-1035 *3))
+ (-4 *3 (-13 (-856) (-370) (-1033)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-856) (-370))) (-5 *1 (-1072 *2 *3))
+ (-4 *3 (-1255 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1079 *2 *3)) (-4 *2 (-13 (-856) (-370)))
+ (-4 *3 (-1255 *2)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1253 (-413 (-570))))
- (-5 *2 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))))
- (-5 *1 (-920 *3 *4)) (-4 *4 (-1253 (-413 *3)))))
+ (-12 (-5 *3 (-961 (-227))) (-5 *2 (-322 (-386))) (-5 *1 (-311)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569))))
((*1 *2 *3)
- (-12 (-4 *4 (-1253 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3))
- (-4 *3 (-1253 (-413 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-129)))))
+ (-12 (-5 *2 (-1184 (-415 (-572)))) (-5 *1 (-951)) (-5 *3 (-572)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-697 *4)) (-5 *3 (-779)) (-4 *4 (-1060))
+ (-5 *1 (-698 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1184 *1)) (-4 *1 (-1023)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1229)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *5)) (-5 *1 (-892 *3 *4 *5))
- (-4 *3 (-1109)) (-4 *5 (-672 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1227)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3)) (-4 *3 (-1109)))))
+ (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-4 *3 (-375))
+ (-5 *2 (-1184 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-612 *2 *3)) (-4 *3 (-1229)) (-4 *2 (-1111))
+ (-4 *2 (-858)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))
- ((*1 *2 *3) (-12 (-5 *3 (-980)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))))
+ (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-426 *3)) (-4 *3 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-2 (|:| -2972 *4) (|:| -1497 (-572)))))
+ (-4 *4 (-1255 (-572))) (-5 *2 (-779)) (-5 *1 (-450 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-564))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-935)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1298 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-825 *3))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-572))
+ (-14 *4 *2) (-4 *5 (-174))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-930)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-930))))
+ ((*1 *2)
+ (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1255 *3))
+ (-5 *2 (-930))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
+ (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-697 *5)) (-5 *4 (-1279 *5)) (-4 *5 (-370))
+ (-5 *2 (-779)) (-5 *1 (-675 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-370)) (-4 *6 (-13 (-380 *5) (-10 -7 (-6 -4455))))
+ (-4 *4 (-13 (-380 *5) (-10 -7 (-6 -4455)))) (-5 *2 (-779))
+ (-5 *1 (-676 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-852)) (-5 *1 (-1300 *3 *2)) (-4 *3 (-1058)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-757)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-413 *6))
- (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1268 *5)) (-4 *6 (-1253 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1269 *5 *6 *7)) (-4 *5 (-368))
- (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1250 *6 *5)))
- (-5 *1 (-874 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1269 *5 *6 *7)) (-4 *5 (-368))
- (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1250 *6 *5)))
- (-5 *1 (-874 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *4 (-1186))
- (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304)))))
-(((*1 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-266))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))))
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3))
+ (-4 *3 (-695 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564))
+ (-5 *2 (-779)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-595 *2)) (-4 *2 (-553)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-475)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-415 (-572))))
+ (-5 *2 (-2 (|:| -3893 (-1168 *4)) (|:| -3905 (-1168 *4))))
+ (-5 *1 (-1174 *4)) (-5 *3 (-1168 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-652 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-594 *3)) (-4 *3 (-370)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384))
- (|:| |expense| (-384)) (|:| |accuracy| (-384))
- (|:| |intermediateResults| (-384))))
- (-5 *2 (-1044)) (-5 *1 (-309)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-1277 *5))) (-5 *4 (-570)) (-5 *2 (-1277 *5))
- (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799))
- (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))))
+ (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
+ (-4 *4 (-13 (-370) (-856))) (-4 *3 (-1255 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1253 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-650 (-1186))) (-4 *2 (-174))
- (-4 *3 (-240 (-2857 *4) (-777)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4298 *5) (|:| -2940 *3))
- (-2 (|:| -4298 *5) (|:| -2940 *3))))
- (-5 *1 (-467 *4 *2 *5 *3 *6 *7)) (-4 *5 (-856))
- (-4 *7 (-956 *2 *3 (-870 *4))))))
+ (-12 (-5 *2 (-652 *3)) (-4 *3 (-1255 (-572))) (-5 *1 (-494 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-652 (-489 *4 *5))) (-5 *3 (-652 (-872 *4)))
+ (-14 *4 (-652 (-1188))) (-4 *5 (-460)) (-5 *1 (-479 *4 *5 *6))
+ (-4 *6 (-460)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2))
- (-4 *2 (-13 (-436 *3) (-1011))))))
+ (-12 (-5 *2 (-952 *3)) (-4 *3 (-13 (-370) (-1214) (-1013)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *4 (-1188))
+ (-5 *1 (-1191))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1191))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-445)) (-5 *3 (-1188)) (-5 *1 (-1192))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-445)) (-5 *3 (-652 (-1188))) (-5 *1 (-1192)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-882)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2) (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-460))
+ (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-988 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-652 *7)) (-5 *3 (-112)) (-4 *7 (-1076 *4 *5 *6))
+ (-4 *4 (-460)) (-4 *4 (-564)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-5 *1 (-988 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *4)) (-4 *4 (-856)) (-4 *4 (-370)) (-5 *2 (-779))
+ (-5 *1 (-954 *4 *5)) (-4 *5 (-1255 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-757)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-652 (-1184 *4))) (-5 *3 (-1184 *4))
+ (-4 *4 (-918)) (-5 *1 (-671 *4)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-779)) (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060))
+ (-4 *4 (-801)) (-4 *5 (-858)) (-4 *3 (-564)))))
+(((*1 *2) (-12 (-5 *2 (-386)) (-5 *1 (-1051)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1184 *7))
+ (-4 *5 (-1060)) (-4 *7 (-1060)) (-4 *2 (-1255 *5))
+ (-5 *1 (-509 *5 *2 *6 *7)) (-4 *6 (-1255 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-185 (-140)))) (-5 *1 (-141)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-572))) (-4 *3 (-1060)) (-5 *1 (-603 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1239 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-572))) (-4 *1 (-1270 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1060)) (-4 *5 (-801)) (-4 *3 (-858))
+ (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1))) (-4 *1 (-958 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1060)) (-5 *2 (-2 (|:| -1882 *1) (|:| -2336 *1)))
+ (-4 *1 (-1255 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1229)) (-4 *3 (-1060))
+ (-5 *2 (-697 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1046)) (-5 *1 (-757))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-697 (-227))) (-5 *4 (-572)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-396)) (-5 *2 (-1046)) (-5 *1 (-757)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1255 (-48))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1230 *2))
+ (-4 *2 (-1111))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-1111)) (-4 *2 (-858))
+ (-5 *1 (-1230 *2)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-300 *6)) (-5 *4 (-115)) (-4 *6 (-438 *5))
+ (-4 *5 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-300 *7)) (-5 *4 (-115)) (-5 *5 (-652 *7))
+ (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-652 (-300 *7))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7))
+ (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-652 (-300 *8))) (-5 *4 (-652 (-115))) (-5 *5 (-300 *8))
+ (-5 *6 (-652 *8)) (-4 *8 (-438 *7))
+ (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-652 *7)) (-5 *4 (-652 (-115))) (-5 *5 (-300 *7))
+ (-4 *7 (-438 *6)) (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-652 *8)) (-5 *4 (-652 (-115))) (-5 *6 (-652 (-300 *8)))
+ (-4 *8 (-438 *7)) (-5 *5 (-300 *8))
+ (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-300 *5)) (-5 *4 (-115)) (-4 *5 (-438 *6))
+ (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6))
+ (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-4 *3 (-438 *6))
+ (-4 *6 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-115)) (-5 *5 (-300 *3)) (-5 *6 (-652 *3))
+ (-4 *3 (-438 *7)) (-4 *7 (-13 (-564) (-622 (-544)))) (-5 *2 (-52))
+ (-5 *1 (-323 *7 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-572) (-572))) (-5 *1 (-368 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-779) (-779))) (-4 *1 (-393 *3)) (-4 *3 (-1111))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-657 *3 *4 *5)) (-4 *3 (-1111)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798))
- (-5 *2 (-112))))
+ (-12 (-5 *2 (-2 (|:| |var| (-652 (-1188))) (|:| |pred| (-52))))
+ (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1060)) (-4 *2 (-800))))
((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058))))
+ (-12 (-5 *2 (-779)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1060))
+ (-14 *4 (-652 (-1188)))))
((*1 *2 *1)
- (-12 (-4 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-629 *3 *4))
- (-4 *4 (-1253 *3))))
+ (-12 (-5 *2 (-572)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1060) (-858)))
+ (-14 *4 (-652 (-1188)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
+ (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-280))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 *8)) (-5 *4 (-652 *6)) (-4 *6 (-858))
+ (-4 *8 (-958 *7 *5 *6)) (-4 *5 (-801)) (-4 *7 (-1060))
+ (-5 *2 (-652 (-779))) (-5 *1 (-327 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-370)) (-5 *2 (-930))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058))
- (-4 *4 (-732))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-858)) (-4 *4 (-174))
+ (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *1 (-1294 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))
- (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1277 (-570))) (-5 *3 (-570)) (-5 *1 (-1119))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1277 (-570))) (-5 *3 (-650 (-570))) (-5 *4 (-570))
- (-5 *1 (-1119)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1227)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1070 (-1033 *3) (-1182 (-1033 *3))))
- (-5 *1 (-1033 *3)) (-4 *3 (-13 (-854) (-368) (-1031))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562))
- (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-512)) (-5 *2 (-697 (-780))) (-5 *1 (-115))))
+ (-12 (-4 *3 (-564)) (-5 *2 (-572)) (-5 *1 (-631 *3 *4))
+ (-4 *4 (-1255 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860 *3)) (-4 *3 (-1060)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-913 *3)) (-4 *3 (-1111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-914 *3)) (-4 *3 (-1111))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-780)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-972)))))
+ (-12 (-5 *3 (-652 *6)) (-4 *1 (-958 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-652 (-779)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-958 *4 *5 *3)) (-4 *4 (-1060)) (-4 *5 (-801))
+ (-4 *3 (-858)) (-5 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *2 *4)) (-4 *3 (-1060)) (-4 *4 (-858))
+ (-4 *2 (-800))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1241 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1270 *3))
+ (-5 *2 (-572))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1262 *3 *4)) (-4 *3 (-1060)) (-4 *4 (-1239 *3))
+ (-5 *2 (-415 (-572)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1298 *3)) (-4 *3 (-370)) (-5 *2 (-841 (-930)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-652 (-1170))) (-5 *1 (-405)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3829 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-652 *3)) (-5 *5 (-930)) (-4 *3 (-1255 *4))
+ (-4 *4 (-313)) (-5 *1 (-468 *4 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458))
- (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6)))
- (-5 *1 (-634 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-650 (-570))) (-5 *3 (-695 (-570))) (-5 *1 (-1119)))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-713 *3 *4)) (-4 *3 (-1229)) (-4 *4 (-1229)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-268))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-572)) (-5 *4 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *2 (-1284)) (-5 *1 (-1281))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3417 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-1281))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-572)) (|has| *1 (-6 -4445)) (-4 *1 (-412))
+ (-5 *2 (-930)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1284)) (-5 *1 (-830)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856))
- (-4 *3 (-1074 *5 *6 *7))
- (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -4246 *4))))
- (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044))
- (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-337)))))
-(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-130))))))
-(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280))))
- ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1280)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227))
- (-5 *2 (-1044)) (-5 *1 (-758)))))
+ (-12 (-5 *3 (-652 (-322 (-227)))) (-5 *4 (-779))
+ (-5 *2 (-697 (-227))) (-5 *1 (-272)))))
+(((*1 *2)
+ (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-350 *3 *4)) (-14 *3 (-930))
+ (-14 *4 (-930))))
+ ((*1 *2)
+ (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-351 *3 *4)) (-4 *3 (-356))
+ (-14 *4 (-1184 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-967 (-1131))) (-5 *1 (-352 *3 *4)) (-4 *3 (-356))
+ (-14 *4 (-930)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-652 (-1188))) (-4 *4 (-1111))
+ (-4 *5 (-13 (-1060) (-895 *4) (-622 (-901 *4))))
+ (-5 *1 (-1087 *4 *5 *2))
+ (-4 *2 (-13 (-438 *5) (-895 *4) (-622 (-901 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))
+ (-5 *1 (-1087 *3 *4 *2))
+ (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-682 *3)) (-4 *3 (-1229)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1279 (-322 (-227)))) (|:| |yinit| (-652 (-227)))
+ (|:| |intvals| (-652 (-227))) (|:| |g| (-322 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-386)) (-5 *1 (-207)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-790 *3)) (|:| |polden| *3) (|:| -4154 (-779))))
+ (-5 *1 (-790 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1060)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4154 (-779))))
+ (-4 *1 (-1076 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-652 (-52))) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4)))))
+ (-12 (-5 *3 (-652 (-415 (-961 (-572))))) (-5 *4 (-652 (-1188)))
+ (-5 *2 (-652 (-652 *5))) (-5 *1 (-387 *5))
+ (-4 *5 (-13 (-856) (-370)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1253 (-171 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3))))
- ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))))
+ (-12 (-5 *3 (-415 (-961 (-572)))) (-5 *2 (-652 *4)) (-5 *1 (-387 *4))
+ (-4 *4 (-13 (-856) (-370))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-308)) (-4 *2 (-1229))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-652 (-620 *1))) (-5 *3 (-652 *1)) (-4 *1 (-308))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-652 (-300 *1))) (-4 *1 (-308))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-300 *1)) (-4 *1 (-308)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1114 *2 *3 *4 *5 *6)) (-4 *2 (-1111)) (-4 *3 (-1111))
+ (-4 *4 (-1111)) (-4 *5 (-1111)) (-4 *6 (-1111)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-564)) (-4 *2 (-460)) (-5 *1 (-980 *2 *3))
+ (-4 *3 (-1255 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-570)) (-5 *2 (-650 (-2 (|:| -2340 *3) (|:| -2650 *4))))
- (-5 *1 (-702 *3)) (-4 *3 (-1253 *4)))))
+ (-12 (-4 *5 (-313)) (-4 *6 (-380 *5)) (-4 *4 (-380 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1769 (-652 *4))))
+ (-5 *1 (-1135 *5 *6 *4 *3)) (-4 *3 (-695 *5 *6 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-572)) (-5 *1 (-206)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-572)) (-5 *2 (-652 (-2 (|:| -2972 *3) (|:| -1497 *4))))
+ (-5 *1 (-704 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-603 *2)) (-4 *2 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-1176 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1144 (-227))) (-5 *1 (-1281)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-652 *11))
+ (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -1746 *11))))))
+ (-5 *6 (-779))
+ (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -1746 *11))))
+ (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9))
+ (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801))
+ (-4 *9 (-858)) (-5 *1 (-1080 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-652 *11))
+ (|:| |todo| (-652 (-2 (|:| |val| *3) (|:| -1746 *11))))))
+ (-5 *6 (-779))
+ (-5 *2 (-652 (-2 (|:| |val| (-652 *10)) (|:| -1746 *11))))
+ (-5 *3 (-652 *10)) (-5 *4 (-652 *11)) (-4 *10 (-1076 *7 *8 *9))
+ (-4 *11 (-1120 *7 *8 *9 *10)) (-4 *7 (-460)) (-4 *8 (-801))
+ (-4 *9 (-858)) (-5 *1 (-1156 *7 *8 *9 *10 *11)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-779)) (-5 *1 (-115))))
+ ((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-258 *4 *3 *5 *6)) (-4 *4 (-1060)) (-4 *3 (-858))
+ (-4 *5 (-271 *3)) (-4 *6 (-801)) (-5 *2 (-779))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-258 *3 *4 *5 *6)) (-4 *3 (-1060)) (-4 *4 (-858))
+ (-4 *5 (-271 *4)) (-4 *6 (-801)) (-5 *2 (-779))))
+ ((*1 *2 *1) (-12 (-4 *1 (-271 *3)) (-4 *3 (-858)) (-5 *2 (-779)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-652 *2))) (-5 *4 (-652 *5))
+ (-4 *5 (-38 (-415 (-572)))) (-4 *2 (-1270 *5))
+ (-5 *1 (-1272 *5 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-356)) (-5 *2 (-779))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-410)) (-5 *2 (-779)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-697 *3)) (-4 *3 (-1060)) (-5 *1 (-698 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1105 (-851 (-227)))) (-5 *2 (-227)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-829)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))))
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-415 (-572))) (-5 *1 (-325 *3 *4 *5)) (-4 *3 (-370))
+ (-14 *4 (-1188)) (-14 *5 *3))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-952 (-227))) (-5 *2 (-1284)) (-5 *1 (-476)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-930)) (-5 *2 (-1190 (-415 (-572)))) (-5 *1 (-192))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1279 (-3 (-476) "undefined"))) (-5 *1 (-1280)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-697 (-227))) (-5 *5 (-697 (-572))) (-5 *6 (-227))
+ (-5 *3 (-572)) (-5 *2 (-1046)) (-5 *1 (-760)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-775))
+ (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-193)) (-5 *3 (-572))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-779)) (-5 *1 (-791 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1082 *4 *5 *6 *3)) (-4 *4 (-460)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858))
+ (-4 *3 (-1076 *4 *5 *6))
+ (-5 *2 (-652 (-2 (|:| |val| (-112)) (|:| -1746 *1))))
+ (-4 *1 (-1082 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-652 (-572)))
+ (|:| |cols| (-652 (-572)))))
+ (-5 *4 (-697 *12)) (-5 *5 (-652 (-415 (-961 *9))))
+ (-5 *6 (-652 (-652 *12))) (-5 *7 (-779)) (-5 *8 (-572))
+ (-4 *9 (-13 (-313) (-148))) (-4 *12 (-958 *9 *11 *10))
+ (-4 *10 (-13 (-858) (-622 (-1188)))) (-4 *11 (-801))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))))
- (-5 *1 (-571))))
+ (-2 (|:| |eqzro| (-652 *12)) (|:| |neqzro| (-652 *12))
+ (|:| |wcond| (-652 (-961 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *9))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *9)))))))))
+ (-5 *1 (-933 *9 *10 *11 *12)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *2 (-1224 (-935)))
+ (-5 *1 (-324))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1105 (-227))) (-5 *6 (-572)) (-5 *7 (-1170))
+ (-5 *2 (-1224 (-935))) (-5 *1 (-324))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572))
+ (-5 *2 (-1224 (-935))) (-5 *1 (-324))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-322 (-572))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1105 (-227))) (-5 *6 (-227)) (-5 *7 (-572)) (-5 *8 (-1170))
+ (-5 *2 (-1224 (-935))) (-5 *1 (-324)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1279 *4)) (-5 *3 (-697 *4)) (-4 *4 (-370))
+ (-5 *1 (-675 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-370))
+ (-4 *5 (-13 (-380 *4) (-10 -7 (-6 -4455))))
+ (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455))))
+ (-5 *1 (-676 *4 *5 *2 *3)) (-4 *3 (-695 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-652 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-370))
+ (-5 *1 (-822 *2 *3)) (-4 *3 (-664 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-370) (-10 -8 (-15 ** ($ $ (-415 (-572)))))))
+ (-5 *1 (-1139 *3 *2)) (-4 *3 (-1255 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1188)) (|:| |fn| (-322 (-227)))
+ (|:| -4336 (-1105 (-851 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-112)) (-5 *1 (-306)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1060)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1037 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1184 (-572))) (-5 *1 (-951)) (-5 *3 (-572))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-313)) (-4 *4 (-380 *3)) (-4 *5 (-380 *3))
+ (-5 *1 (-1135 *3 *4 *5 *2)) (-4 *2 (-695 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-652 (-961 (-572)))) (-5 *1 (-445))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-775)) (-5 *4 (-1072))
- (-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))))
- (-5 *1 (-571))))
+ (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-227))) (-5 *2 (-1115))
+ (-5 *1 (-767))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-793)) (-5 *3 (-1072))
- (-5 *4
- (-2 (|:| |fn| (-320 (-227)))
- (|:| -2744 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
+ (-12 (-5 *3 (-1188)) (-5 *4 (-697 (-572))) (-5 *2 (-1115))
+ (-5 *1 (-767)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-652 (-697 *6))) (-5 *4 (-112)) (-5 *5 (-572))
+ (-5 *2 (-697 *6)) (-5 *1 (-1040 *6)) (-4 *6 (-370)) (-4 *6 (-1060))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-652 (-697 *4))) (-5 *2 (-697 *4)) (-5 *1 (-1040 *4))
+ (-4 *4 (-370)) (-4 *4 (-1060))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-572)) (-5 *2 (-697 *5))
+ (-5 *1 (-1040 *5)) (-4 *5 (-370)) (-4 *5 (-1060)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-652 *7)) (-5 *5 (-652 (-652 *8))) (-4 *7 (-858))
+ (-4 *8 (-313)) (-4 *6 (-801)) (-4 *9 (-958 *8 *6 *7))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))
- (|:| |extra| (-1044))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-793)) (-5 *3 (-1072))
- (-5 *4
- (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227)))
- (|:| -2744 (-1103 (-849 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-652 (-2 (|:| -2972 (-1184 *9)) (|:| -2477 (-572)))))))
+ (-5 *1 (-750 *6 *7 *8 *9)) (-5 *3 (-1184 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-370)) (-4 *7 (-1255 *5)) (-4 *4 (-732 *5 *7))
+ (-5 *2 (-2 (|:| -1866 (-697 *6)) (|:| |vec| (-1279 *5))))
+ (-5 *1 (-819 *5 *6 *7 *4 *3)) (-4 *6 (-664 *5)) (-4 *3 (-664 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-370)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-5 *2 (-652 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
+ (-5 *2 (-652 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-652 (-930))) (-5 *1 (-982)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-697 (-572))) (-5 *5 (-112)) (-5 *7 (-697 (-227)))
+ (-5 *3 (-572)) (-5 *6 (-227)) (-5 *2 (-1046)) (-5 *1 (-762)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1270 *4))
+ (-4 *4 (-38 (-415 (-572))))
+ (-5 *2 (-1 (-1168 *4) (-1168 *4) (-1168 *4))) (-5 *1 (-1272 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4455)) (-4 *1 (-120 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-370)) (-4 *5 (-380 *4)) (-4 *6 (-380 *4))
+ (-5 *2 (-779)) (-5 *1 (-529 *4 *5 *6 *3)) (-4 *3 (-695 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-695 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-380 *3))
+ (-4 *5 (-380 *3)) (-4 *3 (-564)) (-5 *2 (-779))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-564)) (-4 *4 (-174)) (-4 *5 (-380 *4))
+ (-4 *6 (-380 *4)) (-5 *2 (-779)) (-5 *1 (-696 *4 *5 *6 *3))
+ (-4 *3 (-695 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1064 *3 *4 *5 *6 *7)) (-4 *5 (-1060))
+ (-4 *6 (-242 *4 *5)) (-4 *7 (-242 *3 *5)) (-4 *5 (-564))
+ (-5 *2 (-779)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-930)) (-5 *1 (-1041 *2))
+ (-4 *2 (-13 (-1111) (-10 -8 (-15 -4005 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572)) (-5 *2 (-1046)) (-5 *1 (-766)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1170)) (-5 *2 (-1284)) (-5 *1 (-1206 *4 *5))
+ (-4 *4 (-1111)) (-4 *5 (-1111)))))
+(((*1 *1 *1 *1) (-4 *1 (-481))) ((*1 *1 *1 *1) (-4 *1 (-769))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1229)) (-5 *1 (-382 *4 *2))
+ (-4 *2 (-13 (-380 *4) (-10 -7 (-6 -4455)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-652 (-112))))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-759)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-652 *6)) (-4 *6 (-1076 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-313)) (-4 *3 (-564)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-5 *1 (-988 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-268)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1188)) (-5 *3 (-386)) (-5 *1 (-1074)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-2 (|:| -2972 *4) (|:| -1497 (-572)))))
+ (-4 *4 (-1255 (-572))) (-5 *2 (-745 (-779))) (-5 *1 (-450 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-426 *5)) (-4 *5 (-1255 *4)) (-4 *4 (-1060))
+ (-5 *2 (-745 (-779))) (-5 *1 (-452 *4 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4454)) (-4 *1 (-152 *3))
+ (-4 *3 (-1229))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-682 *3)) (-4 *3 (-1229))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1222 *4 *5 *3 *2)) (-4 *4 (-564))
+ (-4 *5 (-801)) (-4 *3 (-858)) (-4 *2 (-1076 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-5 *1 (-1226 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-438 *4) (-1013) (-1214)))
+ (-4 *4 (-564)) (-4 *2 (-13 (-438 (-171 *4)) (-1013) (-1214)))
+ (-5 *1 (-608 *4 *5 *2)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-537)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1279 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-370))
+ (-4 *1 (-732 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1255 *5))
+ (-5 *2 (-697 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *3 (-961 (-572)))
+ (-5 *1 (-336))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1103 (-961 (-572)))) (-5 *1 (-336)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-779)) (-4 *5 (-564))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-980 *5 *3)) (-4 *3 (-1255 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-870)))))
+(((*1 *1) (-5 *1 (-831))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-652 (-790 *3))) (-5 *1 (-790 *3)) (-4 *3 (-564))
+ (-4 *3 (-1060)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-697 *3))
+ (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-697 *3))
+ (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *4 (-1255 *3)) (-5 *1 (-507 *3 *4 *5)) (-4 *5 (-417 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-952 *3) (-952 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-370) (-1214) (-1013)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1233)) (-4 *5 (-1255 (-415 *2)))
+ (-4 *2 (-1255 *4)) (-5 *1 (-348 *3 *4 *2 *5))
+ (-4 *3 (-349 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-349 *3 *2 *4)) (-4 *3 (-1233))
+ (-4 *4 (-1255 (-415 *2))) (-4 *2 (-1255 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
+(((*1 *1) (-5 *1 (-188))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1296 *2 *3)) (-4 *2 (-858)) (-4 *3 (-1060))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1302 *2 *3)) (-4 *2 (-1060)) (-4 *3 (-854)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-313) (-10 -8 (-15 -2359 ((-426 $) $)))))
+ (-4 *4 (-1255 *3))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))
- (|:| |extra| (-1044))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-806)) (-5 *3 (-1072))
- (-5 *4
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1277 (-320 (-227)))) (|:| |yinit| (-650 (-227)))
- (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))))))
+ (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-697 *3))))
+ (-5 *1 (-357 *3 *4 *5)) (-4 *5 (-417 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-814))
+ (-12 (-5 *3 (-572)) (-4 *4 (-1255 *3))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168)))))
- (-5 *1 (-811))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-814)) (-5 *4 (-1072))
+ (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-697 *3))))
+ (-5 *1 (-776 *4 *5)) (-4 *5 (-417 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168)))))
- (-5 *1 (-811))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-845)) (-5 *3 (-1072))
- (-5 *4
- (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -3458 (-650 (-227)))))
- (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-845)) (-5 *3 (-1072))
- (-5 *4
- (-2 (|:| |fn| (-320 (-227))) (|:| -3458 (-650 (-227)))
- (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227))))
- (|:| |ub| (-650 (-849 (-227))))))
- (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))))))
+ (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-697 *3))))
+ (-5 *1 (-996 *4 *3 *5 *6)) (-4 *6 (-732 *3 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-847))
+ (-12 (-4 *4 (-356)) (-4 *3 (-1255 *4)) (-4 *5 (-1255 *3))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168)))))
- (-5 *1 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-847)) (-5 *4 (-1072))
+ (-2 (|:| -1769 (-697 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-697 *3))))
+ (-5 *1 (-1288 *4 *3 *5 *6)) (-4 *6 (-417 *3 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-958 *3 *5 *4)) (-5 *1 (-998 *3 *4 *5 *2))
+ (-4 *3 (-460)) (-4 *4 (-858)) (-4 *5 (-801)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-564)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3829 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1060)) (-5 *2 (-1279 *3)) (-5 *1 (-720 *3 *4))
+ (-4 *4 (-1255 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-930)) (-5 *1 (-794)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))))
+(((*1 *2 *1) (-12 (-5 *2 (-930)) (-5 *1 (-982)))))
+(((*1 *1) (-5 *1 (-188))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-564)))))
+(((*1 *1 *1) (-5 *1 (-544))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-370)) (-4 *3 (-1060))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4267 *1)))
+ (-4 *1 (-860 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-313)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-438 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1111) (-1049 *5)))
+ (-4 *5 (-895 *4)) (-4 *4 (-1111)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-940 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111))))
+ ((*1 *1 *2) (-12 (-5 *1 (-910 *2)) (-4 *2 (-1111)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-603 *2)) (-4 *2 (-38 (-415 (-572)))) (-4 *2 (-1060)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-779)) (-4 *6 (-1111)) (-4 *7 (-909 *6))
+ (-5 *2 (-697 *7)) (-5 *1 (-700 *6 *7 *3 *4)) (-4 *3 (-380 *7))
+ (-4 *4 (-13 (-380 *6) (-10 -7 (-6 -4454)))))))
+(((*1 *1) (-5 *1 (-188))))
+(((*1 *2 *2) (-12 (-5 *2 (-572)) (-5 *1 (-569)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-572)) (-14 *3 (-779))
+ (-4 *4 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-930)) (-4 *6 (-564)) (-5 *2 (-652 (-322 *6)))
+ (-5 *1 (-223 *5 *6)) (-5 *3 (-322 *6)) (-4 *5 (-1060))))
+ ((*1 *2 *1) (-12 (-5 *1 (-426 *2)) (-4 *2 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 *5)) (-4 *5 (-13 (-29 *4) (-1214)))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572)))) (-5 *2 (-652 *5))
+ (-5 *1 (-591 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-415 (-961 *4))))
+ (-4 *4 (-13 (-460) (-1049 (-572)) (-647 (-572))))
+ (-5 *2 (-652 (-322 *4))) (-5 *1 (-597 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1160 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *1)) (-4 *1 (-1106 *4 *2)) (-4 *4 (-856))
+ (-4 *2 (-1160 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1294 (-1188) *3)) (-5 *1 (-1301 *3)) (-4 *3 (-1060))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1303 *3 *4)) (-4 *3 (-858))
+ (-4 *4 (-1060)))))
+(((*1 *2)
+ (-12 (-4 *3 (-564)) (-5 *2 (-652 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-425 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-652 (-952 *3))))))
+(((*1 *1) (-4 *1 (-978))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168)))))
- (-5 *1 (-846))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-902)) (-5 *3 (-1072))
- (-5 *4
- (-2 (|:| |pde| (-650 (-320 (-227))))
- (|:| |constraints|
- (-650
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-777)) (|:| |boundaryType| (-570))
- (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227))))))
- (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168))
- (|:| |tol| (-227))))
- (-5 *2 (-2 (|:| -1319 (-384)) (|:| |explanations| (-1168))))))
+ (-652
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-572)))))
+ (-5 *1 (-426 *3)) (-4 *3 (-564))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-779)) (-4 *3 (-356)) (-4 *5 (-1255 *3))
+ (-5 *2 (-652 (-1184 *3))) (-5 *1 (-506 *3 *5 *6))
+ (-4 *6 (-1255 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-930)) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1184 *3)) (-4 *3 (-356)) (-5 *1 (-364 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-349 *3 *4 *5)) (-4 *3 (-1233)) (-4 *4 (-1255 *3))
+ (-4 *5 (-1255 (-415 *4))) (-5 *2 (-697 (-415 *4))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-1229)) (-4 *2 (-858))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-380 *3)) (-4 *3 (-1229))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-979 *2)) (-4 *2 (-858))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-1060))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-1060))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-652 (-1176 *3 *4))) (-5 *1 (-1176 *3 *4))
+ (-14 *3 (-930)) (-4 *4 (-1060))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3)) (-14 *2 (-930)) (-4 *3 (-1060)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
+ (-5 *2 (-1046)) (-5 *1 (-763))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-572)) (-5 *5 (-697 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-396)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-396)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-396))
+ (-5 *4 (-227)) (-5 *2 (-1046)) (-5 *1 (-763)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-652 (-1279 *4))) (-5 *1 (-373 *3 *4))
+ (-4 *3 (-374 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564))
+ (-5 *2 (-652 (-1279 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-538 *3)) (-4 *3 (-13 (-734) (-25))))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4454)) (-4 *1 (-497 *3)) (-4 *3 (-1229))
+ (-4 *3 (-1111)) (-5 *2 (-779))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4454)) (-4 *1 (-497 *4))
+ (-4 *4 (-1229)) (-5 *2 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460))))
+ ((*1 *1 *1 *1) (-4 *1 (-460)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-5 *1 (-494 *2)) (-4 *2 (-1255 (-572)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-572)) (-5 *1 (-704 *2)) (-4 *2 (-1255 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-779)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-801)) (-4 *4 (-858)) (-4 *5 (-313))
+ (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-958 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-905))
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-958 *6 *4 *5))
+ (-5 *1 (-925 *4 *5 *6 *2)) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-313))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1184 *6)) (-4 *6 (-958 *5 *3 *4)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *5 (-313)) (-5 *1 (-925 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-1184 *7))) (-4 *4 (-801)) (-4 *5 (-858))
+ (-4 *6 (-313)) (-5 *2 (-1184 *7)) (-5 *1 (-925 *4 *5 *6 *7))
+ (-4 *7 (-958 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-930)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-460)) (-4 *3 (-564)) (-5 *1 (-980 *3 *2))
+ (-4 *2 (-1255 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-460)))))
+(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-145)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 *7)) (-4 *7 (-858)) (-4 *5 (-918)) (-4 *6 (-801))
+ (-4 *8 (-958 *5 *6 *7)) (-5 *2 (-426 (-1184 *8)))
+ (-5 *1 (-915 *5 *6 *7 *8)) (-5 *4 (-1184 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-918)) (-4 *5 (-1255 *4)) (-5 *2 (-426 (-1184 *5)))
+ (-5 *1 (-916 *4 *5)) (-5 *3 (-1184 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-930)) (-5 *3 (-652 (-268))) (-5 *1 (-266))))
+ ((*1 *1 *2) (-12 (-5 *2 (-930)) (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-564))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2020 *4)))
+ (-5 *1 (-980 *4 *3)) (-4 *3 (-1255 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1270 *4)) (-5 *1 (-1272 *4 *2))
+ (-4 *4 (-38 (-415 (-572)))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1111)) (-4 *4 (-13 (-1060) (-895 *3) (-622 *2)))
+ (-5 *2 (-901 *3)) (-5 *1 (-1087 *3 *4 *5))
+ (-4 *5 (-13 (-438 *4) (-895 *3) (-622 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1076 *5 *6 *7)) (-4 *5 (-564))
+ (-4 *6 (-801)) (-4 *7 (-858))
+ (-5 *2 (-2 (|:| |goodPols| (-652 *8)) (|:| |badPols| (-652 *8))))
+ (-5 *1 (-988 *5 *6 *7 *8)) (-5 *4 (-652 *8)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1113 (-779))) (-5 *6 (-779))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168)))))
- (-5 *1 (-904))))
+ (-2 (|:| |contp| (-572))
+ (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572)))))))
+ (-5 *1 (-450 *3)) (-4 *3 (-1255 (-572))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-905)) (-5 *4 (-1072))
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-1057 *5 *6))) (-5 *1 (-1306 *5 *6 *7))
+ (-14 *6 (-652 (-1188))) (-14 *7 (-652 (-1188)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-961 *4)))
+ (-4 *4 (-13 (-856) (-313) (-148) (-1033)))
+ (-5 *2 (-652 (-1057 *4 *5))) (-5 *1 (-1306 *4 *5 *6))
+ (-14 *5 (-652 (-1188))) (-14 *6 (-652 (-1188))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1866 (-697 (-415 (-961 *4))))
+ (|:| |vec| (-652 (-415 (-961 *4)))) (|:| -1526 (-779))
+ (|:| |rows| (-652 (-572))) (|:| |cols| (-652 (-572)))))
+ (-4 *4 (-13 (-313) (-148))) (-4 *5 (-13 (-858) (-622 (-1188))))
+ (-4 *6 (-801))
(-5 *2
- (-2 (|:| -1319 (-384)) (|:| -1770 (-1168))
- (|:| |explanations| (-650 (-1168)))))
- (-5 *1 (-904)))))
+ (-2 (|:| |partsol| (-1279 (-415 (-961 *4))))
+ (|:| -1769 (-652 (-1279 (-415 (-961 *4)))))))
+ (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-958 *4 *6 *5)))))
+(((*1 *1) (-5 *1 (-297))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1229)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 (-572))) (-5 *2 (-913 (-572))) (-5 *1 (-926))))
+ ((*1 *2 *3) (-12 (-5 *3 (-982)) (-5 *2 (-913 (-572))) (-5 *1 (-926)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-652 *2)) (-4 *2 (-1255 *4)) (-5 *1 (-547 *4 *2 *5 *6))
+ (-4 *4 (-313)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-779))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-460)) (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-1284))
+ (-5 *1 (-457 *4 *5 *6 *3)) (-4 *3 (-958 *4 *5 *6)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-779)) (-5 *2 (-415 (-572))) (-5 *1 (-386)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-386)) (-5 *2 (-1284)) (-5 *1 (-1281)))))
+(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801))
+ (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3179 (-652 *9)) (|:| -1746 *4) (|:| |ineq| (-652 *9))))
+ (-5 *1 (-999 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9))
+ (-4 *4 (-1082 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-460)) (-4 *7 (-801))
+ (-4 *8 (-858)) (-4 *9 (-1076 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3179 (-652 *9)) (|:| -1746 *4) (|:| |ineq| (-652 *9))))
+ (-5 *1 (-1118 *6 *7 *8 *9 *4)) (-5 *3 (-652 *9))
+ (-4 *4 (-1082 *6 *7 *8 *9)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-994 *2)) (-4 *2 (-1214)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1250 *5 *4)))
- (-5 *1 (-1123 *4 *5)) (-5 *3 (-1250 *5 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-227))
+ (-12 (-5 *3 (-779)) (-5 *2 (-1279 (-652 (-572)))) (-5 *1 (-488))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-609 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1229)) (-5 *1 (-1168 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-697 *5))) (-5 *4 (-1279 *5)) (-4 *5 (-313))
+ (-4 *5 (-1060)) (-5 *2 (-697 *5)) (-5 *1 (-1040 *5)))))
+(((*1 *1) (-4 *1 (-356)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-652 *5)) (-4 *5 (-438 *4)) (-4 *4 (-13 (-564) (-148)))
(-5 *2
- (-2 (|:| |brans| (-650 (-650 (-950 *4))))
- (|:| |xValues| (-1103 *4)) (|:| |yValues| (-1103 *4))))
- (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 *4)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3)))))
+ (-2 (|:| |primelt| *5) (|:| |poly| (-652 (-1184 *5)))
+ (|:| |prim| (-1184 *5))))
+ (-5 *1 (-440 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-564) (-148)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1184 *3))
+ (|:| |pol2| (-1184 *3)) (|:| |prim| (-1184 *3))))
+ (-5 *1 (-440 *4 *3)) (-4 *3 (-27)) (-4 *3 (-438 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-961 *5)) (-5 *4 (-1188)) (-4 *5 (-13 (-370) (-148)))
+ (-5 *2
+ (-2 (|:| |coef1| (-572)) (|:| |coef2| (-572))
+ (|:| |prim| (-1184 *5))))
+ (-5 *1 (-969 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-652 (-961 *5))) (-5 *4 (-652 (-1188)))
+ (-4 *5 (-13 (-370) (-148)))
+ (-5 *2
+ (-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 *5)))
+ (|:| |prim| (-1184 *5))))
+ (-5 *1 (-969 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-652 (-961 *6))) (-5 *4 (-652 (-1188))) (-5 *5 (-1188))
+ (-4 *6 (-13 (-370) (-148)))
+ (-5 *2
+ (-2 (|:| -2379 (-652 (-572))) (|:| |poly| (-652 (-1184 *6)))
+ (|:| |prim| (-1184 *6))))
+ (-5 *1 (-969 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1300 *3 *4)) (-4 *3 (-858)) (-4 *4 (-1060))
+ (-5 *2 (-827 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-854)) (-5 *1 (-1302 *3 *2)) (-4 *3 (-1060)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-572))
+ (-5 *5 (-3 (|:| |fn| (-396)) (|:| |fp| (-64 -3636))))
+ (-5 *2 (-1046)) (-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-374 *3)) (-4 *3 (-174)) (-4 *3 (-564))
+ (-5 *2 (-1184 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1151 *3 *2)) (-4 *3 (-13 (-1111) (-34)))
+ (-4 *2 (-13 (-1111) (-34))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1229)))))
(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-801)) (-4 *4 (-858)) (-4 *6 (-313)) (-5 *2 (-426 *3))
+ (-5 *1 (-750 *5 *4 *6 *3)) (-4 *3 (-958 *6 *5 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-652 *1)) (-4 *1 (-1076 *4 *5 *6)) (-4 *4 (-1060))
+ (-4 *5 (-801)) (-4 *6 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1076 *3 *4 *5)) (-4 *3 (-1060)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1222 *3 *4 *5 *6)) (-4 *3 (-564)) (-4 *4 (-801))
+ (-4 *5 (-858)) (-4 *6 (-1076 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1222 *4 *5 *6 *3)) (-4 *4 (-564)) (-4 *5 (-801))
+ (-4 *6 (-858)) (-4 *3 (-1076 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-415 *4)) (-4 *4 (-1255 *3))
+ (-4 *3 (-13 (-370) (-148) (-1049 (-572)))) (-5 *1 (-576 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1228)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1111))
+ (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3))))
+ (-5 *1 (-1087 *3 *4 *2))
+ (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *3 *2)) (-4 *3 (-1111)))))
+(((*1 *1 *2) (-12 (-5 *2 (-652 *1)) (-4 *1 (-460))))
+ ((*1 *1 *1 *1) (-4 *1 (-460))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-370) (-856))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1255 (-171 *3))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-572)) (-5 *4 (-697 (-227))) (-5 *2 (-1046))
+ (-5 *1 (-755)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1279 (-652 (-2 (|:| -1653 *4) (|:| -1795 (-1131))))))
+ (-4 *4 (-356)) (-5 *2 (-1284)) (-5 *1 (-536 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1187)) (-5 *1 (-336)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-564) (-1049 (-572)))) (-4 *5 (-438 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1184 (-415 (-572))))
+ (|:| |overan| (-1184 (-48))) (|:| -4011 (-112))))
+ (-5 *1 (-443 *4 *5 *3)) (-4 *3 (-1255 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-370)) (-5 *1 (-774 *2 *3)) (-4 *2 (-716 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-860 *2)) (-4 *2 (-1060)) (-4 *2 (-370)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-801)) (-4 *5 (-858)) (-4 *6 (-313))
+ (-5 *2 (-652 (-779))) (-5 *1 (-786 *3 *4 *5 *6 *7))
+ (-4 *3 (-1255 *6)) (-4 *7 (-958 *6 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-460)) (-5 *1 (-1220 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1214))))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -1647 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-652 (-415 *8))) (-4 *7 (-370)) (-4 *8 (-1255 *7))
+ (-5 *3 (-415 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-652 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-582 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-300 *2)) (-4 *2 (-1229))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-486))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-600))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-634))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1111))
+ (-4 *2 (-13 (-438 *4) (-895 *3) (-622 (-901 *3))))
+ (-5 *1 (-1087 *3 *4 *2))
+ (-4 *4 (-13 (-1060) (-895 *3) (-622 (-901 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1111)) (-5 *1 (-1177 *2 *3)) (-4 *3 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
+(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-652 (-115))))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-650
- (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8))
- (|:| |wcond| (-650 (-959 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1277 (-413 (-959 *5))))
- (|:| -2681 (-650 (-1277 (-413 (-959 *5))))))))))
- (-5 *4 (-1168)) (-4 *5 (-13 (-311) (-148))) (-4 *8 (-956 *5 *7 *6))
- (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-570))
- (-5 *1 (-931 *5 *6 *7 *8)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4452)) (-4 *1 (-495 *3)) (-4 *3 (-1227))
- (-4 *3 (-1109)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-112))
- (-5 *1 (-911 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-928)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1227)))))
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-322 (-227))) (|:| -3477 (-652 (-227)))
+ (|:| |lb| (-652 (-851 (-227))))
+ (|:| |cf| (-652 (-322 (-227))))
+ (|:| |ub| (-652 (-851 (-227))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-652 (-322 (-227))))
+ (|:| -3477 (-652 (-227)))))))
+ (-5 *2 (-652 (-1170))) (-5 *1 (-272)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-297)))
+ ((*1 *1) (-5 *1 (-870)))
+ ((*1 *1)
+ (-12 (-4 *2 (-460)) (-4 *3 (-858)) (-4 *4 (-801))
+ (-5 *1 (-998 *2 *3 *4 *5)) (-4 *5 (-958 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1096)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1151 *2 *3)) (-4 *2 (-13 (-1111) (-34)))
+ (-4 *3 (-13 (-1111) (-34)))))
+ ((*1 *1) (-5 *1 (-1191))) ((*1 *1) (-5 *1 (-1192))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1076 *2 *3 *4)) (-4 *2 (-1060)) (-4 *3 (-801))
+ (-4 *4 (-858)) (-4 *2 (-564)))))
+(((*1 *1 *1) (-4 *1 (-637)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-638 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013) (-1214))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1284)) (-5 *1 (-830)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-356))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -1591 (-652 (-2 (|:| |irr| *3) (|:| -1948 (-572)))))))
+ (-5 *1 (-218 *5 *3)) (-4 *3 (-1255 *5)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-514)) (-5 *3 (-605)) (-5 *1 (-593)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-564)) (-5 *1 (-281 *3 *2))
+ (-4 *2 (-13 (-438 *3) (-1013))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3))
- (-4 *3 (-1253 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1282)) (-5 *1 (-828)))))
-((-1311 . 732357) (-1312 . 732261) (-1313 . 732205) (-1314 . 731889)
- (-1315 . 731441) (-1316 . 731363) (-1317 . 731145) (-1318 . 731010)
- (-1319 . 727711) (-1320 . 727625) (-1321 . 727493) (-1322 . 727364)
- (-1323 . 727102) (-1324 . 726968) (-1325 . 726867) (-1326 . 726808)
- (-1327 . 726756) (-1328 . 726637) (-1329 . 726243) (-1330 . 726153)
- (-1331 . 726100) (-1332 . 725928) (-1333 . 725699) (-1334 . 725557)
- (-1335 . 725416) (-1336 . 725339) (-1337 . 725148) (-1338 . 724613)
- (-1339 . 724518) (-1340 . 724225) (-1341 . 724145) (-1342 . 724017)
- (-1343 . 723862) (-1344 . 723806) (-1345 . 723586) (-1346 . 723495)
- (-1347 . 723306) (-1348 . 723161) (-1349 . 722625) (-1350 . 722597)
- (-1351 . 722490) (-1352 . 722317) (-1353 . 722162) (-1354 . 722084)
- (-1355 . 721942) (-1356 . 721890) (-1357 . 721768) (-1358 . 721716)
- (-1359 . 721442) (-1360 . 721354) (-1361 . 721248) (-1362 . 721058)
- (-1363 . 714115) (-1364 . 713939) (-1365 . 713773) (-1366 . 713685)
- (-1367 . 713480) (-1368 . 713424) (-1369 . 713365) (-1370 . 713337)
- (-1371 . 713271) (-1372 . 712984) (-1373 . 712793) (-1374 . 712734)
- (-1375 . 712632) (-1376 . 712530) (-1377 . 712209) (-1378 . 712103)
- (-1379 . 711856) (-1380 . 711732) (-1381 . 711606) (-1382 . 711487)
- (-1383 . 711434) (-1384 . 711321) (-1385 . 711022) (-1386 . 710889)
- (-1387 . 710794) (-1388 . 710711) (-1389 . 710589) (-1390 . 710499)
- (-1391 . 710425) (-1392 . 709916) (-1393 . 709778) (-1394 . 709398)
- (-1395 . 709180) (-1396 . 708884) (-1397 . 708788) (-1398 . 708722)
- (-1399 . 708694) (-1400 . 708641) (-1401 . 708575) (-1402 . 708420)
- (-1403 . 708391) (-1404 . 708201) (-1405 . 707948) (-1406 . 707852)
- (-1407 . 707709) (-1408 . 707635) (-1409 . 707509) (-1410 . 707451)
- (-1411 . 707356) (-1412 . 707279) (-1413 . 707046) (-1414 . 706796)
- (-1415 . 706695) (-1416 . 706587) (-1417 . 706492) (-1418 . 706343)
- (-1419 . 706250) (-1420 . 705956) (-1421 . 705833) (-1422 . 705723)
- (-1423 . 705637) (-1424 . 705429) (-1425 . 705325) (-1426 . 705204)
- (-1427 . 705108) (-1428 . 705021) (-1429 . 704600) (-1430 . 704517)
- (-1431 . 704485) (-1432 . 704325) (-1433 . 703807) (-1434 . 703240)
- (-1435 . 703181) (-1436 . 703095) (-1437 . 702845) (-1438 . 702664)
- (-1439 . 702238) (-1440 . 702134) (-1441 . 702064) (-1442 . 702003)
- (-1443 . 701906) (-1444 . 701787) (-1445 . 701693) (-1446 . 701412)
- (-1447 . 701268) (-1448 . 701022) (-1449 . 700963) (-1450 . 700628)
- (-1451 . 700484) (-1452 . 700332) (-1453 . 700276) (-1454 . 700210)
- (-1455 . 700137) (-1456 . 699718) (-1457 . 699495) (-1458 . 699426)
- (-1459 . 699280) (-1460 . 699070) (-1461 . 697730) (-1462 . 697187)
- (-1463 . 697084) (-1464 . 696748) (-1465 . 696469) (-1466 . 696420)
- (-1467 . 696355) (-1468 . 696218) (-1469 . 696127) (-1470 . 696056)
- (-1471 . 695891) (-1472 . 695796) (-1473 . 695707) (-1474 . 694819)
- (-1475 . 693977) (-1476 . 693755) (-1477 . 693613) (-1478 . 693386)
- (-1479 . 693262) (-1480 . 693179) (-1481 . 693027) (-1482 . 692961)
- (-1483 . 692714) (-1484 . 692614) (-1485 . 692378) (-1486 . 692276)
- (-1487 . 692163) (-1488 . 692011) (-1489 . 691902) (-1490 . 691823)
- (-1491 . 691610) (-1492 . 691392) (-1493 . 691314) (-1494 . 691243)
- (-1495 . 690911) (-1496 . 690768) (-1497 . 690685) (-1498 . 690486)
- (-1499 . 690398) (-1500 . 690093) (-1501 . 689023) (-1502 . 688910)
- (-1503 . 688786) (-1504 . 688359) (-1505 . 687729) (-1506 . 686865)
- (-1507 . 686777) (-1508 . 686743) (-1509 . 686691) (-1510 . 684723)
- (-1511 . 682993) (-1512 . 682840) (-1513 . 682277) (-1514 . 682208)
- (-1515 . 682085) (-1516 . 682014) (-1517 . 681982) (-1518 . 681809)
- (-1519 . 681657) (-1520 . 681573) (-1521 . 681414) (-1522 . 680986)
- (-1523 . 680423) (-1524 . 679908) (-1525 . 679789) (-1526 . 679718)
- (-1527 . 679408) (-1528 . 679356) (-1529 . 679289) (-1530 . 679114)
- (-1531 . 678852) (-1532 . 678715) (-1533 . 678298) (-1534 . 677931)
- (-1535 . 677737) (-1536 . 677175) (-1537 . 677069) (-1538 . 677037)
- (-1539 . 676968) (-1540 . 676722) (-1541 . 676543) (-1542 . 676373)
- (-1543 . 676273) (-1544 . 676117) (-1545 . 675946) (-1546 . 675384)
- (-1547 . 675332) (-1548 . 675231) (-1549 . 675128) (-1550 . 674950)
- (-1551 . 674848) (-1552 . 674712) (-1553 . 674597) (-1554 . 674490)
- (-1555 . 674462) (-1556 . 674406) (-1557 . 673810) (-1558 . 673704)
- (-1559 . 673624) (-1560 . 673573) (-1561 . 673011) (-1562 . 672864)
- (-1563 . 672498) (-1564 . 672367) (-1565 . 672249) (-1566 . 672061)
- (-1567 . 671982) (-1568 . 671905) (-1569 . 671803) (-1570 . 671723)
- (-1571 . 671616) (-1572 . 671491) (-1573 . 671459) (-1574 . 671359)
- (-1575 . 670797) (-1576 . 670697) (-1577 . 669983) (-1578 . 669143)
- (-1579 . 669057) (-1580 . 668969) (-1581 . 668909) (-1582 . 668599)
- (-1583 . 668515) (-1584 . 668421) (-1585 . 667859) (-1586 . 667722)
- (-1587 . 667018) (-1588 . 666944) (-1589 . 666859) (-1590 . 666800)
- (-1591 . 666726) (-1592 . 666074) (-1593 . 665730) (-1594 . 665568)
- (-1595 . 665445) (-1596 . 665326) (-1597 . 664064) (-1598 . 662768)
- (-1599 . 662087) (-1600 . 661875) (-1601 . 661801) (-1602 . 661733)
- (-1603 . 661524) (-1604 . 661496) (-1605 . 661357) (-1606 . 661304)
- (-1607 . 661193) (-1608 . 660320) (-1609 . 660080) (-1610 . 659926)
- (-1611 . 659860) (-1612 . 659736) (-1613 . 659624) (-1614 . 659496)
- (-1615 . 659381) (-1616 . 659011) (-1617 . 658914) (-1618 . 658880)
- (-1619 . 658743) (-1620 . 658327) (-1621 . 658213) (-1622 . 658084)
- (-1623 . 657557) (-1624 . 657504) (-1625 . 657251) (-1626 . 657033)
- (-1627 . 656964) (-1628 . 656848) (-1629 . 656539) (-1630 . 656429)
- (-1631 . 655999) (-1632 . 655902) (-1633 . 655849) (-1634 . 655742)
- (-1635 . 655575) (-1636 . 655429) (-1637 . 655067) (-1638 . 654851)
- (-1639 . 654767) (-1640 . 654697) (-1641 . 654601) (-1642 . 654501)
- (-1643 . 654231) (-1644 . 654097) (-1645 . 654011) (-1646 . 653931)
- (-1647 . 653619) (-1648 . 653437) (-1649 . 653267) (-1650 . 653021)
- (-1651 . 652904) (-1652 . 652851) (-1653 . 652645) (-1654 . 652568)
- (-1655 . 652476) (-1656 . 652257) (-1657 . 652184) (-1658 . 651804)
- (-1659 . 651770) (-1660 . 651641) (-1661 . 651567) (-1662 . 651431)
- (-1663 . 651231) (-1664 . 651158) (-1665 . 650849) (-1666 . 650793)
- (-1667 . 650575) (-1668 . 650434) (-1669 . 650257) (-1670 . 650001)
- (-1671 . 649928) (-1672 . 649866) (-1673 . 649785) (-1674 . 649424)
- (-1675 . 649265) (-1676 . 649169) (-1677 . 649054) (-1678 . 646922)
- (-1679 . 646700) (-1680 . 646540) (-1681 . 646290) (-1682 . 646158)
- (-1683 . 646109) (-1684 . 645953) (-1685 . 645900) (-1686 . 644748)
- (-1687 . 644632) (-1688 . 644531) (-1689 . 644436) (-1690 . 644283)
- (-1691 . 640220) (-1692 . 640165) (-1693 . 639523) (-1694 . 639440)
- (-1695 . 639297) (-1696 . 639195) (-1697 . 639057) (-1698 . 638681)
- (-1699 . 638625) (-1700 . 638531) (-1701 . 638392) (-1702 . 638245)
- (-1703 . 638090) (-1704 . 637923) (-1705 . 637821) (-1706 . 637661)
- (-1707 . 637608) (-1708 . 637513) (-1709 . 636930) (-1710 . 636877)
- (-1711 . 636666) (-1712 . 636368) (-1713 . 636081) (-1714 . 635944)
- (-1715 . 635831) (-1716 . 635737) (-1717 . 635550) (-1718 . 635407)
- (-1719 . 635247) (-1720 . 635116) (-1721 . 635014) (-1722 . 634929)
- (-1723 . 634637) (-1724 . 634419) (-1725 . 634291) (-1726 . 634220)
- (-1727 . 634117) (-1728 . 633987) (-1729 . 633917) (-1730 . 633764)
- (-1731 . 633337) (-1732 . 633253) (-1733 . 633127) (-1734 . 630782)
- (-1735 . 630567) (-1736 . 630176) (-1737 . 630103) (-1738 . 630007)
- (-1739 . 629691) (-1740 . 629585) (-1741 . 629451) (-1742 . 629373)
- (-1743 . 629285) (-1744 . 628954) (-1745 . 628365) (-1746 . 628336)
- (-1747 . 627978) (-1748 . 627904) (-1749 . 627808) (-1750 . 627610)
- (-1751 . 627417) (-1752 . 627295) (-1753 . 627218) (-1754 . 627163)
- (-1755 . 627068) (-1756 . 626945) (-1757 . 626244) (-1758 . 626191)
- (-1759 . 626157) (-1760 . 626036) (-1761 . 625965) (-1762 . 625693)
- (-1763 . 625600) (-1764 . 625322) (-1765 . 624836) (-1766 . 624618)
- (-1767 . 624557) (-1768 . 624334) (-1769 . 624262) (-1770 . 623616)
- (-1771 . 623489) (-1772 . 622962) (-1773 . 622879) (-1774 . 622825)
- (-1775 . 622701) (-1776 . 622613) (-1777 . 622167) (-1778 . 622012)
- (-1779 . 621950) (-1780 . 621820) (-1781 . 621228) (-1782 . 621119)
- (-1783 . 620935) (-1784 . 620858) (-1785 . 620531) (-1786 . 620476)
- (-1787 . 619985) (-1788 . 619221) (-1789 . 619169) (-1790 . 619114)
- (-1791 . 619056) (-1792 . 618959) (-1793 . 618839) (-1794 . 618731)
- (-1795 . 618614) (-1796 . 618515) (-1797 . 618382) (-1798 . 618205)
- (-1799 . 618150) (-1800 . 618006) (-1801 . 617903) (-1802 . 617847)
- (-1803 . 617170) (-1804 . 617097) (-1805 . 616937) (-1806 . 616841)
- (-1807 . 616707) (-1808 . 616648) (-1809 . 616551) (-1810 . 616435)
- (-1811 . 616314) (-1812 . 616212) (-1813 . 616149) (-1814 . 616072)
- (-1815 . 615967) (-1816 . 614882) (-1817 . 614816) (-1818 . 614650)
- (-1819 . 614580) (-1820 . 614437) (-1821 . 614159) (-1822 . 613991)
- (-1823 . 613895) (-1824 . 613603) (-1825 . 613460) (-1826 . 613408)
- (-1827 . 613357) (-1828 . 613168) (-1829 . 613094) (-1830 . 612456)
- (-1831 . 611780) (-1832 . 611720) (-1833 . 611445) (-1834 . 611313)
- (-1835 . 611167) (-1836 . 611093) (-1837 . 610941) (-1838 . 610873)
- (-1839 . 610814) (-1840 . 610703) (-1841 . 610620) (-1842 . 610397)
- (-1843 . 610299) (-1844 . 610032) (-1845 . 609859) (-1846 . 609471)
- (-1847 . 609437) (-1848 . 609342) (-1849 . 609184) (-1850 . 609083)
- (-1851 . 609010) (-1852 . 608835) (-1853 . 608713) (-1854 . 608579)
- (-1855 . 608524) (-1856 . 608436) (-1857 . 608341) (-1858 . 608132)
- (-1859 . 608079) (-1860 . 607811) (-1861 . 607178) (-1862 . 607025)
- (-1863 . 606779) (-1864 . 606550) (-1865 . 606385) (-1866 . 603544)
- (-1867 . 603470) (-1868 . 602472) (-1869 . 602388) (-1870 . 602332)
- (-1871 . 602280) (-1872 . 602047) (-1873 . 601908) (-1874 . 601775)
- (-1875 . 601693) (-1876 . 601474) (-1877 . 601300) (-1878 . 601144)
- (-1879 . 601094) (-1880 . 600808) (-1881 . 600735) (-1882 . 600408)
- (-1883 . 600352) (-1884 . 600300) (-1885 . 600105) (-1886 . 599857)
- (-1887 . 599748) (-1888 . 599553) (-1889 . 599392) (-1890 . 599213)
- (-1891 . 599006) (-1892 . 598951) (-1893 . 598812) (-1894 . 598717)
- (-1895 . 598296) (-1896 . 597984) (-1897 . 597821) (-1898 . 597407)
- (-1899 . 597322) (-1900 . 597294) (-1901 . 597075) (-1902 . 596962)
- (-1903 . 596783) (-1904 . 596688) (-1905 . 596515) (-1906 . 596411)
- (-1907 . 596045) (-1908 . 595767) (-1909 . 595684) (-1910 . 595588)
- (-1911 . 595461) (-1912 . 595199) (-1913 . 595096) (-1914 . 594893)
- (-1915 . 594835) (-1916 . 594675) (-1917 . 594622) (-1918 . 594594)
- (-1919 . 594172) (-1920 . 594031) (-1921 . 593680) (-1922 . 593603)
- (-1923 . 593544) (-1924 . 593458) (-1925 . 593360) (-1926 . 593024)
- (-1927 . 592942) (-1928 . 592874) (-1929 . 592667) (-1930 . 592428)
- (-1931 . 592268) (-1932 . 592204) (-1933 . 592077) (-1934 . 591917)
- (-1935 . 591889) (-1936 . 591498) (-1937 . 591446) (-1938 . 591360)
- (-1939 . 591202) (-1940 . 591102) (-1941 . 591050) (-1942 . 590840)
- (-1943 . 590780) (-1944 . 590528) (-1945 . 590423) (-1946 . 590339)
- (-1947 . 590283) (-1948 . 589670) (-1949 . 589424) (-1950 . 589239)
- (-1951 . 589166) (-1952 . 589029) (-1953 . 588870) (-1954 . 588805)
- (-1955 . 588706) (-1956 . 588433) (-1957 . 588380) (-1958 . 588282)
- (-1959 . 587947) (-1960 . 587851) (-1961 . 587703) (-1962 . 587276)
- (-1963 . 587113) (-1964 . 586998) (-1965 . 586803) (-1966 . 586715)
- (-1967 . 586631) (-1968 . 586551) (-1969 . 586484) (-1970 . 582821)
- (-1971 . 582247) (-1972 . 582175) (-1973 . 581979) (-1974 . 581637)
- (-1975 . 581585) (-1976 . 581212) (-1977 . 581126) (-1978 . 581025)
- (-1979 . 580687) (-1980 . 580635) (-1981 . 580361) (-1982 . 580308)
- (-1983 . 579993) (-1984 . 579933) (-1985 . 579856) (-1986 . 579755)
- (-1987 . 579612) (-1988 . 579017) (-1989 . 578989) (-1990 . 578757)
- (-1991 . 578599) (-1992 . 578486) (-1993 . 578416) (-1994 . 578387)
- (-1995 . 578328) (-1996 . 578009) (-1997 . 577865) (-1998 . 577618)
- (-1999 . 577561) (-2000 . 577477) (-2001 . 577317) (-2002 . 577265)
- (-2003 . 577199) (-2004 . 577071) (-2005 . 576784) (-2006 . 576707)
- (-2007 . 576654) (-2008 . 576601) (-2009 . 576134) (-2010 . 575607)
- (-2011 . 574968) (-2012 . 574324) (-2013 . 574124) (-2014 . 574072)
- (-2015 . 573973) (-2016 . 573920) (-2017 . 573843) (-2018 . 573412)
- (-2019 . 573305) (-2020 . 572723) (-2021 . 572463) (-2022 . 572301)
- (-2023 . 571863) (-2024 . 571781) (-2025 . 571657) (-2026 . 571405)
- (-2027 . 571247) (-2028 . 571195) (-2029 . 571112) (-2030 . 571005)
- (-2031 . 570889) (-2032 . 570824) (-2033 . 570745) (-2034 . 570650)
- (-2035 . 570598) (-2036 . 570348) (-2037 . 570247) (-2038 . 570181)
- (-2039 . 570003) (-2040 . 569937) (-2041 . 569730) (-2042 . 569554)
- (-2043 . 569127) (-2044 . 568940) (-2045 . 568610) (-2046 . 568579)
- (-2047 . 568523) (-2048 . 568495) (-2049 . 568211) (-2050 . 567915)
- (-2051 . 567804) (-2052 . 567700) (-2053 . 567447) (-2054 . 567293)
- (-2055 . 567225) (-2056 . 566488) (-2057 . 562489) (-2058 . 562349)
- (-2059 . 562297) (-2060 . 562240) (-2061 . 562116) (-2062 . 562057)
- (-2063 . 561919) (-2064 . 561847) (-2065 . 561586) (-2066 . 560963)
- (-2067 . 560576) (-2068 . 560548) (-2069 . 560341) (-2070 . 560076)
- (-2071 . 559997) (-2072 . 559941) (-2073 . 559368) (-2074 . 559121)
- (-2075 . 559000) (-2076 . 558776) (-2077 . 558670) (-2078 . 558484)
- (-2079 . 558358) (-2080 . 557738) (-2081 . 557643) (-2082 . 557307)
- (-2083 . 557213) (-2084 . 557158) (-2085 . 557079) (-2086 . 556997)
- (-2087 . 556945) (-2088 . 556844) (-2089 . 556689) (-2090 . 556536)
- (-2091 . 556467) (-2092 . 556371) (-2093 . 556273) (-2094 . 555929)
- (-2095 . 555874) (-2096 . 555290) (-2097 . 555216) (-2098 . 555137)
- (-2099 . 555042) (-2100 . 553740) (-2101 . 553682) (-2102 . 553654)
- (-2103 . 553475) (-2104 . 553276) (-2105 . 553080) (-2106 . 552918)
- (-2107 . 552835) (-2108 . 552529) (-2109 . 552414) (-2110 . 552327)
- (-2111 . 552275) (-2112 . 552187) (-2113 . 552113) (-2114 . 551955)
- (-2115 . 551855) (-2116 . 551759) (-2117 . 551396) (-2118 . 551312)
- (-2119 . 551156) (-2120 . 551073) (-2121 . 550683) (-2122 . 550577)
- (-2123 . 550461) (-2124 . 550298) (-2125 . 550140) (-2126 . 550021)
- (-2127 . 549940) (-2128 . 549558) (-2129 . 549457) (-2130 . 549162)
- (-2131 . 549017) (-2132 . 548706) (-2133 . 548447) (-2134 . 548329)
- (-2135 . 548274) (-2136 . 548187) (-2137 . 548116) (-2138 . 548016)
- (-2139 . 547918) (-2140 . 547699) (-2141 . 547621) (-2142 . 547547)
- (-2143 . 547322) (-2144 . 547141) (-2145 . 546752) (-2146 . 546649)
- (-2147 . 546579) (-2148 . 546491) (-2149 . 546378) (-2150 . 546307)
- (-2151 . 546104) (-2152 . 545899) (-2153 . 545369) (-2154 . 545299)
- (-2155 . 545098) (-2156 . 545046) (-2157 . 544888) (-2158 . 543665)
- (-2159 . 543571) (-2160 . 543375) (-2161 . 543057) (-2162 . 542663)
- (-2163 . 542417) (-2164 . 542389) (-2165 . 542305) (-2166 . 542175)
- (-2167 . 542052) (-2168 . 541997) (-2169 . 541574) (-2170 . 541450)
- (-2171 . 541145) (-2172 . 541071) (-2173 . 540823) (-2174 . 540436)
- (-2175 . 540198) (-2176 . 540078) (-2177 . 540025) (-2178 . 539862)
- (-2179 . 539719) (-2180 . 539642) (-2181 . 539538) (-2182 . 537961)
- (-2183 . 537908) (-2184 . 537812) (-2185 . 537715) (-2186 . 537437)
- (-2187 . 537321) (-2188 . 536664) (-2189 . 536582) (-2190 . 536222)
- (-2191 . 536151) (-2192 . 535933) (-2193 . 535831) (-2194 . 535694)
- (-2195 . 535536) (-2196 . 535356) (-2197 . 535240) (-2198 . 535206)
- (-2199 . 535051) (-2200 . 534998) (-2201 . 534871) (-2202 . 534763)
- (-2203 . 534710) (-2204 . 534586) (-2205 . 534485) (-2206 . 534399)
- (-2207 . 534228) (-2208 . 534050) (-2209 . 533899) (-2210 . 533759)
- (-2211 . 533164) (-2212 . 532996) (-2213 . 532524) (-2214 . 532389)
- (-2215 . 532337) (-2216 . 532027) (-2217 . 531926) (-2218 . 531827)
- (-2219 . 531482) (-2220 . 531106) (-2221 . 531040) (-2222 . 530966)
- (-2223 . 530540) (-2224 . 530225) (-2225 . 530175) (-2226 . 530080)
- (-2227 . 529994) (-2228 . 529828) (-2229 . 529761) (-2230 . 529617)
- (-2231 . 529493) (-2232 . 529405) (-2233 . 529371) (-2234 . 529242)
- (-2235 . 529113) (-2236 . 528580) (-2237 . 528029) (-2238 . 527847)
- (-2239 . 527767) (-2240 . 527713) (-2241 . 527635) (-2242 . 527576)
- (-2243 . 527472) (-2244 . 526584) (-2245 . 526163) (-2246 . 525894)
- (-2247 . 525545) (-2248 . 525493) (-2249 . 525313) (-2250 . 525240)
- (-2251 . 525097) (-2252 . 524618) (-2253 . 524477) (-2254 . 524363)
- (-2255 . 523979) (-2256 . 523808) (-2257 . 523582) (-2258 . 523466)
- (-2259 . 523362) (-2260 . 523310) (-2261 . 523231) (-2262 . 523153)
- (-2263 . 523084) (-2264 . 523010) (-2265 . 522955) (-2266 . 522865)
- (-2267 . 522645) (-2268 . 522372) (-2269 . 522190) (-2270 . 522008)
- (-2271 . 521922) (-2272 . 521815) (-2273 . 521672) (-2274 . 521589)
- (-2275 . 521395) (-2276 . 521309) (-2277 . 521225) (-2278 . 521156)
- (-2279 . 521053) (-2280 . 520843) (-2281 . 520773) (-2282 . 520113)
- (-2283 . 519271) (-2284 . 519069) (-2285 . 518959) (-2286 . 518779)
- (-2287 . 518701) (-2288 . 518644) (-2289 . 517893) (-2290 . 517841)
- (-2291 . 517128) (-2292 . 516966) (-2293 . 516895) (-2294 . 516029)
- (-2295 . 512420) (-2296 . 511650) (-2297 . 511398) (-2298 . 511245)
- (-2299 . 510879) (-2300 . 510828) (-2301 . 510729) (-2302 . 510634)
- (-2303 . 510470) (-2304 . 510317) (-2305 . 510251) (-2306 . 510087)
- (-2307 . 510014) (-2308 . 509615) (-2309 . 509473) (-2310 . 508325)
- (-2311 . 508254) (-2312 . 508158) (-2313 . 508029) (-2314 . 507895)
- (-2315 . 507796) (-2316 . 507664) (-2317 . 507534) (-2318 . 507375)
- (-2319 . 507310) (-2320 . 507240) (-2321 . 506486) (-2322 . 506238)
- (-2323 . 506100) (-2324 . 506029) (-2325 . 505827) (-2326 . 505706)
- (-2327 . 505551) (-2328 . 505484) (-2329 . 505286) (-2330 . 505076)
- (-2331 . 504946) (-2332 . 504343) (-2333 . 503809) (-2334 . 503739)
- (-2335 . 503520) (-2336 . 503446) (-2337 . 503266) (-2338 . 503121)
- (-2339 . 502849) (-2340 . 497335) (-2341 . 497282) (-2342 . 497183)
- (-2343 . 497131) (-2344 . 497074) (-2345 . 496316) (-2346 . 496160)
- (-2347 . 496131) (-2348 . 495314) (-2349 . 494578) (-2350 . 494457)
- (-2351 . 494353) (-2352 . 494276) (-2353 . 494148) (-2354 . 494086)
- (-2355 . 493675) (-2356 . 493580) (-2357 . 493527) (-2358 . 493398)
- (-2359 . 493290) (-2360 . 493162) (-2361 . 493091) (-2362 . 492949)
- (-2363 . 492872) (-2364 . 492710) (-2365 . 492530) (-2366 . 492350)
- (-2367 . 492292) (-2368 . 492202) (-2369 . 492084) (-2370 . 492001)
- (-2371 . 491906) (-2372 . 491854) (-2373 . 491801) (-2374 . 491694)
- (-2375 . 489532) (-2376 . 489376) (-2377 . 489240) (-2378 . 489111)
- (-2379 . 488853) (-2380 . 488265) (-2381 . 488153) (-2382 . 488070)
- (-2383 . 487897) (-2384 . 487811) (-2385 . 487717) (-2386 . 487309)
- (-2387 . 487130) (-2388 . 486985) (-2389 . 486832) (-2390 . 486617)
- (-2391 . 486565) (-2392 . 486412) (-2393 . 486034) (-2394 . 485806)
- (-2395 . 485754) (-2396 . 485659) (-2397 . 485631) (-2398 . 485572)
- (-2399 . 485473) (-2400 . 485378) (-2401 . 484442) (-2402 . 482812)
- (-2403 . 482474) (** . 479480) (-2405 . 479325) (-2406 . 479097)
- (-2407 . 478800) (-2408 . 478623) (-2409 . 478571) (-2410 . 478540)
- (-2411 . 478467) (-2412 . 478225) (-2413 . 477998) (-2414 . 475217)
- (-2415 . 475127) (-2416 . 475075) (-2417 . 474216) (-2418 . 474149)
- (-2419 . 472806) (-2420 . 472468) (-2421 . 472411) (-2422 . 472330)
- (-2423 . 472217) (-2424 . 472140) (-2425 . 472055) (-2426 . 471823)
- (-2427 . 471741) (-2428 . 471658) (-2429 . 471530) (-2430 . 471444)
- (-2431 . 471358) (-2432 . 471139) (-2433 . 470979) (-2434 . 470855)
- (-2435 . 466312) (-2436 . 466217) (-2437 . 465754) (-2438 . 465500)
- (-2439 . 464976) (-2440 . 464812) (-2441 . 464741) (-2442 . 464582)
- (-2443 . 464551) (-2444 . 464345) (-2445 . 464098) (-2446 . 463756)
- (-2447 . 463465) (-2448 . 463285) (-2449 . 463136) (-2450 . 463009)
- (-2451 . 462851) (-2452 . 462755) (-2453 . 462561) (-2454 . 462491)
- (-2455 . 462332) (-2456 . 462058) (-2457 . 461715) (-2458 . 461627)
- (-2459 . 461234) (-2460 . 461182) (-2461 . 461130) (-2462 . 461063)
- (-2463 . 460961) (-2464 . 460853) (-2465 . 460730) (-2466 . 460653)
- (-2467 . 459899) (-2468 . 459825) (-2469 . 459645) (-2470 . 458465)
- (-2471 . 458039) (-2472 . 457954) (-2473 . 457512) (-2474 . 457239)
- (-2475 . 457123) (-2476 . 456965) (-2477 . 456147) (-2478 . 456051)
- (-2479 . 455914) (-2480 . 455675) (-2481 . 455609) (-2482 . 455225)
- (-2483 . 455101) (-2484 . 454982) (-2485 . 454920) (-2486 . 454699)
- (-2487 . 454602) (-2488 . 453686) (-2489 . 453618) (-2490 . 453136)
- (-2491 . 453030) (-2492 . 452629) (-2493 . 452579) (-2494 . 452527)
- (-2495 . 452458) (-2496 . 452260) (-2497 . 452098) (-2498 . 451983)
- (-2499 . 451723) (-2500 . 451563) (-2501 . 451464) (-2502 . 451411)
- (-2503 . 451323) (-2504 . 451229) (-2505 . 450917) (-2506 . 450843)
- (-2507 . 450718) (-2508 . 450382) (-2509 . 450308) (-2510 . 449897)
- (-2511 . 449800) (-2512 . 449684) (-2513 . 449596) (-2514 . 449517)
- (-2515 . 449354) (-2516 . 449021) (-2517 . 448940) (-2518 . 448878)
- (-2519 . 448778) (-2520 . 448621) (-2521 . 448135) (-2522 . 448061)
- (-2523 . 447973) (-2524 . 447863) (-2525 . 447766) (-2526 . 447442)
- (-2527 . 447361) (-2528 . 447173) (-2529 . 446918) (-2530 . 446708)
- (-2531 . 446655) (-2532 . 446558) (-2533 . 446304) (-2534 . 446123)
- (-2535 . 445919) (-2536 . 431689) (-2537 . 431574) (-2538 . 431335)
- (-2539 . 431157) (-2540 . 431076) (-2541 . 430978) (-2542 . 430763)
- (-2543 . 430701) (-2544 . 429520) (-2545 . 429277) (-2546 . 429180)
- (-2547 . 428839) (-2548 . 428787) (-2549 . 428583) (-2550 . 428368)
- (-2551 . 428270) (-2552 . 428218) (-2553 . 428063) (-2554 . 427817)
- (-2555 . 427390) (-2556 . 427298) (-2557 . 427088) (-2558 . 425921)
- (-2559 . 425826) (-2560 . 425744) (-2561 . 425553) (-2562 . 425433)
- (-2563 . 425380) (-2564 . 424893) (-2565 . 424789) (-2566 . 424688)
- (-2567 . 424626) (-2568 . 424513) (-2569 . 424448) (-2570 . 424365)
- (-2571 . 424272) (-2572 . 424171) (-2573 . 424103) (-2574 . 423424)
- (-2575 . 423283) (-2576 . 423217) (-2577 . 413767) (-2578 . 413689)
- (-2579 . 413531) (-2580 . 413378) (-2581 . 413050) (-2582 . 412884)
- (-2583 . 412753) (-2584 . 412169) (-2585 . 412071) (-2586 . 411767)
- (-2587 . 411693) (-2588 . 411556) (-2589 . 410749) (-2590 . 410675)
- (-2591 . 410647) (-2592 . 410398) (-2593 . 410144) (-2594 . 410039)
- (-2595 . 409798) (-2596 . 407942) (-2597 . 407815) (-2598 . 407678)
- (-2599 . 407625) (-2600 . 407474) (-2601 . 403807) (-2602 . 403693)
- (-2603 . 403412) (-2604 . 403249) (-2605 . 403126) (-2606 . 402991)
- (-2607 . 402963) (-2608 . 402880) (-2609 . 402823) (-2610 . 402536)
- (-2611 . 401240) (-2612 . 401181) (-2613 . 401035) (-2614 . 400866)
- (-2615 . 400269) (-2616 . 400165) (-2617 . 400133) (-2618 . 400036)
- (-2619 . 399515) (-2620 . 399443) (-2621 . 399325) (-2622 . 399258)
- (-2623 . 399205) (-2624 . 399138) (-2625 . 399007) (-2626 . 398928)
- (-2627 . 398857) (-2628 . 398799) (-2629 . 398703) (-2630 . 398637)
- (-2631 . 398609) (-2632 . 398526) (-2633 . 398467) (-2634 . 398237)
- (-2635 . 398084) (-2636 . 398027) (-2637 . 397955) (-2638 . 397721)
- (-2639 . 397623) (-2640 . 397428) (-2641 . 397360) (-2642 . 397256)
- (-2643 . 397078) (-2644 . 396995) (-2645 . 396915) (-2646 . 396858)
- (-2647 . 396830) (-2648 . 396028) (-2649 . 395736) (-2650 . 393622)
- (-2651 . 392422) (-2652 . 392356) (-2653 . 392176) (-2654 . 391971)
- (-2655 . 391899) (-2656 . 391815) (-2657 . 391563) (-2658 . 391410)
- (-2659 . 391309) (-2660 . 390969) (-2661 . 390908) (-2662 . 390580)
- (-2663 . 390414) (-2664 . 390348) (-2665 . 390067) (-2666 . 389979)
- (-2667 . 389058) (-2668 . 388305) (-2669 . 388236) (-2670 . 388086)
- (-2671 . 387901) (-2672 . 387778) (-2673 . 387571) (-2674 . 387391)
- (-2675 . 387281) (-2676 . 387252) (-2677 . 387215) (-2678 . 387133)
- (-2679 . 387081) (-2680 . 386571) (-2681 . 385703) (-2682 . 385192)
- (-2683 . 385164) (-2684 . 385109) (-2685 . 385059) (-2686 . 384986)
- (-2687 . 384892) (-2688 . 384818) (-2689 . 384355) (-2690 . 384272)
- (-2691 . 384144) (-2692 . 383981) (-2693 . 383805) (-2694 . 383587)
- (-2695 . 383463) (-2696 . 383185) (-2697 . 383125) (-2698 . 382839)
- (-2699 . 382787) (-2700 . 382591) (-2701 . 382492) (-2702 . 382346)
- (-2703 . 382111) (-2704 . 382052) (-2705 . 381910) (-2706 . 381625)
- (-2707 . 381121) (-2708 . 380955) (-2709 . 380883) (-2710 . 380739)
- (-2711 . 380705) (-2712 . 380483) (-2713 . 380312) (-2714 . 380025)
- (-2715 . 379951) (-2716 . 379841) (-2717 . 379740) (-2718 . 379642)
- (-2719 . 379588) (-2720 . 379097) (-2721 . 379065) (-2722 . 378946)
- (-2723 . 378656) (-2724 . 378601) (-2725 . 378209) (-2726 . 378113)
- (-2727 . 378061) (-2728 . 377664) (-2729 . 377603) (-2730 . 377456)
- (-2731 . 377323) (-2732 . 377214) (-2733 . 376934) (-2734 . 376712)
- (-2735 . 376680) (-2736 . 376594) (-2737 . 374816) (-2738 . 374757)
- (-2739 . 374698) (-2740 . 374537) (-2741 . 374479) (-2742 . 374252)
- (-2743 . 374064) (-2744 . 373925) (-2745 . 373747) (-2746 . 373499)
- (-2747 . 373449) (-2748 . 373370) (-2749 . 373282) (-2750 . 373210)
- (-2751 . 373076) (-2752 . 373002) (-2753 . 372866) (-2754 . 372515)
- (-2755 . 372416) (-2756 . 372206) (-2757 . 372078) (-2758 . 371984)
- (-2759 . 371793) (-2760 . 371707) (-2761 . 371606) (-2762 . 371496)
- (-2763 . 371423) (-2764 . 371337) (-2765 . 371278) (-2766 . 371059)
- (-2767 . 370883) (-2768 . 370604) (-2769 . 370502) (-2770 . 370408)
- (-2771 . 370314) (-2772 . 370168) (-2773 . 369993) (-2774 . 369561)
- (-2775 . 369320) (-2776 . 368876) (-2777 . 368755) (-2778 . 368547)
- (-2779 . 368415) (-2780 . 368349) (-2781 . 368248) (-2782 . 368195)
- (-2783 . 368126) (-2784 . 367940) (-2785 . 367878) (-2786 . 367651)
- (-2787 . 367160) (-2788 . 367063) (-2789 . 366873) (-2790 . 366818)
- (-2791 . 366719) (-2792 . 366665) (-2793 . 366615) (-2794 . 366538)
- (-2795 . 366246) (-2796 . 366133) (-2797 . 366081) (-2798 . 366000)
- (-2799 . 365903) (-2800 . 365785) (-2801 . 363370) (-2802 . 363290)
- (-2803 . 363172) (-2804 . 363073) (-2805 . 363020) (-2806 . 362714)
- (-2807 . 362597) (-2808 . 362439) (-2809 . 362300) (-2810 . 362171)
- (-2811 . 361923) (-2812 . 361805) (-2813 . 361664) (-2814 . 361561)
- (-2815 . 361448) (-2816 . 361330) (-2817 . 360986) (-2818 . 360915)
- (-2819 . 360863) (-2820 . 360671) (-2821 . 360532) (-2822 . 360317)
- (-2823 . 360164) (-2824 . 360001) (-2825 . 359941) (-2826 . 359582)
- (-2827 . 359488) (-2828 . 359436) (-2829 . 358939) (-2830 . 358830)
- (-2831 . 358463) (-2832 . 358263) (-2833 . 358036) (-2834 . 357957)
- (-2835 . 357839) (-2836 . 357767) (-2837 . 356906) (-2838 . 356818)
- (-2839 . 356697) (-2840 . 356443) (-2841 . 356414) (-2842 . 355868)
- (-2843 . 355782) (-2844 . 355659) (-2845 . 355427) (-2846 . 355355)
- (-2847 . 355268) (-2848 . 355107) (-2849 . 355079) (-2850 . 355006)
- (-2851 . 354870) (-2852 . 354643) (-2853 . 354575) (-2854 . 354491)
- (-2855 . 354422) (-2856 . 352880) (-2857 . 352463) (-2858 . 352322)
- (-2859 . 351204) (-2860 . 351137) (-2861 . 351033) (-2862 . 350895)
- (-2863 . 350824) (-2864 . 350629) (-2865 . 350601) (-2866 . 350394)
- (-2867 . 350363) (-2868 . 350164) (-2869 . 331589) (-2870 . 331493)
- (-2871 . 331465) (-2872 . 331395) (-2873 . 331296) (-2874 . 331078)
- (-2875 . 330817) (-2876 . 330698) (-2877 . 330645) (-2878 . 330342)
- (-2879 . 330162) (-2880 . 329979) (-2881 . 327158) (-2882 . 327062)
- (-2883 . 326931) (-2884 . 326656) (-2885 . 326622) (-2886 . 326530)
- (-2887 . 326389) (-2888 . 326311) (-2889 . 326173) (-2890 . 325998)
- (-2891 . 325819) (-2892 . 325687) (-2893 . 325572) (-2894 . 325465)
- (-2895 . 325431) (-2896 . 324728) (-2897 . 324675) (-2898 . 324583)
- (-2899 . 324356) (-2900 . 323794) (-2901 . 323629) (-2902 . 323390)
- (-2903 . 323272) (-2904 . 323199) (-2905 . 322870) (-2906 . 322652)
- (-2907 . 322564) (-2908 . 322406) (-2909 . 322320) (-2910 . 322195)
- (-2911 . 322161) (-2912 . 322132) (-2913 . 322080) (-2914 . 322026)
- (-2915 . 321883) (-2916 . 321818) (-2917 . 321732) (-2918 . 321651)
- (-2919 . 321420) (-2920 . 321349) (-2921 . 321150) (-2922 . 320527)
- (-2923 . 320439) (-2924 . 320368) (-2925 . 320109) (-2926 . 320047)
- (-2927 . 319988) (-2928 . 319709) (-2929 . 318436) (-2930 . 318313)
- (-2931 . 318125) (-2932 . 317995) (-2933 . 317857) (-2934 . 317717)
- (-2935 . 317596) (-2936 . 317406) (-2937 . 317307) (-2938 . 317230)
- (-2939 . 317175) (-2940 . 316707) (-2941 . 316570) (-2942 . 316311)
- (-2943 . 316243) (-2944 . 316160) (-2945 . 315720) (-2946 . 315637)
- (-2947 . 315553) (-2948 . 315501) (-2949 . 315330) (-2950 . 315227)
- (-2951 . 315104) (-2952 . 315051) (-2953 . 314961) (-2954 . 314878)
- (-2955 . 314757) (-2956 . 314669) (-2957 . 314591) (-2958 . 314433)
- (-2959 . 314280) (-2960 . 314206) (-2961 . 313942) (-2962 . 313793)
- (-2963 . 313661) (-2964 . 313609) (-2965 . 313435) (-2966 . 313364)
- (-2967 . 309204) (-2968 . 308907) (-2969 . 308854) (-2970 . 308552)
- (-2971 . 308123) (-2972 . 307742) (-2973 . 307601) (-2974 . 307473)
- (-2975 . 307416) (-2976 . 306830) (-2977 . 306725) (-2978 . 306645)
- (-2979 . 306595) (-2980 . 306521) (-2981 . 306307) (-2982 . 306178)
- (-2983 . 306076) (-2984 . 305923) (-2985 . 305827) (-2986 . 305767)
- (-2987 . 304575) (-2988 . 304459) (-2989 . 304336) (-2990 . 304211)
- (-2991 . 304058) (-2992 . 303806) (-2993 . 303779) (-2994 . 303702)
- (-2995 . 303668) (-2996 . 303149) (-2997 . 302768) (-2998 . 302570)
- (-2999 . 302352) (-3000 . 302006) (-3001 . 301933) (-3002 . 301881)
- (-3003 . 301775) (-3004 . 301653) (-3005 . 301621) (-3006 . 301503)
- (-3007 . 301317) (-3008 . 301258) (-3009 . 301187) (-3010 . 300973)
- (-3011 . 300876) (-3012 . 300769) (-3013 . 300654) (-3014 . 300576)
- (-3015 . 300030) (-3016 . 299911) (-3017 . 299883) (-3018 . 299627)
- (-3019 . 299377) (-3020 . 299298) (-3021 . 299212) (-3022 . 299048)
- (-3023 . 298898) (-3024 . 298803) (-3025 . 298612) (-3026 . 298538)
- (-3027 . 298486) (-3028 . 298389) (-3029 . 297995) (-3030 . 297588)
- (-3031 . 297517) (-3032 . 297486) (-3033 . 297429) (-3034 . 293479)
- (-3035 . 293248) (-3036 . 293220) (-3037 . 293154) (-3038 . 293073)
- (-3039 . 292946) (-3040 . 291642) (-3041 . 291614) (-3042 . 291010)
- (-3043 . 290950) (-3044 . 290873) (-3045 . 290818) (-3046 . 289032)
- (-3047 . 288970) (-3048 . 288812) (-3049 . 288351) (-3050 . 288265)
- (-3051 . 288063) (-3052 . 287925) (-3053 . 287718) (-3054 . 287461)
- (-3055 . 286853) (-3056 . 286731) (-3057 . 286550) (-3058 . 286367)
- (-3059 . 286298) (-3060 . 286216) (-3061 . 286020) (-3062 . 285992)
- (-3063 . 285874) (-3064 . 285547) (-3065 . 285437) (-3066 . 285044)
- (-3067 . 284916) (-3068 . 284828) (-3069 . 284598) (-3070 . 284289)
- (-3071 . 284185) (-3072 . 284157) (-3073 . 284080) (-3074 . 284028)
- (-3075 . 283764) (-3076 . 283667) (-3077 . 283633) (-3078 . 283577)
- (-3079 . 283405) (-3080 . 283317) (-3081 . 283036) (-3082 . 282962)
- (-3083 . 282888) (-3084 . 282730) (-3085 . 282636) (-3086 . 282585)
- (-3087 . 282513) (-3088 . 282417) (-3089 . 282276) (-3090 . 282210)
- (-3091 . 281762) (-3092 . 281532) (-3093 . 281437) (-3094 . 281385)
- (-3095 . 280997) (-3096 . 280732) (-3097 . 280644) (-3098 . 280439)
- (-3099 . 280265) (-3100 . 280170) (-3101 . 279854) (-3102 . 279704)
- (-3103 . 279454) (-3104 . 279402) (-3105 . 279241) (-3106 . 278934)
- (-3107 . 278796) (-3108 . 278724) (-3109 . 278631) (-3110 . 278582)
- (-3111 . 278530) (-3112 . 278240) (-3113 . 278136) (-3114 . 278062)
- (-3115 . 277902) (-3116 . 277663) (-3117 . 277597) (-3118 . 277312)
- (-3119 . 277155) (-3120 . 275094) (-3121 . 275042) (-3122 . 274990)
- (-3123 . 274911) (-3124 . 274786) (-3125 . 274275) (-3126 . 272829)
- (-3127 . 272755) (-3128 . 272338) (-3129 . 271853) (-3130 . 271725)
- (-3131 . 271605) (-3132 . 271366) (-3133 . 271242) (-3134 . 271051)
- (-3135 . 270913) (-3136 . 270861) (-3137 . 270773) (-3138 . 270630)
- (-3139 . 270529) (-3140 . 270374) (-3141 . 270304) (-3142 . 270070)
- (-3143 . 269912) (-3144 . 269428) (-3145 . 269371) (-3146 . 269149)
- (-3147 . 269051) (-3148 . 268881) (-3149 . 268659) (-3150 . 268431)
- (-3151 . 268298) (-3152 . 268231) (-3153 . 268132) (-3154 . 268038)
- (-3155 . 267959) (-3156 . 267902) (-3157 . 267799) (-3158 . 267686)
- (-3159 . 267554) (-3160 . 267455) (-3161 . 267070) (-3162 . 266864)
- (-3163 . 266770) (-3164 . 266702) (-3165 . 265500) (-3166 . 265430)
- (-3167 . 265261) (-3168 . 264783) (-3169 . 264461) (-3170 . 264387)
- (-3171 . 264162) (-3172 . 263831) (-3173 . 263727) (-3174 . 263274)
- (-3175 . 263141) (-3176 . 262598) (-3177 . 262373) (-3178 . 262321)
- (-3179 . 262065) (-3180 . 261608) (-3181 . 261505) (-3182 . 261260)
- (-3183 . 261117) (-3184 . 260243) (-3185 . 260163) (-3186 . 259723)
- (-3187 . 259482) (-3188 . 259341) (-3189 . 259270) (-3190 . 259204)
- (-3191 . 259151) (-3192 . 259098) (-3193 . 258917) (-3194 . 258708)
- (-3195 . 258452) (-3196 . 258107) (-3197 . 257720) (-3198 . 257643)
- (-3199 . 257493) (-3200 . 257326) (-3201 . 257267) (-3202 . 256707)
- (-3203 . 256634) (-3204 . 256540) (-3205 . 256477) (-3206 . 256230)
- (-3207 . 256125) (-3208 . 255637) (-3209 . 255537) (-3210 . 254445)
- (-3211 . 254346) (-3212 . 254281) (-3213 . 254184) (-3214 . 254069)
- (-3215 . 254035) (-3216 . 253858) (-3217 . 253796) (-3218 . 253672)
- (-3219 . 253504) (-3220 . 253388) (-3221 . 253317) (-3222 . 252941)
- (-3223 . 252888) (-3224 . 252823) (-3225 . 252667) (-3226 . 252590)
- (-3227 . 252086) (-3228 . 252034) (-3229 . 251896) (-3230 . 251744)
- (-3231 . 251635) (-3232 . 251575) (-3233 . 251467) (-3234 . 251334)
- (-3235 . 250724) (-3236 . 250585) (-3237 . 250326) (-3238 . 250161)
- (-3239 . 249923) (-3240 . 249869) (-3241 . 249573) (-3242 . 249415)
- (-3243 . 249322) (-3244 . 249152) (-3245 . 248836) (-3246 . 248736)
- (-3247 . 248591) (-3248 . 248492) (-3249 . 248366) (-3250 . 248282)
- (-3251 . 248159) (-3252 . 247923) (-3253 . 247863) (-3254 . 247715)
- (-3255 . 247599) (-3256 . 247304) (-3257 . 247202) (-3258 . 247071)
- (-3259 . 247016) (-3260 . 246634) (-3261 . 246364) (-3262 . 246287)
- (-3263 . 246185) (-3264 . 245952) (-3265 . 245886) (-3266 . 245815)
- (-3267 . 245749) (-3268 . 245646) (-3269 . 245516) (-3270 . 245420)
- (-3271 . 245313) (-3272 . 245095) (-3273 . 244940) (-3274 . 244755)
- (-3275 . 244684) (-3276 . 244521) (-3277 . 244440) (-3278 . 244236)
- (-3279 . 244088) (-3280 . 244004) (-3281 . 243841) (-3282 . 243745)
- (-3283 . 243573) (-3284 . 243414) (-3285 . 243296) (-3286 . 243229)
- (-3287 . 242783) (-3288 . 242559) (-3289 . 242400) (-3290 . 242309)
- (-3291 . 242232) (-3292 . 242179) (-3293 . 242126) (-3294 . 241841)
- (-3295 . 241746) (-3296 . 241565) (-3297 . 241392) (-3298 . 241028)
- (-3299 . 240901) (-3300 . 240823) (-3301 . 240707) (-3302 . 240621)
- (-3303 . 240460) (-3304 . 240361) (-3305 . 240309) (-3306 . 240231)
- (-3307 . 240090) (-3308 . 238892) (-3309 . 238581) (-3310 . 238423)
- (-3311 . 238284) (-3312 . 237837) (-3313 . 236841) (-3314 . 236729)
- (-3315 . 236700) (-3316 . 236592) (-3317 . 236510) (-3318 . 236457)
- (-3319 . 236193) (-3320 . 236140) (-3321 . 236059) (-3322 . 235938)
- (-3323 . 235859) (-3324 . 234831) (-3325 . 234799) (-3326 . 234371)
- (-3327 . 234241) (-3328 . 233655) (-3329 . 233557) (-3330 . 233417)
- (-3331 . 233364) (-3332 . 233208) (-3333 . 233113) (-3334 . 233030)
- (-3335 . 232626) (-3336 . 232473) (-3337 . 232442) (-3338 . 232310)
- (-3339 . 231902) (-3340 . 231831) (-3341 . 231686) (-3342 . 231585)
- (-3343 . 231461) (-3344 . 231408) (-3345 . 231170) (-3346 . 231066)
- (-3347 . 230869) (-3348 . 230799) (-3349 . 230771) (-3350 . 230580)
- (-3351 . 230473) (-3352 . 230363) (-3353 . 229285) (-3354 . 228740)
- (-3355 . 228368) (-3356 . 228171) (-3357 . 227963) (-3358 . 227880)
- (-3359 . 227792) (-3360 . 227740) (-3361 . 227649) (-3362 . 226939)
- (-3363 . 226668) (-3364 . 226435) (-3365 . 225961) (-3366 . 225739)
- (-3367 . 225642) (-3368 . 225371) (-3369 . 225301) (-3370 . 225230)
- (-3371 . 225137) (-3372 . 224659) (-3373 . 224488) (-3374 . 224347)
- (-3375 . 223745) (-3376 . 223386) (-3377 . 223239) (-3378 . 223123)
- (-3379 . 223028) (-3380 . 222969) (-3381 . 222868) (-3382 . 222702)
- (-3383 . 222557) (-3384 . 222240) (-3385 . 222154) (-3386 . 222099)
- (-3387 . 221976) (-3388 . 221808) (-3389 . 221671) (-3390 . 221459)
- (-3391 . 220825) (-3392 . 220743) (-3393 . 220643) (-3394 . 220532)
- (-3395 . 218751) (-3396 . 218457) (-3397 . 218338) (-3398 . 218282)
- (-3399 . 218229) (-3400 . 218162) (-3401 . 218047) (-3402 . 217747)
- (-3403 . 217695) (-3404 . 217541) (-3405 . 217373) (-3406 . 217257)
- (-3407 . 216941) (-3408 . 216855) (-3409 . 216695) (-3410 . 216564)
- (-3411 . 216497) (-3412 . 216008) (-3413 . 215934) (-3414 . 215102)
- (-3415 . 214462) (-3416 . 214347) (-3417 . 214262) (-3418 . 213869)
- (-3419 . 213817) (-3420 . 213760) (-3421 . 213577) (-3422 . 213393)
- (-3423 . 213307) (-3424 . 213177) (-3425 . 213058) (-3426 . 213006)
- (-3427 . 212629) (-3428 . 212246) (-3429 . 212100) (-3430 . 211891)
- (-3431 . 211835) (-3432 . 211763) (-3433 . 211658) (-3434 . 211593)
- (-3435 . 211390) (-3436 . 211276) (-3437 . 211223) (-3438 . 211083)
- (-3439 . 210843) (-3440 . 210610) (-3441 . 210231) (-3442 . 210178)
- (-3443 . 210122) (-3444 . 209780) (-3445 . 209684) (-3446 . 209477)
- (-3447 . 208251) (-3448 . 208053) (-3449 . 206651) (-3450 . 206595)
- (-3451 . 206479) (-3452 . 206430) (-3453 . 206364) (-3454 . 206256)
- (-3455 . 206154) (-3456 . 205823) (-3457 . 205759) (-3458 . 205634)
- (-3459 . 205474) (-3460 . 205403) (-3461 . 205326) (-3462 . 204882)
- (-3463 . 204531) (-3464 . 204440) (-3465 . 204369) (-3466 . 204300)
- (-3467 . 203913) (-3468 . 203807) (-3469 . 203637) (-3470 . 203472)
- (-3471 . 203245) (-3472 . 203101) (-3473 . 202285) (-3474 . 201718)
- (-3475 . 201634) (-3476 . 201093) (-3477 . 201034) (-3478 . 200358)
- (-3479 . 200221) (-3480 . 200084) (-3481 . 198495) (-3482 . 198392)
- (-3483 . 198307) (-3484 . 198166) (-3485 . 197783) (-3486 . 197725)
- (-3487 . 197601) (-3488 . 197476) (-3489 . 197397) (-3490 . 197249)
- (-3491 . 197122) (-3492 . 197069) (-3493 . 197016) (-3494 . 196942)
- (-3495 . 196876) (-3496 . 196802) (-3497 . 196722) (-3498 . 196603)
- (-3499 . 196442) (-3500 . 196346) (-3501 . 196254) (-3502 . 195294)
- (-3503 . 194999) (-3504 . 194880) (-3505 . 194722) (-3506 . 194276)
- (-3507 . 194139) (-3508 . 194016) (-3509 . 193837) (-3510 . 193788)
- (-3511 . 193709) (-3512 . 193596) (-3513 . 193544) (-3514 . 193309)
- (-3515 . 193235) (-3516 . 193132) (-3517 . 192887) (-3518 . 192859)
- (-3519 . 192781) (-3520 . 192750) (-3521 . 192654) (-3522 . 192597)
- (-3523 . 192520) (-3524 . 192187) (-3525 . 192145) (-3526 . 192076)
- (-3527 . 192026) (-3528 . 191918) (-3529 . 191729) (-3530 . 191679)
- (-3531 . 191408) (-3532 . 191322) (-3533 . 191192) (-3534 . 191108)
- (-3535 . 191058) (-3536 . 190962) (-3537 . 190867) (-3538 . 190705)
- (-3539 . 190582) (-3540 . 190304) (-3541 . 190140) (-3542 . 190080)
- (-3543 . 189934) (-3544 . 189850) (-3545 . 189801) (-3546 . 189718)
- (-3547 . 189545) (-3548 . 189214) (-3549 . 189087) (-3550 . 188972)
- (-3551 . 188794) (-3552 . 188742) (-3553 . 188570) (-3554 . 188454)
- (-3555 . 188381) (-3556 . 188300) (-3557 . 188214) (-3558 . 188134)
- (-3559 . 188012) (-3560 . 187957) (-3561 . 187844) (-3562 . 187662)
- (-3563 . 187557) (-3564 . 187385) (-3565 . 187357) (-3566 . 187254)
- (-3567 . 187195) (-3568 . 187006) (-3569 . 186918) (-3570 . 186699)
- (-3571 . 186552) (-3572 . 186457) (-3573 . 186312) (-3574 . 186003)
- (-3575 . 185831) (-3576 . 185743) (-3577 . 185609) (-3578 . 185500)
- (-3579 . 185399) (-3580 . 185241) (-3581 . 185191) (-3582 . 185020)
- (-3583 . 184720) (-3584 . 184548) (-3585 . 184330) (-3586 . 184218)
- (-3587 . 184105) (-3588 . 184046) (-3589 . 183948) (-3590 . 183876)
- (-3591 . 183776) (-3592 . 183517) (-3593 . 183449) (-3594 . 183251)
- (-3595 . 182983) (-3596 . 182780) (-3597 . 182708) (-3598 . 182456)
- (-3599 . 182300) (-3600 . 182244) (-3601 . 182096) (-3602 . 182043)
- (-3603 . 181891) (-3604 . 181793) (-3605 . 181765) (-3606 . 181692)
- (-3607 . 181210) (-3608 . 181116) (-3609 . 180867) (-3610 . 180531)
- (-3611 . 180366) (-3612 . 180298) (-3613 . 180155) (-3614 . 179412)
- (-3615 . 179316) (-3616 . 179191) (-3617 . 178592) (-3618 . 178451)
- (-3619 . 178347) (-3620 . 178273) (-3621 . 178190) (-3622 . 178102)
- (-3623 . 177939) (-3624 . 177887) (-3625 . 177814) (-3626 . 177698)
- (-3627 . 177367) (-3628 . 177259) (-3629 . 177143) (-3630 . 176930)
- (-3631 . 176841) (-3632 . 176714) (-3633 . 176420) (-3634 . 176312)
- (-3635 . 176002) (-3636 . 175902) (-3637 . 175528) (-3638 . 175393)
- (-3639 . 175359) (-3640 . 175216) (-3641 . 175139) (-3642 . 175042)
- (-3643 . 174431) (-3644 . 173633) (-3645 . 173395) (-3646 . 173293)
- (-3647 . 173227) (-3648 . 173078) (-3649 . 172553) (-3650 . 172423)
- (-3651 . 172285) (-3652 . 171911) (-3653 . 171558) (-3654 . 171456)
- (-3655 . 171314) (-3656 . 171241) (-3657 . 170906) (-3658 . 170531)
- (-3659 . 170479) (-3660 . 170400) (-3661 . 170343) (-3662 . 170255)
- (-3663 . 170052) (-3664 . 169957) (-3665 . 169682) (-3666 . 169258)
- (-3667 . 168985) (-3668 . 168908) (-3669 . 168781) (-3670 . 168389)
- (-3671 . 168329) (-3672 . 168234) (-3673 . 168026) (-3674 . 167733)
- (-3675 . 167515) (-3676 . 166969) (-3677 . 166693) (-3678 . 166612)
- (-3679 . 166319) (-3680 . 166260) (-3681 . 166117) (-3682 . 166031)
- (-3683 . 165949) (-3684 . 165915) (-3685 . 165829) (-3686 . 165396)
- (-3687 . 165298) (-3688 . 165107) (-3689 . 164992) (-3690 . 164876)
- (-3691 . 164750) (-3692 . 164592) (-3693 . 163411) (-3694 . 163115)
- (-3695 . 162983) (-3696 . 162813) (-3697 . 162669) (-3698 . 162617)
- (-3699 . 162377) (-3700 . 161839) (-3701 . 161707) (-3702 . 161612)
- (-3703 . 161556) (-3704 . 161215) (-3705 . 161086) (-3706 . 160728)
- (-3707 . 160647) (-3708 . 160480) (-3709 . 160423) (-3710 . 160343)
- (-3711 . 160071) (-3712 . 160012) (-3713 . 159952) (-3714 . 159754)
- (-3715 . 159654) (-3716 . 159576) (-3717 . 159420) (-3718 . 159337)
- (-3719 . 159182) (-3720 . 158744) (-3721 . 158672) (-3722 . 158255)
- (-3723 . 158153) (-3724 . 158081) (-3725 . 157993) (-3726 . 157485)
- (-3727 . 157330) (-3728 . 156978) (-3729 . 156882) (-3730 . 156827)
- (-3731 . 156731) (-3732 . 156676) (-3733 . 156544) (-3734 . 156401)
- (-3735 . 156202) (-3736 . 155858) (-3737 . 155701) (-3738 . 155667)
- (-3739 . 155593) (-3740 . 155521) (-3741 . 155438) (-3742 . 155385)
- (-3743 . 155285) (-3744 . 154970) (-3745 . 154241) (-3746 . 153795)
- (-3747 . 153630) (-3748 . 153485) (-3749 . 153313) (-3750 . 153171)
- (-3751 . 152840) (-3752 . 152783) (-3753 . 152630) (-3754 . 152525)
- (-3755 . 152453) (-3756 . 152347) (-3757 . 152013) (-3758 . 151284)
- (-3759 . 151098) (-3760 . 150995) (-3761 . 150844) (-12 . 150672)
- (-3763 . 150603) (-3764 . 150493) (-3765 . 150441) (-3766 . 150388)
- (-3767 . 150108) (-3768 . 149916) (-3769 . 149693) (-3770 . 149017)
- (-3771 . 148053) (-3772 . 147987) (-3773 . 147877) (-3774 . 147359)
- (-3775 . 147163) (-3776 . 146838) (-3777 . 146767) (-3778 . 146618)
- (-3779 . 146534) (-3780 . 146404) (-3781 . 145840) (-3782 . 145789)
- (-3783 . 145694) (-3784 . 145660) (-3785 . 145557) (-3786 . 145508)
- (-3787 . 145395) (-3788 . 145336) (-3789 . 145251) (-3790 . 145121)
- (-3791 . 144557) (-3792 . 144423) (-3793 . 144311) (-3794 . 143924)
- (-3795 . 143624) (-3796 . 143410) (-3797 . 143317) (-3798 . 143268)
- (-3799 . 143239) (-3800 . 143187) (-3801 . 142623) (-3802 . 142485)
- (-3803 . 142417) (-3804 . 142368) (-3805 . 142083) (-3806 . 141998)
- (-3807 . 141932) (-3808 . 141868) (-3809 . 141732) (-3810 . 141553)
- (-3811 . 140879) (-3812 . 140568) (-3813 . 140165) (-3814 . 140112)
- (-3815 . 139937) (-3816 . 139624) (-3817 . 139523) (-3818 . 139233)
- (-3819 . 139140) (-3820 . 139063) (-3821 . 138389) (-3822 . 138191)
- (-3823 . 137981) (-3824 . 137903) (-3825 . 137614) (-3826 . 137429)
- (-3827 . 137377) (-3828 . 136986) (-3829 . 136843) (-3830 . 136629)
- (-3831 . 136559) (-3832 . 136446) (-3833 . 135709) (-3834 . 135256)
- (-3835 . 135164) (-3836 . 134963) (-3837 . 134900) (-3838 . 134709)
- (-3839 . 134402) (-3840 . 134270) (-3841 . 134052) (-3842 . 133968)
- (-3843 . 133912) (-3844 . 133350) (-3845 . 133264) (-3846 . 132913)
- (-3847 . 132863) (-3848 . 132723) (-3849 . 132529) (-3850 . 132428)
- (-3851 . 132284) (-3852 . 132131) (-3853 . 131569) (-3854 . 131487)
- (-3855 . 131306) (* . 127039) (-3857 . 126944) (-3858 . 126779)
- (-3859 . 126220) (-3860 . 126142) (-3861 . 126070) (-3862 . 125799)
- (-3863 . 125620) (-3864 . 125058) (-3865 . 124847) (-3866 . 124418)
- (-3867 . 124331) (-3868 . 124228) (-3869 . 124167) (-3870 . 123917)
- (-3871 . 123358) (-3872 . 123287) (-3873 . 123184) (-3874 . 123118)
- (-3875 . 123052) (-3876 . 122377) (-3877 . 122035) (-3878 . 121948)
- (-3879 . 121911) (-3880 . 121796) (-3881 . 121481) (-3882 . 121431)
- (-3883 . 121327) (-3884 . 121273) (-3885 . 120666) (-3886 . 120614)
- (-3887 . 119939) (-3888 . 119880) (-3889 . 119846) (-3890 . 119589)
- (-3891 . 119535) (-3892 . 119263) (-3893 . 119182) (-3894 . 119154)
- (-3895 . 119039) (-3896 . 118894) (-3897 . 118798) (-3898 . 118623)
- (-3899 . 118527) (-3900 . 117852) (-3901 . 117613) (-3902 . 117558)
- (-3903 . 116456) (-3904 . 116298) (-3905 . 116188) (-3906 . 116042)
- (-3907 . 115954) (-3908 . 115897) (-3909 . 115446) (-3910 . 115380)
- (-3911 . 115163) (-3912 . 115090) (-3913 . 114527) (-3914 . 114411)
- (-3915 . 114383) (-3916 . 114299) (-3917 . 113636) (-3918 . 113405)
- (-3919 . 113158) (-3920 . 112191) (-9 . 112163) (-3922 . 111996)
- (-3923 . 111819) (-3924 . 111760) (-3925 . 111647) (-3926 . 111527)
- (-3927 . 111279) (-3928 . 111178) (-3929 . 111099) (-3930 . 110814)
- (-3931 . 110783) (-3932 . 110626) (-3933 . 110539) (-3934 . 110372)
- (-8 . 110344) (-3936 . 110248) (-3937 . 110033) (-3938 . 109932)
- (-3939 . 109862) (-3940 . 109805) (-3941 . 109706) (-3942 . 109613)
- (-3943 . 109321) (-3944 . 109267) (-3945 . 109108) (-3946 . 109051)
- (-3947 . 108884) (-3948 . 108625) (-7 . 108597) (-3950 . 108328)
- (-3951 . 108242) (-3952 . 108189) (-3953 . 108109) (-3954 . 107711)
- (-3955 . 107232) (-3956 . 107179) (-3957 . 105962) (-3958 . 105894)
- (-3959 . 105807) (-3960 . 105320) (-3961 . 105005) (-3962 . 104874)
- (-3963 . 104681) (-3964 . 103249) (-3965 . 103181) (-3966 . 103023)
- (-3967 . 102950) (-3968 . 102872) (-3969 . 102799) (-3970 . 102698)
- (-3971 . 102583) (-3972 . 102488) (-3973 . 102429) (-3974 . 102236)
- (-3975 . 102181) (-3976 . 101905) (-3977 . 101850) (-3978 . 101676)
- (-3979 . 100793) (-3980 . 100507) (-3981 . 100361) (-3982 . 100203)
- (-3983 . 99138) (-3984 . 99042) (-3985 . 98865) (-3986 . 98746)
- (-3987 . 98573) (-3988 . 98441) (-3989 . 98340) (-3990 . 98284)
- (-3991 . 98038) (-3992 . 96852) (-3993 . 96667) (-3994 . 96016)
- (-3995 . 93760) (-3996 . 93612) (-3997 . 93568) (-3998 . 93502)
- (-3999 . 93387) (-4000 . 93213) (-4001 . 93034) (-4002 . 92677)
- (-4003 . 91495) (-4004 . 91355) (-4005 . 91171) (-4006 . 91103)
- (-4007 . 90937) (-4008 . 90867) (-4009 . 90818) (-4010 . 90716)
- (-4011 . 90644) (-4012 . 90080) (-4013 . 87872) (-4014 . 87729)
- (-4015 . 87635) (-4016 . 87583) (-4017 . 87208) (-4018 . 87157)
- (-4019 . 86775) (-4020 . 86351) (-4021 . 86274) (-4022 . 86111)
- (-4023 . 85981) (-4024 . 85885) (-4025 . 85766) (-4026 . 85586)
- (-4027 . 85344) (-4028 . 85209) (-4029 . 85157) (-4030 . 85087)
- (-4031 . 84988) (-4032 . 84670) (-4033 . 84557) (-4034 . 84473)
- (-4035 . 84420) (-4036 . 84085) (-4037 . 83978) (-4038 . 83557)
- (-4039 . 83444) (-4040 . 83272) (-4041 . 82786) (-4042 . 82675)
- (-4043 . 82603) (-4044 . 82550) (-4045 . 82351) (-4046 . 82299)
- (-4047 . 82197) (-4048 . 82055) (-4049 . 81989) (-4050 . 81937)
- (-4051 . 81866) (-4052 . 81813) (-4053 . 80934) (-4054 . 80760)
- (-4055 . 80647) (-4056 . 80329) (-4057 . 80000) (-4058 . 79885)
- (-4059 . 79598) (-4060 . 79504) (-4061 . 79426) (-4062 . 79296)
- (-4063 . 79197) (-4064 . 79091) (-4065 . 79017) (-4066 . 78050)
- (-4067 . 77847) (-4068 . 77729) (-4069 . 77565) (-4070 . 77440)
- (-4071 . 77385) (-4072 . 77211) (-4073 . 77010) (-4074 . 76936)
- (-4075 . 76838) (-4076 . 76519) (-4077 . 76441) (-4078 . 76346)
- (-4079 . 76218) (-4080 . 76000) (-4081 . 75946) (-4082 . 75442)
- (-4083 . 75299) (-4084 . 75155) (-4085 . 74336) (-4086 . 74285)
- (-4087 . 74184) (-4088 . 73782) (-4089 . 73754) (-4090 . 73240)
- (-4091 . 73138) (-4092 . 72949) (-4093 . 72834) (-4094 . 72760)
- (-4095 . 72174) (-4096 . 72083) (-4097 . 71917) (-4098 . 71809)
- (-4099 . 71651) (-4100 . 71284) (-4101 . 71032) (-4102 . 70762)
- (-4103 . 70311) (-4104 . 70239) (-4105 . 70211) (-4106 . 70108)
- (-4107 . 69990) (-4108 . 69772) (-4109 . 69684) (-4110 . 69574)
- (-4111 . 69523) (-4112 . 69411) (-4113 . 69060) (-4114 . 69009)
- (-4115 . 68821) (-4116 . 68769) (-4117 . 68634) (-4118 . 68441)
- (-4119 . 68349) (-4120 . 68294) (-4121 . 67992) (-4122 . 67824)
- (-4123 . 67773) (-4124 . 67480) (-4125 . 67255) (-4126 . 67199)
- (-4127 . 67147) (-4128 . 67079) (-4129 . 66986) (-4130 . 66807)
- (-4131 . 66708) (-4132 . 66634) (-4133 . 66557) (-4134 . 66464)
- (-4135 . 66278) (-4136 . 66207) (-4137 . 66076) (-4138 . 65990)
- (-4139 . 65637) (-4140 . 65585) (-4141 . 65259) (-4142 . 65041)
- (-4143 . 64989) (-4144 . 64835) (-4145 . 64755) (-4146 . 64590)
- (-4147 . 64495) (-4148 . 64414) (-4149 . 64335) (-4150 . 64220)
- (-4151 . 64139) (-4152 . 63730) (-4153 . 63371) (-4154 . 63149)
- (-4155 . 63067) (-4156 . 62755) (-4157 . 62682) (-4158 . 62650)
- (-4159 . 62475) (-4160 . 62362) (-4161 . 62303) (-4162 . 62230)
- (-4163 . 62119) (-4164 . 62024) (-4165 . 61872) (-4166 . 61758)
- (-4167 . 61663) (-4168 . 61450) (-4169 . 61377) (-4170 . 61223)
- (-4171 . 60997) (-4172 . 60853) (-4173 . 60751) (-4174 . 60668)
- (-4175 . 60523) (-4176 . 60304) (-4177 . 60121) (-4178 . 60047)
- (-4179 . 59987) (-4180 . 59908) (-4181 . 59852) (-4182 . 59477)
- (-4183 . 59355) (-4184 . 59248) (-4185 . 59170) (-4186 . 59014)
- (-4187 . 58930) (-4188 . 58867) (-4189 . 58839) (-4190 . 58787)
- (-4191 . 58727) (-4192 . 58377) (-4193 . 58304) (-4194 . 58234)
- (-4195 . 58179) (-4196 . 58109) (-4197 . 57872) (-4198 . 57792)
- (-4199 . 57512) (-4200 . 57364) (-4201 . 57241) (-4202 . 57186)
- (-4203 . 57152) (-4204 . 57072) (-4205 . 56829) (-4206 . 56686)
- (-4207 . 56582) (-4208 . 56484) (-4209 . 56400) (-4210 . 56303)
- (-4211 . 56172) (-4212 . 56080) (-4213 . 55927) (-4214 . 55829)
- (-4215 . 55626) (-4216 . 55275) (-4217 . 54995) (-4218 . 54749)
- (-4219 . 54591) (-4220 . 54388) (-4221 . 54236) (-4222 . 54028)
- (-4223 . 53925) (-4224 . 53846) (-4225 . 53641) (-4226 . 53111)
- (-4227 . 52894) (-4228 . 52796) (-4229 . 52719) (-4230 . 52473)
- (-4231 . 52007) (-4232 . 51917) (-4233 . 50619) (-4234 . 50525)
- (-4235 . 50367) (-4236 . 50293) (-4237 . 50241) (-4238 . 50031)
- (-4239 . 49961) (-4240 . 49817) (-4241 . 49506) (-4242 . 49363)
- (-4243 . 48987) (-4244 . 48934) (-4245 . 48158) (-4246 . 48096)
- (-4247 . 47953) (-4248 . 47831) (-4249 . 47461) (-4250 . 47398)
- (-4251 . 47254) (-4252 . 47051) (-4253 . 46965) (-4254 . 46766)
- (-4255 . 46693) (-4256 . 46644) (-4257 . 46342) (-4258 . 46305)
- (-4259 . 45637) (-4260 . 45503) (-4261 . 45373) (-4262 . 45288)
- (-4263 . 45187) (-4264 . 44923) (-4265 . 44843) (-4266 . 44725)
- (-4267 . 44631) (-4268 . 42865) (-4269 . 42770) (-4270 . 42659)
- (-4271 . 42573) (-4272 . 42514) (-4273 . 42419) (-4274 . 42261)
- (-4275 . 42116) (-4276 . 42018) (-4277 . 41945) (-4278 . 41868)
- (-4279 . 41796) (-4280 . 40341) (-4281 . 40267) (-4282 . 40163)
- (-4283 . 40131) (-4284 . 40021) (-4285 . 39666) (-4286 . 39525)
- (-4287 . 39444) (-4288 . 39388) (-4289 . 39303) (-4290 . 39220)
- (-4291 . 37730) (-4292 . 37632) (-4293 . 36842) (-4294 . 36185)
- (-4295 . 36063) (-4296 . 35471) (-4297 . 35037) (-4298 . 34710)
- (-4299 . 34636) (-4300 . 34502) (-4301 . 34276) (-4302 . 34163)
- (-4303 . 33684) (-4304 . 33490) (-4305 . 33402) (-4306 . 33122)
- (-4307 . 32930) (-4308 . 32745) (-4309 . 32577) (-4310 . 32385)
- (-4311 . 32308) (-4312 . 32091) (-4313 . 32063) (-4314 . 32008)
- (-4315 . 31272) (-4316 . 31209) (-4317 . 31084) (-4318 . 30900)
- (-4319 . 30848) (-4320 . 30556) (-4321 . 30234) (-4322 . 29892)
- (-4323 . 29839) (-4324 . 29666) (-4325 . 29573) (-4326 . 29410)
- (-4327 . 29350) (-4328 . 29244) (-4329 . 28853) (-4330 . 28722)
- (-4331 . 28663) (-4332 . 28562) (-4333 . 28465) (-4334 . 28351)
- (-4335 . 28271) (-4336 . 28020) (-4337 . 27892) (-4338 . 27807)
- (-4339 . 27620) (-4340 . 27409) (-4341 . 27047) (-4342 . 26961)
- (-4343 . 26854) (-4344 . 26736) (-4345 . 26608) (-4346 . 26547)
- (-4347 . 26295) (-4348 . 26185) (-4349 . 26132) (-4350 . 25921)
- (-4351 . 25688) (-4352 . 25580) (-4353 . 25264) (-4354 . 25140)
- (-4355 . 24496) (-4356 . 23958) (-4357 . 23869) (-4358 . 23786)
- (-4359 . 23758) (-4360 . 23648) (-4361 . 23465) (-4362 . 22037)
- (-4363 . 21827) (-4364 . 21710) (-4365 . 21654) (-4366 . 21429)
- (-4367 . 21358) (-4368 . 21238) (-4369 . 20066) (-4370 . 20016)
- (-4371 . 19933) (-4372 . 19838) (-4373 . 19801) (-4374 . 19719)
- (-4375 . 19663) (-4376 . 19448) (-4377 . 19329) (-4378 . 19190)
- (-4379 . 19072) (-4380 . 18988) (-4381 . 18873) (-4382 . 18502)
- (-4383 . 18429) (-4384 . 18339) (-4385 . 18119) (-4386 . 17904)
- (-4387 . 12565) (-4388 . 11830) (-4389 . 11710) (-4390 . 11614)
- (-4391 . 11118) (-4392 . 11047) (-4393 . 10970) (-4394 . 9833)
- (-4395 . 9581) (-4396 . 9544) (-4397 . 9476) (-4398 . 9423)
- (-4399 . 8763) (-4400 . 8626) (-4401 . 8563) (-4402 . 8394)
- (-4403 . 8147) (-4404 . 8029) (-4405 . 7621) (-4406 . 7492)
- (-4407 . 7355) (-4408 . 6840) (-4409 . 6711) (-4410 . 6642)
- (-4411 . 6535) (-4412 . 5285) (-4413 . 5257) (-4414 . 4811)
- (-4415 . 4686) (-4416 . 4582) (-4417 . 4437) (-4418 . 4208)
- (-4419 . 4071) (-4420 . 3988) (-4421 . 3893) (-4422 . 3703)
- (-4423 . 3611) (-4424 . 3486) (-4425 . 3320) (-4426 . 3024)
- (-4427 . 2946) (-4428 . 2721) (-4429 . 493) (-4430 . 348)
- (-4431 . 175) (-4432 . 30)) \ No newline at end of file
+ (-12 (-4 *3 (-370)) (-4 *4 (-801)) (-4 *5 (-858)) (-5 *2 (-112))
+ (-5 *1 (-512 *3 *4 *5 *6)) (-4 *6 (-958 *3 *4 *5)))))
+((-1313 . 732385) (-1314 . 732290) (-1315 . 732217) (-1316 . 732018)
+ (-1317 . 731946) (-1318 . 731893) (-1319 . 731761) (-1320 . 731531)
+ (-1321 . 731155) (-1322 . 730756) (-1323 . 730697) (-1324 . 730645)
+ (-1325 . 730086) (-1326 . 729619) (-1327 . 729523) (-1328 . 729353)
+ (-1329 . 729200) (-1330 . 728967) (-1331 . 728911) (-1332 . 728769)
+ (-1333 . 728668) (-1334 . 728566) (-1335 . 728479) (-1336 . 727920)
+ (-1337 . 727779) (-1338 . 727252) (-1339 . 727108) (-1340 . 727051)
+ (-1341 . 726943) (-1342 . 726849) (-1343 . 726683) (-1344 . 726510)
+ (-1345 . 725362) (-1346 . 725220) (-1347 . 724905) (-1348 . 724839)
+ (-1349 . 724200) (-1350 . 724148) (-1351 . 724076) (-1352 . 723760)
+ (-1353 . 723621) (-1354 . 723476) (-1355 . 723321) (-1356 . 723225)
+ (-1357 . 723166) (-1358 . 723100) (-1359 . 723072) (-1360 . 722624)
+ (-1361 . 721980) (-1362 . 721746) (-1363 . 721506) (-1364 . 721331)
+ (-1365 . 721207) (-1366 . 721060) (-1367 . 720931) (-1368 . 720614)
+ (-1369 . 720562) (-1370 . 719460) (-1371 . 719221) (-1372 . 719133)
+ (-1373 . 718933) (-1374 . 718703) (-1375 . 718165) (-1376 . 718067)
+ (-1377 . 717529) (-1378 . 717395) (-1379 . 717309) (-1380 . 717154)
+ (-1381 . 716819) (-1382 . 716748) (-1383 . 716720) (-1384 . 716636)
+ (-1385 . 716541) (-1386 . 715574) (-1387 . 715479) (-1388 . 715427)
+ (-9 . 715399) (-1390 . 715204) (-1391 . 715115) (-1392 . 715002)
+ (-1393 . 714835) (-1394 . 714736) (-1395 . 714681) (-1396 . 714628)
+ (-1397 . 714484) (-1398 . 714453) (-1399 . 714354) (-1400 . 714187)
+ (-8 . 714159) (-1402 . 714107) (-1403 . 714051) (-1404 . 713983)
+ (-1405 . 713900) (-1406 . 713798) (-1407 . 713668) (-1408 . 713545)
+ (-1409 . 712666) (-1410 . 712514) (-7 . 712486) (-1412 . 712319)
+ (-1413 . 711931) (-1414 . 711878) (-1415 . 711537) (-1416 . 711433)
+ (-1417 . 711405) (-1418 . 711352) (-1419 . 711192) (-1420 . 711024)
+ (-1421 . 710865) (-1422 . 710809) (-1423 . 710635) (-1424 . 710148)
+ (-1425 . 709883) (-1426 . 709806) (-1427 . 709677) (-1428 . 709499)
+ (-1429 . 709389) (-1430 . 709330) (-1431 . 709277) (-1432 . 709140)
+ (-1433 . 709075) (-1434 . 708962) (-1435 . 708896) (-1436 . 708808)
+ (-1437 . 708693) (-1438 . 708111) (-1439 . 708028) (-1440 . 707861)
+ (-1441 . 707678) (-1442 . 707402) (-1443 . 707307) (-1444 . 707237)
+ (-1445 . 707151) (-1446 . 706939) (-1447 . 706621) (-1448 . 706202)
+ (-1449 . 705942) (-1450 . 705737) (-1451 . 705680) (-1452 . 705623)
+ (-1453 . 705413) (-1454 . 704830) (-1455 . 704076) (-1456 . 703442)
+ (-1457 . 703113) (-1458 . 702890) (-1459 . 702716) (-1460 . 702554)
+ (-1461 . 702526) (-1462 . 702446) (-1463 . 702329) (-1464 . 702243)
+ (-1465 . 702190) (-1466 . 701942) (-1467 . 701860) (-1468 . 701745)
+ (-1469 . 701599) (-1470 . 701161) (-1471 . 701066) (-1472 . 700264)
+ (-1473 . 699992) (-1474 . 699936) (-1475 . 699804) (-1476 . 699594)
+ (-1477 . 699383) (-1478 . 699283) (-1479 . 699145) (-1480 . 698866)
+ (-1481 . 698579) (-1482 . 698497) (-1483 . 698181) (-1484 . 697889)
+ (-1485 . 697830) (-1486 . 697759) (-1487 . 697384) (-1488 . 697086)
+ (-1489 . 696975) (-1490 . 696904) (-1491 . 696810) (-1492 . 695470)
+ (-1493 . 695340) (-1494 . 695216) (-1495 . 695066) (-1496 . 695006)
+ (-1497 . 692892) (-1498 . 692772) (-1499 . 692485) (-1500 . 690704)
+ (-1501 . 690502) (-1502 . 690424) (-1503 . 689881) (-1504 . 689782)
+ (-1505 . 689530) (-1506 . 689280) (-1507 . 689214) (-1508 . 689016)
+ (-1509 . 688966) (-1510 . 688829) (-1511 . 688708) (-1512 . 688414)
+ (-1513 . 688284) (-1514 . 687948) (-1515 . 687790) (-1516 . 687738)
+ (-1517 . 687252) (-1518 . 687152) (-1519 . 686972) (-1520 . 686889)
+ (-1521 . 686776) (-1522 . 686657) (-1523 . 686502) (-1524 . 686403)
+ (-1525 . 686338) (-1526 . 685088) (-1527 . 685036) (-1528 . 684875)
+ (-1529 . 684670) (-1530 . 684592) (-1531 . 684497) (-1532 . 684403)
+ (-1533 . 684347) (-1534 . 684280) (-1535 . 684174) (-1536 . 684037)
+ (-1537 . 683954) (-1538 . 683647) (-1539 . 683491) (-1540 . 683419)
+ (-1541 . 683382) (-1542 . 683195) (-1543 . 683121) (-1544 . 683068)
+ (-1545 . 682870) (-1546 . 682695) (-1547 . 682604) (-1548 . 682401)
+ (-1549 . 682285) (-1550 . 682147) (-1551 . 682064) (-1552 . 681980)
+ (-1553 . 681898) (-1554 . 681688) (-1555 . 681545) (-1556 . 681299)
+ (-1557 . 681232) (-1558 . 680265) (-1559 . 680194) (-1560 . 680129)
+ (-1561 . 680057) (-1562 . 679902) (-1563 . 679650) (-1564 . 679594)
+ (-1565 . 679434) (-1566 . 679319) (-1567 . 679189) (-1568 . 679071)
+ (-1569 . 679017) (-1570 . 678938) (-1571 . 678845) (-1572 . 678407)
+ (-1573 . 678254) (-1574 . 678039) (-1575 . 677908) (-1576 . 677305)
+ (-1577 . 677005) (-1578 . 676841) (-1579 . 676792) (-1580 . 676697)
+ (-1581 . 676625) (-1582 . 676524) (-1583 . 676405) (-1584 . 676303)
+ (-1585 . 676149) (-1586 . 675615) (-1587 . 675490) (-1588 . 675438)
+ (-1589 . 675386) (-1590 . 675116) (-1591 . 674776) (-1592 . 674674)
+ (-1593 . 674535) (-1594 . 674450) (-1595 . 674380) (-1596 . 674264)
+ (-1597 . 674209) (-1598 . 674087) (-1599 . 673797) (-1600 . 673547)
+ (-1601 . 673475) (-1602 . 673414) (-1603 . 673296) (-1604 . 673004)
+ (-1605 . 672785) (-1606 . 672469) (-1607 . 672295) (-1608 . 672191)
+ (-1609 . 672090) (-1610 . 671924) (-1611 . 671836) (-1612 . 671752)
+ (-1613 . 671534) (-1614 . 671460) (-1615 . 671374) (-1616 . 671173)
+ (-1617 . 671107) (-1618 . 670947) (-1619 . 670439) (-1620 . 670373)
+ (-1621 . 670002) (-1622 . 669874) (-1623 . 669714) (-1624 . 669534)
+ (-1625 . 669460) (-1626 . 669221) (-1627 . 669043) (-1628 . 668691)
+ (-1629 . 668410) (-1630 . 668337) (-1631 . 668266) (-1632 . 668121)
+ (-1633 . 667990) (-1634 . 667892) (-1635 . 667826) (-1636 . 667760)
+ (-1637 . 667672) (-1638 . 667576) (-1639 . 667486) (-1640 . 667332)
+ (-1641 . 667229) (-1642 . 667162) (-1643 . 666890) (-1644 . 666571)
+ (-1645 . 666364) (-1646 . 666079) (-1647 . 666024) (-1648 . 665271)
+ (-1649 . 665051) (-1650 . 664921) (-1651 . 664868) (-1652 . 664379)
+ (-1653 . 664066) (-1654 . 663988) (-1655 . 663812) (-1656 . 663655)
+ (-1657 . 663586) (-1658 . 663490) (-1659 . 663275) (-1660 . 663216)
+ (-1661 . 663146) (-1662 . 662506) (-1663 . 662407) (-1664 . 662312)
+ (-1665 . 662256) (-1666 . 662204) (-1667 . 661777) (-1668 . 661627)
+ (-1669 . 661572) (-1670 . 660837) (-1671 . 660684) (-1672 . 660632)
+ (-1673 . 660517) (-1674 . 660389) (-1675 . 660337) (-1676 . 660150)
+ (-1677 . 660007) (-1678 . 659822) (-1679 . 659702) (-1680 . 659623)
+ (-1681 . 659196) (-1682 . 659139) (-1683 . 659054) (-1684 . 658836)
+ (-1685 . 658757) (-1686 . 658427) (-1687 . 658304) (-1688 . 657960)
+ (-1689 . 657887) (-1690 . 657791) (-1691 . 657707) (-1692 . 656949)
+ (-1693 . 656556) (-1694 . 656528) (-1695 . 656024) (-1696 . 655867)
+ (-1697 . 655836) (-1698 . 655711) (-1699 . 655504) (-1700 . 655267)
+ (-1701 . 655187) (-1702 . 654691) (-1703 . 654565) (-1704 . 654513)
+ (-1705 . 654357) (-1706 . 654214) (-1707 . 654186) (-1708 . 653675)
+ (-1709 . 653565) (-1710 . 653531) (-1711 . 653460) (-1712 . 653245)
+ (-1713 . 653188) (-1714 . 653159) (-1715 . 653035) (-1716 . 652891)
+ (-1717 . 652607) (-1718 . 651161) (-1719 . 651087) (-1720 . 651058)
+ (-1721 . 650981) (-1722 . 650763) (-1723 . 650372) (-1724 . 650214)
+ (-1725 . 650031) (-1726 . 649214) (-1727 . 649088) (-1728 . 648269)
+ (-1729 . 648195) (-1730 . 647899) (-1731 . 647816) (-1732 . 647779)
+ (-1733 . 647527) (-1734 . 647454) (-1735 . 647270) (-1736 . 646534)
+ (-1737 . 646483) (-1738 . 646372) (-1739 . 645955) (-1740 . 645902)
+ (-1741 . 645820) (-1742 . 645783) (-1743 . 645697) (-1744 . 645576)
+ (-1745 . 645475) (-1746 . 645413) (-1747 . 644928) (-1748 . 644824)
+ (-1749 . 644772) (-1750 . 644672) (-1751 . 644604) (-1752 . 644493)
+ (-1753 . 644389) (-1754 . 644259) (-1755 . 643857) (-1756 . 643604)
+ (-1757 . 643476) (-1758 . 643161) (-1759 . 642651) (-1760 . 642598)
+ (-1761 . 642532) (-1762 . 642455) (-1763 . 642336) (-1764 . 642308)
+ (-1765 . 640542) (-1766 . 640431) (-1767 . 640277) (-1768 . 640157)
+ (-1769 . 639289) (-1770 . 639124) (-1771 . 639072) (-1772 . 638412)
+ (-1773 . 638288) (-1774 . 638236) (-1775 . 638108) (-1776 . 637594)
+ (-1777 . 637474) (-1778 . 636019) (-1779 . 635508) (-1780 . 635363)
+ (-1781 . 635311) (-1782 . 635174) (-1783 . 635046) (-1784 . 634669)
+ (-1785 . 634607) (-1786 . 634505) (-1787 . 633015) (-1788 . 632956)
+ (-1789 . 632838) (-1790 . 632696) (-1791 . 632668) (-1792 . 632605)
+ (-1793 . 632171) (-1794 . 632056) (-1795 . 631729) (-1796 . 631346)
+ (-1797 . 630935) (-1798 . 630746) (-1799 . 630660) (-1800 . 630589)
+ (-1801 . 630258) (-1802 . 630203) (-1803 . 630034) (-1804 . 629664)
+ (-1805 . 629569) (-1806 . 629423) (-1807 . 629308) (-1808 . 629210)
+ (-1809 . 628474) (-1810 . 628411) (-1811 . 628197) (-1812 . 628044)
+ (-1813 . 627994) (-1814 . 627747) (-1815 . 627650) (-1816 . 627576)
+ (-1817 . 627413) (-1818 . 627253) (-1819 . 626917) (-1820 . 626820)
+ (-1821 . 626715) (-1822 . 626642) (-1823 . 626524) (-1824 . 626444)
+ (-1825 . 626410) (-1826 . 626281) (-1827 . 625970) (-1828 . 625384)
+ (-1829 . 625256) (-1830 . 624689) (-1831 . 624607) (-1832 . 624500)
+ (-1833 . 624406) (-1834 . 624334) (-1835 . 623926) (-1836 . 623789)
+ (-1837 . 623660) (-1838 . 623502) (-1839 . 623411) (-1840 . 622767)
+ (-1841 . 622699) (-1842 . 622584) (-1843 . 622510) (-1844 . 622404)
+ (-1845 . 622275) (-1846 . 622136) (-1847 . 620708) (-1848 . 620594)
+ (-1849 . 620061) (-1850 . 619949) (-1851 . 619783) (-1852 . 619558)
+ (-1853 . 618386) (-1854 . 618179) (-1855 . 617633) (-1856 . 617563)
+ (-1857 . 617426) (-1858 . 617373) (-1859 . 617244) (-1860 . 617062)
+ (-1861 . 616615) (-1862 . 616507) (-1863 . 616392) (-1864 . 616153)
+ (-1865 . 616034) (-1866 . 615930) (-1867 . 615857) (-1868 . 615342)
+ (-1869 . 610003) (-1870 . 609476) (-1871 . 608480) (-1872 . 608400)
+ (-1873 . 608242) (-1874 . 607105) (-1875 . 606945) (-1876 . 606917)
+ (-1877 . 606801) (-1878 . 606700) (-1879 . 606579) (-1880 . 606450)
+ (-1881 . 606397) (-1882 . 606147) (-1883 . 606035) (-1884 . 605981)
+ (-1885 . 605614) (-1886 . 605358) (-1887 . 605294) (-1888 . 605232)
+ (-1889 . 604901) (-1890 . 604805) (-1891 . 604736) (-1892 . 604667)
+ (-1893 . 604486) (-1894 . 604408) (-1895 . 604379) (-1896 . 604129)
+ (-1897 . 604002) (-1898 . 603889) (-1899 . 603781) (-1900 . 603674)
+ (-1901 . 603558) (-1902 . 603499) (-1903 . 603391) (-1904 . 603260)
+ (-1905 . 602377) (-1906 . 602298) (-1907 . 602138) (-1908 . 602022)
+ (-1909 . 601957) (-1910 . 601929) (-1911 . 601620) (-1912 . 601567)
+ (-1913 . 601463) (-1914 . 601177) (-1915 . 600902) (-1916 . 600850)
+ (-1917 . 600764) (-1918 . 600551) (-1919 . 600468) (-1920 . 600022)
+ (-1921 . 599912) (-1922 . 599648) (-1923 . 599614) (-1924 . 598726)
+ (-1925 . 598580) (-1926 . 598451) (-1927 . 598287) (-1928 . 598201)
+ (-1929 . 598112) (-1930 . 598019) (-1931 . 597589) (-1932 . 597168)
+ (-1933 . 597115) (-1934 . 596974) (-1935 . 596816) (-1936 . 596658)
+ (-1937 . 596508) (-1938 . 596440) (-1939 . 596146) (-1940 . 596005)
+ (-1941 . 595908) (-1942 . 595559) (-1943 . 595478) (-1944 . 594413)
+ (-1945 . 594335) (-1946 . 594240) (-1947 . 594140) (-1948 . 594032)
+ (-1949 . 593891) (-1950 . 593810) (-1951 . 593757) (-1952 . 593636)
+ (-1953 . 593584) (-1954 . 593446) (-1955 . 593350) (-1956 . 593298)
+ (-1957 . 593107) (-1958 . 593041) (-1959 . 592731) (-1960 . 592675)
+ (-1961 . 592508) (-1962 . 592429) (-1963 . 592249) (-1964 . 592074)
+ (-1965 . 591897) (-1966 . 591823) (-1967 . 591613) (-1968 . 591513)
+ (-1969 . 582063) (-1970 . 581978) (-1971 . 581832) (-1972 . 581759)
+ (-1973 . 580731) (-1974 . 580552) (-1975 . 580433) (-1976 . 580355)
+ (-1977 . 580303) (-1978 . 580243) (-1979 . 580108) (-1980 . 579821)
+ (-1981 . 579738) (-1982 . 579522) (-1983 . 579379) (-1984 . 579347)
+ (-1985 . 579174) (-1986 . 579042) (-1987 . 578790) (-1988 . 578693)
+ (-1989 . 578535) (-1990 . 578501) (-1991 . 578403) (-1992 . 578351)
+ (-1993 . 578267) (-1994 . 577788) (-1995 . 577658) (-1996 . 577543)
+ (-1997 . 577411) (-1998 . 577321) (-1999 . 577183) (-2000 . 576776)
+ (-2001 . 576671) (-2002 . 576528) (-2003 . 576375) (-2004 . 575585)
+ (-2005 . 575489) (-2006 . 574903) (-2007 . 574762) (-2008 . 574661)
+ (-2009 . 574554) (-2010 . 574470) (-2011 . 574399) (-2012 . 574071)
+ (-2013 . 573994) (-2014 . 573337) (-2015 . 573237) (-2016 . 573139)
+ (-2017 . 573025) (-2018 . 572951) (-2019 . 572895) (-2020 . 572192)
+ (-2021 . 572136) (-2022 . 572079) (-2023 . 571982) (-2024 . 571816)
+ (-2025 . 571694) (-2026 . 571560) (-2027 . 571314) (-2028 . 570930)
+ (-2029 . 570790) (-2030 . 570737) (-2031 . 570644) (-2032 . 570398)
+ (-2033 . 570167) (-2034 . 570036) (-2035 . 569238) (-2036 . 568646)
+ (-2037 . 568475) (-2038 . 568389) (-2039 . 568336) (-2040 . 567660)
+ (-2041 . 567433) (-2042 . 567248) (-2043 . 566729) (-2044 . 566701)
+ (-2045 . 566516) (-2046 . 566278) (-2047 . 565694) (-2048 . 565620)
+ (-2049 . 565464) (-2050 . 565238) (-2051 . 565158) (-2052 . 564993)
+ (-2053 . 564726) (-2054 . 564075) (-2055 . 563649) (-2056 . 563576)
+ (-2057 . 563457) (-2058 . 563314) (-2059 . 563248) (-2060 . 563150)
+ (-2061 . 563084) (-2062 . 562950) (-2063 . 562638) (-2064 . 562344)
+ (-2065 . 562249) (-2066 . 562133) (-2067 . 561894) (-2068 . 559638)
+ (-2069 . 559334) (-2070 . 559253) (-2071 . 559127) (-2072 . 558990)
+ (-2073 . 558921) (-2074 . 558772) (-2075 . 558546) (-2076 . 558443)
+ (-2077 . 558360) (-2078 . 558237) (-2079 . 558055) (-2080 . 558006)
+ (-2081 . 557902) (-2082 . 557754) (-2083 . 557636) (-2084 . 557477)
+ (-2085 . 557350) (-2086 . 557276) (-2087 . 556751) (-2088 . 556638)
+ (-2089 . 556468) (-2090 . 556416) (-2091 . 556012) (-2092 . 555968)
+ (-2093 . 555895) (-2094 . 555830) (-2095 . 555226) (-2096 . 555089)
+ (-2097 . 554959) (-2098 . 554480) (-2099 . 554234) (-2100 . 554155)
+ (-2101 . 554002) (-2102 . 553887) (-2103 . 553558) (-2104 . 553459)
+ (-2105 . 553085) (-2106 . 553025) (-2107 . 552947) (-2108 . 552140)
+ (-2109 . 551946) (-2110 . 551829) (-2111 . 551697) (-2112 . 551619)
+ (-2113 . 551445) (-2114 . 551227) (-2115 . 551153) (-2116 . 550880)
+ (-2117 . 550803) (-2118 . 550690) (-2119 . 550337) (-2120 . 550249)
+ (-2121 . 549619) (-2122 . 549566) (-2123 . 549158) (-2124 . 549089)
+ (-2125 . 549001) (-2126 . 548822) (-2127 . 548769) (-2128 . 548714)
+ (-2129 . 548612) (-2130 . 548584) (-2131 . 548304) (-2132 . 548245)
+ (-2133 . 548168) (-2134 . 548094) (-2135 . 548023) (-2136 . 547865)
+ (-2137 . 547508) (-2138 . 547412) (-2139 . 546849) (-2140 . 545063)
+ (-2141 . 544921) (-2142 . 544667) (-2143 . 544475) (-2144 . 544373)
+ (-2145 . 544248) (-2146 . 544156) (-2147 . 544101) (-2148 . 543956)
+ (-2149 . 543816) (-2150 . 543554) (-2151 . 543492) (-2152 . 542930)
+ (-2153 . 542782) (-2154 . 542677) (-2155 . 542604) (-2156 . 542419)
+ (-2157 . 542200) (-2158 . 542110) (-2159 . 542009) (-2160 . 541825)
+ (-2161 . 541796) (-2162 . 541234) (-2163 . 541071) (-2164 . 540913)
+ (-2165 . 540578) (-2166 . 540337) (-2167 . 540169) (-2168 . 540082)
+ (-2169 . 540009) (-2170 . 539885) (-2171 . 539665) (-2172 . 539613)
+ (-2173 . 539545) (-2174 . 539084) (-2175 . 539004) (-2176 . 538442)
+ (-2177 . 538327) (-2178 . 538269) (-2179 . 537894) (-2180 . 536038)
+ (-2181 . 535846) (-2182 . 535425) (-2183 . 535152) (-2184 . 534772)
+ (-2185 . 534693) (-2186 . 534640) (-2187 . 534586) (-2188 . 534420)
+ (-2189 . 534325) (-2190 . 534130) (-2191 . 534044) (-2192 . 533964)
+ (-2193 . 533402) (-2194 . 533350) (-2195 . 533223) (-2196 . 533146)
+ (-2197 . 533112) (-2198 . 532930) (-2199 . 532692) (-2200 . 532622)
+ (-2201 . 532479) (-2202 . 532277) (-2203 . 532189) (-2204 . 531627)
+ (-2205 . 531490) (-2206 . 531411) (-2207 . 531194) (-2208 . 531092)
+ (-2209 . 530388) (-2210 . 530259) (-2211 . 530077) (-2212 . 529973)
+ (-2213 . 529908) (-2214 . 529859) (-2215 . 529721) (-2216 . 529555)
+ (-2217 . 529502) (-2218 . 529379) (-2219 . 529295) (-2220 . 527999)
+ (-2221 . 527942) (-2222 . 527914) (-2223 . 527593) (-2224 . 526912)
+ (-2225 . 526838) (-2226 . 526641) (-2227 . 526555) (-2228 . 526453)
+ (-2229 . 526367) (-2230 . 526160) (-2231 . 526006) (-2232 . 525939)
+ (-2233 . 525851) (-2234 . 524978) (-2235 . 524738) (-2236 . 524650)
+ (-2237 . 524499) (-2238 . 524444) (-2239 . 524308) (-2240 . 524238)
+ (-2241 . 524131) (-2242 . 524050) (-2243 . 523978) (-2244 . 523562)
+ (-2245 . 523305) (-2246 . 522731) (-2247 . 522617) (-2248 . 522414)
+ (-2249 . 522289) (-2250 . 522036) (-2251 . 521836) (-2252 . 521618)
+ (-2253 . 521590) (-2254 . 521447) (-2255 . 520883) (-2256 . 520652)
+ (-2257 . 520044) (-2258 . 519972) (-2259 . 519691) (-2260 . 519596)
+ (-2261 . 519412) (-2262 . 519305) (-2263 . 519222) (-2264 . 519149)
+ (-2265 . 518958) (-2266 . 518596) (-2267 . 518525) (-2268 . 518382)
+ (-2269 . 518260) (-2270 . 518064) (-2271 . 517794) (-2272 . 517519)
+ (-2273 . 517356) (-2274 . 517304) (-2275 . 517086) (-2276 . 516979)
+ (-2277 . 516785) (-2278 . 516586) (-2279 . 516492) (-2280 . 516286)
+ (-2281 . 516105) (-2282 . 515763) (-2283 . 515640) (-2284 . 515216)
+ (-2285 . 514924) (-2286 . 514783) (-2287 . 514673) (-2288 . 514587)
+ (-2289 . 514535) (-2290 . 513912) (-2291 . 513729) (-2292 . 513677)
+ (-2293 . 513542) (-2294 . 513269) (-2295 . 512947) (-2296 . 512638)
+ (-2297 . 512461) (-2298 . 511383) (-2299 . 511299) (-2300 . 511211)
+ (-2301 . 511160) (-2302 . 511091) (-2303 . 510718) (-2304 . 510690)
+ (-2305 . 510563) (-2306 . 510221) (-2307 . 510106) (-2308 . 507974)
+ (-2309 . 507718) (-2310 . 507615) (-2311 . 507070) (-2312 . 506688)
+ (-2313 . 506617) (-2314 . 506531) (-2315 . 505379) (-2316 . 505302)
+ (-2317 . 505106) (-2318 . 505023) (-2319 . 504631) (-2320 . 504578)
+ (-2321 . 500515) (-2322 . 500455) (-2323 . 500382) (-2324 . 500172)
+ (-2325 . 499800) (-2326 . 499738) (-2327 . 499314) (-2328 . 499081)
+ (-2329 . 499053) (-2330 . 498952) (-2331 . 498895) (-2332 . 498835)
+ (-2333 . 498662) (-2334 . 498600) (-2335 . 498530) (-2336 . 498322)
+ (-2337 . 498263) (-2338 . 498186) (-2339 . 497848) (-2340 . 497730)
+ (-2341 . 497635) (-2342 . 497348) (-2343 . 497255) (-2344 . 497151)
+ (-2345 . 497070) (-2346 . 496987) (-2347 . 496327) (-2348 . 496048)
+ (-2349 . 495885) (-2350 . 495833) (-2351 . 495723) (-2352 . 495430)
+ (-2353 . 495371) (-2354 . 495311) (-2355 . 494950) (-2356 . 494840)
+ (-2357 . 494752) (-2358 . 494656) (-2359 . 493383) (-2360 . 493330)
+ (-2361 . 492937) (-2362 . 492768) (-2363 . 492550) (-2364 . 492444)
+ (-2365 . 490099) (-2366 . 489853) (-2367 . 489694) (-2368 . 489642)
+ (-2369 . 489462) (-2370 . 489343) (-2371 . 489220) (-2372 . 488623)
+ (-2373 . 488495) (-2374 . 488180) (-2375 . 487634) (-2376 . 487303)
+ (-2377 . 486912) (-2378 . 486666) (-2379 . 486308) (-2380 . 486212)
+ (-2381 . 486134) (-2382 . 486043) (-2383 . 485863) (-2384 . 485675)
+ (-2385 . 485598) (-2386 . 485510) (-2387 . 485450) (-2388 . 485346)
+ (-2389 . 485265) (-2390 . 485134) (-2391 . 485100) (-2392 . 484390)
+ (-2393 . 484333) (-2394 . 484091) (-2395 . 483961) (-2396 . 483731)
+ (-2397 . 483654) (-2398 . 483361) (-2399 . 483329) (-2400 . 483270)
+ (-2401 . 483238) (-2402 . 482592) (-2403 . 481841) (-2404 . 481570)
+ (-2405 . 481435) (-2406 . 481297) (-2407 . 481196) (-2408 . 481092)
+ (-2409 . 480995) (-2410 . 480936) (-2411 . 480835) (-2412 . 480766)
+ (-2413 . 480533) (-2414 . 479941) (-2415 . 479889) (** . 476895)
+ (-2417 . 476843) (-2418 . 476703) (-2419 . 476675) (-2420 . 476443)
+ (-2421 . 476300) (-2422 . 476228) (-2423 . 476131) (-2424 . 475952)
+ (-2425 . 475239) (-2426 . 474765) (-2427 . 474695) (-2428 . 474574)
+ (-2429 . 474488) (-2430 . 474370) (-2431 . 474256) (-2432 . 474086)
+ (-2433 . 473989) (-2434 . 473827) (-2435 . 473509) (-2436 . 473319)
+ (-2437 . 473090) (-2438 . 473007) (-2439 . 472940) (-2440 . 472858)
+ (-2441 . 472607) (-2442 . 472507) (-2443 . 472436) (-2444 . 472165)
+ (-2445 . 472052) (-2446 . 471953) (-2447 . 471869) (-2448 . 471704)
+ (-2449 . 471651) (-2450 . 471617) (-2451 . 471532) (-2452 . 471376)
+ (-2453 . 471270) (-2454 . 471200) (-2455 . 470334) (-2456 . 470250)
+ (-2457 . 470173) (-2458 . 470121) (-2459 . 470047) (-2460 . 469409)
+ (-2461 . 469323) (-2462 . 469256) (-2463 . 469069) (-2464 . 468822)
+ (-2465 . 468651) (-2466 . 468596) (-2467 . 468543) (-2468 . 468372)
+ (-2469 . 467374) (-2470 . 466941) (-2471 . 466810) (-2472 . 466587)
+ (-2473 . 466376) (-2474 . 466324) (-2475 . 466076) (-2476 . 465953)
+ (-2477 . 465485) (-2478 . 465150) (-2479 . 464975) (-2480 . 464891)
+ (-2481 . 464788) (-2482 . 464709) (-2483 . 464611) (-2484 . 464249)
+ (-2485 . 464013) (-2486 . 463912) (-2487 . 463525) (-2488 . 463472)
+ (-2489 . 463365) (-2490 . 463228) (-2491 . 463105) (-2492 . 463049)
+ (-2493 . 460208) (-2494 . 460137) (-2495 . 459946) (-2496 . 459860)
+ (-2497 . 459757) (-2498 . 459519) (-2499 . 459459) (-2500 . 459200)
+ (-2501 . 458779) (-2502 . 458727) (-2503 . 458674) (-2504 . 458567)
+ (-2505 . 458389) (-2506 . 458269) (-2507 . 458121) (-2508 . 458048)
+ (-2509 . 457935) (-2510 . 457867) (-2511 . 457634) (-2512 . 457544)
+ (-2513 . 457492) (-2514 . 457379) (-2515 . 457261) (-2516 . 457125)
+ (-2517 . 457072) (-2518 . 456956) (-2519 . 456784) (-2520 . 456701)
+ (-2521 . 456562) (-2522 . 456479) (-2523 . 456297) (-2524 . 456228)
+ (-2525 . 456100) (-2526 . 455985) (-2527 . 455690) (-2528 . 455527)
+ (-2529 . 455087) (-2530 . 454976) (-2531 . 454778) (-2532 . 454657)
+ (-2533 . 454628) (-2534 . 454495) (-2535 . 454390) (-2536 . 454112)
+ (-2537 . 454051) (-2538 . 453944) (-2539 . 453801) (-2540 . 453699)
+ (-2541 . 453509) (-2542 . 453427) (-2543 . 453339) (-2544 . 453311)
+ (-2545 . 453149) (-2546 . 452897) (-2547 . 452869) (-2548 . 452738)
+ (-2549 . 452661) (-2550 . 452558) (-2551 . 452462) (-2552 . 452384)
+ (-2553 . 452165) (-2554 . 452062) (-2555 . 451802) (-2556 . 451774)
+ (-2557 . 451664) (-2558 . 451273) (-2559 . 451217) (-2560 . 451162)
+ (-2561 . 451058) (-2562 . 450945) (-2563 . 450890) (-2564 . 450732)
+ (-2565 . 450558) (-2566 . 450398) (-2567 . 450339) (-2568 . 450128)
+ (-2569 . 449532) (-2570 . 448919) (-2571 . 448537) (-2572 . 446960)
+ (-2573 . 446842) (-2574 . 446684) (-2575 . 446614) (-2576 . 446461)
+ (-2577 . 446305) (-2578 . 446116) (-2579 . 446017) (-2580 . 445911)
+ (-2581 . 445484) (-2582 . 445431) (-2583 . 445161) (-2584 . 444817)
+ (-2585 . 444707) (-2586 . 444502) (-2587 . 444452) (-2588 . 444378)
+ (-2589 . 444290) (-2590 . 444237) (-2591 . 440574) (-2592 . 440239)
+ (-2593 . 440188) (-2594 . 440111) (-2595 . 440015) (-2596 . 439944)
+ (-2597 . 439798) (-2598 . 439512) (-2599 . 439248) (-2600 . 439160)
+ (-2601 . 438941) (-2602 . 438667) (-2603 . 438137) (-2604 . 437994)
+ (-2605 . 437847) (-2606 . 437745) (-2607 . 437553) (-2608 . 436958)
+ (-2609 . 436861) (-2610 . 436804) (-2611 . 436776) (-2612 . 436629)
+ (-2613 . 436600) (-2614 . 436546) (-2615 . 436397) (-2616 . 436070)
+ (-2617 . 435853) (-2618 . 435759) (-2619 . 435512) (-2620 . 435455)
+ (-2621 . 435089) (-2622 . 434856) (-2623 . 434578) (-2624 . 434127)
+ (-2625 . 433988) (-2626 . 433927) (-2627 . 433875) (-2628 . 433819)
+ (-2629 . 433724) (-2630 . 433412) (-2631 . 433359) (-2632 . 433261)
+ (-2633 . 433130) (-2634 . 433014) (-2635 . 432948) (-2636 . 432882)
+ (-2637 . 432667) (-2638 . 432615) (-2639 . 432544) (-2640 . 432437)
+ (-2641 . 432006) (-2642 . 431932) (-2643 . 431623) (-2644 . 431546)
+ (-2645 . 431428) (-2646 . 431357) (-2647 . 430700) (-2648 . 430483)
+ (-2649 . 430330) (-2650 . 430135) (-2651 . 430028) (-2652 . 425868)
+ (-2653 . 425780) (-2654 . 425655) (-2655 . 425189) (-2656 . 425116)
+ (-2657 . 424928) (-2658 . 424846) (-2659 . 424780) (-2660 . 424271)
+ (-2661 . 423912) (-2662 . 423664) (-2663 . 423367) (-2664 . 423233)
+ (-2665 . 423159) (-2666 . 423069) (-2667 . 423013) (-2668 . 422919)
+ (-2669 . 422842) (-2670 . 422739) (-2671 . 422379) (-2672 . 421999)
+ (-2673 . 421883) (-2674 . 421830) (-2675 . 421721) (-2676 . 421310)
+ (-2677 . 421209) (-2678 . 419911) (-2679 . 415911) (-2680 . 415854)
+ (-2681 . 415752) (-2682 . 415681) (-2683 . 415551) (-2684 . 415499)
+ (-2685 . 414836) (-2686 . 414534) (-2687 . 414339) (-2688 . 413716)
+ (-2689 . 413619) (-2690 . 413461) (-2691 . 413367) (-2692 . 413311)
+ (-2693 . 413204) (-2694 . 412986) (-2695 . 412890) (-2696 . 412643)
+ (-2697 . 412146) (-2698 . 411717) (-2699 . 411556) (-2700 . 411468)
+ (-2701 . 411418) (-2702 . 411260) (-2703 . 411135) (-2704 . 410998)
+ (-2705 . 410891) (-2706 . 410782) (-2707 . 410615) (-2708 . 410436)
+ (-2709 . 410055) (-2710 . 409884) (-2711 . 409805) (-2712 . 409731)
+ (-2713 . 409699) (-2714 . 409481) (-2715 . 409323) (-2716 . 409146)
+ (-2717 . 408779) (-2718 . 408638) (-2719 . 408431) (-2720 . 408268)
+ (-2721 . 407968) (-2722 . 407916) (-2723 . 407816) (-2724 . 407661)
+ (-2725 . 407481) (-2726 . 407281) (-2727 . 407222) (-2728 . 407167)
+ (-2729 . 407039) (-2730 . 406821) (-2731 . 406488) (-2732 . 406278)
+ (-2733 . 406178) (-2734 . 406076) (-2735 . 405891) (-2736 . 405775)
+ (-2737 . 405655) (-2738 . 405576) (-2739 . 404990) (-2740 . 404851)
+ (-2741 . 404739) (-2742 . 404658) (-2743 . 404588) (-2744 . 404432)
+ (-2745 . 403718) (-2746 . 403684) (-2747 . 403613) (-2748 . 403365)
+ (-2749 . 403247) (-2750 . 403142) (-2751 . 403047) (-2752 . 402947)
+ (-2753 . 402834) (-2754 . 402690) (-2755 . 402572) (-2756 . 401732)
+ (-2757 . 401569) (-2758 . 401414) (-2759 . 401313) (-2760 . 401241)
+ (-2761 . 401161) (-2762 . 400740) (-2763 . 400490) (-2764 . 400431)
+ (-2765 . 400274) (-2766 . 399963) (-2767 . 399710) (-2768 . 399624)
+ (-2769 . 399571) (-2770 . 399490) (-2771 . 399411) (-2772 . 399323)
+ (-2773 . 399011) (-2774 . 398961) (-2775 . 398475) (-2776 . 398377)
+ (-2777 . 398234) (-2778 . 398146) (-2779 . 397998) (-2780 . 397902)
+ (-2781 . 397775) (-2782 . 397490) (-2783 . 397369) (-2784 . 397295)
+ (-2785 . 397132) (-2786 . 397060) (-2787 . 396986) (-2788 . 396610)
+ (-2789 . 396550) (-2790 . 396466) (-2791 . 396358) (-2792 . 396201)
+ (-2793 . 395947) (-2794 . 395850) (-2795 . 395436) (-2796 . 395222)
+ (-2797 . 395122) (-2798 . 395034) (-2799 . 394981) (-2800 . 394671)
+ (-2801 . 394508) (-2802 . 394455) (-2803 . 394359) (-2804 . 394330)
+ (-2805 . 394236) (-2806 . 394107) (-2807 . 394022) (-2808 . 393763)
+ (-2809 . 393653) (-2810 . 392877) (-2811 . 392793) (-2812 . 392669)
+ (-2813 . 392573) (-2814 . 392027) (-2815 . 391812) (-2816 . 391715)
+ (-2817 . 391687) (-2818 . 391585) (-2819 . 391517) (-2820 . 391415)
+ (-2821 . 391272) (-2822 . 391178) (-2823 . 391006) (-2824 . 390905)
+ (-2825 . 390819) (-2826 . 390718) (-2827 . 390499) (-2828 . 390346)
+ (-2829 . 390022) (-2830 . 389824) (-2831 . 389702) (-2832 . 389565)
+ (-2833 . 389406) (-2834 . 389320) (-2835 . 389197) (-2836 . 389140)
+ (-2837 . 389005) (-2838 . 388892) (-2839 . 388796) (-2840 . 388593)
+ (-2841 . 388512) (-2842 . 388142) (-2843 . 388068) (-2844 . 387950)
+ (-2845 . 387779) (-2846 . 387680) (-2847 . 387608) (-2848 . 387536)
+ (-2849 . 387476) (-2850 . 387297) (-2851 . 387247) (-2852 . 387059)
+ (-2853 . 386996) (-2854 . 386830) (-2855 . 386745) (-2856 . 386567)
+ (-2857 . 386500) (-2858 . 386407) (-2859 . 386246) (-2860 . 386212)
+ (-2861 . 386117) (-2862 . 384925) (-2863 . 384673) (-2864 . 384122)
+ (-2865 . 383867) (-2866 . 383723) (-2867 . 383664) (-2868 . 383513)
+ (-2869 . 383067) (-2870 . 383039) (-2871 . 382747) (-2872 . 382478)
+ (-2873 . 382362) (-2874 . 382189) (-2875 . 381979) (-2876 . 381823)
+ (-2877 . 381620) (-2878 . 381546) (-2879 . 381406) (-2880 . 381182)
+ (-2881 . 381109) (-2882 . 381055) (-2883 . 380951) (-2884 . 380828)
+ (-2885 . 380772) (-2886 . 380719) (-2887 . 380633) (-2888 . 379981)
+ (-2889 . 379386) (-2890 . 379227) (-2891 . 379170) (-2892 . 379034)
+ (-2893 . 378668) (-2894 . 378543) (-2895 . 378395) (-2896 . 378298)
+ (-2897 . 378099) (-2898 . 377755) (-2899 . 377664) (-2900 . 377496)
+ (-2901 . 377237) (-2902 . 377010) (-2903 . 376857) (-2904 . 376774)
+ (-2905 . 376721) (-2906 . 376467) (-2907 . 376394) (-2908 . 376325)
+ (-2909 . 376163) (-2910 . 375691) (-2911 . 375614) (-2912 . 375412)
+ (-2913 . 374570) (-2914 . 374301) (-2915 . 374233) (-2916 . 373981)
+ (-2917 . 373885) (-2918 . 373681) (-2919 . 373529) (-2920 . 373480)
+ (-2921 . 373428) (-2922 . 373375) (-2923 . 373256) (-2924 . 372486)
+ (-2925 . 368877) (-2926 . 368791) (-2927 . 368707) (-2928 . 368656)
+ (-2929 . 368629) (-2930 . 368502) (-2931 . 368387) (-2932 . 368289)
+ (-2933 . 367987) (-2934 . 367833) (-2935 . 366571) (-2936 . 366518)
+ (-2937 . 366208) (-2938 . 366139) (-2939 . 366059) (-2940 . 365820)
+ (-2941 . 365558) (-2942 . 365481) (-2943 . 365453) (-2944 . 365382)
+ (-2945 . 365345) (-2946 . 365060) (-2947 . 364848) (-2948 . 364450)
+ (-2949 . 364349) (-2950 . 362807) (-2951 . 362675) (-2952 . 362641)
+ (-2953 . 362538) (-2954 . 362360) (-2955 . 362287) (-2956 . 361619)
+ (-2957 . 361545) (-2958 . 361450) (-2959 . 361351) (-2960 . 361210)
+ (-2961 . 360731) (-2962 . 360528) (-2963 . 360009) (-2964 . 359527)
+ (-2965 . 359446) (-2966 . 359312) (-2967 . 359244) (-2968 . 358899)
+ (-2969 . 358718) (-2970 . 358665) (-2971 . 357547) (-2972 . 352033)
+ (-2973 . 351652) (-2974 . 351594) (-2975 . 351500) (-2976 . 351402)
+ (-2977 . 351272) (-2978 . 351063) (-2979 . 350890) (-2980 . 350514)
+ (-2981 . 350447) (-2982 . 349230) (-2983 . 349032) (-2984 . 348872)
+ (-2985 . 348629) (-2986 . 348197) (-2987 . 347861) (-2988 . 347776)
+ (-2989 . 347748) (-2990 . 347682) (-2991 . 347318) (-2992 . 347250)
+ (-2993 . 347146) (-2994 . 347045) (-2995 . 346827) (-2996 . 346662)
+ (-2997 . 346609) (-2998 . 346512) (-2999 . 346435) (-3000 . 346334)
+ (-3001 . 346195) (-3002 . 346068) (-3003 . 345994) (-3004 . 345856)
+ (-3005 . 345541) (-3006 . 345195) (-3007 . 345167) (-3008 . 345099)
+ (-3009 . 344981) (-3010 . 344640) (-3011 . 342424) (-3012 . 342160)
+ (-3013 . 342107) (-3014 . 342029) (-3015 . 341603) (-3016 . 341472)
+ (-3017 . 341401) (-3018 . 341228) (-3019 . 340806) (-3020 . 340663)
+ (-3021 . 340590) (-3022 . 340386) (-3023 . 340268) (-3024 . 340188)
+ (-3025 . 340072) (-3026 . 339757) (-3027 . 339562) (-3028 . 339369)
+ (-3029 . 339228) (-3030 . 339176) (-3031 . 339116) (-3032 . 338901)
+ (-3033 . 338158) (-3034 . 338063) (-3035 . 337945) (-3036 . 337780)
+ (-3037 . 336844) (-3038 . 336816) (-3039 . 336730) (-3040 . 336664)
+ (-3041 . 336326) (-3042 . 334696) (-3043 . 333264) (-3044 . 333166)
+ (-3045 . 333114) (-3046 . 333083) (-3047 . 332961) (-3048 . 332610)
+ (-3049 . 332383) (-3050 . 332287) (-3051 . 332235) (-3052 . 332141)
+ (-3053 . 332046) (-3054 . 331978) (-3055 . 331892) (-3056 . 331693)
+ (-3057 . 331532) (-3058 . 331194) (-3059 . 331003) (-3060 . 330144)
+ (-3061 . 329912) (-3062 . 329880) (-3063 . 329803) (-3064 . 329751)
+ (-3065 . 329626) (-3066 . 329531) (-3067 . 329442) (-3068 . 329375)
+ (-3069 . 329276) (-3070 . 329118) (-3071 . 329022) (-3072 . 324479)
+ (-3073 . 324338) (-3074 . 324166) (-3075 . 324011) (-3076 . 323925)
+ (-3077 . 323037) (-3078 . 322985) (-3079 . 322957) (-3080 . 322813)
+ (-3081 . 322522) (-3082 . 322449) (-3083 . 322290) (-3084 . 322234)
+ (-3085 . 322130) (-3086 . 321884) (-3087 . 321825) (-3088 . 320983)
+ (-3089 . 320859) (-3090 . 320781) (-3091 . 320711) (-3092 . 320633)
+ (-3093 . 320240) (-3094 . 319563) (-3095 . 319489) (-3096 . 319062)
+ (-3097 . 318967) (-3098 . 318868) (-3099 . 318726) (-3100 . 318653)
+ (-3101 . 318565) (-3102 . 318139) (-3103 . 316941) (-3104 . 316864)
+ (-3105 . 316110) (-3106 . 315668) (-3107 . 315595) (-3108 . 315322)
+ (-3109 . 315227) (-3110 . 315144) (-3111 . 315028) (-3112 . 314870)
+ (-3113 . 314643) (-3114 . 314581) (-3115 . 314363) (-3116 . 314262)
+ (-3117 . 314102) (-3118 . 314020) (-3119 . 313932) (-3120 . 313370)
+ (-3121 . 313225) (-3122 . 312824) (-3123 . 312700) (-3124 . 312600)
+ (-3125 . 312534) (-3126 . 312439) (-3127 . 312178) (-3128 . 312063)
+ (-3129 . 311967) (-3130 . 311776) (-3131 . 311613) (-3132 . 311515)
+ (-3133 . 311432) (-3134 . 311336) (-3135 . 311283) (-3136 . 311224)
+ (-3137 . 310888) (-3138 . 310835) (-3139 . 310617) (-3140 . 310501)
+ (-3141 . 310367) (-3142 . 310315) (-3143 . 309828) (-3144 . 309755)
+ (-3145 . 309693) (-3146 . 309541) (-3147 . 309178) (-3148 . 309125)
+ (-3149 . 308932) (-3150 . 308629) (-3151 . 308333) (-3152 . 308274)
+ (-3153 . 308194) (-3154 . 308117) (-3155 . 308051) (-3156 . 307967)
+ (-3157 . 307786) (-3158 . 307605) (-3159 . 307425) (-3160 . 307370)
+ (-3161 . 293139) (-3162 . 293042) (-3163 . 292957) (-3164 . 292877)
+ (-3165 . 292815) (-3166 . 292743) (-3167 . 291562) (-3168 . 291315)
+ (-3169 . 291106) (-3170 . 291023) (-3171 . 290840) (-3172 . 290785)
+ (-3173 . 290733) (-3174 . 290617) (-3175 . 290385) (-3176 . 290266)
+ (-3177 . 290192) (-3178 . 290100) (-3179 . 289890) (-3180 . 289790)
+ (-3181 . 288623) (-3182 . 288233) (-3183 . 287977) (-3184 . 287703)
+ (-3185 . 287583) (-3186 . 287409) (-3187 . 287313) (-3188 . 287260)
+ (-3189 . 287138) (-3190 . 287017) (-3191 . 286856) (-3192 . 286774)
+ (-3193 . 286512) (-3194 . 286408) (-3195 . 286172) (-3196 . 286071)
+ (-3197 . 285726) (-3198 . 285620) (-3199 . 285532) (-3200 . 285458)
+ (-3201 . 285356) (-3202 . 285273) (-3203 . 285177) (-3204 . 285043)
+ (-3205 . 285011) (-3206 . 284909) (-3207 . 284793) (-3208 . 284406)
+ (-3209 . 284318) (-3210 . 284266) (-3211 . 284203) (-3212 . 284111)
+ (-3213 . 283983) (-3214 . 283734) (-3215 . 283633) (-3216 . 283523)
+ (-3217 . 283410) (-3218 . 283247) (-3219 . 283170) (-3220 . 283098)
+ (-3221 . 282707) (-3222 . 279040) (-3223 . 278963) (-3224 . 278877)
+ (-3225 . 277917) (-3226 . 277858) (-3227 . 277503) (-3228 . 277351)
+ (-3229 . 277193) (-3230 . 277043) (-3231 . 276909) (-3232 . 276766)
+ (-3233 . 275470) (-3234 . 275324) (-3235 . 275219) (-3236 . 274924)
+ (-3237 . 274838) (-3238 . 274786) (-3239 . 274265) (-3240 . 274156)
+ (-3241 . 274037) (-3242 . 273870) (-3243 . 273796) (-3244 . 273582)
+ (-3245 . 272497) (-3246 . 272339) (-3247 . 272120) (-3248 . 272001)
+ (-3249 . 271888) (-3250 . 271809) (-3251 . 271249) (-3252 . 271168)
+ (-3253 . 271032) (-3254 . 270962) (-3255 . 270896) (-3256 . 270736)
+ (-3257 . 270290) (-3258 . 270217) (-3259 . 269823) (-3260 . 269610)
+ (-3261 . 269537) (-3262 . 269155) (-3263 . 269042) (-3264 . 268691)
+ (-3265 . 268525) (-3266 . 268445) (-3267 . 268308) (-3268 . 268184)
+ (-3269 . 268073) (-3270 . 267983) (-3271 . 267912) (-3272 . 266712)
+ (-3273 . 266618) (-3274 . 266517) (-3275 . 266418) (-3276 . 265965)
+ (-3277 . 265895) (-3278 . 265800) (-3279 . 265621) (-3280 . 265526)
+ (-3281 . 265473) (-3282 . 265141) (-3283 . 264812) (-3284 . 264517)
+ (-3285 . 264454) (-3286 . 264244) (-3287 . 264152) (-3288 . 263231)
+ (-3289 . 263088) (-3290 . 263039) (-3291 . 262576) (-3292 . 262404)
+ (-3293 . 262252) (-3294 . 262109) (-3295 . 261862) (-3296 . 261717)
+ (-3297 . 261589) (-3298 . 261388) (-3299 . 261208) (-3300 . 260930)
+ (-3301 . 260851) (-3302 . 260597) (-3303 . 260483) (-3304 . 260254)
+ (-3305 . 260171) (-3306 . 260066) (-3307 . 259755) (-3308 . 259692)
+ (-3309 . 259598) (-3310 . 259430) (-3311 . 259317) (-3312 . 258793)
+ (-3313 . 258698) (-3314 . 258556) (-3315 . 258365) (-3316 . 258166)
+ (-3317 . 257678) (-3318 . 257419) (-3319 . 257228) (-3320 . 256950)
+ (-3321 . 256854) (-3322 . 256690) (-3323 . 256455) (-3324 . 256242)
+ (-3325 . 256101) (-3326 . 256046) (-3327 . 255958) (-3328 . 255858)
+ (-3329 . 255772) (-3330 . 255268) (-3331 . 254961) (-3332 . 254669)
+ (-3333 . 254566) (-3334 . 254495) (-3335 . 254418) (-3336 . 254345)
+ (-3337 . 254040) (-3338 . 253953) (-3339 . 252861) (-3340 . 252729)
+ (-3341 . 252628) (-3342 . 252485) (-3343 . 252457) (-3344 . 252426)
+ (-3345 . 252200) (-3346 . 252009) (-3347 . 251938) (-3348 . 250868)
+ (-3349 . 250769) (-3350 . 250659) (-3351 . 250441) (-3352 . 250380)
+ (-3353 . 250328) (-3354 . 250250) (-3355 . 250044) (-3356 . 249900)
+ (-3357 . 249365) (-3358 . 249268) (-3359 . 249144) (-3360 . 249085)
+ (-3361 . 248985) (-3362 . 248912) (-3363 . 248828) (-3364 . 248777)
+ (-3365 . 248530) (-3366 . 248434) (-3367 . 248332) (-3368 . 248237)
+ (-3369 . 247810) (-3370 . 247695) (-3371 . 247597) (-3372 . 247511)
+ (-3373 . 247455) (-3374 . 247266) (-3375 . 246924) (-3376 . 246867)
+ (-3377 . 246784) (-3378 . 246491) (-3379 . 245627) (-3380 . 245408)
+ (-3381 . 245374) (-3382 . 245315) (-3383 . 245229) (-3384 . 245155)
+ (-3385 . 244822) (-3386 . 244642) (-3387 . 244497) (-3388 . 244417)
+ (-3389 . 244240) (-3390 . 244152) (-3391 . 244074) (-3392 . 243855)
+ (-3393 . 243504) (-3394 . 243408) (-3395 . 243348) (-3396 . 243306)
+ (-3397 . 243157) (-3398 . 242938) (-3399 . 242810) (-3400 . 242736)
+ (-3401 . 242683) (-3402 . 242649) (-3403 . 242473) (-3404 . 242411)
+ (-3405 . 242361) (-3406 . 242295) (-3407 . 242198) (-3408 . 241923)
+ (-3409 . 241796) (-3410 . 241727) (-3411 . 241544) (-3412 . 241389)
+ (-3413 . 241337) (-3414 . 241169) (-3415 . 240944) (-3416 . 240804)
+ (-3417 . 240525) (-3418 . 240428) (-3419 . 240310) (-3420 . 240178)
+ (-3421 . 240020) (-3422 . 239970) (-3423 . 239896) (-3424 . 239840)
+ (-3425 . 239723) (-3426 . 237755) (-3427 . 237639) (-3428 . 237458)
+ (-3429 . 237356) (-3430 . 237162) (-3431 . 237016) (-3432 . 236920)
+ (-3433 . 236812) (-3434 . 236592) (-3435 . 236536) (-3436 . 236484)
+ (-3437 . 234754) (-3438 . 234683) (-3439 . 234294) (-3440 . 234200)
+ (-3441 . 234099) (-3442 . 233936) (-3443 . 233862) (-3444 . 233673)
+ (-3445 . 233479) (-3446 . 233388) (-3447 . 233013) (-3448 . 232860)
+ (-3449 . 232757) (-3450 . 232381) (-3451 . 232287) (-3452 . 232143)
+ (-3453 . 231282) (-3454 . 231130) (-3455 . 231080) (-3456 . 231010)
+ (-3457 . 230821) (-3458 . 230699) (-3459 . 230630) (-3460 . 230560)
+ (-3461 . 230507) (-3462 . 230361) (-3463 . 230208) (-3464 . 230121)
+ (-3465 . 230053) (-3466 . 229782) (-3467 . 229623) (-3468 . 229478)
+ (-3469 . 229371) (-3470 . 229248) (-3471 . 229160) (-3472 . 229083)
+ (-3473 . 228908) (-3474 . 228826) (-3475 . 228409) (-3476 . 228303)
+ (-3477 . 228178) (-3478 . 228119) (-3479 . 227845) (-3480 . 227759)
+ (-3481 . 227681) (-3482 . 227145) (-3483 . 226641) (-3484 . 226570)
+ (-3485 . 226457) (-3486 . 226216) (-3487 . 226035) (-3488 . 225828)
+ (-3489 . 225797) (-3490 . 225607) (-3491 . 207032) (-3492 . 206921)
+ (-3493 . 206791) (-3494 . 206448) (-3495 . 206292) (-3496 . 206264)
+ (-3497 . 206145) (-3498 . 206113) (-3499 . 206042) (-3500 . 205990)
+ (-3501 . 205895) (-3502 . 205451) (-3503 . 202630) (-3504 . 202547)
+ (-3505 . 202459) (-3506 . 202375) (-3507 . 202268) (-3508 . 202184)
+ (-3509 . 202063) (-3510 . 201890) (-3511 . 201752) (-3512 . 201549)
+ (-3513 . 201384) (-3514 . 201292) (-3515 . 201194) (-3516 . 201142)
+ (-3517 . 201092) (-3518 . 201029) (-3519 . 200821) (-3520 . 200669)
+ (-3521 . 200464) (-3522 . 200312) (-3523 . 200220) (-3524 . 200142)
+ (-3525 . 200108) (-3526 . 199935) (-3527 . 199883) (-3528 . 199787)
+ (-3529 . 199735) (-3530 . 199603) (-3531 . 199519) (-3532 . 199410)
+ (-3533 . 198880) (-3534 . 198794) (-3535 . 198722) (-3536 . 198688)
+ (-3537 . 198300) (-3538 . 198233) (-3539 . 198138) (-3540 . 198078)
+ (-3541 . 197919) (-3542 . 197859) (-3543 . 197789) (-3544 . 197723)
+ (-3545 . 197452) (-3546 . 197418) (-3547 . 197316) (-3548 . 197154)
+ (-3549 . 196804) (-3550 . 196545) (-3551 . 196117) (-3552 . 195916)
+ (-3553 . 195808) (-3554 . 195739) (-3555 . 195560) (-3556 . 195465)
+ (-3557 . 195357) (-3558 . 195234) (-3559 . 195161) (-3560 . 195042)
+ (-3561 . 194990) (-3562 . 194857) (-3563 . 194646) (-3564 . 194460)
+ (-3565 . 194302) (-3566 . 194179) (-3567 . 193901) (-3568 . 193831)
+ (-3569 . 193760) (-3570 . 193150) (-3571 . 192992) (-3572 . 192930)
+ (-3573 . 192501) (-3574 . 192400) (-3575 . 192236) (-3576 . 192162)
+ (-3577 . 192107) (-3578 . 191797) (-3579 . 191658) (-3580 . 190435)
+ (-3581 . 190332) (-3582 . 190105) (-3583 . 190032) (-3584 . 189972)
+ (-3585 . 189792) (-3586 . 189722) (-3587 . 189590) (-3588 . 189538)
+ (-3589 . 189364) (-3590 . 189105) (-3591 . 189011) (-3592 . 188950)
+ (-3593 . 188459) (-3594 . 188337) (-3595 . 188191) (-3596 . 187011)
+ (-3597 . 186731) (-3598 . 186674) (-3599 . 186607) (-3600 . 186442)
+ (-3601 . 186246) (-3602 . 186056) (-3603 . 185806) (-3604 . 185672)
+ (-3605 . 185587) (-3606 . 185503) (-3607 . 185355) (-3608 . 185218)
+ (-3609 . 184980) (-3610 . 184662) (-3611 . 184607) (-3612 . 184536)
+ (-3613 . 184481) (-3614 . 184323) (-3615 . 184274) (-3616 . 184151)
+ (-3617 . 183734) (-3618 . 183680) (-3619 . 183286) (-3620 . 183187)
+ (-3621 . 183084) (-3622 . 183001) (-3623 . 182913) (-3624 . 182095)
+ (-3625 . 181989) (-3626 . 181934) (-3627 . 181875) (-3628 . 181594)
+ (-3629 . 181408) (-3630 . 181041) (-3631 . 180795) (-3632 . 180499)
+ (-3633 . 180433) (-3634 . 180379) (-3635 . 180284) (-3636 . 180206)
+ (-3637 . 180110) (-3638 . 179937) (-3639 . 179903) (-3640 . 179759)
+ (-3641 . 179565) (-3642 . 179407) (-3643 . 179379) (-3644 . 179329)
+ (-3645 . 179263) (-3646 . 179126) (-3647 . 178917) (-3648 . 178586)
+ (-3649 . 178192) (-3650 . 178112) (-3651 . 178081) (-3652 . 177835)
+ (-3653 . 177729) (-3654 . 173779) (-3655 . 173686) (-3656 . 173602)
+ (-3657 . 173260) (-3658 . 173183) (-3659 . 171879) (-3660 . 171611)
+ (-3661 . 171583) (-3662 . 171456) (-3663 . 171217) (-3664 . 170974)
+ (-3665 . 170915) (-3666 . 170745) (-3667 . 170615) (-3668 . 170323)
+ (-3669 . 170236) (-3670 . 169603) (-3671 . 169537) (-3672 . 169422)
+ (-3673 . 169279) (-3674 . 169197) (-3675 . 168881) (-3676 . 168758)
+ (-3677 . 168721) (-3678 . 168608) (-3679 . 168281) (-3680 . 168128)
+ (-3681 . 168004) (-3682 . 167826) (-3683 . 167722) (-3684 . 167413)
+ (-3685 . 167313) (-3686 . 167258) (-3687 . 167143) (-3688 . 167091)
+ (-3689 . 166845) (-3690 . 166726) (-3691 . 166674) (-3692 . 166576)
+ (-3693 . 166431) (-3694 . 166008) (-3695 . 165958) (-3696 . 165877)
+ (-3697 . 165767) (-3698 . 165546) (-3699 . 165430) (-3700 . 165346)
+ (-3701 . 165222) (-3702 . 165123) (-3703 . 165019) (-3704 . 162604)
+ (-3705 . 162518) (-3706 . 162422) (-3707 . 162349) (-3708 . 162252)
+ (-3709 . 162155) (-3710 . 162029) (-3711 . 161952) (-3712 . 161647)
+ (-3713 . 161567) (-3714 . 161513) (-3715 . 161197) (-3716 . 161119)
+ (-3717 . 160203) (-3718 . 160122) (-3719 . 159991) (-3720 . 159917)
+ (-3721 . 159833) (-3722 . 159759) (-3723 . 159660) (-3724 . 159053)
+ (-3725 . 158947) (-3726 . 156886) (-3727 . 156744) (-3728 . 156658)
+ (-3729 . 156590) (-3730 . 156498) (-3731 . 156446) (-3732 . 156393)
+ (-3733 . 156259) (-3734 . 156127) (-3735 . 155645) (-3736 . 155565)
+ (-3737 . 155412) (-3738 . 155173) (-3739 . 155105) (-3740 . 154972)
+ (-3741 . 154666) (-3742 . 154632) (-3743 . 154554) (-3744 . 154448)
+ (-3745 . 154326) (-3746 . 154228) (-3747 . 154104) (-3748 . 153367)
+ (-3749 . 153209) (-3750 . 152952) (-3751 . 152864) (-3752 . 152814)
+ (-3753 . 152759) (-3754 . 152556) (-3755 . 152365) (-3756 . 152225)
+ (-3757 . 152130) (-3758 . 151991) (-3759 . 151910) (-3760 . 151778)
+ (-3761 . 151189) (-3762 . 149987) (-3763 . 149636) (-3764 . 149584)
+ (-3765 . 149446) (-3766 . 149331) (-3767 . 149248) (-3768 . 149119)
+ (-3769 . 149090) (-3770 . 148361) (-3771 . 148308) (-3772 . 148099)
+ (-3773 . 147900) (-3774 . 147620) (-3775 . 147568) (-3776 . 147444)
+ (-3777 . 147299) (-3778 . 147051) (-3779 . 146977) (-3780 . 146248)
+ (-3781 . 146119) (-3782 . 146047) (-3783 . 145875) (-3784 . 145804)
+ (-3785 . 145601) (-3786 . 145513) (-3787 . 145454) (-3788 . 145313)
+ (-3789 . 145217) (-3790 . 144541) (-3791 . 144445) (-3792 . 144337)
+ (-3793 . 144232) (-12 . 144060) (-3795 . 144001) (-3796 . 143849)
+ (-3797 . 143706) (-3798 . 143568) (-3799 . 143370) (-3800 . 142806)
+ (-3801 . 142741) (-3802 . 142613) (-3803 . 142405) (-3804 . 142340)
+ (-3805 . 142239) (-3806 . 142167) (-3807 . 141833) (-3808 . 141370)
+ (-3809 . 141246) (-3810 . 141053) (-3811 . 140489) (-3812 . 140286)
+ (-3813 . 140215) (-3814 . 140150) (-3815 . 140047) (-3816 . 139892)
+ (-3817 . 139736) (-3818 . 139475) (-3819 . 139289) (-3820 . 139206)
+ (-3821 . 139084) (-3822 . 138520) (-3823 . 138378) (-3824 . 138264)
+ (-3825 . 138185) (-3826 . 137970) (-3827 . 137872) (-3828 . 137802)
+ (-3829 . 137415) (-3830 . 137312) (-3831 . 137184) (-3832 . 137129)
+ (-3833 . 136455) (-3834 . 136402) (-3835 . 136240) (-3836 . 136212)
+ (-3837 . 135978) (-3838 . 135827) (-3839 . 135664) (-3840 . 135569)
+ (-3841 . 135468) (-3842 . 134794) (-3843 . 134614) (-3844 . 134474)
+ (-3845 . 134222) (-3846 . 134064) (-3847 . 133857) (-3848 . 133681)
+ (-3849 . 133612) (-3850 . 133529) (-3851 . 133406) (-3852 . 132669)
+ (-3853 . 132561) (-3854 . 132321) (-3855 . 132141) (-3856 . 131690)
+ (-3857 . 131425) (-3858 . 130941) (-3859 . 130889) (-3860 . 130671)
+ (-3861 . 130109) (-3862 . 129408) (-3863 . 129350) (-3864 . 129117)
+ (-3865 . 129045) (-3866 . 128841) (-3867 . 128784) (-3868 . 128705)
+ (-3869 . 128581) (-3870 . 128528) (-3871 . 127966) (-3872 . 127913)
+ (-3873 . 127823) (-3874 . 127444) (-3875 . 127416) (-3876 . 126843)
+ (-3877 . 126621) (-3878 . 126341) (-3879 . 126281) (-3880 . 126156)
+ (-3881 . 126100) (-3882 . 125979) (-3883 . 125417) (-3884 . 125299)
+ (-3885 . 125267) (-3886 . 125164) (* . 120897) (-3888 . 120799)
+ (-3889 . 120552) (-3890 . 120266) (-3891 . 120074) (-3892 . 119970)
+ (-3893 . 119295) (-3894 . 119224) (-3895 . 118882) (-3896 . 118799)
+ (-3897 . 118681) (-3898 . 118511) (-3899 . 118390) (-3900 . 118249)
+ (-3901 . 118026) (-3902 . 117974) (-3903 . 117829) (-3904 . 117557)
+ (-3905 . 116882) (-3906 . 116787) (-3907 . 116691) (-3908 . 116473)
+ (-3909 . 115509) (-3910 . 115285) (-3911 . 115063) (-3912 . 114981)
+ (-3913 . 114785) (-3914 . 114556) (-3915 . 113881) (-3916 . 113788)
+ (-3917 . 113736) (-3918 . 113538) (-3919 . 113450) (-3920 . 113022)
+ (-3921 . 112750) (-3922 . 112644) (-3923 . 112416) (-3924 . 112317)
+ (-3925 . 112251) (-3926 . 112114) (-3927 . 111551) (-3928 . 111273)
+ (-3929 . 111220) (-3930 . 111104) (-3931 . 110994) (-3932 . 110848)
+ (-3933 . 110662) (-3934 . 110529) (-3935 . 110498) (-3936 . 109980)
+ (-3937 . 109897) (-3938 . 109411) (-3939 . 108848) (-3940 . 108799)
+ (-3941 . 108692) (-3942 . 108641) (-3943 . 108410) (-3944 . 108284)
+ (-3945 . 108217) (-3946 . 107982) (-3947 . 107786) (-3948 . 107691)
+ (-3949 . 107621) (-3950 . 107403) (-3951 . 107247) (-3952 . 107181)
+ (-3953 . 107069) (-3954 . 106982) (-3955 . 106883) (-3956 . 106686)
+ (-3957 . 106066) (-3958 . 106007) (-3959 . 105682) (-3960 . 105492)
+ (-3961 . 105431) (-3962 . 105323) (-3963 . 105187) (-3964 . 104836)
+ (-3965 . 104677) (-3966 . 104582) (-3967 . 104360) (-3968 . 104266)
+ (-3969 . 104195) (-3970 . 104053) (-3971 . 103961) (-3972 . 103738)
+ (-3973 . 103636) (-3974 . 103507) (-3975 . 103456) (-3976 . 103369)
+ (-3977 . 103033) (-3978 . 102811) (-3979 . 102732) (-3980 . 102447)
+ (-3981 . 102298) (-3982 . 102173) (-3983 . 102101) (-3984 . 101843)
+ (-3985 . 101512) (-3986 . 101324) (-3987 . 101230) (-3988 . 101173)
+ (-3989 . 101007) (-3990 . 100923) (-3991 . 100757) (-3992 . 100630)
+ (-3993 . 100042) (-3994 . 99978) (-3995 . 99926) (-3996 . 99871)
+ (-3997 . 99768) (-3998 . 99696) (-3999 . 99566) (-4000 . 99270)
+ (-4001 . 98743) (-4002 . 98583) (-4003 . 98471) (-4004 . 98336)
+ (-4005 . 97150) (-4006 . 97099) (-4007 . 97020) (-4008 . 96968)
+ (-4009 . 96855) (-4010 . 96711) (-4011 . 96543) (-4012 . 96465)
+ (-4013 . 96382) (-4014 . 96311) (-4015 . 96228) (-4016 . 96035)
+ (-4017 . 95961) (-4018 . 94779) (-4019 . 93893) (-4020 . 93811)
+ (-4021 . 93679) (-4022 . 93584) (-4023 . 93550) (-4024 . 93325)
+ (-4025 . 93271) (-4026 . 93194) (-4027 . 93108) (-4028 . 93016)
+ (-4029 . 90808) (-4030 . 90756) (-4031 . 90657) (-4032 . 90435)
+ (-4033 . 90401) (-4034 . 88173) (-4035 . 88049) (-4036 . 87955)
+ (-4037 . 87511) (-4038 . 87456) (-4039 . 87400) (-4040 . 87281)
+ (-4041 . 86896) (-4042 . 86795) (-4043 . 86624) (-4044 . 86521)
+ (-4045 . 86376) (-4046 . 86288) (-4047 . 85937) (-4048 . 85529)
+ (-4049 . 85227) (-4050 . 85021) (-4051 . 84968) (-4052 . 84813)
+ (-4053 . 84526) (-4054 . 84477) (-4055 . 84424) (-4056 . 84251)
+ (-4057 . 83025) (-4058 . 82818) (-4059 . 82372) (-4060 . 82193)
+ (-4061 . 82102) (-4062 . 81934) (-4063 . 80532) (-4064 . 80476)
+ (-4065 . 80382) (-4066 . 80229) (-4067 . 80155) (-4068 . 80042)
+ (-4069 . 79897) (-4070 . 79742) (-4071 . 79673) (-4072 . 79528)
+ (-4073 . 79477) (-4074 . 79272) (-4075 . 79203) (-4076 . 79135)
+ (-4077 . 79076) (-4078 . 78966) (-4079 . 78895) (-4080 . 78833)
+ (-4081 . 78680) (-4082 . 78293) (-4083 . 78000) (-4084 . 77184)
+ (-4085 . 77128) (-4086 . 77032) (-4087 . 76962) (-4088 . 76861)
+ (-4089 . 76776) (-4090 . 76100) (-4091 . 75892) (-4092 . 75762)
+ (-4093 . 75656) (-4094 . 75441) (-4095 . 75216) (-4096 . 75118)
+ (-4097 . 74949) (-4098 . 74819) (-4099 . 74721) (-4100 . 74663)
+ (-4101 . 74559) (-4102 . 74450) (-4103 . 74280) (-4104 . 74228)
+ (-4105 . 74172) (-4106 . 73828) (-4107 . 73350) (-4108 . 73216)
+ (-4109 . 73162) (-4110 . 72978) (-4111 . 72813) (-4112 . 72660)
+ (-4113 . 72608) (-4114 . 72553) (-4115 . 72231) (-4116 . 72112)
+ (-4117 . 72000) (-4118 . 71509) (-4119 . 71386) (-4120 . 71309)
+ (-4121 . 70931) (-4122 . 70704) (-4123 . 70636) (-4124 . 70584)
+ (-4125 . 70510) (-4126 . 69926) (-4127 . 69852) (-4128 . 69465)
+ (-4129 . 69433) (-4130 . 69106) (-4131 . 68861) (-4132 . 68633)
+ (-4133 . 68489) (-4134 . 68396) (-4135 . 68365) (-4136 . 68291)
+ (-4137 . 68214) (-4138 . 68101) (-4139 . 67876) (-4140 . 67576)
+ (-4141 . 67457) (-4142 . 67402) (-4143 . 67350) (-4144 . 66783)
+ (-4145 . 66604) (-4146 . 66525) (-4147 . 66226) (-4148 . 65895)
+ (-4149 . 65605) (-4150 . 65391) (-4151 . 64900) (-4152 . 64816)
+ (-4153 . 64721) (-4154 . 64622) (-4155 . 64527) (-4156 . 64423)
+ (-4157 . 64368) (-4158 . 64275) (-4159 . 63511) (-4160 . 63483)
+ (-4161 . 56540) (-4162 . 55999) (-4163 . 55925) (-4164 . 55472)
+ (-4165 . 54170) (-4166 . 54121) (-4167 . 53729) (-4168 . 53670)
+ (-4169 . 53611) (-4170 . 53556) (-4171 . 53380) (-4172 . 53208)
+ (-4173 . 53131) (-4174 . 53103) (-4175 . 53045) (-4176 . 52992)
+ (-4177 . 52859) (-4178 . 52830) (-4179 . 52734) (-4180 . 52676)
+ (-4181 . 52504) (-4182 . 52367) (-4183 . 52268) (-4184 . 52175)
+ (-4185 . 52147) (-4186 . 52095) (-4187 . 51552) (-4188 . 51456)
+ (-4189 . 51403) (-4190 . 51351) (-4191 . 51256) (-4192 . 51159)
+ (-4193 . 50987) (-4194 . 50850) (-4195 . 50705) (-4196 . 50519)
+ (-4197 . 50463) (-4198 . 50354) (-4199 . 50175) (-4200 . 49950)
+ (-4201 . 49882) (-4202 . 49485) (-4203 . 49377) (-4204 . 49205)
+ (-4205 . 49050) (-4206 . 47461) (-4207 . 47390) (-4208 . 47338)
+ (-4209 . 47191) (-4210 . 46992) (-4211 . 46676) (-4212 . 46627)
+ (-4213 . 46510) (-4214 . 46407) (-4215 . 46179) (-4216 . 46048)
+ (-4217 . 45780) (-4218 . 45495) (-4219 . 45299) (-4220 . 45043)
+ (-4221 . 44595) (-4222 . 44462) (-4223 . 44363) (-4224 . 44278)
+ (-4225 . 43981) (-4226 . 43895) (-4227 . 43829) (-4228 . 43751)
+ (-4229 . 43589) (-4230 . 43132) (-4231 . 43023) (-4232 . 42938)
+ (-4233 . 42761) (-4234 . 42628) (-4235 . 42379) (-4236 . 42238)
+ (-4237 . 41885) (-4238 . 41667) (-4239 . 41584) (-4240 . 41481)
+ (-4241 . 41415) (-4242 . 41135) (-4243 . 40536) (-4244 . 40359)
+ (-4245 . 39976) (-4246 . 39903) (-4247 . 39851) (-4248 . 39545)
+ (-4249 . 39300) (-4250 . 39236) (-4251 . 39014) (-4252 . 38959)
+ (-4253 . 38717) (-4254 . 38593) (-4255 . 38267) (-4256 . 38140)
+ (-4257 . 38025) (-4258 . 37882) (-4259 . 37850) (-4260 . 37714)
+ (-4261 . 37340) (-4262 . 37245) (-4263 . 37101) (-4264 . 36874)
+ (-4265 . 36749) (-4266 . 36531) (-4267 . 35920) (-4268 . 35834)
+ (-4269 . 35732) (-4270 . 34858) (-4271 . 34771) (-4272 . 34705)
+ (-4273 . 34526) (-4274 . 34388) (-4275 . 34239) (-4276 . 34136)
+ (-4277 . 34057) (-4278 . 31276) (-4279 . 31224) (-4280 . 31144)
+ (-4281 . 31092) (-4282 . 30689) (-4283 . 28911) (-4284 . 28756)
+ (-4285 . 28608) (-4286 . 28518) (-4287 . 28438) (-4288 . 27998)
+ (-4289 . 27910) (-4290 . 27857) (-4291 . 27798) (-4292 . 27576)
+ (-4293 . 27061) (-4294 . 26934) (-4295 . 26867) (-4296 . 26659)
+ (-4297 . 26494) (-4298 . 26218) (-4299 . 25977) (-4300 . 25903)
+ (-4301 . 25728) (-4302 . 25567) (-4303 . 25407) (-4304 . 24064)
+ (-4305 . 24011) (-4306 . 23916) (-4307 . 23775) (-4308 . 23617)
+ (-4309 . 23233) (-4310 . 23175) (-4311 . 22862) (-4312 . 22612)
+ (-4313 . 22559) (-4314 . 22502) (-4315 . 22421) (-4316 . 22286)
+ (-4317 . 22059) (-4318 . 21958) (-4319 . 21826) (-4320 . 21745)
+ (-4321 . 21671) (-4322 . 21592) (-4323 . 21234) (-4324 . 21153)
+ (-4325 . 20995) (-4326 . 20918) (-4327 . 20730) (-4328 . 20440)
+ (-4329 . 17141) (-4330 . 17092) (-4331 . 17026) (-4332 . 16913)
+ (-4333 . 16798) (-4334 . 16746) (-4335 . 16633) (-4336 . 16494)
+ (-4337 . 16401) (-4338 . 15984) (-4339 . 15828) (-4340 . 15754)
+ (-4341 . 15677) (-4342 . 15596) (-4343 . 15441) (-4344 . 15177)
+ (-4345 . 15107) (-4346 . 14929) (-4347 . 14852) (-4348 . 14799)
+ (-4349 . 14390) (-4350 . 14318) (-4351 . 14221) (-4352 . 14162)
+ (-4353 . 13964) (-4354 . 13716) (-4355 . 13600) (-4356 . 13348)
+ (-4357 . 13277) (-4358 . 12831) (-4359 . 12472) (-4360 . 12415)
+ (-4361 . 12096) (-4362 . 12062) (-4363 . 11984) (-4364 . 11934)
+ (-4365 . 11833) (-4366 . 11740) (-4367 . 11587) (-4368 . 11365)
+ (-4369 . 11255) (-4370 . 11111) (-4371 . 11055) (-4372 . 10870)
+ (-4373 . 10191) (-4374 . 10112) (-4375 . 10017) (-4376 . 9651)
+ (-4377 . 9173) (-4378 . 9091) (-4379 . 8981) (-4380 . 8897)
+ (-4381 . 8809) (-4382 . 8656) (-4383 . 8557) (-4384 . 8386)
+ (-4385 . 8313) (-4386 . 8153) (-4387 . 7872) (-4388 . 7757)
+ (-4389 . 7699) (-4390 . 7644) (-4391 . 7549) (-4392 . 7408)
+ (-4393 . 7376) (-4394 . 7302) (-4395 . 7250) (-4396 . 7154)
+ (-4397 . 7038) (-4398 . 6396) (-4399 . 5794) (-4400 . 5630)
+ (-4401 . 5492) (-4402 . 5317) (-4403 . 5243) (-4404 . 5177)
+ (-4405 . 5111) (-4406 . 4985) (-4407 . 4626) (-4408 . 4543)
+ (-4409 . 4390) (-4410 . 4079) (-4411 . 3951) (-4412 . 3793)
+ (-4413 . 3635) (-4414 . 3607) (-4415 . 3460) (-4416 . 3317)
+ (-4417 . 3251) (-4418 . 3041) (-4419 . 2969) (-4420 . 2680)
+ (-4421 . 2586) (-4422 . 2299) (-4423 . 2216) (-4424 . 1035)
+ (-4425 . 976) (-4426 . 874) (-4427 . 710) (-4428 . 594) (-4429 . 541)
+ (-4430 . 464) (-4431 . 413) (-4432 . 354) (-4433 . 58) (-4434 . 30)) \ No newline at end of file